WO2023214813A1 - 소형 기지국 안테나 장치 및 이의 커넥터 - Google Patents

소형 기지국 안테나 장치 및 이의 커넥터 Download PDF

Info

Publication number
WO2023214813A1
WO2023214813A1 PCT/KR2023/006085 KR2023006085W WO2023214813A1 WO 2023214813 A1 WO2023214813 A1 WO 2023214813A1 KR 2023006085 W KR2023006085 W KR 2023006085W WO 2023214813 A1 WO2023214813 A1 WO 2023214813A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
connector
antenna module
wireless unit
small base
Prior art date
Application number
PCT/KR2023/006085
Other languages
English (en)
French (fr)
Inventor
김덕용
정배묵
지교성
유치백
박원준
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230058003A external-priority patent/KR20230155986A/ko
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Publication of WO2023214813A1 publication Critical patent/WO2023214813A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/621Bolt, set screw or screw clamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/719Structural association with built-in electrical component specially adapted for high frequency, e.g. with filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/60Contacts spaced along planar side wall transverse to longitudinal axis of engagement

Definitions

  • the present invention relates to a small base station antenna device and its connector (SMALL CELL BASE STATION ANTENNA APPARATUS AND CONNECTOR FOT THE SAME), and more specifically, to prevent external exposure of the cable and to build an indoor small cell.
  • a small base station antenna device that is easy to use and can be beam formed to enable dual-band implementation by dividing a portion of one antenna module to cover different frequency bands or providing multiple antenna modules to each cover different frequency bands, and the same. It's about connectors.
  • the 5G communication system or pre-5G communication system is called a Beyond 4G Network communication system or a Post LTE system.
  • 5G communication systems are being considered for implementation in ultra-high frequency (mmWave) bands (such as the 60 GHz band).
  • mmWave ultra-high frequency
  • the 5G communication system uses beamforming, massive array multiple input/output (massive MIMO), and full dimension multiple input/output (FD-MIMO). ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed.
  • SCN Small Cell Network
  • Small Cell is a small base station that has narrow coverage with low transmission power, unlike Macro Cell, which has wide coverage with existing high transmission power.
  • the category of small cells collectively refers to low-power base station equipment of 10W or less, pico cells, femto cells, Wi-Fi, etc.
  • the advantages of small cells are that they cost less to build and are smaller than macro cells. Space efficiency can be improved.
  • Capacity per unit area can be increased by overlapping these small cells in public places, densely populated areas, and indoors such as large shopping malls or airport buildings. This also has the advantage of reducing the power consumed and installation costs of one macrocell base station. Small cell base stations alone can achieve 1,000 times the capacity of existing LTE, so small cells are expected to become the foundational technology that connects 4G and 5G.
  • Figure 1 is an external perspective view showing an antenna device for a base station according to a conventional embodiment.
  • the antenna device for a base station is installed outdoors (outdoors), and the antenna module 10 is attached to the upright support pole 11 and to the fixing brackets 30 and 31.
  • the wireless unit 12 is mounted on the lower side of the antenna module 10 by fixing brackets 32 and 33, and a plurality of cables 14 are connected between the antenna module 10 and the wireless unit 12. It is composed of a structure that is electrically connected using.
  • the fixing brackets 30 and 31 are arranged at the top and bottom of the antenna module 10 and fixed to the support pole 11, and are arranged at the top and bottom of the wireless unit 12 and fixed to the support pole 11.
  • the fixing brackets 30-33 are responsible for fixing using fasteners such as screws, bolts, nuts, etc.
  • the conventional antenna device for a base station has a structure limited to outdoor (outdoor) installation, which is necessarily installed via the support pole 11, while the antenna module 10 is installed relatively on the upper side of the support pole 11.
  • the wireless unit 12 for example, RRH (Remote Radio Head)
  • RRH Remote Radio Head
  • the present invention was conceived to solve the above-mentioned technical problem, and provides a small base station antenna device and a connector thereof that facilitate the construction of a small cell base station in places such as public places, densely populated areas, large shopping malls, and vacant buildings. It is for that purpose.
  • the present invention provides a small base station antenna device and a small base station antenna device that is equipped to adjust the direction of various cables electrically connecting the wireless unit and the antenna module without exposing them to the outside, thereby preventing the aesthetics from being deteriorated. Another purpose is to provide a connector.
  • the present invention provides a small base station antenna device capable of dual-banding in various locations by dividing a part of one antenna module to cover different frequency bands or providing a plurality of antenna modules to each cover different frequency bands, and a small base station antenna device and the same. Another purpose is to provide a connector.
  • Another object of the present invention is to provide a small base station antenna device and its connector that can secure a wide range of directional adjustment angles by each multi-function link that mediates the installation of a plurality of antenna modules for a wireless unit. .
  • Another object of the present invention is to provide a small base station antenna device and its connector that are equipped to facilitate installation using a multi-function link of the small base station antenna device.
  • a small base station antenna device includes a radio unit (RU; Radio Unit), at least one antenna module installed to enable tilting and steering operations with respect to the radio unit, and each antenna module with respect to the radio unit. It includes a multi-function link that mediates the installation, wherein the multi-function link includes a center body, a first fixing part connected between both ends of the center body and the antenna module, and both ends of the center body. and a second fixing part connected between the wireless unit, wherein the first fixing part and the second fixing part are coupled via a ball joint to tilt and steer the antenna module with respect to the wireless unit. It is installed to be operable.
  • one of the two ends of the ball joint part is partially accommodated and coupled to the internal space of the first fixing part, and the other end of the two ends is connected to the antenna module to perform a tilting or steering operation of the antenna module.
  • One end of the first ball joint part and both ends that adjusts the direction is partially accommodated and coupled to the inner space of the second fixing part, and the other end of the two ends is a cable that mediates the connection with the wireless unit. It may include a second ball joint that is connected to the receiving pipe and allows additional directional control of the antenna module.
  • the multi-function link may be electrically connected to the antenna module and the wireless unit via a connector.
  • the connector may include a male connector coupled to the ends of a plurality of coaxial cables secretly received inside the multi-function link and a female connector provided in the antenna module and the wireless unit.
  • a female terminal block has a coupling flange having an inner surface directly connected to an RF filter provided inside the wireless unit and an outer surface to which the male connector is connected. It can be included.
  • the female connector may be provided with a number of through-pin terminals corresponding to the coaxial cable penetrating so as to connect the inner surface of the coupling flange and the outer surface of the female terminal block.
  • the plurality of coaxial cables are any one of two strands for constructing a 2T2R transmission line between the wireless unit and the antenna module and four strands for constructing a 4T4R transmission line between the wireless unit and the antenna module.
  • Terminal pins corresponding to the number of the plurality of coaxial cables may be formed in the male connector, and terminal grooves into which the terminal pins are respectively inserted and connected may be formed in the female connector.
  • the female connector may be directly fastened to the RF filter using a plurality of screws while the coupling flange is connected to the RF filter.
  • each through-pin terminal of the female connector may be directly connected to the power supply connector provided in the RF filter.
  • the male connector may further include a single ground washer provided at the center of the terminal pin corresponding to the coaxial cable.
  • the cable receiving pipe accommodates a plurality of coaxial cables and hides them from the outside.
  • One end is connected to the wireless unit, the other end is connected to the fixing part, and the male connector is connected to one end and the other end of the coaxial cable. can be connected
  • the male connector includes a male terminal block connected to one end and the other end of the coaxial cable, a plurality of guide pins protruding from the male terminal block toward the female connector, and a female connector extending from the coaxial cable and extending from the male terminal block. It may include a plurality of terminal pins protruding and extending to the side and a retainer nut that maintains electrical connection force of the plurality of terminal pins to the female connector.
  • the retainer nut can maintain the connection force by fastening to the nut fastening end provided on the female connector.
  • the antenna module has a plurality of antenna sub-arrays covering dual frequency bands arranged on one antenna board, and performs antenna beam forming in different frequency bands within the same direction of the antenna module set by the multi-function link. It can be implemented.
  • the antenna module may have a plurality of antenna sub-arrays arranged to cover different frequency bands, and each direction may be set in a different direction by the multi-function link.
  • the antenna module may be provided for a small cell base station.
  • the wireless unit may be installed on any one of a support pole provided indoors, a wall, or a ceiling.
  • first fixing part and the second fixing part may be connected to the center body at right angles to each other.
  • the multi-function link may further include an over-rotation prevention locking part that limits the angle of the rotation direction of the first ball joint or the second ball joint with respect to the first fixing part or the second fixing part. there is.
  • the over-rotation prevention locking part is fixed to an internal space corresponding to between the first fixing part and the first ball joint part or between the second fixing part and the second ball joint part, and is connected to each other in the internal space.
  • a pair of locking protrusions protruding in opposite directions may be provided inside the first ball joint portion or the second ball joint portion to be capable of being caught by a pair of locking plates extending toward the center body.
  • the pair of locking plates may be positioned so that a rotational separation angle between the pair of locking protrusions and the pair of locking protrusions is 90 degrees when the antenna module does not perform a tilting rotation or steering rotation operation.
  • a connector of a small base station antenna device includes a radio unit (RU; Radio Unit), at least one antenna module installed to enable tilting and steering operations with respect to the radio unit, and the radio unit with respect to the radio unit.
  • RU Radio Unit
  • the small base station antenna device including a multi-function link that mediates the installation of each antenna module, a male connector coupled to the ends of a plurality of coaxial cables secretly received inside the multi-function link and the wireless It includes a female connector including a coupling flange having an inner surface directly connected to an RF filter provided inside the unit and a female terminal block having an outer surface to which the male connector is connected.
  • the female connector may be provided with a number of through-pin terminals corresponding to the coaxial cable penetrating so as to connect the inner and outer surfaces.
  • the plurality of coaxial cables are any one of two strands for constructing a 2T2R transmission line between the wireless unit and the antenna module and four strands for constructing a 4T4R transmission line between the wireless unit and the antenna module.
  • Terminal pins corresponding to the number of the plurality of coaxial cables may be formed in the male connector, and terminal grooves into which the terminal pins are respectively inserted and connected may be formed in the female connector.
  • the female connector may be directly fastened to the RF filter using a plurality of screws while the coupling flange is in contact with the RF filter.
  • each through-pin terminal of the female connector may be directly connected to the power supply connector provided in the RF filter.
  • the male connector may further include a single ground washer provided at the center of the terminal pin corresponding to the coaxial cable.
  • the multi-function link includes a center body, a first fixing part connected between both ends of the center body and the antenna module, a second fixing part connected between the wireless unit and both ends of the center body, and both ends of the center body.
  • One end of the first ball is partially accommodated and coupled to the internal space of the first fixing part, and the other end of the two ends is connected to the antenna module to adjust the direction of the antenna module by tilting or steering.
  • One end of the joint part and both ends is partially received and coupled to the internal space of the second fixing part, and the other end of the two ends is connected to a cable receiving pipe that mediates the connection with the wireless unit to form the antenna module.
  • the female connector has a number of through-pin terminals corresponding to the coaxial cables accommodated in the cable accommodation pipe, and penetrates to connect the inner and outer surfaces. It can be fully equipped.
  • the antenna module can easily adjust the directionality even in a narrow space, which makes it easy to build a small cell base station.
  • the directionality can be adjusted without exposing the various cables electrically connecting the wireless unit and the antenna module to the outside, which has the effect of preventing deterioration of aesthetics.
  • the female connector provided in the wireless unit to connect to the male connector of the multi-function link is provided to directly contact the feed connector of the RF filter, and the through-pin terminal corresponding to the number of coaxial cables is provided to make electrical connection. This reduces the size of the product, expands space utilization, reduces insertion loss, and reduces costs.
  • FIG. 1 is a perspective view showing the appearance of a small base station antenna device according to the prior art
  • Figure 2 is a perspective view showing the appearance of a small base station antenna device according to the present invention.
  • Figure 3 is an exploded perspective view of Figure 2
  • Figure 4 is a front view of Figure 2 and a cross-sectional view taken along line A-A;
  • Figure 5 is a side cross-sectional view of Figure 2
  • Figure 6 is a side view showing the tilting state of the antenna module in the configuration of Figure 2;
  • Figure 7 is a perspective view showing an embodiment with different specifications of the wireless unit among the configurations of Figure 2;
  • Figure 8 is a conceptual diagram showing beamforming by two frequency bands, CBRS and DoD, within one antenna module;
  • Figure 9 is a plan view of the actual antenna device of Figure 8.
  • Figures 10a and 10b are front views showing various implementation examples of a support pole combination type and a wall combination type as examples of dual frequency bands for each antenna module;
  • Figure 11 is a perspective view showing the appearance of a small base station antenna device (support pole combined type) according to the first embodiment of the present invention
  • Figure 12 is a perspective view showing the appearance of a small base station antenna device (wall-mounted type) according to a second embodiment of the present invention.
  • Figure 13 is a perspective view showing the appearance of a small base station antenna device (ceiling combined type) according to a third embodiment of the present invention.
  • Figures 14 and 15 are perspective views of the short type (a) and long type (b) of the multi-function link for connecting the wireless unit and the antenna module, and their cutaway perspective views (a, b);
  • Figure 16 is a cross-sectional view taken along line B-B in Figure 10,
  • Figure 17 is an exploded perspective view showing a long type (b) multi-function link among the multi-function links of Figures 14 and 15;
  • 18A and 18B are exploded perspective views showing an example of a wireless unit equipped with a connector according to an embodiment of the present invention
  • Figure 19 is a downward and upward exploded perspective view showing a modification of the wireless unit side female connector provided in the wireless unit, which is one of the connector configurations of the small base station antenna device according to an embodiment of the present invention
  • Figure 20 is a partially cut-away perspective view showing the connection of the male connector of the multi-function link to the female connector on the wireless unit side of Figures 18A and 18B;
  • Figure 21 is a perspective view showing a small base station antenna device to which a modified example of a multi-function link is applied;
  • Figures 22a and 22b are exploded perspective views of the front and rear sides of Figure 18;
  • Figure 23 is an exploded perspective view of a multi-function link according to a modification of Figure 21;
  • Figure 24 is a cross-sectional view showing the male and female coupling portions of the multi-function link according to the modification of Figure 21;
  • Figure 25 is a cross-sectional view of a multi-function link according to a modification of Figure 21;
  • Figure 26 is a cross-sectional view showing a male connector of a multi-function link according to a modification of Figure 21;
  • Figure 27 is an exploded perspective view of a multi-function link according to a modification of Figure 21;
  • Figure 28 is a cut-away perspective view of Figure 27;
  • Figure 29 is a cross-sectional view of Figure 27,
  • Figure 30 is a cut-away perspective view showing the over-rotation prevention locking part referred to in Figures 27 to 29;
  • Figure 31 is an internal front view showing the operation of the over-rotation prevention locking part of Figure 30;
  • Figure 32 is a cross-sectional view, a cut-away perspective view, and a partial enlarged view showing a cable accommodation pipe in the configuration of a multi-function link according to a modification of Figure 21;
  • FIG. 33 is a projection plan view for explaining the effect of a multi-function link according to a modification of FIG. 21.
  • base station antenna device 110 antenna module
  • Ring receiving groove 155 Foreign matter inflow prevention ring
  • Multi-function link 205 Center body
  • first fixing unit 210B second fixing unit
  • Moving rock part 230 Cable receiving pipe
  • terminal pin 254 guiding ring
  • FIG. 2 is a perspective view showing the appearance of a small base station antenna device according to the present invention
  • FIG. 3 is an exploded perspective view of FIG. 2
  • FIG. 4 is a front view and a cross-sectional view taken along line A-A of FIG. 2
  • FIG. 5 is a cross-sectional view taken along line A-A of FIG. 2. It is a side cross-sectional view
  • FIG. 6 is a perspective view showing the tilting state of the antenna module in the configuration of FIG. 2.
  • the small base station antenna device 100 includes a wireless unit 120 and an antenna module 110 installed in a predetermined location, as shown in FIGS. 2 to 5.
  • the predetermined place where the small base station antenna device 100 according to the present invention is installed refers to a place such as a public place, a densely populated area, a large shopping mall, or an airport building to perform the function as a small cell base station, which will be described later.
  • it is a structure suitable for in-building (indoor) installation, such as the support pole coupled type (see FIG. 10, described later), the wall coupled type (see FIG. 11, described later), and the ceiling coupled type (see FIG. 12, described later). You can.
  • the antenna module 110 may refer to an antenna device having at least one frequency band.
  • the wireless unit 120 (RU; Radio Unit) refers to a device that is connected to an antenna for each frequency band provided in the antenna module 110 and transmits/receives between the antenna and the base station.
  • the wireless unit 120 An example of this is RRH (Remote Radio Head), which remotely separates part of the wireless unit from the base station facility.
  • the wireless unit 120 is a relay device that performs functions such as receiving and amplifying or retransmitting a weakened signal, normalizing a distorted waveform, and readjusting timing between a base station of a mobile communication system and a mobile communication terminal.
  • the wireless unit 120 is first mounted on structures such as poles, walls, and ceilings indoors (house),
  • the antenna module 110 may be mounted on the front of the wireless unit 120 to enable tilting and steering via an antenna clamping unit 200, which will be described later.
  • the wireless unit 120 does not necessarily have to be mounted first on indoor structures (supporting poles, walls and ceilings), and as shown in FIGS. 11 to 13 described later.
  • the antenna module 110 is first installed in the wireless unit 120 and then mounted on each indoor structure.
  • the antenna module 110 is provided with an antenna housing 111 and a radome that covers the front surface of the antenna housing 111 and forms a predetermined space between the antenna housing 111 and the antenna housing 111. It may include (113).
  • An antenna board 115 in the form of a printed circuit board is installed in a predetermined space of the antenna housing 111, and a plurality of radiating elements may be mounted and arranged on the front of the antenna board 115.
  • the radiating element mounted on the antenna board 115 may be different depending on the type of antenna, but in one embodiment of the present invention, a patch type element (patch element, 117) is used.
  • the antenna device 100 for a base station may further include a multi-function link 200 that mediates coupling to the front of the wireless unit 120, as shown in FIGS. 2 to 5. there is.
  • the wireless unit 120 is installed on any one of the indoor support pole (P), wall (W), and ceiling (C) panel unit ( It includes a rear housing 122 installed via (see reference numeral '121' in FIG. 11 and below) and a front housing 123 that forms a predetermined space between the rear housing 122, and the predetermined space includes various housings. Internal components may be installed.
  • a main board see front board 126A in FIGS. 18A and 18B, described later
  • an RF filter FIGGS. 18A and 18B, described later
  • It may include a power amplifier (see reference numeral '130' in 18b), two power amplifiers (PAU: Power Amplifing Unit), and a power supply unit (PSU: Power Supplying Unit).
  • PAU Power Amplifing Unit
  • PSU Power Supplying Unit
  • a plurality of heat sink fins 125 are integrally formed on the front of the front housing 123, so that heat generated in a predetermined space can be dissipated to the outside through the plurality of heat sink fins 125.
  • the description is limited to the fact that a plurality of heat sink fins 125 are formed only on the front housing 123 of the wireless unit 120, but it is necessarily limited to this. It should be noted in advance that a plurality of heat sink fins 125 may be formed on the rear housing 122 as in other embodiments of the present invention described later.
  • the front of the front housing 123 is provided with an installation groove 127 in which some of the plurality of heat sink fins 125 are cut into square-shaped surfaces, and a multi-function link 200 is installed in the installation groove 127. It can be coupled by a plurality of assembly screws (2157).
  • a multi-function link 200 it is not necessary to provide an installation groove 127 with a square-shaped surface on the front of the front housing 123, see FIGS. 11 to 13 described later.
  • the multi-function link 200 may be connected to the side portion (a concept including the upper, lower, left, and right portions) of the wireless unit 120. . If the installation location of the multi-function link 200 with respect to the wireless unit 120 changes, it may be inevitable to change the shape of the RF filter provided inside the wireless unit 120. This will be explained in more detail later.
  • the multi-function link 200 is provided in a cylindrical shape with a portion of the opening on one side, and on the other side, it mediates a cable receiving pipe 230, which will be described later, or a cable receiving pipe.
  • the multi-function link 200 including the cable receiving pipe 230 basically performs the function of mediating the connection of the antenna module 110 to the wireless unit 120, so the cable receiving pipe 230 ) is preferably made of a material that is sufficiently rigid to perform some of the functions of the support pole.
  • the ball joint unit 220 accommodated and installed inside the fixing part 210 is formed in the shape of a ball with one end part of the fixing part 210 being opened, and is caught by the open end of the fixing part 210 to the outside (particularly, the front side). ) can be installed so that it does not come off.
  • a portion of one end of the ball joint portion 220 is formed to be open for the purpose of penetrating installation of a plurality of coaxial cables 240, which will be described later.
  • the ball joint part 220 has a hollow interior from the part installed on the fixing part 210 to the part installed on the antenna module 110, and communicates with the internal space of the fixing part 210, and is connected to the fixing part 210.
  • a coaxial cable 240 that performs an electrical connection between the wireless unit 120 and the antenna module 110 may be installed in the communicated internal space of the ball joint portion 220.
  • the coaxial cable 240 is made of a flexible material so that the antenna module 110 can perform tilting and steering operations, which will be described later, but at least does not interfere with the movement of the ball joint 220 with respect to the fixed part 210. This is desirable.
  • One end and the other end of the coaxial cable 240 are provided with an antenna-side male connector and a wireless unit-side male connector, respectively, and the back of the antenna module and the outer surface of the wireless unit are connected to an antenna-side connector or a wireless unit-side connector, respectively.
  • An antenna-side female connector and a wireless unit-side female connector may be provided. A detailed explanation of this will be provided later.
  • the appearance of the small base station antenna device 100 according to the present invention is reduced as the plurality of coaxial cables 240 electrically connecting the wireless unit 120 and the antenna module 110 are hidden from the outside without twisting. You can prevent it from happening.
  • the ball joint unit 220 may be operated by tilting and steering rotation to maintain a predetermined angle in all directions, including up and down or left and right directions, with respect to the fixing part 210.
  • tilting rotation operation refers to a concept that includes all operations in which the upper and lower ends of the antenna module 110 swing in the front and rear directions
  • steering rotation operation refers to the movement of the left and right ends of the antenna module 110 in the left and right directions. It is a concept that includes all swing movements.
  • the ball joint unit 220 performs not only one of the tilting rotation operation and the steering rotation operation of the antenna module 110, but also the tilting rotation operation and the steering rotation operation. Steering rotation operations may all be performed simultaneously or sequentially.
  • the ball joint unit 220 may be tilted and steered at a predetermined angle in all directions, including up and down or left and right, around an arbitrary reference point of one end accommodated inside the fixing part 210.
  • the antenna module 110 coupled thereto can also be tilted and steered, allowing the designer to adjust the directionality of the antenna module 110 in a desired direction. do.
  • the ball joint unit 220 may perform tilting and steering rotation operations while forming some frictional force with the inner surface of the fixing unit 210.
  • a friction pad (or friction member, not shown) that forms a predetermined frictional force may be further provided on the inner surface of the fixing part 210 or a portion of the inserted outer surface of the ball joint part 220.
  • the antenna clamping unit 200 is operated by tilting and steering the ball joint unit 220 at a predetermined angle with respect to the fixing unit 210, and then attaching the ball joint unit (200) at the moving fixing point.
  • a moving lock part 225 that secures 220 to the fixing part 210 may be further provided.
  • the moving lock unit 225 may be formed by any means as long as it is configured to fix the ball joint unit 220 to the fixing unit 210.
  • the fixing unit 210 in which the ball joint unit 220 is accommodated may be used. Locking may be implemented using a fixing bolt (not shown) that penetrates the outside of the ball joint 220 and interferes with a portion of the outer peripheral surface of the ball joint portion 220.
  • the external of the plurality of coaxial cables 240 connecting between the wireless unit 120 and the antenna module 110 by the multi-function link 200 In addition to avoiding exposure to prevent deterioration of aesthetics, only the relatively small antenna module 110 performs tilting and steering rotation operations, and the relatively large wireless unit 120 performs tilting rotation and steering rotation operations. By preventing this from happening, it has the advantage of maximizing space utilization.
  • tilting and steering rotation operations are possible through the multi-function link 200 on the front of the wireless unit 120.
  • the tilting operation is shown in FIG. 6
  • Figure 7 is a perspective view showing an embodiment of the configuration of Figure 2 with different specifications of the wireless unit
  • Figure 8 is a conceptual diagram showing beamforming by two frequency bands of CBRS and DoD within one antenna module
  • Figure 9 is a Figure 8 is a plan view of the actual antenna device
  • Figures 10a and 10b are front views showing various implementation examples of a pole-coupled type and a wall-coupled type as examples of dual frequency bands for each antenna module.
  • the antenna module 110 may have the same specifications with patch antenna elements applied, but only the specifications of the wireless unit 120 may be different. More specifically, compared to the wireless unit 120 referenced in FIGS. 2 to 6, the wireless unit 120 referenced in FIG. 7 has a relatively short width in the left and right directions, but a relatively longer length in the vertical direction. It can be provided as per specification.
  • the installation location of the antenna module 110 is preferably set at an appropriate location in consideration of the weight of the antenna module 110 and the tilting and steering movements.
  • a plurality of patch elements 117 for forming beamforming of a specific frequency band are installed to form a plurality of antenna sub-arrays 118.
  • Arrayed radiating element modules 119 may be provided.
  • the multiple radiating element modules 119 are a format for constructing a frequency band corresponding to a small cell base station, and can also be implemented with the antenna board 115 within one antenna module 110, but Figure 8 And as referred to in FIG. 9, one antenna board 115 for macro is implemented in a dual-band format to cover the frequency bands corresponding to DoD (Depart of Defense) and CBRS (Citizens Broadband Radio Services). It is also possible to become
  • a number of radiating element modules 119 are installed on the upper front side of the macro antenna board 115 for the DoD channel in the 3450 to 3550 MHz frequency band among the dual frequency bands.
  • a plurality of antenna sub-arrays 118 by a plurality of patch elements 117 are arranged to implement a gain of 17.5 dBi, and a dual frequency band of 3550 ⁇ 3700 MHz is located on the front lower side of the macro antenna board 115.
  • a plurality of antenna sub-arrays 118 by a plurality of patch elements 117 may be arranged to implement a CBRS channel in the frequency band and achieve a gain of 15.5 dBi.
  • the plurality of radiating element modules 119 built to enable coverage of dual frequency bands are configured so that both the DoD and CBRS channels have an H-Beam width of 55° to 90°.
  • Antenna beamforming can be formed, and different antenna beamformings can be formed such that the V-Beam width has a value of 7.5° for the DoD channel and 14.6° for the CBRS channel.
  • the antenna module 110 can be implemented to form antenna beamforming that covers the macro frequency band and the small cell frequency band as described above within one antenna board 115.
  • the directionality of the antenna module 110 is adjusted to be the same, it can provide the advantage of maximizing UL (Up Link) coverage due to the separation of TRx and antenna sub-array 118 for each band. .
  • the antenna sub-array 118 does not necessarily have to be arranged to enable covering of dual frequency bands on one antenna board 115, and as referred to in FIGS. 10A and 10B described later, one wireless unit ( 120), two or more antenna modules (110A, 110B), each capable of covering a unique frequency band, are provided via a multi-function link (200), and each antenna module (110A, 110B) is provided with coverage It is natural that this can be implemented by adjusting the directionality using the multi-function link 200 in the direction in which the demand is strong.
  • the antenna modules 110A and 110B each provided in the form of two dual frequency bands are connected to the same
  • the directionality can be adjusted in the direction (front), and both antenna modules 110A and 110B are opposed to each other, as shown in Figure 10a (b) provided in the support pole combination type and Figure 10b (b) provided in the wall combination type.
  • Directionality can be adjusted, and as shown in (c) of 10a provided in the support pole combined type and (c) in FIG. 10b provided in the wall combined type, one (110A) of the antenna modules 110A and 110B is located at the front and The other one (110B) can be directionally adjusted to the side.
  • each radiating element module 119 of the antenna modules 110A and 110B is equipped with specifications suitable for a small cell base station rather than a macro, and can achieve a maximum gain rate of any one of 15dBi, 13dBi, and 11dBi. It is natural that the effect of a small cell base station can be maximized by each being equipped with specifications and directional control in the desired direction.
  • Figure 11 is a perspective view showing the appearance of a small base station antenna device (pole-mounted type) according to the first embodiment of the present invention
  • Figure 12 is a small base station antenna device (wall-mounted type) according to the second embodiment of the present invention.
  • Figure 13 is a perspective view showing the appearance of a small base station antenna device (ceiling combined type) according to the third embodiment of the present invention
  • Figures 14 and 15 are for connecting the wireless unit and the antenna module.
  • Figure 16 is a cross-sectional view taken along line B-B of Figure 10
  • Figure 17 is Figure 14 and Figure 15. This is an exploded perspective view showing the long type (b) multi-function link among the multi-function links.
  • the rear housing 122 of the wireless unit 120 is installed indoors through the installation panel unit 121. It is fixed or hiddenly installed on any one of the support pole (P), the wall (W), and the ceiling (C), and the wireless unit 120 has at least one (two in this embodiment) antenna modules 110A and 110B. It can be combined to enable tilting or steering rotation via the multi-function link 200.
  • a support pole (P) for installation of the base station antenna device 100 may be provided indoors, such as a large building, and a small base station antenna according to the first embodiment of the present invention.
  • the device 100A may be installed and equipped in a pole combination type in which the rear housing 122 corresponding to the rear portion of the wireless unit 120 can be fixed so that the direction of the rear housing 122 is preset with respect to the pole (P). there is.
  • the small base station antenna device 100B according to the second embodiment of the present invention is installed on the back of the wireless unit 120 with respect to the wall (W) corresponding to the interior of a large building, etc. It can be installed and provided as a wall-mounted type that can be fixed so that the corresponding rear housing 122 is in close contact.
  • the small base station antenna device 100C corresponds to the rear portion of the wireless unit 120 with respect to the ceiling (C) inside a large building, etc.
  • the rear housing 122 may be fixed in close contact, or the wireless unit 120 may be installed and provided as a ceiling-coupled type in which the wireless unit 120 may be secretly fixed inside the ceiling (C).
  • the wireless unit 120 and each antenna module (110A, 110B) is shown in FIGS. 14 and 110B according to different surrounding environments, such as the installation location and whether there is interference with surrounding structures for directivity adjustment of the antenna modules (110A, 110B).
  • Signals can be electrically connected via a multi-function link 200 that is employed.
  • the short type link (200S) and the long type link (200L) are equipped with the exact same configuration and function specifications, but are equipped with a plurality of coaxial cables (
  • the length of the cable accommodating pipe 230 in which 240) is accommodated may be classified depending on whether the length is relatively short or long.
  • the length of the cable receiving pipe 230 refers to the separation distance between the connection part with the wireless unit 120 and the fixing part 210 of the multi-function link 200. If the separation distance is long, the long type It is preferable to provide a link (200L), and when the separation distance is short, it is preferable to provide a short type link (200S).
  • the multi-function link 200 includes the above-described fixing part 210, ball joint part 220, and , a cable receiving pipe 230, and a plurality of coaxial cables 240.
  • the multi-function link 200 is provided at each end of the plurality of coaxial cables 240, and at one end of the plurality of coaxial cables 240 is an antenna-side male connector for electrical connection to the antenna module 110. (250, 250A) may be further provided, and wireless unit side male connectors (250, 250B) for electrical connection to the wireless unit 120 may be further provided at the other end of the plurality of coaxial cables 240.
  • the antenna-side male connector 250A is configured such that a male-shaped guide pin 252 and a terminal pin 253, which will be described later, are exposed at the antenna-side end of the ball joint portion 220. It is provided with a male connector 250B on the wireless unit side, and as shown in FIG. 15, a guide pin 252 and a terminal pin 253 in the form of a male, which will be described later, are provided at the end of the cable receiving pipe 230. It may be provided to be exposed.
  • antenna module 110 and the wireless unit 120 may be further provided with antenna-side female connectors 150 and 150A and wireless unit-side female connectors 150 and 150B for each connection with the male connector 250.
  • the antenna-side female connector 150A has a female-shaped guide groove 152 and a terminal groove 153 on the back of the antenna module 110, which will be described later. ) is provided to be exposed, and the female connector (150B) on the wireless unit side may also be provided to expose a female-shaped guide groove (152) and a terminal groove (153) to be described later on the side of the wireless unit (120). there is.
  • the plurality of coaxial cables 240 are provided with two or four strands to transmit electrical signals and are accommodated inside the cable receiving pipe 230, and one end and the other end may be connected to the male connector 250, respectively.
  • the description will be made on the assumption that the coaxial cable 240 is provided with four strands (four pieces).
  • the male connector 250 further includes a male terminal block 251 through which one end of the four coaxial cables 240 are coupled and each is connected to a plurality of terminal pins 252, and the female connector 150 is , It may further include a female terminal block 151 in which the above-described guide groove 151 and terminal groove 152 are formed by processing.
  • four guide pins 252 are protruding and arranged at 90-degree intervals, and four terminal pins 253 are positioned at 90-degree angles in a range that does not overlap the four guide pins 252 described above. It may be arranged to protrude and be spaced apart at intervals.
  • the female terminal block 151 has four guide grooves 152 into which the four guide pins 252 of the male terminal block 251 can be inserted and accommodated, respectively, and four guide grooves 152 of the male terminal block 251.
  • Four terminal grooves 252 into which the terminal pins 253 can be inserted and connected may be arranged at corresponding positions.
  • the male terminal block 251 may be further provided with a guide ring 254 that surrounds the four guide pins 252 and the four terminal pins 253 and protrudes in a ring type toward the female connector 150.
  • the female terminal block 151 may be further provided with a ring receiving groove 154 into which the guide ring 254 of the male terminal block 251 is inserted.
  • a foreign matter inflow prevention ring 155 may be further provided inside the ring receiving groove 154 to prevent external foreign matter from entering.
  • the four guide pins 252 and guide ring 254 provided in the male connector 250 and the four terminal pins 253 each accommodate the four guide grooves 152 and the ring provided in the female connector 150. By being inserted into the groove 154 and the four terminal grooves 153, electrical connection can be made to the antenna module 110 and the wireless unit 120 of the multi-function link 200.
  • the multi-function link 200 includes a retainer nut 256 that provides a predetermined holding force to maintain the electrical connection of the male connector 250 to the female connector 150. ) may further be included.
  • a female thread 256a is formed on the inner peripheral surface of the retainer nut 256, and a male thread 156a is formed on the outer peripheral surface of the nut fastening end 156 formed on the outer peripheral surface of the female terminal block 151 of the female connector 150.
  • a C-ring 257 may be interposed at the end of the male terminal block 151 to limit the fastening force of the retainer nut 256.
  • the C-ring 257 may be fitted in one direction into the C-ring installation groove 257h formed at the end of the cable receiving pipe 230.
  • the wireless unit 120 and a plurality of antenna modules 110 are electrically connected via the multi-function link 200, and each It enables tilting or steering operation of the antenna module 110 and provides the advantage of simpler and more convenient installation work in the field.
  • the male connector 250 and the female connector 150 are formed to be symmetrical to each other, the four terminal pins 253 and the four terminal grooves 153 need only be connected in any direction, so that the antenna module 110 It can provide the advantage of further increasing the diversity of directional design.
  • Figures 18a and 18b are exploded perspective views showing an example of a wireless unit equipped with a connector according to an embodiment of the present invention
  • Figure 19 is a wireless unit, which is one of the connector configurations of a small base station antenna device according to an embodiment of the present invention. It is a downward and upward exploded perspective view showing a modified example of the female connector on the wireless unit side provided in the unit
  • Figure 20 is a partially cut away perspective view showing the connection of the male connector of the multi-function link to the female connector on the wireless unit side of Figures 18A and 18B. am.
  • the connectors 150' and 250 of the small base station antenna device are a plurality of connectors secretly accommodated inside the multi-function link 200. It includes a male connector 250 coupled to the tip of the coaxial cable 240, and a modified female connector 150' provided to be directly connected to the RF filter 130 provided inside the wireless unit 120. .
  • the female connector 150' of the modified example has a coupling flange 157 formed on one side to be coupled to the RF filter 130 provided inside the installation space of the wireless unit 120, and a coupling flange 157 formed on one side to be coupled to the RF filter 130 provided inside the installation space of the wireless unit 120. It includes a female terminal block 251 formed to protrude toward the male connector 250 on the side.
  • a nut fastening end 156 is formed on the outer peripheral surface of the female terminal block 151, and a male thread 156a for fastening with the female thread 256a of the retainer nut 256 is formed on the outer peripheral surface of the nut fastening end 156. can be formed.
  • a ring receiving groove 154 into which the guide ring 254 formed on the male connector 250 is inserted may be provided in the form of a groove between the nut fastening end 156 and the center of the female terminal block 151.
  • the female terminal block 151 which is physically separated from the nut fastening end 156 by the ring receiving groove 154, there is a male connector 250 connected to conduct electricity with the 4-strand terminal of the coaxial cable 240.
  • Four terminal grooves 252 into which the four terminal pins 253 are inserted may be formed.
  • the male connector 250 is provided with two guide pins 252 that protrude toward the female connector 150' of the modified example, separately from the four terminal pins 253, and the female connector 150' of the modified example ), a guide groove 152 into which the guide pin 252 of the male connector 250 is inserted and guided may be formed.
  • Two guide grooves 152 are arranged 180 degrees apart from the center of the outer surface of the female terminal block 151, but are preferably formed at a position that does not overlap with the four terminal grooves 153, as described above. It may be formed in a form that partially overlaps one ring receiving groove 154.
  • the male connector 250 and the female connector 150 are provided with four guide pins ( 252) and four guide grooves 152 are formed, there is an advantage that connection can be made as long as they are matched with each other at 90-degree intervals.
  • the female connector 150' of the modified example connects each independent electrical signal to the RF filter 130 through four terminal pins 253, as shown in FIGS. 18A and 18B and FIG. 20.
  • Four through-pin terminals 165 may be disposed at positions corresponding to the four terminal grooves 252 so as to penetrate from the outer surface of the female terminal block 151 to the outer surface of the coupling flange 157.
  • a plurality of one-side through-holes 151 through which four through-pin terminals 165 pass are formed on the outer surface of the female terminal block 151, and four through-pin terminals 165 are formed on the outer surface of the coupling flange 157. ) are formed into a plurality of other side through holes 156h, and one side through hole 151 and the other side through hole 156h may be formed to communicate with each other.
  • a pin insulator 166 is provided to surround the outer peripheral surface of each of the four through-pin terminals 165 to prevent an electrical short phenomenon.
  • the female connector 150' of the modified example includes a filter side gasket 159 inserted into the gasket groove 159h formed between the coupling flange 157 and the boundary of the female terminal block 151, and the female terminal block 151.
  • a first external washer 161 and a second external washer 162 are disposed on the outer peripheral surface of the terminal block 151, are supported on the outer surface of the wireless unit 120, and are arranged to interlock when the external fastening nut 160 is tightened. ) may further be included.
  • the wireless unit side female connector 150 In the case of the wireless unit side female connector 150 already described with reference to FIGS. 11 to 17, it is mounted on the outside of the wireless unit 120 and is a physical connection to connect the male connector 250 of the multi-function link 200. It is limited to performing only one role. In order to substantially complete the electrical connection between the RF filter 130 and the antenna module 110 of the wireless unit 120, the wireless unit side female connector 150 and the RF filter 130 are installed inside the wireless unit 120. This is because an additional internal connector (not shown) is needed to connect electrically.
  • the coupling flange 157 side uses a plurality of screws 158 at the connection portion (feed connector) 131 provided directly on the RF filter 130 to ensure stable stability.
  • through-pin terminals 165 corresponding to the number of coaxial cables 140 described above are arranged to penetrate the inner surface of the coupling flange 157 and the outer surface of the female terminal block 151, The moment the male connector 250 of the function link 200 is connected, the electrical connection between the RF filter 130 and the antenna module 110 can be completed directly.
  • the female connector 150' of the modified example has a connection portion (feed connector) 131 where the outer surface (one side) of the coupling flange 157 is provided on the RF filter 130 side. ), and then, with the female terminal block 151 exposed to the outside through the installation hole 128 formed in the wireless unit 120, the first external After inserting the washer 161 and the second external washer 162, it is fixed to the wireless unit 120 using the external fastening nut 160, and the multi-function link 200 is connected to the externally exposed female terminal block 151.
  • Each terminal pin 253 of the male connector 250 is electrically connected to the through-pin terminal 165 exposed through each terminal groove 153, thereby enabling direct power feeding to the RF filter 130. It will be done.
  • the through-pin terminal 165 is previously inserted and fastened through the through-pin terminal connection hole 131h formed to conduct electricity to each of the power supply connectors 131 provided on the RF filter 130 side, and the multi-function link 200 ) is connected to the male connector 250.
  • the design has been changed so that electrical connection is made directly to the RF filter 130 inside the wireless unit 120, so that a separate cable structure for connection to the conventional cable structure is used.
  • additional design of structures such as separate air lines, which were essential when constructing the feed connector of the RF filter 130, may have unnecessary advantages.
  • connection portion (power supply connector) 131 may also be modified to fit this design.
  • the RF filter 130 inside the wireless unit 120 to which the wireless unit side female connector 150 described with reference to FIGS. 11 to 17 is applied is a conventional “main board - RF filter - antenna radiating element”.
  • MMR Massive MIMO Radio
  • the structure is provided with feed connectors at the rear and front of the filter body (not shown), and even when applied as is, the shape of the RF filter 130 is not changed. It has the advantage of being able to easily make electrical connections using the above-mentioned cable structure, etc. (internal connector, not shown).
  • the through-pin terminal 165 must be directly connected to the RF filter 130 as described above, so the power supply connector 131 at the front of the existing RF filter 130 This is because the location of ) must be changed and designed.
  • the positional design of the internal components of the wireless unit 120 is changed, not only the feed connector 131 at the front of the RF filter 130 but also the feed connector at the rear ( It also includes a change in position (see reference numeral '132' in FIG. 19A).
  • the wireless unit 120 forms a predetermined space between the rear housing 122 and the front housing 123 in which various internal components to be described later are installed, and the front housing 120 forms a space between the rear housing 122 and the front housing 123.
  • a plurality of heat sink fins 125 may be integrally formed on the front of the housing 123.
  • a plurality of heat sink fins 125 are formed on the front of the front housing 123 to facilitate heat dissipation, and the front board 126A is installed on the rear of the front housing 123.
  • a plurality of heating elements (for example, FPGA elements or PA elements, etc.) mounted on the front of the front board 126A in close contact with may be placed in direct surface thermal contact.
  • the front board 126A may be provided as an integrated one-board board in which an original digital board and an AMP board having a conventional digital board function are integrally formed.
  • a shielding board 127 is provided between the front board 126A and the RF filter 130 to block the flow of heat or electromagnetic waves between the two.
  • a rear board 126B on which electronic devices with minimal heat dissipation are mounted may be placed below the RF filter 130.
  • the rear board 126B may be a surge substrate unit.
  • the main board which was designed with heat dissipation as the top priority, in close contact with the front housing 123 due to the antenna module (radiating element module) placed at the forefront, but the multi-function link ( Since the antenna module 110 is separated through 200) and the internal components can be arranged in the configuration described above, in the case of the wireless unit 120 in this embodiment, the antenna module 110 is separated through the multi-function link 200.
  • the electrical connection structure between the RF filter 130 and the antenna module 110 is also designed to be changed.
  • the size and installation space of the wireless unit 120 can be relatively reduced.
  • the benefit of cost reduction can also be achieved.
  • the size of insertion loss caused by the addition of an existing cable-type internal connector or air line structure can be significantly reduced. Therefore, it is natural that the performance of the antenna device can be improved.
  • Figure 21 is a perspective view showing a small base station antenna device to which a modified example of a multi-function link is applied
  • Figures 22a and 22b are exploded perspective views of the front and rear sides of Figure 21
  • Figure 23 is a multi-function according to a modified example of Figure 21. This is an exploded perspective view of the link.
  • the coaxial cable 240-1 is shown as having two strands (two pieces), but it should be limited to this. It should be noted that this does not exclude that the coaxial cable 240-1 has 4 strands (4 pieces).
  • the small base station antenna device 100 may include a multi-function link 200' according to a modified example, as shown in FIGS. 21 to 23.
  • the multi-function link 200' is different from the multi-function link 200 (hereinafter referred to as 'general multi-function link') previously described with reference to FIGS. 5 to 7 and 11 to 17.
  • the fixing part 210 is divided into two (210A, 210B), and a center body 205 is disposed between the two fixing parts (210A, 210B), and two fixing parts (210A) are connected to the center body 205.
  • ,210B) can be combined orthogonally.
  • the fixing part connected to the antenna module 110 among the two fixing parts 210A and 210B will be referred to as the first fixing part 210A
  • the fixing part of the two fixing parts 210A and 210B will be referred to as the first fixing part 210A
  • the fixing part connected to the cable receiving pipe 230 will be referred to as the second fixing part 210B.
  • the multi-function link 200' includes only the fixing part 210 and the ball joint part 220 connected to the above-described general multi-function link 200 to the antenna module 110.
  • the direction of tilting and steering rotation of the antenna module 110 can be adjusted at only one location, not only the first fixing part 210A and the ball joint part 220A connecting the antenna module 110 side, but also the first fixing part 210A and the ball joint part 220A , there is a difference in that the cable receiving pipe 230 side is also provided with a second fixing part 210B and a ball joint part 220B that mediate additional connections.
  • the multi-function link 200' includes a center body 205, an antenna module 110 at both ends of the center body 205, and A first fixing part (210A) connected between, a second fixing part (210B) connected between the cable receiving pipe 230 among both ends of the center body 205, and either end of the first fixing part (210B)
  • a first ball joint part is partially accommodated and coupled to the inner space of the top 210A, and the other end of both ends is connected to the antenna module 110 to adjust the direction of the antenna module 110 by tilting or steering.
  • a cable receiving pipe 230 that mediates connection with the wireless unit 120.
  • a second ball joint portion 220B that is connected to the antenna module 110 to enable additional directional control.
  • FIG. 24 is a cross-sectional view showing the male and female coupling portions of the multi-function link according to the modification of FIG. 21,
  • FIG. 25 is a cross-sectional view of the multi-function link according to the modification of FIG. 21,
  • FIG. 26 is a multi-function link according to the modification of FIG. 21.
  • FIG. 27 is an exploded perspective view of a multi-function link according to a modification of FIG. 21,
  • FIG. 28 is a cut-away perspective view of FIG. 27,
  • FIG. 29 is a cross-sectional view of FIG. 27, and
  • FIG. 30 is a cross-sectional view of FIG.
  • Figure 31 is an internal front view showing the operation of the over-rotation prevention locking part of Figure 30, and Figure 32 is a multi-function link according to a modification of Figure 21.
  • Figure 32 is a cross-sectional view showing the cable accommodation pipe, a cut-away perspective view, and an enlarged view of the part.
  • the male connector 250 provided at the end of the first ball joint portion 220A or the second ball joint portion 220B is an antenna, as shown in FIG. 24. It can be coupled to the female connector 250 provided in the module 110 or the wireless unit 120 in a male-female coupling operation.
  • the guide ring 254 of the male connector 250 is received inside the ring receiving groove 154 formed in the female terminal block 151 of the female connector 250, and the ring receiving groove 154 Waterproofing is performed by contacting the foreign matter inflow prevention ring 155 disposed on the inside, and at the same time, the guide pin 252 and terminal pin 253 of the male connector 250 are connected to the guide groove 152 of the female connector 250. ) and can be electrically connected by being inserted into the terminal groove 153.
  • a ground washer 258 may be further provided between the female connector 150 and the male connector 250, as shown in FIG. 24.
  • the ground washer 258 is fixed to the washer installation groove (see reference numeral '258h' in FIG. 28) provided on the front end of the male terminal block 251 of the male connector 250, and is attached to the arm of the male connector 250.
  • a ground (GND) function can be performed by inducing contact between the male terminal block 251 of the male connector 250 and the female terminal block 151 of the female connector 150. there is.
  • ground washer 258 is a component that performs the above-described grounding (GND) function and also performs an EMI (Electromagnetic Interference) shielding function.
  • GND grounding
  • EMI Electromagnetic Interference
  • the coaxial cable 240 it may be provided in the form of a washer surrounding the corresponding terminal pin 253, but in the case of the male connector 250 in the multi-function link 200 according to the present invention, each terminal pin It may be provided in the form of a single metal washer between (253), preferably in the center. This ground washer 254 can prevent signal crosstalk between each terminal pin 253 of the connector according to the present invention.
  • a portion of the male terminal block 251 may be inserted and fixed to the front end of the first ball joint portion 220A or the second ball joint portion 220B.
  • the male connector 250 may be fixed via at least one headless bolt 259 so as not to rotate with respect to the first ball joint portion 220A or the second ball joint portion 220B.
  • bolt through holes 259h-1 are spaced at 180-degree intervals at the distal end of the first ball joint portion 220A or the second ball joint portion 220B. Two locations are formed, and a bolt fastening hole 259h-2 into which a blunt bolt 259 is fastened may be formed on the outer peripheral surface of the male terminal block 251 of the male connector 250.
  • a tool groove 259T is formed for inserting the tip of a fastening tool (not shown) with a square cross-section, and a dull bolt (259T) is formed using a fastening tool through the tool groove 259T.
  • the male connector 250 can be easily fixed so that 259) is not exposed to the outside.
  • the male connector 250 is inserted and fixed to the distal end of the first ball joint portion 220A or the second ball joint portion 220B by the headless bolt 259, and is caught in the rotation direction, thereby forming the first ball joint 250.
  • the terminal pin ( 253) or the coupling direction of the guide pin 252 can be prevented from changing.
  • the outer peripheral surface of the first ball joint portion 220A or the second ball joint portion 220B is provisionally assembled with a retainer nut 256 inserted in advance, and then, as described above, the male connector for the female connector 150
  • the retainer nut (256) can be firmly fixed by fastening it to the male thread (not indicated) formed on the outer peripheral surface of the female terminal block (151) of the female connector (150).
  • a C-ring fastening groove 257h is formed on the outer peripheral surface of the first ball joint portion 220A or the second ball joint portion 220B, and the C-ring 257 is fastened to the C-ring fastening groove 257h.
  • the rotational force is limited when the retainer nut 256 is fastened, thereby preventing damage to components due to overassembly of the retainer nut 256.
  • the multi-function link 200' includes the first fixing part 210A of the first ball joint part 220A or the second ball joint part 220B.
  • an over-rotation prevention locking part 226A may be further provided to prevent over-rotation of the second fixing part 210B.
  • the over-rotation prevention locking part 226A is an internal space corresponding to between the first fixing part 210A and the first ball joint part 220A or between the second fixing part 210B and the second ball joint part 220B. It is fixed to and has a locking protrusion (226A-1) protruding in a direction facing each other in the internal space. That is, in the over-rotation prevention locking portion 226A, a pair of locking protrusions 226A-1 are provided to be spaced apart in a direction of approximately 180 degrees and may extend a predetermined length toward the internal space.
  • an extension extends toward the center body 205 so as to engage a pair of locking protrusions 226A-1 at least within the rotation radius.
  • a pair of locking plates 228 may be formed.
  • the pair of locking plates 228 of the first ball joint portion 220A or the second ball joint portion 220B is a pair of locking protrusions when the tilting or steering rotation operation is not performed.
  • the rotational separation angle from (226A-1) is positioned to be 90 degrees (see (a) in Figure 31), and the first ball joint portion 220A or the second ball joint portion 220B is operated in one direction or the other direction.
  • the rotation angle in each direction can be limited to a maximum of 90 degrees.
  • the first ball joint unit 220A is coupled to the female connector 150 of the antenna module 110 via the male connector 250, and the second ball joint unit 220B is connected up and down via the male connector 250. It is coupled to the upper end of the vertically arranged cable receiving pipe 240, and theoretically, if the over-rotation prevention locking portion 260A is not provided, the left and right steering rotation angle of the antenna module 110 is 360 degrees and is not limited.
  • the rotation angle of the second ball joint portion 220B with respect to the upper end of the cable receiving pipe 240 is limited to 90 degrees by the over-rotation prevention locking portion 260A, and the second ball joint portion 220B, which will be described later, is limited to 90 degrees.
  • the rotation may be limited to only 90 degrees. For example, when the maximum rotation limit angle (a) described later is 40 degrees, the maximum steering rotation angle of the antenna module 110 is limited to 130 degrees in one direction or the other direction.
  • the cable accommodating pipe 230 has the above-described male connector 250 and female connector (in FIG. 32) at both ends, respectively. (indicated separately by the symbol '250C') is provided and can be defined as a concept including a plurality of coaxial cables 240 connecting between the male connector 250 and the female connector 250C.
  • the plurality of coaxial cables 240 are connected to the center body 205, the first fixing part 210A, the second fixing part 210B, the first ball joint part 220A, and the second ball joint part 220B.
  • the coaxial cable 240 installed inside the antenna module 110 which is made of a flexible material so that it moves in conjunction with the tilting or steering rotation operation of the antenna module 110, it does not need to move within the cable receiving pipe 230, so it is made of a sturdy material. It may be provided or firmly fixed so as not to move within the cable receiving pipe 230.
  • the portion coupled to the male connector 250 of the second ball joint portion 220B is provided in the form of a female connector 250C, and the wireless unit
  • the portion coupled to the female connector 150 of 120 may be provided in the form of a male connector 250.
  • FIG. 33 is a projection plan view for explaining the effect of a multi-function link according to a modification of FIG. 21.
  • the multi-function link 200' increases the amount of tilting or steering operation of the antenna module 110 compared to the general multi-function link 200, thereby providing additional The directionality of the antenna module 110 can be adjusted.
  • the coaxial cable 240 which is generally accommodated in the cable accommodation pipe 230, may be provided in two strands when the antenna module 110 establishes a 2T2R transmission channel, and the antenna module 110 ) When constructing a 4T4R transmission channel, it can be provided with 4 strands.
  • the cable receiving pipe 230 is fixed to the female connector 150 of the antenna module 110 using the male connector 250, it is connected in the direction of the arrow (one direction). and other directions are included), there is a limitation in that the steering operation rotation is possible only within the range of the maximum rotation angle (a) in the left and right horizontal directions of the ball joint portion 220.
  • an arm for electrical connection of the two-strand coaxial cable 240 to the wireless unit 120 is formed at 3 o'clock and 9 o'clock, respectively, relative to the ground, and can be steered by more than 90 degrees in one direction or the other, respectively. It is impossible to adjust the direction of the antenna module 110 through operation. This is due to the fact that the connection direction of the two-strand coaxial cable 240 to the female connector 150 of the wireless unit 120 is preset at the 3 o'clock direction and the 9 o'clock direction.
  • the directionality of the antenna module 110 is set exactly 90 degrees in the left and right directions with respect to the front of the wireless unit 120 in the left and right horizontal directions described above. This is not possible unless the maximum rotation angle (a) is 90 degrees in the left or right direction (this is possible in the terminal groove 153 of the terminal pin 253 after separating the female connector 150 and the male connector 250). (This is also impossible when reassembling by changing the connection position of the And even in this case, setting 90 degrees in either direction is still impossible.
  • each wireless unit of the four-strand coaxial cable 240 is accommodated in the cable receiving pipe 230, which means that, as shown in FIG. 33, each wireless unit of the four-strand coaxial cable 240
  • the terminal grooves 153 and terminal pins 253 in the female connector 150 and male connector 250 for electrical connection to (120) are formed at each of four locations to be spaced apart in the circumferential direction by 90 degrees. am.
  • the connection between the female connector 150 and the male connector 250 is simply disconnected and the connector can be moved in the direction desired by the designer.
  • the process of reconnecting to the terminal pin 253 and the terminal groove 153 which allow for directional design, it is possible to adjust the directionality of the front of the wireless unit 120 in a 90-degree direction to the left and right.
  • the multi-function link 200' includes a first fixing part 210A, a first ball joint part 220A, and a second fixing part (210A) so as to be orthogonal to both ends with respect to the center body 205.
  • the antenna module 110 can be rotated to one side or the other through a steering operation.
  • the second fixing part (210B) and the second ball joint are capable of 360-degree steering operation based on the vertical axis when adjusting the direction.
  • the antenna module 110 Since the maximum limiting steering angle (a) limitation caused by the unit 220B disappears, 360-degree omnidirectional directional control is possible without the process of separating and reconnecting the female connector 150 from the wireless unit 120. do.
  • the antenna module 110 Even when the rotation of the second ball joint 220B with respect to the second fixing part 210B is limited to 90 degrees by the over-rotation prevention locking part 260A, the antenna module 110 The same result can be obtained in that the rotation limit in one direction or the other direction is each extended by 90 degrees in addition to the maximum limit steering angle (a) described above.
  • the multi-function link 200' steers the antenna module 110 based on the wireless unit 120 due to the addition of the second fixing part 210B and the second ball joint part 220B. Since the restricted range of motion is removed, even when setting a new directionality adjustment, the separation and reconnection process of the female connector 150 from the wireless unit 120 is not required, and the directionality of the antenna module 110 can be easily adjusted in the field. possible.
  • the maximum tilting limit angle (a) of the antenna module 110 coupled via ) is two fixing parts 210A, 210B and two ball joint parts 220A, 220B at both ends of the center body 205. ) is provided, which can create an advantage that increases by twice that amount, 2a.
  • the present invention makes it easy to build a small cell base station in public places, densely populated areas, large shopping malls, and empty buildings, and adjusts directionality without exposing various cables electrically connecting the wireless unit and the antenna module to the outside. This is provided to prevent the aesthetics from being deteriorated, and by partitioning a part of one antenna module to cover different frequency bands or providing multiple antenna modules to each cover different frequency bands, it can be used in various places. Provides a small base station antenna device capable of dual band and its connector.

Landscapes

  • Details Of Aerials (AREA)

Abstract

본 발명은 소형 기지국 안테나 장치 및 이의 커넥터에 관한 것으로서, 특히, 무선 유닛(RU; Radio Unit); 상기 무선 유닛에 대하여 틸팅 및 스티어링 동작 가능하게 설치된 적어도 하나의 안테나 모듈; 및 상기 무선 유닛에 대한 상기 각 안테나 모듈의 설치를 매개하는 멀티펑션 링크(Multi Function Link)를 포함하고, 상기 멀티펑션 링크는, 센터 바디, 상기 센터 바디의 양단부 중 상기 안테나 모듈과의 사이에 연결된 제1고정부 및 상기 센터 바디의 양단부 중 상기 무선 유닛과의 사이에 연결된 제2고정부를 포함하며, 상기 제1고정부 및 제2고정부는, 볼 조인트부를 매개로 결합되어 상기 안테나 모듈을 상기 무선 유닛에 대하여 틸팅 회동 및 스티어링 회동 동작 가능하게 설치된다.

Description

소형 기지국 안테나 장치 및 이의 커넥터
본 발명은 소형 기지국 안테나 장치 및 이의 커넥터(SMALL CELL BASE STATION ANTENNA APPARATUS AND CONNECTOR FOT THE SAME)에 관한 것으로서, 보다 상세하게는 케이블의 외관 노출이 방지됨과 아울러, 실내 스몰셀(Small Cell)의 구축이 용이하고, 하나의 안테나 모듈의 일부를 구획하여 상이한 주파수 대역을 커버링하거나 또는 다수의 안테나 모듈을 각각 상이한 주파수 대역을 커버링하도록 구비함으로써 듀얼 밴드 구현이 가능하도록 빔 포밍할 수 있는 소형 기지국 안테나 장치 및 이의 커넥터에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후(Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후(Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역(예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
특히, 현재의 용량보다 훨씬 높은 용량이 요구되는 미래의 5G 셀룰러 네트워크에서는 주파수 효율을 높이는 다양한 기술의 적용이 가능하다. 여러 기술 후보 중 하나인 소형셀 네트워크(SCN:Small Cell Network) 기술은 셀의 크기를 소형화함으로써 채널의 효용성을 높이고, 셀의 밀도를 증가시켜 주파수 효율을 높이며 용량을 증대시킬 수 있다.
스몰셀(Small Cell)은 기존의 높은 송신전력과 함께 넓은 커버리지를 갖는 매크로셀(Macro Cell)과는 달리 낮은 송신전력으로 좁은 커버리지를 갖는 소형 기지국이다. 스몰셀의 범주는 10W급 이하의 소출력 기지국장비, 피코셀(Pico Cell), 펨토셀(Femto Cell, Wi-Fi 등을 통칭한다. 스몰셀의 장점은 매크로셀에 비해 구축 비용이 적게 들고 크기가 작아서 공간 효율성을 높일 수 있다.
공공장소, 인구밀집 지역 및 대형 쇼핑몰이나 공항 건물 등과 같은 실내에 이러한 스몰셀을 중첩 구성하면 단위면적당 용량을 증대시킬 수 있다. 이로써 매크로셀 기지국 하나가 소비하는 전력과 설치비용을 줄일 수 있는 것도 장점이다. 스몰셀 기지국 만으로도 기존 LTE 대비 1000배의 용량을 달성할 수 있어, 스몰셀은 4G와 5G 사이를 이어주는 기반 기술이 될 것으로 예상된다.
도 1은 종래의 실시예에 따른 기지국용 안테나 장치를 나타낸 외관 사시도이다.
도 1에 도시된 바와 같이, 종래의 실시예에 따른 기지국용 안테나 장치는, 실외(옥외)에 설치된 것으로써 직립된 지주폴(11)에 안테나 모듈(10)이 고정 브라켓(30,31)에 의해 장착되고, 상기 안테나 모듈(10) 하측에 무선 유닛(12)이 고정 브라켓(32,33)에 의해 장착되며, 안테나 모듈(10)과 무선 유닛(12) 사이를 다수 개의 케이블(14)을 이용하여 전기적으로 연결하는 구조로 이루어졌다. 고정 브라켓(30,31)은 안테나 모듈(10) 상하단에 각각 배치되어 지주폴(11)에 고정시키고, 무선 유닛(12)의 상하단에 각각 배치되어 지주폴(11)에 고정시키는 구조로 이루어진다. 고정 브라켓(30-33)은 체결구, 예컨대 나사, 볼트, 너트 등을 이용해서 고정하는 역할을 담당한다.
그러나, 종래의 기지국용 안테나 장치는, 반드시 지주폴(11)을 매개로 설치하는 실외(옥외) 설치에 한정되는 구조를 가지는 한편, 지주폴(11) 중 상대적으로 상측에 안테나 모듈(10)을 장착하고, 상대적으로 하측에 무선 유닛(12), 예를 들어 RRH(Remote Radio Head)를 장착한 후에, 케이블(14)을 이용하여 연결하는 구조로 이루어짐에 따라, 케이블(14)이 외부로 노출되어 미관을 저해하는 문제점이 있다.
이와 같이, 스몰셀 기지국을 실내에 설치할 경우, 무선 유닛(RRH)과 안테나 모듈 사이의 복잡한 케이블의 연결로 인해 외관미가 저하되는 문제점이 있는 한편, 각 무선 유닛(RRH) 마다 하나의 안테나 모듈만이 구비되어 있어 현실적으로 듀얼밴드 주파수 대역의 커버링이 어려운 문제점이 있다.
본 발명은 상기한 기술적 과제를 해결하기 위하여 안출된 것으로서, 공공장소, 인구밀집 지역 및 대형 쇼핑몰이나 공한 건물 등과 같은 장소에 대한 스몰셀 기지국의 구축이 용이한 소형 기지국 안테나 장치 및 이의 커넥터를 제공하는 것을 그 목적으로 한다.
아울러, 본 발명은 무선 유닛과 안테나 모듈 간 전기적으로 연결하는 각종 케이블을 외부로 노출하지 않고서도 방향성 조절이 가능하도록 구비되어 미관(외관미)이 저하되는 것을 방지할 수 있는 소형 기지국 안테나 장치 및 이의 커넥터를 제공하는 것을 다른 목적으로 한다.
또한, 본 발명은 하나의 안테나 모듈의 일부를 구획하여 상이한 주파수 대역을 커버링하거나 또는 다수의 안테나 모듈을 각각 상이한 주파수 대역을 커버링하도록 구비함으로써, 다양한 장소에서의 듀얼 밴드화가 가능한 소형 기지국 안테나 장치 및 이의 커넥터를 제공하는 것을 또 다른 목적으로 한다.
그리고, 본 발명은 무선 유닛에 대한 다수의 안테나 모듈의 설치를 매개하는 각 멀티펑션 링크에 의한 방향성 조정 각도를 광범위하게 확보할 수 있는 소형 기지국 안테나 장치 및 이의 커넥터를 제공하는 것을 또 다른 목적으로 한다.
아울러, 본 발명은 상기 소형 기지국 안테나 장치의 멀티펑션 링크를 이용한 설치가 용이하도록 구비된 소형 기지국 안테나 장치 및 이의 커넥터를 제공하는 것을 또 다른 목적으로 한다.
본 발명의 기술적 과제는 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 소형 기지국 안테나 장치는, 무선 유닛(RU; Radio Unit), 상기 무선 유닛에 대하여 틸팅 및 스티어링 동작 가능하게 설치된 적어도 하나의 안테나 모듈 및 상기 무선 유닛에 대한 상기 각 안테나 모듈의 설치를 매개하는 멀티펑션 링크(Multi Function Link)를 포함하고, 상기 멀티펑션 링크는, 센터 바디, 상기 센터 바디의 양단부 중 상기 안테나 모듈과의 사이에 연결된 제1고정부 및 상기 센터 바디의 양단부 중 상기 무선 유닛과의 사이에 연결된 제2고정부를 포함하며, 상기 제1고정부 및 상기 제2고정부는, 볼 조인트부를 매개로 결합되어 상기 안테나 모듈을 상기 무선 유닛에 대하여 틸팅 회동 및 스티어링 회동 동작 가능하게 설치된다.
여기서, 상기 볼 조인트부는, 양단부 중 어느 하나의 단부는 상기 제1고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 안테나 모듈과 연결되어 상기 안테나 모듈을 틸팅 또는 스티어링 동작으로 방향성을 조절하는 제1볼 조인트부 및 양단부 중 어느 하나의 단부는 상기 제2고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 무선 유닛과의 연결을 매개하는 케이블 수용 파이프와 연결되어 상기 안테나 모듈을 추가로 방향성 조절이 가능하도록 하는 제2볼 조인트부를 포함할 수 있다.
또한, 상기 멀티펑션 링크는, 상기 안테나 모듈 및 상기 무선 유닛에 커넥터를 매개로 전기적으로 접속될 수 있다.
또한, 상기 커넥터는, 상기 멀티펑션 링크의 내부로 은닉되게 수용된 다수의 동축 케이블의 선단에 결합된 수커넥터 및 상기 안테나 모듈 및 상기 무선 유닛에 구비된 암커넥터를 포함할 수 있다.
또한, 상기 암커넥터가 상기 무선 유닛에 구비된 경우, 상기 무선 유닛의 내부에 구비된 RF 필터와 직접 연결되는 내측면을 가지는 결합 플랜지 및 상기 수커넥터가 접속되는 외측면을 가지는 피메일 단자 블록을 포함할 수 있다.
또한, 상기 암커넥터는, 상기 동축 케이블에 대응되는 개수의 스루핀 단자가 상기 결합 플랜지의 내측면 및 상기 피메일 단자 블록의 외측면을 연결하도록 관통되게 구비될 수 있다.
또한, 상기 다수의 동축 케이블은, 상기 무선 유닛과 상기 안테나 모듈 간 2T2R의 전송 선로 구축을 위한 2가닥 및 상기 무선 유닛과 상기 안테나 모듈 간 4T4R의 전송 선로 구축을 위한 4가닥 중 어느 하나의 개수로 구비되고, 상기 수커넥터에는, 상기 다수의 동축 케이블의 개수와 대응되는 단자 핀이 형성되며, 상기 암커넥터에는, 상기 단자 핀이 각각 삽입되어 접속되는 단자 홈이 대응되게 형성될 수 있다.
또한, 상기 암커넥터는, 상기 결합 플랜지가 상기 RF 필터에 접합 상태에서 다수의 스크류를 이용하여 상기 RF 필터에 직접 체결될 수 있다.
또한, 상기 암커넥터의 각 스루핀 단자의 선단은 상기 RF 필터에 구비된 급전 커넥터에 직접 접속될 수 있다.
또한, 상기 수커넥터는, 상기 동축 케이블이 4가닥으로 구비된 경우, 상기 동축 케이블에 대응되는 단자 핀의 중심부에 단수개로 구비된 그라운드 와셔를 더 포함할 수 있다.
또한, 상기 케이블 수용 파이프는, 다수의 동축 케이블을 수용하여 외부로부터 은닉시키되, 일단은 상기 무선 유닛과 연결되고, 타단은 상기 고정부에 연결되며, 상기 수커넥터는 상기 동축 케이블의 일단 및 타단에 연결될 수 있다.
또한, 상기 수커넥터는, 상기 동축 케이블의 일단 및 타단에 연결된 메일 단자 블록, 상기 메일 단자 블록으로부터 상기 암커넥터 측으로 돌출된 다수의 가이드 핀, 상기 동축 케이블로부터 연장되되 상기 메일 단자 블록으로부터 상기 암커넥터 측으로 돌출 연장된 다수의 단자 핀 및 상기 다수의 단자 핀의 상기 암커넥터에 대한 전기적인 접속력을 유지하는 리테이너 너트를 포함할 수 있다.
또한, 상기 리테이너 너트는, 상기 암커넥터에 구비된 너트 체결단에 체결되는 동작으로 상기 접속력을 유지할 수 있다.
또한, 상기 안테나 모듈은, 하나의 안테나 보드에 듀얼 주파수 밴드를 커버링하는 다수의 안테나 서브 어레이가 배열되고, 상기 멀티펑션 링크에 의하여 설정된 상기 안테나 모듈의 동일 방향 내에서 상이한 주파수 밴드로 안테나 빔 포밍을 구현할 수 있다.
또한, 상기 안테나 모듈은, 각각 상이한 주파수 밴드를 커버링하도록 다수의 안테나 서브 어레이가 배열되고, 상기 멀티펑션 링크에 의하여 각각 상이한 방향으로 방향성이 설정될 수 있다.
또한, 상기 안테나 모듈은, 소형셀 기지국용으로 구비될 수 있다.
또한, 상기 무선 유닛은, 실내에 구비된 지주폴, 벽면 및 천정 중 어느 하나에 설치될 수 있다.
또한, 상기 제1고정부 및 상기 제2고정부는, 상기 센터 바디에 상호 직교되게 연결될 수 있다.
또한, 상기 멀티펑션 링크는, 상기 제1고정부 또는 상기 제2고정부에 대한 상기 제1볼 조인트부 또는 상기 제2볼 조인트부의 회전 방향의 각도를 제한하는 과회전방지 걸림부를 더 포함할 수 있다.
또한, 상기 과회전방지 걸림부는, 상기 제1고정부와 상기 제1볼 조인트부 사이 또는 상기 제2고정부와 상기 제2볼 조인트부 사이에 해당하는 내부 공간에 고정되되, 상기 내부 공간에서 상호 마주하는 방향으로 돌출된 한 쌍의 걸림돌기가 상기 제1볼 조인트부 또는 상기 제2볼 조인트부의 내부에 상기 센터 바디 측을 향하여 연장된 한 쌍의 걸림판에 걸림 가능하게 구비될 수 있다.
또한, 상기 한 쌍의 걸림판은, 상기 안테나 모듈의 틸팅 회동 또는 스티어링 회동 동작을 하지 않은 경우 상기 한 쌍의 걸림돌기와의 회전방향 이격 각도는 각각 90도가 되도록 위치될 수 있다.
본 발명의 일 실시예에 따른 소형 기지국 안테나 장치의 커넥터는, 무선 유닛(RU; Radio Unit)과, 상기 무선 유닛에 대하여 틸팅 및 스티어링 동작 가능하게 설치된 적어도 하나의 안테나 모듈 및 상기 무선 유닛에 대한 상기 각 안테나 모듈의 설치를 매개하는 멀티펑션 링크(Multi Function Link)를 포함하는 소형 기지국 안테나 장치에 있어서, 상기 멀티펑션 링크의 내부로 은닉되게 수용된 다수의 동축 케이블의 선단에 결합된 수커넥터 및 상기 무선 유닛의 내부에 구비된 RF 필터와 직접 연결되는 내측면을 가지는 결합 플랜지 및 상기 수커넥터가 접속되는 외측면을 가지는 피메일 단자 블록 을 포함하는 암커넥터를 포함한다.
여기서, 상기 암커넥터는, 상기 동축 케이블에 대응되는 개수의 스루핀 단자가 상기 내측면 및 외측면을 연결하도록 관통되게 구비될 수 있다.
또한, 상기 다수의 동축 케이블은, 상기 무선 유닛과 상기 안테나 모듈 간 2T2R의 전송 선로 구축을 위한 2가닥 및 상기 무선 유닛과 상기 안테나 모듈 간 4T4R의 전송 선로 구축을 위한 4가닥 중 어느 하나의 개수로 구비되고, 상기 수커넥터에는, 상기 다수의 동축 케이블의 개수와 대응되는 단자 핀이 형성되며, 상기 암커넥터에는, 상기 단자 핀이 각각 삽입되어 접속되는 단자 홈이 대응되게 형성될 수 있다.
또한, 상기 암커넥터는, 상기 결합 플랜지가 상기 RF 필터에 접한 상태에서 다수의 스크류를 이용하여 상기 RF 필터에 직접 체결될 수 있다.
또한, 상기 암커넥터의 각 스루핀 단자의 선단은 상기 RF 필터에 구비된 급전 커넥터에 직접 접속될 수 있다.
또한, 상기 수커넥터는, 상기 동축 케이블이 4가닥으로 구비된 경우, 상기 동축 케이블에 대응되는 단자 핀의 중심부에 단수개로 구비된 그라운드 와셔를 더 포함할 수 있다.
또한, 상기 멀티펑션 링크는, 센터 바디, 상기 센터 바디의 양단부 중 상기 안테나 모듈과의 사이에 연결된 제1고정부, 상기 센터 바디의 양단부 중 상기 무선 유닛과의 사이에 연결된 제2고정부, 양단부 중 어느 하나의 단부는 상기 제1고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 안테나 모듈과 연결되어 상기 안테나 모듈을 틸팅 또는 스티어링 동작으로 방향성을 조절하는 제1볼 조인트부 및 양단부 중 어느 하나의 단부는 상기 제2고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 무선 유닛과의 연결을 매개하는 케이블 수용 파이프와 연결되어 상기 안테나 모듈을 추가로 방향성 조절이 가능하도록 하는 제2볼 조인트부를 포함할 경우, 상기 암커넥터는, 상기 케이블 수용 파이프에 수용된 동축 케이블에 대응되는 개수의 스루핀 단자가 상기 내측면 및 외측면을 연결하도록 관통되게 구비될 수 있다.
본 발명의 일 실시예에 따른 소형 기지국 안테나 장치 및 이의 커넥터에 따르면 다음과 같은 다양한 효과를 도출할 수 있다.
첫째, 멀티펑션 링크(Multi Function Link)를 이용하여 협소한 공간에서도 안테나 모듈이 방향성 조절이 용이한 바, 소형셀 기지국의 구축이 용이한 효과를 가진다.
둘째, 무선 유닛과 안테나 모듈 간 전기적으로 연결하는 각종 케이블을 외부로 노출하지 않고서도 방향성 조절이 가능하도록 구비되어 미관(외관미)이 저하되는 것을 방지할 수 있는 효과를 가진다.
셋째, 멀티펑션 링크를 센터 바디를 중심으로 양단부의 2개소에서 볼 조인트부를 통한 각도 조정이 가능하도록 함으로써, 무선 유닛에 대한 다수의 안테나 모듈의 방향성 조정 각도를 광범위하게 확보할 수 있는 효과를 가진다.
넷째, 멀티펑션 링크의 수커넥터와 접속하도록 무선 유닛에 구비된 암커넥터가 직접 RF 필터의 급전 커넥터에 접촉하도록 구비되고, 동축 케이블의 개수에 대응되는 스루핀 단자로 하여금 전기적인 접속이 이루어지도록 구비됨으로써, 제품의 크기를 줄이고, 공간 활용성을 확장시키며, 삽입 손실을 줄이고, 비용 절감의 효과를 가진다.
도 1은 종래 기술에 따른 소형 기지국 안테나 장치의 외관을 나타낸 사시도이고,
도 2는 본 발명에 따른 소형 기지국 안테나 장치의 외관을 나타낸 사시도이며,
도 3은 도 2의 분해 사시도이고,
도 4는 도 2의 정면도 및 A-A선을 따라 취한 단면도이며,
도 5는 도 2의 측단면도이고,
도 6은 도 2의 구성 중 안테나 모듈의 틸팅 모습을 나타낸 측면도이며,
도 7은 도 2의 구성 중 무선 유닛의 사양이 상이한 실시예를 나타낸 사시도이고,
도 8은 하나의 안테나 모듈 내에 CBRS 및 DoD의 2개 주파수 밴드에 의한 빔포밍 모습을 나타낸 개념도이며,
도 9는 도 8의 실물 안테나 장치의 평면도이고,
도 10a 및 도 10b는 안테나 모듈별 듀얼 주파수 밴드의 구현례로서 지주폴 결합형 및 벽면 결합형의 다양한 구현례를 나타낸 정면도이며,
도 11은 본 발명의 제1실시예에 따른 소형 기지국 안테나 장치(지주폴 결합형)의 외관을 나타낸 사시도이고,
도 12는 본 발명의 제2실시예에 따른 소형 기지국 안테나 장치(벽면 결합형)의 외관을 나타낸 사시도이며,
도 13은 본 발명의 제3실시예에 따른 소형 기지국 안테나 장치(천정 결합형)의 외관을 나타낸 사시도이고,
도 14 및 도 15는 무선 유닛과 안테나 모듈을 연결하기 위한 멀티펑션 링크의 숏 타입(a) 및 롱 타입(b)의 사시도와 그 절개 사시도(a,b)이며,
도 16은 도 10의 B-B선을 따라 취한 단면도이고,
도 17은 도 14 및 도 15의 멀티펑션 링크 중 롱 타입(b) 멀티펑션 링크를 나타낸 분해 사시도이며,
도 18a 및 도 18b는 본 발명의 일 실시예에 따른 커넥터가 장착되는 무선 유닛의 일례를 나타낸 분해 사시도이고,
도 19는 본 발명의 일 실시예에 따른 소형 기지국 안테나 장치의 커넥터 구성 중 하나인 무선 유닛에 구비된 무선 유닛측 암커넥터의 변형례를 나타낸 하향 및 상향 분해 사시도이며,
도 20은 도 18a 및 도 18b의 무선 유닛측 암커넥터에 대한 멀티펑션 링크의 수커넥터 연결 모습을 나타낸 부분 절개 사시도이고,
도 21은 멀티펑션 링크의 변형례가 적용된 소형 기지국 안테나 장치를 나타낸 사시도이고,
도 22a 및 도 22b는 도 18의 전방측 및 후방측 분해 사시도이며,
도 23은 도 21의 변형례에 따른 멀티펑션 링크를 분해한 분해 사시도이고,
도 24는 도 21의 변형례에 따른 멀티펑션 링크의 암수 결합 부위를 나타낸 단면도이며,
도 25는 도 21의 변형례에 따른 멀티펑션 링크의 단면도이고,
도 26은 도 21의 변형례에 따른 멀티펑션 링크의 수커넥터를 나타낸 단면도이며,
도 27은 도 21의 변형례에 따른 멀티펑션 링크의 분해 사시도이고,
도 28는 도 27의 절개 사시도이며,
도 29는 도 27의 단면도이고,
도 30은 도 27 내지 도 29에 참조된 과회전방지 걸림부를 나타낸 절개 사시도이며,
도 31은 도 30의 과회전방지 걸림부의 작동 모습을 나타낸 내부 정면도이고,
도 32는 도 21의 변형례에 따른 멀티펑션 링크의 구성 중 케이블 수용 파이프를 나타낸 단면도, 절개 사시도 및 그 부분 확대도이고,
도 33은 도 21의 변형례에 따른 멀티펑션 링크의 작용 효과를 설명하기 위한 투영 평면도이다.
<부호의 설명>
100: 기지국 안테나 장치 110: 안테나 모듈
111: 안테나 하우징 113: 레이돔
115: 안테나 보드 117: 패치 소자
118: 안테나 서브 어레이 119: 방사소자 모듈
120: 무선 유닛 121: 설치 패널부
122: 리어 하우징 123: 프론트 하우징
150: 암커넥터 151: 피메일 단자 블록
152: 가이드홈 153: 단자 홈
154: 링 수용홈 155: 이물질 유입방지링
200: 멀티펑션 링크 205: 센터 바디
200': 변형례의 멀티펑션 링크 210: 고정부
210A: 제1고정부 210B: 제2고정부
217: 조립 나사 220: 볼 조인트부
220A: 제1볼 조인트부 220B: 제2볼 조인트부
225: 무빙락부 230: 케이블 수용 파이프
240: 동축 케이블 250: 수커넥터
251: 메일 단자 블록 252: 가이드 핀
253: 단자 핀 254: 가이드링
256: 리테이너 너트 257: C-링
이하, 본 발명의 다양한 실시예들에 따른 소형 기지국 안테나 장치 및 이의 커넥터를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2는 본 발명에 따른 소형 기지국 안테나 장치의 외관을 나타낸 사시도이고, 도 3은 도 2의 분해 사시도이며, 도 4는 도 2의 정면도 및 A-A선을 따라 취한 단면도이고, 도 5는 도 2의 측단면도이며, 도 6은 도 2의 구성 중 안테나 모듈의 틸팅 모습을 나타낸 사시도이다.
본 발명의 일 실시예에 따른 소형 기지국 안테나 장치(100)는, 도 2 내지 도 5에 참조된 바와 같이, 소정 장소에 설치되는 무선 유닛(120) 및 안테나 모듈(110)을 포함한다. 여기서, 본 발명에 따른 소형 기지국 안테나 장치(100)가 설치되는 상기 소정 장소는 스몰셀 기지국으로서의 기능을 수행하도록, 공공장소, 인구밀집 지역 및 대형 쇼핑몰이나 공항 건물 등과 같은 장소를 의미하는 것으로서, 후술하는 바와 같이, 지주폴 결합형(후술하는 도 10 참조), 벽면 결합형(후술하는 도 11 참조) 및 천정 결합형(후술하는 도 12 참조)과 같이, 인빌딩(실내) 설치에 적합한 구조물일 수 있다.
안테나 모듈(110)은, 적어도 하나의 주파수 대역을 가지는 안테나 기기를 지칭할 수 있다. 또한, 무선 유닛(120)(RU; Radio Unit)은 안테나 모듈(110)에 제공되는 각각의 주파수 대역별 안테나와 연결되어, 안테나 및 기지국 간 송/수신하는 장치를 의미하며, 무선 유닛(120)의 한 예로 기지국 설비에서 무선 유닛의 일부를 원격으로 분리한 RRH(Remote Radio Head)를 들 수 있다. 무선 유닛(120)은, 이동통신 시스템의 기지국과 이동통신 단말기 사이에서, 약해진 신호를 받아서 증폭하거나 재송신하거나, 왜곡된 파형을 정형화하고, 타이밍을 재조정하는 등의 기능을 수행하는 중계 장치이다.
본 발명의 일 실시예에 따른 소형 기지국 안테나 장치(100)는, 도 3에 참조된 바와 같이, 먼저 실내(가옥)의 지주폴, 벽면 및 천정 등의 구조물 등에 무선 유닛(120)이 장착되고, 무선 유닛(120)의 전면에 후술하는 안테나 클램핑 유닛(200)을 매개로 안테나 모듈(110)이 틸팅 및 스티어링 가능하게 장착될 수 있다.
그러나, 반드시 무선 유닛(120)이 도 2 내지 도 5에 참조된 바와 같이, 실내의 구조물(지주폴, 벽면 및 천정)에 먼저 장착되어야 하는 것은 아니고, 후술하는 도 11 내지 도 13에 참조된 바와 같이, 무선 유닛(120)에 안테나 모듈(110)이 먼저 설치된 후 각 실내의 구조물에 장착되는 것도 가능하다.
안테나 모듈(110)은, 도 4에 참조된 바와 같이, 안테나 하우징(111)과, 안테나 하우징(111)의 전면을 덮도록 구비되고, 안테나 하우징(111)과의 사이에 소정 공간을 형성하는 레이돔(113)을 포함할 수 있다.
안테나 하우징(111)의 소정 공간에는, 인쇄회로기판 형태의 안테나 보드(115)가 설치되고, 안테나 보드(115)의 전면에는 다수의 방사소자가 실장 배치될 수 있다. 안테나 보드(115)에 실장 배치되는 방사소자는 안테나의 종류마다 상이할 수 있으나, 본 발명의 일 실시예에서는 패치 타입의 소자(패치 소자, 117)가 채용된 것으로 설명한다.
한편, 본 발명에 따른 기지국용 안테나 장치(100)는, 도 2 내지 도 5에 참조된 바와 같이, 무선 유닛(120)의 전면에 대한 결합을 매개하는 멀티펑션 링크(200)를 더 포함할 수 있다.
보다 상세하게는, 무선 유닛(120)은, 도 2 내지 도 5에 참조된 바와 같이, 실내의 구비된 지지폴(P), 벽면(W) 및 천정(C) 중 어느 하나에 설치 패널부(도 11 이하의 도면부호 '121' 참조)를 매개로 설치되는 리어 하우징(122)과, 리어 하우징(122)과의 사이에 소정 공간을 형성하는 프론트 하우징(123)을 포함하고, 소정 공간에는 다양한 내부 구성품이 설치될 수 있다.
무선 유닛(120)의 내부에 설치되는 내부 구성품은, 미도시 되었지만, 보드(main board)(후술하는 도 18a 및 도 18b의 전방 보드(126A) 참조)와, RF 필터(후술하는 도 18a 및 도 18b의 도면부호 '130' 참조)와, 두 개의 전원 증폭부(PAU: Power Amplifing Unit) 및 전원 공급부(PSU: Power Supplying Unit)를 포함할 수 있다.
무선 유닛(120) 중 프론트 하우징(123)의 전면에는 다수의 히트싱크핀(125)이 일체로 형성되어, 소정 공간 상에서 발생한 열을 다수의 히트싱크핀(125)을 통하여 외부로 방열시킬 수 있다. 본 발명의 일 실시예에 따른 소형 기지국 안테나 장치(100)에 있어서는, 무선 유닛(120) 중 프론트 하우징(123)에만 다수의 히트싱크핀(125)이 형성된 것으로 한정하여 설명하고 있으나, 반드시 이에 한정되는 것은 아니고, 후술하는 본 발명의 다른 실시예들에서와 같이 리어 하우징(122)에도 다수의 히트싱크핀(125)이 형성될 수 있음을 미리 밝혀둔다.
한편, 프론트 하우징(123)의 전면에는 다수의 히트싱크핀(125)의 일부가 사각형 형상의 면으로 삭제된 설치홈부(127)가 구비되고, 설치홈부(127)에 멀티펑션 링크(200)가 다수의 조립 나사(2157)에 의하여 결합될 수 있다. 그러나, 반드시 멀티펑션 링크(200)의 설치를 위하여 프론트 하우징(123)의 전면에 사각형 형상의 면으로 삭제된 설치홈부(127) 형태로 구비될 필요는 없고, 후술하는 도 11 내지 도 13에 참조되는 실시예들(100A,100B,100C)에서와 같이, 멀티펑션 링크(200)가 무선 유닛(120)의 측면 부위(상측부, 하측부, 좌측부 및 우측부를 포함하는 개념임)에 연결될 수 있다. 무선 유닛(120)에 대한 멀티펑션 링크(200)의 설치 위치가 변경될 경우, 무선 유닛(120)의 내부에 구비된 RF 필터의 형상 변경 설계도 불가피할 수 있다. 이에 대해서는 뒤에 보다 상세하게 설명하기로 한다.
여기서, 멀티펑션 링크(200)는, 도 3 내지 도 5에 참조된 바와 같이, 일측으로 일부가 개구된 원통 형상으로 구비되고 타측으로는 후술하는 케이블 수용 파이프(230)를 매개하거나 또는 케이블 수용 파이프(230) 없이 직접 무선 유닛(120)에 연결된 고정부(210)와, 고정부(210)의 개구된 일측으로 일단부의 일부가 삽입 설치되고, 타단부에는 안테나 모듈(110)이 결합되는 볼 조인트부(220)를 포함할 수 있다.
케이블 수용 파이프(230)를 매개하여 고정부(210)가 무선 유닛(120)에 연결되는 실시예는 도 11 내지 도 13의 제1실시예 내지 제3실시예를 설명한 후 뒤에 보다 구체적으로 설명하기로 한다. 특히, 케이블 수용 파이프(230)를 포함하는 멀티펑션 링크(200)는, 기본적으로 무선 유닛(120)에 대하여 안테나 모듈(110)의 연결을 매개하는 기능을 수행하는 점에서, 케이블 수용 파이프(230)는 지주 폴의 기능을 일부 수행할 수 있는 정도의 강성 재질로 구비됨이 바람직하다.
고정부(210)의 내부에 수용 설치된 볼 조인트부(220)는 대략 일단부의 일부가 개구된 볼 형태로 형성되고, 고정부(210)의 개구된 일측의 단부에 의해 걸림되어 외부(특히, 전방)로 이탈되지 않도록 설치될 수 있다. 여기서, 볼 조인트부(220)의 일단부의 일부가 개구되게 형성되는 것은 후술하는 다수의 동축 케이블(240)의 관통 설치를 위함이다.
또한, 볼 조인트부(220)는, 고정부(210)에 설치된 부분과 안테나 모듈(110)에 설치되는 부분까지 내부가 비어 고정부(210)의 내부 공간과 연통되고, 고정부(210)와 볼 조인트부(220)의 연통된 내부 공간에는 무선 유닛(120)과 안테나 모듈(110) 사이의 전기적인 연결을 수행하는 동축 케이블(240)이 설치될 수 있다.
여기서, 동축 케이블(240)은, 안테나 모듈(110)이 후술하는 틸팅 및 스티어링 동작이 가능하되 적어도 고정부(210)에 대한 볼 조인트부(220)의 무빙과 간섭되지 않도록 플렉서블한 재질로 구비됨이 바람직하다.
동축 케이블(240)의 일단과 타단에는, 각각 안테나측 수커넥터 및 무선 유닛측 수커넥터가 구비되고, 안테나 모듈의 배면 및 무선 유닛의 외측면에는, 각각 안테나측 커넥터 또는 무선 유닛측 커넥터와 접속되기 위한 안테나측 암커넥터 및 무선 유닛측 암커넥터가 구비될 수 있다. 이에 대한 구체적인 설명은 뒤에 보다 상세하게 설명하기로 한다.
이와 같이, 본 발명에 따른 소형 기지국 안테나 장치(100)는, 무선 유닛(120)과 안테나 모듈(110)을 전기적으로 연결하는 다수의 동축 케이블(240)이 꼬임 없이 외부로부터 은닉됨에 따라 미관이 저하되는 것을 방지할 수 있다.
볼 조인트부(220)는 고정부(210)에 대하여 상하 또는 좌우 방향을 포함하는 사방으로 소정의 각도를 유지할 수 있도록 틸팅 회동 및 스티어링 회동 동작될 수 있다. 여기서, 틸팅 회동 동작이라는 용어는 안테나 모듈(110)의 상단과 하단이 전후 방향으로 스윙되는 모든 동작을 포함하는 개념이고, 스티어링 회동 동작이라는 용어는 안테나 모듈(110)의 좌측단과 우측단이 좌우 방향으로 스윙되는 모든 동작을 포함하는 개념이다. 본 발명의 일 실시예에 따른 소형 기지국 안테나 장치(100)에서 볼 조인트부(220)는, 안테나 모듈(110)의 틸팅 회동 동작 및 스티어링 회동 동작 중 어느 하나만이 수행되는 것이 아니라, 틸팅 회동 동작 및 스티어링 회동 동작이 모두 동시 또는 순차적으로 이루어지도록 구비될 수 있다.
보다 상세하게는, 볼 조인트부(220)는, 고정부(210)의 내부로 수용된 일단부의 임의의 기준점을 중심으로 상하 또는 좌우 방향을 포함하는 사방으로 소정각도 틸팅 및 스티어링 동작될 수 있다. 볼 조인트부(220)가 틸팅 및 스티어링 동작됨에 따라, 이에 결합된 안테나 모듈(110) 또한 틸팅 및 스티어링 동작이 가능하고, 설계자가 원하는 방향으로의 안테나 모듈(110)의 방향성 조절을 수행할 수 있게 된다.
여기서, 볼 조인트부(220)는, 고정부(210)와의 내부면과 다소의 마찰력을 형성하면서 틸팅 회동 및 스티어링 회동 동작이 수행될 수 있다. 이를 위해, 고정부(210)의 내부면 또는 볼 조인트부(220)의 삽입된 외부면 일부에는 상호 소정의 마찰력을 형성하는 마찰 패드(또는 마찰 부재, 미도시)가 더 구비될 수 있다.
한편, 안테나 클램핑 유닛(200)은, 도 5에 참조된 바와 같이, 볼 조인트부(220)가 고정부(210)에 대하여 소정 각도로 틸팅 및 스티어링 동작된 후, 무빙 고정점에서 볼 조인트부(220)를 고정부(210)에 고정시키는 무빙락부(225)가 더 구비될 수 있다.
무빙락부(225)는, 고정부(210)에 대하여 볼 조인트부(220)를 고정시키는 구성이라면 여하한 수단이 채용될 수 있고, 일례로, 볼 조인트부(220)가 수용된 고정부(210)의 외측을 관통하여 볼 조인트부(220)의 외주면 일부와 간섭되는 미도시의 고정 볼트 등에 의하여 락킹(locking)이 구현될 수 있다.
이와 같이, 본 발명에 따른 소형 기지국 안테나 장치(100)에 따르면, 멀티펑션 링크(200)에 의하여, 무선 유닛(120)과 안테나 모듈(110) 사이를 연결하는 다수의 동축 케이블(240)의 외부 노출을 지양하여 미관이 저하되는 것을 방지함은 물론, 상대적으로 사이즈가 작은 안테나 모듈(110)만을 틸팅 회동 및 스티어링 회동 동작시키고 상대적으로 사이즈가 큰 무선 유닛(120)의 틸팅 회동 및 스티어링 회동 동작은 이루어지지 않도록 함으로써, 공간 활용성을 극대화시킬 수 있는 이점을 가진다.
또한, 본 발명에 따른 소형 기지국 안테나 장치(100)에 따르면, 도 6에 참조된 바와 같이, 무선 유닛(120)의 전면에 멀티펑션 링크(200)를 매개로 틸팅 회동 및 스티어링 회동 동작이 가능하도록 구비됨으로써(도 6에는 틸팅 동작만이 도시됨), 실내 공간 또는 실외 공간 중 그 설치되는 장소에 관계없이 인구 밀집 또는 다수의 수요 공간에 대한 맞춤형 방향성 조절이 가능한 이점을 제공할 수 있다.
도 7은 도 2의 구성 중 무선 유닛의 사양이 상이한 실시예를 나타낸 사시도이고, 도 8은 하나의 안테나 모듈 내에 CBRS 및 DoD의 2개 주파수 밴드에 의한 빔포밍 모습을 나타낸 개념도이며, 도 9는 도 8의 실물 안테나 장치의 평면도이고, 도 10a 및 도 10b는 안테나 모듈별 듀얼 주파수 밴드의 구현례로서 지주폴 결합형 및 벽면 결합형의 다양한 구현례를 나타낸 정면도이다.
도 7에 참조된 바와 같이, 안테나 모듈(110)은 패치 안테나 소자들이 적용된 동일한 사양이나, 무선 유닛(120)의 사양만 상이할 수 있다. 보다 상세하게는, 도 2 내지 도 6에 참조된 무선 유닛(120)에 비하여, 도 7에 참조된 무선 유닛(120)은 좌우 방향의 폭은 상대적으로 짧으나, 상하 방향의 길이는 상대적으로 더 큰 사양으로 구비될 수 있다. 이때, 안테나 모듈(110)의 설치 위치는 안테나 모듈(110)의 중량과 틸팅 회동 및 스티어링 회동 동작을 고려하여 적절한 위치에 설정되는 것이 바람직하다.
그러나, 반드시 본 발명에 따른 소형 기지국 안테나 장치(100)에 있어서 무선 유닛(120)의 사양만이 상이하게 적용될 수 있는 것은 아니다.
즉, 도 8 및 도 9에 참조된 바와 같이, 안테나 모듈(110)의 전면에는 특정 주파수 대역의 빔 포밍을 형성하기 위한 다수의 패치 소자(117)가 다수의 안테나 서브 어레이(118)를 구성하도록 배열된 방사소자 모듈(119)이 구비될 수 있다.
다수의 방사소자 모듈(119)은, 소형셀 기지국에 대응되는 주파수 밴드(Frequency Band)를 구축하기 포맷으로서, 하나의 안테나 모듈(110) 내의 안테나 보드(115)로 구현되는 것도 가능하나, 도 8 및 도 9에 참조된 바와 같이, 매크로용의 하나의 안테나 보드(115)에 DoD(Depart of Defense) 및 CBRS(Citizens Broadband Radio Services)에 대응되는 주파수 대역을 커버링하기 위한 듀얼 밴드 형태로 구분되도록 구현되는 것도 가능하다.
보다 상세하게는, 다수의 방사소자 모듈(119)은, 도 8 및 도 9에 참조된 바와 같이, 매크로용의 안테나 보드(115)의 전면 상측에 듀얼 주파수 밴드 중 3450~3550MHz 주파수 대역의 DoD 채널을 구현하여 17.5dBi의 이득을 구현하도록 다수의 패치 소자(117)에 의한 다수의 안테나 서브 어레이(118)가 배열되고, 매크로용의 안테나 보드(115)의 전면 하측에 듀얼 주파수 밴드 중 3550~3700MHz 주파수 대역의 CBRS 채널을 구현하여 15.5dBi의 이득을 구현하도록 다수의 패치 소자(117)에 의한 다수의 안테나 서브 어레이(118)가 배열될 수 있다.
이와 같이 듀얼 주파수 밴드의 커버링이 가능하도록 구축된 다수의 방사소자 모듈(119)은, 도 8에 참조된 바와 같이, DoD 및 CBRS 채널 모두 H-Beam width가 55° 내지 90°의 값을 가지도록 안테나 빔 포밍을 형성할 수 있고, V-Beam width는 DoD 채널이 7.5°, CBRS 채널은 14.6°의 값을 가지도록 상이한 안테나 빔 포밍을 형성할 수 있다.
즉, 안테나 모듈(110)은, 하나의 안테나 보드(115) 내에 상술한 바와 같이, 매크로용 주파수 밴드 및 소형셀용 주파수 밴드를 커버링하는 안테나 빔 포밍을 형성하도록 구현될 수 있다. 또한, 안테나 모듈(110)의 방향성이 동일하게 조절된 경우임에도 불구하고, 밴드별 TRx 및 안테나 서브 어레이(118)의 분리로 인한 UL(Up Link) Coverage를 극대화할 수 있는 이점을 제공할 수 있다.
그러나, 반드시 하나의 안테나 보드(115)에 듀얼 주파수 밴드의 커버링이 가능하도록 안테나 서브 어레이(118)가 배열되어야 하는 것은 아니고, 후술하는 도 10a 및 도 10b에 참조된 바와 같이, 하나의 무선 유닛(120)에 각각 고유의 주파수 밴드를 커버링할 수 있는 2개 또는 2개 이상의 안테나 모듈(110A,110B)이 각각 멀티펑션 링크(200)를 매개로 구비되고, 각 안테나 모듈(110A,110B)을 커버리지 요구치가 강한 방향으로 멀티펑션 링크(200)를 이용하여 방향성을 조절함으로써 구현할 수 있음은 당연하다.
가령, 지주폴 결합형으로 구비된 도 10a의 (a) 및 벽면 결합형으로 구비된 도 10b의 (a)와 같이, 2개의 듀얼 주파수 밴드 형태로 각각 구비된 안테나 모듈(110A,110B)을 같은 방향(정면)으로 방향성 조절할 수 있고, 지주폴 결합형으로 구비된 도 10a의 (b) 및 벽면 결합형으로 구비된 도 10b의 (b)와 같이, 안테나 모듈(110A,110B) 모두를 상호 반대 방향으로 방향성 조절할 수 있으며, 지주폴 결합형으로 구비된 10a의 (c) 및 벽면 결합형으로 구비된 도 10b의 (c)와 같이, 안테나 모듈(110A,110B) 중 하나(110A)는 정면 및 다른 하나(110B)는 측면으로 방향성 조절할 수 있다.
이때, 안테나 모듈(110A,110B)의 각 방사소자 모듈(119)은, 매크로용이 아닌 소형셀 기지국용으로 적합한 사양으로 구비되되, 최대 이득율이 15dBi, 13dBi 및 11dBi 중 어느 하나를 달성할 수 있는 사양으로 각각 구비되어, 원하는 방향으로의 방향성 조절이 이루어짐으로써, 소형셀 기지국의 효과를 극대화할 수 있음은 당연하다고 할 것이다.
도 11은 본 발명의 제1실시예에 따른 소형 기지국 안테나 장치(지주폴 결합형)의 외관을 나타낸 사시도이고, 도 12는 본 발명의 제2실시예에 따른 소형 기지국 안테나 장치(벽면 결합형)의 외관을 나타낸 사시도이며, 도 13은 본 발명의 제3실시예에 따른 소형 기지국 안테나 장치(천정 결합형)의 외관을 나타낸 사시도이고, 도 14 및 도 15는 무선 유닛과 안테나 모듈을 연결하기 위한 멀티펑션 링크의 숏 타입(a) 및 롱 타입(b)의 사시도와 그 절개 사시도(a,b)이며, 도 16은 도 10의 B-B선을 따라 취한 단면도이고, 도 17은 도 14 및 도 15의 멀티펑션 링크 중 롱 타입(b) 멀티펑션 링크를 나타낸 분해 사시도이다.
본 발명에 따른 소형 기지국 안테나 장치(100)는, 도 11 내지 도 13에 참조된 바와 같이, 설치 패널부(121)를 매개로 무선 유닛(120)의 리어 하우징(122)이 실내(Indoor)의 지주폴(P), 벽면(W) 및 천정(C) 중 어느 하나에 고정되거나 은닉되게 설치되고, 무선 유닛(120)에는 적어도 하나(본 실시예에서는 둘) 이상의 안테나 모듈(110A,110B)이 멀티펑션 링크(200)를 매개로 틸팅 회동 또는 스티어링 회동 가능하게 결합될 수 있다.
도 11을 참조하면, 대형 건물 등의 실내에는 본 실시예에 따른 기지국 안테나 장치(100)의 설치를 위한 지주폴(P)이 마련될 수 있고, 본 발명의 제1실시예에 따른 소형 기지국 안테나 장치(100A)는, 지주폴(P, Pole)에 대하여 무선 유닛(120)의 배면부에 해당하는 리어 하우징(122)이 방향성이 기 설정되도록 고정될 수 있는 지주폴 결합형으로 설치 및 구비될 수 있다.
또한, 도 12를 참조하면, 본 발명의 제2실시예에 따른 소형 기지국 안테나 장치(100B)는, 대형 건물 등의 실내에 해당하는 벽면(W, Wall)에 대하여 무선 유닛(120)의 배면부에 해당하는 리어 하우징(122)이 밀착되도록 고정될 수 있는 벽면 결합형으로 설치 및 구비될 수 있다.
아울러, 도 13을 참조하면, 본 발명의 제3실시예에 따른 소형 기지국 안테나 장치(100C)는, 대형 건물 등의 실내 중 천정(C, Ceiling)에 대하여 무선 유닛(120)의 배면부에 해당하는 리어 하우징(122)이 밀착되도록 고정되거나, 무선 유닛(120)이 천정(C)의 내부로 은닉되게 고정될 수 있는 천정 결합형으로 설치 및 구비될 수 있다.
여기서, 무선 유닛(120)과 각 안테나 모듈(110A,110B)은, 설치되는 장소 및 안테나 모듈(110A,110B)의 방향성 조절을 위한 주변 구성과의 간섭 여부 등 상이한 주변 환경에 따라 도 14 및 도 15에 의하여 참조되는 숏타입 멀티펑션 링크(이하, '숏타입 링크(200S)'로 약칭함) 또는 롱타입 멀티펑션 링크(이하, '롱타입 링크(200L)'로 약칭함) 중 어느 하나로 적절하게 채용된 멀티펑션 링크(200)를 매개로 전기적으로 신호 연결될 수 있다.
도 14 및 도 15의 (a) 및 (b)에 참조된 바와 같이, 숏타입 링크(200S)와 롱타입 링크(200L)는 그 구성 및 기능이 완전 동일한 사양으로 구비되되, 다수의 동축 케이블(240)이 수용되는 케이블 수용 파이프(230)의 길이가 상대적으로 짧은지 아니면 긴지에 따라 구분될 수 있다. 대체로, 케이블 수용 파이프(230)의 길이는 무선 유닛(120)과의 연결 부위와 멀티펑션 링크(200)의 고정부(210) 사이의 이격거리를 의미하는 바, 상기 이격거리가 긴 경우 롱타입 링크(200L)를 구비하는 것이 바람직하고, 상기 이격거리가 짧은 경우 숏타입 링크(200S)를 구비하는 것이 바람직하다.
도 14 내지 도 17을 참조하면, 본 발명의 실시예에 따른 소형 기지국 안테나 장치(100)에 있어서, 멀티펑션 링크(200)는, 상술한 고정부(210)와, 볼 조인트부(220)와, 케이블 수용 파이프(230), 다수의 동축 케이블(240)을 포함할 수 있다.
아울러, 멀티펑션 링크(200)는, 다수의 동축 케이블(240)의 각 단부에 구비된 것으로서, 다수의 동축 케이블(240)의 일단에는 안테나 모듈(110)에의 전기적인 접속을 위한 안테나측 수커넥터(250,250A)가 더 구비되고, 다수의 동축 케이블(240)의 타단에는 무선 유닛(120)에의 전기적인 접속을 위한 무선 유닛측 수커넥터(250,250B)가 더 구비될 수 있다.
안테나측 수커넥터(250A)는, 도 15에 참조된 바와 같이, 볼 조인트부(220)의 안테나측 단부에 메일(male) 형태의 후술하는 가이드 핀(252) 및 단자 핀(253)이 노출되도록 구비되고, 무선 유닛측 수커넥터(250B) 또한, 도 15에 참조된 바와 같이, 케이블 수용 파이프(230)의 단부에 메일(male) 형태의 후술하는 가이드 핀(252) 및 단자 핀(253)이 노출되도록 구비될 수 있다.
이하, 안테나측 수커넥터(250A)와 무선 유닛측 수커넥터(250B)는 그 설치되는 위치만이 상이할 뿐 기본적인 구성은 모두 동일하므로 '수커넥터(250)'라 약칭하여 설명하기로 한다.
아울러, 안테나 모듈(110)과 무선 유닛(120)에는, 수커넥터(250)와의 각 연결을 위한 안테나측 암커넥터(150,150A) 및 무선 유닛측 암커넥터(150,150B)가 더 구비될 수 있다.
안테나측 암커넥터(150A)는, 도 11 내지 도 13 및 도 15에 참조된 바와 같이, 안테나 모듈(110)의 배면에 피메일(female) 형태의 후술하는 가이드 홈(152) 및 단자 홈(153)이 노출되도록 구비되고, 무선 유닛측 암커넥터(150B) 또한 무선 유닛(120)의 측면부에 피메일(female) 형태의 후술하는 가이드 홈(152) 및 단자 홈(153)이 노출되도록 구비될 수 있다.
이하, 안테나측 암커넥터(150A) 및 무선 유닛측 암커넥터(150B)는 그 설치되는 위치만이 상이할 뿐 기본적인 구성은 모두 동일하므로 '암커넥터(150)'라 약칭하여 설명하기로 한다.
다수의 동축 케이블(240)은 2가닥 또는 4가닥이 각각 전기적인 신호를 전송하도록 구비되어 케이블 수용 파이프(230)의 내부에 수용되고, 일단과 타단은 각각 수커넥터(250)와 연결될 수 있다. 이하에서는, 설명의 편의를 위하여 동축 케이블(240)이 4가닥(4개)으로 구비된 것으로 전제하여 설명하기로 한다.
수커넥터(250)는, 4개의 동축 케이블(240)의 일단이 결합되되, 각각 다수의 단자 핀(252)과 연결되도록 매개하는 메일 단자 블록(251)을 더 포함하고, 암커넥터(150)는, 상술한 가이드 홈(151) 및 단자 홈(152)이 가공 형성된 피메일 단자 블록(151)을 더 포함할 수 있다.
메일 단자 블록(251)에는, 4개의 가이드 핀(252)이 90도 간격으로 이격되게 돌출 배치되고, 4개의 단자 핀(253)이 상술한 4개의 가이드 핀(252)과 겹치지 않는 범위에서 90도 간격으로 이격되게 돌출 배치될 수 있다.
또한, 피메일 단자 블록(151)에는, 각각 메일 단자 블록(251)의 4개의 가이드 핀(252)이 삽입되어 수용될 수 있는 4개의 가이드 홈(152)과, 메일 단자 블록(251)의 4개의 단자 핀(253)이 삽입되어 접속될 수 있는 4개의 단자 홈(252)이 상호 대응되는 위치에 배치될 수 있다.
아울러, 메일 단자 블록(251)에는, 4개의 가이드 핀(252) 및 4개의 단자 핀(253)을 감싸면서 암커넥터(150) 측으로 링 타입으로 돌출된 가이드링(254)이 더 구비될 수 있다. 또한, 피메일 단자 블록(151)에는, 메일 단자 블록(251)의 가이드링(254)이 삽입되는 링 수용홈(154)이 더 구비될 수 있다. 여기서, 링 수용홈(154)의 내부에는 외부 이물질의 유입을 방지하기 위한 이물질 유입방지링(155)이 더 구비될 수 있다.
수커넥터(250)에 구비된 4개의 가이드 핀(252)과 가이드링(254) 및 4개의 단자 핀(253)은 각각 암커넥터(150)에 구비된 4개의 가이드 홈(152)과, 링 수용홈(154) 및 4개의 단자 홈(153)에 삽입되면서, 멀티펑션 링크(200)의 안테나 모듈(110) 및 무선 유닛(120)에 대한 전기적인 접속이 이루어질 수 있다.
한편, 멀티펑션 링크(200)는, 도 15 내지 도 17에 참조된 바와 같이, 수커넥터(250)의 암커넥터(150)에 대한 전기적인 접속이 유지되도록 소정의 유지력을 제공하는 리테이너 너트(256)를 더 포함할 수 있다.
리테이너 너트(256)의 내주면에는 암나사산(256a)이 형성되고, 암커넥터(150)의 피메일 단자 블록(151)의 외주면에 형성된 너트 체결단(156)의 외주면에 형성된 수나사산(156a)에 리테이너 너트(256)의 암나사산(256a)이 체결됨으로써, 상술한 소정의 유지력을 형성할 수 있다.
여기서, 메일 단자 블록(151)의 단부에는 리테이너 너트(256)의 체결력을 제한하도록 C-링(257)이 개재될 수 있다. C-링(257)은 케이블 수용 파이프(230)의 단부에 형성된 C링 설치홈(257h)에 일방향으로 끼움 결합될 수 있다.
이와 같이, 본 발명의 실시예에 따른 소형 기지국 안테나 장치(100)는, 멀티펑션 링크(200)를 매개로 무선 유닛(120)과 다수의 안테나 모듈(110)의 전기적인 접속이 이루어지되, 각 안테나 모듈(110)의 틸팅 또는 스티어링 동작이 가능하도록 하고, 현장에서 보다 간단하고 편리하게 설치 작업이 가능한 이점을 제공한다.
나아가, 수커넥터(250)와 암커넥터(150)가 상호 대칭되도록 형성됨으로써, 어느 방향으로든 4개의 단자 핀(253)과 4개의 단자 홈(153)이 연결되기만 하면 되므로, 안테나 모듈(110)의 방향성 설계의 다양성을 더 높일 수 있는 이점을 제공할 수 있다.
도 18a 및 도 18b는 본 발명의 일 실시예에 따른 커넥터가 장착되는 무선 유닛의 일례를 나타낸 분해 사시도이고, 도 19는 본 발명의 일 실시예에 따른 소형 기지국 안테나 장치의 커넥터 구성 중 하나인 무선 유닛에 구비된 무선 유닛측 암커넥터의 변형례를 나타낸 하향 및 상향 분해 사시도이며, 도 20은 도 18a 및 도 18b의 무선 유닛측 암커넥터에 대한 멀티펑션 링크의 수커넥터 연결 모습을 나타낸 부분 절개 사시도이다.
도 18a 및 도 18b와 도 19에 참조된 바와 같이, 본 발명의 일 실시예에 따른 소형 기지국 안테나 장치의 커넥터(150',250)는, 멀티펑션 링크(200)의 내부로 은닉되게 수용된 다수의 동축 케이블(240)의 선단에 결합된 수커넥터(250)와, 무선 유닛(120)의 내부에 구비된 RF 필터(130)와 직접 연결되도록 구비된 변형례의 암커넥터(150')를 포함한다.
여기서, 변형례의 암커넥터(150')는, 무선 유닛(120)의 설치 공간 내부에 구비된 RF 필터(130)에 결합되도록 일측에 형성된 결합 플랜지(157)와, 결합 플랜지(157)로부터 타측으로 수커넥터(250)를 향하여 돌출되게 형성된 피메일 단자 블록(251)을 포함한다.
피메일 단자 블록(151)의 외주면에는 너트 체결단(156)이 형성되고, 너트 체결단(156)의 외주면에는 리테이너 너트(256)의 암나사산(256a)과 체결되기 위한 수나사산(156a)이 형성될 수 있다.
너트 체결단(156)과 피메일 단자 블록(151)의 중심부 사이에는, 수커넥터(250)에 형성된 가이드링(254)이 삽입되는 링 수용홈(154)이 홈 형태로 구비될 수 있다.
여기서, 링 수용홈(154)에 의하여 물리적으로 너트 체결단(156)과 구획된 피메일 단자 블록(151)의 중심부에는, 동축 케이블(240)의 4가닥 단자와 통전되도록 연결된 수커넥터(250)의 4개의 단자 핀(253)이 삽입되는 4개의 단자 홈(252)이 형성될 수 있다.
또한, 수커넥터(250)에는 4개의 단자 핀(253)과는 별도로 변형례의 암커넥터(150')를 향하여 돌출된 2개의 가이드 핀(252)이 구비되고, 변형례의 암커넥터(150')에는 수커넥터(250)의 가이드 핀(252)이 삽입되어 가이드되는 가이드홈(152)이 형성될 수 있다.
가이드홈(152)은, 2개가 피메일 단자 블록(151)의 외측면의 중심을 기준으로 180도 이격되게 배치되되, 4개의 단자 홈(153)과는 겹치지 않는 위치에 형성됨이 바람직하고, 상술한 링 수용홈(154)과 일부가 겹치는 형태로 형성될 수 있다.
도 11 내지 도 17을 참조하여 설명한 바와 같이, 수커넥터(250) 및 암커넥터(150)가 각각 4개의 단자 핀(253) 및 4개의 단자 홈(153)에 대하여 각각 대응되도록 4개의 가이드 핀(252) 및 4개의 가이드홈(152)이 형성된 경우에는, 90도 간격으로 상호 매칭되기만 하면 접속이 이루어지는 장점이 있다. 그러나, 동일한 수커넥터(250) 및 암커넥터(150)를 사용하는 경우 4가닥이 아닌 2가닥의 동축 케이블(240)로 교체하게 되면 정확한 위치에서 2개의 단자 핀(253) 및 2개의 단자 홈(153)이 상호 매칭되도록 가이드하기 어려운 점에서 범용성에 제한을 받는 단점도 존재하는 바, 본 발명의 일 실시예에 따른 소형 기지국 안테나 장치의 커넥터(150',250)에서는, 4가닥의 동축 케이블(240)이 적용될 수 있는 경우이더라도 가이드 핀(252) 및 가이드홈(152)을 각각 180도로 이격되도록 2개로 구비되는 것으로 설계되었다.
아울러, 변형례의 암커넥터(150')는, 도 18a 및 도 18b와 도 20에 참조된 바와 같이, 4개의 단자 핀(253)을 통해 각각 독립된 전기적인 신호를 RF 필터(130)와 연결시키기 위한 4개의 스루핀 단자(165)가 피메일 단자 블록(151)의 외측면으로부터 결합 플랜지(157)의 외측면까지 관통되도록 4개의 단자 홈(252)에 대응되는 위치에 배치될 수 있다.
피메일 단자 블록(151)의 외측면에는 4개의 스루핀 단자(165)가 관통하는 복수 개의 일측 관통홀(151)이 형성되고, 결합 플랜지(157)의 외측면에는 4개의 스루핀 단자(165)가 관통되는 복수 개의 타측 관통홀(156h)이 형성되며, 일측 관통홀(151)과 타측 관통홀(156h)은 상호 연통되게 형성될 수 있다.
여기서, 4개의 스루핀 단자(165) 각각의 외주면에는, 도 19에 참조된 바와 같이, 핀 인슐레이터(166)가 감싸도록 구비되어 전기적 쇼트 현상을 방지할 수 있다.
한편, 변형례의 암커넥터(150')는, 결합 플랜지(157)와 피메일 단자 블록(151)의 경계 사이에 형성된 개스킷 홈(159h)에 삽입 개재되는 필터측 개스킷(159)과, 피메일 단자 블록(151)의 외주면에 개재되되, 무선 유닛(120)의 외측면에 지지됨과 아울러 외부 체결 너트(160)의 조임 시 연동하도록 배치된 제1외부 와셔(161) 및 제2외부 와셔(162)를 더 포함할 수 있다.
도 11 내지 도 17을 참조하여 이미 설명한 무선 유닛측 암커넥터(150)의 경우, 무선 유닛(120)의 외측에 장착되어 멀티펑션 링크(200)의 수커넥터(250)가 연결되도록 하는 물리적인 커넥팅 역할만을 수행하는 것에 한정된다. 실질적으로 무선 유닛(120)의 RF 필터(130)와 안테나 모듈(110) 간의 전기적 연결이 완성되기 위해서는, 무선 유닛(120)의 내부에 무선 유닛측 암커넥터(150)와 RF 필터(130)를 전기적으로 연결시키기 위한 내부 커넥터(미도시)가 더 필요하기 때문이다.
이에 반하여, 변형례의 암커넥터(150')는, 결합 플랜지(157) 측이 직접 RF 필터(130)에 구비된 연결 부위(급전 커넥터)(131)에 다수의 스크류(158)를 이용하여 안정적으로 고정됨과 아울러, 상술한 동축 케이블(140)의 개수에 대응되는 스루핀 단자(165)가 결합 플랜지(157)의 내측면 및 피메일 단자 블록(151)의 외측면을 관통하도록 배치되어, 멀티펑션 링크(200)의 수커넥터(250)가 접속되는 순간 직접 RF 필터(130)와 안테나 모듈(110) 간의 전기적인 연결을 완성할 수 있다.
가령, 도 20에 참조된 바와 같이, 변형례의 암커넥터(150')는, 결합 플랜지(157)의 외측면(일측면)이 RF 필터(130) 측에 마련된 연결 부위(급전 커넥터)(131)에 직접 맞닿도록 다수의 스크류(158)에 의해 안정적으로 연결된 후, 무선 유닛(120)에 형성된 설치홀(128)을 통해 피메일 단자 블록(151)을 외부로 노출시킨 상태에서, 제1외부 와셔(161) 및 제2외부 와셔(162)를 개재시킨 후 외부 체결 너트(160)를 이용해 무선 유닛(120)에 고정시키고, 외부로 노출된 피메일 단자 블록(151)에 멀티 펑션 링크(200)의 수커넥터(250)의 각 단자 핀(253)이 각각 단자 홈(153)을 통해 노출된 스루핀 단자(165)와 전기적인 접속이 이루어짐으로써 직접적인 RF 필터(130)에 대한 급전 피딩이 가능하게 되는 것이다.
이때, 스루핀 단자(165)는, RF 필터(130) 측에 마련된 급전 커넥터(131)에 각각 통전되도록 형성된 스루핀단자 접속홀(131h)을 통해 미리 삽입 체결된 상태에서, 멀티펑션 링크(200)의 수커넥터(250)와 접속되는 것이다.
이와 같은 변형례의 암커넥터(150')에 따르면, 무선 유닛(120)의 내부에서 직접적으로 RF 필터(130)와 전기적인 접속이 이루어지도록 설계 변경됨에 따라, 종래 이의 연결을 위한 별도의 케이블 구조물의 추가적인 설치나 임피던스 부정합 방지를 위해 RF 필터(130)의 급전 커넥터를 구축할 때 필수적으로 구비되었던 별도의 에어 라인과 같은 구조물의 추가적인 설계가 불필요한 이점을 가질 수 있다.
다만, 변형례의 암커넥터(150')의 경우, 무선 유닛(120)의 내부에서 RF 필터(130)와 직접 전기적인 연결이 이루어지되 안정적인 연결이 도모 되어야 하는 점에서, 기존 RF 필터(130)의 연결 부분(급전 커넥터)(131)의 형상 설계도 이에 맞도록 변형 설계될 수 있다.
보다 상세하게는, 도 11 내지 도 17을 참조하여 설명한 무선 유닛측 암커넥터(150)가 적용된 무선 유닛(120) 내부의 RF 필터(130)는, 종래 "메인 보드 - RF 필터 - 안테나 방사 소자" 순으로 적층된 제품인 MMR(Massive MIMO Radio)의 경우 필터 바디(미도시)의 후방부 및 전방부에 각각 급전 커넥터가 구비되는 구조에 그대로 적용되는 경우에도 별도의 RF 필터(130)의 형상 변경 없이 상술한 케이블 구조물 등(내부 커넥터, 미도시)을 이용하여 용이하게 전기적인 연결이 가능한 이점을 가진다.
그러나, 변형례의 암커넥터(150)는, 상술한 바와 같이 직접적으로 RF 필터(130)에 스루핀 단자(165)가 접속되어야 하는 점에서, 기존 RF 필터(130)의 전방부의 급전 커넥터(131)의 위치가 변경 설계되어야 하기 때문이다. 다만, 본 발명의 일 실시예에서는, 후술하는 바와 같이, 무선 유닛(120)의 내부 부품의 위치 설계가 변경됨에 따라 RF 필터(130)의 전방부의 급전 커넥터(131) 뿐만 아니라 후방부의 급전 커넥터(도 19a의 도면부호 '132' 참조)의 위치 변경도 포함하고 있다.
이를 도 18a 및 도 18b를 참조하여 보다 상세하게 설명하면, 무선 유닛(120)은, 리어 하우징(122)과 프론트 하우징(123) 사이에 후술하는 각종 내부 부품이 설치되는 소정 공간을 형성하되, 프론트 하우징(123)의 전면에는 다수의 히트싱크핀(125)이 일체로 형성될 수 있다.
무선 유닛(120)의 설치 공간에는, 프론트 하우징(123)의 전면에 방열을 원활하게 하기 위한 다수의 히트싱크핀(125)이 형성되는 바, 전방 보드(126A)가 프론트 하우징(123)의 배면에 밀착되어 전방 보드(126A)의 전면에 실장된 다수의 발열소자(예를 들면, FPGA 소자 또는 PA 소자 등)가 직접 표면 열접촉되게 배치될 수 있다.
여기서, 전방 보드(126A)는, 종래의 디지털 보드 기능을 갖는 본래의 디지탈 보드 및 AMP 보드 등이 일체로 형성된 일체형 원보드로 구비될 수 있다.
한편, 전방 보드(126A)와 RF 필터(130) 사이에는, 차폐 보드(127)가 구비되어 양자 사이의 열적 흐름 또는 전자기파의 흐름을 차단할 수 있다.
RF 필터(130)의 하부에는, 열 방출이 미미한 전장 소자가 실장된 후방 보드(126B)가 배치될 수 있다. 여기서, 후방 보드(126B)는 서지 기판부일 수 있다.
종래 MMR로 구비된 안테나 장치의 경우, 최전방에 배치된 안테나 모듈(방사소자 모듈) 때문에 방열을 최우선으로 하여 배치 설계하는 메인 보드를 프론트 하우징(123) 측으로 밀착 설치하는 것이 불가능하였으나, 멀티펑션 링크(200)를 통해 안테나 모듈(110)을 분리하고, 상술한 바와 같은 구성으로 내부 부품이 배열이 가능함에 따라, 본 실시예에서의 무선 유닛(120)의 경우, 멀티펑션 링크(200)를 매개로 하는 RF 필터(130)와 안테나 모듈(110) 간의 전기적인 접속 구조도 변경 설계되는 것이다.
상기와 같은 변형례의 암커넥터(150)가 무선 유닛(120)에 채용될 경우, 별도의 내부 커넥터를 구비할 필요가 없는 바, 상대적으로 무선 유닛(120)의 크기 및 설치 공간을 축소할 수 있음은 물론 비용 절감의 이점도 함께 달성할 수 있다. 또한, 스루핀 단자(165)를 통하여 직접 RF 필터(130)에 대한 전기적인 접속이 이루어지므로, 기존 케이블 형태의 내부 커넥터나 에어 라인 구조의 추가에 의해 발생하는 삽입 손실의 크기를 대폭 저감시킬 수 있으므로, 안테나 장치의 성능을 향상시킬 수 있음은 당연하다.
도 21은 멀티펑션 링크의 변형례가 적용된 소형 기지국 안테나 장치를 나타낸 사시도이고, 도 22a 및 도 22b는 도 21의 전방측 및 후방측 분해 사시도이며, 도 23은 도 21의 변형례에 따른 멀티펑션 링크를 분해한 분해 사시도이다.
이하, 도 21 내지 도 23에 참조된 변형례에 따른 멀티펑션 링크(200')에서는, 동축 케이블(240-1)이 2가닥(2개)인 것으로 도시하여 설명하고 있으나, 반드시 이에 한정되어야 하는 것은 아니고, 동축 케이블(240-1)이 4가닥(4개)인 것을 배제하는 것은 아님에 주의하여야 할 것이다.
본 발명의 실시예에 따른 소형 기지국 안테나 장치(100)는, 도 21 내지 도 23에 참조된 바와 같이, 변형례에 따른 멀티펑션 링크(200')를 포함할 수 있다.
변형례에 따른 멀티펑션 링크(200')는, 도 5 내지 도 7 및 도 11 내지 도 17을 참조하여 기 설명한 멀티펑션 링크(200)(이하, '일반의 멀티펑션 링크'라 칭함)와는 달리, 고정부(210)가 2개로 분리되고(210A,210B), 2개의 고정부(210A,210B) 사이에는 센터 바디(205)가 배치되며, 센터 바디(205)에 대하여 2개의 고정부(210A,210B)가 직교되게 결합될 수 있다.
이하에서는 설명의 편의를 위하여, 2개의 고정부(210A,210B) 중 안테나 모듈(110) 측에 연결되는 고정부를 제1고정부(210A)라 칭하고, 2개의 고정부(210A,210B) 중 케이블 수용 파이프(230) 측에 연결되는 고정부를 제2고정부(210B)라 칭하기로 한다.
즉, 변형례에 따른 멀티펑션 링크(200')는, 상술한 일반의 멀티펑션 링크(200)가 안테나 모듈(110) 측에 연결되는 고정부(210) 및 볼 조인트부(220)만을 구비하여 1개소에서만 안테나 모듈(110)의 틸팅 회동 및 스티어링 회동의 방향성 조절이 가능하도록 되어 있는 것과는 달리, 안테나 모듈(110) 측을 연결하는 제1고정부(210A) 및 볼 조인트부(220A) 뿐만 아니라, 케이블 수용 파이프(230) 측에도 추가적인 연결을 매개하는 제2고정부(210B) 및 볼 조인트부(220B)를 구비하는 점에서 차이가 있다.
보다 상세하게는, 변형례에 따른 멀티펑션 링크(200')는, 도 21 내지 도 23에 참조된 바와 같이, 센터 바디(205)와, 센터 바디(205)의 양단부 중 안테나 모듈(110)과의 사이에 연결된 제1고정부(210A)와, 센터 바디(205)의 양단부 중 케이블 수용 파이프(230)와의 사이에 연결된 제2고정부(210B)와, 양단부 중 어느 하나의 단부가 제1고정부(210A)의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부가 안테나 모듈(110)과 연결되어 안테나 모듈(110)을 틸팅 또는 스티어링 동작으로 방향성을 조절하는 제1볼 조인트부(220A) 및 양단부 중 어느 하나의 단부는 제2고정부(210B)의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 무선 유닛(120)과의 연결을 매개하는 케이블 수용 파이프(230)와 연결되어 안테나 모듈(110)을 추가로 방향성 조절이 가능하도록 하는 제2볼 조인트부(220B)를 포함할 수 있다.
도 24은 도 21의 변형례에 따른 멀티펑션 링크의 암수 결합 부위를 나타낸 단면도이고, 도 25는 도 21의 변형례에 따른 멀티펑션 링크의 단면도이며, 도 26은 도 21의 변형례에 따른 멀티펑션 링크의 수커넥터를 나타낸 단면도이고, 도 27은 도 21의 변형례에 따른 멀티펑션 링크의 분해 사시도이며, 도 28은 도 27의 절개 사시도이고, 도 29는 도 27의 단면도이며, 도 30은 도 25 내지 도 29에 참조된 과회전방지 걸림부를 나타낸 절개 사시도이고, 도 31은 도 30의 과회전방지 걸림부의 작동 모습을 나타낸 내부 정면도이며, 도 32는 도 21의 변형례에 따른 멀티펑션 링크의 구성 중 케이블 수용 파이프를 나타낸 단면도, 절개 사시도 및 그 부분 확대도이다.
변형례에 따른 멀티펑션 링크(200')는 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 단부에 구비된 수커넥터(250)는, 도 24에 참조된 바와 같이, 안테나 모듈(110) 또는 무선 유닛(120)에 구비된 암커넥터(250)에 암수 결합되는 동작으로 결합될 수 있다.
보다 상세하게는, 수커넥터(250)의 가이드링(254)이 암커넥터(250)의 피메일 단자 블록(151)에 형성된 링 수용홈(154)의 내부에 수용되면서, 링 수용홈(154)의 내측에 개재된 이물질 유입방지링(155)과 접촉되어 방수가 수행되고, 이와 동시에 수커넥터(250)의 가이드 핀(252) 및 단자 핀(253)이 암커넥터(250)의 가이드홈(152) 및 단자 홈(153)에 삽입되면서 전기적으로 연결될 수 있다.
여기서, 암커넥터(150)와 수커넥터(250) 사이에는, 도 24에 참조된 바와 같이, 그라운드 와셔(258)가 더 구비될 수 있다.
그라운드 와셔(258)는, 수커넥터(250)의 메일 단자 블록(251)의 선단면에 구비된 와셔 설치홈(도 28의 도면부호 '258h' 참고)에 고정되어, 수커넥터(250)의 암커넥터(150)에 대한 암수 결합 시 수커넥터(250)의 메일 단자 블록(251) 및 암커넥터(150)의 피메일 단자 블록(151) 사이의 접촉을 유도하여 접지(GND) 기능을 수행할 수 있다.
아울러, 그라운드 와셔(258)는, 상술한 접지(GND) 기능을 수행함과 동시에 EMI(Electromagnetic Interference) 차폐 기능도 수행하는 구성 요소이다. 일반적으로, 동축 케이블(240)의 경우 대응되는 단자 핀(253) 주변을 감싸는 와셔 형태로 마련될 수 있으나, 본 발명에 따른 멀티펑션 링크(200)에서의 수커넥터(250)의 경우 각 단자 핀(253)의 사이, 바람직하게는 중심부에 단일의 금속 와셔 형태로 구비될 수 있다. 이러한 그라운드 와셔(254)는, 본 발명에 따른 커넥터의 각 단자 핀(253) 사이에서 신호 혼선을 방지할 수 있다.
이와 같은 수커넥터(250)는, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 선단부 측에 메일 단자 블록(251)의 일부가 삽입 고정될 수 있다.
여기서, 수커넥터(250)는 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)에 대하여 회전되지 않도록 적어도 하나의 무두 볼트(259)를 매개로 고정될 수 있다.
보다 상세하게는, 도 25 내지 도 27에 참조된 바와 같이, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 선단부에는 볼트 관통홀(259h-1)이 180도 간격으로 이격되게 2개소 형성되고, 수커넥터(250)의 메일 단자 블록(251)의 외주면에는 무두 볼트(259)가 체결되는 볼트 체결홀(259h-2)가 대응되게 형성될 수 있다.
무두 볼트(259)의 외측면에는, 사각 단면을 가진 체결 공구(미도시)의 선단이 삽입되기 위한 공구홈(259T)이 형성되고, 공구홈(259T)을 통한 체결 공구를 이용하여 무드 볼트(259)를 외부로 노출되지 않도록 간편하게 수커넥터(250)를 고정시킬 수 있다.
이와 같이, 무두 볼트(259)에 의하여 수커넥터(250)가 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 선단부에 삽입 고정됨과 아울러, 회전 방향으로 걸림됨으로써, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)에 대한 수커넥터(250)의 임의 회전을 방지하여, 암커넥터(150)의 단자 홈(153) 또는 가이드홈(152)에 대한 단자 핀(253) 또는 가이드 핀(252)의 결합 방향이 변경되는 것을 방지할 수 있다.
한편, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 외주면에는 미리 리테이너 너트(256)가 끼워진 채로 가조립되어 있다가, 상술한 바와 같이, 암커넥터(150)에 대한 수커넥터(250)의 전기적인 접속 결합이 완료되면, 리테이너 너트(256)를 암커넥터(150)의 피메일 단자 블록(151)의 외주면에 형성된 수나사산(도면부호 미표기)에 체결시켜 견고하게 고정시킬 수 있다.
이때, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 외주면에는 C링 체결홈(257h)이 형성되고, C링 체결홈(257h)에 C-링(257)이 체결될 경우, 리테이너 너트(256)의 체결 시 회전력이 제한되어 리테이너 너트(256)의 과조립에 의한 부품 손상을 방지할 수 있다.
한편, 변형례에 따른 멀티펑션 링크(200')는, 도 28 내지 도 31에 참조된 바와 같이, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 제1고정부(210A) 또는 제2고정부(210B)에 대한 과회전을 방지하는 과회전방지 걸림부(226A)가 더 구비될 수 있다.
과회전방지 걸림부(226A)는, 제1고정부(210A)와 제1볼 조인트부(220A) 사이 또는 제2고정부(210B)와 제2볼 조인트부(220B) 사이에 해당하는 내부 공간에 고정되되, 내부 공간에서 상호 마주하는 방향으로 돌출된 걸림돌기(226A-1)를 구비한다. 즉, 과회전방지 걸림부(226A)에는, 한 쌍의 걸림돌기(226A-1)가 대략 180도 방향으로 이격되게 구비되고, 내부 공간을 향하여 소정길이 연장될 수 있다.
한편, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 내부에는, 적어도 회전 반경 내에서 한 쌍의 걸림돌기(226A-1)와 걸림되도록 센터 바디(205) 측을 향하여 연장된 한 쌍의 걸림판(228)이 형성될 수 있다.
제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 한 쌍의 걸림판(228)은, 도 31에 참조된 바와 같이, 틸팅 또는 스티어링 회동 동작을 하지 않은 경우 한 쌍의 걸림돌기(226A-1)와의 회전방향 이격 각도는 각각 90도가 되도록 위치된 바(도 31의 (a) 참조), 일방향 또는 타방향으로 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)가 틸팅 또는 스티어링 회동 동작을 위하여 회전될 때, 각 방향으로의 회전 각도를 최대 90도로 제한할 수 있게 된다.
이는, 제1볼 조인트부(220A) 또는 제2볼 조인트부(220B)의 과도한 회전으로 인한 내부 공간에서의 다수의 동축 케이블(240)의 꼬임 현상을 방지하기 위함이다.
제1볼 조인트부(220A)는 수커넥터(250)를 매개로 안테나 모듈(110)의 암커넥터(150)와 결합되고, 제2볼 조인트부(220B)는 수커넥터(250)를 매개로 상하 수직되게 배치된 케이블 수용 파이프(240)의 상단부와 결합되는 바, 이론적으로 과회전방지 걸림부(260A)가 구비되지 않은 경우 안테나 모듈(110)의 좌우 스티어링 회동 각도는 360도로써 제한이 없다.
그러나, 과회전방지 걸림부(260A)에 의해 제2볼 조인트부(220B)의 케이블 수용 파이프(240)의 상단부에 대한 회동 각도가 90도로 제한되는 바, 후술하는 제2볼 조인트부(220B)의 물리적인 일측 및 타측 방향의 최대 회동 제한 각도(a)에 더하여 90도 까지만 회전되도록 제한될 수 있다. 예를 들면, 후술하는 최대 회동 제한 각도(a)가 40도인 경우 안테나 모듈(110)의 최대 스티어링 회동 각도는 일측 또는 타측 방향으로 130도씩으로 제한되게 된다.
한편, 변형례에 따른 멀티펑션 링크(200')의 구성 중 케이블 수용 파이프(230)는, 도 32에 참조된 바와 같이, 양단부에 각각 상술한 수커넥터(250) 및 암커넥터(도 32에서는 도면부호 '250C'로 구분하여 지시함)가 구비되고, 수커넥터(250)와 암커넥터(250C) 사이를 연결하는 다수의 동축 케이블(240)을 포함하는 개념으로 정의될 수 있다.
여기서, 다수의 동축 케이블(240)은, 센터 바디(205), 제1고정부(210A), 제2고정부(210B), 제1볼 조인트부(220A) 및 제2볼 조인트부(220B)의 내부에 설치된 동축 케이블(240)가 안테나 모듈(110)의 틸팅 또는 스티어링 회동 동작에 연동하여 움직이도록 플렉서블한 재질로 구비되는 것과는 달리, 케이블 수용 파이프(230) 내에서는 움직일 필요가 없으므로 견고한 재질로 구비되거나, 케이블 수용 파이프(230) 내에서 움직이지 않도록 견고하게 고정될 수 있다.
아울러, 케이블 수용 파이프(230)의 양단부에는, 설치 방향의 구별을 위하여, 제2볼 조인트부(220B)의 수커넥터(250)와 결합되는 부위는 암커넥터(250C) 형태로 구비되고, 무선 유닛(120)의 암커넥터(150)와 결합되는 부위는 수커넥터(250) 형태로 구비될 수 있다.
도 33은 도 21의 변형례에 따른 멀티펑션 링크의 작용 효과를 설명하기 위한 투영 평면도이다.
이와 같이 구성된 변형례에 따른 멀티펑션 링크(200')는, 도 33에 참조된 바와 같이, 일반의 멀티펑션 링크(200)에 비하여 안테나 모듈(110)의 틸팅 또는 스티어링 동작량을 증대시켜 추가로 안테나 모듈(110)의 방향성 조절이 가능하도록 한다.
보다 상세하게는, 일반적으로 케이블 수용 파이프(230) 내에 수용되는 동축 케이블(240)은, 안테나 모듈(110)이 2T2R의 전송 채널을 구축하는 경우에는 2가닥으로 구비될 수 있고, 안테나 모듈(110)이 4T4R의 전송 채널을 구축하는 경우에는 4가닥으로 구비될 수 있다.
여기서, 일반의 멀티펑션 링크(200)에 따르면, 일단 케이블 수용 파이프(230)를 수커넥터(250)를 이용하여 안테나 모듈(110)의 암커넥터(150)에 고정시킨 후에는, 화살표 방향(일방향 및 타방향 모두 포함됨)으로 안테나 모듈(110)을 스티어링 동작시킬 경우, 볼 조인트부(220)의 좌우 수평 방향의 최대 회동 각도(a)의 범위에서만 스티어링 동작 회동이 가능한 한계성을 가진다.
특히, 2가닥의 동축 케이블(240)이 케이블 수용 파이프(230) 내에 수용된 경우에는, 도면에 도시되지 않았으나, 2가닥의 동축 케이블(240)의 무선 유닛(120)에 대한 전기적인 연결을 위한 암커넥터(150) 및 수커넥터(250) 내의 단자 홈(153) 및 단자 핀(253)은 각각 지면을 기준으로 3시 방향 및 9시 방향에 형성되는 바, 각각 일방향 또는 타방향으로 90도 이상의 스티어링 동작을 통한 안테나 모듈(110)의 방향성 조정이 불가능하다. 이는 2가닥의 동축 케이블(240)이 무선 유닛(120)의 암커넥터(150)에 대한 접속 방향이 3시 방향 및 9시 방향으로 기 설정되어 있는 것에 기인한 것이다.
이와 같은 이유로, 2가닥의 동축 케이블(240)이 구비된 경우에는 무선 유닛(120)의 전면에 대하여 정확하게 좌우 방향의 90도 방향으로의 안테나 모듈(110)의 방향성 설정은 상술한 좌우 수평 방향의 최대 회동 각도(a)가 좌측 방향 또는 우측 방향으로 90도가 되지 않는 한도에서는 불가능하고(이는 암커넥터(150)와 수커넥터(250)를 분리한 후 단자 핀(253)의 단자 홈(153)에 대한 접속 위치를 변경하여 재조립하는 경우에도 마찬가지로 불가능함), 이를 가능하게 하기 위해서는 반드시 무선 유닛(120)에 결합된 암커넥터(150)의 단자 홈(153)의 설치 위치가 변경되도록 재조립해야 하며, 이 경우에도 어느 한쪽 방향의 90도 방향성 설정은 여전히 불가능한 한계성을 가진다.
다만, 이와 같은 한계성은, 4가닥의 동축 케이블(240)이 케이블 수용 파이프(230) 내에 수용된 경우에는 줄어드는 데, 이는 도 33에 참조된 바와 같이, 4가닥의 동축 케이블(240) 각각의 무선 유닛(120)에 대한 전기적인 연결을 위한 암커넥터(150) 및 수커넥터(250) 내의 단자 홈(153) 및 단자 핀(253)은 각 4개소에 원주 방향으로 90도 방향으로 이격되게 형성되기 때문이다. 이 경우에는, 무선 유닛(120)으로부터 암커넥터(150)의 분리 및 재조립 과정이 없이도, 간단하게 암커넥터(150)와 수커넥터(250) 사이의 접속을 해제시킨 후 설계자가 원하는 방향으로의 방향성 설계가 가능한 단자 핀(253) 및 단자 홈(153)에 맞게 재접속하는 과정으로 무선 유닛(120)의 전면에 대한 좌우 90도 방향의 방향성 조정이 가능하게 된다.
이에 반하여, 변형례에 따른 멀티펑션 링크(200')는, 센터 바디(205)를 기준으로 양단부에 직교되도록 제1고정부(210A) 및 제1볼 조인트부(220A)와 제2고정부(210B) 및 제2볼 조인트부(220B)를 구비함으로써, 2가닥의 동축 케이블(240)이 케이블 수용 파이프(230) 내에 수용된 실시예에서도 안테나 모듈(110)을 스티어링 동작으로 일측 또는 타측 방향으로 회동시켜 방향성을 조정할 때 2개의 고정부(210A,210B) 및 2개의 볼 조인트부(220A,220B) 중 수직축을 기준으로 360도 스티어링 동작 가능하게 구비된 제2고정부(210B) 및 제2볼 조인트부(220B)에 의한 상기 최대 제한 스티어링 각도(a) 제한이 사라지므로,, 무선 유닛(120)로부터의 암커넥터(150)의 분리 및 재결합 과정 없이도, 360도 전방향에 대한 방향성 조절이 가능하게 된다. 물론, 상술한 바와 같이, 제2볼 조인트부(220B)가 제2고정부(210B)에 대한 회전이 과회전방지 걸림부(260A)에 의하여 90도로 제한되는 경우에도, 안테나 모듈(110)의 일측 또는 타측 방향의 회전 제한은 상술한 최대 제한 스티어링 각도(a)에 더하여 각각 90도씩 확장되는 점에서 마찬가지의 결과를 도출할 수 있다.
즉, 변형례에 따른 멀티펑션 링크(200')는, 제2고정부(210B) 및 제2볼 조인트부(220B)의 추가로 인하여 무선 유닛(120)을 기준으로 안테나 모듈(110)의 스티어링 동작의 제한 범위가 제거되는 바, 방향성 조정을 새롭게 설정하는 경우에도 무선 유닛(120)으로부터의 암커넥터(150)의 분리 및 재결합 과정을 요하지 않고, 현장에서 손쉽게 안테나 모듈(110)의 방향성 조정이 가능하다.
참고로, 안테나 모듈(110)의 틸팅 동작 시에도 마찬가지로 도 24의 도면부호 'a'로 참조된 바와 같이 상하 방향의 최대 틸팅 제한 각도를 가질 수 있는 바, 변형례에 따른 멀티펑션 링크(200')를 매개로 결합된 안테나 모듈(110)의 최대 틸팅 제한 각도(a)는, 센터 바디(205)를 기준으로 양단부에 2개의 고정부(210A,210B) 및 2개의 볼 조인트부(220A,220B)가 구비됨으로써 그 두 배인 2a 만큼 증가하는 이점을 창출할 수 있다.
이상, 본 발명의 일실시예에 따른 소형 기지국 안테나 장치(100) 및 이의 커넥터(150')를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 상술한 일실시예에 의하여 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형 및 균등한 범위에서의 실시가 가능함은 당연하다고 할 것이다. 그러므로, 본 발명의 진정한 권리범위는 후술하는 청구범위에 의하여 정해진다고 할 것이다.
본 발명은 공공장소, 인구밀집 지역 및 대형 쇼핑몰이나 공한 건물 등과 같은 장소에 대한 스몰셀 기지국의 구축이 용이하고, 무선 유닛과 안테나 모듈 간 전기적으로 연결하는 각종 케이블을 외부로 노출하지 않고서도 방향성 조절이 가능하도록 구비되어 미관(외관미)이 저하되는 것을 방지하며, 하나의 안테나 모듈의 일부를 구획하여 상이한 주파수 대역을 커버링하거나 또는 다수의 안테나 모듈을 각각 상이한 주파수 대역을 커버링하도록 구비함으로써, 다양한 장소에서의 듀얼 밴드화가 가능한 소형 기지국 안테나 장치 및 이의 커넥터를 제공한다.

Claims (28)

  1. 무선 유닛(RU; Radio Unit);
    상기 무선 유닛에 대하여 틸팅 및 스티어링 동작 가능하게 설치된 적어도 하나의 안테나 모듈; 및
    상기 무선 유닛에 대한 상기 각 안테나 모듈의 설치를 매개하는 멀티펑션 링크(Multi Function Link); 를 포함하고,
    상기 멀티펑션 링크는,
    센터 바디;
    상기 센터 바디의 양단부 중 상기 안테나 모듈과의 사이에 연결된 제1고정부; 및
    상기 센터 바디의 양단부 중 상기 무선 유닛과의 사이에 연결된 제2고정부; 를 포함하며,
    상기 제1고정부 및 상기 제2고정부는, 볼 조인트부를 매개로 결합되어 상기 안테나 모듈을 상기 무선 유닛에 대하여 틸팅 회동 및 스티어링 회동 동작 가능하게 설치되는, 소형 기지국 안테나 장치.
  2. 청구항 1에 있어서,
    상기 볼 조인트부는,
    양단부 중 어느 하나의 단부는 상기 제1고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 안테나 모듈과 연결되어 상기 안테나 모듈을 틸팅 또는 스티어링 동작으로 방향성을 조절하는 제1볼 조인트부; 및
    양단부 중 어느 하나의 단부는 상기 제2고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 무선 유닛과의 연결을 매개하는 케이블 수용 파이프와 연결되어 상기 안테나 모듈을 추가로 방향성 조절이 가능하도록 하는 제2볼 조인트부; 를 포함하는, 소형 기지국 안테나 장치.
  3. 청구항 1에 있어서,
    상기 멀티펑션 링크는,
    상기 안테나 모듈 및 상기 무선 유닛에 커넥터를 매개로 전기적으로 접속되는, 소형 기지국 안테나 장치.
  4. 청구항 3에 있어서,
    상기 커넥터는,
    상기 멀티펑션 링크의 내부로 은닉되게 수용된 다수의 동축 케이블의 선단에 결합된 수커넥터; 및
    상기 안테나 모듈 및 상기 무선 유닛에 구비된 암커넥터; 를 포함하는, 소형 기지국 안테나 장치.
  5. 청구항 4에 있어서,
    상기 암커넥터가 상기 무선 유닛에 구비된 경우, 상기 무선 유닛의 내부에 구비된 RF 필터와 직접 연결되는 내측면을 가지는 결합 플랜지, 및 상기 수커넥터가 접속되는 외측면을 가지는 피메일 단자 블록, 을 포함하는, 소형 기지국 안테나 장치.
  6. 청구항 5에 있어서,
    상기 암커넥터는, 상기 동축 케이블에 대응되는 개수의 스루핀 단자가 상기 결합 플랜지의 내측면 및 상기 피메일 단자 블록의 외측면을 연결하도록 관통되게 구비된, 소형 기지국 안테나 장치.
  7. 청구항 6에 있어서,
    상기 다수의 동축 케이블은, 상기 무선 유닛과 상기 안테나 모듈 간 2T2R의 전송 선로 구축을 위한 2가닥 및 상기 무선 유닛과 상기 안테나 모듈 간 4T4R의 전송 선로 구축을 위한 4가닥 중 어느 하나의 개수로 구비되고,
    상기 수커넥터에는, 상기 다수의 동축 케이블의 개수와 대응되는 단자 핀이 형성되며,
    상기 암커넥터에는, 상기 단자 핀이 각각 삽입되어 접속되는 단자 홈이 대응되게 형성된, 소형 기지국 안테나 장치.
  8. 청구항 6에 있어서,
    상기 암커넥터는, 상기 결합 플랜지가 상기 RF 필터에 접합 상태에서 다수의 스크류를 이용하여 상기 RF 필터에 직접 체결되는, 소형 기지국 안테나 장치.
  9. 청구항 6에 있어서,
    상기 암커넥터의 각 스루핀 단자의 선단은 상기 RF 필터에 구비된 급전 커넥터에 직접 접속되는, 소형 기지국 안테나 장치.
  10. 청구항 7에 있어서,
    상기 수커넥터는, 상기 동축 케이블이 4가닥으로 구비된 경우, 상기 동축 케이블에 대응되는 단자 핀의 중심부에 단수개로 구비된 그라운드 와셔; 를 더 포함하는, 소형 기지국 안테나 장치의 커넥터.
  11. 청구항 4에 있어서,
    상기 케이블 수용 파이프는, 다수의 동축 케이블을 수용하여 외부로부터 은닉시키되, 일단은 상기 무선 유닛과 연결되고, 타단은 상기 제2고정부의 제2볼 조인트부에 연결되며,
    상기 수커넥터는, 상기 동축 케이블의 일단 및 타단에 연결되는, 소형 기지국 안테나 장치.
  12. 청구항 11에 있어서,
    상기 수커넥터는,
    상기 동축 케이블의 일단 및 타단에 연결된 메일 단자 블록;
    상기 메일 단자 블록으로부터 상기 암커넥터 측으로 돌출된 다수의 가이드 핀;
    상기 동축 케이블로부터 연장되되 상기 메일 단자 블록으로부터 상기 암커넥터 측으로 돌출 연장된 다수의 단자 핀; 및
    상기 다수의 단자 핀의 상기 암커넥터에 대한 전기적인 접속력을 유지하는 리테이너 너트; 를 포함하는, 소형 기지국 안테나 장치.
  13. 청구항 12에 있어서,
    상기 리테이너 너트는,
    상기 암커넥터에 구비된 너트 체결단에 체결되는 동작으로 상기 접속력을 유지하는, 소형 기지국 안테나 장치.
  14. 청구항 1에 있어서,
    상기 안테나 모듈은,
    하나의 안테나 보드에 듀얼 주파수 밴드를 커버링하는 다수의 안테나 서브 어레이가 배열되고,
    상기 멀티펑션 링크에 의하여 설정된 상기 안테나 모듈의 동일 방향 내에서 상이한 주파수 밴드로 안테나 빔 포밍을 구현하는, 소형 기지국 안테나 장치.
  15. 청구항 1에 있어서,
    상기 안테나 모듈은,
    각각 상이한 주파수 밴드를 커버링하도록 다수의 안테나 서브 어레이가 배열되고,
    상기 멀티펑션 링크에 의하여 각각 상이한 방향으로 방향성이 설정되는, 소형 기지국 안테나 장치.
  16. 청구항 1에 있어서,
    상기 안테나 모듈은, 소형셀 기지국용으로 구비된, 소형 기지국 안테나 장치.
  17. 청구항 1에 있어서,
    상기 무선 유닛은, 실내에 구비된 지주폴, 벽면 및 천정 중 어느 하나에 설치되는, 소형 기지국 안테나 장치.
  18. 청구항 2에 있어서,
    상기 제1고정부 및 상기 제2고정부는, 상기 센터 바디에 상호 직교되게 연결되는, 소형 기지국 안테나 장치.
  19. 청구항 2에 있어서,
    상기 멀티펑션 링크는,
    상기 제1고정부 또는 상기 제2고정부에 대한 상기 제1볼 조인트부 또는 상기 제2볼 조인트부의 회전 방향의 각도를 제한하는 과회전방지 걸림부; 를 더 포함하는, 소형 기지국 안테나 장치.
  20. 청구항 2에 있어서,
    상기 과회전방지 걸림부는, 상기 제1고정부와 상기 제1볼 조인트부 사이 또는 상기 제2고정부와 상기 제2볼 조인트부 사이에 해당하는 내부 공간에 고정되되, 상기 내부 공간에서 상호 마주하는 방향으로 돌출된 한 쌍의 걸림돌기가 상기 제1볼 조인트부 또는 상기 제2볼 조인트부의 내부에 상기 센터 바디 측을 향하여 연장된 한 쌍의 걸림판에 걸림 가능하게 구비된, 소형 기지국 안테나 장치.
  21. 청구항 20에 있어서,
    상기 한 쌍의 걸림판은, 상기 안테나 모듈의 틸팅 회동 또는 스티어링 회동 동작을 하지 않은 경우 상기 한 쌍의 걸림돌기와의 회전방향 이격 각도는 각각 90도가 되도록 위치된, 소형 기지국 안테나 장치.
  22. 무선 유닛(RU; Radio Unit)과, 상기 무선 유닛에 대하여 틸팅 및 스티어링 동작 가능하게 설치된 적어도 하나의 안테나 모듈 및 상기 무선 유닛에 대한 상기 각 안테나 모듈의 설치를 매개하는 멀티펑션 링크(Multi Function Link)를 포함하는 소형 기지국 안테나 장치에 있어서,
    상기 멀티펑션 링크의 내부로 은닉되게 수용된 다수의 동축 케이블의 선단에 결합된 수커넥터; 및
    상기 무선 유닛의 내부에 구비된 RF 필터와 직접 연결되는 내측면을 가지는 결합 플랜지, 및 상기 수커넥터가 접속되는 외측면을 가지는 피메일 단자 블록, 을 포함하는 암커넥터; 를 포함하는, 소형 기지국 안테나 장치의 커넥터.
  23. 청구항 22에 있어서,
    상기 암커넥터는, 상기 동축 케이블에 대응되는 개수의 스루핀 단자가 상기 내측면 및 외측면을 연결하도록 관통되게 구비된, 소형 기지국 안테나 장치의 커넥터.
  24. 청구항 23에 있어서,
    상기 다수의 동축 케이블은, 상기 무선 유닛과 상기 안테나 모듈 간 2T2R의 전송 선로 구축을 위한 2가닥 및 상기 무선 유닛과 상기 안테나 모듈 간 4T4R의 전송 선로 구축을 위한 4가닥 중 어느 하나의 개수로 구비되고,
    상기 수커넥터에는, 상기 다수의 동축 케이블의 개수와 대응되는 단자 핀이 형성되며,
    상기 암커넥터에는, 상기 단자 핀이 각각 삽입되어 접속되는 단자 홈이 대응되게 형성된, 소형 기지국 안테나 장치의 커넥터.
  25. 청구항 23에 있어서,
    상기 암커넥터는, 상기 결합 플랜지가 상기 RF 필터에 접한 상태에서 다수의 스크류를 이용하여 상기 RF 필터에 직접 체결되는, 소형 기지국 안테나 장치의 커넥터.
  26. 청구항 23에 있어서,
    상기 암커넥터의 각 스루핀 단자의 선단은 상기 RF 필터에 구비된 급전 커넥터에 직접 접속되는, 소형 기지국 안테나 장치의 커넥터.
  27. 청구항 24에 있어서,
    상기 수커넥터는, 상기 동축 케이블이 4가닥으로 구비된 경우, 상기 동축 케이블에 대응되는 단자 핀의 중심부에 단수개로 구비된 그라운드 와셔; 를 더 포함하는, 소형 기지국 안테나 장치의 커넥터.
  28. 청구항 22에 있어서,
    상기 멀티펑션 링크는,
    센터 바디;
    상기 센터 바디의 양단부 중 상기 안테나 모듈과의 사이에 연결된 제1고정부;
    상기 센터 바디의 양단부 중 상기 무선 유닛과의 사이에 연결된 제2고정부;
    양단부 중 어느 하나의 단부는 상기 제1고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 안테나 모듈과 연결되어 상기 안테나 모듈을 틸팅 또는 스티어링 동작으로 방향성을 조절하는 제1볼 조인트부; 및
    양단부 중 어느 하나의 단부는 상기 제2고정부의 내부 공간에 일부가 수용 결합되고, 양단부 중 다른 하나의 단부는 상기 무선 유닛과의 연결을 매개하는 케이블 수용 파이프와 연결되어 상기 안테나 모듈을 추가로 방향성 조절이 가능하도록 하는 제2볼 조인트부; 를 포함할 경우,
    상기 암커넥터는, 상기 케이블 수용 파이프에 수용된 동축 케이블에 대응되는 개수의 스루핀 단자가 상기 내측면 및 외측면을 연결하도록 관통되게 구비된, 소형 기지국 안테나 장치의 커넥터.
PCT/KR2023/006085 2022-05-04 2023-05-04 소형 기지국 안테나 장치 및 이의 커넥터 WO2023214813A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20220055546 2022-05-04
KR10-2022-0055546 2022-05-04
KR10-2022-0059648 2022-05-16
KR20220059648 2022-05-16
KR10-2023-0058003 2023-05-03
KR1020230058003A KR20230155986A (ko) 2022-05-04 2023-05-03 소형 기지국 안테나 장치 및 이의 커넥터

Publications (1)

Publication Number Publication Date
WO2023214813A1 true WO2023214813A1 (ko) 2023-11-09

Family

ID=88646688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006085 WO2023214813A1 (ko) 2022-05-04 2023-05-04 소형 기지국 안테나 장치 및 이의 커넥터

Country Status (1)

Country Link
WO (1) WO2023214813A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020030576A (ko) * 2000-10-19 2002-04-25 최 판 식 안테나 고정구
KR20100025404A (ko) * 2008-08-27 2010-03-09 주식회사 제타시스 댁내형 무선중계기의 안테나
KR20120133520A (ko) * 2011-05-31 2012-12-11 삼성에스엔에스 주식회사 패치형 안테나를 갖는 dsrc 노변 기지국
KR20150033119A (ko) * 2013-09-23 2015-04-01 주식회사 쏠리드 일체형 안테나를 가지는 옥외형 중계기
US20160365618A1 (en) * 2014-02-24 2016-12-15 Kmw Inc. Multi-band antenna apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020030576A (ko) * 2000-10-19 2002-04-25 최 판 식 안테나 고정구
KR20100025404A (ko) * 2008-08-27 2010-03-09 주식회사 제타시스 댁내형 무선중계기의 안테나
KR20120133520A (ko) * 2011-05-31 2012-12-11 삼성에스엔에스 주식회사 패치형 안테나를 갖는 dsrc 노변 기지국
KR20150033119A (ko) * 2013-09-23 2015-04-01 주식회사 쏠리드 일체형 안테나를 가지는 옥외형 중계기
US20160365618A1 (en) * 2014-02-24 2016-12-15 Kmw Inc. Multi-band antenna apparatus

Similar Documents

Publication Publication Date Title
WO2020231112A1 (en) Electronic device including antenna
WO2021085669A1 (ko) 5g 안테나를 구비하는 전자 기기
WO2018182109A1 (ko) 다중대역 기지국 안테나
WO2020190033A1 (ko) 안테나용 클램핑 장치
WO2014088311A1 (en) Method and apparatus for beam-forming
WO2021187794A1 (ko) 복수의 안테나를 포함하는 전자 장치
WO2020153629A1 (ko) 안테나를 포함하는 전자 장치
WO2022080923A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2021049672A1 (ko) 안테나를 구비하는 전자 기기
WO2023214813A1 (ko) 소형 기지국 안테나 장치 및 이의 커넥터
WO2023146226A1 (ko) 소형 기지국 안테나 장치
WO2022092728A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2022086156A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2022169145A1 (en) Antenna module and electronic device including same
WO2022055122A1 (ko) 다층 임피던스 변환부를 구비한 안테나 모듈 및 이를 포함하는 전자 기기
WO2021125384A1 (ko) 안테나를 구비하는 전자 기기
WO2023128683A1 (ko) 풀 아날로그 위상 쉬프터 및 이를 포함하는 안테나 장치
WO2019221548A1 (ko) 안테나 장치 및 그것의 제조 방법
WO2024019366A1 (ko) 소형 기지국 안테나 장치용 멀티펑션 링크 어셈블리
WO2022146101A1 (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
WO2021172614A1 (ko) 5g 통신 중계 장치
WO2022108378A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2022124783A1 (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
WO2024019578A1 (ko) 복수의 방사체 어레이들을 구비하는 안테나 장치
WO2023204464A1 (ko) 안테나 어레이의 편파들 간 디커플링을 위한 정합 네트워크 및 이를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799694

Country of ref document: EP

Kind code of ref document: A1