WO2022086156A1 - 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치 - Google Patents

안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치 Download PDF

Info

Publication number
WO2022086156A1
WO2022086156A1 PCT/KR2021/014674 KR2021014674W WO2022086156A1 WO 2022086156 A1 WO2022086156 A1 WO 2022086156A1 KR 2021014674 W KR2021014674 W KR 2021014674W WO 2022086156 A1 WO2022086156 A1 WO 2022086156A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
filter
antenna
reflector
disposed
Prior art date
Application number
PCT/KR2021/014674
Other languages
English (en)
French (fr)
Inventor
김덕용
심준형
소성환
정배묵
윤민선
지교성
유치백
장성호
김재홍
최오석
서용원
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210138030A external-priority patent/KR102543846B1/ko
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to CN202180071244.7A priority Critical patent/CN116802930A/zh
Priority to EP21883225.1A priority patent/EP4235969A1/en
Priority to JP2023522983A priority patent/JP2023546102A/ja
Publication of WO2022086156A1 publication Critical patent/WO2022086156A1/ko
Priority to US18/136,873 priority patent/US20230299456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to an RF module for an antenna, an RF module assembly, and an antenna device including the same (RF MODULE, RF MODULE ASSEMBLY FOR ANTENNA AND AN ANTENNA APPARATUS INCLUDING THE SAME), and more particularly, to a radome of a conventional antenna device ) is unnecessary, and by arranging the radiating element module and RF element to be exposed to the outside air in front of the antenna housing, it is possible to improve the heat dissipation performance, make slimmer and reduce the manufacturing cost of the product. It relates to an assembly and an antenna device including the same.
  • a base station antenna including a repeater used in a mobile communication system has various shapes and structures, and has a structure in which a plurality of radiating elements are appropriately disposed on at least one reflecting plate that is usually erected in the longitudinal direction.
  • the radiating element made of a dielectric substrate made of plastic or ceramic is usually plated and bonded to a PCB (printed circuit board) through soldering. The method is widely used.
  • FIG. 1 is an exploded perspective view showing an example of an antenna device according to the prior art.
  • a plurality of radiating elements 35 are output in a desired direction to facilitate beam forming to the front side of the antenna housing body 10 in the beam output direction. It is arranged to be exposed, and for protection from the external environment, a radome 50 is mounted on the front end of the antenna housing body 10 with a plurality of radiating elements 35 interposed therebetween.
  • the antenna device 1 is provided in the shape of a thin rectangular parallelepiped body with an open front surface, and a plurality of heat dissipation fins 11 are integrally formed on the rear surface of the antenna housing body 10 and the antenna housing.
  • the main board 20 is stacked on the rear of the body 10 and the antenna board 30 is stacked on the front of the antenna housing body 10 .
  • a radome 50 may be installed so that radiation from it is made smoothly.
  • the front part of the antenna housing body 10 is shielded by the radome 50, and the radome 50 itself inhibits the front heat dissipation of the antenna device. function as an element.
  • the radiating elements 35 are also designed to only transmit and receive RF signals, so that the heat generated by the radiating elements 35 is not radiated forward. For this reason, there is a problem in that the heat generated from the high heat generating element inside the antenna housing body 10 has to be uniformly discharged to the rear of the antenna housing body 10, so that the heat dissipation efficiency is greatly reduced.
  • the in-building due to the volume of the radome 50 and the volume occupied by the arrangement structure in which the radiating element 35 is spaced apart from the front surface of the antenna board 30, the in-building ( It is very difficult to implement a base station with a slim size required for in-building) or 5G shadow areas.
  • the present invention has been devised to solve the above technical problem, and by removing the radome and placing the antenna RF module on the outside of the antenna housing to be exposed to the outside air, it enables distributed heat dissipation to the front and rear of the antenna housing to greatly improve the heat dissipation performance
  • An object of the present invention is to provide an RF module for an antenna that can be improved, an RF module assembly, and an antenna device including the same.
  • the present invention stably protects the RF filter inside, as well as performing a grounding function between the radiating element and the RF filter, as well as easily dissipating the heat generated from the RF filter side to the outside, and at the same time, the radiating element It is another object to provide an RF module for an antenna including a reflector for grounding (GND) and an antenna device including the same.
  • GND reflector for grounding
  • One embodiment of the RF module for an antenna according to the present invention is an RF filter having at least four outer surfaces, a radiating element module disposed on any one of the outer surfaces of the RF filter, the other one of the outer surfaces of the RF filter It is disposed between the amplifier board on which the analog amplification element is mounted and the RF filter and the radiating element module to ground the radiating element module (GND), and also mediate the heat radiation generated by the RF filter to the outside. and a reflector that is coupled to the socket pin in module units to the main board disposed in the antenna housing.
  • the RF filter is closely installed on the rear surface of the reflector, and then the radiating element module is connected to the front surface of the reflector by electrical signal connection to the RF filter It can be defined as an assembly that is installed in close contact to be made.
  • the amplifying unit substrate may be provided inside the amplifying unit substrate body disposed in parallel with the RF filter, and the RF filter and the amplifying unit substrate body may be electrically signal-connected by slidingly coupled to each other.
  • the RF filter and the amplifier board may be electrically connected to each other by a coaxial connector when the RF filter is slidably coupled to the amplifier board body.
  • the RF filter and the reflector may be coupled by a fem nut.
  • the RF filter may be coupled in such a way that the filter fixing screw passing through the RF filter is fastened through the fem nut from the front to the rear.
  • the reflector may be laminated and coupled to the front surface of the RF filter, and a plurality of heat sinks may be integrally formed on the rear surface of the reflector to protrude rearward to accommodate the RF filter.
  • the reflector may be laminated and coupled to the rear surface of the RF filter, and a plurality of heat sinks may be integrally formed on the front surface of the reflector to protrude forward to accommodate the RF filter.
  • the reflectors are provided in plurality to correspond to the number of the RF filters, and are coupled to shield the front surface of each RF filter, and a portion in contact with each of the reflectors may be provided so as to be in contact with a curved shape in a zigzag form. there is.
  • a plurality of heat dissipation holes are formed in the reflector, and the plurality of heat dissipation holes are 1/10 compared to the interval of the radiating element module when the distance between the radiating element modules is arranged at half-wavelength (1/2 ⁇ ) intervals. It may have a size of from 1/20 to 1/20 or less.
  • a plurality of the RF filter, the radiating element module, and the amplifying unit substrate may be manufactured in an array form in a vertical direction or a left and right direction, and may be coupled to the front surface of the antenna housing as a module unit.
  • the RF filter includes a filter body in which a predetermined space is formed in which the amplifying unit substrate is disposed, and the amplifying unit substrate includes some of the analog amplifying elements mounted and disposed in close contact with the inner surface of the filter body and a sub-amplifier sub-substrate on which the remaining parts of the analog amplification elements are mounted and stacked on the main amplifier sub-substrate.
  • a metal paste via hole filled with a thermally conductive metal component may be formed in a portion of the main amplifier sub-substrate where the analog amplification device is mounted.
  • analog amplifying device mounted on the amplifying unit substrate may include an RFIC device.
  • the RF filter may include a filter body employed as either a cavity filter or a dielectric ceramic filter, and a filter heat sink panel made of a thermally conductive material may be further provided on at least one surface of both surfaces of the filter body.
  • an FPGA module including an FPGA board on which an FPGA device separated from the main board is mounted is disposed on one side of the RF filter, and a socket pin may be coupled to the main board.
  • the FPGA module may include an FPGA module body in which the FPGA substrate is disposed, and a device heat sink panel may be disposed on at least one of both end surfaces of the FPGA module body.
  • a socket pin coupling to the main board is provided at an end of the amplifier board, and a plurality of RF transmission lines and a GND (ground) terminal line are provided in the socket portion, and the plurality of RF transmission lines A blank process may be performed between the terminal pin related to , and the terminal pin related to the GND (ground) terminal line.
  • An RF module assembly for an antenna a plurality of RF filters each having at least four outer surfaces, a plurality of radiating element modules disposed on any one of the outer surfaces of each of the plurality of RF filters, the It is disposed on the other one of the outer surfaces of each of the plurality of RF filters, and is disposed between the amplifier board on which the analog amplification element is mounted and the plurality and the RF filter and the plurality of radiating element modules to ground the radiating element module to a ground (GND). It also includes a reflector that mediates heat dissipation to the outside of the heat generated by the RF filter, and the socket pin is coupled to the main board disposed in the antenna housing in module units.
  • An antenna device includes a main board on which at least one digital element is mounted on a front or rear surface, a housing-shaped antenna housing formed with an open front so that the main board is installed, and an electrical connection with the main board.
  • a RF module assembly connected through a signal line, the RF module assembly, a plurality of RF filters each having at least four outer surfaces, a plurality of radiating elements disposed on any one of the outer surfaces of each of the plurality of RF filters Module, disposed on the other side of the outer surface of each of the plurality of RF filters, an amplifier board on which an analog amplification element is mounted, and the plurality of RF filters and the plurality of radiating element modules to ground the radiating element module (GND) and a reflector for mediating the radiation of heat generated by the RF filter to the outside, wherein the RF module assembly is socket-pin-coupled to the main board of the antenna housing in module units.
  • GND radiating element module
  • an RF module for an antenna an RF module assembly, and an antenna device including the same according to the present invention, various effects as follows can be achieved.
  • the RF-related amplification elements mounted on the conventional main board side as an RF module together with the RF filter and placing them outside the antenna housing, it has the effect of greatly improving the overall heat dissipation performance of the antenna device.
  • the number of layers of the main board which is a multi-layer board, is greatly reduced, thereby reducing the manufacturing cost of the main board.
  • the length and volume of the heat sink (heat dissipation fin) integrally formed on the rear surface of the antenna housing can be reduced, thereby facilitating the overall slim design of the product.
  • FIG. 1 is an exploded perspective view showing an example of an antenna device according to the prior art
  • FIG. 2 is a front perspective view and a rear perspective view showing an antenna device according to an embodiment of the present invention
  • 3A and 3B are an exploded perspective view of the front part and an exploded perspective view of the rear part of FIG. 2,
  • FIG. 4 is a cross-sectional view taken along line A-A of FIG. 2 and a partially enlarged view thereof;
  • FIG. 5 is a partially cut-away perspective view taken along line B-B of FIG. 2 and a partially enlarged view thereof;
  • Figure 6 is a perspective view showing a reflector in the configuration of Figure 2
  • FIG. 7 is a perspective view showing an installation state of the main board with respect to the rear housing in the configuration of FIG. 2;
  • FIG. 8 is an exploded perspective view showing the installation of the RF module to the main board in the configuration of FIG. 2;
  • FIG. 9 is a perspective view illustrating a state in which the filter body is separated from the rear housing during the installation process of FIG. 8;
  • FIG. 10 is a perspective view showing an RF module in the configuration of FIG. 8;
  • FIG. 11 is a cross-sectional view taken along the line C-C of FIG.
  • FIG. 12A and 12B are exploded perspective views showing the RF module of FIG. 10;
  • FIG. 13 is a detailed view of an amplifying unit substrate in the configuration of the RF module of FIG. 10;
  • FIG. 15 is an exploded perspective view showing the assembly of the RF module with respect to the main board in the configuration of FIG. 3;
  • FIG. 16 is an exploded perspective view showing the assembly of the radiating element module with respect to the reflector in the configuration of FIG. 3;
  • FIG. 17 is a conceptual diagram illustrating a modified example of an RF module according to an embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing a modified example of the coupling structure between the reflector and the RF module
  • 20 is a perspective view showing a reflector separated by an RF module and a combined structure thereof;
  • 21 is a cross-sectional view and a plan view showing a modified example of the amplification unit substrate
  • FIG. 22 is a cross-sectional view showing various installations of the main board and RF module assembly with respect to the rear housing;
  • 24 is a perspective view showing the heat dissipation structure of the module type FPGA device
  • 25 is a conceptual diagram illustrating a detailed arrangement of the socket part of the amplifier board and the female socket part of the main board.
  • antenna device 105 antenna housing
  • female socket 128a first heating element
  • 146a-1,146a-2 PA element 146c: LNA element
  • feed line 165 radiation director
  • amplifier module 500 outer mounting member
  • the present invention does not necessarily require the radome of the conventional antenna device, and by configuring the RF-related amplification elements mounted on the main board inside the antenna housing as an RF module together with the RF filter, various heating elements of the antenna device
  • the technical idea is to spatially separate the heat generated from the antennas, and below, an RF module for an antenna, an RF module assembly and an antenna device including the same, and a method of assembling an antenna RF module are based on an embodiment shown in the drawing explained as
  • FIG. 2 is a front perspective view (a) and a rear perspective view (b) of an antenna device according to an embodiment of the present invention
  • FIGS. 3A and 3B are an exploded perspective view of the front part and an exploded perspective view of the rear part of FIG. 4 is a cross-sectional view taken along line A-A of FIG. 2 and a partially enlarged view thereof
  • FIG. 5 is a partially cut-away perspective view and a partially enlarged view taken along line B-B of FIG. 2
  • FIG. 6 is a reflector in the configuration of FIG. A perspective view is shown.
  • the antenna device 100 includes an antenna housing 105 that forms the exterior of the antenna device, as shown in FIGS. 2 to 5 .
  • the antenna housing 105 includes a rear housing 110 that forms the exterior of the rear side of the antenna device 100 and a front housing 130 that forms the exterior of the front side of the antenna device 100 .
  • the antenna device 100 includes the main board 120 closely installed in the inner space 110S of the antenna housing 105 and the antenna stacked on the front surface of the front housing 130 .
  • RF module Radio Frequency Module 200
  • 'RF module' further includes.
  • the antenna housing 105 is combined with the RF module 200 to form the overall appearance of the antenna device 1 and, although not shown, mediates coupling to a holding pole provided for installation of the antenna device 100 . can play a role.
  • the antenna housing 105 does not necessarily have to be coupled to the holding pole, and is directly installed and fixed to a vertical structure such as an inner or outer wall of a building in a wall-mounted type. It is also possible In particular, in the case of the antenna device 100 according to an embodiment of the present invention, it has a great meaning in that it is designed to have a slim front and rear thickness to a minimum, so that it is easier to install a wall-mounted type. This will be described in more detail later.
  • the antenna housing 105 is made of a metal material with excellent thermal conductivity so that heat dissipation according to heat conduction is advantageous as a whole, and is formed in a rectangular parallelepiped housing shape with a thin thickness in the front and rear directions, and the front of the rear housing 110 is opened.
  • the main board on which digital devices eg, Field Programmable Gate Array (FPGA) devices and/or Power Supply Units (PSUs) devices
  • FPGA Field Programmable Gate Array
  • PSUs Power Supply Units
  • the inner surface of the rear housing 110 is formed in a shape to match the external protrusion shape by the digital device (FPGA device, etc.) and/or the PSU device mounted on the rear surface of the main board 120. can be This is to maximize the heat dissipation performance by increasing the thermal contact area with the rear surface of the main board 120 .
  • a grip portion may be further installed to facilitate manual mounting.
  • various external mounting members 500 for cable connection with a base station device (not shown) and coordination of internal components may be through-assembled.
  • a plurality of rear heat dissipation fins 111 may be integrally formed on the rear surface of the rear housing 110 to have a predetermined pattern shape.
  • the heat generated from the main board 120 installed in the inner space 110S of the rear housing 110 may be directly radiated to the rear through the plurality of rear heat dissipation fins 111 .
  • the plurality of rear heat dissipation fins 111 are disposed to be inclined upward toward the left end and the right end based on the central portion of the left and right width (see FIG. It may be designed to form an upward airflow dispersed in the left and right directions of the rear housing 110 to more rapidly dissipate heat.
  • the shape of the rear heat dissipation fin 111 is not necessarily limited thereto.
  • a blower fan module (not shown) is provided on the rear side of the rear housing 110, the rear heat dissipation fins 111 so that heat radiated by the blower fan module is more rapidly discharged. It may be adopted that is formed in parallel to the left end and right end, respectively, in the blowing fan module disposed in the middle.
  • a mounting portion (not shown) to which a clamping device (not shown) for coupling the antenna device 1 to a holding pole (not shown) is coupled to a part of the plurality of rear heat dissipation fins 111 is integrally can be formed with
  • the clamping device by rotating the antenna device 100 according to an embodiment of the present invention installed at the tip portion of the antenna device 100 in the left and right direction or tilting in the vertical direction to adjust the directionality of the antenna device 100 It can be configuration.
  • a clamping device for tilting and rotating the antenna device 100 is not necessarily coupled to the mounting portion.
  • a clamp panel in the shape of a clasp plate that is easily coupled to the wall-mounted type may be coupled to the mounting portion.
  • the RF module 200 may include an RF filter 140 , a radiating element module 160 , and an amplifier substrate 146 .
  • the RF module 200 may further include a reflector 150 serving as a ground (GND) of the radiating element module 160 .
  • the reflector 150 does not only serve as a ground of the radiating element module 160 , but is an RF filter exposed to the front outside air defined as the front front of the front housing 130 among the antenna housings 105 to be described later. (140) can also serve to protect from the outside.
  • the RF module 200 having such a configuration may be stacked on the front surface of the main board 120 via the front housing 130 of the antenna housing 105 as shown in FIGS. 2 to 5 . .
  • the RF filter 140 is provided in plurality to form one configuration of the RF module assembly for the antenna.
  • a total of eight RF filters 140 are arranged adjacently in the left and right directions, and a plurality of RF filters 140 are arranged in a total of 4 columns in the vertical direction, respectively.
  • the present invention is not necessarily limited thereto, and it will be natural that the arrangement position and the number of RF filters 140 may be variously designed and modified.
  • the RF filter 140 is a cavity filter in which a predetermined space is formed on one side, and a resonator composed of a DR (Dielectric Resonator) or a metallic resonator rod is provided in the space. It is explained with an example.
  • the RF filter 140 is not limited thereto, and various filters such as a dielectric filter may be employed.
  • the plurality of radiating element modules 160 are coupled to correspond to the number of each of the plurality of RF filters 140 , and each radiating element module 160 implements 2T2R. Accordingly, the antenna device 100 according to an embodiment of the present invention exemplifies a model in which a total of 64T64R is implemented, but is not limited thereto.
  • the RF module 200 may further include a reflector 150 that is disposed to cover the plurality of RF filters 140 as described above, and serves to ground the plurality of radiating element modules 160 .
  • the reflector 150 is preferably made of a metal material.
  • the reflector 150 may further function as a reflective layer of the radiating element module 160 . Accordingly, the reflector 150 may focus the RF signal by reflecting the RF signal output from the radiating element module 160 in a direction corresponding to the directing direction.
  • the reflector 150 may perform a heat dissipation function for the external air of the system heat generated from the antenna device.
  • the reflector 150 may be formed in the form of a mesh in which a plurality of heat dissipation holes 155 are perforated, as shown in FIG. 6 .
  • the plurality of heat dissipation holes 155 are configured to communicate the inside and outside of the reflector 150 , and heat generated from the RF filter 140 located in the space behind the reflector 150 is transferred to the outside of the reflector 150 . It can serve as a heat exhaust hole for discharging to the furnace. Accordingly, it is possible to actively use external air for heat dissipation of the antenna device 100 .
  • the size of the heat dissipation hole 155 may be appropriately designed by simulating the durability and heat dissipation characteristics of the reflector 150 . It may be designed in consideration of the wavelength of the frequency. For example, the size of the heat dissipation holes 155 may be set to have a size within the range of 1/10 ⁇ to 1/20 ⁇ of the operating frequency.
  • the interval 1/10 ⁇ has a meaning as an upper limit threshold for performing a sufficient ground (GND) role of the radiating element module 160
  • the interval 1/20 ⁇ is the minimum through the heat dissipation hole 155 of the reflector 150 . It has a meaning as a lower limit threshold for securing the flow of outside air.
  • the size of the heat dissipation hole 155 is preferably larger than 1/20 ⁇ of the operating frequency and smaller than 1/10 ⁇ of the operating frequency.
  • a single reflector 150 is provided between the plurality of RF filters 140 and the plurality of heat dissipation element modules 160 in terms of a ground (GND) function, and performs a common ground function.
  • GND ground
  • the reflector 150 may be formed in the shape of a quadrangular metal plate laminated on the front end of the plurality of RF filters (140).
  • an antenna arrangement unit 151 on which each of the heat dissipation device modules 160 to be described later is seated may be formed in a planar shape to correspond to the position of the RF filter 140 .
  • the antenna arrangement unit 151 is formed in a planar shape, the front surface of the filter body 141 is in thermal contact with the surface of the rear RF filter 140 , and the rear surface of the front radiating element module 160 is the surface By being seated in thermal contact, it is possible to improve the heat dissipation performance by the heat conduction method.
  • the edge portion is bent to the rear, respectively, the front housing 130 coupled to the front side of the plurality of RF filters 140 wrapped around the side of the bent edge to protect A plate 154 is formed, and a plurality of screw fixing grooves 153 are formed to be spaced apart at a plurality of places along the edge of the edge bending plate 154 , and a plurality of screw fixing grooves 153 and the front housing 130 are formed. It may be coupled to the front of the front housing 130 by an operation in which a plurality of assembly screws (not indicated) are fastened to the plurality of screw through holes 133 formed along the edge.
  • the RF module 200 for the antenna may be detachably coupled to the antenna housing 105 as shown in FIGS. 2 to 5 .
  • the RF module 200 for the antenna may be physically coupled to the front housing 130 through bolting (or screw coupling), etc., and the amplifier board 146 constituting the RF module 200 for the antenna is the main board. It may be detachably attached to the socket pin 120.
  • the amplifying unit substrate 146 is provided with a socket portion 146 ′ of FIG. 11A , which will be described later, and on the front surface of the main board 120 , the socket pin 146 ′ of the amplifying unit substrate 146 is provided.
  • a female socket unit 125 coupled thereto may be provided.
  • a detailed configuration and function of the amplifier board 146 will be described later in more detail.
  • the front housing 130 is, as shown in FIGS. 3A and 3B , the main board 120 installed and seated in the inner space 110S of the antenna housing 105 and the RF module 200 stacked on its front surface. ) serves as a partition between In addition, the front housing 130 is provided so that the inner space 110S on the side of the antenna housing 105 and the other spaces are divided, so that the heat generated in the inner space 110S on the side of the antenna housing 105 is RF It is possible to perform a thermal blocking and separation function so as not to affect the filter 140 side.
  • 'thermal blocking' means that heat generated from the RF module 200 located on the front outdoor air (or front space) defined as the front front of the front housing 130 is transferred to the rear space of the front housing 130 ( That is, it is preferable to understand that it blocks the intrusion of heat into the inner space 110S of the rear housing 110), and the meaning of 'thermal separation' is initially stacked in the inner space 110S of the rear housing 110. It is desirable to understand that the thermal configuration is separated and arranged to enable not only rear heat dissipation but also front heat dissipation by separating some of the plurality of heat generating elements intensively distributed and mounted on the front and rear surfaces of the main board 120 .
  • a plurality of RF modules 200 are pre-installed in the front housing 130 ), or as a module unit that can be temporarily assembled, distribution and sales are possible, which has the advantage of establishing a new market environment.
  • a plurality of screw through holes 133 for screw fixing the reflector 150 may be formed at a plurality of places along the edge.
  • the socket parts 146 ′ formed on the amplification part substrate 146 of the RF filter 140 penetrate through each socket pin coupling to the female socket part 125 of the main board 120 .
  • At least a through slit 135 to be formed may be formed.
  • the antenna device 100 When the antenna device 100 according to the example is installed outside the building (ie, outdoors), rainwater may permeate in the rain, and a waterproof gasket ring (not shown) to prevent the inflow of rainwater may be interposed. there is.
  • a waterproof gasket ring (not shown) to prevent the inflow of rainwater may be interposed.
  • the socket portion 146' of the amplifying unit substrate 146 penetrating therethrough is protected from the outside, and rainwater passes therethrough.
  • a foreign material inflow prevention ring (not shown) for preventing foreign substances such as such from flowing into the inner space 110S of the rear housing 110 may be interposed therebetween.
  • the antenna device 100 adopts a simple socket pin coupling method in constructing a predetermined electrical signal line between the main board 120 and the RF filter 140, so that the conventional RF Since there is no need to use a separate direct coaxial connector (DCC) for electrically connecting the filter 140 and the main board 120 , it provides the advantage of greatly reducing the manufacturing cost of the product.
  • DCC direct coaxial connector
  • the adoption of the socket pin coupling method of the RF filter 140 here will be understood to create an effective effect in terms of electrical coupling, and in order to prevent any flow of the RF filter 140 in terms of physical coupling,
  • it is also possible to additionally adopt a plurality of screw fastening methods for example, as shown in FIGS. 12A and 12B to be described later, a fixing screw 142 through a plurality of screw through holes 142a formed at the rear end edge of the filter body 141 during the configuration of the RF filter 140 . ) using a screw fastening method for the front housing 130 can create a more robust fixing effect.
  • FIG. 7 is an exploded perspective view showing the installation of the main board with respect to the rear housing in the configuration of FIG. 2
  • FIG. 8 is an exploded perspective view showing the installation of the RF module assembly on the main board of the configuration of FIG. 2
  • FIG. 8 is a perspective view showing a state in which the filter body is separated from the rear housing during the installation process of FIG. 8
  • FIG. 10 is a perspective view showing the RF module in the configuration of FIG. 8
  • FIG. It is a partially projected cutaway perspective view
  • FIGS. 12A and 12B are exploded perspective views showing the RF module of FIG. 10
  • FIG. 13 is a detailed view of the amplifier board among the configuration of the RF module of FIG. 10
  • FIG. 14 is amplification 15 is an exploded perspective view showing the assembly of the RF module with respect to the main board in the configuration of FIG. 3, and FIG. 16 is the radiation of the reflector in the configuration of FIG. It is an exploded perspective view showing the assembly of the element module.
  • An embodiment of the RF module 200 for an antenna according to the present invention is an RF filter 140 , a radiating element module 160 disposed on one side of the RF filter 160 , and the other side of the RF filter 140 . is disposed, and may include an amplifier substrate 146 on which an analog amplification element is mounted.
  • the RF filter 140 may be formed to have at least four outer surfaces. That is, when the RF filter 140 has four outer surfaces, it is provided as a tetrahedron, when it has five outer surfaces, it is provided as a pentahedron, and when it has six outer surfaces, it is provided as a hexahedron. Therefore, in the following, 'one side' and 'the other side' of the RF filter 140 refers to any one of the at least four outer surfaces and the other surface except for the one surface, indicating a physically complete opposite surface. It is not to be understood as a concept, but as meaning one aspect and one aspect other than the one aspect.
  • the heat generated by the RF filter 140 and the heat generated by the analog amplification element are radiated in different directions. It can be defined as an embodiment in which
  • the external appearance of the RF module 200 is substantially the RF filter ( 140) and the radiating element module 160 provided at the front end thereof may be defined differently as an embodiment that can be configured as a matter of course.
  • the RF module 200 is a collection of analog RF components, for example, the amplifier board 146 is an RF component on which an analog amplifier for amplifying an RF signal is mounted, and the RF filter 140 is an inputted RF signal. is an RF component for frequency filtering into a desired frequency band, and the radiating element module 160 is an RF component serving to receive and transmit an RF signal.
  • the RF module 200 for an antenna according to the present invention may be defined as another embodiment as follows.
  • the RF module 200 for an antenna is an RF module 200 for an antenna including an analog RF component, and the analog RF component includes an RF filter 140 having at least four outer surfaces and an RF filter ( A radiating element module 160 disposed on any one of the outer surfaces of 140 and an analog amplifying element (not shown) on the amplifier board 146 disposed on the other of the outer surfaces of the RF filter 140 include
  • the amplifier board 146 may be electrically connected to the main board 120 inside the antenna housings 110 and 130 . More specifically, as will be described later, the amplifier board 146 may be electrically connected to the main board 120 in a socket pin coupling method.
  • the RF filter 140, the radiating element module 160 disposed in front of the RF filter 140, and the RF filter 140 and a reflector 150 disposed between the radiating element module 160 and grounding the radiating element module 160 to the ground (GND) and mediating the radiating heat generated from the RF filter 140 to the outside. can be defined as
  • another embodiment of the RF module 200 for an antenna according to the present invention is stacked with respect to the front surface of the main board 120 installed in the inner space 110S of the antenna housings 110 and 130.
  • the RF filter 140, the radiation element module 160 stacked on the front surface of the RF filter 140, and the RF filter 140 are disposed to cover the ground (GND) role of the radiation element module 160 .
  • It may include a reflector 150 that mediates heat dissipation to the outside of the heat generated from the RF filter 140 side while performing.
  • the reflector 150 may further function as a reflective layer capable of intensively irradiating the radiation signal as described above.
  • the radiating element module 160 is stacked on any one surface (front) of the RF filter 140 , and the amplifier substrate 146 . is disposed on the other of the outer surfaces of the RF filter 140 , and heat generated from the amplifier substrate 146 on which at least one analog amplifying element is mounted is transferred to the RF filter ( After the heat is dissipated through one of the sidewalls of 140 , the final heat may be dissipated to the outside via the reflector 150 .
  • the RF module 200 for an antenna according to the present invention may be detachably coupled to the antenna housing 105 . That is, the RF module 200 for an antenna according to the present invention includes an RF filter 200 , a radiating element module 160 disposed in front of the RF filter 200 , an RF filter 140 and a radiating element module ( 160 , including the reflector 150 disposed between, the RF module 200 for the antenna may be defined as another embodiment that is detachably coupled to the antenna housing 105 .
  • the target to which the RF module 200 for the antenna is detachable is the main board 120 disposed in the inner space 110S of the rear housing 110 among the configuration of the antenna housing 105, and the front housing 130 is It can be detachably coupled as a medium.
  • the RF component having frequency dependence as an RF module and making it detachable to the antenna housing 105 , when a defect or damage to the RF component constituting the antenna device 100 occurs , there is an advantage that maintenance and repair of the antenna device 100 becomes easy by replacing only the RF module 200 for the corresponding antenna.
  • the reflector 150 is disposed to cover the RF filter 140 , the RF filter 140 exposed to protrude outward from the front of the front housing 130 with respect to the inner space 110S of the antenna housing 105 . ) can be arranged to cover the whole. In this way, the RF filter 140 exposed to the front external air (or front space) defined as the front front of the front housing 130 by using the reflector 150 is protected from the external environment, and at the same time as described above, countless times as described above. Since the air flow to the inside and outside is smoothly designed through the many heat dissipation holes 155 , higher front heat dissipation performance can be improved.
  • a plurality of RF filters 140 as shown in FIGS. 11a and 11b, filter body (C1, C2) forming predetermined spaces on one side and the other side in the width direction based on the middle partition 143, respectively ( 141), and a plurality of resonators (DR, not shown) installed in a plurality of cavities (not shown) provided in any one of the predetermined spaces C1 and C2 (refer to reference numeral “C1” in FIG. 11A ), and the An amplifier board 146 disposed in the other one of the predetermined spaces C1 and C2 (refer to reference numeral “C2” in FIG. 11B ), coupled to the female socket part 125 of the main board 120 and electrically connected thereto ) may be included.
  • the filter body 141 is made of a metal material and is manufactured through a die-casting molding method.
  • the plurality of RF filters 140 may be employed and disposed as cavity filters for filtering the frequency band of the output signal versus the input signal through frequency control using a plurality of resonators (DR) installed on the “C1” side of a predetermined space.
  • DR resonators
  • the RF filter 140 is not necessarily limited to the cavity filter, and the ceramic waveguide filter is not excluded as described above.
  • the RF filter 140 has a small thickness in the front-rear direction, which is advantageous in the design of slimming the entire product.
  • the RF filter 140 may consider adopting a ceramic waveguide filter that has an advantageous miniaturization design rather than a cavity filter having a limited front-rear thickness reduction design.
  • the RF filter 140 is used as a heat transfer medium to effectively radiate the heat generated inside the antenna. Accordingly, the use of a cavity filter may be preferred in that heat generated from the RF filter 140 can be transferred to the front of the antenna housing 105 .
  • the plurality of RF filters 140 are in the form of an RF module 200 , out of the limited internal space 110S of the antenna housing 105 to the outside air.
  • the use of a cavity filter may be more preferred in that heat can be radiated through all directions except for the installation surface of the RF filter 140 .
  • a cavity filter is employed as the RF filter 140 in the antenna device 100 according to an embodiment of the present invention.
  • Antenna device 100 as shown in Figs. 10 to 12b, a conventional RFIC element (not shown) mounted on the front or rear surface of the main board 120, the RF element, PA (Power Amplifier) element and LNA (Low Noise Amplifier) element are separated and mounted on the amplifier board 146 of the RF filter 140, and all of the RF filter 140 is installed to be exposed to the outside, thereby greatly improving the heat dissipation performance.
  • a radome installed in front of the antenna housing not only becomes an obstacle to the heat dissipation to the front side, but also digital devices or PSUs with a large amount of heat, RF devices (RFIC, PA and LNA devices, etc.)
  • RF devices RFIC, PA and LNA devices, etc.
  • heat concentration occurred inside the antenna housing by being centrally mounted on the main board together with it.
  • heat dissipation efficiency is greatly reduced because the concentrated heat must be concentrated only to the rear side of the antenna housing.
  • a plurality of RF modules 200 are installed in the front independent of the internal space 110S of the antenna housing 105 . installed separately, but installed to be directly exposed to the outside air, and by adding an amplifier board 146 to a part of the sidewall of the RF filter 140 to disperse the RF elements 146a-1, 146a-2, 146c mounted on the conventional main board. By disposing it, heat dissipation is achieved, and the dispersed heat can be dissipated to the outside more quickly.
  • the RF devices may be analog amplification devices, and, as described above, include PA (Power Amplifier) devices 146a-1 and 146a-2, LNA (Low Noise Amplifier) devices 146c, and the like.
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the amplifier board 146 has a pair of PA elements 146a-1 and 146-2, which is one of the analog amplification elements, mounted on either side of both surfaces, and an LNA which is one of the analog amplification elements.
  • a device may be mounted, and circulators 146d-1 and 146d-2 decoupling between the two may be circuit-connected.
  • the above-described analog amplification device does not necessarily have to be mounted on only one side of both surfaces of the amplifying unit board 146 , and it goes without saying that the above-described analog amplifying device may be distributedly mounted on both sides of the amplifying unit board 146 according to an embodiment. will say that
  • the amplifier board 146 is separately mounted to the RF filter 140 side, the number of layers of the multi-layered main board 120 can be reduced, thereby reducing the manufacturing cost of the main board 120 .
  • the amplifier board 146 is installed to be seated inside the other one C2 of the predetermined spaces C1 and C2, and at least the end of the gasket part 146 ′ protrudes toward the rear side of the filter body 141 . It can be seated and installed so that it can be exposed.
  • the plurality of RF filters 140 radiates heat generated from the amplifier substrate 146 from the predetermined space C2 to the outside of the filter body 141.
  • a filter heat sink panel 148 may be further included.
  • a plurality of screw fixing holes 149a are formed around the predetermined space C2 of the filter body 141, and a plurality of screw through holes 149b are formed at the edge of the filter heat sink panel 148,
  • the plurality of fixing screws 149 pass through the plurality of screw through holes 149b from the outside of the filter body 141 and are fastened to the plurality of screw fixing holes 149a, and the filter heat sink panel 148 is the filter It may be fixed to the body 141 .
  • the amplifier substrate 146 installed in the predetermined space C2 of the filter body 141 is provided so that the outer surface thereof is in surface thermal contact with the inner surface of the filter heat sink panel 148 , so that the amplifier substrate 146 is provided. ), heat is conducted through the filter heat sink panel 148 and may be discharged to the outside through the filter heat sink fins 148a integrally formed on the outside.
  • the RF filter 200 for an antenna is disposed between the filter heat sink panel 148 and the amplifier substrate 146 to absorb heat generated from the amplifier substrate 146 . It may further include a heat transfer medium that collects and transfers to the filter heat sink panel 148 .
  • the heat transfer medium may be formed of any one of a vapor chamber or a heat pipe provided to transfer heat through a phase change of a refrigerant flowing in the closed interior.
  • the vapor chamber is preferably employed when the distance between the amplification unit substrate 146, which is a heat source, and the filter heat sink panel 148, is relatively small.
  • the heat pipe is a heat source between the amplifier substrate 146 and the filter heat sink. When the distance between the panel 148 and the panel 148 is relatively large, its adoption may be preferred.
  • the plurality of RF filters 140 are provided on the front surface of the main board 120 using the socket portion 146 ′ formed on the amplifier substrate 146 as shown in FIGS. 10 to 12B and 14 .
  • the filter body 141 is screwed to the front housing 130 using a fixing screw 142 through a plurality of screw through holes 142a formed on the edge of the rear end. By doing so, it can be fixed more stably.
  • the socket part 146 ′ formed on the amplification unit substrate 146 penetrates through the through slit 135 formed on the front surface of the front housing 130 corresponding to the external space to the arm. It has already been described that a foreign substance inflow prevention ring (not shown) may be interposed between the filter body 141 and the front housing 130 in that the socket pin is coupled to the socket part 125 .
  • At least one fixing boss 147 for screw fixing of a plurality of radiating element modules 160 to be described later may be installed as shown in FIGS. 10 to 12B .
  • At least one or more fixed bosses 147 penetrate through the boss through-holes 157 formed in the reflector 150 and are exposed to the front surface of the antenna arrangement unit 151 of the reflector 150, and a plurality of radiating element modules 160 ) is a part to which the element fixing screw 180 for fixing is fastened.
  • At least one or more fixing bosses 147 may be made of a metal material that easily conducts heat. Therefore, the filter body 141 and the fixing boss 147, as described above, are provided with a metal material that facilitates heat conduction. It provides the advantage of easy heat dissipation to the front. Furthermore, in the configuration of the radiating element module 160 to be described later, the radiating director 165 is also made of a metal material that easily conducts heat, so that the front heat dissipation performance can be further improved in terms of expanding the heat dissipation area in the front. This will be described in more detail later.
  • a plurality of radiating element modules 160 are required as an array antenna, and a plurality of radiating element modules 160 are narrow. By generating a narrow directional beam, it is possible to increase the concentration of radio waves in a designated direction. Recently, a plurality of radiating element modules 160, a dipole-type dipole antenna or a patch-type patch antenna are utilized with the highest frequency, and are designed and arranged to be spaced apart to minimize mutual signal interference do. Conventionally, in general, in order to prevent the arrangement design of such a plurality of radiating element modules 160 from being changed by external environmental factors, a radome that protects the plurality of radiating element modules 160 from the outside is essential.
  • the plurality of radiating element modules 160 and the antenna board on which the plurality of radiating element modules 160 are installed are not exposed to the outside air, so a system that occurs due to the operation of the antenna device 100 It had to be very limited in dissipating heat to the outside.
  • the radiating element module 160 of the antenna device 100 are vertically elongated, and a plurality of antennas formed on the front surface of the reflector 150 .
  • the radiating element module cover 161 arranged in the arrangement unit 151, respectively, and the radiating element module cover 161 are arranged in close contact with the rear surface of the cover 161, and are arranged between the antenna arrangement unit 151 and the antenna patch circuit unit 163a. and a printed circuit board 162 for a radiating element on which a feeding line 163b is printed, and a conductive metal material for radiation that is electrically connected to the antenna patch circuit 163a of the printed circuit board 162 for a radiating element.
  • a director 165 may be included.
  • the above-described antenna patch circuit unit 163a as a double polarization patch element that generates either a double polarized wave of ⁇ 45 orthogonal polarization or vertical/horizontal polarization can be printed.
  • the three antenna patch circuit units 163a may be printed to be spaced apart from each other in the vertical direction (longitudinal direction), and each antenna patch circuit unit 163 may be interconnected by a feeding line 163b.
  • the feed line In the conventional antenna device, the feed line must form a separate feed line under the printed circuit board on which the antenna patch circuit unit is mounted. It occupies the lower space of the printed circuit board 162, and there is a problem that acts as an element that prevents direct surface thermal contact between the RF filter 140 and the printed circuit board 162 for the radiating element, but the practice of the present invention
  • the feeding line 163b according to the example is pattern-printed together with the antenna patch circuit unit 163a on the same front surface as the printed circuit board 162 for the radiating element on which the antenna patch circuit unit 163a is pattern-printed, so that the feeding structure is very
  • there is an advantage in that it is possible to secure a coupling space that is in direct surface thermal contact with the RF filter 140 and the printed circuit board 162 for the radiating element.
  • the radiation director 165 is formed of a thermally conductive or conductive metal material and is electrically connected to the antenna patch circuit unit 163a.
  • the radiation director 165 may perform a function of guiding the radiation beam in a forward direction and simultaneously transferring heat generated from the rear of the printed circuit board 162 for a radiation element forward through heat conduction.
  • the radiation director 165 may be made of a metal of a conductive material through which electricity flows well, and may be installed to be spaced apart from each other in front of each of the antenna patch circuit units 163a.
  • the radiation element using the antenna patch circuit unit 163a and the radiation director 165 has been described.
  • the configuration of the radiation director can be omitted, and the height of the dipole antenna is relatively high.
  • the amount of heat dissipation can be increased by dissipating heat to a place farther than the front surface of the reflector 150 .
  • the radiation director 165 may be electrically connected to the antenna patch circuit unit 163a through the director through-hole 164c.
  • the overall size, shape, and installation location of the radiation director 165 may be appropriately designed by measuring the characteristics of the radiation beam emitted from the corresponding antenna patch circuit unit 163a and experimentally or by simulating the corresponding characteristics.
  • the radiation director 165 serves to guide the direction of the radiation beam generated from the antenna patch circuit unit 163a in an omni-directional way to further reduce the beam width of the entire antenna and to improve the characteristics of the side lobe. In addition, it is possible to compensate for the loss due to the patch-type antenna and to perform a heat dissipation function as it is made of a conductive metal.
  • the shape of the radiation director 165 is preferably, but not limited to, an appropriate shape for guiding the direction of the radiation beam in an omni-direction, for example, a circular shape having non-directionality.
  • At least two antenna patch circuit units 163a and the radiation director 165 may constitute one radiation element module 160 .
  • 10 to 12B show an example in which three antenna patch circuit units 163a and a radiating director 165 form one unit radiating element module 160, and the radiating element module for increasing a gain According to an optimal design, the number of the antenna patch circuit unit 163a and the radiation director 165 may vary.
  • a through hole 164c is formed in the radiation director 165 , and the radiation director 165 may be electrically connected to the antenna patch circuit unit 163a through the through hole 164c.
  • the radiation director 165 and the antenna patch circuit unit 1163a may be electrically connected via the element fixing screw 180 provided for fixing the filter body 141 to the front surface.
  • the radiating element module cover 161 is injection-molded with a non-conductive plastic material, and on one surface of the radiating element module cover 161, as shown in FIGS. 12A and 12B , the radiating director 165 is A director fixing part 167 to be fitted to the rear surface is provided, and a director fixing protrusion 168 capable of being coupled to the radiating director 165 may be formed to protrude forwardly from the director fixing part 167 .
  • the radiation director 165 may be fixed by being press-fitted into at least one director fixing groove (not shown) formed to be depressed at a position corresponding to the at least one director fixing protrusion 168 .
  • At least one substrate fixing hole 164b for coupling with the RF filter 140 may be formed through the radiating element module cover 161 .
  • the device fixing screw 180 passes through the through hole 164c of the radiating director 165 and the substrate fixing hole 164b of the radiating element module cover 161 through at least one substrate fixing hole 164b, It may be firmly coupled to the antenna arrangement unit 151 of the reflector 150 through the substrate through hole 164a formed in the printed circuit board 162 for the radiating element.
  • At least one reinforcing rib 166 is formed on the front surface of the radiating element module cover 161 to form the exterior of the radiating element module cover 161, and to reinforce the strength of the radiating element module cover 161, which is a plastic material. can do.
  • the RF module 200 having such a configuration uses heat generated from the RF filter 140 corresponding to the front with respect to the front housing 130 through contact with the rear surface of the reflector 150 or the reflector 150 . It can be directly discharged to the outside through the heat dissipation holes 155 formed in the.
  • the RF module assembly for an antenna may be defined as including the RF module 200 implemented in various types of embodiments as follows.
  • a plurality of RF filters 140 detachably coupled to the front surface of the main board 120, a plurality of radiating element modules 160 stacked on the front surface of the plurality of RF filters 140, and a plurality of The reflector ( 150) may be included.
  • the RF module 200 includes a plurality of RF filters 140 spaced apart from each other by a predetermined distance in the vertical direction and the left and right directions, and a plurality of radiation stacked on the front surface of the plurality of RF filters 140 .
  • the element module 160 and the reflector 150 disposed to partition between the plurality of RF filters 140 and the plurality of radiating element modules 160, and the plurality of RF filters 140, the antenna housing 105 ) may be implemented in a form that is detachably coupled to the front surface of the main board 120 stacked in the inner space 110S of the socket pin coupling method.
  • each of the plurality of RF filters 140 having at least four outer surfaces, and one of the outer surfaces of each of the plurality of RF filters 140 (eg, For example, a plurality of radiating element modules 160 stacked on the front side, and an amplifier substrate ( 146), and a reflector 150 disposed between the plurality and the RF filter 140 and the plurality of radiating element modules 160 to serve as a common ground of the plurality of radiating element modules 160, and at least one
  • the heat generated from the analog amplification device may be implemented in a form in which heat is radiated through one of the sidewalls of the plurality of RF filters 140 and then radiated forward through the reflector 150 .
  • the RF module 200 is detachably coupled to the front surface of the main board 120 , a plurality of RF filters 140 each having at least four outer surfaces, and a plurality of RF filters ( 140) a plurality of radiating element modules 160 stacked on any one surface (eg, front surface) of each of the outer surfaces, and a reflector 150 arranged to cover a plurality of RF filters 140 and , the reflector 150, the plurality of RF filters 140 and the plurality of radiating element modules 160 as well as performing a grounding function between the radiating element module 160 to reflect the electromagnetic wave irradiated from the front to the metal material
  • it may be implemented in a form in which a plurality of heat dissipation holes 155 are formed to discharge heat generated from the plurality of RF filters 140 to the front or to the side.
  • an embodiment of the method for assembling the RF module 200 for an antenna according to the present invention is any one of one side and the other side of the filter body 140 manufactured by die casting.
  • the amplifier board 146 on which the analog amplification element is mounted is coupled.
  • the printed circuit board 162 for the radiating element of the radiating element module 160 on the reflector 150 . is placed.
  • the radiation director 165 of the radiation element module 160 is attached to the radiation element module cover 161 ), and by electrically connecting the radiation director 165 and the radiation element printed circuit board 162, the assembly of the RF module 200 is completed. It can be combined with the socket pin coupling method on the front side.
  • the interior of the antenna housing 105 in which the main board 120 is installed is installed.
  • the front housing 130 is coupled and fixed to the front end of the rear housing 110 so that the space 110S and the external space are completely partitioned, and then the socket part 146 of the amplifier board 146 of the plurality of RF modules 200 is provided. ') to the female socket part 125 of the main board 120 in such a way that the socket pin is coupled.
  • the antenna Assembly of the device 100 is completed.
  • FIG. 17 is a conceptual diagram showing a modification of the RF module according to an embodiment of the present invention
  • FIG. 18 is a cross-sectional view showing a modification of the coupling structure between the reflector and the RF module
  • FIG. 19 is various modifications of the heat sink integrated reflector
  • FIG. 20 is a perspective view showing a reflector separated by an RF module unit and a combined structure thereof
  • FIG. 21 is a cross-sectional view and a plan view showing a modified example of the amplifier board
  • FIG. 22 is a main board for the rear housing and It is a cross-sectional view showing various installation aspects of the RF module assembly
  • Fig. 23 is a perspective view showing various modifications of the RF module
  • Fig. 24 is a perspective view showing the heat dissipation structure of the module-type FPGA device
  • Fig. 25 is the number of amplifier boards It is a conceptual diagram showing a detailed arrangement of the socket part and the female socket part of the main board.
  • the RF module 200 is manufactured separately from the RF filter 140 and the RF filter 140 so that the socket pin is coupled to the female socket part 125 of the main board 120 with a socket pin. It may include an amplifying unit module 300 including an amplifying unit substrate 146 having a unit 146 ′.
  • the amplifying unit substrate 146 of the amplifying unit module 300 may be disposed inside the amplifying unit substrate body 301 to be protected from the outside.
  • the coupling method of the amplifier board 146 to the main board 120 exemplifies the socket pin coupling, but any configuration for a slot or other electrical connection may be used.
  • the filter body 141 of the RF filter 140 and the amplifier substrate body 301 of the amplifier module 300 may be slidably bonded to each other in the front-rear direction or the vertical direction.
  • the filter body 141 of the RF filter 140 is physically fixed to the front housing 130 , and a coaxial connector (Direct Coaxial Connect, DCC) with the amplifier board body 301 of the amplifier module 300 . It can be electrically connected via (146D).
  • DCC Direct Coaxial Connect
  • the amplifier board body 301 is first coupled to the socket pin to the main board 120 before fixing the RF filter 140 to the front housing 130, and then, as described above, electrically by the coaxial connector 146D. Modules can be combined with the operation of seating them so that they can be connected to each other. However, the electrical connection does not necessarily have to be made via the coaxial connector 146D, and it will be natural that any configuration capable of electrical signal connection may be employed.
  • the RF filter 140 when the RF filter 140 is defective or needs to be replaced for other reasons, the RF filter 140 alone is separated from the amplifier board body 301 by one-touch separation and Because it can be replaced, A/S provides an advantageous advantage.
  • a plurality of RF filters 140 are closely installed on the rear surface of the reflector 150 , and then the reflector 150 .
  • a plurality of radiating element modules 160 are installed in close contact with each RF filter 140 so that electrical signal connection is made on the front surface of the front housing 130 by assembling the entire module to the front housing 130 .
  • the reflector 150 in order to replace any one of the plurality of RF filters 140 , the reflector 150 must be separated from the front housing 130 . There may be inconveniences in the process that requires prior work.
  • the reflector 150 is an RF filter through the fem nut 158 installed on the front edge of the RF filter 140 . It may have a structure in which 140 is coupled.
  • a plurality of installation holes (150s) through which the RF filter 140 is installed through the front to rear is formed at a position where the RF filter 140 is installed among the reflectors 150, and a plurality of installation holes (150s) are formed.
  • a bending coupling portion 150a formed by a predetermined bending toward the rear side may be formed, respectively.
  • the RF filter 140 except for the width and length of the front edge end (140C1, 140C2) and the rear edge end (reference numeral not shown) side to be described later, a plurality of installation holes (150s) width that can be inserted into the inside It may be formed to have a length.
  • a fem nut fixing hole 150s may be formed that penetrates in the front-rear direction and is fastened with a fem nut 158 to be described later.
  • the fem nut fixing hole 150s may be formed at a position corresponding to the filter screw fastening hole 140h formed in the RF filter 140 to be described later.
  • the front edge end portions 140C1 and 140C2 of the RF filter 140 are formed to be larger than the width and length of the plurality of installation holes 150s, as described above, and the bent bending coupling portion 150a of the reflector 150 is formed. ), a filter screw fastening hole 140h through which the filter fixing screw 153 is fastened may be formed in the part to be interviewed on the front side of the face.
  • the fixed end receiving groove (158h) of the fem nut 158 which will be described later, is received. 140s) may be incised.
  • each of the female nut 158 is coupled from the rear side, so that the fixing end 150s is located at the front end of the female nut fixing hole 150s. It is fixed to be caught, and the filter screw fastening hole 140h of the front edge end 140C1, 140C2 of the RF filter 140 from the front side by using the filter fixing screw 153 and the bending coupling part 150a of the reflector 150 At the same time, it may pass through and be fastened to the fem nut 158 .
  • the filter fixing screw 153 when the filter fixing screw 153 is removed from the fem nut 158, only the desired RF filter 140 is separated from the reflector 150 for replacement or repair. Therefore, it provides the advantage of easy separation and replacement of the RF filter 140 that requires A/S among a plurality of RF filters 140 without removing the reflector 150 .
  • the reflector 150 is not necessarily provided with a metal material of SUS or STS. That is, although not shown in the drawings, the reflector 150 may be manufactured by injection molding with a plastic resin material, and then having the entire surface of the reflector plated. When the reflector 150 is injection-molded with a plastic resin material, the shape of the plurality of heat dissipation holes 155 can be designed in various forms.
  • the reflector 150 does not need to be made of SUS or STS, and may be manufactured using a die-casting method using Al (aluminum) or Mg (magnesium) material.
  • a heat sink 159 is provided separately from the filter heat sink panel 148 covering the amplifier substrate 146 of the RF module 200 . It may be integrally formed so as to protrude.
  • each of the RF filters 140 may be individually accommodated and coupled to a space provided between the heat sinks 159 .
  • the front surface of the reflector 150 is integrally formed to protrude forward separately from the filter heat sink panel 148 covering the amplifier substrate 146 of the RF module 200 .
  • each of the RF filters 140 may be individually accommodated and coupled to a space provided between the heat sinks 159 .
  • the overall assembly of the RF module assembly with respect to the front housing 130 has the advantage of easy.
  • the heat sink 159 is not integrally formed with the reflector 150 , but is integrally formed with the front housing 130 at the rear, thereby providing an installation space for each of the RF filters 140 .
  • the reflector 150 is provided in a single panel shape, and a plurality of RF filters 140 are described as being limited to being coupled to a single reflector 150 , but FIG. 20 .
  • the reflector 150 is provided with a plurality of reflectors 150a and 150b separated into two or more, but may be modified and implemented in a form coupled to each of the RF filters 140 .
  • each of the plurality of reflectors 150 is provided so as to be in contact with a curved shape in a zigzag form as shown in FIG. 20 to minimize antenna pattern distortion.
  • the size of the plurality of heat dissipation holes 155 formed in the reflector 150 is greater than that of the radiating element module 160 . It is preferably formed to have a range of 1/10 to 1/20 or less, and may be designed in a form including both a circular or a rectangular shape as well as a polygonal shape forming a closed loop. However, the size and shape of the plurality of heat dissipation holes 155 are not limited to some ranges, and it will be natural that the various sizes and shapes can be designed in a combined form.
  • the RF filter 140 of the RF module 200 is not manufactured as an individual unit, but may be manufactured as a module unit in the form of an array in the left-right direction or the vertical direction.
  • the RF module 200 when the RF module 200 has eight RF filters 140 disposed in the left and right directions, and four RF filters 140 are disposed in the vertical direction. , can be manufactured as a unit of 4 modules with 8 RF filters 140 in the left and right directions as one combination, and can be manufactured in units of 8 modules using 4 RF filters 140 in the vertical direction as one combination.
  • the RF filter 140 , the radiating element module 160 , and the amplifier substrate 146 manufactured in the array form may be coupled to the front surface of the antenna housing 105 in module units.
  • the amplifier board 146 is divided into two PCBs, as shown in FIG.
  • the amplifying unit substrate 146 is disposed in close contact with the inner surface of the filter heat sink panel 148 as shown in FIG. and a main amplifying sub-substrate 146a on which an amplifying element having a relatively large amount of heat among a plurality of analog amplifying elements is mounted, and the main amplifying sub-substrate 146a, and arranged to be stacked, and having a relatively high calorific value among the plurality of analog amplifying elements It may include a sub-amplifier sub-substrate 146b on which a small amplification element is mounted.
  • the main amplifier sub-substrate 146a has a plurality of metal paste via holes ( 146”) may be formed.
  • the plurality of metal paste via holes 146 ′′ are filled with a metal component having excellent thermal conductivity, so the heat generated from the analog amplifying device (eg, TR device, 146-1) having a relatively large amount of heat is transferred to the plurality of metal paste via holes. Heat conduction can be easily made to the filter heat sink panel 148 through the 146 ′′.
  • the modified example of the amplifying unit board 146 is provided with two separate PCBs, and the main amplifying unit board ( In addition to improving thermal conductivity through 146a), it is possible to improve the complexity of the signal connection structure of the main amplifier sub-substrate 146a and the sub-amplifier substrate 146b.
  • the main board 120 may also be provided with two PCBs, similar to the amplifier board 146 .
  • the main board 120 is provided in the inner space 110S of the rear housing 110 as a single PCB, and the RF module 200 is the amplifier board 146 . It has already been described that the socket pin is coupled to the socket pin through the socket part 146' of the .
  • the main board 120 is disposed to be in close contact with the inner surface of the rear housing 110, and is a first heating element ( The first main board 120a on which 128a) is mounted, and the second heating element 128b that is disposed to be stacked on the front surface of the first main board 120a and has a relatively small amount of heat among a plurality of digital elements.
  • 2 may include a main board 120b.
  • the first heating element 128a may be an FPGA element
  • the second heating element 128b may be an RFIC element.
  • the socket part 146' formed on the amplifier board 146 of the RF module 200 is connected to the socket. It is preferable that the female socket part 125 to be pin-coupled is formed on the front surface of the second main board 120b.
  • a plurality of heat sink fins 139 for dissipating heat generated from the heating element 128b forward may be integrally formed.
  • a digital signal may be connected between the first main board 120a and the second main board 120b.
  • the RFIC device (128b) it is also possible to be centrally installed to the RF module 200 or the amplifier board 146 of the RF module assembly. However, in this case, it is preferable to design the position so that optimum heat dissipation performance is realized in relation to analog elements on the amplifier board 146 already provided inside the RF filter 140 .
  • the RF filter 140 of the RF module 200 has been described as being employed as a cavity filter, as referenced in FIG. 23 (a).
  • the RF module 200 is not necessarily limited to the cavity filter 140-Ca, and is employed as a dielectric ceramic filter 140-Ce, as shown in FIG. 23B . It is also possible
  • the filter heat sink panel 148 may be formed on both surfaces of the filter body 141 provided with the dielectric ceramic filter 140 -Ce, respectively, as shown in FIG. 23B .
  • the embodiments of the present invention have a structure that effectively dissipates heat generated from the electrical components to the outside air corresponding to the front of the front housing 130, as shown in FIG. 24 , the existing main board 120
  • the FPGA device 128a which generates relatively high heat generation among a plurality of digital devices mounted on the there is.
  • the FPGA module 400 includes an FPGA module body 401 in which the above-described FPGA device 128 is disposed, and at least one of both ends of the FPGA module body 401 has a device heat sink panel ( 403), it is also possible to modify it to increase the heat dissipation performance.
  • the FPGA element 128a in the form of the FPGA module 400 and configured to be coupled with the socket pin to the main board 120, better heat dissipation design is possible.
  • the FPGA module body 401 is directly exposed to the front outside air, it is preferable to apply a waterproof structure that prevents the inflow of rainwater, like the RF module 200 .
  • a plurality of RF transmission lines and a GND (ground) terminal line may be provided in the gasket portion 146 ′ formed at the end of the amplifier substrate 146 .
  • the pitch interval may be different depending on the connector used.
  • the interval (d) between the terminal pin related to the RF transmission line and the terminal pin related to the GND (ground) terminal line is “Pitch*n (number of pins) > d” It is preferable to arrange it so that For this purpose, it is desirable to treat a blank between the terminal pin related to the RF transmission line and the terminal pin related to the GND (ground) terminal line.
  • the antenna device 100 easily displaces the internal system heat of the antenna device 100 in all directions including the front as well as the rear by the area exposed to the outside air due to the deletion of the radome. Since the radiation element module 160 is disposed so as to be exposed to the outside air via the reflector 150, distributed heat dissipation to the front and rear of the antenna device 100 is possible.
  • the present invention provides an RF module for an antenna capable of greatly improving heat dissipation performance by eliminating a radome and disposing of an antenna RF module to the outside of the antenna housing so that it is exposed to the outside air, thereby enabling distributed heat dissipation to the front and rear of the antenna housing and including the same
  • An antenna device is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Transceivers (AREA)

Abstract

본 발명은 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치에 관한 것으로서, 특히, 적어도 4개의 외측면을 가지는 RF 필터, 상기 RF 필터의 외측면 중 어느 한면에 배치되는 방사소자 모듈, 상기 RF 필터의 외측면 중 다른 한면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판 및 상기 RF 필터와 상기 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터를 포함하고, 안테나 하우징에 배치된 메인 보드에 모듈 단위로 소켓 핀 결합된다. 이에 따르면, 안테나 전방으로의 방열을 방해하는 레이돔이 불필요하고, 안테나 장치의 발열 소자들로부터 발생하는 열을 공간적으로 분리함으로써, 안테나 장치의 전후방으로의 분산 방열이 가능하여 방열 성능이 크게 향상되는 효과를 갖는다.

Description

안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치
본 발명은 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치(RF MODULE, RF MODULE ASSEMBLY FOR ANTENNA AND AN ANTENNA APPARATUS INCLUDING THE SAME)에 관한 것으로서, 보다 상세하게는, 종래 안테나 장치의 레이돔(radome)이 불필요하고, 방사소자 모듈 및 RF 소자를 안테나 하우징의 전방 외기에 노출시키도록 배치함으로써, 방열 성능을 향상시키고 슬림화 제작이 가능하며 제품의 제조 비용을 절감할 수 있는 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치에 관한 것이다.
이동통신 시스템에 사용되는 중계기를 비롯한 기지국 안테나는 다양한 형태와 구조를 가지며, 통상 길이방향으로 직립하는 적어도 하나의 반사판 상에 다수의 방사소자가 적절히 배치되는 구조를 가진다.
최근에는 다중입출력(MIMO) 기반 안테나에 대한 고성능 요구를 만족함과 동시에, 소형화, 경량화 및 저비용 구조를 달성하려는 연구가 활발히 이루어지고 있다. 특히, 선형편파 또는 원형편파를 구현하기 위한 패치 타입 방사소자가 적용된 안테나 장치의 경우 통상적으로 플라스틱이나 세라믹 소재의 유전체 기판으로 이루어진 방사소자에 도금을 하고 PCB(인쇄회로기판) 등에 솔더링을 통해 결합하는 방식이 널리 사용되고 있다.
도 1은 종래 기술에 따른 안테나 장치의 일 예를 나타낸 분해 사시도이다.
종래 기술에 따른 안테나 장치(1)는, 도 1에 도시된 바와 같이, 다수의 방사소자(35)가 원하는 방향으로 출력되어 빔 포밍이 용이하도록 빔 출력 방향인 안테나 하우징 본체(10)의 전면 측으로 노출되도록 배열되고, 외부 환경으로부터의 보호를 위하여 레이돔(radome,50)이 안테나 하우징 본체(10)의 전단부에 다수의 방사소자(35)를 사이에 두고 장착된다.
보다 상세하게는, 종래 기술에 따른 안테나 장치(1)는, 전면이 개구된 얇은 직육면체 함체 형상으로 구비되고, 후면에는 다수의 방열핀(11)이 일체로 형성된 안테나 하우징 본체(10)와, 안테나 하우징 본체(10)의 내부 중 후면에 적층 배치된 메인 보드(20) 및 안테나 하우징 본체(10)의 내부 중 전면에 적층 배치된 안테나 보드(30)를 포함한다.
안테나 보드(30)의 전면에는, 패치 타입 방사소자 또는 다이폴 타입의 방사소자들(35)이 실장되고, 안테나 하우징 본체(10)의 전면에는 내부의 각 부품들을 외부로부터 보호하면서 방사소자들(35)로부터의 방사가 원활하게 이루어지도록 하는 레이돔(50)이 설치될 수 있다.
그러나, 종래 기술에 따른 안테나 장치의 일 예(1)는, 안테나 하우징 본체(10)의 전방부가 레이돔(50)에 의해 차폐되어 있는 바, 레이돔(50) 자체가 안테나 장치의 전방 방열을 저해하는 요소로 기능하고 있다. 아울러, 방사소자들(35) 또한 RF 신호의 송수신만을 수행하도록 설계되어 있어 방사소자들(35)에서 발생한 열이 전방으로 방출되지 못한다. 이러한 이유로, 안테나 하우징 본체(10)의 내부의 고발열소자에서 발생된 열을 일률적으로 안테나 하우징 본체(10)의 후방으로 배출할 수 밖에 없어 방열 효율이 크게 저하되는 문제가 있으며, 이러한 문제를 해결하기 위한 새로운 방열 구조 설계에 대한 요구가 높아지고 있다.
또한, 종래 기술에 따른 안테나 장치의 일 예(1)에 따르면, 레이돔(50)의 부피 및 안테나 보드(30) 전면으로부터 방사소자(35)가 이격된 배치구조가 차지하는 부피로 인해, 인빌딩(in-building) 또는 5G 음영지역에 요구되는 슬림한 사이즈의 기지국의 구현이 매우 어려운 실정이다.
본 발명은 상기한 기술적 과제를 해결하기 위하여 안출된 것으로서, 레이돔을 삭제하고 안테나 RF 모듈이 외기에 노출되도록 안테나 하우징의 외부에 배치함으로써 안테나 하우징의 전후방으로의 분산 방열이 가능하도록 하여 방열 성능을 크게 향상시킬 수 있는 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치를 제공하는 것을 그 목적으로 한다.
또한, 본 발명은, 내부에 RF 필터를 안정적으로 보호함과 아울러, 방사소자 및 RF 필터 사이에서 접지 기능을 수행함은 물론, RF 필터 측으로부터 발생한 열을 외부로 용이하게 방열시킴과 동시에 방사소자를 접지(GND)시키는 리플렉터를 포함하는 안테나용 RF 모듈 및 이를 포함하는 안테나 장치를 제공하는 것을 또 다른 목적으로 한다.
본 발명의 기술적 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 안테나용 RF 모듈의 일 실시예는, 적어도 4개의 외측면을 가지는 RF 필터, 상기 RF 필터의 외측면 중 어느 한면에 배치되는 방사소자 모듈, 상기 RF 필터의 외측면 중 다른 한면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판 및 상기 RF 필터와 상기 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터를 포함하고, 안테나 하우징에 배치된 메인 보드에 모듈 단위로 소켓 핀 결합된다.
여기서, 상기 메인 보드에 소켓 핀 결합되기 전의 상기 모듈 단위는, 상기 리플렉터의 배면에 상기 RF 필터를 밀착 설치한 다음, 상기 리플렉터의 전면에 상기 방사소자 모듈을 상기 RF 필터에 대하여 전기적인 신호 연결이 이루어지도록 밀착 설치한 조립체로 정의될 수 있다.
또한, 상기 증폭부 기판은, 상기 RF 필터에 나란하게 배치된 증폭부 기판 바디의 내부에 구비되고, 상기 RF 필터와 상기 증폭부 기판 바디는 상호 슬라이딩 결합되는 동작으로 전기적 신호 연결될 수 있다.
또한, 상기 RF 필터와 상기 증폭부 기판은, 상기 증폭부 기판 바디에 상기 RF 필터가 슬라이딩 결합될 때, 동축 커넥터에 의하여 전기적으로 연결될 수 있다.
또한, 상기 RF 필터와 상기 리플렉터는 팸너트에 의하여 결합될 수 있다.
또한, 상기 리플렉터에는, 상기 RF 필터가 전방에서 후방으로 관통 설치되는 다수의 설치구 및 상기 다수의 설치구의 내측 테두리 단부 부위에 후방 측으로 절곡된 밴딩 결합부가 형성되고, 상기 팸너트가 상기 밴딩 결합부에 전후 방향으로 관통된 팸너트 고정홀에 체결된 후, 상기 RF 필터를 관통하는 필터 고정 스크류가 전방에서 후방으로 상기 팸너트를 관통하여 체결되는 동작으로 상기 RF 필터가 결합될 수 있다.
또한, 상기 리플렉터는, 상기 RF 필터의 전면에 적층 결합되되, 상기 리플렉터의 후면에는 상기 RF 필터가 수용되도록 후방으로 돌출되게 다수의 히트 싱크가 일체로 형성될 수 있다.
또한, 상기 리플렉터는, 상기 RF 필터의 배면에 적층 결합되되, 상기 리플렉터의 전면에는 상기 RF 필터가 수용되도록 전방으로 돌출되게 다수의 히트 싱크가 일체로 형성될 수 있다.
또한, 상기 리플렉터는, 상기 RF 필터의 개수와 대응되게 다수로 구비되고, 상기 각각의 RF 필터 전면을 차폐하도록 결합되되, 상기 리플렉터 각각이 접하는 부분은 지그재그 형태로 굴곡진 형상으로 접하도록 구비될 수 있다.
또한, 상기 리플렉터에는 다수의 방열공이 형성되고, 상기 다수의 방열공은, 상기 방사소자 모듈의 간격이 반파장(1/2λ) 간격으로 배열된 경우, 상기 방사소자 모듈의 간격 대비 1/10 내지 1/20 이하의 크기를 가질 수 있다.
또한, 상기 RF 필터, 방사소자 모듈 및 증폭부 기판은, 상하 방향 또는 좌우 방향의 다수개가 어레이 형태로 제조되어 안테나 하우징의 전면에 모듈 단위로 결합될 수 있다.
또한, 상기 RF 필터는, 상기 증폭부 기판이 배치되는 소정의 공간이 형성된 필터 바디를 포함하고, 상기 증폭부 기판은, 상기 아날로그 증폭소자 중 일부가 실장 배치되며 상기 필터 바디의 내부면에 밀착 배치되는 메인 증폭부기판, 및 상기 아날로그 증폭소자 중 나머지 일부가 실장 배치되며 상기 메인 증폭부기판에 적층 배치된 서브 증폭부기판을 포함할 수 있다.
또한, 상기 메인 증폭부기판 중 상기 아날로그 증폭소자가 실장된 부위에는, 열전도성 금속성분이 채워진 메탈 페이스트 비아홀이 형성될 수 있다.
또한, 상기 증폭부 기판에 실장되는 상기 아날로그 증폭소자는, RFIC 소자를 포함할 수 있다.
또한, 상기 RF 필터는, 캐비티 필터 또는 유전체 세라믹 필터 중 어느 하나로 채용된 필터 바디를 포함하고, 상기 필터 바디의 양면 중 적어도 한면에는, 열전도성 재질의 필터 히트 싱크 패널이 더 구비될 수 있다.
또한, 상기 RF 필터의 일측에는 메인 보드로부터 분리된 FPGA 소자가 내부에 실장된 FPGA 기판을 포함하는 FPGA 모듈이 배치되되, 상기 메인 보드에 대하여 소켓 핀 결합될 수 있다.
또한, 상기 FPGA 모듈은, 상기 FPGA 기판이 내부에 배치되는 FPGA 모듈 바디를 포함하고, 상기 FPGA 모듈 바디의 양단면 중 적어도 어느 하나에는 소자 히트싱크 패널이 배치될 수 있다.
또한, 상기 증폭부 기판의 단부에는 메인 보드에 대한 소켓 핀 결합을 수소켓부가 마련되고, 상기 수소켓부는, 다수의 RF 전송 라인 및 GND(접지) 단자 라인이 마련되며, 상기 다수의 RF 전송 라인과 관련된 단자핀 및 상기 GND(접지) 단자 라인과 관련된 단자핀 사이는 Blank 처리될 수 있다.
본 발명의 일 실시예에 따른 안테나용 RF 모듈 조립체는, 각각 적어도 4개의 외측면을 가지는 다수의 RF 필터, 상기 다수의 RF 필터 각각의 외측면 중 어느 한면에 배치되는 다수의 방사소자 모듈, 상기 다수의 RF 필터 각각의 외측면 중 다른 한면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판 및 상기 다수와 RF 필터와 상기 다수의 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터를 포함하고, 안테나 하우징에 배치된 메인 보드에 모듈 단위로 소켓 핀 결합된다.
본 발명의 일 실시예에 따른 안테나 장치는, 적어도 하나의 디지털 소자가 전면 또는 후면에 실장된 메인 보드, 상기 메인 보드가 설치되도록 전방이 개구되게 형성된 함체 형상의 안테나 하우징 및 상기 메인 보드와 전기적인 신호 라인을 통해 연결된 RF 모듈 조립체를 포함하고, 상기 RF 모듈 조립체는, 각각 적어도 4개의 외측면을 가지는 다수의 RF 필터, 상기 다수의 RF 필터 각각의 외측면 중 어느 한면에 배치되는 다수의 방사소자 모듈, 상기 다수의 RF 필터 각각의 외측면 중 다른 한면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판 및 상기 다수와 RF 필터와 상기 다수의 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터를 포함하며, 상기 RF 모듈 조립체는, 상기 안테나 하우징의 메인 보드에 모듈 단위로 소켓 핀 결합된다.
본 발명에 따른 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치의 일 실시예에 따르면 다음과 같은 다양한 효과를 달성할 수 있다.
첫째, 안테나 장치의 발열 소자들로부터 발생하는 열을 공간적으로 분리함으로써 안테나 장치의 전후방으로의 분산 방열이 가능하여 방열 성능이 크게 향상되는 효과를 갖는다.
둘째, 안테나 전방으로의 방열을 방해하는 레이돔이 불필요하므로, 제품의 제조 단가를 크게 절감하는 효과를 가진다.
셋째, 종래 메인 보드 측에 실장되었던 RF 관련 증폭 소자들을 RF 필터와 함께 RF 모듈로 구성하고 안테나 하우징 외부에 배치함으로써, 안테나 장치의 전체적인 방열 성능을 크게 향상시키는 효과를 가진다.
넷째, RF 관련 증폭 소자들을 메인 보드로부터 분리함으로써, 멀티 레이어 보드(Multi Layer Board)인 메인 보드의 층수가 크게 감소하여 메인 보드의 제조비용이 저감되는 이점이 있다.
다섯째, 주파수 의존성(Frequency Dependence)을 갖는 RF 부품을 RF 모듈로 구성하고, 이를 안테나 하우징에 착탈 가능하도록 함으로써, 안테나 장치를 구성하는 개별 RF 부품의 불량이나 파손이 발생하는 경우, 해당 안테나용 RF 모듈만을 교체함으로써 안테나 장치에 대한 유지, 보수가 용이한 이점이 있다.
여섯째, 안테나 장치의 분산 방열이 가능하므로, 안테나 하우징의 후면에 일체로 형성된 히트싱크(방열핀)의 길이 및 부피를 축소할 수 있어, 전체적으로 제품의 슬림 설계가 용이한 효과를 가진다.
일곱째, 방사소자 모듈 중 전자기파의 방사 기능을 수행하는 방사용 디렉터를 매개로 방열이 가능함에 따라, 안테나 장치의 전면 방열 면적을 극대화할 수 있는 효과를 가진다.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 기술에 따른 안테나 장치의 일 예를 나타낸 분해 사시도이고,
도 2는 본 발명의 일 실시예에 따른 안테나 장치를 나타낸 전방부 사시도 및 후방부 사시도이며,
도 3a 및 도 3b는 도 2의 전방부 분해 사시도 및 후방부 분해 사시도이고,
도 4는 도 2의 A-A선을 따라 취한 단면도 및 그 부분 확대도이며,
도 5는 도 2의 B-B선을 따라 취한 일부 절개 사시도 및 그 부분 확대도이고,
도 6은 도 2의 구성 중 리플렉터를 나타낸 사시도이며,
도 7은 도 2의 구성 중 후방 하우징에 대한 메인 보드의 설치 모습을 나타낸 사시도이고,
도 8은 도 2의 구성 중 메인 보드에 대한 RF 모듈의 설치 모습을 나타낸 분해 사시도이며,
도 9는 도 8의 설치 과정 중 필터 바디가 후방 하우징으로부터 분리된 상태도를 도시한 사시도이고,
도 10은 도 8의 구성 중 RF 모듈을 나타낸 사시도이며,
도 11은 도 10의 C-C선을 따라 취한 단면도로써 내부 모습이 일부 투영된 투영 절개 사시도이고,
도 12a 및 도 12b는 도 10의 RF 모듈을 나타낸 분해 사시도이며,
도 13은 도 10의 RF 모듈의 구성 중 증폭부 기판의 상세도이고,
도 14는 증폭부 기판의 메인 보드에 대한 결합 모습을 나타낸 절개 사시도이며,
도 15는 도 3의 구성 중 메인 보드에 대한 RF 모듈의 조립 모습을 나타낸 분해 사시도이고,
도 16은 도 3의 구성 중 리플렉터에 대한 방사소자 모듈의 조립 모습을 나타낸 분해 사시도이며,
도 17은 본 발명의 일 실시예에 따른 RF 모듈의 변형례를 나타낸 개념도이고,
도 18은 리플렉터와 RF 모듈 간 결합 구조의 변형례를 나타낸 단면도이며,
도 19는 히트싱크 일체형 리플렉터의 다양한 변형례를 나타낸 단면도이고,
도 20은 RF 모듈 단위로 분리된 리플렉터 및 그 결합 구조를 나타낸 사시도이며,
도 21은 증폭부 기판의 변형례를 나타낸 단면도 및 평면도이고,
도 22는 후방 하우징에 대한 메인 보드 및 RF 모듈 조립체의 다양한 설치 모습을 나타낸 단면도이며,
도 23은 RF 모듈의 다양한 변형례를 나타낸 사시도이고,
도 24는 모듈 타입의 FPGA 소자의 방열 구조를 나타낸 사시도이며,
도 25는 증폭부 기판의 수소켓부 및 메인 보드의 암소켓부의 구체적인 배열 모습을 나타낸 개념도이다.
<부호의 설명>
100: 안테나 장치 105: 안테나 하우징
110: 후방 하우징 110S: 내부 공간
111: 후방 방열핀 120: 메인 보드
125: 암소켓부 128a: 제1발열소자
128b: 제2발열소자 130: 전방 하우징
140: RF 필터 141: 필터 바디
142a: 스크류 관통홀 143: 격벽
146: 증폭부 기판 146’: 수소켓부
146a-1,146a-2: PA 소자 146c: LNA 소자
147: 고정 보스 148: 히트 싱크 패널
149a: 스크류 고정홀 149b: 스크류 관통홀
150: 리플렉터 151: 안테나 배치부
155: 다수의 방열공 157: 보스 관통홀
160: 방사소자 모듈 161: 방사소자 모듈 커버
162: 인쇄회로기판 163a: 안테나 패치회로부
163b: 급전 라인 165: 방사용 디렉터
166: 보강 리브 167: 디렉터 고정부
168: 디렉터 고정돌기부 200: RF 모듈
300: 증폭부 모듈 500: 외측 장착 부재
이하, 본 발명의 일 실시예에 따른 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명은 종래 안테나 장치의 레이돔(radome)이 필수적으로 구비될 필요가 없고, 안테나 하우징 내부의 메인 보드에 실장되었던 RF 관련 증폭 소자들을 RF 필터와 함께 RF 모듈로 구성함으로써, 안테나 장치의 여러 발열 소자들로부터 발생하는 열을 공간적으로 분리하는 것을 기술적 사상으로 하며, 이하에서는 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치, 그리고 안테나 RF 모듈의 조립 방법을 도면에 도시된 일 실시예에 기준으로 설명한다.
도 2는 본 발명의 일 실시예에 따른 안테나 장치를 나타낸 전방부 사시도(a) 및 후방부 사시도(b)이고, 도 3a 및 도 3b는 도 2의 전방부 분해 사시도 및 후방부 분해 사시도이며, 도 4는 도 2의 A-A선을 따라 취한 단면도 및 그 부분 확대도이고, 도 5는 도 2의 B-B선을 따라 취한 일부 절개 사시도 및 그 부분 확대도이며, 도 6은 도 2의 구성 중 리플렉터를 나타낸 사시도이다.
본 발명의 일 실시예에 따른 안테나 장치(100)는, 도 2 내지 도 5에 참조된 바와 같이, 안테나 장치의 외관을 형성하는 안테나 하우징(105)을 포함한다. 안테나 하우징(105)은 안테나 장치(100)의 후방 측의 외관을 형성하는 후방 하우징(110)과, 안테나 장치(100)의 전방 측의 외관을 형성하는 전방 하우징(130)을 포함한다.
아울러, 본 발명의 일 실시예에 따른 안테나 장치(100)는, 안테나 하우징(105)의 내부 공간(110S)에 밀착 설치된 메인 보드(120)와, 전방 하우징(130)의 전면에 적층 배치되는 안테나용 RF 모듈(Radio Frequency Module)(200)(이하, ‘RF 모듈’이라 약칭한다)을 더 포함한다.
안테나 하우징(105)은, RF 모듈(200)과 결합하여 전체 안테나 장치(1)의 외관을 형성함과 아울러, 미도시 되었으나, 안테나 장치(100)의 설치를 위하여 마련된 지주 폴에 대한 결합을 매개하는 역할을 수행할 수 있다. 다만, 안테나 장치(100)의 설치 공간의 제약을 받지 않는 한 반드시 안테나 하우징(105)이 지주 폴에 결합되어야 하는 것은 아니고, 건물의 내벽 또는 외벽과 같은 수직 구조물에 직접 벽걸이 타입으로 설치 및 고정되는 것도 가능하다. 특히, 본 발명의 일 실시예에 따른 안테나 장치(100)의 경우, 전후 두께를 최소가 되도록 슬림 설계하여, 벽걸이 타입의 설치가 보다 용이하도록 하는 것에 큰 의미를 가지고 있다. 이에 대해서는, 뒤에 보다 상세하게 설명하기로 한다.
안테나 하우징(105)은, 전체적으로 열전도에 따른 방열이 유리하도록 열전도성이 우수한 금속재질로 구비되되, 대략 전후 방향의 두께가 얇은 직육면체 함체 형상으로 형성되고, 후방 하우징(110)의 전면이 개구되게 형성되어 소정의 내부 공간(110S)을 구비함으로써, 도면에 도시되지 않았으나, 디지털 소자(예를 들면, FPGA(Field Programmable Gate Array) 소자 및/또는 PSU(Power Supply Unit) 소자) 등이 실장된 메인 보드(120)의 설치를 매개하는 역할을 수행한다.
한편, 도면에 도시되지 않았으나, 후방 하우징(110)의 내측면은 메인 보드(120)의 후면에 실장된 디지털 소자(FPGA 소자 등) 및/또는 PSU 소자 등에 의한 외형 돌출 형상에 형합되는 형상으로 형성될 수 있다. 이는, 메인 보드(120)의 배면과의 열 접촉 면적을 증대시켜 방열 성능을 극대화하기 위함이다.
안테나 하우징(105)의 좌우 양측에는, 도면에 도시되지 않았으나, 현장에서 작업자가 본 발명의 일 실시예에 따른 안테나 장치(100)를 운송하거나 지주 폴(미도시) 또는 건물의 내벽 또는 외벽에 대하여 수동 장착이 용이하도록 파지할 수 있는 손잡이부가 더 설치될 수 있다.
아울러, 안테나 하우징(105)의 하단부 외측에는, 미도시의 기지국 장치와의 케이블 연결 및 내부 부품의 조율을 위한 각종 외측 장착 부재(500)가 관통 조립될 수 있다.
도 2를 참조하면, 후방 하우징(110)의 배면에는 다수의 후방 방열핀(111)이 소정 패턴 형상을 가지도록 일체로 형성될 수 있다. 여기서, 후방 하우징(110)의 내부 공간(110S)에 설치된 메인 보드(120)로부터 생성된 열은 다수의 후방 방열핀(111)을 통해 후방으로 직접 방열될 수 있다.
다수의 후방 방열핀(111)은, 좌우 폭 가운데 부분을 기준으로 좌측단 및 우측단으로 갈수록 상향 경사지게 배치되어(도 2의 (b) 참조), 후방 하우징(110)의 후방으로 방열되는 열이 각각 후방 하우징(110)의 좌측 및 우측 방향으로 분산된 상승기류를 형성하여 보다 신속하게 열이 분산되도록 설계될 수 있다. 그러나, 후방 방열핀(111)의 형상이 반드시 이에 한정되어 형성되어야 하는 것은 아니다. 가령, 도면에 도시되지 않았으나, 후방 하우징(110)의 배면 측에 송풍팬 모듈(미도시)이 구비된 경우에는, 송풍팬 모듈에 의하여 방열된 열이 보다 신속하게 배출되도록, 후방 방열핀(111)은 가운데에 배치된 송풍팬 모듈에서 각각 좌측단 및 우측단으로 평행되게 형성되는 것이 채택될 수 있다.
또한, 도시되어 있지는 않지만, 다수의 후방 방열핀(111) 일부에는, 안테나 장치(1)를 지주 폴(미도시)에 결합하기 위한 클램핑 장치(미도시)가 결합되는 마운팅부(미도시)가 일체로 형성될 수 있다. 여기서, 클램핑 장치는, 그 선단부에 설치된 본 발명의 일 실시예에 따른 안테나 장치(100)를 좌우 방향으로 로테이팅 회동시키거나 상하 방향으로 틸팅 회동시켜, 안테나 장치(100)의 방향성을 조절하기 위한 구성일 수 있다.
그러나, 마운팅부에 반드시 안테나 장치(100)를 틸팅 및 로테이팅 회동시키기 위한 클램핑 장치가 결합되어야만 하는 것은 아니다. 예를 들면, 안테나 장치(100)를 건물의 내벽 또는 외벽에 벽걸이 타입으로 설치하는 경우, 마운팅부에는 벽걸이 타입으로 결합하기 용이한 걸쇠 플레이트 형상의 클램프 패널이 결합되는 것도 가능하다.
이하, 본 발명에 따른 안테나용 RF 모듈(200)을 첨부된 도면을 참조하여 보다 구체적으로 설명하기로 한다.
RF 모듈(200)은, RF 필터(140)와, 방사소자 모듈(160) 및 증폭기 기판(146)을 포함할 수 있다. 아울러, RF 모듈(200)은, 방사소자 모듈(160)의 접지(GND) 역할을 수행하는 리플렉터(150)를 더 포함할 수 있다. 다만, 리플렉터(150)는, 방사소자 모듈(160)의 접지 역할만을 수행하는 것은 아니고, 후술하는 안테나 하우징(105) 중 전방 하우징(130)의 전면 전방으로 정의되는 전방 외기에 대하여 노출된 RF 필터(140)를 외부로부터 보호하는 역할도 수행할 수 있다.
이와 같은 구성으로 이루어진 RF 모듈(200)은, 도 2 내지 도 5에 참조된 바와 같이, 안테나 하우징(105) 중 전방 하우징(130)을 매개로 메인 보드(120)의 전면에 적층 배치될 수 있다.
본 발명의 일 실시예에 따른 안테나 장치(100)에 있어서, RF 필터(140)는, 복수 개로 구비되어 안테나용 RF 모듈 조립체의 일 구성을 이룬다.
여기서, RF 필터(140)는, 도 2 및 도 3에 참조된 바와 같이, 좌우방향으로 총 8개가 인접하게 배열됨과 아울러, 이와 같은 다수의 RF 필터(140)가 상하방향으로 각각 총 4열 배치된 것을 채택하고 있다. 그러나, 반드시 이에 한정되는 것은 아니고, 그 배열 위치 및 RF 필터(140)의 개수는 다양하게 설계 변형될 수 있음은 당연하다고 할 것이다.
또한, 본 발명의 일 실시예에서 RF 필터(140)는, 일측에 소정의 공간(Cavity)이 형성되고, 상기 공간 내에 DR(Dielectric Resonator) 또는 금속성 공진봉으로 구성된 공진기가 구비된 캐비티 필터인 것을 예시로 설명하고 있다. 그러나, RF 필터(140)는 이에 한정하지 않고 유전체 필터 등 다양한 필터가 채택될 수 있다.
아울러, 다수의 방사소자 모듈(160)은, 다수의 RF 필터(140) 각각의 개수에 대응되게 결합되고, 방사소자 모듈(160) 각각은 2T2R을 구현한다. 따라서, 본 발명의 일 실시예에 따른 안테나 장치(100)는 총 64T64R가 구현된 모델을 예시하고 있으나, 이에 한정되는 것은 아니다.
한편, RF 모듈(200)은, 상술한 바와 같이, 다수의 RF 필터(140)를 덮도록 배치되되, 다수의 방사소자 모듈(160)의 접지 역할을 수행하는 리플렉터(150)를 더 포함할 수 있다. 이를 위해, 리플렉터(150)는 금속 재질로 이루어짐이 바람직하다.
여기서, 리플렉터(150)는, 방사소자 모듈(160)의 반사층으로서의 기능을 더 수행할 수 있다. 따라서, 리플렉터(150)는, 방사소자 모듈(160)로부터 출력되는 RF 신호를 지향 방향에 해당하는 방향으로 반사하여 RF 신호를 집중시킬 수 있다.
아울러, 리플렉터(150)는, 본 발명의 실시예에 따른 RF 모듈(200)에 특유한 기능으로써, 안테나 장치로부터 발생되는 시스템 열의 외기에 대한 방열 기능을 수행할 수 있다.
이를 위해, 리플렉터(150)는, 도 6에 참조된 바와 같이, 다수의 방열공(155)이 천공된 메쉬(mesh) 형태로 형성될 수 있다. 다수의 방열공(155)은, 리플렉터(150)의 내외부를 연통시키는 역할을 하는 구성으로써, 리플렉터(150)의 후방 공간에 위치된 RF 필터(140)로부터 생성된 열을 리플렉터(150)의 외부로 배출시키는 열 배출공 역할을 수행할 수 있다. 이에 따라, 안테나 장치(100)의 방열에 외기를 적극적으로 이용할 수 있게 된다.
한편, 상기 방열공(155)의 크기는 리플렉터(150)의 내구성, 방열 특성을 시뮬레이션하여 적절히 설계될 수 있으며, 특히, 방열공(155)들 간 크기는 원활한 접지(GND) 기능의 유지를 위하여 주파수의 파장을 고려하여 설계될 수 있다. 예를 들면, 방열공(155)들의 크기는 상기 동작 주파수의 1/10λ 내지 1/20λ 의 범위 내의 크기를 가지도록 설정될 수 있다.
여기서, 간격 1/10λ는 방사소자 모듈(160)의 충분한 접지(GND) 역할을 수행하기 위한 상한 임계치로서의 의미가 있고, 간격 1/20λ는 리플렉터(150)의 방열공(155)을 통한 최소한의 외기 유동을 확보하기 위한 하한 임계치로서의 의미가 있다.
그러므로, 방열공(155)의 크기는, 동작 주파수의 1/20λ 보다는 크고, 동작 주파수의 1/10λ 보다는 작은 범위를 가지도록 형성됨이 바람직하다.
특히, 리플렉터(150)는, 접지(GND) 기능 측면에서, 다수의 RF 필터(140)과 다수의 방열소자 모듈(160) 사이에 단수 개로 구비되어, 공통 접지(common ground) 기능을 수행하는 구성으로 정의될 수 있다.
보다 상세하게는, 리플렉터(150)는, 도 6에 참조된 바와 같이, 다수의 RF 필터(140)의 전단에 적층되는 4각의 금속 판체 형상으로 형성될 수 있다. 리플렉터(150)의 전면에는, 후술하는 방열소자 모듈(160) 각각이 안착되는 안테나 배치부(151)가 평면 형태로 RF 필터(140)의 위치에 대응되게 형성될 수 있다. 여기서, 안테나 배치부(151)가 평면 형태로 형성됨으로써, 후방의 RF 필터(140)의 구성 중 필터 바디(141)의 전면이 표면 열접촉되고, 전방의 방사소자 모듈(160)의 배면이 표면 열접촉되도록 안착됨으로써, 열전도 방식에 의한 방열 성능을 향상시킬 수 있다.
또한, 리플렉터(150)는, 도 6에 참조된 바와 같이, 테두리 부위가 각각 후방으로 절곡되어 전방 하우징(130)의 전면에 결합된 다수의 RF 필터(140)의 측부를 감싸면서 보호하는 테두리 절곡판(154)이 형성되고, 테두리 절곡판(154)의 가장자리를 따라 다수개소에 이격되게 다수의 스크류 고정홈(153)이 형성되며, 다수의 스크류 고정홈(153)과 전방 하우징(130)의 가장자리를 따라 형성된 다수의 스크류 관통홀(133)에 다수의 조립 스크류(도면부호 미표기)가 체결되는 동작으로 전방 하우징(130)의 전방에 결합될 수 있다.
안테나용 RF 모듈(200)은, 도 2 내지 도 5에 참조된 바와 같이, 안테나 하우징(105)에 착탈 결합될 수 있다. 안테나용 RF 모듈(200)은 전방 하우징(130)과 볼팅 결합(또는 스크류 결합) 등을 통해 물리적으로 체결될 수 있고, 안테나용 RF 모듈(200)을 구성하는 증폭부 기판(146)이 메인 보드(120)에 소켓 핀 결합 방식으로 착탈될 수 있다. 구체적으로 증폭부 기판(146)에는 후술할 도 11a의 수소켓부(146’)가 구비되고, 메인 보드(120)의 전면에는 증폭부 기판(146)의 수소켓부(146’)가 소켓 핀 결합되는 암소켓부(125)가 구비될 수 있다. 증폭부 기판(146)의 구체적인 구성 및 기능에 대해서는 뒤에 보다 상세하게 설명하기로 한다.
전방 하우징(130)은, 도 3a 및 도 3b에 참조된 바와 같이, 안테나 하우징(105)의 내부 공간(110S)에 설치되어 안착된 메인 보드(120)와 그 전면에 적층 배치된 RF 모듈(200) 사이를 구획하는 역할을 수행한다. 또한, 전방 하우징(130)은 안테나 하우징(105) 측의 내부 공간(110S)과 그 이외의 공간이 구별되도록 구획 구비됨으로써, 안테나 하우징(105) 측의 내부 공간(110S)에 생성된 열이 RF 필터(140) 측으로 영향을 미치지 않도록 열적 차단 및 분리 기능을 수행할 수 있다.
여기서, ‘열적 차단’이라는 의미는, 전방 하우징(130)의 전면 전방으로 정의되는 전방 외기(또는 전방 공간) 상에 위치된 RF 모듈(200)로부터 발생한 열이 전방 하우징(130)의 배면 공간(즉, 후방 하우징(110)의 내부 공간(110S)) 측으로의 열 침입을 차단하는 것으로 이해하는 것이 바람직하고, ‘열적 분리’라는 의미는, 애초 후방 하우징(110)의 내부 공간(110S)에 적층된 메인 보드(120)의 전면과 배면에 집중 분산 실장된 다수의 발열 소자 중 일부를 분리하여 후방 방열 뿐만 아니라 전방 방열이 가능하도록 열적 구성을 분리 배치한 것으로 이해하는 것이 바람직하다.
또한, 안테나 장치 및 이에 포함된 부품이나 장비를 제조하는 수많은 제조자들이 존재하는 현재의 시장 상황에서, RF 모듈(200)만을 제조하는 제조자 입장에서는, 미리 다수의 RF 모듈(200)들을 전방 하우징(130)에 가조립한 상태로, 또는 가조립이 가능한 모듈 단위로 유통 및 판매가 가능하게 됨에 따라 새로운 시장 환경을 구축할 수 있는 이점이 있다.
전방 하우징(130)에는, 리플렉터(150)의 스크류 고정을 위한 다수의 스크류 관통홀(133)이 가장자리를 따라 다수 개소에 형성될 수 있다. 또한, 전방 하우징(130)에는, RF 필터(140)의 증폭부 기판(146)에 형성된 수소켓부(146’)가 각각 관통하여 메인 보드(120)의 암소켓부(125)에 소켓 핀 결합되기 위한 적어도 관통 슬릿(135)이 형성될 수 있다.
여기서, 전방 하우징(130)의 후면 테두리부와 후방 하우징(110)의 전면 테두리부 사이에는, 상술한 리플렉터(150)의 방열공(155)을 통해 외부로 노출된 상태이므로, 본 발명의 일 실시예에 따른 안테나 장치(100)가 건물 외부(즉, 실외)에 설치될 경우 우천 시의 빗물이 스며들 수 있는 바, 빗물 등의 유입을 방지하기 위한 방수 개스킷링(미도시)이 개재될 수 있다. 또한, 전방 하우징(130)에 관통된 다수의 관통 슬릿(135)의 전면 및 후면에는 이를 관통하는 증폭부 기판(146)의 수소켓부(146’)를 외부로부터 보호하고, 그 사이를 통하여 빗물 등의 이물질이 후방 하우징(110)의 내부 공간(110S) 측으로 유입되는 것을 방지하는 이물질 유입 방지링(미도시)이 각각 개재될 수 있다.
이와 같이 본 발명의 일 실시예에 따른 안테나 장치(100)는, 메인 보드(120)와 RF 필터(140) 간 소정의 전기적인 신호 라인을 구축함에 있어서 간단한 소켓 핀 결합 방식을 채택함으로써, 종래 RF 필터(140)와 메인 보드(120) 사이를 전기적으로 연결하기 위한 별도의 동축 커넥터(DCC, Direct Coaxial Connector)를 이용할 필요가 없으므로, 제품의 제조 단가를 크게 절감하는 이점을 제공한다.
다만, 여기서의 RF 필터(140)의 소켓 핀 결합 방식의 채택은 전기적인 결합 측면에서 유효한 효과를 창출하는 것으로 이해될 것이고, 물리적인 결합 측면에서 RF 필터(140)의 임의 유동을 방지하기 위해, 다수의 스크류 체결 방식을 추가 채택하는 것도 가능함은 당연할 것이다. 예를 들면, 후술하는 도 12a 및 도 12b에 참조된 바와 같이, RF 필터(140)의 구성 중 필터 바디(141)의 후단부 가장자리에 형성된 다수의 스크류 관통홀(142a)을 통해 고정스크류(142)를 이용한 전방 하우징(130)에 대한 스크류 체결 방식으로 보다 견고한 고정 효과를 창출할 수 있다.
도 7은 도 2의 구성 중 후방 하우징에 대한 메인 보드의 설치 모습을 나타낸 분해 사시도이고, 도 8은 도 2의 구성 중 메인 보드에 대한 RF 모듈 조립체의 설치 모습을 나타낸 분해 사시도이며, 도 9는 도 8의 설치 과정 중 필터 바디가 후방 하우징으로부터 분리된 상태도를 도시한 사시도이며, 도 10은 도 8의 구성 중 RF 모듈을 나타낸 사시도이고, 도 11은 도 10의 C-C선을 따라 취한 단면도로써 내부 모습이 일부 투영된 투영 절개 사시도이며, 도 12a 및 도 12b는 도 10의 RF 모듈을 나타낸 분해 사시도이고, 도 13은 도 10의 RF 모듈의 구성 중 증폭부 기판의 상세도이며, 도 14는 증폭부 기판의 메인 보드에 대한 결합 모습을 나타낸 절개 사시도이고, 도 15는 도 3의 구성 중 메인 보드에 대한 RF 모듈의 조립 모습을 나타낸 분해 사시도이며, 도 16은 도 3의 구성 중 리플렉터에 대한 방사소자 모듈의 조립 모습을 나타낸 분해 사시도이다.
본 발명에 따른 안테나용 RF 모듈(200)의 일 실시예는, RF 필터(140)와, RF 필터(160)의 일측에 배치되는 방사소자 모듈(160)과, RF 필터(140)의 타측에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판(146)을 포함할 수 있다.
여기서, RF 필터(140)는, 적어도 4개의 외측면을 가지도록 형성될 수 있다. 즉, RF 필터(140)는, 4개의 외측면을 가질 경우 사면체로 구비되고, 5개의 외측면을 가질 경우 오면체로 구비되며, 6개의 외측면을 가질 경우 육면체로 구비되는 것을 모두 포함한다. 그러므로, 이하에서, RF 필터(140)의 ‘일측’ 및 ‘타측’은 적어도 4개의 외측면 중 어느 한 면 및 그 한 면을 제외한 다른 한면을 지칭하는 것으로서, 물리적으로 완전한 상호 반대면을 지시하는 개념이 아니라, 어느 한 면 및 그 한 면을 제외한 다른 면들 중 한 면을 의미하는 것으로 이해되어야 할 것이다.
따라서, 본 발명에 따른 안테나용 RF 모듈(200)의 다른 실시예는, 도 2 내지 도 5에 참조된 바와 같이, RF 필터(140)에서 발생한 열과 아날로그 증폭소자에서 발생한 열은 서로 다른 방향으로 방열되는 실시예로 정의될 수 있다.
그리고, 본 발명에 따른 안테나용 RF 모듈(200)은, 증폭부 기판(146)이 RF 필터(140)의 내부에 배치되는 구성인 점에서, 실질적으로 RF 모듈(200)의 외형은 RF 필터(140) 및 그 전단부에 구비되는 방사소자 모듈(160)에 의하여 구성될 수 있는 실시예로 다르게 정의될 수 있음은 당연하다.
또한, RF 모듈(200)은, 아날로그 RF 부품들의 집합체로써, 가령, 증폭부 기판(146)은 RF 신호를 증폭시키는 아날로그 증폭소자가 실장된 RF 부품이고, RF 필터(140)는 입력된 RF 신호를 원하는 주파수 대역으로 주파수 필터링하기 위한 RF 부품이며, 방사소자 모듈(160)은 RF 신호를 수신 및 송신하는 역할을 수행하는 RF 부품이다.
그러므로, 본 발명에 따른 안테나용 RF 모듈(200)은, 또 다른 실시예로써 다음과 같이 정의될 수 있다.
본 발명에 따른 안테나용 RF 모듈(200)은, 아날로그 RF 부품을 포함하는 안테나용 RF 모듈(200)로서, 아날로그 RF 부품은, 적어도 4개의 외측면을 가지는 RF 필터(140)와, RF 필터(140)의 외측면 중 어느 한 면에 배치되는 방사소자 모듈(160)과, RF 필터(140)의 외측면 중 다른 한 면에 배치되는 증폭부 기판(146) 상의 아날로그 증폭소자(미도시)를 포함한다.
여기서, 증폭부 기판(146)은, 안테나 하우징(110,130) 내부의 메인 보드(120)와 전기적으로 연결될 수 있다. 보다 상세하게는, 후술하는 바와 같이, 증폭부 기판(146)은 메인 보드(120)와 소켓 핀 결합 방식으로 전기적인 연결이 이루어질 수 있다.
또한, 본 발명에 따른 안테나용 RF 모듈(200)의 또 다른 실시예는, RF 필터(140)와, RF 필터(140)의 전면에 배치되는 방사소자 모듈(160)과, RF 필터(140)와 방사소자 모듈(160) 사이에 배치되어 방사소자 모듈(160)을 접지(GND)함과 아울러, RF 필터(140)에서 발생된 열의 외부로의 방열을 매개하는 리플렉터(150)를 포함하는 개념으로 정의될 수 있다.
이를 보다 상세하게 설명하면, 본 발명에 따른 안테나용 RF 모듈(200)의 또 다른 실시예는, 안테나 하우징(110,130)의 내부 공간(110S)에 설치된 메인 보드(120)의 전면에 대하여 적층 배치된 RF 필터(140)와, RF 필터(140)의 전면에 적층 배치되는 방사소자 모듈(160)과, RF 필터(140)를 덮도록 배치되되, 방사소자 모듈(160)의 접지(GND) 역할을 수행함과 아울러 RF 필터(140) 측으로부터 발생된 열의 외부로의 방열을 매개하는 리플렉터(150)를 포함할 수 있다. 여기서, 리플렉터(150)는, 상술한 바와 같이, 방사 신호의 집중 조사를 도모할 수 있는 반사층으로서의 기능을 더 수행할 수 있음은 당연하다.
특히, RF 필터(140)가 적어도 4개의 외측면을 가지는 것으로 전제할 때, 방사소자 모듈(160)은 RF 필터(140)의 어느 한 면(전면)에 적층 배치되고, 증폭부 기판(146)은 RF 필터(140)의 외측면 중 다른 한 면에 배치되어, 적어도 하나의 아날로그 증폭소자가 실장된 증폭부 기판(146)으로부터 발생된 열은, 증폭부 기판(146)에 인접하는 RF 필터(140)의 측벽 중 하나를 통해 방열된 후 리플렉터(150)를 매개로 외부로 최종 방열될 수 있다.
한편, 본 발명에 따른 안테나용 RF 모듈(200)의 또 다른 실시예는, 안테나 하우징(105)에 착탈 가능하도록 결합될 수 있다. 즉, 본 발명에 따른 안테나용 RF 모듈(200)은, RF 필터(200)와, RF 필터(200)의 전면에 배치되는 방사소자 모듈(160)과, RF 필터(140)와 방사소자 모듈(160) 사이에 배치된 리플렉터(150)를 포함하고, 안테나용 RF 모듈(200)은 안테나 하우징(105)에 착탈 가능하도록 결합되는 또 다른 실시예로 정의될 수 있다. 구체적으로, 안테나용 RF 모듈(200)이 착탈되는 대상은 안테나 하우징(105)의 구성 중 후방 하우징(110)의 내부 공간(110S)에 배치된 메인 보드(120)이고, 전방 하우징(130)을 매개로 착탈 결합될 수 있다.
이에 따르면, 주파수 의존성 (Frequency Dependence)을 갖는 RF 부품을 RF 모듈로 구성하고, 이를 안테나 하우징(105)에 착탈 가능하도록 함으로써, 안테나 장치(100)를 구성하는 RF 부품의 불량이나 파손이 발생하는 경우, 해당 안테나용 RF 모듈(200)만을 교체함으로써 안테나 장치(100)에 대한 유지, 보수가 용이해지는 이점이 있다.
또한, 리플렉터(150)는, RF 필터(140)을 덮도록 배치되되, 안테나 하우징(105)의 내부 공간(110S)을 기준으로 전방 하우징(130)의 전방 외측으로 돌출되게 노출된 RF 필터(140)를 전부 덮도록 배치될 수 있다. 이와 같이, 리플렉터(150)를 이용하여 전방 하우징(130)의 전면 전방으로 정의되는 전방 외기(또는 전방 공간)으로 노출된 RF 필터(140)를 외부 환경으로부터 보호함과 동시에, 상술한 바와 같이 무수히 많은 방열공(155)을 통해 내외부로의 공기 유동이 원활하게 설계됨으로써 보다 높은 전방 방열 성능 향상을 도모할 수 있게 된다.
한편, 상술한 다양한 실시예로 구현되는 RF 모듈(200)이 복수 개로 구비됨으로써 후술하는 안테나용 RF 모듈 조립체를 구성할 수 있다.
다수의 RF 필터(140)는, 도 11a 및 도 11b에 참조된 바와 같이, 가운데의 격벽(143)을 기준으로 폭방향 일측과 타측에 각각 소정의 공간(C1,C2)을 형성하는 필터 바디(141)와, 상기 소정의 공간(C1,C2) 중 어느 하나(도 11a의 도면부호 “C1” 참조)에 마련된 다수의 캐비티(미도시)에 설치된 다수의 공진기(DR, 미도시)와, 상기 소정의 공간(C1,C2) 중 다른 하나(도 11b의 도면부호 “C2” 참조)에 배치되고, 메인 보드(120)의 암소켓부(125)에 결합되어 전기적으로 연결되는 증폭부 기판(146)을 포함할 수 있다. 여기서, 상기 필터 바디(141)는 금속재질로써, 다이캐스팅 성형 공법을 통해 제조된다.
다수의 RF 필터(140)는, 소정의 공간 중 “C1” 측에 설치된 다수의 공진기(DR)를 이용한 주파수 조절을 통해 입력 신호 대비 출력 신호의 주파수 대역을 필터링하는 캐비티 필터로 채용되어 배치될 수 있다. 그러나, 반드시 RF 필터(140)가 캐비티 필터로 한정되는 것은 아니고, 상술한 바와 같이 세라믹 도파관 필터(Ceramic Waveguide Filter)를 배제하는 것은 아니다.
RF 필터(140)는, 전후 방향의 두께가 작은 것이 제품 전체의 슬림화구현 설계에 있어서 유리하다. 이와 같은 제품의 슬림화 설계 측면에서, RF 필터(140)는 전후 방향 두께의 축소 설계가 제한적인 캐비티 필터보다는 소형화 설계가 유리한 세라믹 도파관 필터의 채택이 고려될 수 있다. 하지만, 5G 주파수 환경에서 요구되는 기지국 안테나의 고출력 성능을 만족하기 위해서는 그에 수반하는 안테나 방열 문제를 필연적으로 해결하여야 하고, 안테나 내부에서 발생한 열을 효과적으로 방출하기 위해 RF 필터(140)를 열전달 매개체로 활용하여 RF 필터(140)에서 발생한 열을 안테나 하우징(105)의 전방으로 전달할 수 있다는 점에서 캐비티 필터의 채용이 선호될 수 있다.
특히, 본 발명의 일 실시예에 따른 안테나 장치(100)에 있어서, 다수의 RF 필터(140)는 RF 모듈(200)의 형태로 안테나 하우징(105)의 한정된 내부 공간(110S)으로부터 벗어나 외기에 직접 노출되도록 설치되는 점에서, RF 필터(140)의 설치면을 제외한 사방을 통하여 방열이 가능한 점에서 캐비티 필터의 채용이 더 선호될 수 있다. 이하에서는, 본 발명의 일 실시예에 따른 안테나 장치(100)에서 RF 필터(140)로 캐비티 필터를 채용되는 것을 예시로 설명하기로 한다.
본 발명의 일 실시예에 따른 안테나 장치(100)는, 도 10 내지 도 12b에 참조된 바와 같이, 종래 메인 보드(120)의 전면 또는 후면에 실장된 RF 소자였던 RFIC 소자(미도시), PA(Power Amplifier) 소자 및 LNA(Low Noise Amplifier) 소자들을 RF 필터(140)의 증폭부 기판(146)으로 분리 실장하고, RF 필터(140) 전부를 외기에 노출되도록 설치함으로써, 방열 성능을 크게 향상시키는 이점을 제공한다.
즉, 종래에는 안테나 하우징의 전방에 설치된 레이돔(radome)이 전방 측으로의 방열을 저해하는 장애요소가 될 뿐 아니라, 발열량이 큰 디지털 소자나 PSU을, RF 소자(RFIC, PA 및 LNA 소자 등)들과 함께 메인 보드에 집중 실장됨으로써 안테나 하우징의 내부에서 열 집중이 발생하는 문제가 있었다. 또한, 상기 집중된 열을 오직 안테나 하우징의 후방 측으로만 집중 방열하여야 하여 방열 효율이 크게 저하되는 문제점이 있었다.
그러나, 본 발명의 일 실시예에 따른 안테나 장치(100)의 경우, 도 13에 참조된 바와 같이, 다수의 RF 모듈(200)을 안테나 하우징(105)의 내부 공간(110S)과는 무관한 전방으로 분리 설치하되 외기에 직접 노출되도록 설치하고, RF 필터(140)의 측벽 일부에 증폭부 기판(146)을 추가하여 종래 메인 보드에 실장된 RF 소자들(146a-1,146a-2,146c)을 분산 배치함으로써 열적 분산을 도모하고, 분산된 열을 보다 신속하게 외부로 방열할 수 있게 된다.
여기서, 상기 RF 소자들은 아날로그 증폭소자일 수 있으며, 상술한 바와 같이, PA(Power Amplifier) 소자(146a-1,146a-2), LNA(Low Noise Amplifier) 소자(146c) 등을 포함한다.
보다 상세하게는, 증폭부 기판(146)은, 양면 중 어느 한 면에 아날로그 증폭소자 중 하나인 한 쌍의 PA 소자(146a-1,146-2)가 실장 배치됨과 아울러, 아날로그 증폭소자 중 하나인 LNA 소자가 실장 배치될 수 있고, 양자 사이를 디커플링시키는 서큘레이터(146d-1,146d-2)가 회로 연결될 수 있다. 그러나, 반드시 증폭부 기판(146)의 양면 중 어느 한 면에만 상술한 아날로그 증폭소자가 실장되어야 하는 것은 아니고, 실시예에 따라서는 증폭부 기판(146)의 양면에 분산 실장 배치될 수 있음은 당연하다고 할 것이다.
또한, 증폭부 기판(146)이 RF 필터(140) 측으로 분리 실장됨으로써, 멀티 레이어로 이루어진 메인 보드(120)의 층수를 감소시킬 수 있는 점에서, 메인 보드(120)의 제조단가를 저감시키는 이점을 제공한다.
증폭부 기판(146)은, 소정의 공간(C1,C2) 중 다른 하나(C2)의 내부에 안착되도록 설치되되, 적어도 수소켓부(146’)의 단부가 필터 바디(141)의 후면 측으로 돌출되어 노출될 수 있도록 안착 설치될 수 있다.
한편, 다수의 RF 필터(140)는, 도 10 내지 도 12b에 참조된 바와 같이, 증폭부 기판(146)으로부터 발생한 열을 상기 소정의 공간(C2)으로부터 필터 바디(141)의 외부로 방열시키는 필터 히트 싱크 패널(148)을 더 포함할 수 있다.
필터 바디(141)의 소정의 공간(C2) 주변에는 다수의 스크류 고정홀(149a)이 형성됨과 아울러, 필터 히트 싱크 패널(148)의 테두리 부위에는 다수의 스크류 관통홀(149b)이 형성되고, 다수의 고정 스크류(149)가 필터 바디(141)의 외측에서 다수의 스크류 관통홀(149b)을 관통하여 다수의 스크류 고정홀(149a)에 체결되는 동작으로, 필터 히트 싱크 패널(148)이 필터 바디(141)에 고정될 수 있다.
여기서, 필터 바디(141)의 소정의 공간(C2) 내부에 설치된 증폭부 기판(146)은 외측면이 필터 히트 싱크 패널(148)의 내측면에 표면 열접촉되도록 구비됨으로써, 증폭부 기판(146)으로부터 생성된 열이 필터 히트 싱크 패널(148)을 통하여 열전도됨과 아울러, 그 외부에 일체로 형성된 필터히트 싱크핀(148a)들을 통하여 외부로 방출될 수 있다.
한편, 본 발명에 따른 안테나용 RF 필터(200)는, 도면에 도시되지 않았으나, 필터 히트 싱크 패널(148)과 증폭부 기판(146) 사이에 배치되어 증폭부 기판(146)으로부터 발생된 열을 포집하여 필터 히트 싱크 패널(148)로 전달하는 열전달 매개체를 더 포함할 수 있다.
열전달 매개체는, 폐쇄된 내부에서 유동되는 냉매의 상변화를 통하여 열을 전달하도록 구비된 베이퍼 챔버(Vapor chamber) 또는 히트 파이프(Heat-pipe) 중 어느 하나로 이루어질 수 있다. 베이퍼 챔버는 열원인 증폭부 기판(146)가 필터 히트 싱크 패널(148)과의 사이 거리가 상대적으로 작은 경우 그 채용이 선호되고, 반대로 히트 파이프는 열원인 증폭부 기판(146)과 필터 히트 싱크 패널(148)과의 사이 거리가 상대적으로 큰 경우 그 채용이 선호될 수 있다.
다수의 RF 필터(140)는, 도 10 내지 도 12b 및 도 14에 참조된 바와 같이, 증폭부 기판(146)에 형성된 수소켓부(146’)를 이용하여 메인 보드(120)의 전면에 구비된 암소켓부(125)에 착탈 결합됨과 아울러, 필터 바디(141)의 후단부 가장자리에 형성된 다수의 스크류 관통홀(142a)을 통해 고정스크류(142)를 이용하여 전방 하우징(130)에 스크류 체결시킴으로써 보다 안정적으로 고정될 수 있다. 여기서, 증폭부 기판(146)에 형성된 수소켓부(146’)는, 도 14에 참조된 바와 같이, 외부 공간에 해당하는 전방 하우징(130)의 전면에 형성된 관통 슬릿(135)을 관통하여 암소켓부(125)에 소켓 핀 결합되는 점에서, 필터 바디(141)와 전방 하우징(130) 사이에는 미도시의 이물질 유입 방지링이 개재될 수 있음은 이미 설명하였다.
한편, 필터 바디(141)의 전면에는, 도 10 내지 도 12b에 참조된 바와 같이, 후술하는 다수의 방사소자 모듈(160)의 스크류 고정을 위한 적어도 하나 이상의 고정 보스(147)가 설치될 수 있다. 적어도 하나 이상의 고정 보스(147)는, 리플렉터(150)에 형성된 보스 관통홀(157)을 관통하여 리플렉터(150)의 안테나 배치부(151)의 전면으로 관통 노출되고, 다수의 방사소자 모듈(160)을 고정시키는 소자 고정 스크류(180)가 체결되는 부위이다.
여기서, 적어도 하나 이상의 고정 보스(147)는 열전도가 용이한 금속 재질로 이루어질 수 있다. 그러므로, 필터 바디(141) 및 고정 보스(147)는, 상술한 바와 같이, 열전도가 용이한 금속 재질로 구비되는 바, 제한적으로나마 필터 바디(141)로부터 생성된 열이 레이돔(radome)이 삭제된 전방으로의 방열이 용이한 이점을 제공한다. 나아가, 후술하는 방사소자 모듈(160)의 구성 중 방사용 디렉터(165) 또한 열전도가 용이한 금속 재질로 구비되어, 전방에서의 방열 면적이 확장되는 측면에서 전방 방열 성능을 더욱 향상시킬 수 있다. 이에 대해서는, 뒤에 보다 상세하게 설명하기로 한다.
빔포밍(Beamforming)의 구현을 위해서는, 도 2 내지 도 5에 참조된 바와 같이, 배열 안테나(Array antenna)로써 다수의 방사소자 모듈(160)이 필요하고, 다수의 방사소자 모듈(160)은 좁은 방향성 빔(narrow directional beam)을 생성하여 지정된 방향으로의 전파 집중을 증가시킬 수 있다. 최근 다수의 방사소자 모듈(160)은, 다이폴 타입의 다이폴 안테나(Dipole antenna) 또는 패치 타입의 패치 안테나(Patch antenna)가 가장 높은 빈도로 활용되고 있으며, 상호간의 신호 간섭이 최소화되도록 이격되게 설계 배치된다. 종래에는, 일반적으로 이와 같은 다수의 방사소자 모듈(160)들의 배열 설계가 외부 환경 요인에 의하여 변경되지 않도록 하기 위하여 다수의 방사소자 모듈(160)들을 외부로부터 보호하는 레이돔(radome)을 필수 구성으로 하였다. 따라서, 레이돔이 덮고 있는 면적 부분에 한해서는 다수의 방사소자 모듈(160) 및 다수의 방사소자 모듈(160)이 설치되는 안테나 보드가 외기에 노출되지 않아 안테나 장치(100)의 동작으로 인하여 발생하는 시스템 열을 외부로 방열함에 있어서 매우 제한적일 수 밖에 없었다.
본 발명의 일 실시예에 따른 안테나 장치(100)의 방사소자 모듈(160)은, 도 10 내지 도 12b에 참조된 바와 같이, 상하로 길게 형성되고, 리플렉터(150)의 전면에 형성된 다수의 안테나 배치부(151)에 각각 배열되는 방사소자 모듈 커버(161)와, 방사소자 모듈 커버(161)의 배면부에 밀착 배치되되, 안테나 배치부(151)와의 사이에 배치되고, 안테나 패치회로부(163a) 및 급전 라인(163b)이 인쇄 형성된 방사소자용 인쇄회로기판(162)과, 도전성 금속재질로 형성되고, 방사소자용 인쇄회로기판(162)의 안테나 패치회로부(163a)와 전기적으로 연결되는 방사용 디렉터(165)를 포함할 수 있다.
방사소자용 인쇄회로기판(162)의 전면에는, 직교하는 ±45 편파 또는 수직/수평 편파 중 어느 하나의 이중편파를 발생시키는 이중편파 패치 소자로써 상술한 안테나 패치회로부(163a)가 인쇄 형성될 수 있다. 안테나 패치회로부(163a)는 3개가 각각 상하 방향(길이방향)으로 이격되게 인쇄 형성될 수 있고, 각각의 안테나 패치회로부(163)는 급전 라인(163b)에 의하여 상호 연결될 수 있다.
종래 안테나 장치에서 급전라인은 안테나 패치회로부가 실장되는 인쇄회로기판의 하부에서 별도의 급전 선로를 형성하여야 하므로, 이를 위해 다수의 관통홀을 구비하는 등 급전 구조가 복잡해지고, 급전구조가 방사소자용 인쇄회로기판(162)의 하부 공간을 차지하게 되어, RF 필터(140)와 방사소자용 인쇄회로기판(162)간 직접 표면 열접촉을 방해하는 요소로 작용하는 문제가 발생되지만, 본 발명의 실시예에 따른 급전 라인(163b)은 안테나 패치회로부(163a)가 패턴 인쇄되는 방사소자용 인쇄회로기판(162)과 동일한 전면에 안테나 패치회로부(163a)와 함께 패턴 인쇄 형성됨으로로써, 급전구조가 매우 단순해질 뿐 아니라, RF 필터(140)와 방사소자용 인쇄회로기판(162) 상 직접 표면 열접촉되는 결합 공간을 확보할 수 있는 이점이 있다.
한편, 방사용 디렉터(165)는 열전도성 또는 도전성 금속재질로 형성되어 안테나 패치회로부(163a)와 전기적으로 연결된다. 방사용 디렉터(165)는 방사 빔의 방향을 전방향으로 유도함과 동시에 방사소자용 인쇄회로기판(162) 후방에서 발생한 열을 열전도를 통해 전방으로 전달하는 기능도 함께 수행할 수 있다. 방사용 디렉터(165)는 전기가 잘 흐르는 도전성 재질의 금속으로 구성될 수 있으며, 각각의 안테나 패치회로부(163a)의 전방으로 각각 이격되게 설치될 수 있다.
본 발명의 실시예에서는 안테나 패치회로부(163a) 및 방사용 디렉터(165)를 이용한 방사소자를 설명하였으나, 다이폴 안테나를 적용하는 경우 방사용 디렉터의 구성을 생략할 수 있으며, 다이폴 안테나의 높이가 상대적으로 높은 만큼, 리플렉터(150)의 전면보다 더 먼 곳으로 방열시켜 방열량을 증가시킬 수 있다.
도 4 및 도 10 내지 도 12b를 참조하면, 방사용 디렉터(165)는 디렉터 관통홀(164c)을 통해 안테나 패치회로부(163a)와 전기적으로 연결될 수 있다. 방사용 디렉터(165)의 전체적인 크기, 형태 및 설치 위치 등은 해당 안테나 패치회로부(163a)에서 방사되는 방사 빔의 특성을 측정하여 실험적으로,또는 해당 특성을 시뮬레이션하여 적절히 설계될 수 있다. 방사용 디렉터(165)는 안테나 패치회로부(163a)에서 발생되는 방사 빔의 방향을 전방향으로 유도하는 역할을 하여 전체적인 안테나의 빔폭을 보다 더 줄이면서,사이드 로브의 특성도 양호하게 한다. 뿐만 아니라, 패치형 안테나로 인한 손실을 보상하고, 도전성 재질의 금속으로 이루어져 방열 기능도 함께 수행할 수 있다. 방사용 디렉터(165)의 형상은 방사 빔의 방향을 전방향으로 유도하기 위한 적절한 형태, 가령 무방향성을 갖는 원형으로 형성되는 것이 바람직하지만, 이에 국한하지는 않는다.
한편, 적어도 2개의 안테나 패치회로부(163a)와 방사용 디렉터(165)는 하나의 방사소자 모듈(160)을 구성할 수 있다. 도 10 내지 도 12b에는 3개의 안테나 패치회로부(163a)와 방사용 디렉터(165)가 하나의 단위 방사소자 모듈(160)을 형성한 예가 도시되어 있으며, 이득(gain)을 높이기 위한 방사소자 모듈의 최적 설계에 따라 안테나 패치회로부(163a) 및 방사용 디렉터(165)의 수는 가변될 수 있다.
방사용 디렉터(165)에는 관통홀(164c)이 형성되고, 상기 관통홀(164c)을 통해 방사용 디렉터(165)가 안테나 패치회로부(163a)와 전기적으로 연결될 수 있다. 보다 상세하게는, 필터 바디(141)의 전면에 대한 고정을 위해 마련된 소자 고정 스크류(180)를 매개로 방사용 디렉터(165) 및 안테나 패치회로부(1163a)가 전기적으로 연결될 수 있다.
여기서, 방사소자 모듈 커버(161)는 비도전성 재질인 플라스틱 소재로 사출 성형되고, 방사소자 모듈 커버(161)의 일면에는, 도 12a 및 도 12b에 참조된 바와 같이, 방사용 디렉터(165)의 배면에 형합되는 디렉터 고정부(167)가 구비되되, 디렉터 고정부(167)에는 방사용 디렉터(165)와 결합 가능한 디렉터 고정돌기부(168)가 전방으로 돌출되게 형성될 수 있다.
여기서, 방사용 디렉터(165)는, 적어도 하나의 디렉터 고정돌기부(168)와 대응되는 위치에 함몰되게 형성된 적어도 하나의 디렉터 고정홈(도면부호 미표기)에 압입되어 고정될 수 있다.
또한, 방사소자 모듈 커버(161)에는, RF 필터(140)와의 결합을 위한 적어도 하나의 기판 고정홀(164b)이 관통 형성될 수 있다. 적어도 하나의 기판 고정홀(164b)을 통하여 소자 고정 스크류(180)가 방사용 디렉터(165)의 관통홀(164c) 및 방사소자 모듈 커버(161)의 기판 고정홀(164b)을 관통한 후, 방사소자용 인쇄회로기판(162)에 형성된 기판 관통홀(164a)을 관통하여 리플렉터(150)의 안테나 배치부(151)에 견고하게 결합될 수 있다.
또한, 방사소자 모듈 커버(161)의 전면에는 적어도 하나의 보강 리브(166)가 형성되어 방사소자 모듈 커버(161)의 외관을 형성하고, 플라스틱 소재인 방사소자 모듈 커버(161)의 강도를 보강할 수 있다.
이와 같은 구성으로 이루어진 RF 모듈(200)은, 전방 하우징(130)을 기준으로 전방에 해당되는 RF 필터(140)에서 발생한 열을 리플렉터(150)의 배면과의 접촉을 통하거나, 리플렉터(150)에 형성된 방열공(155)들을 통해 외부로 직접 방출할 수 있다.
한편, 본 발명에 따른 안테나용 RF 모듈 조립체는, 다음과 같은 다양한 형태의 실시예로 구현되는 RF 모듈(200)을 포함하는 것으로 정의될 수 있다.
일 실시예로써, 메인 보드(120)의 전면에 착탈 결합되는 다수의 RF 필터(140)와, 다수의 RF 필터(140)의 전면에 적층 배치되는 다수의 방사소자 모듈(160)과, 다수의 RF 필터(140)를 덮도록 배치되되, 다수의 방사소자 모듈(160)의 접지(GND) 역할을 수행함과 아울러 다수의 RF 필터(140) 측으로부터 발생된 열의 외부로의 방열을 매개하는 리플렉터(150)를 포함할 수 있다.
다른 실시예로써, RF 모듈(200)은, 상하 방향 및 좌우 방향으로 각각 소정거리 이격되게 배치된 다수의 RF 필터(140)와, 다수의 RF 필터(140)의 전면에 적층 배치되는 다수의 방사소자 모듈(160)과, 다수의 RF 필터(140)와 다수의 방사소자 모듈(160) 사이를 구획하도록 배치된 리플렉터(150)를 포함하고, 다수의 RF 필터(140)는, 안테나 하우징(105)의 내부 공간(110S)에 적층된 메인 보드(120)의 전면에 소켓 핀 결합 방식으로 착탈 결합되는 형태로 구현될 수 있다.
아울러, 또 다른 실시예로써, RF 모듈(200)은, 각각 적어도 4개의 외측면을 가지는 다수의 RF 필터(140)와, 다수의 RF 필터(140) 각각의 외측면 중 어느 한 면(예를 들면, 전면)에 적층 배치되는 다수의 방사소자 모듈(160)과, 다수의 RF 필터(140) 각각의 외측면 중 다른 한 면에 배치되며, 적어도 하나의 아날로그 증폭소자가 실장된 증폭부 기판(146)과, 다수와 RF 필터(140)와 다수의 방사소자 모듈(160) 사이에 배치되어 다수의 방사소자 모듈들(160)의 공통 접지 역할을 하는 리플렉터(150)를 포함하고, 적어도 하나의 아날로그 증폭소자로부터 발생된 열은, 다수의 RF 필터(140)의 측벽 중 하나를 통해 방열된 후 리플렉터(150)를 매개로 전방 방열되는 형태로 구현될 수 있다.
마지막으로, 또 다른 실시예로써, RF 모듈(200)은, 메인 보드(120)의 전면에 착탈 결합되되, 각각 적어도 4개의 외측면을 가지는 다수의 RF 필터(140)와, 다수의 RF 필터(140) 각각의 외측면 중 어느 한 면(예를 들면, 전면)에 적층 배치되는 다수의 방사소자 모듈(160)과, 다수의 RF 필터(140)를 덮도록 배치된 리플렉터(150)를 포함하고, 리플렉터(150)는, 다수의 RF 필터(140)와 다수의 방사소자 모듈(160) 사이의 접지 기능을 수행함과 아울러 방사소자 모듈(160)로부터 조사되는 전자기파를 전방으로 반사시키도록 금속재질로 형성되되, 다수의 RF 필터(140) 측으로부터 발생된 열을 전방 또는 측방으로 배출하도록 다수의 방열공(155)이 형성되는 형태로 구현될 수 있다.
상기와 같이 구성되는 본 발명의 일 실시예에 따른 RF 모듈(200) 및 안테나 장치(100)의 조립 과정을 첨부된 도면(특히, 도 7 이하)을 참조하여 간략하게 설명하면 다음과 같다.
먼저, 도 10 내지 도 13에 참조된 바와 같이, 본 발명에 따른 안테나용 RF 모듈(200)의 조립 방법의 일 실시예는, 다이 캐스팅으로 제조된 필터 바디(140)의 일측과 타측 중 어느 하나에 아날로그 증폭소자가 실장된 증폭부 기판(146)을 결합시킨다. 그 다음, RF 필터(140)의 전면에 다수의 방열공(155)이 형성된 리플렉터(150)를 배치한 후, 리플렉터(150) 상에 방사소자 모듈(160)의 방사소자용 인쇄회로기판(162)을 배치한다. 방사소자용 인쇄회로기판(162) 상에 방사소자 모듈(160)의 방사소자 모듈 커버(161)를 배치한 후, 방사소자 모듈(160)의 방사용 디렉터(165)를 방사소자 모듈 커버(161)에 조립하여, 방사용 디렉터(165)와 방사소자용 인쇄회로기판(162을 전기적으로 연결함으로써, RF 모듈(200)의 조립이 완료된다. 추후 증폭부 기판(146)을 메인 보드(120) 전면에 소켓 핀 결합 방식으로 결합시킬 수 있다.
한편, 본 발명에 따른 안테나 장치(100)의 조립 방법의 일 실시예에 따르면, 도 8, 도 9, 그리고 도 13에 참조된 바와 같이, 메인 보드(120)가 설치된 안테나 하우징(105)의 내부 공간(110S)과 외부 공간이 완전히 구획되도록 전방 하우징(130)을 후방 하우징(110)의 전단에 결합시켜 고정한 다음, 다수의 RF 모듈(200)의 증폭부 기판(146)의 수소켓부(146’)를 메인 보드(120)의 암소켓부(125)에 소켓 핀 결합시키는 방식으로 결합시킨다.
그리고, 도 14에 참조된 바와 같이, 리플렉터(150)를 후방 하우징(110)의 테두리 단부를 따라 나사 고정시킨 다음, 다수의 방사소자 모듈(160)을 각각 안테나 배치부(151)에 결합시키면 안테나 장치(100)의 조립이 완료된다.
도 17은 본 발명의 일 실시예에 따른 RF 모듈의 변형례를 나타낸 개념도이고, 도 18은 리플렉터와 RF 모듈 간 결합 구조의 변형례를 나타낸 단면도이며, 도 19는 히트싱크 일체형 리플렉터의 다양한 변형례를 나타낸 단면도이고, 도 20은 RF 모듈 단위로 분리된 리플렉터 및 그 결합 구조를 나타낸 사시도이며, 도 21은 증폭부 기판의 변형례를 나타낸 단면도 및 평면도이고, 도 22는 후방 하우징에 대한 메인 보드 및 RF 모듈 조립체의 다양한 설치 모습을 나타낸 단면도이며, 도 23은 RF 모듈의 다양한 변형례를 나타낸 사시도이고, 도 24는 모듈 타입의 FPGA 소자의 방열 구조를 나타낸 사시도이며, 도 25는 증폭부 기판의 수소켓부 및 메인 보드의 암소켓부의 구체적인 배열 모습을 나타낸 개념도이다.
이하, 이미 설명한 본 발명의 일 실시예에 따른 안테나 장치(100)의 각 개별 구성인 안테나용 RF 모듈(200) 및 안테나 장치(100)의 활용 가능한 변형례를 첨부된 도면을 참조하여 보다 상세하게 설명하기로 한다.
RF 모듈(200)은, 도 17에 참조된 바와 같이, RF 필터(140)와, RF 필터(140)와는 별도로 제조되어 메인 보드(120)의 암소켓부(125)에 소켓 핀 결합되도록 수소켓부(146’)가 구비된 증폭부 기판(146)을 포함하는 증폭부 모듈(300)을 포함할 수 있다. 증폭부 모듈(300)의 증폭부 기판(146)은, 증폭부 기판 바디(301)의 내부에 배치되어 외부로부터 보호될 수 있다. 다만, 메인 보드(120)에 대한 증폭부 기판(146)의 결합 방식은 소켓 핀 결합을 예시하였으나, 슬롯 또는 기타 전기적 연결을 위한 어떤 구성도 무방하다.
또한, RF 필터(140)의 필터 바디(141)와 증폭부 모듈(300)의 증폭부 기판 바디(301)는, 전후 방향 또는 상하 방향으로 상호 슬라이딩 접합될 수 있다.
여기서, RF 필터(140)의 필터 바디(141)는, 전방 하우징(130)에는 물리적으로 고정되고, 증폭부 모듈(300)의 증폭부 기판 바디(301)와는 동축 커넥터(Direct Coaxial Connect, DCC)(146D)를 매개로 전기적으로 연결될 수 있다.
증폭부 기판 바디(301)는, RF 필터(140)를 전방 하우징(130)에 고정하기 전에 먼저 메인 보드(120)에 소켓 핀 결합된 후, 상술한 바와 같이, 동축 커넥터(146D)에 의하여 전기적으로 연결이 되도록 안착시키는 동작으로 모듈 결합시킬 수 있다. 그러나, 반드시 동축 커넥터(146D)를 매개로 전기적인 연결이 이루어져야 하는 것은 아니고, 전기적인 신호 연결이 가능한 여하한 구성의 채용도 가능함은 당연하다고 할 것이다.
이와 같은 구성으로 이루어진 RF 모듈(200)의 변형례는, RF 필터(140)의 불량 시 또는 다른 이유로 교체가 필요한 경우, RF 필터(140)만을 단독으로 증폭부 기판 바디(301)로부터 원터치 분리 및 교체할 수 있으므로 A/S가 유리한 이점을 제공한다.
한편, 도 1 내지 도 16에 참조된 본 발명의 일 실시예에 따른 안테나용 RF 모듈(200)은, 리플렉터(150)의 배면에 다수의 RF 필터(140)를 밀착 설치한 다음, 리플렉터(150)의 전면에 다수의 방사소자 모듈(160)을 각 RF 필터(140)에 대하여 전기적인 신호 연결이 이루어지도록 밀착 설치한 조립체를, 전방 하우징(130)에 모듈 전체를 조립함으로써 완료하는 실시예로써 설명하였다. 그러나, 상술한 본 발명의 일 실시예에 따른 안테나용 RF 모듈(200)의 경우, 다수의 RF 필터(140) 중 어느 하나만의 교체를 위해서는 반드시 리플렉터(150)를 전방 하우징(130)으로부터 분리하는 선행 작업을 요하는 공정 상의 불편함이 있을 수 있다.
상술한 공정 상의 불편함을 해소하기 위한 변형례로써, 리플렉터(150)는, 도 18에 참조된 바와 같이, RF 필터(140)의 전단 테두리단부 측에 설치된 팸너트(158)를 매개로 RF 필터(140)가 결합되는 구조를 가질 수 있다.
보다 상세하게는, 리플렉터(150) 중 RF 필터(140)가 설치되는 위치에는 RF 필터(140)가 전방에서 후방으로 관통 설치되는 다수의 설치구(150s)가 형성되고, 다수의 설치구(150s)의 내측 테두리 단부 부위에는 후방 측으로 소정 절곡 형성된 밴딩 결합부(150a)가 각각 형성될 수 있다. 여기서, RF 필터(140)는, 후술하는 전단 테두리 단부(140C1,140C2) 및 후단 테두리 단부(도면부호 미표기) 측의 폭 길이를 제외하고는 다수의 설치구(150s) 내부로 삽입될 수 있는 폭 길이를 가지도록 형성될 수 있다.
아울러, 리플렉터(150) 중 밴딩 결합부(150a)가 형성된 부위에는 전후 방향으로 관통되어 후술하는 팸너트(158)가 체결되는 팸너트 고정홀(150s)이 형성될 수 있다. 팸너트 고정홀(150s)은, 후술하는 RF 필터(140)에 형성된 필터 스크류 체결홀(140h)과 대응되는 위치에 형성될 수 있다.
RF 필터(140)의 전단 테두리 단부(140C1,140C2)는, 상술한 바와 같이, 다수의 설치구(150s)의 폭 길이보다 더 크게 형성되는 바, 리플렉터(150)의 절곡 형성된 밴딩 결합부(150a)의 전면에 면접되도록 배치되고, 상호 면접되는 부위에는 전후 방향으로 관통되어 필터 고정 스크류(153)가 체결되는 필터 스크류 체결홀(140h)이 형성될 수 있다. 또한, 필터 스크류 체결홀(140h)이 형성된 RF 필터(140)의 전단 테두리 단부(140C1,140C2)의 배면부에는, 후술하는 팸너트(158)의 고정단(158h)이 수용되는 고정단 수용홈(140s)이 절개 형성될 수 있다.
리플렉터(150)의 밴딩 결합부(150a)에 형성된 팸너트 고정홀(150s)에는, 각각 팸너트(158)가 배면 측으로부터 결합되어 고정단(150s)이 팸너트 고정홀(150s)의 전단에서 걸림되도록 고정되고, 필터 고정 스크류(153)를 전방 측에서 RF 필터(140)의 전단 테두리 단부(140C1,140C2)의 필터 스크류 체결홀(140h) 및 리플렉터(150)의 밴딩 결합부(150a)를 동시에 관통하여 팸너트(158)에 체결될 수 있다.
이와 같은 구성으로 이루어진 RF 모듈(200)의 변형례는, 팸너트(158)로부터 필터 고정 스크류(153)를 분리하면, 교체 또는 수리 등을 위하여 원하는 RF 필터(140) 만을 리플렉터(150)로부터 분리할 수 있으므로, 리플렉터(150)를 분리하지 않고서도 다수의 RF 필터(140) 중 A/S가 필요한 RF 필터(140)의 분리 및 교체가 용이한 이점을 제공한다.
한편, 리플렉터(150)는, 반드시 SUS 또는 STS의 금속재질로 구비되어야 하는 것은 아니다. 즉, 도면에 도시되지 않았으나, 리플렉터(150)는 플라스틱 수지 재질로 사출 성형하여 제조한 후, 표면이 전체적으로 도금된 형태로 제조될 수 있다. 리플렉터(150)를 플라스틱 수지 재질로 사출 성형할 경우, 다수의 방열공(155) 형상을 다양한 형태로 설계할 수 있는 이점을 가진다.
또한, 리플렉터(150)는, SUS 또는 STS 재질일 필요는 없고, Al(알루미늄) 또는 Mg(마그네슘) 재질을 이용하여 다이캐스팅 공법으로 제조될 수 있다.
이때, 도 19의 (a)와 같이, 리플렉터(150)의 후면에는 RF 모듈(200) 중 증폭부 기판(146)을 덮는 필터 히트 싱크 패널(148)과는 별개로 히트 싱크(159)가 후방으로 돌출되도록 일체로 형성될 수 있다. 여기서, RF 필터(140) 각각은 히트 싱크(159) 사이에 마련된 공간에 개별적으로 수용되어 결합될 수 있다.
또한, 도 19의 (b)와 같이, 리플렉터(150)의 전면에는 RF 모듈(200) 중 증폭부 기판(146)을 덮는 필터 히트 싱크 패널(148)과는 별개로 전방으로 돌출되도록 일체로 형성될 수 있다. 여기서, RF 필터(140) 각각은 히트 싱크(159) 사이에 마련된 공간에 개별적으로 수용되어 결합될 수 있다. 이 경우, 전방 하우징(130)에 대한 RF 모듈 조립체의 전체적인 조립이 용이한 이점을 가진다.
또한, 히트 싱크(159)는 리플렉터(150)에 일체로 형성되는 것이 아니라, 후방의 전방 하우징(130)에 일체로 형성됨으로써, RF 필터(140) 각각의 설치 공간을 마련할 수 있다.
한편, 앞서 설명한 본 발명의 실시예들은, 리플렉터(150)가 단일의 패널 형상으로 구비되고, 다수의 RF 필터(140)가 단일의 리플렉터(150)에 결합되는 것으로 한정하여 설명하고 있으나, 도 20에 참조된 바와 같이, 리플렉터(150)를 2개 이상으로 분리된 다수의 리플렉터(150a,150b)로 구비하되, RF 필터(140) 각각에 결합되는 형태로 변형 구현될 수 있다.
이 경우, 방수 구조의 채용이 용이함은 물론, RF 모듈(200) 별로 전방 하우징(130) 또는 메인 보드(120)에 대한 개별 조립이 가능하므로, A/S 성능을 향상시키는 이점을 제공한다.
다만, 다수의 리플렉터(150) 각각이 접하는 부분은 안테나 패턴 왜곡을 최소화하도록 도 20에 참조된 바와 같이 지그재그 형태로 굴곡진 형상으로 접하도록 구비되는 것이 바람직하다.
또한, 방사소자 모듈(160)의 간격이 반파장(1/2λ) 간격으로 배열된 경우, 리플렉터(150)에 형성된 다수의 방열공(155)은 그 크기가 방사소자 모듈(160)의 간격 대비 1/10 내지 1/20이하의 범위를 가지도록 형성되는 것이 바람직하고, 원형 또는 사각 형상은 물론 폐루프를 형성하는 다각형 형상을 모두 포함하는 형태로 설계될 수 있다. 그러나, 다수의 방열공(155)의 크기 및 형상이 일부 범위를 한정할 것은 아니고, 상기 다양한 크기 및 형상을 조합된 형태로 설계 가능함은 당연하다고 할 것이다.
아울러, 도면에 도시되지 않았으나, RF 모듈(200) 중 RF 필터(140)는 개별 단위로 제조되는 것이 아니라, 좌우 방향 또는 수직 방향의 어레이(array) 형태로써 모듈 단위로 제조되는 것도 가능하다. 예를 들면, 본 발명의 일 실시예에서와 같이, RF 모듈(200)이 좌우 방향으로는 8개의 RF 필터(140)가 배치되고, 상하 방향으로는 4개의 RF 필터(140)가 배치되는 경우, 좌우 방향의 8개 RF 필터(140)를 하나의 조합으로 하는 4개의 모듈 단위로 제조될 수 있고, 상하 방향의 4개 RF 필터(140)를 하나의 조합으로 하는 8개의 모듈 단위로 제조될 수 있다. 이와 같이, 어레이 형태로 제조된 RF 필터(140), 방사소자 모듈(160) 및 증폭부 기판(146)은, 안테나 하우징(105)의 전면에 모듈 단위로 결합될 수 있다.
한편, 증폭부 기판(146)은, 도 21의 (a)에 참조된 바와 같이, 2개의 PCB로 분리되어 다수의 아날로그 증폭소자가 분리 실장될 수 있다.
보다 상세하게는, 증폭부 기판(146)은, 도 21에 참조된 바와 같이, 필터 히트 싱크 패널(148)의 내부면에 밀착되게 배치되고, 상술한 수소켓부(146’)가 단부에 구비되며, 다수의 아날로그 증폭소자 중 상대적으로 발열량이 큰 증폭소자가 실장된 메인 증폭부기판(146a)과, 메인 증폭부기판(146a)에 적층되게 배치되고, 다수의 아날로그 증폭소자 중 상대적으로 발열량이 작은 증폭소자가 실장된 서브 증폭부기판(146b)을 포함할 수 있다.
여기서, 상대적으로 발열량이 큰 증폭소자가 메인 증폭부기판(146a) 중 필터 히트 싱크 패널(148)과 접하는 면의 반대면에 실장된 경우, 메인 증폭부기판(146a)에는 다수의 메탈 페이스트 비아홀(146”)이 형성될 수 있다.
다수의 메탈 페이스트 비아홀(146”)에는 열전도성이 우수한 금속 성분이 채워짐으로써, 상대적으로 발열량이 큰 아날로그 증폭소자(예를 들면, TR 소자, 146-1)로부터 발생된 열은 다수의 메탈 페이스트 비아홀(146”)을 통해 용이하게 필터 히트 싱크 패널(148) 측으로 열전도가 이루어질 수 있다.
이와 같이, 증폭부 기판(146)의 변형례는, 2개의 분리 PCB로 구비하여 상대적으로 발열량이 큰 증폭소자와 상대적으로 발열량이 작은 증폭소자(146-2)를 분리 실장함으로써 메인 증폭부기판(146a)을 통한 열전도도를 개선함과 아울러, 메인 증폭부기판(146a) 및 서브 증폭부기판(146b)의 신호 연결 구조의 복잡성을 개선할 수 있는 이점을 제공한다.
상기와 같은 증폭부 기판(146)의 변형례에 따른 열전도도 개선 및 신호 연결 구조의 복잡성 개선 효과는, 후방 하우징(110)의 내부 공간(110S)에 적층 배치되는 메인 보드(120)에도 그대로 확장 적용 가능하다.
보다 상세하게는, 메인 보드(120) 또한, 증폭부 기판(146)과 마찬가지로 2개의 PCB로 분리되어 구비될 수 있다.
즉, 도 22의 (a)를 참조하면, 메인 보드(120)는, 단일의 PCB로써 후방 하우징(110)의 내부 공간(110S)에 구비되고, RF 모듈(200)이 증폭부 기판(146)의 수소켓부(146’)를 통해 소켓 핀 결합되어 전기적으로 연결되는 구조로 구비된 것임은 이미 설명하였다.
그러나, 메인 보드(120)는, 도 22의 (b)에 참조된 바와 같이, 후방 하우징(110)의 내측면에 밀착되도록 배치되고, 다수의 디지털 소자 중 상대적으로 발열량이 큰 제1발열소자(128a)가 실장된 제1메인보드(120a)와, 제1메인보드(120a)의 전면에 적층되도록 배치되고, 다수의 디지털 소자 중 상대적으로 발열량이 작은 제2발열소자(128b)가 실장된 제2메인보드(120b)를 포함할 수 있다. 여기서, 제1발열소자(128a)는 FPGA 소자일 수 있고, 제2발열소자(128b)는 RFIC 소자일 수 있다.
메인보드(120)가 제1메인보드(120a) 및 제2메인보드(120b)로 분리 구비된 경우, RF 모듈(200)의 증폭부 기판(146)에 형성된 수소켓부(146’)가 소켓 핀 결합되기 위한 암소켓부(125)는 제2메인보드(120b)의 전면에 형성됨이 바람직하다.
또한, 메인보드(120)가 제1메인보드(120a) 및 제2메인보드(120b)로 분리 구비된 경우, 전방 하우징(130)의 전면에는, 제2메인보드(120b)에 실장된 제2발열소자(128b)로부터 발생된 열을 전방으로 방열시키기 위한 다수의 히트싱크핀(139)이 일체로 형성될 수 있다.
여기서, 제1메인보드(120a)와 제2메인보드(120b) 간에는 디지털 신호(digital signal)로 연결될 수 있다.
한편, 도 22의 (c)에 참조된 바와 같이, 디지털 소자 중 RFIC 소자(128b)는, RF 모듈(200) 또는 RF 모듈 조립체의 증폭부 기판(146)으로 집중 설치되는 것도 가능하다. 다만, 이 경우에는 RF 필터(140)의 내부에 이미 구비된 증폭부 기판(146) 상의 아날로그 소자들과의 관계에서 최적의 방열 성능이 구현되도록 위치 설계됨이 바람직하다.
지금까지, RF 모듈(200) 중 RF 필터(140)는, 도 23의 (a)에 참조된 바와 같이, 캐비티 필터(cavity filter)로 채용된 것으로 설명하였다.
그러나, RF 모듈(200)이 반드시 캐비티 필터(140-Ca)로 한정되는 것은 아니고, 도 23의 (b)에 참조된 바와 같이, 유전체 세라믹 필터(dielectric ceramic filter)(140-Ce)로 채용되는 것도 가능하다.
이 경우, 필터 히트 싱크 패널(148)은, 도 23의 (b)에 참조된 바와 같이, 유전체 세라믹 필터(140-Ce)로 구비된 필터 바디(141)의 양면에 각각 형성되는 것도 가능하다.
이와 같이, 본 발명의 실시예들은, 전방 하우징(130)의 전방에 해당하는 외기로 전장부품들로부터 발열된 열을 효과적으로 방열시키는 구조이므로, 도 24에 참조된 바와 같이, 기존 메인 보드(120)에 실장된 다수의 디지털 소자 중 상대적으로 발열량이 큰 FPGA 소자(128a)를 FPGA 모듈(400)로 모듈화하여 RF 모듈(200)과 같이 외부 공간에 해당되는 전방 하우징(130)의 전면으로 이동시킬 수 있다. 여기서, FPGA 모듈(400)은, 상술한 FPGA 소자(128)가 내부에 배치되는 FPGA 모듈 바디(401)를 포함하고, FPGA 모듈 바디(401)의 양단면 중 적어도 어느 하나에는 소자 히트싱크 패널(403)을 배치하여 방열 성능을 증가시키도록 변형시키는 것도 가능하다. 즉, FPGA 소자(128a)를 FPGA 모듈(400) 형태로 마련하여 메인 보드(120)에 소켓 핀 결합되도록 구성함으로써, 보다 우수한 방열 설계가 가능하다. 다만, FPGA 모듈 바디(401)는 직접 전방 외기에 노출되는 점에서, RF 모듈(200)과 마찬가지로 빗물 등의 유입을 방지하는 방수 구조를 적용함이 바람직하다.
아울러, 도 25에 참조된 바와 같이, 증폭부 기판(146)의 단부에 형성된 수소켓부(146’)에는 다수의 RF 전송 라인 및 GND(접지) 단자 라인이 마련될 수 있다. 여기서, 마이크로 스트립 상의 RF 전송 라인과 GND(접지) 단자 라인 사이는 소정의 간격 설정이 필요하다.
메인 보드(120)에 형성된 암소켓부(125)의 경우, 정해진 피치(Pitch)가 있으므로, 사용하는 커넥터에 따라 피치 간격이 상이할 수 있다.
여기서, RF 전송 라인을 배치할 때, RF 전송 라인과 관련된 단자핀 및 GND(접지) 단자 라인과 관련된 단자핀 사이의 간격(d)은 “피치(Pitch)*n(핀의 개수) > d”가 되도록 배치함이 바람직하다. 이를 위해, RF 전송 라인과 관련된 단자핀과 GND(접지) 단자 라인과 관련된 단자핀 사이는 Blank 처리 함이 바람직하다.
이와 같이, 본 발명의 일 실시예에 따른 안테나 장치(100)는, 레이돔의 삭제로 인하여 외기와 노출되는 면적만큼 안테나 장치(100)의 내부 시스템 열을 후방 뿐만 아니라 전방을 포함하는 전방위로 용이하게 방출할 수 있고, 방사소자 모듈(160)이 리플렉터(150)를 매개로 외기에 노출되도록 배치됨으로써 안테나 장치(100)의 전후방으로의 분산 방열이 가능한 바, 종래 대비 방열 성능이 크게 향상되는 효과를 가진다.
또한, 종래 레이돔이 차지하는 부피만큼 전방으로의 돌출 길이를 축소시킬 수 있는 한편, 전방으로의 방열이 가능한 만큼 후방 하우징(130)의 배면에 일체로 형성된 다수의 후방 방열핀(111)의 전후 길이를 축소할 수 있으므로, 전체적으로 안테나 장치(100)의 전후 두께를 슬림 설계할 수 있고, 이에 따라 건물의 내벽 또는 외벽에 대한 벽걸이 타입의 설치가 용이한 이점을 창출할 수 있다.
이상, 본 발명에 따른 안테나용 RF 모듈, RF 모듈 조립체 및 이를 포함하는 안테나 장치의 다양한 실시예를 첨부된 도면을 참조하여 상세하게 설명하였다. 그러나, 본 발명의 실시예가 반드시 상술한 실시예들에 의하여 한정되는 것은 아니고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 다양한 변형 및 균등한 범위에서의 실시가 가능함은 당연하다고 할 것이다. 그러므로, 본 발명의 진정한 권리범위는 후술하는 청구범위에 의하여 정해진다고 할 것이다.
본 발명은, 레이돔을 삭제하고 안테나 RF 모듈이 외기에 노출되도록 안테나 하우징의 외부에 배치함으로써 안테나 하우징의 전후방으로의 분산 방열이 가능하도록 하여 방열 성능을 크게 향상시킬 수 있는 안테나용 RF 모듈 및 이를 포함하는 안테나 장치를 제공한다.

Claims (20)

  1. RF 필터의 외측면 중 어느 한 면에 배치되는 방사소자 모듈;
    상기 RF 필터의 외측면 중 다른 한 면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판; 및
    상기 RF 필터와 상기 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터; 를 포함하고,
    안테나 하우징에 배치된 메인 보드에 모듈 단위로 소켓 핀 결합되는, 안테나용 RF 모듈.
  2. 청구항 1에 있어서,
    상기 메인 보드에 소켓 핀 결합되기 전의 상기 모듈 단위는, 상기 리플렉터의 배면에 상기 RF 필터를 밀착 설치한 다음, 상기 리플렉터의 전면에 상기 방사소자 모듈을 상기 RF 필터에 대하여 전기적인 신호 연결이 이루어지도록 밀착 설치한 조립체로 정의되는, 안테나용 RF 모듈.
  3. 청구항 1에 있어서,
    상기 증폭부 기판은, 상기 RF 필터에 나란하게 배치된 증폭부 기판 바디의 내부에 구비되고,
    상기 RF 필터와 상기 증폭부 기판 바디는 상호 슬라이딩 결합되는 동작으로 전기적 신호 연결되는, 안테나용 RF 모듈.
  4. 청구항 3에 있어서,
    상기 RF 필터와 상기 증폭부 기판은, 상기 증폭부 기판 바디에 상기 RF 필터가 슬라이딩 결합될 때, 동축 커넥터에 의하여 전기적으로 연결되는, 안테나용 RF 모듈.
  5. 청구항 1에 있어서,
    상기 RF 필터와 상기 리플렉터는 팸너트에 의하여 결합되는, 안테나용 RF 모듈.
  6. 청구항 5에 있어서,
    상기 리플렉터에는, 상기 RF 필터가 전방에서 후방으로 관통 설치되는 다수의 설치구 및 상기 다수의 설치구의 내측 테두리 단부 부위에 후방 측으로 절곡된 밴딩 결합부가 형성되고,
    상기 팸너트가 상기 밴딩 결합부에 전후 방향으로 관통된 팸너트 고정홀에 체결된 후, 상기 RF 필터를 관통하는 필터 고정 스크류가 전방에서 후방으로 상기 팸너트를 관통하여 체결되는 동작으로 상기 RF 필터가 결합되는, 안테나용 RF 모듈.
  7. 청구항 1에 있어서,
    상기 리플렉터는, 상기 RF 필터의 전면에 적층 결합되되,
    상기 리플렉터의 후면에는 상기 RF 필터가 수용되도록 후방으로 돌출되게 다수의 히트 싱크가 일체로 형성된, 안테나용 RF 모듈.
  8. 청구항 1에 있어서,
    상기 리플렉터는, 상기 RF 필터의 배면에 적층 결합되되,
    상기 리플렉터의 전면에는 상기 RF 필터가 수용되도록 전방으로 돌출되게 다수의 히트 싱크가 일체로 형성된, 안테나용 RF 모듈.
  9. 청구항 1에 있어서,
    상기 리플렉터는,
    상기 RF 필터의 개수와 대응되게 다수로 구비되고,
    상기 각각의 RF 필터 전면을 차폐하도록 결합되되, 상기 리플렉터 각각이 접하는 부분은 지그재그 형태로 굴곡진 형상으로 접하도록 구비된, 안테나용 RF 모듈.
  10. 청구항 1에 있어서,
    상기 리플렉터에는 다수의 방열공이 형성되고,
    상기 다수의 방열공은, 상기 방사소자 모듈의 간격이 반파장(1/2λ) 간격으로 배열된 경우, 상기 방사소자 모듈의 간격 대비 1/10 내지 1/20 이하의 크기를 가지는, 안테나용 RF 모듈.
  11. 청구항 1에 있어서,
    상기 RF 필터, 방사소자 모듈 및 증폭부 기판은, 상하 방향 또는 좌우 방향의 다수개가 어레이 형태로 제조되어 안테나 하우징의 전면에 모듈 단위로 결합되는, 안테나용 RF 모듈.
  12. 청구항 1에 있어서,
    상기 RF 필터는, 상기 증폭부 기판이 배치되는 소정의 공간이 형성된 필터 바디; 를 포함하고,
    상기 증폭부 기판은, 상기 아날로그 증폭소자 중 일부가 실장 배치되며 상기 필터 바디의 내부면에 밀착 배치되는 메인 증폭부기판, 및 상기 아날로그 증폭소자 중 나머지 일부가 실장 배치되며 상기 메인 증폭부기판에 적층 배치된 서브 증폭부기판, 을 포함하는, 안테나용 RF 모듈.
  13. 청구항 12에 있어서,
    상기 메인 증폭부기판 중 상기 아날로그 증폭소자가 실장된 부위에는, 열전도성 금속성분이 채워진 메탈 페이스트 비아홀이 형성된, 안테나용 RF 모듈.
  14. 청구항 1에 있어서,
    상기 증폭부 기판에 실장되는 상기 아날로그 증폭소자는, RFIC 소자를 포함하는, 안테나용 RF 모듈.
  15. 청구항 1에 있어서,
    상기 RF 필터는, 캐비티 필터 또는 유전체 세라믹 필터 중 어느 하나로 채용된 필터 바디를 포함하고,
    상기 필터 바디의 양면 중 적어도 한 면에는, 열전도성 재질의 필터 히트 싱크 패널이 더 구비된, 안테나용 RF 모듈.
  16. 청구항 1에 있어서,
    상기 RF 필터의 일측에는 메인 보드로부터 분리된 FPGA 소자가 내부에 실장된 FPGA 기판을 포함하는 FPGA 모듈이 배치되되, 상기 메인 보드에 대하여 소켓 핀 결합되는, 안테나용 RF 모듈.
  17. 청구항 16에 있어서,
    상기 FPGA 모듈은, 상기 FPGA 기판이 내부에 배치되는 FPGA 모듈 바디; 를 포함하고,
    상기 FPGA 모듈 바디의 양단면 중 적어도 어느 하나에는 소자 히트싱크 패널이 배치된, 안테나용 RF 모듈.
  18. 청구항 1에 있어서,
    상기 증폭부 기판의 단부에는 메인 보드에 대한 소켓 핀 결합을 수소켓부가 마련되고,
    상기 수소켓부는, 다수의 RF 전송 라인 및 GND(접지) 단자 라인이 마련되며,
    상기 다수의 RF 전송 라인과 관련된 단자핀 및 상기 GND(접지) 단자 라인과 관련된 단자핀 사이는 Blank 처리된, 안테나용 RF 모듈.
  19. 각각 적어도 4개의 외측면을 가지는 다수의 RF 필터;
    상기 다수의 RF 필터 각각의 외측면 중 어느 한 면에 배치되는 다수의 방사소자 모듈;
    상기 다수의 RF 필터 각각의 외측면 중 다른 한 면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판; 및
    상기 다수와 RF 필터와 상기 다수의 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터; 를 포함하고,
    안테나 하우징에 배치된 메인 보드에 모듈 단위로 소켓 핀 결합되는, 안테나용 RF 모듈 조립체.
  20. 적어도 하나의 디지털 소자가 전면 또는 후면에 실장된 메인 보드;
    상기 메인 보드가 설치되도록 전방이 개구되게 형성된 함체 형상의 안테나 하우징; 및
    상기 메인 보드와 전기적인 신호 라인을 통해 연결된 RF 모듈 조립체; 를 포함하고,
    상기 RF 모듈 조립체는, 각각 적어도 4개의 외측면을 가지는 다수의 RF 필터;
    상기 다수의 RF 필터 각각의 외측면 중 어느 한면에 배치되는 다수의 방사소자 모듈;
    상기 다수의 RF 필터 각각의 외측면 중 다른 한면에 배치되며, 아날로그 증폭소자가 실장된 증폭부 기판; 및
    상기 다수와 RF 필터와 상기 다수의 방사소자 모듈 사이에 배치되어 상기 방사소자 모듈을 접지(GND)함과 아울러 상기 RF 필터에서 발생된 열의 외부로의 방열을 매개하는 리플렉터; 를 포함하며,
    상기 RF 모듈 조립체는, 상기 안테나 하우징의 메인 보드에 모듈 단위로 소켓 핀 결합되는, 안테나 장치.
PCT/KR2021/014674 2020-10-20 2021-10-20 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치 WO2022086156A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180071244.7A CN116802930A (zh) 2020-10-20 2021-10-20 天线用射频模块、射频模块组装体及包括其的天线装置
EP21883225.1A EP4235969A1 (en) 2020-10-20 2021-10-20 Antenna rf module, rf module assembly, and antenna device including same
JP2023522983A JP2023546102A (ja) 2020-10-20 2021-10-20 アンテナ用rfモジュール、rfモジュール組立体およびこれを含むアンテナ装置
US18/136,873 US20230299456A1 (en) 2020-10-20 2023-04-19 Antenna rf module, rf module assembly, and antenna device including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0135788 2020-10-20
KR20200135788 2020-10-20
KR1020210138030A KR102543846B1 (ko) 2020-10-20 2021-10-18 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
KR10-2021-0138030 2021-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/136,873 Continuation US20230299456A1 (en) 2020-10-20 2023-04-19 Antenna rf module, rf module assembly, and antenna device including same

Publications (1)

Publication Number Publication Date
WO2022086156A1 true WO2022086156A1 (ko) 2022-04-28

Family

ID=81290876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014674 WO2022086156A1 (ko) 2020-10-20 2021-10-20 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치

Country Status (4)

Country Link
US (1) US20230299456A1 (ko)
EP (1) EP4235969A1 (ko)
JP (1) JP2023546102A (ko)
WO (1) WO2022086156A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114044A1 (zh) * 2022-11-28 2024-06-06 华为技术有限公司 壳体、能量处理装置及基站天线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241977A1 (ko) * 2020-05-25 2021-12-02 주식회사 케이엠더블유 안테나 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293171A (en) * 1993-04-09 1994-03-08 Cherrette Alan R Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power
JP2003298332A (ja) * 2002-03-29 2003-10-17 Mitsubishi Electric Corp アンテナ装置
JP2004120325A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 空中線装置
JP2009159430A (ja) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp アンテナ装置
KR20150095673A (ko) * 2012-11-16 2015-08-21 주식회사 케이엠더블유 이동통신 시스템의 소형 기지국 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293171A (en) * 1993-04-09 1994-03-08 Cherrette Alan R Phased array antenna for efficient radiation of heat and arbitrarily polarized microwave signal power
JP2003298332A (ja) * 2002-03-29 2003-10-17 Mitsubishi Electric Corp アンテナ装置
JP2004120325A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 空中線装置
JP2009159430A (ja) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp アンテナ装置
KR20150095673A (ko) * 2012-11-16 2015-08-21 주식회사 케이엠더블유 이동통신 시스템의 소형 기지국 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114044A1 (zh) * 2022-11-28 2024-06-06 华为技术有限公司 壳体、能量处理装置及基站天线

Also Published As

Publication number Publication date
JP2023546102A (ja) 2023-11-01
US20230299456A1 (en) 2023-09-21
EP4235969A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022080926A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2022086156A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2020231112A1 (en) Electronic device including antenna
WO2013055018A1 (ko) 광 반도체 조명장치
EP3353822A1 (en) Compact light emitting diode chip and light emitting device including the same
WO2022035109A1 (ko) 안테나 장치
WO2018182109A1 (ko) 다중대역 기지국 안테나
WO2021145663A1 (ko) 전장소자의 방열장치
WO2022119291A1 (ko) 안테나 장치
WO2022092728A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2021187794A1 (ko) 복수의 안테나를 포함하는 전자 장치
WO2022124783A1 (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
KR102543846B1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
WO2017138800A1 (ko) 모노폴 안테나
WO2022146101A1 (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
WO2022108378A1 (ko) 안테나용 rf 모듈, rf 모듈 조립체 및 이를 포함하는 안테나 장치
KR20220097852A (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
WO2023158200A1 (ko) 안테나 장치
WO2022025581A1 (ko) 안테나 장치
WO2019221548A1 (ko) 안테나 장치 및 그것의 제조 방법
WO2023128683A1 (ko) 풀 아날로그 위상 쉬프터 및 이를 포함하는 안테나 장치
WO2023096319A1 (ko) 안테나용 rf 모듈 및 이를 포함하는 안테나 장치
WO2024177420A1 (ko) 안테나용 알에프 모듈 및 이를 포함하는 안테나 장치
WO2023214813A1 (ko) 소형 기지국 안테나 장치 및 이의 커넥터
WO2024177419A1 (ko) 안테나용 알에프 모듈 및 이를 포함하는 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522983

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180071244.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021883225

Country of ref document: EP

Effective date: 20230522