WO2023213195A1 - 基板、封装结构及电子设备 - Google Patents

基板、封装结构及电子设备 Download PDF

Info

Publication number
WO2023213195A1
WO2023213195A1 PCT/CN2023/089591 CN2023089591W WO2023213195A1 WO 2023213195 A1 WO2023213195 A1 WO 2023213195A1 CN 2023089591 W CN2023089591 W CN 2023089591W WO 2023213195 A1 WO2023213195 A1 WO 2023213195A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inductor
magnetic
metal wiring
conductive core
Prior art date
Application number
PCT/CN2023/089591
Other languages
English (en)
French (fr)
Inventor
姚骋
蒋帆
吴艳红
杨敏
林永嘉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023213195A1 publication Critical patent/WO2023213195A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components

Definitions

  • This embodiment relates to electronic manufacturing technology, and in particular to substrates, packaging structures and electronic equipment.
  • FIG. 1 is a schematic diagram of the chip packaging structure, including chip 11, packaging substrate 12, printed circuit board (Printed Circuit Board, PCB) 13 and inductor 14. It can be seen that the chip 11 is packaged on the first surface of the packaging substrate 12, the PCB 13 is provided on the second surface of the packaging substrate 12, and the first surface and the second surface are provided oppositely; the inductor 14 is provided on the packaging substrate 12 away from the chip 11. On the surface.
  • PCB printed Circuit Board
  • the inductor 14 is disposed on the surface of the packaging substrate 12.
  • the inductor 12 needs to be connected to the metal wiring of the internal metal wiring layer of the packaging substrate 12 by wiring outside the packaging substrate 12, and then through the metal wiring and pads of the metal wiring layer. Connect to the pins of the chip. During the above connection process, long traces will cause large eddy current losses on the lines and occupy board space.
  • This embodiment provides a substrate, a packaging structure and an electronic device to solve the problems existing in the existing packaging structure.
  • the first aspect of the embodiment of the present application provides a substrate.
  • the substrate is provided with multiple metal wiring layers and a dielectric layer filled between the multiple metal wiring layers.
  • the substrate is also provided with a slot, and an inductor is accommodated in the slot.
  • the first end of the inductor is connected to the first pad on one surface of the substrate, the second end of the inductor is connected to the second pad on one surface of the substrate, the first pad and the second pad are located on the substrate Surfaces on the same side or surfaces on opposite sides of the substrate.
  • the inductor since the inductor is arranged in the slot of the substrate, the inductor is close to the pad used to connect the chip. Therefore, the connection line between the inductor and the pad is short, and the distance between the inductor and the pad is The connection line has less eddy current loss; in addition, this structure of placing the inductor in the internal groove of the substrate can make full use of the internal space of the substrate, reduce the use of the substrate area, and reduce the package size to a certain extent.
  • the plurality of metal wiring layers include a first metal wiring layer and/or a second metal wiring layer; the first end of the inductor is connected to the first metal wiring layer by the metal wiring in the first metal wiring layer.
  • a bonding pad, and/or a second end of the inductor is connected to the second bonding pad by metal wiring in the second metal wiring layer; the first metal wiring layer and the second metal wiring layer are the same layer or different layers.
  • the inductor includes a magnetic column and a conductive core perpendicular to a plurality of metal wiring layers; the magnetic column is arranged in the slot, and the conductive core is wrapped in the magnetic column; one end of the conductive core is connected to the inductor The first end of the conductive core is connected to the second end of the inductor.
  • the slot includes a first slot and a second slot
  • the inductor includes a magnetic column and a conductive core perpendicular to the plurality of metal wiring layers
  • the magnetic column includes a first slot disposed in the first slot.
  • the magnetic column and the second magnetic column arranged in the second groove, the conductive core includes a first conductive core and a second conductive core;
  • the first conductive core is wrapped in the first magnetic column
  • the second conductive core is wrapped in the second magnetic column
  • one end of the first conductive core is connected to the first end of the inductor
  • the other end of the first conductive core is connected to the second
  • One end of the conductive core and the other end of the second conductive core are connected to the second end of the inductor.
  • the inductor includes a magnetic column and a conductive core perpendicular to the metal wiring layer, and the conductive core includes a first conductive core and a second conductive core;
  • the magnetic column wraps the first conductive core and the second conductive core.
  • One end of the first conductive core is connected to the first end of the inductor.
  • the other end of the first conductive core is connected to one end of the second conductive core.
  • the second conductive core The other end is connected to the second end of the inductor.
  • the magnetic column is provided with a first through hole in a direction perpendicular to the metal wiring layer, the conductive core includes a first conductive layer, and the first conductive layer is attached to the inner wall of the first through hole.
  • the inductor further includes a filling column; the filling column is buried in the second through hole, and the second through hole is a through hole surrounded by the first conductive layer.
  • a filling column is embedded in the second through hole, and the filling column serves as a support. Therefore, the overall structural stability of the inductor can be ensured, and the structural stability of the substrate can be ensured.
  • the packed column is prepared from a filling slurry, and the filling slurry includes at least one or a mixture of conductive materials and non-conductive materials.
  • the resistivity of the prepared filling column is low, and the resistivity of the corresponding inductor is low.
  • the magnetic column is prepared from magnetic composite slurry, and the magnetic composite slurry includes soft magnetic material, resin material and curing agent.
  • the magnetic composite slurry includes soft magnetic materials.
  • the addition of soft magnetic materials can increase the inductance of the inductor multiple times.
  • the soft magnetic material includes at least one or a mixture of ferrite magnetic powder and iron-based magnetic powder.
  • the soft magnetic material includes ferrite magnetic powder
  • the ferrite magnetic powder since the ferrite magnetic powder has a high resistivity, when the voltage is constant, the current passing through the ferrite magnetic powder is less, and accordingly the current flows through the ferrite magnetic powder. Ferrite magnetic powder produces less eddy current losses, and the inductor prepared from the ferrite magnetic powder has lower losses.
  • the iron-based magnetic powder includes at least one or a mixture of crystalline iron-based magnetic powder and amorphous nano-iron-based magnetic powder.
  • the soft magnetic material when the soft magnetic material includes crystalline iron-based magnetic powder, due to the irregular arrangement of atoms of the amorphous nano-iron-based magnetic powder, the absence of periodicity and the amorphous structure of grain boundaries, the amorphous nano-iron-based magnetic powder has It has better corrosion resistance, better wear resistance, higher strength, higher hardness and toughness, higher resistivity and higher Bs. Therefore, it is prepared from the amorphous nano-iron-based magnetic powder.
  • the inductor has better corrosion resistance, better wear resistance, higher strength, higher hardness and toughness, higher Bs and lower magnetic loss and other properties.
  • the resin material includes thermosetting resin
  • the resin material includes thermosetting resin and thermoplastic resin.
  • thermosetting resin when the resin material includes a thermosetting resin, the thermosetting resin undergoes chemical changes when heated, gradually hardens into shape, and does not soften when heated again. Therefore, it can be ensured that the magnetic column prepared from the thermosetting resin can still maintain a shape after being heated again. Stable structure.
  • thermoplastic resin can be, but is not limited to, one or a mixture of polyethylene, polypropylene, polyamide, and polyurethane; because thermoplastic resin is easy to process and mold and has good mechanical properties, it can ensure that the products prepared from thermoplastic resin and thermosetting resin are Magnetic columns can combine good mechanical properties and structural stability.
  • the second aspect of the embodiment of the present application provides a packaging structure, including: a packaging substrate, and a chip provided on the packaging substrate; wherein, the packaging substrate is the substrate provided by the embodiment of the present application, the chip and the first pad on the surface of the substrate, and/ or second pad soldering.
  • the third aspect of the embodiment of the present application provides an electronic device, including a PCB, and a packaging structure provided on the PCB.
  • the PCB is welded to the packaging structure through welding components;
  • the packaging structure includes the packaging structure provided by the embodiment of the present application; and/or,
  • the PCB includes the substrate provided by the embodiment of the present application, and the packaging structure is welded to the first pad and/or the second pad on the surface of the substrate.
  • Figure 1 is a schematic diagram of the packaging structure
  • Figure 2 provides a structure of a multi-layer substrate
  • Figure 3 is a cross-sectional view of a substrate provided by a feasible embodiment
  • Figure 4a is a cross-sectional view of a substrate provided in a feasible embodiment
  • Figure 4b is a bottom view of the substrate provided in Figure 4a;
  • Figure 5 is a cross-sectional view of a substrate provided by a feasible embodiment
  • Figure 6 is a cross-sectional view of a substrate provided by a feasible embodiment
  • Figure 7 is a perspective view of a columnar inductor provided by a feasible embodiment
  • Figure 8 is a perspective view of a U-shaped inductor provided by a feasible embodiment
  • Figure 9 is a perspective view of a U-shaped inductor provided by a feasible embodiment
  • Figure 10 is a perspective view of a multi-phase inductor provided by a feasible embodiment
  • Figure 11 is a cross-sectional view of a substrate provided by a feasible embodiment
  • Figure 12 is a cross-sectional view of a substrate provided by a feasible embodiment
  • Figure 13 is a flow chart of a substrate preparation method provided by a feasible embodiment
  • Figure 14 is a flow chart of an inductor manufacturing method provided by a feasible embodiment
  • Figure 15 is a cross-sectional view of a magnetic column provided by a feasible embodiment
  • Figure 16 is a cross-sectional view of a first through-hole magnetic column provided by a feasible embodiment
  • Figure 17 is a cross-sectional view of an assembly formed by a conductive core and a magnetic column according to a feasible embodiment
  • Figure 18 is a cross-sectional view of an inductor according to a feasible embodiment
  • Figure 19 is a flow chart of an inductor manufacturing method provided by another feasible embodiment
  • Figure 20 is a cross-sectional view of an assembly formed by the first conductive layer and the magnetic pillar provided by a feasible embodiment
  • Figure 21 is a cross-sectional view of an assembly formed by the first conductive layer, support pillars and magnetic pillars according to a feasible embodiment
  • Figure 22 is a cross-sectional view of an inductor according to a feasible embodiment
  • Figure 23 is a flow chart of an inductor manufacturing method provided by another feasible embodiment
  • Figure 24 is a cross-sectional view of an assembly formed by a magnetic column and an insulating layer according to a feasible embodiment
  • Figure 25 is a cross-sectional view of an assembly formed by a magnetic column and an insulating layer according to a feasible embodiment
  • Figure 26 is a cross-sectional view of an assembly formed by a conductive core, a magnetic column and an insulating layer according to a feasible embodiment
  • Figure 27 shows a conductive core, a second conductive layer, a third conductive layer, a magnetic column and an insulating layer provided by a feasible embodiment.
  • Figure 28a is a top view of an assembly formed by a conductive core, a second conductive layer, a third conductive layer, a conductive sheet, a magnetic column and an insulating layer according to a feasible embodiment
  • Figure 28b is a cross-sectional view of the assembly formed by the conductive core, the second conductive layer, the third conductive layer, the conductive sheet, the magnetic pillar and the insulating layer provided by a feasible embodiment, taken on plane AA';
  • Figure 29 is a cross-sectional view of a packaging structure provided by a feasible embodiment
  • Figure 30 is a cross-sectional view of an electronic device provided by a feasible embodiment
  • Figure 31 is a cross-sectional view of an electronic device provided by a feasible embodiment
  • FIG. 32 is a cross-sectional view of an electronic device according to a feasible embodiment.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described in this embodiment as “exemplary” or “such as” is not intended to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • Coupled can refer to the way of electrical connection for signal transmission.
  • Coupled can be a direct electrical connection or an indirect one through an intermediate medium. Electrical connection.
  • Figure 2 provides a multi-layer substrate structure, which includes multiple stacked metal wiring layers 21 (or circuit layers), in which an insulating medium 22 is provided between two adjacent metal wiring layers.
  • a resin material which can also be called a dielectric layer in this embodiment
  • Figure 2 includes five metal wiring layers from the P surface to the B surface.
  • Different metal wiring layers are electrically connected through conductive holes 23 (via).
  • the manufacturing process of vias is to drill holes on the substrate, and then electroplating a layer of conductive material (such as copper) on the surface of the holes, so that the current can flow between the two metal wiring layers connected through the vias. flow between.
  • the via includes a through hole (plating through hole, PTH) that penetrates the substrate, a blind via hole (BVH) with both ends buried inside the substrate, and one end exposed on the surface of the substrate. Buried via hole (BVH).
  • drilling of through holes usually requires drilling through the substrate, and the through holes are used to connect the two outermost metal wiring layers of the substrate (for example, the metal wiring layer 21a and the metal wiring layer 21b in FIG. 2).
  • Blind holes are usually drilled from one side of the substrate and are not The substrate is drilled, and the blind hole is used to connect an outermost metal wiring layer of the substrate to an inner metal wiring layer (for example, the metal wiring layer 21a and the metal wiring layer 21c in Figure 2).
  • Buried vias are usually drilled inside the substrate. Buried vias are usually drilled into the insulating medium that requires buried vias during the insulating dielectric bonding process. Buried vias are used to connect the two inner metal wiring layers of the substrate ( For example, the metal wiring layer 21a and the metal wiring layer 21b) in FIG. 2 are connected. Of course, it is not limited to through holes, blind holes or buried holes according to actual needs.
  • the substrate shown in FIG. 2 includes but is not limited to PCB and chip packaging substrate. It is worth noting that when the packaging substrate includes a substrate, the dielectric layer can also be called a core layer, and the metal wiring layer can also be called a build-up layer.
  • the packaging substrate of a chip can provide electrical connection, protection, support and other functions for the chip.
  • the pins of the chip can be connected to the inductor through the pads on the surface of the package substrate and the metal wiring of the metal wiring layer 21 .
  • the inductor is placed on the surface of the packaging substrate. The inductor needs to be connected to the metal wiring of the metal wiring layer through wiring outside the packaging substrate, and then connected to the pins of the chip through the metal wiring and pads of the metal wiring layer. .
  • long traces will cause large eddy current losses on the lines and occupy board space.
  • the substrate provided by the present application is also provided with a groove for accommodating the inductor.
  • the groove inside the substrate may penetrate through the through hole of the substrate, or may not penetrate through the blind hole or buried hole of the substrate.
  • the embodiment of the present application does not specifically limit the shape of the groove, and the shape of the groove can be set according to actual needs.
  • the groove can be a cylinder with a circular cross-section.
  • the groove may be a cylinder with a runway-shaped cross section.
  • the slot may be a cylinder with a square cross-section.
  • the inductor is accommodated in the slot.
  • FIG. 3 is a cross-sectional view of a substrate provided by a feasible embodiment.
  • the substrate is provided with multiple metal wiring layers 21 and a dielectric layer 22 filled between the multiple metal wiring layers. Grooves are provided on the substrate in a direction perpendicular to the multilayer metal wiring layer 21 .
  • the groove is a cylindrical through hole that penetrates the entire substrate.
  • the inductor 24 is accommodated in the slot. The first end of the inductor 24 is connected to the first pad 25a on one surface of the substrate, and the second end of the inductor 24 is connected to the second pad 25b on one surface of the substrate.
  • the first bonding pad 25a and the second bonding pad 25b are located on surfaces on different sides of the substrate.
  • electrodes can be made at both ends of the inductor.
  • the electrodes at both ends of the inductor can be metal electrodes or pads on the same layer as a metal wiring layer.
  • the inductor The electrodes at both ends may be first pads and second pads.
  • the first bonding pad and/or the second bonding pad may be on the same layer as the outermost metal wiring layer of the substrate.
  • the trench can be a buried hole with one end buried inside the substrate and one end exposed on the surface of the substrate.
  • An inductor filled in the trench can have one end buried inside the substrate and one end exposed on the surface of the substrate.
  • FIG. 4a and FIG. 4b are cross-sectional views of the substrate of a feasible embodiment
  • FIG. 4b is a bottom view of the substrate of FIG. 4a .
  • the inductor 24 embedded in the trench has one end embedded inside the substrate and one end exposed on the surface of the substrate.
  • One end of the inductor 24 exposed to the surface of the substrate may be directly connected to the first pad 25a.
  • the electrode at one end of the inductor 24 embedded in the substrate is in the same layer as the metal wiring layer 21a.
  • One end of the metal wiring in the metal wiring layer 21a is connected to one end of the metal wiring in the metal wiring layer 21b through the conductive hole 23.
  • the metal wiring in the metal wiring layer 21b The other end of the inductor 24 is connected to the second pad 25b, thereby realizing the connection between one end of the inductor 24 embedded in the substrate and the second pad 25b. catch.
  • the slot can be a blind hole with both ends buried inside the substrate, and the inductor is filled in the slot, with both ends buried inside the substrate.
  • the electrode at one end of the inductor 24 can be in the same layer as the metal wiring layer 21a.
  • One end of the metal wiring in the metal wiring layer 21a is connected to one end of the metal wiring in the metal wiring layer 21b through the conductive hole 23a.
  • the metal wiring layer The other end of the metal wiring in 21b is connected to the first pad 25a, thereby realizing the connection between the electrode at one end of the inductor 24 and the first pad 25a.
  • the electrode at the other end of the inductor 24 is in the same layer as the metal wiring layer 21c.
  • One end of the metal wiring in the metal wiring layer 21c is connected to one end of the metal wiring in the metal wiring layer 21d through the conductive hole 23b.
  • the other end of the metal wiring in the metal wiring layer 21d It is connected to the second pad 25b, thereby realizing the connection between the other end of the inductor 24 and the second pad 25b.
  • the first bonding pad 25a and the second bonding pad 25b are located on different sides of the substrate.
  • Figures 3 to 5 are just examples to introduce several situations where the first bonding pad and the second bonding pad are located on both sides of the substrate.
  • the first bonding pad and the second bonding pad are located on the surface of the same side of the substrate. .
  • the substrate structure in which the first bonding pad and the second bonding pad are located on the same side will be described below with reference to specific drawings.
  • FIG. 6 is a cross-sectional view of a substrate provided by a feasible embodiment.
  • the groove may be a blind hole with both ends embedded inside the substrate.
  • the inductor 24 is accommodated in the slot.
  • One end of the inductor 24 is in the same layer as the metal wiring layer 21a.
  • One end of the metal wiring in the metal wiring layer 21a is connected to one end of the metal wiring in the metal wiring layer 21b through the conductive hole 23a.
  • the other end of the metal wiring in the metal wiring layer 21b is connected to the third metal wiring layer 21a.
  • a bonding pad 25a is connected, thereby realizing the connection between one end of the inductor 24 and the first bonding pad 25a.
  • the electrode at the other end of the inductor 24 is in the same layer as the metal wiring layer 21c.
  • One end of the metal wiring in the metal wiring layer 21c is connected to one end of the metal wiring in the metal wiring layer 21d through the conductive hole 23b.
  • the other end of the metal wiring in the metal wiring layer 21d It is connected to the second pad 25b, thereby realizing the connection between the other end of the inductor 24 and the second pad 25b.
  • the inductor may be an air core inductor (ACI). Since the inductor can hinder the change of the current, the inductor will be configured in the power supply to achieve the filtering effect. With the evolution of power supplies, the power conversion efficiency of power supplies is required to continue to increase and the power supply area continues to decrease. Correspondingly, inductors are required to achieve high inductance characteristics in a small size. Since adding soft magnetic materials to an inductor can multiply the inductance, in order to meet the above requirements, in some feasible implementations, the inductor can be a magnetic inductor with soft magnetic materials added, as described below. The inductors appearing in the embodiments are all magnetic inductors.
  • the soft magnetic material in the embodiment of the present application is a soft magnetic material among ferromagnetic materials.
  • the inductor may be a columnar inductor.
  • FIG. 7 is a perspective view of a columnar inductor according to a feasible embodiment. It can be seen that the columnar inductor 24 includes: a magnetic column 241, a conductive core 242 that penetrates the magnetic column 241 in the longitudinal direction (in this embodiment, the longitudinal direction is perpendicular to the multi-layer metal wiring layer), and electrodes arranged at both ends of the conductive core 242. 243a and 243b. When the electrodes of the inductor are located on the outermost surface of the substrate, the electrodes can be directly reused as pads.
  • the electrodes 243a and 243b on both sides of the columnar inductor can be connected to pads on different sides of the substrate.
  • the electrodes 243a and 243b on both sides of the columnar inductor can also be connected to the pads on different sides of the substrate by metal wiring and conductive holes 23 in the metal wiring layer 21 .
  • the inductor may be a U-shaped inductor.
  • FIG. 8 is a perspective view of a U-shaped inductor according to a feasible embodiment. It can be seen that the U-shaped inductor can include: magnetic column 241a, magnetic column 241b, The conductive core 242a longitudinally penetrating the magnetic column 241a and the conductive core 242b longitudinally penetrating the magnetic column 241b. On the first side of the magnetic column 241a and the magnetic column 241b, there is an electrode 243a provided at one end of the conductive core 242a and an electrode 243a provided at one end of the conductive core 242b.
  • Electrode 243b on the second side of the magnetic column 241a and the magnetic column 241b, an electrode 243c provided at one end of the conductive core 242a and an electrode 243d provided at one end of the conductive core 242b.
  • the electrode 243c and the electrode 243d are electrically connected.
  • the electrodes 243c and 243d of such an inductor can be soldered to the device on the same side of the substrate.
  • the electrode 243c and the electrode 243d of the U-shaped inductor are arranged on the side facing the substrate, the electrode 243c and the electrode 243d are both connected to the pads on the same side of the substrate, for example, the electrode 243c and the electrode 243d of the inductor It is arranged on the side facing the chip and connected to the pad arranged on the side facing the chip.
  • Figure 9 is a three-dimensional view of a U-shaped inductor provided by a feasible embodiment. It can be seen that the inductor includes: a magnetic column 241, a conductive core 242a and a conductive core 242b that longitudinally penetrate the magnetic column 241, and are on the first side of the magnetic column 241. , the electrode 243a provided at one end of the conductive core 242a and the electrode 243b provided at one end of the conductive core 242b; on the second side of the magnetic column 241, the electrode 243c provided at one end of the conductive core 242a and the electrode 243d provided at one end of the conductive core 242b; Among them, the electrode 243c and the electrode 243d are electrically connected.
  • the electrodes 243c and 243d of such an inductor can be soldered to the device on the same side of the substrate.
  • the electrode 243c and the electrode 243d of the inductor are provided on the side facing the chip, and are connected to the pads provided on the side facing the chip.
  • Figures 7-9 are only examples of several single-phase inductors.
  • the inductor may also include a multi-phase inductor. The structure of the multi-phase inductor will be described below with reference to specific drawings.
  • Figure 10 is a perspective view of a multi-phase inductor provided by a feasible embodiment. It can be seen that the multi-phase inductor can include two single-phase inductors 24-1 and 24-2, wherein the single-phase inductors 24-1 and 24-2 are The structure of 24-2 and the connection relationship between the components can be referred to the U-shaped inductor provided in Figure 9, which will not be described again in the embodiment of this application.
  • FIG. 10 is only an exemplary introduction to a two-phase inductor.
  • the number of phases of the inductor can be set according to requirements.
  • the embodiments of this application are too restrictive.
  • the magnetic column is prepared by filling a groove with magnetic composite slurry and solidifying it.
  • the magnetic composite slurry includes soft magnetic material, resin material and curing agent.
  • the magnetic column preparation materials are described below.
  • Soft magnetic materials refer to materials that are composed of ferromagnetic or ferrimagnetic materials. Under the action of an external magnetic field, they have corresponding magnetization intensity or magnetic induction intensity. When added to an inductor, the inductance of the inductor can be increased.
  • magnetic losses refer to the phenomenon that the work done by the outside world on the soft magnetic materials is converted into heat during the magnetization or demagnetization process.
  • Magnetic loss includes hysteresis magnetic loss and eddy current magnetic loss. The greater the magnetic loss of the soft magnetic material, the higher the loss of the inductor containing the soft magnetic material, resulting in a lower power conversion efficiency using the inductor power supply;
  • the soft magnetic material can use ferrite magnetic powder; the ferrite magnetic powder can be ferrite material, and the ferrite material can be but not limited to manganese-zinc ferrite, nickel-zinc ferrite, One or a mixture of manganese, iron and oxygen.
  • the loss of soft magnetic materials comes from eddy current loss.
  • ferrite magnetic powder Since ferrite magnetic powder has a high resistivity, when the voltage is constant, the current passing through the ferrite magnetic powder is small, correspondingly The ferrite magnetic powder produces less eddy current loss, and the inductor prepared from the ferrite magnetic powder has lower loss.
  • the soft magnetic material can use iron-based magnetic powder, wherein the iron-based magnetic powder can be crystalline iron-based magnetic powder, and the crystalline iron-based magnetic powder can be but is not limited to one of carbonyl iron, FeSi, FeSiCr, FeNi, and FeNiMo. species or a mixture of several species.
  • Iron-based magnetic powder has a high saturation magnetic induction intensity.
  • the saturation magnetic induction intensity refers to the magnetic induction intensity when the soft magnetic material is magnetized to saturation. It can be expressed by Bs; because the higher the saturation magnetic induction intensity, the higher the magnetic permeability, and the inductance. The higher, so inductors containing iron-based magnetic powder have higher inductance.
  • iron-based magnetic powder can use amorphous nano-iron-based magnetic powder.
  • amorphous nano-iron-based magnetic powder has an amorphous structure with irregular atoms arrangement, no periodicity and grain boundaries.
  • Amorphous nano-iron-based magnetic powder has good corrosion resistance and good corrosion resistance. Wearability, higher strength, higher hardness and toughness, higher resistivity and higher Bs, etc., so the inductor prepared from the amorphous nano-iron-based magnetic powder has better corrosion resistance , better wear resistance, higher strength, higher hardness and toughness, higher Bs and lower magnetic loss and other properties.
  • the eddy current loss can be reduced by reducing the particle size of the amorphous nano-iron-based magnetic powder, so that the magnetic loss is smaller in high-frequency application scenarios. Therefore, inductors made of the amorphous nano-iron-based magnetic powder can also be used in high-frequency applications. In frequency application scenarios.
  • the soft magnetic material includes one or more types of iron-based magnetic powders and/or one or more types of ferrite magnetic powders.
  • the iron-based magnetic powder includes one or more types of crystalline iron-based magnetic powder, and/or one or more types of amorphous nano-iron-based magnetic powder.
  • Resin material refers to an organic substance that is solid, medium solid, pseudo-solid, or sometimes liquid at room temperature and melts into fluidity at high temperatures. At high temperature, the melted resin material can be mixed with the soft magnetic material. Since the mixture is fluid, it can be poured into a cavity with rated properties; after the curing reaction, the mixture can be made to have a specific shape (ie, a magnetic column with a specific shape can be obtained) ). Considering the structural stability of the magnetic column, as a feasible implementation method, the resin material at least includes thermosetting resin.
  • the thermosetting resin can be but is not limited to one of polyester resin, epoxy resin, phenolic resin, silicone resin, or Several kinds of mixtures are mixed; because the thermosetting resin undergoes chemical changes when heated, gradually hardens and shapes, and does not soften when heated again, it can be ensured that the magnetic column prepared from the thermosetting resin can still maintain a stable structure after being heated again.
  • the resin material can include thermosetting resin and thermoplastic resin.
  • the thermoplastic resin can be, but is not limited to, one or more of polyethylene, polypropylene, polyamide, and polyurethane. Mixing; Since thermoplastic resin is easy to process and form and has good mechanical properties, it can be ensured that magnetic columns prepared from thermoplastic resin and thermosetting resin can have both good mechanical properties and structural stability.
  • Curing agent is a type of substance or mixture that promotes curing reaction.
  • the curing agent may contain one or a mixture of imidazole, acid anhydride, and amine.
  • the embodiments of the present application do not limit the shape of the magnetic column.
  • the shape of the magnetic column can be set according to requirements.
  • the magnetic column can have a radial cross-section. It is a circular cylinder; in some feasible implementations, the magnetic column can be a cylinder with a racetrack-shaped radial cross section; in some feasible implementations, the magnetic column can be a square cylinder with a radial cross section.
  • a first through hole is provided in the longitudinal direction of the magnetic column, and the first through hole is used to accommodate the conductive core.
  • the conductive core refers to a structure with very small resistivity and easy to conduct current.
  • the structure of the conductive core is explained below:
  • the conductive core may be a solid conductive pillar.
  • the conductive core may be a conductive pillar whose shape matches the first through hole; the conductive core may be a conductive layer, such as:
  • the conductive core may be a conductive layer attached to the inner wall of the first through hole (in order to distinguish it from other conductive layers, in the embodiment of the present application, the conductive layer attached to the inner wall of the first through hole may be called is the first conductive layer).
  • the material of the conductive core when the conductive core is a conductive pillar, the embodiment of the present application does not limit the material of the conductive pillar. Any material with a small resistivity and easy conduction of current can be used to prepare the conductive pillar.
  • the material of the pillar is used in the embodiments of the present application; for example, the material for preparing the conductive pillar may be metal.
  • the material for preparing the conductive pillars can be silver; since silver has a lower resistivity, the conductive pillars prepared from silver have a lower of resistivity, inductors containing silver pillars can have lower resistivity.
  • the material for preparing the conductive pillars can be copper. Since copper has low resistivity and low cost, the copper pillars prepared from copper can take into account both resistivity and cost, including the inductance of the copper pillars. The device can balance resistivity and cost.
  • the conductive core can be a pure substance, that is, pure silver or pure copper, etc., and the metal core of the pure substance is added by inserting; as a feasible implementation method, the conductive core can also be prepared from metal paste , such as: copper paste or silver paste.
  • the metal slurry may include metal powder and other substances, and the other substances may include resin, etc. The metal slurry may be poured into the first through hole, and the conductive core will be obtained after the metal slurry is solidified.
  • the embodiment of the present application does not limit the material of the first conductive layer. Any material with a small resistivity and easy conduction of current can be used as the material of the first conductive layer.
  • the material of the first conductive layer may be metal.
  • the material of the first conductive layer can be silver; since silver has a low resistivity, the first conductive layer made of silver can Having lower resistivity, applying the first conductive layer to the inductor can result in the inductor having lower resistivity.
  • the material of the first conductive layer can be copper. Since copper has lower resistivity and lower cost, the third conductive layer made of copper A conductive layer can have lower resistivity and lower cost, so applying the first conductive layer to an inductor can make the inductor take into account both resistivity and cost.
  • the inductor may further include support pillars.
  • the support pillars are filled in the second through holes surrounded by the first conductive layer.
  • the support pillars play the role of supporting the first conductive layer, thereby making the overall structure of the inductor stable.
  • the material of the first conductive layer can refer to the above implementation. example.
  • the embodiments of the present application do not limit the preparation materials of the packed columns (the preparation materials of the packed columns in the embodiments of the present application may also be called packing slurry).
  • the filling slurry may be a non-conductive material, and the non-conductive material may be but is not limited to resin.
  • the filling paste can be a conductive material, and the conductive material can be but is not limited to a metal paste.
  • the metal paste can be a silver paste or a copper paste.
  • a U-shaped inductor may be accommodated in the substrate.
  • the structure of the substrate housing the U-shaped inductor will be described below with reference to specific drawings.
  • FIG. 11 is a cross-sectional view of a substrate provided by a feasible embodiment.
  • a first groove and a second groove are provided in the substrate.
  • the U-shaped inductor 24 includes a magnetic column 241a (the magnetic column 241a is provided with a longitudinally penetrating first through hole, and the magnetic column 241a is received in the first slot), a magnetic column 241b (the magnetic column 241b is provided with a longitudinally penetrating first through hole).
  • through hole, the magnetic pillar 241a is accommodated in the second groove), the first conductive layer 242a attached to the first through hole inside the magnetic pillar 241b, and
  • the first conductive layer 242b is attached to the first through hole inside the magnetic column 241b.
  • one end of the first conductive layer 242a and one end of the first conductive layer 242b are connected by metal wiring in the metal wiring layer 21e.
  • the electrode at the other end of the first conductive layer 242a is in the same layer as the metal wiring layer 21a.
  • One end of the metal wiring in the metal wiring layer 21a is connected to one end of the metal wiring in the metal wiring layer 21b through the conductive hole 23a.
  • the metal wiring in the metal wiring layer 21b is The other end is connected to the first pad 25a, thereby realizing the connection between the other end of the first conductive layer 242a and the first pad 25a.
  • the other end of the first conductive layer 242b is in the same layer as the metal wiring layer 21c.
  • One end of the metal wiring in the metal wiring layer 21c is connected to one end of the metal wiring in the metal wiring layer 21d through the conductive hole 23b.
  • the other end of the metal wiring in the metal wiring layer 21d One end is connected to the second pad 25b, thereby realizing the connection between the other end of the first conductive layer 242b and the second pad 25b.
  • FIG. 12 is a cross-sectional view of a substrate provided by a feasible embodiment.
  • the U-shaped inductor 24 is accommodated in the substrate.
  • the U-shaped inductor 24 includes a magnetic column 241 (with two first through holes provided inside), a first conductive layer 242a attached to the inner wall of one of the first through holes, and a first conductive layer 242a attached to the inner wall of the other first through hole.
  • Layer 242b Among them, one end of the first conductive layer 242a and one end of the first conductive layer 242b are connected by metal wiring in the metal wiring layer 21e.
  • the electrode at the other end of the first conductive layer 242a is in the same layer as the metal wiring layer 21a.
  • One end of the metal wiring in the metal wiring layer 21a is connected to one end of the metal wiring in the metal wiring layer 21b through the conductive hole 23a.
  • the metal wiring in the metal wiring layer 21b is The other end is connected to the first pad 25a, thereby realizing the connection between the other end of the first conductive layer 242a and the first pad 25a.
  • the other end of the first conductive layer 242b is in the same layer as the metal wiring layer 21c.
  • One end of the metal wiring in the metal wiring layer 21c is connected to one end of the metal wiring in the metal wiring layer 21d through the conductive hole 23b.
  • the other end of the metal wiring in the metal wiring layer 21d One end is connected to the second pad 25b, thereby realizing the connection between the other end of the first conductive layer 242b and the second pad 25b.
  • FIGS 7 to 12 are only examples of the connection methods between various components on the substrate. In actual application, the connection methods of each component can be adjusted as needed.
  • the substrate provided by the embodiment of the present application is provided with multiple metal wiring layers, and a dielectric layer filled between the multiple metal wiring layers; the substrate is also provided with a groove, and an inductor is accommodated in the groove, and the first end of the inductor is Connected to a first pad on a surface of the substrate, a second end of the inductor is connected to a second pad on a surface of the substrate.
  • the inductor since the inductor is arranged in the slot of the substrate, the inductor is closer to the pad used to connect the chip. Therefore, the connection line between the inductor and the pad is short, and the inductor and the pad are relatively short.
  • the eddy current loss of the connection line between the pads is less; in addition, this structure of placing the inductor in the internal groove of the substrate can make full use of the internal space of the substrate, reduce the use of the substrate area, and can reduce the package size.
  • the second aspect of the embodiments of the present application provides a method for preparing a substrate.
  • the preparation method of the substrate provided by the embodiments of the present application is described below with reference to specific drawings:
  • FIG 13 is a flow chart of a substrate preparation method provided by a feasible embodiment.
  • the substrate preparation method includes S131 to S132:
  • S131 forms grooves in the substrate
  • the inductor can be prepared in advance, and then the prepared inductor can be placed directly in the slot.
  • the inductor can be fabricated within a trench.
  • FIG. 14 is a flow chart of an inductor manufacturing method provided by a feasible embodiment.
  • the manufacturing method provided in FIG. 14 is used to manufacture an inductor in a vertical slot of a substrate.
  • the inductor manufacturing method includes S141 to S144:
  • S141 adds the magnetic composite slurry to the inside of the tank, and forms magnetic columns after curing reaction;
  • FIG. 15 is a cross-sectional view of a magnetic column according to a feasible embodiment; in this embodiment, the shape of the magnetic column 241 is a cylinder.
  • the material for preparing the magnetic column is magnetic composite slurry
  • the magnetic composite slurry includes soft magnetic material, resin material and curing agent.
  • the preparation process of the magnetic column may be to add the magnetic composite slurry into the hole, and then raise the temperature to 100°C-200°C to solidify the magnetic composite slurry to obtain the magnetic column.
  • the magnetic composite slurry includes soft magnetic material, resin material and curing agent.
  • ferrite magnetic powder can be used as soft magnetic materials; considering the preparation of an inductor with higher inductance, as a feasible implementation method , the soft magnetic material can use iron-based magnetic powder, wherein the iron-based magnetic powder can be crystalline iron-based magnetic powder, and the crystalline iron-based magnetic powder can be one or a mixture of carbonyl iron, FeSi, FeSiCr, FeNi, and FeNiMo. Considering that the prepared inductor has better corrosion resistance, better wear resistance, higher strength, higher hardness and toughness, higher Bs and lower magnetic loss, as a As a feasible implementation method, the soft magnetic material can be amorphous nano-iron-based magnetic powder.
  • the soft magnetic material includes one or more types of iron-based magnetic powders and/or one or more types of ferrite magnetic powders.
  • the iron-based magnetic powder includes one or more types of crystalline iron-based magnetic powder, and/or one or more types of amorphous nano-iron-based magnetic powder.
  • the resin material can include thermosetting resin.
  • the thermosetting resin can include one of polyester resin, epoxy resin, phenolic resin, silicone resin, or Several mixes.
  • the resin material can include thermosetting resin and thermoplastic resin.
  • the thermoplastic resin can include one or a mixture of polyethylene, polypropylene, polyamide, and polyurethane.
  • S142 forms a first through hole in the longitudinal direction of the magnetic column
  • Figure 16 is a cross-sectional view of a magnetic column with a first through hole provided in a feasible embodiment; it can be seen that the magnetic column 241 has a first through hole 241-1 in the longitudinal direction.
  • first through hole in the longitudinal direction of the magnetic column.
  • laser drilling can be used to form the first through hole in the longitudinal direction of the magnetic column.
  • mechanical drilling may be used to form the first through hole in the longitudinal direction of the magnetic column.
  • embodiments of the present application are only exemplary to introduce two implementation methods of forming the first through hole in the longitudinal direction of the magnetic column.
  • the first through hole is formed in the longitudinal direction of the magnetic column.
  • the holes may be implemented in the above two ways, but are not limited to the above two ways, and the applicant does not make too many limitations here.
  • FIG. 17 is a cross-sectional view of an assembly of a conductive core and a magnetic column provided by a feasible embodiment; it can be seen that the conductive core 242 penetrates the magnetic column 241 in the longitudinal direction.
  • the embodiments of the present application are not limited to conductive materials. Any material with a small resistivity and easy conduction of current can be used as a conductive material in the embodiments of the present application.
  • the conductive material may be silver.
  • the conductive material may be copper.
  • S144 forms electrodes at both ends of the conductive core.
  • Figure 18 is a cross-sectional view of an inductor provided by a feasible embodiment; it can be seen that the inductor includes: a magnetic column 241, a conductive core 242 longitudinally penetrating the magnetic column 241, and a pair of electrodes 243a disposed at both ends of the conductive core 242. 243b.
  • the method of forming electrodes at both ends of the conductive core can be a common electrode preparation method in this field, and the applicant does not impose too many limitations here.
  • the electrode can be fabricated simultaneously with the metal wiring of the metal wiring layer of the same layer during the manufacturing process of the substrate.
  • the electrode at one end is made at the same time as the metal wiring of the metal wiring layer of the layer where it is located, and the electrode on the other end is used as a pad and is made at the same time as the metal wiring of the metal wiring layer of the layer where it is located;
  • the electrode can be made simultaneously with the metal wiring of the pad and the metal wiring layer of the same layer.
  • Figure 19 is a flow chart of an inductor preparation method provided by another feasible embodiment.
  • the preparation method provided in Figure 19 is used to prepare an inductor in a groove of a substrate.
  • the inductor preparation method includes: S191 to S195;
  • S191 adds magnetic composite slurry to the inside of the tank, and forms magnetic columns after curing reaction;
  • the process of forming the magnetic pillars can be referred to the above embodiment.
  • S192 forms the first through hole in the longitudinal direction of the magnetic column
  • the process of forming the first through hole may refer to the above embodiment.
  • S193 forms a first conductive layer on the inner wall of the first through hole.
  • FIG. 20 is a cross-sectional view of an assembly of the first conductive layer and the magnetic pillar provided in a feasible embodiment; it can be seen that the first conductive layer 242 is attached to the inner wall of the first through hole in the magnetic pillar 241 .
  • the formation of the first conductive layer on the inner wall of the first through hole can be achieved by using electroplating methods commonly used in the art. For example: physical vapor deposition (PVD), chemical plating, electroplating and other processes.
  • PVD physical vapor deposition
  • chemical plating electroplating and other processes.
  • the material for preparing the first conductive layer is a conductive material.
  • the embodiments of this application do not limit the conductive material. Any material with a very small resistivity and easy to conduct current can be used to prepare the first conductive layer. Materials are used in the embodiments of this application; in consideration of preparing an inductor with a smaller resistivity, in some feasible implementations, the preparation material of the first conductive layer may include silver. Considering that the prepared inductor takes into account both resistivity and cost, in some feasible implementations, the preparation material of the first conductive layer may include copper.
  • support pillars can be prepared in the second through holes surrounded by the first conductive layer to improve the stability of the inductor.
  • the preparation process of the inductor also includes:
  • Figure 21 is a cross-sectional view of an assembly of the first conductive layer, support pillars and magnetic pillars provided in a feasible embodiment; it can be seen that the support pillar 244 is disposed in the second through hole surrounded by the first conductive layer 242.
  • the first conductive layer 242 has Attach to the inner wall of the first through hole of the magnetic column 241 .
  • the filling slurry may be a non-conductive material, and the non-conductive material may be but is not limited to resin.
  • the filling paste can be a conductive material.
  • the conductive material can be but is not limited to a metal paste.
  • the metal paste can be a silver paste or a copper paste. .
  • Figure 22 is a cross-sectional view of an inductor provided by a feasible embodiment; it can be seen that the inductor includes: a magnetic column 241, a first conductive layer 242 that longitudinally penetrates the magnetic column, and a first conductive layer 242 that longitudinally penetrates the magnetic column.
  • the method of forming electrodes at both ends of the conductive core can be a common electrode preparation method in this field, and the applicant does not impose too many limitations here.
  • forming a first through hole in the longitudinal direction of the magnetic column includes: making two first through holes in the longitudinal direction of the magnetic column; the conductive core embedded in the two first through holes is an electrode on the first side of the substrate conductive, the electrode on the second side of the substrate does not conduct.
  • Figure 23 is a flow chart of an inductor preparation method provided by another feasible embodiment.
  • the preparation method provided in Figure 23 is used to prepare an inductor in a substrate slot.
  • the inductor preparation method includes: S231 to S235;
  • the substrate is provided with a plurality of metal wiring layers and a dielectric layer filled between the plurality of metal wiring layers; the groove may be a through hole that penetrates the entire substrate, or a through hole or a buried hole that penetrates at least one insulating layer.
  • the process of preparing an inductor in a trench will be explained below by taking the trench penetrating an insulating layer as an example.
  • S231 adds the magnetic composite slurry to the inside of the tank, and forms magnetic columns after curing reaction;
  • the process of forming the magnetic pillars can be referred to the above embodiment.
  • FIG. 24 is a cross-sectional view of an assembly of magnetic pillars and an insulating layer provided in a feasible embodiment; it can be seen that the magnetic pillars 241 are filled in the grooves of the insulating layer 22 .
  • S232 makes two first through holes in the longitudinal direction of the magnetic column
  • Figure 25 is a cross-sectional view of an assembly of a magnetic pillar and an insulating layer provided in a feasible embodiment; it can be seen that there are two first through holes 241-1a and 241-1b on the magnetic pillar 241.
  • the process of forming the first through hole may refer to the above embodiment.
  • Figure 26 is a cross-sectional view of an assembly formed by a conductive core, a magnetic column and an insulating layer according to a feasible embodiment; it can be seen that the conductive core 242a is filled in the first through hole 241-1a, and the conductive core 242b is filled in the first through hole 241-1a. inside the through hole 241-1b.
  • the process of filling the conductive core in the first through hole can be referred to the above embodiment.
  • S234 forms a second conductive layer on one surface of the insulating layer, and forms a third conductive layer on the other surface of the insulating layer;
  • Figure 27 is a cross-sectional view of an assembly of a conductive core, a second conductive layer, a third conductive layer, a magnetic column and an insulating layer provided in a feasible embodiment; it can be seen that a second conductive layer is formed on one surface of the insulating layer 22 245, a third conductive layer 246 is formed on the other surface.
  • the second conductive layer 245 is connected to the conductive cores 242a and 242b on one side of the insulating layer 22, and the third conductive layer 246 is connected to the conductive cores 242a and 242b on the other side of the insulating layer 22.
  • electroplating methods commonly used in this field can be used. example such as: physical vapor deposition (PVD), chemical plating, electroplating and other processes.
  • the third conductive layer can be formed on the surface of the substrate by electroplating methods commonly used in the art. For example: physical vapor deposition (PVD), chemical plating, electroplating and other processes.
  • PVD physical vapor deposition
  • CVD chemical plating
  • electroplating and other processes.
  • S235 forms two conductive pads at the target position of the third conductive layer.
  • the target position is a position where the conductive core contacts the third conductive layer, and the diameter of the conductive sheet is larger than the diameter of the conductive core.
  • the two conductive sheets are connected to the conductive cores 242a and 242b respectively, and the two conductive sheets are separated from each other to achieve non-conduction of the electrodes on one side of the substrate of the conductive cores 242a and 232b.
  • the conductive sheet is a form of inductor electrode. Therefore, the electrodes of the inductor mentioned in the above embodiment may also be conductive sheets.
  • Figure 28a is a top view of an assembly of a conductive core, a second conductive layer, a third conductive layer, a conductive sheet, a magnetic column and an insulating layer provided in a possible embodiment
  • Figure 28b is a view of an assembly of a conductive core, a second conductive layer, a third conductive layer, a conductive sheet, a magnetic column and an insulating layer provided in a feasible embodiment.
  • the second conductive layer, the third conductive layer, the conductive sheet, the magnetic pillar and the insulating layer form a cross-sectional view on the AA' plane of the assembly; it can be seen that the conductive sheet 247a is connected to the conductive core 242a, and the conductive sheet 247b is connected to the conductive core. 242b connectivity.
  • the conductive piece 247a and the conductive piece 247b are isolated from each other.
  • the conductive sheet 247a and the conductive sheet 247b may be connected to pads on the surface of the substrate.
  • the substrate obtained by the substrate preparation method provided by the embodiment of the present application includes multiple metal wiring layers, and a dielectric layer filled between the multiple metal wiring layers; the substrate is also provided with a groove, and an inductor is accommodated in the groove.
  • the first end of the inductor is connected to a first pad on one surface of the substrate, and the second end of the inductor is connected to a second pad on one surface of the substrate.
  • the inductor since the inductor is arranged in the slot of the substrate, the inductor is closer to the pad used to connect the chip. Therefore, the connection line between the inductor and the pad is shorter.
  • connection line between the inductor and the pad has less eddy current loss; in addition, this structure of placing the inductor in the internal groove of the substrate can make full use of the internal space of the substrate and reduce the use of the substrate area, which can be achieved to a certain extent. to reduce package size.
  • the packaging structure includes: a packaging substrate 2, and a chip 3 disposed on the packaging substrate 2; wherein the packaging substrate 2 includes a package provided by the embodiment of the present application.
  • the chip 3 is soldered to the first pad and/or the second pad on the surface of the substrate.
  • the third aspect of the embodiment of the present application provides an electronic device.
  • Figure 30 is a cross-sectional view of the electronic device provided by a feasible embodiment.
  • the electronic device includes a PCB 4 and a packaging structure 5.
  • the PCB 4 and the packaging structure 5 are welded by welding components.
  • the packaging structure 5 includes a packaging substrate 2 and a chip 3.
  • the packaging substrate 2 includes the substrate provided in the embodiment of the present application, and the chip 3 is welded to the first pad and/or the second pad on the surface of the substrate.
  • FIG. 31 is a cross-sectional view of an electronic device provided by a feasible embodiment.
  • the electronic device includes a PCB 4 and a packaging structure 5 , where the PCB 4 includes the substrate provided by the embodiment of the present application.
  • the package structure 5 is soldered to the first pad and/or the second pad on the surface of the PCB 4 .
  • Figure 32 is a cross-sectional view of an electronic device provided by a feasible embodiment.
  • the electronic device includes a PCB4 and a packaging structure 5 provided on the PCB4.
  • the PCB4 includes the substrate provided by the embodiment of the present application;
  • the packaging structure 5 includes the packaging substrate 2 and the chip 3 ,
  • the packaging substrate 2 includes the substrate provided by the embodiment of the present application, and the chip 3 is welded to the first pad and/or the second pad on the surface of the packaging substrate 2 .
  • the round hole size is 0.5mm.
  • the center distance between the round holes is 0.6mm.
  • the thickness of the PCB is 1.5mm.
  • the resin material is bisphenol A epoxy resin, and the curing agent is acid anhydride curing agent;
  • the soft magnetic material mass accounts for the magnetic composite slurry mass 85% of the magnetic composite slurry;
  • the viscosity of the magnetic composite slurry is 100 Pas (5 rpm);
  • the curing temperature is 150°C, the curing time is 90 minutes;
  • the center of the magnetic column is drilled, and the drilling diameter is 0.
  • the Plating Through Hole (PTH) hole inside the copper layer is filled with plugging resin. After filling, the resin is cured and leveled, and then two non-conducting holes are formed on the surface of one magnetic column through exposure and development. The round hole, the two magnetic pillars on the other side are the conductive copper layers; forming a U-shaped inductor.
  • PTH Plating Through Hole
  • Drill a racetrack-shaped structure on the packaging substrate with a width of 0.35mm, a total length of 1.0mm, and a thickness of the packaging substrate of 1.0mm. Fill the magnetic composite slurry into the racetrack-shaped hole, and scrape the magnetic composite slurry protruding out of the packaging substrate.
  • the resin material uses polyethylene resin 50wt.%, epoxy resin 50wt.%, the curing agent uses imidazole curing agent;
  • the soft magnetic material mass accounts for the magnetic composite 90% of the total weight of the slurry;
  • the viscosity of the magnetic composite slurry is 150 Pas (5 rpm);
  • the curing temperature is 180°C, the curing time is 30 minutes; drilling is performed at the center of both sides of the magnetic column, with a drilling diameter of 0.2mm; the immersed copper plating process is used to The surface of the magnetic column is electroplated with a 10um copper layer.
  • the PTH hole inside the copper is filled with silver paste. After filling, the silver paste is solidified and leveled. Then, two non-conducting round holes are formed on the surface of one magnetic column through exposure and development.
  • the two magnetic pillars on one side are conductive copper layers; forming a U-shaped inductor.
  • the resin material is selected Phenolic resin 10wt.%, epoxy resin 90wt.%, the curing agent is diethylene triamine curing agent;
  • the soft magnetic material mass accounts for 80% of the total mass of the magnetic composite slurry;
  • the viscosity of the magnetic composite slurry is 50 Pas (5 rpm); curing
  • the temperature is 120°C and the curing time is 60 minutes; drilling is performed at the center of the four corners
  • Layer a 15um thick copper layer.
  • the PTH holes inside the copper layer are filled with plugging resin. After filling, the resin is cured and leveled. Then, four non-conducting round holes are formed on the surface of one side of the magnetic column through exposure and development, and two on the other side.
  • the magnetic pillars on the adjacent sides are conductive copper layers; forming two U-shaped inductors.
  • the round hole size is 0.3m
  • the center distance of the round holes is 0.4mm
  • the packaging substrate thickness is 0.8mm.
  • the magnetic composite slurry outside the packaging substrate is smoothed;
  • the curing agent is an acid anhydride curing agent; the soft magnetic material mass accounts for 87% of the total mass of the magnetic composite slurry; the viscosity of the magnetic composite slurry 200Pas (5rpm); curing temperature 100°C, curing time 120min; drill holes in the center of the magnetic column, with a drilling diameter of 0.1mm; use the immersed copper plating process to electroplat an 8um copper layer on the surface of the magnetic column, and use the PTH hole inside the copper layer
  • the plugging resin is filled, and after filling, the resin is cured and leveled, and then two non-conducting pads are formed on the surface of one magnetic column through exposure and development, and the two magnetic columns on the other side are conductive copper layers; forming a U-shaped inductor.
  • the round hole size is 0.4m
  • the center distance of the round holes is 0.6mm
  • the thickness of the packaging substrate is 1.2mm.
  • the magnetic composite slurry outside the packaging substrate is scraped off;
  • the resin material is epoxy resin, and the curing agent is an acid anhydride curing agent;
  • the mass of soft magnetic material accounts for 89% of the total weight of the magnetic composite slurry;
  • the viscosity of the magnetic composite slurry is 70 Pas (5 rpm);
  • the curing temperature is 180°C and the curing time is 80 minutes; drilling is performed in the center of the magnetic column with a drilling diameter of 0.175mm; silver is used
  • the slurry is filled into the drilled holes and cured at 180°C for 90 minutes.
  • the silver slurry is leveled, and then a copper layer is electroplated on the surface of the packaging substrate, and then two non-conducting round holes are formed on the surface of one magnetic column through exposure and development. , the two magnetic pillars on the other side are connected copper layers; forming a U-shaped inductor.
  • the magnetic composite slurry provided in the embodiment of the present application has high magnetic induction intensity, magnetic induction intensity B, low Performance advantages of loss angle.
  • the inductor prepared from the magnetic composite slurry has higher inductance, higher Q value, lower AC resistivity, lower DC resistivity and lower inductance loss. Applying this inductor to a power supply can improve the power conversion efficiency of the power supply.
  • the inductor can achieve high inductance characteristics in a small size, the inductor can be applied to wearable devices, handheld personal communication system units, portable data units (such as personal digital assistants), navigation equipment, set-top boxes, Music player, video player, entertainment unit, fixed location data unit (such as meter reading equipment), communication device, smartphone, tablet computer, or any other device that stores or retrieves data or computer instructions, or any combination thereof.
  • portable data units such as personal digital assistants
  • navigation equipment such as personal digital assistants
  • set-top boxes such as music player, video player, entertainment unit
  • fixed location data unit such as meter reading equipment
  • communication device smartphone, tablet computer, or any other device that stores or retrieves data or computer instructions, or any combination thereof.
  • One or more package structures, steps, features and/or functions illustrated in the embodiments of this application may be rearranged and/or combined into a single component, step, feature or function, or may be implemented in several components, steps or functions. middle. Additional elements, components, steps, and/or functions may be added without departing from embodiments of the present application.
  • the various figures and their corresponding descriptions may be used to fabricate, create, provide, and/or produce integrated devices.
  • integrated devices may include die packages, packaging substrates, integrated circuits, wafers, semiconductor devices, and/or interposers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请的实施例提供一种基板、封装结构及电子设备。本申请实施例提供的基板,由于电感器设置在基板的槽内,电感器距离用于连接芯片的焊盘的位置较近,因此,电感器与焊盘间的连接线路较短,电感器与焊盘间的连接线路的涡流损失较少;另外这种将电感器置于基板内部槽内的结构可充分利用基板的内部的空间,减少对基板板面面积的使用,可一定程度上减小封装尺寸。

Description

基板、封装结构及电子设备
本申请要求于2022年05月06日提交国家知识产权局、申请号为202210488039.7、申请名称为“基板、封装结构及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实施例涉及电子制造技术,尤其涉及基板、封装结构及电子设备。
背景技术
图1为芯片封装结构的示意图,包括芯片11、封装基板12、印制电路板(Printed Circuit Board,PCB)13和电感器14。可以看出:芯片11封装在封装基板12的第一表面,PCB13设置在封装基板12的第二表面,第一表面和第二表面相背设置;电感器14设置在封装基板12远离芯片11的一表面上。
电感器14设置于封装基板12的表面,电感器12需要通过在封装基板12外部走线的方式连接至封装基板12内部金属布线层的金属布线上,再通过金属布线层的金属布线及焊盘与芯片的管脚连接。在上述连接的过程中,走线较长,会导致线路上的涡流损失较大,且占据板面空间。
发明内容
本实施例提供一种基板、封装结构及电子设备,以解决现有的封装结构存在的问题。
本申请实施例第一方面提供一种基板,基板上设置有多个金属布线层,以及填充在多个金属布线层之间的介质层;基板中还设置有槽,槽内收容有电感器,电感器的第一端被连接至基板的一表面的第一焊盘,电感器的第二端被连接至基板的一表面的第二焊盘,第一焊盘与第二焊盘位于基板的同一侧的表面或分别位于基板的两侧的表面。
本实现方式中,由于电感器设置在基板的槽内,电感器距离用于连接芯片的焊盘的位置较近,因此,电感器与焊盘间的连接线路较短,电感器与焊盘间的连接线路的涡流损失较少;另外这种将电感器置于基板内部槽内的结构可充分利用基板的内部的空间,减少对基板板面面积的使用,可一定程度上减小封装尺寸。
结合第一方面的第一种实现方式,多个金属布线层包括第一金属布线层和\或第二金属布线层;电感器的第一端被第一金属布线层中的金属布线连接至第一焊盘,和\或,电感器的第二端被第二金属布线层中的金属布线连接至第二焊盘;第一金属布线层与第二金属布线层为同层或不同层。
结合第一方面的第二种实现方式,电感器包括与多个金属布线层垂直的磁柱和导电芯;磁柱设置在槽内,磁柱中包裹导电芯;导电芯的一端被连接至电感器的第一端,导电芯的另一端被连接至电感器的第二端。
结合第一方面的第三种实现方式,槽包括第一槽和第二槽,电感器包括垂直于多个金属布线层的磁柱和导电芯,磁柱包括设置在第一槽内的第一磁柱和设置在第二槽内的第二磁柱,导电芯包括第一导电芯和第二导电芯;
第一磁柱中包裹第一导电芯,第二磁柱中包裹第二导电芯,第一导电芯的一端被连接至电感器的第一端,第一导电芯的另一端被连接至第二导电芯的一端,第二导电芯的另一端被连接至电感器的第二端。
结合第一方面的第四种实现方式,电感器包括垂直于金属布线层的磁柱和导电芯,导电芯包括第一导电芯和第二导电芯;
磁柱包裹第一导电芯和第二导电芯,第一导电芯的一端被连接至电感器的第一端,第一导电芯的另一端被连接至第二导电芯的一端,第二导电芯的另一端被连接至电感器的第二端。
结合第一方面的第五种实现方式,磁柱垂直于金属布线层的方向上设置有第一通孔,导电芯包括第一导电层,第一导电层附着于第一通孔的内壁。
结合第一方面的第六种实现方式,电感器还包括填充柱;填充柱填埋在第二通孔内,第二通孔为第一导电层围成的通孔。
本实现方式中,在第二通孔内填埋有填充柱,填充柱起到支撑的作用,因此可以保证电感器的整体结构稳定,进而可以保证基板的结构稳定。
结合第一方面的第七种实现方式,填充柱由填充浆料制备而成,填充浆料至少包括导电材料、非导电材料中的一种或几种混合。
本实现方式中,当填充浆料包括导电材料时,制备出的填充柱电阻率较低,相应的电感器的电阻率较低。
结合第一方面的第八种实现方式,磁柱由磁性复合浆料制备而成,磁性复合浆料包括软磁材料、树脂材料和固化剂。
本实现方式中,磁性复合浆料包括软磁材料,软磁材料的加入可以使电感器的电感感量成倍数增大。
结合第一方面的第九种实现方式,软磁材料至少包括铁氧体磁粉、铁基磁粉中的一种或几种混合。
本实现方式中,当软磁材料包括铁氧体磁粉时,由于,铁氧体磁粉具有较高的电阻率,在电压一定的情况下,经过该铁氧体磁粉的电流较少,相应的该铁氧体磁粉产生较少的涡流损耗,由该铁氧体磁粉制备的电感器的损耗越低。
结合第一方面的第十种实现方式,铁基磁粉至少包括晶体铁基磁粉、非晶纳米铁基磁粉中的一种或几种混合。
本实现方式中,当软磁材料包括晶体铁基磁粉时,由于非晶纳米铁基磁粉原子不规则排列、不存在周期性和晶粒晶界的非晶态结构,非晶纳米铁基磁粉具有较好的耐蚀性、较好的耐磨性、较高的强度、较高的硬度和韧性、较高的电阻率和较高的Bs等性能,因此由该非晶纳米铁基磁粉制备出的电感器具有较好的耐蚀性、较好的耐磨性、较高的强度、较高的硬度和韧性、较高的Bs和较低的磁损耗等性能。
结合第一方面的第十一种实现方式,树脂材料包括热固性树脂;
或,树脂材料包括热固性树脂和热塑性树脂。
本实现方式中,当树脂材料包括热固性树脂时,由于热固性树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,因此可以保证由热固性树脂制备出的磁柱再次受热后依然能保持一个稳定结构。当树脂材料包括热固性树脂和热塑性树脂,热塑 性树脂可以是但不限于聚乙烯、聚丙烯、聚酰胺、聚氨酯中的一种或几种混合;由于热塑性树脂加工成型简便,机械性能较好,因此可以保证由热塑性树脂和热固性树脂制备出的磁柱可以兼顾良好的机械性能和结构稳定性能。
本申请实施例第二方面提供一种封装结构,包括:封装基板,以及设置于封装基板的芯片;其中,封装基板本申请实施例提供的基板,芯片与基板表面的第一焊盘,和/或第二焊盘焊接。
本申请实施例第三方面提供一种电子设备,包括PCB,以及设置于PCB上的封装结构,PCB通过焊接组件与封装结构焊接;封装结构包括本申请实施例提供的封装结构;和/或,PCB包括本申请实施例提供的基板,封装结构与基板表面的第一焊盘,和/或第二焊盘焊接。
附图说明
图1为封装结构的示意图;
图2提供一种多层基板的结构;
图3为一可行性实施例提供的基板的剖面图;
图4a为一可行性实施例提供基板的剖面图;
图4b为图4a提供基板的仰视图;
图5为一可行性实施例提供的基板的剖面图;
图6为一可行性实施例提供的基板的剖面图;
图7为一可行性实施例提供的柱状电感器的立体图;
图8为一可行性实施例提供的U型电感器的立体图;
图9为一可行性实施例提供的U型电感器的立体图;
图10为一可行性实施例提供的多相电感器的立体图;
图11为一可行性实施例提供的基板的剖面图;
图12为一可行性实施例提供的基板的剖面图;
图13为一可行性实施例提供的基板制备方法的流程图;
图14为一可行性实施例提供的电感器制备方法的流程图;
图15为一可行性实施例提供的磁柱的剖面图;
图16为一可行性实施例提供的带有第一通孔磁柱的剖面图;
图17为一可行性实施例提供的导电芯和磁柱形成组装体的剖面图;
图18为一可行性实施例提供的电感器的剖面图;
图19为另一可行性实施例提供的电感器制备方法的流程图;
图20为一可行性实施例提供的第一导电层和磁柱形成组装体的剖面图;
图21为一可行性实施例提供的第一导电层、支撑柱和磁柱形成组装体的剖面图;
图22为一可行性实施例提供的电感器的剖面图;
图23为另一可行性实施例提供的电感器制备方法的流程图;
图24为一可行性实施例提供的磁柱与绝缘层形成组装体的剖面图;
图25为一可行性实施例提供的磁柱与绝缘层形成组装体的剖面图;
图26为一可行性实施例提供的导电芯、磁柱与绝缘层形成组装体的剖面图;
图27为一可行性实施例提供的导电芯、第二导电层、第三导电层、磁柱与绝缘层 形成组装体的剖面图;
图28a为一可行性实施例提供的导电芯、第二导电层、第三导电层、导电片、磁柱与绝缘层形成组装体的俯视图;
图28b为一可行性实施例提供的导电芯、第二导电层、第三导电层、导电片、磁柱与绝缘层形成组装体的在AA’面上的剖面图;
图29为一可行性实施例提供的封装结构的剖面图;
图30为一可行性实施例提供的电子设备的剖面图;
图31为一可行性实施例提供的电子设备的剖面图;
图32为一可行性实施例提供的电子设备的剖面图。
具体实施方式
面将结合本实施例中的附图,对本实施例中的技术方案进行描述。其中,在本实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如:A/B可以表示A或B;本实施例中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如:A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本实施例的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如:a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本实施例的技术方案,在本实施例的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请中,除非另有明确的规定和限定,术语“耦接”可以是实现信号传输的电性连接的方式,“耦接”可以是直接的电性连接,也可以通过中间媒介间接的电性连接。
首先,对本申请的实施例中的基板的结构说明如下:
参照图2所示,图2提供一种多层基板的结构,其包含多层叠加的金属布线层21(或电路层),其中相邻的两层金属布线层之间设置有绝缘介质22(例如树脂材料,在本实施例中也可以称之为介质层),如图2所示,自P面至B面包含5层金属布线层。而不同金属布线层之间通过导孔23(via)电连接。导孔(via)的制作工艺是通过在基板上钻孔,然后在钻孔的表面电镀上一层导电物质(例如铜),如此一来电流可以在通过导孔连接的两层金属布线层之间流动。此外,如图2所示,导孔(via)包括贯通基板的通孔(plating through hole,PTH)、两端均埋入基板内部的盲孔(blind via hole,BVH)和一端暴露于基板表面的埋孔(buried via hole,BVH)。其中,通孔的钻孔通常需要将基板打穿,通孔用于连通基板的最外层的两层金属布线层(例如图2中的金属布线层21a和金属布线层21b)。盲孔的钻孔通常是从基板的一侧打入,并未 将基板打穿,盲孔用于将基板的一层最外层的金属布线层与一内层的金属布线层(例如图2中的金属布线层21a和金属布线层21c)连通。埋孔的钻孔通常是在基板的内部,埋孔通常是在绝缘介质粘合过程中对需要设置埋孔的绝缘介质钻孔,埋孔用于将基板的两层内层的金属布线层(例如图2中的金属布线层21a和金属布线层21b)连通。当然,根据实际需求并不限于通孔、盲孔或埋孔。当然图2示出的基板包含但不限于PCB、芯片的封装基板。值得注意的是,当封装基板包含基板的情况下,介质层也可以称之为核心(core)层,金属布线层也可以称之为增层。
以芯片的封装基板为例,通常封装基板可以为芯片提供电连接、保护、支撑等功能。例如,芯片的引脚可以通过封装基板表面的焊盘,以及,金属布线层21的金属布线连接至电感器。通常电感器设置于封装基板的表面,电感器需要用过在封装基板外部走线的方式连接至金属布线层的金属布线上,再通过金属布线层的金属布线及焊盘与芯片的管脚连接。在上述连接的过程中,走线较长,会导致线路上的涡流损失较大,且占据板面空间。
为了解决上述技术问题,本申请实施提供的基板内部还设置有用于收容电感器的槽。本申请实施例中,基板内部的槽可以贯穿基板的通孔,也可以不贯穿基板的盲孔或埋孔。本申请实施例并不对槽的形状做具体的限定,可以根据实际需求设置槽的形状。例如:在一些可行性实现方式中,槽可以为截面为圆形的柱体。在一些可行性实现方式中,槽可以是为截面为跑道型的柱体。在一些可行性实现方式中,槽可以是为截面为方形的柱体。本实施例中,槽内收容有电感器。
下面结合具体的附图对本申请是实施例提供的基板各器件的连接方式作以说明。
图3为一可行性实施例提供的基板的剖面图,基板上设置有多个金属布线层21,以及填充在多个金属布线层之间的介质层22。在基板垂直于多层金属布线层21的方向上设置有槽。本实施例中,槽为圆柱形的通孔,贯穿整个基板。槽内收容有电感器24。电感器24的第一端被连接至基板的一表面的第一焊盘25a,电感器24的第二端被连接至基板的一表面的第二焊盘25b。本实施例中,第一焊盘25a与第二焊盘25b位于基板的不同侧的表面。
值得注意的是,在实际应用的过程中可以在电感器的两端制作电极。本申请实施例中,在电感器两端制作电极的应用场景下,电感器两端的电极可以是与一层金属布线层同层的金属电极或者焊盘,在图3提供的基板中,电感器两端的电极可以是第一焊盘和第二焊盘。在一些可行性实施例中,第一焊盘和/第二焊盘可以与基板最外层的金属布线层同层。
在一些可行性实现方式中,槽可以是一端埋入基板内部,一端暴露于基板表面的埋孔,填埋在槽内的电感器,一端埋入基板内部,一端暴露于基板表面。具体的可以参阅图4a及图4b,图4a为一可行性实施例提供基板的剖面图,图4b为图4a提供基板的仰视图。可以看出填埋在槽内的电感器24,一端埋入基板内部,一端暴露于基板表面。电感器24暴露于基板表面的一端可以直接与第一焊盘25a连接。电感器24埋入基板内部一端的电极与金属布线层21a同层,金属布线层21a中金属布线的一端通过导孔23与金属布线层21b中金属布线的一端连接,金属布线层21b中金属布线的另一端与第二焊盘25b连接,进而实现电感器24埋入基板内部一端与第二焊盘25b的连 接。
在一些可行性实现方式中,槽可以是两端埋入基板内部的盲孔,填埋在槽内的电感器,两端均埋入基板内部。具体的可以参阅图5,电感器24一端的电极可以与金属布线层21a同层,金属布线层21a中金属布线的一端通过导孔23a与金属布线层21b中金属布线的一端连接,金属布线层21b中金属布线的另一端与第一焊盘25a连接,进而实现电感器24一端的电极与第一焊盘25a的连接。电感器24另一端的电极与金属布线层21c同层,金属布线层21c中金属布线的一端通过导孔23b与金属布线层21d中金属布线的一端连接,金属布线层21d中金属布线的另一端与第二焊盘25b连接,进而实现电感器24另一端与第二焊盘25b的连接。本实施例中,第一焊盘25a和第二焊盘25b位于基板的不同侧。
图3-图5只是示例性的介绍几种第一焊盘和第二焊盘位于基板两侧的情形,在一些可行性实施例中第一焊盘和第二焊盘位于基板同一侧的表面。下面结合具体的附图对第一焊盘和第二焊盘位于同一侧的基板结构作以说明。
图6为一可行性实施例提供的基板的剖面图。本实施例中,槽可以是两端埋入基板内部的盲孔。槽内收容有电感器24。电感器24的一端与金属布线层21a同层,金属布线层21a中金属布线的一端通过导孔23a与金属布线层21b中金属布线的一端连接,金属布线层21b中金属布线的另一端与第一焊盘25a连接,进而实现电感器24的一端与第一焊盘25a的连接。电感器24另一端的电极与金属布线层21c同层,金属布线层21c中金属布线的一端通过导孔23b与金属布线层21d中金属布线的一端连接,金属布线层21d中金属布线的另一端与第二焊盘25b连接,进而实现电感器24另一端与第二焊盘25b的连接。
本申请实施例并不对电感器的种类作以限定,例如:在一些可行性实现方式中,电感器可以是空气电感器(air core inductor,ACI)。由于电感器可以起到阻碍电流的变化的作用,因此在电源中会配置电感器以达到滤波的效果。随着电源的演进,要求电源的电能转化效率不断提升,电源面积不断减小,相应的要求电感器可以在小体积下实现高电感感量的特性。由于,在电感器内加入软磁材料可以使电感感量成倍数增大,因此为了满足上述需求,在一些可行性实现方式中,电感器可以是加入了软磁材料的磁电感器,在下述实施例中出现的电感器均为磁电感器。本申请实施例中软磁材料为铁磁性材料中的软磁材料。
本申请实施例并不对电感器的形状作以限定,例如:在一些可行性实现方式中,电感器的可以是柱状电感器,图7为一可行性实施例提供的柱状电感器的立体图。可以看出柱状电感器24包括:磁柱241、纵向(在本实施例中纵向为垂直于多层金属布线层的方向)贯穿磁柱241的导电芯242、及设置在导电芯242两端电极243a和243b。当电感器的电极位于基板最外侧的表面时,电极可以直接复用为焊盘。通常,柱状电感器两侧的电极243a和电极243b可以被连接至基板不同侧的焊盘上。在一些可行性实施例中,柱状电感器两侧的电极243a和电极243b也可以被金属布线层21中的金属布线及导孔23连接至基板不同侧的焊盘上。
在一些可行性实现方式中,电感器的可以是U型电感器。图8为一可行性实施例提供的U型电感器的立体图。可以看出U型电感器可以包括:磁柱241a、磁柱241b、 纵向贯穿磁柱241a的导电芯242a、纵向贯穿磁柱241b的导电芯242b,在磁柱241a和磁柱241b的第一侧,设置在导电芯242a一端的电极243a和设置在导电芯242b一端的电极243b;在磁柱241a和磁柱241b的第二侧,设置在导电芯242a一端的电极243c和设置在导电芯242b一端的电极243d。其中,电极243c和电极243d导通。通常,这样的电感器的电极243c和电极243d可以与基板同一侧的器件焊接。例如,该U型电感器的电极243c和电极243d设置在朝向基板的一侧,则电极243c和电极243d均被连接至基板同一侧的焊盘上,例如,该电感器的电极243c和电极243d设置在朝向芯片的一侧,并与设置在朝向芯片的一侧的焊盘连接。
图9为一可行性实施例提供的U型电感器的立体图,可以看出电感器包括:磁柱241,纵向贯穿磁柱241的导电芯242a和导电芯242b,在磁柱241的第一侧,设置在导电芯242a一端的电极243a和设置在导电芯242b一端的电极243b;在磁柱241的第二侧,设置在导电芯242a一端的电极243c和设置在导电芯242b一端的电极243d;其中,电极243c和电极243d导通。通常,这样的电感器的电极243c和电极243d可以与基板同一侧的器件焊接。例如,该电感器的电极243c和电极243d设置在朝向芯片的一侧,并与设置在朝向芯片的一侧的焊盘连接。
图7-图9仅是示例性的介绍几种单相电感器。本申请实施例中,电感器还可以包括多相电感器,下面结合具体的附图对多相电感器的结构作以说明。
图10为一可行性实施例提供的多相电感器的立体图,可以看出多相电感器可以包两个单相电感器24-1和24-2,其中,单相电感器24-1和24-2的结构及各部件之间的连接关系可以参阅图9提供的U型电感器,本申请实施例不再赘述。
值得注意的是,图10仅是示例性的介绍双相电感器,在实际应用的过程中,可以根据需求设置电感器的相数,本申请实施例做过多的限定。
本申请实施例中,磁柱由磁性复合浆料填充槽并固化制备而成,磁性复合浆料包括软磁材料、树脂材料和固化剂。磁电感器在通电流的情况下,由于软磁材料的高磁导率的作用,可以使得电感器的电感感量大幅增加。
下面对磁柱制备材料作以说明。
其中:
软磁材料,是指由铁磁性物质或亚铁磁性物质组成的,在外加磁场作用下,有相应的磁化强度或磁感应强度,加入电感器内可以使得电感器的电感感量增加的材料。
在实际应用的过程中,软磁材料会产生磁损耗;其中,磁损耗是指软磁材料在磁化或反磁化过程中,外界对其所作的功转换成热的现象。磁损耗它包含磁滞磁损耗、涡流磁损耗。软磁材料的磁损耗越大,包含该软磁材料的电感器的损耗越高,导致使用该电感器电源的电源转化效率越低;
考虑到降低软磁材料的涡流损耗,有助于制备出低损耗的电感器。作为一种可行性实现方式,软磁材料可以采用铁氧体磁粉;铁氧体磁粉可以为铁氧体材料,铁氧体材料可以是但不限于锰锌铁氧体、镍锌铁氧体、锰铁氧中的一种或几种混合。由于软磁材料的损耗一方面来源于涡流损耗,涡流损耗指导体在非均匀磁场中移动或处在随时间变化的磁场中时,导体内部产生的电流使导体发热产生能量损耗。由于,铁氧体磁粉具有较高的电阻率,在电压一定的情况下,经过该铁氧体磁粉的电流较少,相应 的该铁氧体磁粉产生较少的涡流损耗,由该铁氧体磁粉制备的电感器的损耗越低。
考虑到制备一种较高电感感量的电感器。作为一种可行性实现方式,软磁材料可以采用铁基磁粉,其中铁基磁粉可以是晶体铁基磁粉,晶体铁基磁粉可以是但不限于羰基铁、FeSi、FeSiCr、FeNi、FeNiMo中的一种或几种混合。铁基磁粉具有较高的饱和磁感应强度,其中,饱和磁感应强度指的是软磁材料磁化到饱和时的磁感应强度可以用Bs表示;由于饱和磁感应强度越高,磁导率越高,电感感量就越高,因此包含铁基磁粉的电感器具有较高的电感感量。
作为一种可行性实现方式,铁基磁粉可以采用非晶纳米铁基磁粉。磁性物理学上来说,非晶纳米铁基磁粉原子不规则排列、不存在周期性和晶粒晶界的非晶态结构,非晶纳米铁基磁粉具有较好的耐蚀性、较好的耐磨性、较高的强度、较高的硬度和韧性、较高的电阻率和较高的Bs,等性能,因此由该非晶纳米铁基磁粉制备出的电感器具有较好的耐蚀性、较好的耐磨性、较高的强度、较高的硬度和韧性、较高的Bs和较低的磁损耗等性能。进一步的,可通过降低非晶纳米铁基磁粉粒径,降低涡流损耗,使其在高频的应用场景下,磁损耗较小,因此由该非晶纳米铁基磁粉的电感器也可以应用高频的应用场景下。
本申请实施例中,软磁材料包括铁基磁粉中的一种或多种,和/或铁氧体磁粉中的一种或多种。其中,铁基磁粉包括晶体铁基磁粉中的一种或多种,和/或非晶纳米铁基磁粉中的一种或多种。
树脂材料,指的是常温下呈固态、中固态、假固态、有时也可以是液态,高温下融化成具有流动性的有机物质。在高温时,融化后的树脂材料可以与软磁材料混合,由于混合物具有流动性,因此可以倾注在额定性状的腔体内;固化反应后可以使得混合物具有特定形状(即得到具有特定形状的磁柱)。考虑到磁柱的结构稳定性,作为一种可行性实现方式,树脂材料至少包括热固性树脂,热固性树脂可以是但不限于聚酯树脂、环氧树脂、酚醛树脂、有机硅树脂中的一种或几种混合;由于热固性树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,因此可以保证由热固性树脂制备出的磁柱再次受热后依然能保持一个稳定结构。考虑到磁柱的机械性能,作为一种可行性实现方式,树脂材料可以包括热固性树脂和热塑性树脂,热塑性树脂可以是但不限于聚乙烯、聚丙烯、聚酰胺、聚氨酯中的一种或几种混合;由于热塑性树脂加工成型简便,机械性能较好,因此可以保证由热塑性树脂和热固性树脂制备出的磁柱可以兼顾良好的机械性能和结构稳定性能。
固化剂,是一类增进固化反应的物质或混合物。作为一种可行性实现方式,固化剂可以包含咪唑、酸酐、胺类一种或几种混合。
下面对磁柱结构作以说明:本申请实施例并不对磁柱的形状作以限定,可以根据需求设置磁柱的形状,例如:在一些可行性实现方式中,磁柱可以是径向截面为圆形的柱体;在一些可行性实现方式中,磁柱可以是径向截面为跑道型的柱体;在一些可行性实现方式中,磁柱可以是径向截面为方形的柱体。磁柱的纵向上设置有第一通孔,第一通孔用于容纳导电芯。
本申请实施例中,导电芯是指电阻率很小且易于传导电流的结构。下面对导电芯的结构作以说明:
本申请实施例中,导电芯可以是实心的导电柱,例如:在一些可行性实现方式中,导电芯可以是形状与第一通孔适配的导电柱;导电芯可以的导电层,例如:在一些可行性实现方式中,导电芯可以是附着于第一通孔内壁的导电层(为了与其他导电层进行区分,本申请实施例中,附着于第一通孔内壁的导电层可以称之为第一导电层)。
下面对导电芯的材料作以说明:当导电芯是导电柱时,本申请实施例并不对导电柱的材料作以限定,凡是具有电阻率很小且易于传导电流的材料均可作为制备导电柱的材料应用到本申请实施例中;例如:制备导电柱的材料可以是金属。考虑到制备出电阻率较小的电感器,在一些可行性实现方式中,导电柱的制备材料可以是银;由于银具备较低的电阻率,因此,由银制备出的导电柱具有较低的电阻率,包含银柱的电感器可以具有较低的电阻率。在一些可行性实现方式中,导电柱的制备材料可以是铜,由于铜具备较低的电阻率并且成本较低,由通制备出的铜柱可以兼顾电阻率和成本,包含该铜柱的电感器可以兼顾电阻率和成本。作为一种可行性实现方式,导电芯可以是纯物质,即纯银或纯铜等,纯物质的金属芯通过插入的方式添加;作为一种可行性实现方式,导电芯也可以由金属浆制备,例如:铜浆或银浆。本申请实施例中金属浆可以包含金属粉和其他物质,其他物质可以包括树脂等,金属浆可以灌入第一通孔内,金属浆固化后得到导电芯。
当导电芯包括第一导电层时,本申请实施例并不对第一导电层的材料作以限定,凡是具有电阻率很小且易于传导电流的材料均可作为第一导电层的材料应用到本申请实施例中;例如:第一导电层的材料可以是金属。考虑到制备出电阻率较小的电感器,在一些可行性实现方式中,第一导电层的材料可以是银;由于银具备较低的电阻率,因此,由银制备的第一导电层可以具有较低的电阻率,将该第一导电层应用到电感器中可以使得电感器具有较低的电阻率。考虑到制备出的电感器可以兼顾电阻率和成本,在一些可行性实现方式中,第一导电层的材料可以是铜,由于铜具备较低的电阻率并且成本较低,由铜制备的第一导电层可以具备较低的电阻率并且成本较低,因此将该第一导电层应用到电感器中可以使得电感器兼顾电阻率和成本。
当导电芯包括第一导电层时,为了得到结构稳定的电感器,在一些可行性实施例中,电感器还可以包括支撑柱。支撑柱填埋在第一导电层围城的第二通孔内,支撑柱起到支撑第一导电层的作用,进而使得电感器的整体结构稳定,其中,第一导电层的材料可以参阅上述实施例。本申请实施例并不对填充柱的制备材料(在本申请实施例中填充柱的制备材料也可以称之为填充浆料)作以限定。例如:在一些可行性实现方式中,填充浆料可以是非导电材料,非导电材料可以是但不限于是树脂。考虑到制备出电阻率较低的电感器,作为一种可行性实现方式,填充浆料可以是导电材料,导电材料可以是但不限于是金属浆,例如金属浆可以是银浆或铜浆。
在一些可行性实施例中基板中可以容纳有U型电感。下面结合具体的附图对容纳有U型电感的基板结构作以说明。
图11为一可行性实施例提供的基板的剖面图。本实施例中,基板内设置有第一槽和第二槽。U型电感器24包括磁柱241a(磁柱241a内部设置有纵向贯穿的第一通孔,磁柱241a收容在第一槽内)、磁柱241b(磁柱241b内部设置有纵向贯穿的第一通孔,磁柱241a收容在第二槽内)、附着于磁柱241b内部第一通孔的第一导电层242a、附 着于磁柱241b内部第一通孔的第一导电层242b。其中,第一导电层242a的一端和第一导电层242b的一端被金属布线层21e中的金属布线连接。第一导电层242a另一端的电极与金属布线层21a同层,金属布线层21a中金属布线的一端通过导孔23a与金属布线层21b中金属布线的一端连接,金属布线层21b中金属布线的另一端与第一焊盘25a连接,进而实现第一导电层242a的另一端与第一焊盘25a的连接。第一导电层242b的另一端与金属布线层21c同层,金属布线层21c中金属布线的一端通过导孔23b与金属布线层21d中金属布线的一端连接,金属布线层21d中金属布线的另一端与第二焊盘25b连接,进而实现第一导电层242b的另一端与第二焊盘25b的连接。
图12为一可行性实施例提供的基板的剖面图。本实施例中,基板内收容有U型电感器24。U型电感器24包括磁柱241(内部设置有两个第一通孔),附着于其中一个第一通孔内壁的第一导电层242a,附着于另一个第一通孔内壁的第一导电层242b。其中,第一导电层242a的一端和第一导电层242b的一端被金属布线层21e中的金属布线连接。第一导电层242a另一端的电极与金属布线层21a同层,金属布线层21a中金属布线的一端通过导孔23a与金属布线层21b中金属布线的一端连接,金属布线层21b中金属布线的另一端与第一焊盘25a连接,进而实现第一导电层242a的另一端与第一焊盘25a的连接。第一导电层242b的另一端与金属布线层21c同层,金属布线层21c中金属布线的一端通过导孔23b与金属布线层21d中金属布线的一端连接,金属布线层21d中金属布线的另一端与第二焊盘25b连接,进而实现第一导电层242b的另一端与第二焊盘25b的连接。
图7-图12仅是示例性的介绍几种基板各器件之间的连接方式,在实际应用的过程中,各部件的连接方式可以根据需要进行调整。
本申请实施例提供的基板设置有多个金属布线层,以及填充在多个金属布线层之间的介质层;基板中还设置有槽,槽内收容有电感器,电感器的第一端被连接至基板的一表面的第一焊盘,电感器的第二端被连接至基板的一表面的第二焊盘。本申请实施例提供的基板,由于电感器设置在基板的槽内,电感器距离用于连接芯片的焊盘的位置较近,因此,电感器与焊盘间的连接线路较短,电感器与焊盘间的连接线路的涡流损失较少;另外这种将电感器置于基板内部槽内的结构可充分利用基板的内部的空间,减少对基板板面面积的使用,可一定程度上减小封装尺寸。
本申请实施例第二方面提供一种基板的制备方法,下面结合具体的附图对本申请实施例提供的基板的制备方法作以说明:
图13为一可行性实施例提供的基板制备方法的流程图,基板制备方法包括S131~S132:
S131在基板内形成槽;
在基板上形成槽的实现方式有多种。例如:在一些可行性实现方式中,可以采用激光钻孔的方式在基板内形成孔;在一些可行性实现方式中,可以采用机械钻孔的方式在基板内形成通孔形状的槽。值得注意的是,本申请实施例仅是示例性的介绍两种在基板上形成槽的实现方式,在实际应用的过程中,在基板上形成槽的实现方式可以是但不限于上述两种方式,在此申请人不做过多的限定。
S132在槽内填埋电感器;
在槽内填埋电感器的实现方式有多种。例如:在一些可行性实现方式中,可以预先制备电感器,然后将制备好的电感器直接放置在槽内。在一些可行性实现方式中,可以在槽内制备电感器。
下面结合具体的附图对在槽内制备电感器的过程作以说明。图14为一可行性实施例提供的电感器制备方法的流程图,图14提供的制备方法用于在基板纵置的槽内制作电感器,电感器的制备方法包括S141~S144:
S141将磁性复合浆料添加到槽内部,固化反应后形成磁柱;
图15为一可行性实施例提供的磁柱的剖面图;本实施例中,磁柱241的形状为圆柱体。
本申请实施例中,磁柱的制备材料为磁性复合浆料,磁性复合浆料包括软磁材料、树脂材料和固化剂。磁柱的制备过程可以是将磁性复合浆料添加到孔内,然后升温至100℃-200℃,使磁性复合浆料固化得到磁柱。
本申请实施例中,磁性复合浆料包括软磁材料、树脂材料和固化剂。
考虑到制备出高低电感损耗的电感器,作为一种可行性实现方式,软磁材料可以采用铁氧体磁粉;考虑到制备一种较高电感感量的电感器,作为一种可行性实现方式,软磁材料可以采用铁基磁粉,其中铁基磁粉可以是晶体铁基磁粉,晶体铁基磁粉可以是羰基铁、FeSi、FeSiCr、FeNi、FeNiMo中的一种或几种混合。考虑到制备出的电感器具有较好的耐蚀性、较好的耐磨性、较高的强度、较高的硬度和韧性、较高的Bs和较低的磁损耗等性能,作为一种可行性实现方式,软磁材料可以采非晶纳米铁基磁粉。
本申请实施例中,软磁材料包括铁基磁粉中的一种或多种,和/或铁氧体磁粉中的一种或多种。其中,铁基磁粉包括晶体铁基磁粉中的一种或多种,和/或非晶纳米铁基磁粉中的一种或多种。
树脂材料,考虑到磁柱的结构稳定性,作为一种可行性实现方式,树脂材料可以包括热固性树脂,热固性树脂可以包括聚酯树脂、环氧树脂、酚醛树脂、有机硅树脂中的一种或几种混合。考虑到磁柱的机械性能,作为一种可行性实现方式,树脂材料可以包括热固性树脂和热塑性树脂,热塑性树脂可以包括聚乙烯、聚丙烯、聚酰胺、聚氨酯中的一种或几种混合。
S142在磁柱的纵向上形成第一通孔;
图16为一可行性实施例提供的带有第一通孔磁柱的剖面图;可以看出,磁柱241的纵向上有第一通孔241-1。
在磁柱的纵向上形成第一通孔的实现方式有多种。例如:在一些可行性实现方式中可以采用激光钻孔的方式在磁柱的纵向上形成第一通孔。在一些可行性实现方式中,可以采用机械钻孔的方式在磁柱的纵向上形成第一通孔。值得注意的是,本申请实施例仅是示例性的介绍两种在在磁柱的纵向上形成第一通孔的实现方式,在实际应用的过程中,在磁柱的纵向上形成第一通孔的实现方式可以是但不限于上述两种方式,在此,申请人不做过多的限定。
S143在第一通孔的内倾注导电材料,固化后得到导电芯;
图17为一可行性实施例提供的导电芯和磁柱形成组装体的剖面图;可以看出,导电芯242在纵向贯穿磁柱241。
本申请实施例并不导电材料作以限定,凡是具有电阻率很小且易于传导电流的材料均可作为导电材料应用到本申请实施例中;考虑到制备出电阻率较小的电感器,在一些可行性实现方式中,导电材料可以是银。考虑到制备出的电感器兼顾电阻率和成本,在一些可行性实现方式中,导电材料可以是铜。
S144在导电芯的两端分别形成电极。
图18为一可行性实施例提供的电感器的剖面图;可以看出,电感器包括:磁柱241,纵向贯穿磁柱241的导电芯242和设置在导电芯242两端的一对电极243a和243b。
在导电芯的两端分别形成电极的实现方式可以个本领域惯用的电极制备方式,在此申请人不做过多的限定。
需要说明的是,当电感为基板上的埋孔中的电感时,电极可以是基板制作过程中,与所在层的金属布线层的金属布线同时制作。
当电感为基板上的盲孔中的电感时,一端的电极为所在层的金属布线层的金属布线同时制作,另一端的电极作为焊盘与所在层的金属布线层的金属布线同时制作;
当电感为基板上的通孔中的电感时,电极可以是为焊盘与所在层的金属布线层的金属布线同时制作。
图19为另一可行性实施例提供的电感器制备方法的流程图,图19提供的制备方法用于在基板的槽内制作电感器,电感器的制备方法包括:S191~S195;
S191将磁性复合浆料添加到槽内部,固化反应后形成磁柱;
其中,形成磁柱的过程可以参阅上述实施例。
S192在磁柱的纵向上形成第一通孔;
其中,形成第一通孔的过程可以参阅上述实施例。
S193在第一通孔的内壁形成第一导电层。
图20为一可行性实施例提供的第一导电层和磁柱形成组装体的剖面图;可以看出,第一导电层242附着于磁柱241内第一通孔的内壁。
在第一通孔的内壁形成第一导电层的实现方式,可以采用本领域惯用的电镀方式。例如:物理气相沉积(physical vapor deposition,PVD)、化镀、电镀等工艺。
本申请实施例中,第一导电层的制备材料为导电材料,本申请实施例并不对导电材料作以限定,凡是具有电阻率很小且易于传导电流的材料均可作为第一导电层的制备材料应用到本申请实施例中;考虑到制备出电阻率较小的电感器,在一些可行性实现方式中,第一导电层的制备材料可以包括银。考虑到制备出的电感器兼顾电阻率和成本,在一些可行性实现方式中,第一导电层的制备材料可以包括铜。
考虑到制备出结构稳定的电感器,作为一种可选择性的实现方式中,可以在第一导电层所围成的第二通孔内制备支撑柱,以提升电感器的稳定性。具体的可以继续参阅图19,电感器的制备过程还包括:
S194将填充浆料添加到第一导电层围成的第二通孔内,填充浆料固化后得到支撑柱。
图21为一可行性实施例提供的第一导电层、支撑柱和磁柱形成组装体的剖面图;可以看出,支撑柱244设置在第一导电层242围成的第二通孔内,第一导电层242附 着于磁柱241的第一通孔的内壁。
在一些可行性实现方式中,填充浆料可以是非导电材料,非导电材料可以是但不限于是树脂。考虑到制备出电阻率较低的电感器,作为一种可行性实现方式,填充浆料可以是导电材料,导电材料可以是但不限于是金属浆,例如:金属浆可以是银浆或铜浆。
S195在第一导电层的两端分别形成电极。
图22为一可行性实施例提供的电感器的剖面图;可以看出,电感器包括:磁柱241,纵向贯穿磁柱的第一导电层242,纵向贯穿磁柱的第一导电层242的支撑柱244和设置在导电芯两端的一对电极243a和243b;一对电极243a和243b分别与第一导电层242连接。
在导电芯的两端分别形成电极的实现方式可以个本领域惯用的电极制备方式,在此申请人不做过多的限定。
可选择的,在磁柱的纵向上形成第一通孔,包括:在磁柱纵向上制作两个第一通孔;两个第一通孔中填埋的导电芯在基板第一侧的电极导通,在基板第二侧的电极不导通。
图23为另一可行性实施例提供的电感器制备方法的流程图,图23提供的制备方法用于在基板槽内制作电感器,电感器的制备方法包括:S231~S235;
其中,基板设置有多个金属布线层,以及填充在多个金属布线层之间的介质层;槽可是贯穿整个基板的通孔,也可以是贯穿至少一层绝缘层的通孔或埋孔。下面以槽贯穿一层绝缘层为例对在槽内制备电感器的过程作以说明。
S231将磁性复合浆料添加到槽内部,固化反应后形成磁柱;
其中,形成磁柱的过程可以参阅上述实施例。
图24为一可行性实施例提供的磁柱与绝缘层形成组装体的剖面图;可以看出,磁柱241填充在绝缘层22的槽内。
S232在磁柱纵向上制作两个第一通孔;
图25为一可行性实施例提供的磁柱与绝缘层形成组装体的剖面图;可以看出,磁柱241上存在两个第一通孔241-1a和241-1b。
其中,形成第一通孔的过程可以参阅上述实施例。
S233在第一通孔填埋导电芯。
图26为一可行性实施例提供的导电芯、磁柱与绝缘层形成组装体的剖面图;可以看出,导电芯242a填充在第一通孔241-1a内,导电芯242b填充在第一通孔241-1b内。
其中,在第一通孔填埋导电芯的过程可以参阅上述实施例。
S234在绝缘层一表面形成第二导电层,在绝缘层另一表面上形成第三导电层;
图27为一可行性实施例提供的导电芯、第二导电层、第三导电层、磁柱与绝缘层形成组装体的剖面图;可以看出,绝缘层22的一表面形成第二导电层245,另一表面形成第三导电层246。第二导电层245与导电芯242a和242b在绝缘层22的一侧连通,第三导电层246与导电芯242a和242b在绝缘层22的另一侧连通。
在绝缘层表面形成第二导电层的实现方式,可以采用本领域惯用的电镀方式。例 如:物理气相沉积(physical vapor deposition,PVD)、化镀、电镀等工艺。
在基板表面形成第三导电层的实现方式,可以采用本领域惯用的电镀方式。例如:物理气相沉积(physical vapor deposition,PVD)、化镀、电镀等工艺。
S235在第三导电层的目标位置处形成两个导电片(pad)。
其中,目标位置为导电芯与第三导电层接触的位置,导电片的直径大于导电芯的直径。两个导电片分别与导电芯242a和242b连接,两个导电片彼此分离,以实现导电芯242a和232b基板的一侧的电极不导通。本实施例中,导电片是电感器电极的一种形式,因此上述实施例中提到的电感器的电极,也可以是导电片。
图28a为一可行性实施例提供的导电芯、第二导电层、第三导电层、导电片、磁柱与绝缘层形成组装体的俯视图;图28b为一可行性实施例提供的导电芯、第二导电层、第三导电层、导电片、磁柱与绝缘层形成组装体的在AA’面上的剖面图;可以看出,导电片247a与导电芯242a连通,导电片247b与导电芯242b连通。导电片247a与导电片247b彼此隔离。导电片247a与导电片247b可以被连接至基板表面的焊盘上。
本申请实施例提供的基板的制备方法得到的基板包括多个金属布线层,以及填充在多个金属布线层之间的介质层;基板中还设置有槽,槽内收容有电感器,电感器的第一端被连接至基板的一表面的第一焊盘,电感器的第二端被连接至基板的一表面的第二焊盘。本申请实施例提供的制备出的基板,由于电感器设置在基板的槽内,电感器距离用于连接芯片的焊盘的位置较近,因此,电感器与焊盘间的连接线路较短,电感器与焊盘间的连接线路的涡流损失较少;另外这种将电感器置于基板内部槽内的结构可充分利用基板的内部的空间,减少对基板板面面积的使用,可一定程度上减小封装尺寸。
本申请实施例第二方面提供一种封装结构,具体的可以参阅图29,封装结构包括:封装基板2,以及设置于封装基板2上的芯片3;其中,封装基板2包括本申请实施例提供的基板,芯片3与基板表面的第一焊盘,和/或第二焊盘焊接。
本申请实施例第三方面提供一种电子设备,图30为一可行性实施例提供的电子设备的剖面图,电子设备包括PCB4及封装结构5,PCB4与封装结构5通过焊接组件焊接。其中,封装结构5包括封装基板2和芯片3,封装基板2包括本申请实施例提供的基板,芯片3与基板表面的第一焊盘,和/或第二焊盘焊接。
图31为一可行性实施例提供的电子设备的剖面图,电子设备包括PCB4及封装结构5,其中,PCB4包括本申请实施例提供的基板。封装结构5与PCB4表面的第一焊盘,和/或第二焊盘焊接。
图32为一可行性实施例提供的电子设备的剖面图,电子设备包括PCB4以及设置于PCB4上的封装结构5,PCB4包括本申请实施例提供的基板;封装结构5包括封装基板2和芯片3,封装基板2包括本申请实施例提供的基板,芯片3与封装基板2表面的第一焊盘,和/或第二焊盘焊接。
下面结合具体的实施例对本申请实施例提供的技术方案作以说明:
实施例1:
PCB钻两个圆孔,圆孔尺寸0.5mm,圆孔中心距0.6mm,PCB厚度是1.5mm,将磁 性复合浆料填充到圆孔内部,将凸出PCB外的磁性复合浆料刮平,再进行固化;磁性复合浆料的软磁材料选用非晶FeSiB磁粉80wt.%,D50=5um,D90=9um;MnZn铁氧体软磁材料20wt.%,D50=1um,D90=3um;树脂材料选用双酚A型环氧树脂,固化剂选用酸酐类固化剂;软磁材料质量占磁性复合浆料质量的85%;磁性复合浆料粘度100Pas(5rpm);固化温度150℃,固化时间90min;磁柱磁柱中心进行钻孔,钻孔直径0.15mm;利用沉铜电镀工艺在磁柱表面电镀一层30um铜层,铜层内侧的孔直插式(Plating Through Hole,PTH)孔利用塞孔树脂进行填充,填充后对树脂固化整平,再通过曝光显影在一面磁柱表面形成两个不导通的圆孔,另一面两个磁柱是导通的铜层;形成一个U型的电感器。
实施例2:
封装基板钻一个跑道型结构,宽度是0.35mm,总长度1.0mm,封装基板厚度是1.0mm,将磁性复合浆料填充到跑道型的孔内部,将凸出封装基板外的磁性复合浆料刮平,再进行固化;磁性复合浆料的软磁材料选用纳米晶FeSiBCuNb软磁材料50wt.%,D50=8um,D90=15um;Mn铁氧体软磁材料30wt.%,D50=0.5um,D90=1um;羰基铁粉D20wt.%,D50=2um,D90=4um;树脂材料选用聚乙烯树脂50wt.%,环氧树脂50wt.%,固化剂选用咪唑类固化剂;软磁材料质量占磁性复合浆料质量总重量的90%;磁性复合浆料粘度150Pas(5rpm);固化温度180℃,固化时间30min;磁柱两边的中心处进行钻孔,钻孔直径0.2mm;利用沉铜电镀工艺在磁柱表面电镀一层10um铜层,铜内侧的PTH孔利用银浆进行填充,填充后对银浆固化整平,再通过曝光显影在一面磁柱表面形成两个不导通的圆孔,另一面两个磁柱是导通的铜层;形成一个U型的电感器。
实施例3:
封装基板钻一个正方形结构,边长是0.8mm,封装基板厚度是1.2mm,将磁性复合浆料填充到正方形的孔内部,将凸出封装基板外的磁性复合浆料刮平,再进行固化;磁性复合浆料的软磁材料选用非晶FeSiBCrC软磁材料90wt.%,D50=2um,D90=6um;NiZn铁氧体软磁材料10wt.%,D50=0.7um,D90=2um;树脂材料选用酚醛树脂10wt.%,环氧树脂90wt.%,固化剂选用二乙烯三胺固化剂;软磁材料质量占磁性复合浆料质量总重量的80%;磁性复合浆料粘度50Pas(5rpm);固化温度120℃,固化时间60min;磁柱四个角的中心处进行钻孔,钻孔直径0.15mm;利用PVD在磁柱表面溅射一层铜,再通过沉铜电镀工艺在磁柱表面形成一层15um厚铜层,铜层内侧的PTH孔利用塞孔树脂进行填充,填充后对树脂固化整平,再通过曝光显影在一面磁柱表面形成四个不导通的圆孔,另一面两个相邻边的磁柱是导通的铜层;形成两个U型的电感器。
实施例4:
两面覆铜层玻璃封装基板钻两个圆孔,圆孔尺寸0.3m,圆孔中心距0.4mm,封装基板厚度是0.8mm,将磁性复合浆料填充到圆孔内部,进行固化,将凸出封装基板外的磁性复合浆料刮平;磁性复合浆料的软磁材料选用FeSiCr软磁材料30wt.%,D50=3um,D90=6um;MnZn铁氧体软磁材料20wt.%,D50=3um,D90=6um;FeNiMo软磁材料40wt.%,D50=10um,D90=22um;FeSi软磁材料10wt.%,D50=6um,D90=14um;树脂材料聚丙烯30wt.%,聚酯树脂40wt.%,有机硅树脂30wt.%,固化剂是酸酐类固化剂;软磁材料质量占磁性复合浆料质量总重量的87%;磁性复合浆料粘度 200Pas(5rpm);固化温度100℃,固化时间120min;磁柱中心进行钻孔,钻孔直径0.1mm;利用沉铜电镀工艺在磁柱表面电镀一层8um铜层,铜层内侧的PTH孔利用塞孔树脂进行填充,填充后对树脂固化整平,再通过曝光显影在一面磁柱表面形成两个不导通的pad,另一面两个磁柱是导通的铜层;形成一个U型的电感器。
实施例5:
两面覆铜层玻璃封装基板钻两个圆孔,圆孔尺寸0.4m,圆孔中心距0.6mm,封装基板厚度是1.2mm,将磁性复合浆料填充到圆孔内部,进行固化,将凸出封装基板外的磁性复合浆料刮平;磁性复合浆料的软磁材料选用Mn铁氧体软磁材料,D50=2um,D90=5um;树脂材料环氧树脂,固化剂是酸酐类固化剂;软磁材料质量占磁性复合浆料质量总重量的89%;磁性复合浆料粘度70Pas(5rpm);固化温度180℃,固化时间80min;磁柱中心进行钻孔,钻孔直径0.175mm;利用银浆填入所钻孔内,180℃固化90min,固化后对银浆整平,再在封装基板表面电镀一层铜层,再通过曝光显影在一面磁柱表面形成两个不导通的圆孔,另一面两个磁柱是连通的铜层;形成一个U型的电感器。
在80MHz的频率下,分别测试实施例1-5的磁性复合浆料的饱和磁感应强度(saturation magnetic induction,可以表示为Bs)、磁感应强度(magnetic flux density,可以表示为B)。然后分别计算实施例1-5的磁性复合浆料的损耗角,其中,损耗角=B/Bs,得到的结果可以参阅表1。
表1
在80MHz的频率下,分别测试实施例1-5的电感器电感、Q值、交流电阻率和直流电阻率,得到的结果可以参阅表2。
表2
可见本申请实施例提供的磁性复合浆料,具有高磁感应强度、磁感应强度B、低 损耗角的性能优势。由该磁性复合浆料制备出的电感器电感感量较高、Q值较高、交流电阻率较低、直流电阻率较低、电感损耗较低。将该电感器应用到电源中可以提升电源的电能转换效率。
由于电感器可以在小体积下实现高感量的特性,因此,由该电感器可以适用于可穿戴设备、手持式个人通信系统单元、便携式数据单元(诸如个人数字助理)、导航设备、机顶盒、音乐播放器、视频播放器、娱乐单元、固定位置数据单位(诸如仪表读取装备)、通信设备、智能电话、平板计算机、或者存储或检索数据或计算机指令的任何其它设备,或者其任何组合。
本申请实施例中解说的一个或多个封装结构,步骤,特征和/或功能可被重新安排和/或组合成单个的组件,步骤,特征或功能,或可实施在若干组件,步骤或功能中。也可添加额外的元件、组件、步骤、和/或功能而不会脱离本申请实施例。在一些实现中,各附图及其相应描述可被用于制造、创建、提供、和/或生产集成器件。在一些实现中,集成器件可以包括管芯封装、封装基板、集成电路、晶片、半导体器件、和/或中介体。
措辞“示例性”在本文中用于表示“用作示例、实例或解说”。本文中描述为“示例性”的任何实现或方面不必被解释为优于或胜过本申请实施例的其他方面。
还应注意,这些实施例可能是作为被描绘为流程图、流图、结构图、或框图的过程来描述的。尽管流程图可能会把诸操作描述为顺序过程,但是这些操作中有许多操作能够并行或并发地执行。另外,这些操作的次序可被重新安排。过程在其操作完成时终止。
本文中所描述的本申请实施例的各种方面可实现于不同系统中而不会脱离本申请实施例。应注意,本申请实施例的以上各方面仅是示例,且不应被解释成限定本申请实施例。对本申请实施例的各方面的描述旨在是解说性的,而非限定所附权利要求的范围。由此,本发明的教导可以现成地应用于其他类型的装置,并且许多替换、修改和变形对于本领域技术人员将是显而易见的。

Claims (14)

  1. 一种基板,其特征在于,所述基板上设置有多个金属布线层,以及填充在所述多个金属布线层之间的介质层;所述基板中还设置有槽,所述槽内收容有电感器,所述电感器的第一端被连接至所述基板的一表面的第一焊盘,所述电感器的第二端被连接至所述基板的一表面的第二焊盘,所述第一焊盘与所述第二焊盘位于所述基板的同一侧的表面或分别位于所述基板的两侧的表面。
  2. 如权利要求1所述的基板,其特征在于,所述多个金属布线层包括第一金属布线层和\或第二金属布线层;
    所述电感器的第一端被所述第一金属布线层中的金属布线连接至所述第一焊盘,和\或,所述电感器的第二端被所述第二金属布线层中的金属布线连接至所述第二焊盘;所述第一金属布线层与所述第二金属布线层为同层或不同层。
  3. 如权利要求1或2所述的基板,其特征在于,所述电感器包括与所述多个金属布线层垂直的磁柱和导电芯;所述磁柱设置在所述槽内,所述磁柱中包裹所述导电芯;所述导电芯的一端被连接至所述电感器的第一端,所述导电芯的另一端被连接至所述电感器的第二端。
  4. 如权利要求1或2所述的基板,其特征在于,所述槽包括第一槽和第二槽,所述电感器包括垂直于所述多个金属布线层的磁柱和导电芯,所述磁柱包括设置在所述第一槽内的第一磁柱和设置在所述第二槽内的第二磁柱,所述导电芯包括第一导电芯和第二导电芯;
    所述第一磁柱中包裹所述第一导电芯,所述第二磁柱中包裹所述第二导电芯,所述第一导电芯的一端被连接至所述电感器的第一端,所述第一导电芯的另一端被连接至所述第二导电芯的一端,所述第二导电芯的另一端被连接至所述电感器的第二端。
  5. 如权利要求1或2所述的基板,其特征在于,所述电感器包括垂直于所述金属布线层的磁柱和导电芯,所述导电芯包括第一导电芯和第二导电芯;
    所述磁柱包裹所述第一导电芯和所述第二导电芯,所述第一导电芯的一端被连接至所述电感器的第一端,所述第一导电芯的另一端被连接至所述第二导电芯的一端,所述第二导电芯的另一端被连接至所述电感器的第二端。
  6. 根据权利要求3-5任一项所述的基板,其特征在于,所述磁柱垂直于所述金属布线层的方向上设置有第一通孔,所述导电芯包括第一导电层,所述第一导电层附着于所述第一通孔的内壁。
  7. 根据权利要求6所述的基板,其特征在于,所述电感器还包括填充柱;
    所述填充柱填埋在第二通孔内,所述第二通孔为所述第一导电层围成的通孔。
  8. 根据权利要求7所述的基板,其特征在于,所述填充柱由填充浆料制备而成,所述填充浆料至少包括导电材料、非导电材料中的一种或几种混合。
  9. 根据权利要求3-8任一项所述的基板,其特征在于,所述磁柱由磁性复合浆料制备而成,所述磁性复合浆料包括软磁材料、树脂材料和固化剂。
  10. 根据权利要求9所述的基板,其特征在于,所述软磁材料至少包括铁氧体磁粉、铁基磁粉中的一种或几种混合。
  11. 根据权利要求10所述的基板,其特征在于,所述铁基磁粉至少包括晶体铁基 磁粉、非晶纳米铁基磁粉中的一种或几种混合。
  12. 根据权利要求9所述的基板,其特征在于,所述树脂材料包括热固性树脂;
    或,所述树脂材料包括热固性树脂和热塑性树脂。
  13. 一种封装结构,其特征在于,包括:
    封装基板,以及设置于所述封装基板上的芯片;其中,所述封装基板包括如权利要求1-12任一项所述的基板,所述芯片与所述基板表面的第一焊盘,和/或第二焊盘焊接。
  14. 一种电子设备,其特征在于,包括PCB,以及设置于所述PCB上的封装结构,所述PCB通过焊接组件与所述封装结构焊接;所述封装结构包括如权利要求13所述的封装结构;和/或,所述PCB包括如权利要求1-12任一项所述的基板,所述封装结构与所述基板表面的第一焊盘,和/或第二焊盘焊接。
PCT/CN2023/089591 2022-05-06 2023-04-20 基板、封装结构及电子设备 WO2023213195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210488039.7 2022-05-06
CN202210488039.7A CN117059600A (zh) 2022-05-06 2022-05-06 基板、封装结构及电子设备

Publications (1)

Publication Number Publication Date
WO2023213195A1 true WO2023213195A1 (zh) 2023-11-09

Family

ID=88646239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089591 WO2023213195A1 (zh) 2022-05-06 2023-04-20 基板、封装结构及电子设备

Country Status (2)

Country Link
CN (1) CN117059600A (zh)
WO (1) WO2023213195A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486905A (zh) * 2014-12-18 2015-04-01 深圳市华星光电技术有限公司 一种电感、电路板以及电感的实现方法
CN106133904A (zh) * 2014-03-28 2016-11-16 高通股份有限公司 嵌入在封装基板中的电感器
CN106332447A (zh) * 2016-08-31 2017-01-11 电子科技大学 一种用于印制电路板埋嵌技术的电感结构及其制作方法
US20190287815A1 (en) * 2018-03-14 2019-09-19 Intel Corporation Semiconductor package substrate with through-hole magnetic core inductor using conductive paste
CN110581219A (zh) * 2019-08-09 2019-12-17 杭州电子科技大学 一种节省面积的螺旋电感器结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133904A (zh) * 2014-03-28 2016-11-16 高通股份有限公司 嵌入在封装基板中的电感器
CN104486905A (zh) * 2014-12-18 2015-04-01 深圳市华星光电技术有限公司 一种电感、电路板以及电感的实现方法
CN106332447A (zh) * 2016-08-31 2017-01-11 电子科技大学 一种用于印制电路板埋嵌技术的电感结构及其制作方法
US20190287815A1 (en) * 2018-03-14 2019-09-19 Intel Corporation Semiconductor package substrate with through-hole magnetic core inductor using conductive paste
CN110581219A (zh) * 2019-08-09 2019-12-17 杭州电子科技大学 一种节省面积的螺旋电感器结构

Also Published As

Publication number Publication date
CN117059600A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US11276520B2 (en) Multilayer seed pattern inductor, manufacturing method thereof, and board having the same
JP5763747B2 (ja) 小型のパワーインダクタ及び製造方法
JP6115057B2 (ja) コイル部品
US10199154B2 (en) Coil component and method of manufacturing the same
CN104078192B (zh) 电子部件及其制造方法
TWI344805B (en) Inductor and electric power supply using it
JP2014032978A (ja) インダクタ部品、インダクタ部品の製造方法及び配線板
JP2015026812A (ja) チップ電子部品及びその製造方法
JP2014154813A (ja) プリント配線板
JPH09148136A (ja) 表面実装可能なインダクタ
CN103811161A (zh) 多层功率电感器和用于制备其的方法
KR20160140153A (ko) 코일 전자부품 및 그 제조방법
CN102360727B (zh) 一种平面磁集成emi滤波器
KR102105397B1 (ko) 칩 전자부품 및 그 실장기판
WO2023213195A1 (zh) 基板、封装结构及电子设备
JP2007305824A (ja) インダクタンス部品
JP6597803B2 (ja) 表面実装型コイル部品及びその製造方法、並びに、これを用いたdc−dcコンバータ
JP2004327523A (ja) インダクタンス部品およびそれを用いた電子機器
TWI738019B (zh) 用於射頻組件之多堆疊冷卻結構
KR101719970B1 (ko) 코일 전자부품 및 그 제조방법
JP2003282328A (ja) 薄型磁性素子及びその製造方法並びにそれを用いた電源モジュール
US20220377917A1 (en) Component Carrier With Magnetic Element, Magnetic Inlay, and Manufacturing Method
US20220377895A1 (en) Magnetic Inlay With An Adjustable Inductance Value for a Component Carrier and a Manufacturing Method
EP4246542A1 (en) An inductor inlay for a component carrier, and manufacturing method
US20220377897A1 (en) Magnetic Inlay With Electrically Conductive Vertical Through Connections for a Component Carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799182

Country of ref document: EP

Kind code of ref document: A1