WO2023214487A1 - 樹脂組成物、成形品、および、樹脂組成物の製造方法 - Google Patents

樹脂組成物、成形品、および、樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2023214487A1
WO2023214487A1 PCT/JP2023/012893 JP2023012893W WO2023214487A1 WO 2023214487 A1 WO2023214487 A1 WO 2023214487A1 JP 2023012893 W JP2023012893 W JP 2023012893W WO 2023214487 A1 WO2023214487 A1 WO 2023214487A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
formula
resin composition
resin
Prior art date
Application number
PCT/JP2023/012893
Other languages
English (en)
French (fr)
Inventor
康行 入江
龍樹 濱口
陽平 西野
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023214487A1 publication Critical patent/WO2023214487A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a resin composition, a molded article, and a method for producing a resin composition.
  • a resin composition containing polycarbonate resin as a main component relates to a resin composition containing polycarbonate resin as a main component.
  • Polycarbonate resin has excellent mechanical strength, electrical properties, transparency, etc., and is widely used as an engineering plastic in various fields such as electrical and electronic equipment fields and automobile fields. On the other hand, in recent years, recycling of resources has been advocated, and recycling of polycarbonate resin is also being considered (Patent Document 1, Patent Document 2, etc.).
  • bisphenol A type polycarbonate resin which is a general-purpose polycarbonate resin
  • bisphenol C type polycarbonate resin or the like may be blended. It has been found that in such a blend of bisphenol A type polycarbonate resin and bisphenol C type polycarbonate resin, when a recycled product is used as the bisphenol A type polycarbonate resin, the color difference after heat treatment increases significantly.
  • the present invention aims to solve such problems, and is a polycarbonate resin containing a structural unit represented by the formula (1) described below, which is typified by bisphenol A type polycarbonate resin, and which is a recycled product.
  • a resin composition comprising a polycarbonate resin (A) containing a polycarbonate resin (A) and a polycarbonate resin (B) containing a structural unit represented by the formula (2) described below, which is typified by a bisphenol C type polycarbonate resin, which has a color difference after heat treatment. It is an object of the present invention to provide a resin composition, a molded article, and a method for producing a resin composition in which an increase in .
  • Formula (1) (In formula (1), X 1 represents any of the following formulas, R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group. )
  • Formula (2) (In formula (2), R 1 represents a methyl group, R 2 represents a hydrogen atom or a methyl group, X 2 represents any of the following formulas, R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group.
  • R 2 is a hydrogen atom
  • X 2 is The resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein R 3 and R 4 are methyl groups.
  • ⁇ 7> Pellets of the resin composition according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> A molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 6>.
  • R 1 represents a methyl group
  • R 2 represents a hydrogen atom or a methyl group
  • X 2 represents any of the following formulas
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group
  • Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group.
  • a polycarbonate resin (A) containing a structural unit represented by formula (1) represented by bisphenol A type polycarbonate resin, which is a recycled product, and a polycarbonate resin (A) represented by bisphenol C type polycarbonate resin are produced.
  • this embodiment a mode for carrying out the present invention (hereinafter simply referred to as “this embodiment”) will be described in detail.
  • the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited only to this embodiment.
  • " ⁇ " is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.
  • ppm means mass ppm. If the measurement methods, etc. explained in the standards shown in this specification differ from year to year, unless otherwise stated, they shall be based on the standards as of January 1, 2022.
  • the resin composition of the present embodiment includes a polycarbonate resin (A) containing a structural unit represented by formula (1) and a polycarbonate resin (B) containing a structural unit represented by formula (2),
  • the resin (A) is a recycled product, and the content of the Br element in the polycarbonate resin (A) is 10 mass ppm or less based on 100 parts by mass of the polycarbonate resin (A).
  • Formula (1) (In formula (1), X 1 represents any of the following formulas, R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group.
  • Formula (2) (In formula (2), R 1 represents a methyl group, R 2 represents a hydrogen atom or a methyl group, X 2 represents any of the following formulas, R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group. )
  • polycarbonate resin (A) which is a recycled product and which contains a structural unit represented by formula (1), can be produced (hereinafter simply referred to as “polycarbonate resin (A)”).
  • polycarbonate resin (B) a polycarbonate resin (hereinafter sometimes simply referred to as “polycarbonate resin (B)" containing a structural unit represented by formula (2), which after heat treatment It becomes possible to provide a resin composition in which an increase in color difference is suppressed.
  • polycarbonate resin (B) may be prone to yellowing when heat treated. It has been found that this is a problem because the polycarbonate resin (B) contains a large proportion of the Br element contained in the recycled polycarbonate resin. That is, polycarbonate resin that is a recycled product may contain components derived from brominated flame retardants. It is also known that brominated flame retardants are activated and more effective when used in combination with metal oxides such as antimony trioxide.
  • the polycarbonate resin (B) containing the structural unit represented by formula (2) such as bisphenol C type polycarbonate resin is different from the polycarbonate resin (B) containing the structural unit represented by formula (1) such as bisphenol A type polycarbonate resin. It tends to discolor more easily than A).
  • One of the reasons for this is thought to be that in the structural unit represented by formula (2), a methyl group is substituted in the benzene ring part derived from the bisphenol structure, and this methyl group is likely to be radicalized. .
  • the polycarbonate resin (B), which is easily radicalized contains, for example, a bromine compound derived from a brominated flame retardant, the molded product would be likely to yellow.
  • the polycarbonate resin used in this embodiment is a polycarbonate resin containing a structural unit represented by formula (1), is a recycled product, and the content of Br element in the polycarbonate resin (A) is 100% It is 10 mass ppm or less based on parts by mass.
  • the polycarbonate resin (A) contains the structural unit represented by formula (1), preferably more than 50% by mass, more preferably 55% by mass or more, still more preferably 60% by mass or more, even more preferably It is contained in a proportion of 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, particularly still more preferably 95% by mass or more, and preferably 100% by mass or less.
  • the polycarbonate resin (A) contains the structural unit represented by formula (1), preferably more than 50% by mass, more preferably 55% by mass or more, still more preferably 60% by mass or more, even more preferably It is contained in a proportion of 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, particularly still more preferably 95% by mass or more, and preferably 100% by mass or less.
  • X 1 represents any of the following formulas
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group
  • Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group.
  • Examples of the alicyclic hydrocarbon formed by Z bonding with C include cycloalkylidene groups such as cyclohexylidene group, cycloheptylidene group, cyclododecylidene group, adamantylidene group, and cyclododecylidene group. can be mentioned.
  • Examples of the alicyclic hydrocarbon having a substituent formed by bonding Z to C include methyl substituted products, ethyl substituted products, and the like of the above-mentioned alicyclic hydrocarbon group.
  • a cyclohexylidene group, a methyl substituted product of a cyclohexylidene group (preferably a 3,3,5-trimethyl substituted product), and a cyclododecylidene group are preferred.
  • X 1 is In this case, at least one of R 3 and R 4 is preferably a methyl group, and more preferably both are methyl groups. Also, X 1 is In the case of , Z is bonded to carbon C bonded to two phenyl groups in the above formula (1) to form a divalent alicyclic hydrocarbon group having 6 to 12 carbon atoms; Examples of the alicyclic hydrocarbon group include cycloalkylidene groups such as a cyclohexylidene group, a cycloheptylidene group, a cyclododecylidene group, an adamantylidene group, and a cyclododecylidene group.
  • cycloalkylidene groups such as a cyclohexylidene group, a cycloheptylidene group, a cyclododecylidene group, an adamantylidene group, and a cyclodo
  • substituted compounds include those having a methyl substituent or an ethyl substituent.
  • a cyclohexylidene group, a methyl substituted product of a cyclohexylidene group (preferably a 3,3,5-trimethyl substituted product), and a cyclododecylidene group are preferred.
  • X 1 preferably has the following structure.
  • a preferred specific example of the structural unit represented by the above formula (1) is a structural unit composed of 2,2-bis(4-hydroxyphenyl)propane, that is, bisphenol A (carbonate structural unit).
  • the polycarbonate resin (A) may contain only one type of structural unit represented by formula (1), or may contain two or more types of structural units.
  • the polycarbonate resin (A) may contain other structural units than the structural unit represented by formula (1).
  • Examples of other structural units include a structural unit represented by formula (2) described below and a structural unit derived from a dihydroxy compound shown below.
  • the structural unit with the highest content in the polycarbonate resin (A) is the structural unit represented by formula (1).
  • the polycarbonate resin (A) used in this embodiment is a recycled product.
  • Recycled products are polycarbonate resins derived from molded products made from polycarbonate resin, meaning virgin polycarbonate resins that have been subjected to some kind of molding process. The purpose is to include products such as products, offcuts from the production of polycarbonate resin molded products, etc.
  • the molded products include injection molded products, extrusion molded products, and molded products molded by other manufacturing methods.
  • Recycled polycarbonate resins include those obtained through material recycling in which collected used polycarbonate resin molded products are crushed, washed with alkali, and reused as fibers, etc., those obtained through chemical recycling (chemical decomposition method), and those obtained through mechanical recycling. Examples include those obtained through recycling.
  • Chemical recycling involves chemically decomposing collected used polycarbonate resin molded products, returning them to raw material level, and resynthesizing polycarbonate resin.
  • mechanical recycling is a method that makes it possible to remove dirt from polycarbonate resin molded products more reliably than material recycling, by performing the alkaline cleaning more strictly in the material recycling mentioned above, or vacuum drying at high temperatures. It is.
  • recycled polycarbonate resin can be obtained by removing foreign matter from a used polycarbonate resin molded product, pulverizing and washing the product, and then pelletizing it using an extruder.
  • used polycarbonate resin molded products include discs, sheets (including films), meter covers, headlamp lenses, and water bottles.
  • the polycarbonate resin (A) used in this embodiment has a Br element content of 10 mass ppm or less based on 100 parts by mass of the polycarbonate resin (A).
  • the content of the Br element in the polycarbonate resin (A) is preferably 7 ppm or less by mass based on 100 parts by mass of the polycarbonate resin (A).
  • the ideal lower limit is 0 mass ppm, but the actual lower limit will be the detection limit.
  • the content of the Br element is measured in accordance with the description in Examples described below.
  • the polycarbonate resin (A) in this embodiment is that it contains P element.
  • the P element is derived from, for example, a stabilizer.
  • the content thereof is preferably 1 ppm or more, more preferably 5 ppm or more, and 100 parts by mass, based on 100 parts by mass of the polycarbonate resin (A). It is more preferably 20 parts by mass or more, even more preferably 25 parts by mass or more, and even more preferably 25 parts by mass or more. By making it equal to or more than the lower limit value, ⁇ E tends to be further reduced.
  • the upper limit of the content of the P element is preferably 100 mass ppm or less, more preferably 90 mass ppm or less, and 80 mass ppm or less, based on 100 parts by mass of the polycarbonate resin (A). It is more preferable that the amount is 70 mass ppm or less, even more preferably 60 mass ppm or less, and even more preferably 50 mass ppm or less.
  • the mass ratio of Br element/P element in the polycarbonate resin (A) is preferably 0 or more, preferably 1.0 or less, and preferably 0.9 or less. It is more preferably 0.8 or less, even more preferably 0.7 or less, and even more preferably 0.6 or less.
  • the polycarbonate resin (A) in this embodiment is that it contains Fe element.
  • the Fe element is taken in, for example, from a kneader or manufacturing equipment.
  • the content thereof is preferably 1 ppm or more, more preferably 5 ppm or more, and 100 parts by mass, based on 100 parts by mass of the polycarbonate resin (A). It is more preferably at least 13 parts by mass, even more preferably at least 13 parts by mass.
  • the upper limit of the Fe element content is preferably 100 mass ppm or less, more preferably 80 mass ppm or less, and 60 mass ppm or less, based on 100 parts by mass of the polycarbonate resin (A).
  • the mass ratio of Br element/Fe element in the polycarbonate resin (A) is preferably 0 or more, preferably 1.0 or less, and preferably 0.9 or less. More preferably, it is 0.8 or less.
  • the polycarbonate resin (A) in this embodiment is that it contains Si element.
  • the Si element is taken in, for example, from a kneader or manufacturing equipment.
  • the content thereof is preferably 5 ppm or more, more preferably 10 ppm or more, and 15 It is more preferably at least 20 parts by mass, and even more preferably at least 20 parts by mass.
  • the upper limit of the content of the Si element is preferably 100 mass ppm or less, more preferably 90 mass ppm or less, and 80 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin (A).
  • the mass ratio of Br element/Si element in the polycarbonate resin (A) is preferably 0 or more, preferably 1.0 or less, and preferably 0.5 or less. More preferably, it is 0.4 or less.
  • Another embodiment of the polycarbonate resin (A) in this embodiment is that it does not contain the Cl element.
  • Another embodiment of the polycarbonate resin (A) in this embodiment is that the Cl element is contained in a proportion of more than 0 mass ppm and 100 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin (A).
  • polycarbonate resin (A) in this embodiment is that it does not contain Al element.
  • Al element is contained in a proportion of more than 0 mass ppm and 10 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin (A).
  • Another embodiment of the polycarbonate resin (A) in this embodiment is that it does not contain S element.
  • Another embodiment of the polycarbonate resin (A) in this embodiment is that the S element is contained in a proportion of more than 0 mass ppm and 20 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin (A).
  • Another embodiment of the polycarbonate resin (A) in this embodiment is that it does not contain Ca element.
  • Another embodiment of the polycarbonate resin (A) in this embodiment is that Ca element is contained in a proportion of more than 0 mass ppm and 30 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin (A).
  • polycarbonate resin (A) used in this embodiment is one containing all of the P element, Fe element, and Si element in the above proportions.
  • the polycarbonate resin (A) used in this embodiment is preferably a recycled product that does not contain a brominated flame retardant.
  • the lower limit of the viscosity average molecular weight (Mv) of the polycarbonate resin (A) used in this embodiment is preferably 5,000 or more, more preferably 8,000 or more, and 10,000 or more. is more preferable, and even more preferably 12,000 or more. Further, the upper limit value of Mv is preferably 32,000 or less, more preferably 30,000 or less, even more preferably 29,000 or less, and even more preferably 27,000 or less. .
  • the above polycarbonate resin (A) has a pencil hardness of 3B to H, preferably 3B to F, more preferably 2B to H, as measured in accordance with ISO 15184. Pencil hardness is measured according to the method described in the Examples below (the same applies to pencil hardness hereinafter). When two or more types of polycarbonate resins (A) are included, it is preferable that the pencil hardness of the mixture is within the above range.
  • the polycarbonate resin (B) used in this embodiment is a polycarbonate resin containing a structural unit represented by formula (2).
  • the proportion of the structural unit represented by formula (2) in the polycarbonate resin (B) is preferably 5% by mass or more, 15% by mass or more, 30% by mass or more, and more than 50% by mass among all the structural units. , 55% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, and preferably 100% by mass or less.
  • R 1 represents a methyl group
  • R 2 represents a hydrogen atom or a methyl group
  • X 2 represents any of the following formulas
  • R 3 and R 4 each independently represent a hydrogen atom or a methyl group
  • Z combines with C to form an alicyclic hydrocarbon having 6 to 12 carbon atoms and which may have a substituent. represents a group.
  • the two R 2 's in formula (2) may be the same or different, and are preferably the same.
  • R 2 is a hydrogen atom.
  • X 2 is In this case, at least one of R 3 and R 4 is preferably a methyl group, and more preferably both are methyl groups. Also, X 2 is In the case of , Z bonds with carbon C bonded to two phenyl groups in the above formula (2) to form a divalent alicyclic hydrocarbon group having 6 to 12 carbon atoms, but Examples of the alicyclic hydrocarbon group include cycloalkylidene groups such as a cyclohexylidene group, a cycloheptylidene group, a cyclododecylidene group, an adamantylidene group, and a cyclododecylidene group.
  • cycloalkylidene groups such as a cyclohexylidene group, a cycloheptylidene group, a cyclododecylidene group, an adamantylidene group, and a cyclodode
  • substituted compounds include those having a methyl substituent or an ethyl substituent.
  • a cyclohexylidene group, a methyl substituted product of a cyclohexylidene group (preferably a 3,3,5-trimethyl substituted product), and a cyclododecylidene group are preferred.
  • X 2 preferably has the following structure.
  • R 2 is a hydrogen atom
  • X 2 is It is preferable to use a polycarbonate resin containing a structural unit in which R 3 and R 4 are methyl groups.
  • the polycarbonate resin (B) may contain only one type of structural unit represented by formula (2), or may contain two or more types.
  • the polycarbonate resin (B) may contain 100% by mass of the structural unit represented by formula (2), but may also contain other structural units.
  • the structural unit with the highest content in the polycarbonate resin (B) is the structural unit represented by formula (2).
  • Examples of other structural units include the structural unit represented by formula (1) and the other structural units described in the section of the polycarbonate resin (A).
  • the lower limit of the viscosity average molecular weight (Mv) of the polycarbonate resin (B) used in this embodiment is preferably 5,000 or more, more preferably 8,000 or more, and 10,000 or more. is more preferable, and even more preferably 12,000 or more. Further, the upper limit value of Mv is preferably 32,000 or less, more preferably 30,000 or less, even more preferably 29,000 or less, and even more preferably 28,000 or less. .
  • the pencil hardness of the polycarbonate resin (B) measured according to ISO 15184 is exemplified as HB to 3H, preferably H to 2H, and more preferably 2H. Pencil hardness is measured according to the method described in the Examples below (the same applies to pencil hardness hereinafter). When two or more types of polycarbonate resins (B) are included, it is preferable that the pencil hardness of the mixture is within the above range.
  • the polycarbonate resin (B) used in this embodiment may be a virgin product or a recycled product, but a virgin product is preferable.
  • Virgin products are polycarbonate resins that are not recycled products.
  • the proportion of polycarbonate resin (A) is preferably 5 parts by mass or more, and 10 parts by mass or more when the total of polycarbonate resin (A) and polycarbonate resin (B) is 100 parts by mass. It is more preferably at least 20 parts by mass, even more preferably at least 35 parts by mass, even more preferably at least 40 parts by mass, and even more preferably at least 50 parts by mass. It is even more preferable that the amount is 60 parts by mass or more, and even more preferably that it is 60 parts by mass or more. By making it equal to or more than the lower limit value, ⁇ E tends to be made smaller.
  • the upper limit of the proportion of the polycarbonate resin (A) is preferably 95 parts by mass or less, and 90 parts by mass or less.
  • the content is more preferably 80 parts by mass or less, even more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less.
  • the resin composition of this embodiment may contain only one type of polycarbonate resin (A) and polycarbonate resin, or may contain two or more types of polycarbonate resin. When two or more types of polycarbonate resin (A) and/or polycarbonate resin (B) are included, the total amount of each is preferably within the above range.
  • the resin composition of the present embodiment may contain a polycarbonate resin other than the polycarbonate resin (A) and the polycarbonate resin (B) (hereinafter sometimes referred to as "polycarbonate resin (C)").
  • polycarbonate resin (C) virgin polycarbonate resins other than the polycarbonate resin (B) are exemplified, and the structural unit represented by the above formula (1) is usually more than 50% by mass (preferably 55% by mass) of all the structural units.
  • the resin composition of this embodiment contains polycarbonate resin (C), it is preferably less than 50% by mass, more preferably 45% by mass or less, and 40% by mass or less in the resin composition. More preferably, the content may be 25% by mass or less, 15% by mass or less, 5% by mass or less, 3% by mass or less, or 1% by mass or less.
  • the resin composition of the present embodiment may contain only one type of polycarbonate resin (C), or may contain two or more types of polycarbonate resin (C).
  • the total content of polycarbonate resin (A), polycarbonate resin (B), and polycarbonate resin (C) preferably accounts for 85% by mass or more of the resin composition, and preferably 90% by mass or more. more preferably 95% by mass or more, even more preferably 97% by mass or more, even more preferably 98% by mass or more, and 100% by mass or less. Good too.
  • the resin composition of the present embodiment may contain other components other than those mentioned above, as necessary, as long as desired physical properties are not significantly impaired.
  • other components include thermoplastic resins other than the polycarbonate resin (A) described above (eg, acrylic resins, etc.), various resin additives, and the like.
  • resin additives include mold release agents, stabilizers (thermal stabilizers, antioxidants, etc.), ultraviolet absorbers, antistatic agents, flame retardants, flame retardant aids, dyes, pigments, antifogging agents, and anti-fogging agents.
  • examples include blocking agents, fluidity improvers, plasticizers, dispersants, antibacterial agents, and the like.
  • one type of resin additive may be contained, or two or more types may be contained in any combination and ratio.
  • the antistatic agent the descriptions in paragraphs 0063 to 0067 of JP-A No. 2016-216534 can be referred to, and the contents thereof are incorporated herein.
  • the flame retardant the descriptions in paragraphs 0068 to 0075 of JP-A No. 2016-216534 can be referred to, and the contents thereof are incorporated herein.
  • the resin composition of this embodiment may contain a mold release agent.
  • mold release agents include aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds with a number average molecular weight of 200 to 15,000, and polysiloxane silicone oils. , ketone wax, light amide, etc., and aliphatic carboxylic acids, salts of aliphatic carboxylic acids, and esters of aliphatic carboxylic acids and alcohols are preferred.
  • the descriptions in paragraphs 0055 to 0061 of JP 2018-095706A can be referred to, and the contents thereof are incorporated herein.
  • the content thereof is preferably 0.05 to 3% by mass, and preferably 0.1 to 0.8% by mass in the resin composition. is more preferable, and even more preferably 0.1 to 0.6% by mass.
  • the resin composition of this embodiment may contain only one type of mold release agent, or may contain two or more types of mold release agents. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of this embodiment may contain a stabilizer.
  • stabilizers include heat stabilizers and antioxidants.
  • examples of the stabilizer include phenolic stabilizers, amine stabilizers, phosphorus stabilizers, thioether stabilizers, and the like. Among these, phosphorus stabilizers and phenol stabilizers are preferred in this embodiment. Any known phosphorus stabilizer can be used.
  • phosphorus oxoacids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid
  • acidic pyrophosphate metal salts such as sodium acid pyrophosphate, potassium acid pyrophosphate, and calcium acid pyrophosphate
  • Phosphates of Group 1 or Group 2 metals such as potassium phosphate, sodium phosphate, cesium phosphate, and zinc phosphate
  • examples include organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds; organic phosphite compounds is particularly preferred.
  • organic phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl/dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl Diphenyl phosphite, dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis(4,6-di- Examples include tert-butylphenyl) octyl phosphite.
  • organic phosphite compounds include, for example, "ADEKA STAB (registered trademark, hereinafter the same) 1178", “ADEKA STAB 2112", “ADEK STAB HP-10” manufactured by ADEKA, and “ADEKA STAB HP-10” manufactured by Johoku Kagaku Kogyo Co., Ltd.
  • Examples include "JP-351”, “JP-360”, “JP-3CP”, and "Irgafoss (registered trademark, hereinafter the same) 168" manufactured by BASF.
  • a hindered phenol stabilizer is preferably used as the phenol stabilizer.
  • Specific examples of hindered phenol stabilizers include pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-tert- butyl-4-hydroxyphenyl)propionate, thiodiethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], N,N'-hexane-1,6-diylbis[3-( 3,5-di-tert-butyl-4-hydroxyphenyl)propionamide], 2,4-dimethyl-6-(1-methylpentadecyl)phenol, diethyl [[3,5-bis(1,1-dimethylethyl) )-4-hydroxyphenyl]methyl]phosphate, 3,3',3',
  • pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] and octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate are preferable.
  • hindered phenol stabilizers include, for example, "Irganox (registered trademark) 1010” and “Irganox 1076" manufactured by BASF, "ADEK STAB AO-50” and “ADEK STAB AO-50” manufactured by ADEKA. AO-60'', etc.
  • the content of the stabilizer in the resin composition of the present embodiment is usually 0.001 parts by mass or more based on a total of 100 parts by mass of polycarbonate resin (A), polycarbonate resin (B), and polycarbonate resin (C). , preferably 0.005 parts by mass or more, more preferably 0.01 parts by mass or more, and usually 1 part by mass or less, preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less. .
  • the resin composition of this embodiment may contain only one kind of stabilizer, or may contain two or more kinds of stabilizers. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of this embodiment may contain an ultraviolet absorber.
  • Preferred examples of the UV absorber include benzotriazole UV absorbers, benzoxazine UV absorbers, triazine UV absorbers, and malonic acid ester UV absorbers, with benzotriazole UV absorbers being preferred.
  • benzotriazole ultraviolet absorbers examples include 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-2H- Benzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-2H-benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)-2H-benzotriazole, 2-( 3,5-di-tert-octyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3,5-di-tert-amyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3- lauryl-5-methyl-2-hydroxyphenyl)-2H-benzotriazole, 2-(3,5-di-tert-butyl-2-hydroxyphenyl)-5-chloro-2H-benzotriazole, 2-(3- tert-butyl-5-methyl-2-
  • the content of the ultraviolet absorber is 100 parts by mass in total of polycarbonate resin (A), polycarbonate resin (B), and polycarbonate resin (C). However, it is preferably 0.01 to 1 part by mass.
  • the content of the ultraviolet absorber is more preferably 0.03 to 0.7 parts by mass based on the total of polycarbonate resin (A), polycarbonate resin (B), and polycarbonate resin (C), and even more preferably It is 0.05 to 0.5 parts by mass.
  • the resin composition of this embodiment may contain only one type of ultraviolet absorber, or may contain two or more types of ultraviolet absorbers. When two or more types are included, it is preferable that the total amount falls within the above range.
  • the resin composition of the present embodiment is made of polycarbonate resin (A), polycarbonate resin (B), polycarbonate resin (C), and other components blended as necessary so that the total amount is 100% by mass. is adjusted to
  • the resin composition of this embodiment preferably has high hardness. Specifically, the pencil hardness measured according to ISO 15184 is preferably HB or higher, more preferably F or higher. Further, the upper limit is not particularly determined, but 3H or less is practical. Such high pencil hardness is achieved by using polycarbonate resin (B).
  • the resin composition of this embodiment preferably has a low color difference ( ⁇ E) after heat-treating the molded article. Specifically, the resin composition of this embodiment is molded into a 2 mm thick test piece, and the difference in hue ( ⁇ E) before and after treatment at 100° C. for 330 hours is preferably 1.0 or less, and 0. It is more preferably 9 or less, and even more preferably 0.7 or less.
  • the lower limit of ⁇ E is 0, but even if it is 0.01 or more, the required performance is sufficiently satisfied.
  • a low ⁇ E is achieved by reducing the content of Br element in the polycarbonate resin (A).
  • a polycarbonate resin (A) containing P element a lower ⁇ E can be achieved. In particular, this is achieved by precisely adjusting the ratio of Br element/P element in the polycarbonate resin (A).
  • the ⁇ E is measured in accordance with the description of Examples described later.
  • the method for producing the resin composition of the present embodiment involves melting a polycarbonate resin (A) containing the structural unit represented by formula (1) and a polycarbonate resin (B) containing the structural unit represented by formula (2). Including kneading.
  • the resin composition manufactured by the method for manufacturing a resin composition of this embodiment is preferably the resin composition of this embodiment. More specifically, the method for producing the resin composition of the present embodiment involves mixing the polycarbonate resin (A), the polycarbonate resin (B), and other components blended as necessary with a tumbler or Henschel.
  • melt-kneading temperature is not particularly limited, but is usually in the range of 240 to 320°C.
  • the above-described resin composition (for example, pellets) is molded into a molded article by various molding methods. That is, the molded article of this embodiment is formed from the resin composition of this embodiment.
  • the shape of the molded product is not particularly limited and can be selected as appropriate depending on the use and purpose of the molded product, such as film, rod, cylindrical, annular, circular, elliptical, and polygonal shapes. , irregularly shaped products, hollow products, frame-shaped, box-shaped, panel-shaped, button-shaped products, etc.
  • the method for molding the molded product is not particularly limited, and conventionally known molding methods can be employed, such as injection molding, injection compression molding, extrusion molding, profile extrusion, transfer molding, blow molding, Gas-assisted blow molding, blow molding, extrusion blow molding, IMC (in-mold coating molding), rotational molding, multilayer molding, two-color molding, insert molding, sandwich molding, foam molding , pressure molding method, etc.
  • the resin composition of this embodiment is suitable for molded articles obtained by injection molding, injection compression molding, and extrusion molding.
  • the resin composition of this embodiment is not limited to molded articles obtained using these.
  • the molded product of this embodiment is suitably used for parts such as electrical and electronic equipment, OA equipment, mobile information terminals, mechanical parts, home appliances, vehicle parts, various containers, lighting equipment, and displays.
  • PCR-PC means that it is a recycled product of bisphenol A type polycarbonate resin.
  • the content of each metal element in the polycarbonate resin is as follows.
  • ⁇ Method for measuring metal elements in polycarbonate resin Quantification (mass ppm) of metal elements in the polycarbonate resin was performed by X-ray fluorescence analysis (XRF).
  • XRF X-ray fluorescence analysis
  • a fluorescent X-ray analyzer manufactured by Rigaku Co., Ltd., trade name: ZSX Primus
  • Rh tube 4 kW
  • an EZ scan was performed in a vacuum atmosphere with an irradiation area of 20 mm ⁇ .
  • reaction solution was stirred and incubated at 220° C. for 30 minutes under a nitrogen gas atmosphere.
  • pressure inside the reactor was reduced to 100 Torr over 40 minutes at the same temperature, and the reaction was further carried out for 100 minutes to distill out phenol.
  • the temperature inside the reactor was raised to 284° C. over 60 minutes, and the pressure was reduced to 3 Torr, to distill out phenol corresponding to almost the entire theoretical amount of distillation.
  • the pressure inside the reactor was maintained at less than 1 Torr at the same temperature, and the reaction was continued for an additional 60 minutes to complete the polycondensation reaction.
  • the stirring rotational speed of the stirrer was 38 rotations/min
  • the temperature of the reaction liquid immediately before the end of the reaction was 289° C.
  • the stirring power was 1.00 kW.
  • the reaction liquid in a molten state is sent to a twin-screw extruder, and butyl p-toluenesulfonate in a molar amount four times that of cesium carbonate is supplied from the first supply port of the twin-screw extruder.
  • the reaction solution was extruded into a strand through a die of a twin-screw extruder and cut with a cutter to obtain pellets of polycarbonate resin B1.
  • reaction solution was stirred and incubated at 220° C. for 30 minutes under a nitrogen gas atmosphere.
  • pressure inside the reactor was reduced to 100 Torr over 40 minutes at the same temperature, and the reaction was further carried out for 100 minutes to distill out phenol.
  • the temperature inside the reactor was raised to 284° C. over 60 minutes, and the pressure was reduced to 3 Torr, to distill out phenol corresponding to almost the entire theoretical amount of distillation.
  • the pressure inside the reactor was maintained at less than 1 Torr at the same temperature, and the reaction was continued for an additional 60 minutes to complete the polycondensation reaction.
  • the stirring rotational speed of the stirrer was 38 rotations/min
  • the temperature of the reaction liquid immediately before the end of the reaction was 289° C.
  • the stirring power was 0.60 kW.
  • the reaction liquid in a molten state is sent to a twin-screw extruder, and butyl p-toluenesulfonate in a molar amount four times that of cesium carbonate is supplied from the first supply port of the twin-screw extruder.
  • the reaction solution was extruded into a strand through a die of a twin-screw extruder and cut with a cutter to obtain pellets of polycarbonate resin B2.
  • Example 12 Comparative Example 4 In Example 1, the polycarbonate resins (A) to (C) were changed as described, and the rest was carried out in the same manner.
  • the Br amount indicates the amount of Br atoms in the polycarbonate resin (A).
  • the method for measuring the amount of Br atoms is the method described in ⁇ Method for measuring metal elements in polycarbonate resin> above.
  • the type of polycarbonate resin (B) containing the structural unit represented by formula (2) was changed, the same trends as in Examples 1 to 11 and Comparative Examples 1 to 3 were observed. (Example 12, Comparative Example 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ビスフェノールA型ポリカーボネート樹脂に代表される式(1)で表される構成単位を含むポリカーボネート樹脂であって、リサイクル品であるポリカーボネート樹脂(A)と、ビスフェノールC型ポリカーボネート樹脂に代表される式(2)で表される構成単位を含むポリカーボネート樹脂(B)を含む樹脂組成物であって、熱処理後の色差の上昇が抑制された樹脂組成物、成形品、ならびに、樹脂組成物の製造方法の提供。式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを含み、前記ポリカーボネート樹脂(A)が、リサイクル品であり、前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、樹脂組成物。

Description

樹脂組成物、成形品、および、樹脂組成物の製造方法
 本発明は、樹脂組成物、成形品、および、樹脂組成物の製造方法に関する。特に、ポリカーボネート樹脂を主要成分とする樹脂組成物に関する。
 ポリカーボネート樹脂は、機械的強度、電気的特性、透明性などに優れ、エンジニアリングプラスチックとして、電気電子機器分野、自動車分野等の様々な分野において幅広く利用されている。
 一方、近年、資源のリサイクルが謳われており、ポリカーボネート樹脂についてもリサイクルが検討されている(特許文献1、特許文献2等)。
特開2001-226576号公報 国際公開第2000/029461号
 ここで、汎用ポリカーボネート樹脂であるビスフェノールA型ポリカーボネート樹脂の硬度を高める観点から、ビスフェノールC型ポリカーボネート樹脂等を配合することがある。
 このようなビスフェノールA型ポリカーボネート樹脂とビスフェノールC型ポリカーボネート樹脂のブレンド物において、ビスフェノールA型ポリカーボネート樹脂としてリサイクル品を用いると、熱処理後の色差が大きく上昇してしまうことが分かった。
 本発明は、かかる課題を解決することを目的とするものであって、ビスフェノールA型ポリカーボネート樹脂に代表される後述する式(1)で表される構成単位を含むポリカーボネート樹脂であって、リサイクル品を含むポリカーボネート樹脂(A)と、ビスフェノールC型ポリカーボネート樹脂に代表される後述する式(2)で表される構成単位を含むポリカーボネート樹脂(B)を含む樹脂組成物であって、熱処理後の色差の上昇が抑制された樹脂組成物、成形品、ならびに、樹脂組成物の製造方法を提供することを目的とする。
 上記課題のもと、上記式(1)で表される構成単位を含むポリカーボネート樹脂として、Br元素の含有量が少ないものを用いることにより、上記課題を解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、
式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを含み、
前記ポリカーボネート樹脂(A)が、リサイクル品であり、
前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、樹脂組成物。
式(1)
(式(1)中、Xは下記のいずれかの式を表し、
 R3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
式(2)
(式(2)中、R1はメチル基を表し、R2は水素原子またはメチル基を表し、Xは下記のいずれかの式を表し、
3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
<2>前記ポリカーボネート樹脂(A)がP元素を含む、<1>に記載の樹脂組成物。
<3>前記ポリカーボネート樹脂(A)中のBr元素/P元素の質量比率が、0~1.0である、<2>に記載の樹脂組成物。
<4>前記ポリカーボネート樹脂(A)がFe元素を含む、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記ポリカーボネート樹脂(A)がSi元素を含む、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記式(2)中、Rは水素原子であり、Xは、
であり、RおよびRがメチル基である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7><1>~<6>のいずれか1つに記載の樹脂組成物のペレット。
<8><1>~<6>のいずれか1つに記載の樹脂組成物から形成された成形品。
<9>式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを溶融混練することを含み、
前記ポリカーボネート樹脂(A)が、リサイクル品であり、
前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、樹脂組成物の製造方法。
式(1)
(式(1)中、Xは下記のいずれかの式を表し、
 R3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
式(2)
(式(2)中、R1はメチル基を表し、R2は水素原子またはメチル基を表し、Xは下記のいずれかの式を表し、
3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
<10>式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを溶融混練することを含み、
前記ポリカーボネート樹脂(A)が、リサイクル品であり、
前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、<1>~<6>のいずれか1つに記載の樹脂組成物の製造方法。
 本発明により、ビスフェノールA型ポリカーボネート樹脂に代表される式(1)で表される構成単位を含むポリカーボネート樹脂であって、リサイクル品であるポリカーボネート樹脂(A)と、ビスフェノールC型ポリカーボネート樹脂に代表される式(2)で表される構成単位を含むポリカーボネート樹脂(B)を含む樹脂組成物であって、熱処理後の色差の上昇が抑制された樹脂組成物、成形品、ならびに、樹脂組成物の製造方法を提供可能になった。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書において、ppmは質量ppmを意味する。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。
 本実施形態の樹脂組成物は、式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを含み、ポリカーボネート樹脂(A)が、リサイクル品であり、ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下であることを特徴とする。
式(1)
(式(1)中、Xは下記のいずれかの式を表し、
 R3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
式(2)
(式(2)中、R1はメチル基を表し、R2は水素原子またはメチル基を表し、Xは下記のいずれかの式を表し、
3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
 このような構成とすることにより、式(1)で表される構成単位を含むポリカーボネート樹脂であって、リサイクル品であるポリカーボネート樹脂(A)(以下、単に、「ポリカーボネート樹脂(A)」ということがある)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)(以下、単に、「ポリカーボネート樹脂(B)」ということがある)を含む樹脂組成物であって、熱処理後の色差の上昇が抑制された樹脂組成物を提供可能になる。
 本発明者が検討を行ったところ、リサイクル品であるポリカーボネート樹脂とポリカーボネート樹脂(B)をブレンドした成形品は、加熱処理したときに黄変しやすい場合があることが分かった。これは、ポリカーボネート樹脂(B)が、リサイクル品であるポリカーボネート樹脂に含まれるBr元素の割合が多いことが問題であることを見出した。すなわち、リサイクル品であるポリカーボネート樹脂には、臭素系難燃剤由来の成分を含んでいることがある。また、臭素系難燃剤は、三酸化アンチモンに代表される金属酸化物と併用することで活性化され、より効果を発揮することが知られている。
 一方、ビスフェノールC型ポリカーボネート樹脂等の式(2)で表される構成単位を含むポリカーボネート樹脂(B)は、ビスフェノールA型ポリカーボネート樹脂等の式(1)で表される構成単位を含むポリカーボネート樹脂(A)よりも、変色しやすい傾向にある。この理由の1つとして、式(2)で表される構成単位は、ビスフェノール構造に由来するベンゼン環部分にメチル基が置換しており、このメチル基がラジカル化しやすいことにあると推測された。
 そして、ラジカル化しやすいポリカーボネート樹脂(B)が、例えば、臭素系難燃剤に由来する臭素化合物を含むと、成形品が黄変しやすいと推測された。特に、加熱することにより、黄変しやすいと推測された。さらに、金属酸化物を含むことにより、臭素化合物と金属酸化物が作用して、より黄変しやすいと推測された。
 本実施形態では、ポリカーボネート樹脂(A)として、Br元素の含有量が少ないものを採用することにより、上記課題を解決できたと推測される。
<ポリカーボネート樹脂(A)>(A)
 本実施形態で用いるポリカーボネート樹脂は、式(1)で表される構成単位を含むポリカーボネート樹脂であり、リサイクル品であり、ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である。
 ポリカーボネート樹脂(A)は、式(1)で表される構成単位を、全構成単位中、好ましくは50質量%超、より好ましくは55質量%以上、さらに好ましくは60質量%以上、一層好ましくは70質量%以上、より一層好ましくは80質量%以上、さらに一層好ましくは90質量%以上、特に一層好ましくは95質量%以上、また、好ましくは100質量%以下の割合で含む。
 ポリカーボネート樹脂(A)を用いることにより、熱処理後の黄変を効果的に抑制できる。
式(1)
(式(1)中、Xは下記のいずれかの式を表し、
 R3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
 ZがCと結合して形成される脂環式炭化水素としては、シクロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基、アダマンチリデン基、シクロドデシリデン基等のシクロアルキリデン基が挙げられる。ZがCと結合して形成される置換基を有する脂環式炭化水素としては、上述した脂環式炭化水素基のメチル置換体、エチル置換体などが挙げられる。これらの中でも、シクロヘキシリデン基、シクロヘキシリデン基のメチル置換体(好ましくは3,3,5-トリメチル置換体)、シクロドデシリデン基が好ましい。
 式(1)中、Xは、
である場合、RおよびRは、少なくとも一方がメチル基であることが好ましく、両方がメチル基であることがより好ましい。
 またXが、
の場合、Zは、上記式(1)中の2個のフェニル基と結合する炭素Cと結合して、炭素数6~12の2価の脂環式炭化水素基を形成するが、2価の脂環式炭化水素基としては、例えば、シキロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基、アダマンチリデン基、シクロドデシリデン基等のシクロアルキリデン基が挙げられる。置換されたものとしては、これらのメチル置換基、エチル置換基を有するもの等が挙げられる。これらの中でも、シクロヘキシリデン基、シキロヘキシリデン基のメチル置換体(好ましくは3,3,5-トリメチル置換体)、シクロドデシリデン基が好ましい。
 式(1)中、Xは下記構造が好ましい。
 上記式(1)で表される構成単位の好ましい具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、すなわち、ビスフェノールAから構成される構成単位(カーボネート構成単位)である。
 本実施形態では、ポリカーボネート樹脂(A)は、式(1)で表される構成単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 本実施形態において、ポリカーボネート樹脂(A)は、式(1)で表される構成単位以外の他の構成単位を含んでいてもよい。他の構成単位としては、後述する式(2)で表される構成単位や以下に示すジヒドロキシ化合物由来の構成単位が例示される。但し、ポリカーボネート樹脂(A)における最も含有量の多い構成単位は、式(1)で表される構成単位である。
 ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-(1-メチルエチル)フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-(1-メチルプロピル)フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、4,4’-(1,3-フェニレンジイソプロピリデン)ビスフェノール、4,4’-(1,4-フェニレンジイソプロピリデン)ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシビフェニル、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-6-メチル-3-tert-ブチルフェニル)ブタン。
 また、他の構成単位の一実施形態として、国際公開第2017/099226号の段落0008の記載、国際公開第2017/099226号の段落0043~0052の記載、特開2011-046769号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態で用いるポリカーボネート樹脂(A)は、リサイクル品である。
 リサイクル品とは、ポリカーボネート樹脂から形成された成形品に由来するポリカーボネート樹脂であり、バージンポリカーボネート樹脂が何かしらの成形加工を施されたものを意味し、ポリカーボネート樹脂成形品、ポリカーボネート樹脂成形品の不合格品、ポリカーボネート樹脂成形品製造の際の端材などを含む趣旨である。成形加工品としては、射出成形品、押出成形品、その他の製法によって成形された成形品を含む趣旨である。
 リサイクルポリカーボネート樹脂としては、回収された使用済ポリカーボネート樹脂成形品を粉砕、アルカリ洗浄して繊維等に再利用するマテリアルリサイクルにより得られたもの、ケミカルリサイクル(化学分解法)より得られたものおよびメカニカルリサイクルにより得られたもの等が挙げられる。
 ケミカルリサイクルは、回収された使用済ポリカーボネート樹脂成形品を化学分解して、原料レベルに戻してポリカーボネート樹脂を再合成するものである。一方、メカニカルリサイクルは、上述したマテリアルリサイクルにおけるアルカリ洗浄をより厳密に行うこと、あるいは高温で真空乾燥すること等によって、マテリアルリサイクルよりもポリカーボネート樹脂成形品の汚れを確実に取り除くことを可能にした手法である。
 例えば、使用済ポリカーボネート樹脂成形品からは、異物が取り除かれた後に、粉砕・洗浄され、次に押出機によりペレット化することにより、リサイクルポリカーボネート樹脂が得られる。
 使用済みポリカーボネート樹脂成形品の例には、ディスク、シート(フィルムを含む)、メーターカバー、ヘッドランプレンズ、水ボトルが含まれる。
 本実施形態で用いるポリカーボネート樹脂(A)は、Br元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である。Br元素の含有量を低くすることにより、ポリカーボネート樹脂(B)とブレンドしたときに、ポリカーボネート樹脂(B)のラジカルが活性化するのを効果的に抑制でき、熱処理前後のΔEを小さくできる。
 ポリカーボネート樹脂(A)中のBr元素の含有量は、ポリカーボネート樹脂(A)100質量部に対し、好ましくは、7質量ppm以下である。下限値は、0質量ppmが理想であるが、実質的な下限値は、検出限界値となるであろう。
 Br元素の含有量は後述する実施例の記載に従って測定される。
 本実施形態におけるポリカーボネート樹脂(A)の一実施形態は、P元素を含むことである。P元素を含むことにより、ΔEがさらに低減する傾向にある。P元素は、例えば、安定剤などに由来する。ポリカーボネート樹脂(A)がP元素を含む場合、その含有量は、ポリカーボネート樹脂(A)100質量部に対し、1質量ppm以上であることが好ましく、5質量ppm以上であることがより好ましく、10質量部以上であることがさらに好ましく、20質量ppm以上であることが一層好ましく、25質量ppm以上であることがより一層好ましい。前記下限値以上とすることにより、ΔEがより低減する傾向にある。また、前記P元素の含有量の上限値は、ポリカーボネート樹脂(A)100質量部に対し、100質量ppm以下であることが好ましく、90質量ppm以下であることがより好ましく、80質量ppm以下であることがさらに好ましく、70質量ppm以下であることが一層好ましく、60質量ppm以下であることがより一層好ましく、50質量ppm以下であることがさらに一層好ましい。
 上記実施形態において、ポリカーボネート樹脂(A)中のBr元素/P元素の質量比率は、0以上であることが好ましく、また、1.0以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましく、0.7以下であることが一層好ましく、0.6以下であることがより一層好ましい。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Fe元素を含むことである。Fe元素は、例えば、混練機や製造設備から取り込まれる。ポリカーボネート樹脂(A)がFe元素を含む場合、その含有量は、ポリカーボネート樹脂(A)100質量部に対し、1質量ppm以上であることが好ましく、5質量ppm以上であることがより好ましく、10質量部以上であることがさらに好ましく、13質量ppm以上であることが一層好ましい。また、前記Fe元素の含有量の上限値は、ポリカーボネート樹脂(A)100質量部に対し、100質量ppm以下であることが好ましく、80質量ppm以下であることがより好ましく、60質量ppm以下であることがさらに好ましく、50質量ppm以下であることが一層好ましく、40質量ppm以下であることがより一層好ましく、30質量ppm以下であることがさらに一層好ましい。
 上記実施形態において、ポリカーボネート樹脂(A)中のBr元素/Fe元素の質量比率は、0以上であることが好ましく、また、1.0以下であることが好ましく、0.9以下であることがより好ましく、0.8以下であることがさらに好ましい。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Si元素を含むことである。Si元素は、例えば、混練機や製造設備から取り込まれる。ポリカーボネート樹脂(A)がSi元素を含む場合、その含有量は、ポリカーボネート樹脂(A)100質量部に対し、5質量ppm以上であることが好ましく、10質量ppm以上であることがより好ましく、15質量部以上であることがさらに好ましく、20質量ppm以上であることが一層好ましい。また、前記Si元素の含有量の上限値は、ポリカーボネート樹脂(A)100質量部に対し、100質量ppm以下であることが好ましく、90質量ppm以下であることがより好ましく、80質量ppm以下であることがさらに好ましく、70質量ppm以下であることが一層好ましく、60質量ppm以下であることがより一層好ましい。
 上記実施形態において、ポリカーボネート樹脂(A)中のBr元素/Si元素の質量比率は、0以上であることが好ましく、また、1.0以下であることが好ましく、0.5以下であることがより好ましく、0.4以下であることがさらに好ましい。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Cl元素を含まないことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Cl元素をポリカーボネート樹脂(A)100質量部に対し、0質量ppm超100質量ppm以下の割合で含むことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Al元素を含まないことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Al元素をポリカーボネート樹脂(A)100質量部に対し、0質量ppm超10質量ppm以下の割合で含むことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、S元素を含まないことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、S元素をポリカーボネート樹脂(A)100質量部に対し、0質量ppm超20質量ppm以下の割合で含むことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Ca元素を含まないことである。
 本実施形態におけるポリカーボネート樹脂(A)の他の一実施形態は、Ca元素をポリカーボネート樹脂(A)100質量部に対し、0質量ppm超30質量ppm以下の割合で含むことである。
 本実施形態で用いるポリカーボネート樹脂(A)の一例として、上記P元素、Fe元素およびSi元素のいずれも、上記割合で含むことが挙げられる。
 本実施形態で用いるポリカーボネート樹脂(A)は、臭素系難燃剤を含まないリサイクル品であることが好ましい。
 本実施形態で用いるポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、下限値が5,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましく、12,000以上であることが一層好ましい。また、Mvの上限値は、32,000以下であることが好ましく、30,000以下であることがより好ましく、29,000以下であることがさらに好ましく、27,000以下であることが一層好ましい。
 上記ポリカーボネート樹脂(A)は、ISO 15184に従って測定した鉛筆硬度が3B~Hであることが例示され、3B~Fであることが好ましく、2B~Hであることがより好ましい。鉛筆硬度は、後述する実施例に記載の方法に従って測定される(以下、鉛筆硬度について同じ)。2種以上のポリカーボネート樹脂(A)を含む場合は、混合物の鉛筆硬度が上記範囲であることが好ましい。
<ポリカーボネート樹脂(B)>
 本実施形態で用いるポリカーボネート樹脂(B)は、式(2)で表される構成単位を含むポリカーボネート樹脂である。ポリカーボネート樹脂(B)中における式(2)で表される構成単位の割合は、全構成単位中、好ましくは、順に、5質量%以上、15質量%以上、30質量%以上、50質量%超、55質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上であり、また、好ましくは100質量%以下である。
 ポリカーボネート樹脂(B)を用いることにより、硬度が高い成形品が得られる。
式(2)
(式(2)中、R1はメチル基を表し、R2は水素原子またはメチル基を表し、Xは下記のいずれかの式を表し、
3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
 式(2)中の2つのRは、それぞれ同一でも、異なっていてもよく、好ましくは同一である。Rは水素原子であることが好ましい。
 式(2)中、Xは、
である場合、RおよびRは、少なくとも一方がメチル基であることが好ましく、両方がメチル基であることがより好ましい。
 またXが、
の場合、Zは、上記式(2)中の2個のフェニル基と結合する炭素Cと結合して、炭素数6~12の2価の脂環式炭化水素基を形成するが、2価の脂環式炭化水素基としては、例えば、シキロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基、アダマンチリデン基、シクロドデシリデン基等のシクロアルキリデン基が挙げられる。置換されたものとしては、これらのメチル置換基、エチル置換基を有するもの等が挙げられる。これらの中でも、シクロヘキシリデン基、シキロヘキシリデン基のメチル置換体(好ましくは3,3,5-トリメチル置換体)、シクロドデシリデン基が好ましい。
 式(2)中、Xは下記構造が好ましい。
 本実施形態においては、特に、式(2)中、Rは水素原子であり、Xは、
であり、RおよびRがメチル基である構成単位を含むポリカーボネート樹脂を用いることが好ましい。
 本実施形態では、ポリカーボネート樹脂(B)は、式(2)で表される構成単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 本実施形態において、ポリカーボネート樹脂(B)は、上述の通り、式(2)で表される構成単位が100質量%であってもよいが、他の構成単位を含んでいてもよい。但し、ポリカーボネート樹脂(B)における最も含有量の多い構成単位は、式(2)で表される構成単位である。
 他の構成単位としては、式(1)で表される構成単位、ポリカーボネート樹脂(A)の項で述べた他の構成単位が例示される。
 本実施形態で用いるポリカーボネート樹脂(B)の粘度平均分子量(Mv)は、下限値が5,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましく、12,000以上であることが一層好ましい。また、Mvの上限値は、32,000以下であることが好ましく、30,000以下であることがより好ましく、29,000以下であることがさらに好ましく、28,000以下であることが一層好ましい。
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度(η)(単位:dL/g)を求め、以下のSchnellの粘度式から算出する。
 η=1.23×10-4Mv0.83
 上記ポリカーボネート樹脂(B)は、ISO 15184に従って測定した鉛筆硬度がHB~3Hであることが例示され、H~2Hであることが好ましく、2Hであることがより好ましい。鉛筆硬度は、後述する実施例に記載の方法に従って測定される(以下、鉛筆硬度について同じ)。2種以上のポリカーボネート樹脂(B)を含む場合は、混合物の鉛筆硬度が上記範囲であることが好ましい。
 本実施形態で用いるポリカーボネート樹脂(B)は、バージン品であってもよいし、リサイクル品であってもよいが、バージン品が好ましい。
 バージン品とは、リサイクル品ではないポリカーボネート樹脂である。
<樹脂組成物に含まれるポリカーボネート樹脂>
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の合計を100質量部としたとき、ポリカーボネート樹脂(A)の割合が、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、20質量部以上であることがさらに好ましく、35質量部以上であることが一層好ましく、40質量部以上であることがより一層好ましく、50質量部以上であることがさらに一層好ましく、60質量部以上であることが特に一層好ましい。前記下限値以上とすることにより、ΔEをより小さくできる傾向にある。また、前記ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の合計を100質量部としたときのポリカーボネート樹脂(A)の割合の上限値は、95質量部以下であることが好ましく、90質量部以下であることがより好ましく、80質量部以下であることがさらに好ましく、75質量部以下であることが一層好ましく、70質量部以下であることがより一層好ましい。前記上限値以下とすることにより、得られる成形品の硬度がより向上する傾向にある。
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(A)とポリカーボネート樹脂を、それぞれ、1種のみ含んでいてもよいし、2種以上含んでいてもよい。ポリカーボネート樹脂(A)および/またはポリカーボネート樹脂(B)を2種以上含む場合、それぞれ、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)以外の他のポリカーボネート樹脂(以下、「ポリカーボネート樹脂(C)」ということがある)を含んでいてもよい。
 ポリカーボネート樹脂(C)としては、ポリカーボネート樹脂(B)以外のバージンポリカーボネート樹脂が例示され、上記式(1)で表される構成単位を、全構成単位中、通常、50質量%超(好ましくは55質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、一層好ましくは80質量%以上、より一層好ましくは90質量%以上、さらに一層好ましくは95質量%以上、また、好ましくは100質量%以下)の割合で含むポリカーボネート樹脂であって、バージン品であるポリカーボネート樹脂であることが好ましい。
 本実施形態の樹脂組成物が、ポリカーボネート樹脂(C)を含む場合、樹脂組成物中、50質量%未満であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、さらには、25質量%以下、15質量%以下、5質量%以下、3質量%以下、1質量%以下であってもよい。
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(C)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。
 本実施形態の樹脂組成物中、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)とポリカーボネート樹脂(C)の合計含有量は、樹脂組成物の85質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましく、97質量%以上を占めることが一層好ましく、98質量%以上をしめることがより一層好ましく、また、100質量%以下であってもよい。
<その他の成分>
 本実施形態の樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上記以外の他成分を含有していてもよい。その他の成分の例を挙げると、上記したポリカーボネート樹脂(A)以外の熱可塑性樹脂(例えば、アクリル樹脂等)、各種樹脂添加剤などが挙げられる。
 樹脂添加剤としては、例えば、離型剤、安定剤(熱安定剤、酸化防止剤等)、紫外線吸収剤、帯電防止剤、難燃剤、難燃助剤、染料、顔料、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせおよび比率で含有されていてもよい。
 帯電防止剤としては、特開2016-216534号公報の段落0063~0067の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 難燃剤としては、特開2016-216534号公報の段落0068~0075の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<<離型剤>>
 本実施形態の樹脂組成物は、離型剤を含んでいてもよい。
 離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイル、ケトンワックス、ライトアマイドなどが挙げられ、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステルが好ましい。
 離型剤の詳細は、特開2018-095706号公報の段落0055~0061の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物が離型剤を含む場合、その含有量は、樹脂組成物中、0.05~3質量%であることが好ましく、0.1~0.8質量%であることがより好ましく、0.1~0.6質量%であることがさらに好ましい。
 本実施形態の樹脂組成物は、離型剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<安定剤>>
 本実施形態の樹脂組成物は、安定剤を含んでいてもよい。
 安定剤としては、熱安定剤や酸化防止剤が挙げられる。
 安定剤としては、フェノール系安定剤、アミン系安定剤、リン系安定剤、チオエーテル系安定剤などが挙げられる。中でも本実施形態においては、リン系安定剤およびフェノール系安定剤が好ましい。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜リン酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
 有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等が挙げられる。
 このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ(登録商標。以下同じ)1178」、「アデカスタブ2112」、「アデカスタブHP-10」、城北化学工業社製「JP-351」、「JP-360」、「JP-3CP」、BASF社製「イルガフォス(登録商標。以下同じ)168」等が挙げられる。
 フェノール系安定剤としては、ヒンダードフェノール系安定剤が好ましく用いられる。ヒンダードフェノール系安定剤の具体例としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド]、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスフェート、3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等が挙げられる。
 なかでも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましい。このようなヒンダードフェノール系安定剤としては、具体的には、例えば、BASF社製「Irganox(登録商標。以下同じ)1010」、「Irganox1076」、ADEKA社製「アデカスタブAO-50」、「アデカスタブAO-60」等が挙げられる。
 本実施形態の樹脂組成物における安定剤の含有量は、ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、および、ポリカーボネート樹脂(C)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.005質量部以上、より好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下、より好ましくは0.3質量部以下である。安定剤の含有量を前記範囲とすることにより、安定剤の添加効果がより効果的に発揮される。
 本実施形態の樹脂組成物は、安定剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<紫外線吸収剤>>
 本実施形態の樹脂組成物は、紫外線吸収剤を含んでいてもよい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾオキサジン系紫外線吸収剤、トリアジン系紫外線吸収剤、マロン酸エステル系紫外線吸収剤が好ましいものとして挙げられ、ベンゾトリアゾール系紫外線吸収剤が好ましい。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-メチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-オクチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-アミル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3-ラウリル-5-メチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(3,5-ビス(1-メチル-1-フェニルエチル)-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、ビス(3-(2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシ-5-メチルフェニル)メタン、ビス(3-(2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシ-5-(1,1,3,3-テトラメチルブチル)フェニル)メタン、ビス(3-(2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシ-5-クミルフェニル)メタン、ビス(3-(2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシ-5-オクチルフェニル)メタン、1,1-ビス(3-(2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシ-5-メチルフェニル)オクタン、1,1-ビス(3-(2H-5-クロロベンゾトリアゾール-2-イル)-2-ヒドロキシ-5-メチルフェニル)オクタン、1,2-エタンジイルビス(3-(2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシベンゾエート)、1,12-ドデカンジイルビス(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシベンゾエート)、1,3-シクロヘキサンジイルビス(3-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-2-ヒドロキシベンゾエート)、1,4-ブタンジイルビス(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシ-5-メチルフェニルエタノエート)、3,6-ジオキサ-1,8-オクタンジイルビス(3-(5-メトキシ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニルエタノエート)、1,6-ヘキサンジイルビス(3-(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシ-5-tert-ブチルフェニル)プロピオネート)、p-キシレンジイルビス(3-(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル)プロピオネート)、ビス(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシトルイル)マロネート、ビス(2-(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシ-5-オクチルフェニル)エチル)テレフタレート、ビス(3-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシ-5-プロピルトルイル)オクタジオエート、2-(2H-ベンゾトリアゾール-2-イル)-6-フタルイミドメチル-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-フタルイミドエチル-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-フタルイミドオクチル-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-フタルイミドメチル-4-tert-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-フタルイミドメチル-4-クミルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(フタルイミドメチル)フェノール等が挙げられる。これらの中でも、2-(2-ヒドロキシ-5-tert-オクチルフェニル)-2H-ベンゾトリアゾールが好ましい。
 紫外線吸収剤としては、特開2016-216534号公報の段落0059~0062の記載、特開2018-178019号公報の段落0069~0082の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物において、上記紫外線吸収剤の含有量は、紫外線吸収剤を含む場合、ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、および、ポリカーボネート樹脂(C)の合計100質量部に対し、好ましくは0.01~1質量部である。紫外線吸収剤の含有量は、より好ましくはポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、および、ポリカーボネート樹脂(C)の合計に対し、0.03~0.7質量部であり、さらに好ましくは0.05~0.5質量部である。
 紫外線吸収剤は、本実施形態の樹脂組成物に1種のみ含まれていても、2種以上含まれていてもよい。2種以上含まれる場合、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂組成物は、ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)、および、ポリカーボネート樹脂(C)、ならびに、必要に応じて配合されるその他の成分の合計が100質量%となるように調整される。
<樹脂組成物の物性>
 本実施形態の樹脂組成物は、硬度が高いことが好ましい。具体的には、ISO 15184に従って測定した鉛筆硬度がHB以上であることが好ましく、F以上であることがより好ましい。また、上限は特に定めるものではないが3H以下が実際的である。このような高い鉛筆硬度は、ポリカーボネート樹脂(B)を用いることによって達成される。
 本実施形態の樹脂組成物は、成形品を加熱処理した後の色差(ΔE)が低いことが好ましい。具体的には、本実施形態の樹脂組成物を2mm厚の試験片に成形し、100℃で330時間処理前後の色相の差(ΔE)が、1.0以下であることが好ましく、0.9以下であることがより好ましく、0.7以下であることがさらに好ましい。前記ΔEの下限は、0が理想であるが、0.01以上であっても十分に要求性能を満たすものである。このような低いΔEは、ポリカーボネート樹脂(A)中のBr元素の含有量を減らすことによって達成される。さらに、ポリカーボネート樹脂(A)がP元素を含むものを用いることによって、より低いΔEが達成される。特に、ポリカーボネート樹脂(A)中のBr元素/P元素の比率を精密に調整することによって達成される。
 前記ΔEは後述する実施例の記載に従って測定される。
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物の製造方法は、式(1)で表される構成単位をポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを溶融混練することを含む。本実施形態の樹脂組成物の製造方法で製造される樹脂組成物は、本実施形態の樹脂組成物であることが好ましい。
 より具体的には、本実施形態の樹脂組成物の製造方法は、ポリカーボネート樹脂(A)、および、ポリカーボネート樹脂(B)、ならびに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
<成形品>
 上記した樹脂組成物(例えば、ペレット)は、各種の成形法で成形して成形品とされる。すなわち、本実施形態の成形品は、本実施形態の樹脂組成物から形成される。成形品の形状としては、特に制限はなく、成形品の用途、目的に応じて適宜選択することができ、例えば、フィルム状、ロッド状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状、ボタン状のもの等が挙げられる。
 成形品を成形する方法としては、特に制限されず、従来公知の成形法を採用でき、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコ-ティング成形)成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。特に、本実施形態の樹脂組成物は、射出成形法、射出圧縮成形法、押出成形法で得られる成形品に適している。しかしながら、本実施形態の樹脂組成物がこれらで得られた成形品に限定されるものではないことは言うまでもない。
 本実施形態の成形品は、電気電子機器、OA機器、携帯情報端末、機械部品、家電製品、車輌部品、各種容器、照明機器、ディスプレイ等の部品等に好適に用いられる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
 表1および表3に示す以下の原料を用いた。
Figure JPOXMLDOC01-appb-T000034
 PCR-PCとは、ビスフェノールA型ポリカーボネート樹脂のリサイクル品であることを意味する。
 上記ポリカーボネート樹脂中の各金属元素の含有量は以下の通りである。
Figure JPOXMLDOC01-appb-T000035
<ポリカーボネート樹脂中の金属元素の測定方法>
 ポリカーボネート樹脂中の金属元素の定量(質量ppm)は、蛍光X線分析(XRF)によって行った。蛍光X線分析装置((株)リガク製、商品名:ZSX Primus)を用い、管球はRh管球(4kw)を使用した。後述の方法で得られた3段状の試験片の1mm厚部を用い、真空雰囲気下で、照射領域20mmφでEZスキャンを実施した。
Figure JPOXMLDOC01-appb-T000036
<製造例1:ポリカーボネート樹脂B1の製造>
 ビスフェノールC(BPC)26.14モル(6.75kg)と、ジフェニルカーボネート26.79モル(5.74kg)を、撹拌機および留出凝縮装置付きのアルミ(SUS)製反応器(内容積10リットル)内に入れ、反応器内を窒素ガスで置換後、窒素ガス雰囲気下で220℃まで30分間かけて昇温した。
 次いで、反応器内の反応液を撹拌し、溶融状態下の反応液にエステル交換反応触媒として炭酸セシウム(CsCO)を、BPC1モルに対し1.5×10-6モルとなるように加え、窒素ガス雰囲気下、220℃で30分、反応液を撹拌醸成した。次に、同温度下で反応器内の圧力を40分かけて100Torrに減圧し、さらに、100分間反応させ、フェノールを留出させた。
 次に、反応器内の温度を60分かけて284℃まで上げるとともに3Torrまで減圧し、留出理論量のほぼ全量に相当するフェノールを留出させた。次に、同温度下で反応器内の圧力を1Torr未満に保ち、さらに60分間反応を続け、重縮合反応を終了させた。このとき、撹拌機の撹拌回転数は38回転/分であり、反応終了直前の反応液温度は289℃、撹拌動力は1.00kWであった。
 次に、溶融状態のままの反応液を二軸押出機に送入し、炭酸セシウムに対して4倍モル量のp-トルエンスルホン酸ブチルを二軸押出機の第1供給口から供給し、反応液と混練し、その後、反応液を二軸押出機のダイを通してストランド状に押し出し、カッターで切断してポリカーボネート樹脂B1のペレットを得た。
<製造例2:ポリカーボネート樹脂B2の製造>
 ビスフェノールC(BPC)26.14モル(6.75kg)と、ジフェニルカーボネート26.79モル(5.74kg)を、撹拌機および留出凝縮装置付きのアルミ(SUS)製反応器(内容積10リットル)内に入れ、反応器内を窒素ガスで置換後、窒素ガス雰囲気下で220℃まで30分間かけて昇温した。
 次いで、反応器内の反応液を撹拌し、溶融状態下の反応液にエステル交換反応触媒として炭酸セシウム(CsCO)を、BPC1モルに対し1.5×10-6モルとなるように加え、窒素ガス雰囲気下、220℃で30分間、反応液を撹拌醸成した。次に、同温度下で反応器内の圧力を40分かけて100Torrに減圧し、さらに、100分間反応させ、フェノールを留出させた。
 次に、反応器内の温度を60分かけて284℃まで上げるとともに3Torrまで減圧し、留出理論量のほぼ全量に相当するフェノールを留出させた。次に、同温度下で反応器内の圧力を1Torr未満に保ち、さらに60分間反応を続け、重縮合反応を終了させた。このとき、撹拌機の撹拌回転数は38回転/分であり、反応終了直前の反応液温度は289℃、撹拌動力は0.60kWであった。
 次に、溶融状態のままの反応液を二軸押出機に送入し、炭酸セシウムに対して4倍モル量のp-トルエンスルホン酸ブチルを二軸押出機の第1供給口から供給し、反応液と混練し、その後、反応液を二軸押出機のダイを通してストランド状に押し出し、カッターで切断してポリカーボネート樹脂B2のペレットを得た。
2.実施例1~11、比較例1~3、参考例1~7
 上記表1に記載した各成分を、以下の表4~表6に記載した割合(表4~表6における各成分は質量部である)で配合し、タンブラーにて20分混合した後、二軸押出機(芝浦機械株式会社製「TEM-26SX」)を用いて、シリンダー温度260℃、吐出25kg/hで溶融混練し、ストランドカットにより樹脂組成物(ペレット)を得た。
<鉛筆硬度の測定>
 上記で得られたペレットを100℃で5時間乾燥した後、射出成形機(ファナック株式会社製「α-2000i-150B」)を用い、シリンダー設定温度260℃、金型温度70℃にて、スクリュー回転数100rpm、射出速度30mm/秒の条件下にて、平板状試験片(150mm×100mm×2mm厚)を作製した。この平板状試験片について、ISO 15184に準拠し、鉛筆硬度試験機を用いて、750g荷重にて測定した鉛筆硬度を求めた。
 鉛筆硬度試験機は、東洋精機製作所社製を用いた。
<ΔE>
 上記で得られたペレットを100℃で5時間、熱風循環式乾燥機により乾燥した後、射出成形機(株式会社日本製鋼所社製「J55AD-60H」)を用いて、シリンダー温度280℃、金型温度80℃にて、3段状の試験片(60mm×30mm×1mm厚+60mm×30mm×2mm厚+60mm×30mm×3mm厚)を得た。
 得られた試験片について、100℃で330時間加熱し、加熱前後の色相を、分光ヘイズメーターを用い、JIS Z8722に従って測定し、その色差ΔEを算出した。
 分光ヘイズメーターは、日本電色工業株誌会社製「SH7000」を用いた。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 上記結果から明らかなとおり、本実施形態の樹脂組成物は、高い硬度を維持しつつ、熱処理後のΔEが低い成形品が得られた(実施例1~11)。
 これに対し、Br元素の含有量が多い場合(比較例1~3)、ΔEが高くなってしまった。
実施例12、比較例4
 実施例1において、ポリカーボネート樹脂(A)~(C)に記載の通り変更し、他は同様に行った。
Figure JPOXMLDOC01-appb-T000040
 上記表7において、Br量とは、ポリカーボネート樹脂(A)中のBr原子の量をそれぞれ示している。
 Br原子の量の測定方法は、上記<ポリカーボネート樹脂中の金属元素の測定方法>に記載した方法である。
 上記結果から明らかなとおり、式(2)で表される構成単位を含むポリカーボネート樹脂(B)の種類を変更しても、実施例1~11および比較例1~3と同様の傾向が認められた(実施例12、比較例4)。

Claims (10)

  1. 式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、
    式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを含み、
    前記ポリカーボネート樹脂(A)が、リサイクル品であり、
    前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、樹脂組成物。
    式(1)
    (式(1)中、Xは下記のいずれかの式を表し、
     R3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
    式(2)
    (式(2)中、R1はメチル基を表し、R2は水素原子またはメチル基を表し、Xは下記のいずれかの式を表し、
    3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
  2. 前記ポリカーボネート樹脂(A)がP元素を含む、請求項1に記載の樹脂組成物。
  3. 前記ポリカーボネート樹脂(A)中のBr元素/P元素の質量比率が、0~1.0である、請求項2に記載の樹脂組成物。
  4. 前記ポリカーボネート樹脂(A)がFe元素を含む、請求項1または2に記載の樹脂組成物。
  5. 前記ポリカーボネート樹脂(A)がSi元素を含む、請求項1または2に記載の樹脂組成物。
  6. 前記式(2)中、Rは水素原子であり、Xは、
    であり、RおよびRがメチル基である、請求項1または2に記載の樹脂組成物。
  7. 請求項1または2に記載の樹脂組成物のペレット。
  8. 請求項1または2に記載の樹脂組成物から形成された成形品。
  9. 式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを溶融混練することを含み、
    前記ポリカーボネート樹脂(A)が、リサイクル品であり、
    前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、樹脂組成物の製造方法。
    式(1)
    (式(1)中、Xは下記のいずれかの式を表し、
     R3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
    式(2)
    (式(2)中、R1はメチル基を表し、R2は水素原子またはメチル基を表し、Xは下記のいずれかの式を表し、
    3およびR4は、それぞれ独立に、水素原子またはメチル基を表し、ZはCと結合して炭素数6~12の、置換基を有していてもよい脂環式炭化水素を形成する基を表す。)
  10. 式(1)で表される構成単位を含むポリカーボネート樹脂(A)と、式(2)で表される構成単位を含むポリカーボネート樹脂(B)とを溶融混練することを含み、
    前記ポリカーボネート樹脂(A)が、リサイクル品であり、
    前記ポリカーボネート樹脂(A)中のBr元素の含有量がポリカーボネート樹脂(A)100質量部に対し、10質量ppm以下である、請求項1または2に記載の樹脂組成物の製造方法。
PCT/JP2023/012893 2022-05-02 2023-03-29 樹脂組成物、成形品、および、樹脂組成物の製造方法 WO2023214487A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022076313 2022-05-02
JP2022-076313 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214487A1 true WO2023214487A1 (ja) 2023-11-09

Family

ID=88646459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012893 WO2023214487A1 (ja) 2022-05-02 2023-03-29 樹脂組成物、成形品、および、樹脂組成物の製造方法

Country Status (1)

Country Link
WO (1) WO2023214487A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140200302A1 (en) * 2013-01-11 2014-07-17 Sabic Innovative Plastics Ip B.V. Polycarbonate blend compositions containing recycle for improvement in surface aesthetics
JP2021188011A (ja) * 2020-06-03 2021-12-13 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
WO2022004058A1 (ja) * 2020-06-30 2022-01-06 三菱エンジニアリングプラスチックス株式会社 難燃性ポリカーボネート樹脂組成物ペレットの製造方法
US20220064439A1 (en) * 2019-01-17 2022-03-03 Shpp Global Technologies B.V. High heat polycarbonate compositions including recycled thermoplastic content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140200302A1 (en) * 2013-01-11 2014-07-17 Sabic Innovative Plastics Ip B.V. Polycarbonate blend compositions containing recycle for improvement in surface aesthetics
US20220064439A1 (en) * 2019-01-17 2022-03-03 Shpp Global Technologies B.V. High heat polycarbonate compositions including recycled thermoplastic content
JP2021188011A (ja) * 2020-06-03 2021-12-13 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
WO2022004058A1 (ja) * 2020-06-30 2022-01-06 三菱エンジニアリングプラスチックス株式会社 難燃性ポリカーボネート樹脂組成物ペレットの製造方法

Similar Documents

Publication Publication Date Title
WO2015122493A1 (ja) ポリカーボネート樹脂組成物
CN111108151A (zh) 树脂组合物和成型品
JP7522528B2 (ja) ポリカーボネート樹脂組成物および成形品
WO2023214487A1 (ja) 樹脂組成物、成形品、および、樹脂組成物の製造方法
JP7245065B2 (ja) 樹脂組成物および成形品
WO2019078163A1 (ja) 樹脂組成物および成形品
JP7105583B2 (ja) ポリカーボネート樹脂組成物および成形品
JP7440716B2 (ja) 樹脂組成物および成形品
JP7138439B2 (ja) 樹脂組成物および成形品
JP2015003979A (ja) ボス穴を有する芳香族ポリカーボネート樹脂成形品
JP6352030B2 (ja) ポリカーボネート樹脂組成物および成形品
JP2023165392A (ja) 樹脂組成物および成形品
JP7310078B2 (ja) 樹脂組成物および成形品
JP7310079B2 (ja) 樹脂組成物および成形品
WO2023214485A1 (ja) 樹脂組成物および成形品
JP7408887B2 (ja) 樹脂組成物および成形品
JP7567298B2 (ja) 樹脂組成物、成形品、および、成形品の製造方法
WO2024117158A1 (ja) 樹脂組成物、ペレット、および、成形品
JP7138535B2 (ja) 樹脂組成物および成形品
JP6614574B2 (ja) ポリカーボネート樹脂組成物
JP7101465B2 (ja) 樹脂組成物および成形品
JP2020063330A (ja) 樹脂組成物および成形品
JP2023019779A (ja) 樹脂組成物および成形品
JP2024058263A (ja) 樹脂組成物、ペレット、および、成形品
WO2024117159A1 (ja) 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799419

Country of ref document: EP

Kind code of ref document: A1