WO2023213151A1 - 一种醋酸阿比特龙及其中间体的制备方法 - Google Patents

一种醋酸阿比特龙及其中间体的制备方法 Download PDF

Info

Publication number
WO2023213151A1
WO2023213151A1 PCT/CN2023/083006 CN2023083006W WO2023213151A1 WO 2023213151 A1 WO2023213151 A1 WO 2023213151A1 CN 2023083006 W CN2023083006 W CN 2023083006W WO 2023213151 A1 WO2023213151 A1 WO 2023213151A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
acetate
group
preparation
Prior art date
Application number
PCT/CN2023/083006
Other languages
English (en)
French (fr)
Inventor
谢晓强
褚定军
姜倩倩
金健
Original Assignee
奥锐特药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210488520.6A external-priority patent/CN114853838B/zh
Priority claimed from CN202210925624.9A external-priority patent/CN116121780A/zh
Priority claimed from CN202310235319.1A external-priority patent/CN116178475A/zh
Priority claimed from CN202310235429.8A external-priority patent/CN116574151A/zh
Application filed by 奥锐特药业股份有限公司 filed Critical 奥锐特药业股份有限公司
Publication of WO2023213151A1 publication Critical patent/WO2023213151A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J51/00Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/05Heterocyclic compounds

Definitions

  • the invention relates to the technical field of medicinal chemistry, and in particular to a preparation method of abiraterone acetate and its intermediates.
  • Prostate cancer refers to an epithelial malignant tumor that occurs in the prostate. It is the second most common malignant tumor in men in the world after lung cancer, and ranks sixth in mortality. About 1/9 men have it. Prostate cancer will be diagnosed throughout your life, so it is called the "male killer.” Currently, the global incidence of prostate cancer is increasing. In 2020, there will be approximately 1.5 million new cases worldwide, accounting for 15% of new male cancer cases. It is expected that by 2022, the number of prostate cancer patients worldwide will reach 11 million.
  • Abiraterone acetate is the prodrug of abiraterone, which is rapidly converted into abiraterone in the body, which is a selective and irreversible steroid of CYP17 (17 ⁇ -hydroxylase and C17,20-lyase).
  • Body inhibitors block testosterone synthesis in the testicles, adrenal glands and tumors by inhibiting enzyme activity.
  • This product was developed by Johnson & Johnson in the United States and was first approved by the U.S. FDA on April 28, 2011. It is used in combination with prednisone or prednisolone to treat patients who fail to respond to androgen deprivation therapy and docetaxel chemotherapy.
  • castration-resistant metastatic prostate cancer mCRPC
  • Alkenyl iodide is generated, and then the iodide undergoes a coupling reaction with diethyl (3-pyridyl) borane under the catalysis of bistriphenylphosphine palladium chloride to generate abiraterone, and finally the 3-hydroxyl group is acetylated to obtain acetic acid abiraterone.
  • Bitron diethyl (3-pyridyl) borane
  • the reaction time of the first step of this route requires 5 days, and the reaction time of the third step requires 4 days.
  • the production cycle is too long, and the total yield is only 36.9%.
  • the process also requires the use of hydrazine hydrate, iodine, tetramethylguanidine and other odorous substances. Reagents cause large environmental pollution, so they are not suitable for industrial production.
  • trifluoromethanesulfonic anhydride Since trifluoromethanesulfonic anhydride is expensive, the production cost of this synthesis method is high, and trifluoromethanesulfonic anhydride is highly hygroscopic and corrosive, so its use is risky, and 3-dehydroxyabibite is also generated during the reaction. Dragon, this impurity is difficult to remove through recrystallization and generally needs to be removed through column chromatography.
  • CN103864878A discloses two preparation methods that do not use diethyl (3-pyridyl) borane, as shown in Route 3 and Route 4:
  • the raw materials of route 3 are the same as those of route 2.
  • the trifluoromethanesulfonic anhydride used is expensive, and 3-dehydroxyabiraterone is also generated during the reaction. This impurity is difficult to remove by recrystallization and generally needs to be removed by column chromatography.
  • the raw material of route 4 is iodide
  • the preparation also has disadvantages such as long reaction time and environmental pollution in Route 1.
  • the purpose of the present invention is to provide a new method for preparing abiraterone acetate and its intermediates that is easy to operate, has high safety, low cost, higher yield, and is suitable for industrial production.
  • the first aspect of the present invention provides a method for preparing abiraterone acetate or an intermediate thereof.
  • the method includes the steps of: (i) in an organic solvent, in the presence of a metal catalyst, a ligand and a reducing agent, the compound of formula II React with the compound of formula III to obtain the compound of formula I;
  • R 1 is selected from the group consisting of: hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonate Acyl or C 1 -C 2 trialkylsilyl;
  • R 2 is selected from the group consisting of: C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, dimethylaminoacyl or diethylaminoacyl or diphenyl phosphinic acid group; and
  • X is fluorine, chlorine, bromine or iodine
  • substituted means that one or more hydrogen atoms on the group are independently substituted with a group selected from the following group: halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl , ether group, nitro group;
  • the metal catalyst is selected from the group consisting of palladium salts, copper salts, iron salts, cobalt salts, nickel salts, or combinations thereof;
  • the ligand is selected from the group consisting of phosphorus-containing ligands, amino acid ligands, nitrogen-containing ligands, or combinations thereof.
  • R 1 and R 2 are the same or different.
  • R 1 is acetyl
  • step (i) the molar ratio of the compound of formula II to the compound of formula III is 1:1-4, preferably 1:1.5-3, such as 1:2 or 1:3.
  • the molar ratio of the compound of formula II to the metal catalyst is 1:0.005 ⁇ 0.3; preferably 1:0.01 ⁇ 0.2, such as 1:0.03, 1:0.05, 1:0.07 or 0.1.
  • the molar ratio of the compound of formula II to the ligand is 1:0.005 ⁇ 0.3; preferably 1:0.01 ⁇ 0.2, such as 1:0.03, 1:0.05; 1 :0.07 or 0.1.
  • step (i) the molar ratio of the compound of formula II to the reducing agent is 1:1-4, preferably 1:1.5-3, such as 1:2 or 1:3.
  • the metal catalyst is selected from the following group: bistriphenylphosphine palladium chloride, palladium acetate, palladium chloride, cuprous iodide, copper acetate, ferric chloride, ferric acetylacetonate, chlorine Cobalt, cobalt acetylacetonate, nickel acetate, nickel chloride, tricyclohexylphosphine nickel chloride, or combinations thereof.
  • the ligand is selected from the following group: triphenylphosphine and its derivatives, tricyclohexylphosphine and its derivatives, L-proline and its derivatives, pyridine and its derivatives, 2,2-bipyridine and its derivatives, 1,10-phenanthroline and its derivatives, or combinations thereof.
  • the reducing agent is selected from the following group: diboron reagent, zinc powder, copper powder, iron powder, magnesium powder, manganese powder, tin powder, samarium powder, indium powder, or a combination thereof.
  • the organic solvent is selected from the following group: tetrahydrofuran, toluene, acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl Chisulfone, or combinations thereof.
  • reaction temperature of step (i) is 20-120°C, preferably 40-100°C.
  • the method further includes the steps of:
  • acylating reagent used to generate R 1 is selected from the group consisting of: R 1 -halogen, R 1 -OR 1 , isopropylene acetate, or combinations thereof; and
  • the acylating reagent used to generate R2 is selected from the group consisting of: R2 -halogen, R2 - OR2 , isopropylene acetate, or combinations thereof.
  • the acylating reagent used to generate R 1 is selected from the following group: C 1 -C 6 alkyl acid chloride, substituted or unsubstituted benzoic anhydride, isopropylene acetate, trimethylchlorosilane, or combination thereof.
  • the acylating reagent used to generate R2 is selected from the group consisting of isopropylene acetate, substituted or unsubstituted benzoic anhydride, substituted or unsubstituted benzenesulfonic anhydride, or a combination thereof.
  • the invention also provides a preparation method of abiraterone acetate, which method includes the following steps:
  • the organic solvent is selected from methanol, ethanol, isopropanol or a combination thereof.
  • the second aspect of the present invention provides a preparation method (electrochemical preparation method) of abiraterone acetate or its intermediate, which preparation method includes the steps: (1) in a solvent, in the presence of a metal catalyst, a ligand and an electrolyte , under the action of a constant current, the compound represented by formula II reacts with the compound represented by formula III to form the compound represented by formula I.
  • the reaction formula is as follows:
  • R 1 is selected from hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted phenylsulfonyl or C 1 -C 2 trialkylsilyl group or dialkyl arylsilyl group, the alkyl group in the dialkyl arylsilyl group is C 1 -C 3 alkyl group;
  • R2 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, dimethylaminoacyl, diethylamidoacyl or diphenylphosphine acyl;
  • substitution means that one or more hydrogen atoms on the group are independently substituted with a group selected from the following group:
  • Halogen C 1 -C 4 alkyl or C 1 -C 4 haloalkyl, ether group, nitro group;
  • X is fluorine, chlorine, bromine or iodine
  • the metal catalyst is selected from: palladium salt, copper salt, cobalt salt, nickel salt, or combinations thereof; and
  • the ligand is selected from phosphorus-containing ligands, amino acid-containing ligands, pyridine ring-containing ligands, or combinations thereof.
  • R 1 is an acetyl group
  • the compound represented by formula I is abiraterone acetate.
  • step (1) the molar ratio of the compound represented by formula II to the compound represented by formula III is 1:1-4. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the compound represented by formula III is 1:1-3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the compound represented by formula III is 1:1.5 ⁇ 2.2, such as 1:1.8 or 1:2.5;
  • the molar ratio of the compound represented by formula II to the metal catalyst is 1:0.005-0.2. In another more preferred embodiment, the molar ratio of the compound represented by Formula II to the metal catalyst is 1:0.01-0.1. In another more preferred example, the molar ratio of the compound represented by Formula II to the metal catalyst is 1:0.03-0.07, such as 1:0.04, 1:0.005 or 1:0.006;
  • the molar ratio of the compound represented by Formula II to the ligand is 1:0.005-0.3. In another more preferred embodiment, the molar ratio of the compound represented by Formula II to the ligand is 1:0.01-0.2. In another more preferred example, the molar ratio of the compound represented by Formula II to the ligand is 1:0.05-0.12, such as 1:0.06, 1:0.08, or 1:0.10.
  • step (1) the molar volume ratio of the electrolyte to the reaction solution is 0.1-0.5 mol/L.
  • the constant current in step (1), is 0.05A-1.0A. In another more preferred embodiment, the constant current is 0.1A-0.5A.
  • the current density is 0.01-0.2A/cm 2 . In another more preferred embodiment, the current density The degree is 0.02 ⁇ 0.1A/cm 2 .
  • the reaction temperature is 0°C to 60°C. In another more preferred embodiment, the reaction temperature is 10°C to 50°C.
  • the metal catalyst is selected from palladium bistriphenylphosphine chloride, palladium acetate, palladium chloride, palladium trifluoromethanesulfonate, copper iodide, copper acetate, copper chloride, chloride Cobalt, cobalt acetylacetonate, cobalt acetate, cobalt sulfate, nickel acetate, tricyclohexylphosphine nickel chloride or combinations thereof.
  • the ligand is selected from triphenylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, L-proline, alanine, methionine, pyridine, 2,2- Bipyridine, 1,10-phenanthroline or its derivatives.
  • the electrolyte is selected from the group consisting of tetraethylammonium perchlorate, tetraethylammonium p-toluenesulfonate, tetrabutylammonium acetate, tetrabutylammonium hexafluorophosphate, and tetrabutylammonium tetrafluoroborate. , tetraethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphonate or combinations thereof.
  • the solvent used in the reaction is selected from acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide or a combination thereof.
  • the anode electrode used in the reaction is iron, zinc, magnesium, nickel, aluminum or a combination thereof, and the cathode electrode is platinum.
  • R 2 in the compound represented by formula II is an acetyl group
  • X in the compound represented by formula III is bromine
  • the metal catalyst is PdCl 2 (PPh 3 ) 2
  • the ligand is bipyridine.
  • R 2 in the compound represented by formula II is an acetyl group
  • X in the compound represented by formula III is iodine
  • the metal catalyst is nickel acetate
  • the ligand is tricyclohexylphosphine.
  • R 2 in the compound represented by formula II is p-toluenesulfonyl group
  • X in the compound represented by formula III is chlorine
  • the metal catalyst is copper iodide
  • the ligand is L-proline acid
  • R 2 in the compound represented by formula II is benzoyl
  • X in the compound represented by formula III is fluorine
  • the metal catalyst is nickel chloride
  • the ligand is 1,10-phenanthrene phyline.
  • the step (1) includes: sequentially adding a solvent, a compound represented by formula II, a compound represented by formula III, a metal catalyst, a ligand and an electrolyte into the reaction vessel, and then connecting the anode electrode and the cathode electrode. Fix it into the reaction vessel, turn on the power, and react under the action of constant current.
  • the method further includes reacting the compound represented by Formula IV with an acylating reagent to generate the compound represented by Formula II.
  • the acylating reagent used to generate R 1 is selected from R 1 -halogen, R 1 -OR 1 or and
  • the acylating reagent used to generate R2 is selected from R2 -halogen, R2 - OR2 or
  • the acylating reagent used to generate R 1 is selected from C 1 -C 6 alkyl acid chloride, substituted or unsubstituted benzoic anhydride, isopropylene acetate or trimethylchlorosilane.
  • the acylating reagent used to generate R 2 is selected from isopropylene acetate, substituted or unsubstituted benzoic anhydride or substituted or unsubstituted benzenesulfonic anhydride.
  • the invention also provides a preparation method of abiraterone.
  • the preparation method includes the steps of: (2) deprotecting the compound represented by formula I prepared by the above preparation method to generate abiraterone.
  • the reaction formula is as follows:
  • the above-mentioned deprotecting group is carried out in a solvent, and the solvent is selected from alcohol.
  • the alcohol is selected from methanol, ethanol, isopropyl alcohol, or a combination thereof.
  • the above-mentioned deprotecting group is carried out in the presence of a base, and the base is selected from sodium hydroxide and/or potassium hydroxide.
  • the above-mentioned deprotecting group is carried out at 50-100°C.
  • the present invention also provides a preparation method of abiraterone acetate, which preparation method includes the steps of: (3) reacting the abiraterone prepared by the above preparation method with acetic anhydride to generate abiraterone acetate, and the reaction formula is as follows:
  • the solvent used in the reaction of abiraterone and acetic anhydride is selected from dichloromethane.
  • reaction between abiraterone and acetic anhydride is carried out in the presence of a base, and the base is selected from triethylamine.
  • reaction temperature of abiraterone and acetic anhydride is 0-40°C, more preferably 10-30°C.
  • a third aspect of the present invention provides a method for preparing abiraterone acetate or an intermediate thereof, which method includes the steps of: (1) in a solvent, in the presence of a metal catalyst, a ligand and a base, the compound represented by formula II and formula III The compound represented by -1 reacts to obtain the compound represented by formula I.
  • R 1 is selected from hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, trialkylsilyl or dialkylarylsilyl base, the alkyl group in the trialkylsilyl group and dialkylarylsilyl group is C 1 -C 3 alkyl group,
  • R 2 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl, dimethylaminoacyl, diethylaminoacyl or diphenylphosphinic acyl;
  • substitution means that one or more hydrogen atoms on the group are independently substituted with a group selected from the following group:
  • Halogen C 1 -C 4 alkyl group, C 1 -C 4 haloalkyl group, ether group, nitro group, etc.
  • the metal catalyst is selected from palladium salts, copper salts, iron salts, cobalt salts, nickel salts, or combinations thereof;
  • the ligand is selected from phosphorus-containing ligands, amino acid ligands, nitrogen-containing ligands, or combinations thereof.
  • R 1 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl or trialkylsilyl. In another more preferred embodiment, R 1 is selected from acetyl.
  • R 2 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl or dimethylaminoacyl. In another more preferred embodiment, R 2 is selected from acetyl.
  • step (1) the molar ratio of the compound represented by formula II to the compound represented by formula III-1 is 1:1-3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the compound represented by formula III-1 is 1:1 to 1.5.
  • step (1) the molar ratio of the compound represented by formula II to the metal catalyst is: 0.005 to 0.3. In another more preferred embodiment, the molar ratio of the compound represented by Formula II to the metal catalyst is 1:0.01-0.2.
  • step (1) the molar ratio of the compound represented by formula II to the ligand is 1:0.005-0.3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the ligand is 1:0.01-0.2.
  • step (1) the molar ratio of the compound represented by formula II to the base is 1:1-3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the base is 1:1-2.
  • the metal catalyst is selected from palladium acetate, palladium chloride, cuprous iodide, copper acetate, ferric chloride, iron acetylacetonate, cobalt chloride, cobalt acetylacetonate, nickel acetate, chloride Nickel, or combinations thereof.
  • the ligand is selected from triphenylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, L-proline, alanine, methionine, pyridine, 2,2- Bipyridine, 1,10-phenanthroline, or their derivatives.
  • the base is selected from potassium carbonate, sodium carbonate, potassium phosphate, lithium tert-butoxide, sodium hydroxide, sodium bicarbonate, or a combination thereof.
  • the solvent is selected from tetrahydrofuran, toluene, acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and dimethyl sulfoxide, or combination thereof.
  • R 2 in the compound represented by formula II is an acetyl group
  • the metal catalyst is palladium chloride
  • the ligand It is triphenylphosphine
  • the base is potassium carbonate.
  • R 2 is propionyl group
  • the metal catalyst is nickel acetate
  • the ligand is 2-bipyridyl
  • the base is potassium phosphate.
  • R 2 in the compound represented by Formula II is N,N-dimethylformamide
  • the metal catalyst is copper iodide
  • the ligand is 1,10-phenanthroline
  • the base is sodium bicarbonate.
  • R 2 is benzoyl
  • the metal catalyst is nickel chloride
  • the ligand is tricyclohexylphosphine
  • the base is lithium tert-butoxide
  • reaction temperature in step (1) is 40-130°C. In another preferred example, the reaction temperature in step (1) is 60-115°C.
  • the preparation method further includes the following steps:
  • the acylating reagent used to generate R 1 is selected from R 1 -halogen, R 1 -OR 1 or
  • the acylating reagent used to generate R2 is selected from R2 -halogen, R2 - OR2 or
  • the acylating reagent used to generate R 1 is selected from C 1 -C 6 alkyl acid chloride, substituted or unsubstituted benzoic anhydride, isopropylene acetate or trimethylchlorosilane, for
  • the acylating reagent generating R2 is selected from isopropylene acetate or substituted or unsubstituted benzoic anhydride.
  • the invention also provides a preparation method of abiraterone, which preparation method includes deprotecting the compound represented by formula I obtained by the above preparation method to generate abiraterone, and the reaction formula is as follows:
  • the invention also provides a preparation method of abiraterone acetate.
  • the preparation method includes reacting the abiraterone obtained by the above preparation method with acetic anhydride to obtain abiraterone acetate.
  • the reaction formula is as follows:
  • the fourth aspect of the present invention provides a method for preparing abiraterone acetate or an intermediate thereof.
  • the preparation method includes the steps of: (1) in an organic solvent, in the presence of a metal catalyst, compound of formula II and formula III- The compound shown in 2 reacts to obtain the compound shown in formula I;
  • R 1 is selected from hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl , trialkylsilyl or dialkylarylsilyl, the alkyl group in the trialkylsilyl and dialkylarylsilyl is C 1 -C 3 alkyl,
  • R 2 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, dimethylaminoacyl or diethylamidoacyl or diphenylphosphine acyl,
  • substitution means that one or more hydrogen atoms on the group are independently substituted with a group selected from the following group:
  • Halogen C 1 -C 4 alkyl group, C 1 -C 4 haloalkyl group, ether group, nitro group, etc.
  • M is magnesium, iron, zinc, copper, tin, manganese, bismuth or indium
  • X is an equi-coordinated anion of fluorine, chlorine, bromine, iodine or M.
  • the equi-coordinated anion of M is selected from pivalate or acetate,
  • the metal catalyst is selected from palladium salts, copper salts, iron salts, cobalt salts, nickel salts, or combinations thereof.
  • ligands are also present in the reaction system, and the ligands are selected from phosphorus-containing ligands, amino acid ligands, nitrogen-containing ligands, or combinations thereof.
  • auxiliary agent in the reaction system, and the auxiliary agent is selected from alkali metal salts.
  • ligands and auxiliaries in the reaction system.
  • the ligands are selected from phosphorus-containing ligands, amino acid ligands, nitrogen-containing ligands, or combinations thereof.
  • the auxiliaries are selected from alkali metals. Salt.
  • R 1 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl or trialkylsilyl, and the alkyl group in the trialkylsilyl is C 1 -C 3 alkyl. In another more preferred embodiment, R 1 is selected from acetyl.
  • R 2 is selected from C 1 -C 6 acyl, or substituted or unsubstituted benzoyl. In another more preferred embodiment, R 2 is selected from acetyl.
  • M is magnesium, zinc, tin, or manganese
  • X is bromine or iodine.
  • the metal catalyst is selected from palladium chloride, palladium acetate, palladium chloride, copper iodide, copper acetate, copper sulfate, ferric chloride, ferrous chloride, iron acetylacetonate, acetylacetone Ferrous iron, cobalt chloride, cobalt acetate, cobalt acetylacetonate, nickel chloride, nickel bromide, nickel acetate, tricyclohexylphosphine nickel chloride, or combinations thereof.
  • the organic solvent is selected from tetrahydrofuran, 2-methyltetrahydrofuran, ethylene glycol dimethyl ether, methyl tert-butyl ether, diethyl ether, toluene, or a combination thereof.
  • step (1) the molar ratio of the compound represented by formula II to the compound represented by formula III-2 is 1:1.0 ⁇ 4.0. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the compound represented by formula III-2 is 1:1.0 ⁇ 2.0.
  • step (1) the molar ratio of the compound represented by Formula II to the metal catalyst is 1:0.005-0.3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the metal catalyst is 1:0.01-0.2.
  • step (1) the dropping temperature of the compound represented by III-2 is -30°C to 25°C, and the reaction temperature is 0 to 70°C. In another more preferred embodiment, in step (1), the reaction temperature is room temperature to 50°C.
  • the ligand is selected from triphenylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, L-proline, alanine, methionine, pyridine, 2,2- Bipyridine, 1,10-phenanthroline, or their derivatives.
  • the molar ratio of the compound represented by Formula II to the ligand is 1:0.005-0.3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the ligand is 1:0.01-0.2.
  • the auxiliary agent is selected from the group consisting of potassium chloride, potassium carbonate, potassium tert-butoxide, potassium bicarbonate, potassium phosphate, potassium acetate, sodium carbonate, sodium bicarbonate, sodium acetate, lithium chloride, carbonate Lithium, or combinations thereof.
  • the molar ratio of the compound represented by Formula II to the auxiliary agent is 1:0.1-3. In another more preferred embodiment, the molar ratio of the compound represented by formula II to the auxiliary agent is 1:1-2.
  • R 2 is an acetyl group
  • the compound represented by III-2 is 3-pyridine magnesium bromide
  • the metal catalyst is PdCl 2
  • the ligand is triphenyl Phosphine
  • the auxiliary agent is sodium acetate.
  • R 2 is an acetyl group
  • the compound represented by III-2 is 3-pyridine zinc bromide
  • the metal catalyst is anhydrous ferric chloride
  • the ligand is Tetramethylethylenediamine (TMEDA)
  • the auxiliary agent is potassium acetate.
  • R 2 is p-phenylsulfonyl group
  • the compound represented by III-2 is 3-pyridine tin bromide
  • the metal catalyst is nickel acetate
  • the ligand is Tricyclohexylphosphine
  • the auxiliary agent is sodium carbonate.
  • R 2 is benzoyl
  • the compound represented by III-2 is 3-pyridine manganese bromide
  • the metal catalyst is cuprous iodide
  • the ligand is L-proline
  • the auxiliary agent is anhydrous potassium phosphate.
  • the above preparation method further includes the following steps:
  • the acylating reagent used to generate R 1 is selected from R 1 -halogen, R 1 -OR 1 or
  • the acylating reagent used to generate R2 is selected from R2 -halogen, R2 - OR2 or
  • the acylating reagent used to generate R 1 is selected from C 1 -C 6 alkyl acid chloride, substituted or unsubstituted benzoic anhydride, isopropylene acetate or trimethylchlorosilane,
  • the acylating reagent used to generate R 2 is selected from isopropylene acetate, or substituted or unsubstituted benzoic anhydride.
  • the invention also provides a preparation method of abiraterone, which preparation method includes the steps of: (2) deprotecting the compound represented by formula I prepared by the above preparation method to generate abiraterone, the reaction formula is as follows:
  • the invention also provides a preparation method of abiraterone acetate.
  • the preparation method includes the steps of: (3) reacting the abiraterone prepared by the above preparation method with acetic anhydride to obtain abiraterone acetate.
  • the reaction formula is as follows:
  • the inventor provided a preparation method for abiraterone acetate and its intermediates. Compared with the existing technology, the method of the present invention is simple to operate, highly safe, low in cost, and has a higher yield, and is very suitable for industrial production.
  • the term “contains” or “includes” can be open, semi-closed and closed. In other words, the term also includes “consisting essentially of” or “consisting of.”
  • room temperature or "normal temperature” refers to a temperature of 4-40°C, preferably 25 ⁇ 5°C.
  • alkyl by itself or as part of another substituent refers to a straight or branched chain hydrocarbon radical having the specified number of carbon atoms.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, isobutyl, sec-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, etc.
  • C 1 -C 6 alkyl represents an alkyl group containing 1 to 6 carbons
  • C 1 -C 3 alkyl represents an alkyl group containing 1 to 3 carbons.
  • halogen includes fluorine, chlorine, bromine, and iodine.
  • solution refers to an aqueous solution. Unless otherwise stated, solution refers to mass concentration.
  • Palladium salts useful in the present invention include, but are not limited to, bistriphenylphosphine palladium chloride, palladium acetate, palladium chloride, palladium trifluoromethanesulfonate, or combinations thereof.
  • Copper salts useful in the present invention include, but are not limited to, copper iodide, copper acetate, copper chloride, or combinations thereof.
  • Cobalt salts that can be used in the present invention include, but are not limited to, cobalt chloride, cobalt acetylacetonate, cobalt acetate, and cobalt sulfate.
  • Nickel salts that can be used in the present invention include, but are not limited to, nickel chloride, nickel bromide, nickel acetate, and tricyclohexylphosphine nickel chloride.
  • Iron salts that can be used in the present invention include, but are not limited to, ferric chloride, ferrous chloride, iron acetylacetonate, and ferrous acetylacetonate.
  • Ligands that can be used in the present invention include, but are not limited to, phosphorus-containing ligands, amino acid ligands, and nitrogen-containing ligands.
  • Phosphorus-containing ligands refers to ligands containing phosphorus that can form a coordination catalyst with a metal catalyst to increase the activity of the catalyst.
  • the phosphorus-containing ligands include but are not limited to triphenylphosphine, tricyclohexylphosphine, tritertiary phosphine Butylphosphine, and its derivatives.
  • Amino acid-containing ligands refers to ligands containing amino acids that can form a coordination catalyst with a metal catalyst to increase the activity of the catalyst.
  • the amino acid-containing ligands include but are not limited to L-proline, alanine, methyl sulfide Amino acids, and their derivatives.
  • "Pyridine ring-containing ligand” refers to a ligand containing a pyridine ring that can form a coordination catalyst with a metal catalyst to increase the activity of the catalyst.
  • the pyridine ring-containing ligand includes but is not limited to pyridine, 2,2-bipyridine, 1,10-phenanthroline, and their derivatives.
  • Electrolytes that can be used in the present invention include, but are not limited to, tetraethylammonium perchlorate, tetraethylammonium p-toluenesulfonate, tetrabutylammonium acetate, tetrabutylammonium hexafluorophosphate, and tetrabutylammonium tetrafluoroborate, Tetraethyl ammonium tetrafluoroborate, tetraethyl ammonium hexafluorophosphonate or combinations thereof.
  • Alkali metal salts include, but are not limited to, potassium chloride, potassium carbonate, potassium tert-butoxide, potassium bicarbonate, potassium phosphate, potassium acetate, sodium carbonate, sodium bicarbonate, sodium acetate, lithium chloride, and lithium carbonate.
  • the preparation method of abiraterone acetate or its intermediates includes the steps of: in an organic solvent, in the presence of a metal catalyst, a ligand and a reducing agent, the 3-position protected 17-hydroxyester androster- 5,16-diene-3 ⁇ -hydroxy(ester) (formula II Compound) reacts with 3-halopyridine (compound of formula III) to obtain abiraterone acetate or an abiraterone derivative (compound of formula I), and the abiraterone derivative can be transformed to obtain abiraterone acetate.
  • R 1 is selected from hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl or Protective groups such as C 1 -C 2 trialkylsilyl groups.
  • R 2 is C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, dimethylaminoacyl, diethylaminoacyl or diphenylphosphine Leaving groups such as acyl groups.
  • X is fluorine, chlorine, bromine or iodine.
  • the molar ratio of the compound of formula II to the compound of formula III is preferably 1:1 to 4, more preferably 1:1.5 to 3, such as 1:2 or 1:3.
  • the molar ratio of the compound of formula II to the metal catalyst is preferably 1:0.005 ⁇ 0.3; more preferably, it is 1:0.01 ⁇ 0.2, such as 1:0.03, 1:0.05; 1:0.07 or 0.1.
  • the molar ratio of the compound of formula II to the ligand is preferably 1:0.005-0.3; more preferably, it is 1:0.01-0.2, such as 1:0.03, 1:0.05; 1:0.07 or 0.1.
  • the molar ratio of the compound of formula II to the reducing agent is preferably 1:1-4, more preferably 1:1.5-3, such as 1:2 or 1:3.
  • the metal catalyst is selected from palladium, copper, iron, cobalt, nickel and other metal salt catalysts, such as triphenylphosphine palladium chloride, palladium acetate, palladium chloride, cuprous iodide, copper acetate, ferric chloride, Iron acetylacetonate, cobalt chloride, cobalt acetylacetonate, nickel acetate, nickel chloride, tricyclohexylphosphine nickel chloride, etc.
  • metal salt catalysts such as triphenylphosphine palladium chloride, palladium acetate, palladium chloride, cuprous iodide, copper acetate, ferric chloride, Iron acetylacetonate, cobalt chloride, cobalt acetylacetonate, nickel acetate, nickel chloride, tricyclohexylphosphine nickel chloride, etc.
  • the ligands are selected from phosphorus-containing ligands such as triphenylphosphine and tricyclohexylphosphine, amino acid ligands such as L-proline, and pyridine, 2,2-bipyridine, 1,10-phenanthroline Such as nitrogen-containing ligands, the function of the ligand is to increase the activity of the catalyst.
  • the reducing agent is diboron reagent, as well as zinc powder, copper powder, iron powder, magnesium powder, manganese powder, tin powder, samarium powder, indium powder and other metal powders.
  • the organic solvent is selected from tetrahydrofuran, toluene, acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide or a combination thereof.
  • the preparation method (electrochemical preparation method) of abiraterone acetate or its intermediates includes the steps: (1) in a solvent, in the presence of a metal catalyst, a ligand and an electrolyte, under a constant current Under the action of formula II, the The compound reacts with the compound represented by formula III to form the compound represented by formula I.
  • the reaction formula is as follows:
  • R 1 is selected from hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted phenylsulfonyl or C 1 -C 2 trialkylsilyl group or dialkyl arylsilyl group, the alkyl group in the dialkyl arylsilyl group is C 1 -C 3 alkyl group;
  • R 2 is selected from C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, dimethylaminoacyl, diethylaminoacyl or diphenyl Phosphonyl;
  • substitution means that one or more hydrogen atoms on the group are independently substituted with a group selected from the following:
  • Halogen C 1 -C 4 alkyl or C 1 -C 4 haloalkyl, ether group, nitro group;
  • X is fluorine, chlorine, bromine or iodine
  • the metal catalyst is selected from palladium salts, copper salts, cobalt salts, nickel salts or combinations thereof; and
  • the ligand is selected from phosphorus-containing ligands, amino acid-containing ligands, pyridine ring-containing ligands or combinations thereof.
  • the molar ratio of the compound represented by formula II to the compound represented by formula III is preferably 1:1 ⁇ 4, more preferably 1:1 ⁇ 3, most preferably 1:1.5 ⁇ 2.2, such as 1:1.8 or 1: 2.5;
  • the molar ratio of the compound represented by formula II to the metal catalyst is preferably 1:0.005 ⁇ 0.2, more preferably 1:0.01 ⁇ 0.1, most preferably 1:0.03 ⁇ 0.07, such as 1:0.04, 1:0.005 or 1 :0.006;
  • the molar ratio of the compound represented by Formula II to the ligand is preferably 1:0.005 ⁇ 0.3, more preferably 1:0.01 ⁇ 0.2, most preferably 1:0.05 ⁇ 0.12, such as 1:0.06, 1:0.08, 1 :0.10.
  • the molar volume of the electrolyte and reaction solution is preferably 0.1 to 0.5 mol/L.
  • the constant current is preferably 0.05A to 1.0A, more preferably 0.1A to 0.5A.
  • the current density is preferably 0.01 to 0.2A/cm 2 , more preferably 0.02 to 0.1A/cm 2 .
  • the reaction temperature is preferably 0°C to 60°C, and preferably 10°C to 50°C.
  • Metal catalysts include, but are not limited to, triphenylphosphine palladium chloride, palladium acetate, palladium chloride, palladium trifluoromethanesulfonate, copper iodide, copper acetate, copper chloride, cobalt chloride, cobalt acetylacetonate, Cobalt acetate, cobalt sulfate, nickel acetate, tricyclohexylphosphine nickel chloride or combinations thereof.
  • Ligands include but are not limited to triphenylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, L-proline, alanine, methionine, pyridine, 2,2-bipyridyl, 1, 10-phenanthroline or combinations thereof.
  • Electrolytes include but are not limited to tetraethylammonium perchlorate, tetraethylammonium p-toluenesulfonate, tetrabutylammonium acetate, tetrabutylammonium hexafluorophosphate, tetrabutylammonium tetrafluoroborate, tetraethyltetrafluoro Ammonium borate, tetraethylammonium hexafluorophosphonate or combinations thereof.
  • Solvents used in the reaction include, but are not limited to, acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyra Rrolidone, dimethyl sulfoxide or combinations thereof.
  • the anode electrode includes but is not limited to iron, zinc, magnesium, nickel, aluminum or alloys thereof, and the cathode is platinum.
  • the completion of the reaction can be detected by conventional methods in the art.
  • the disappearance of the main raw material ie, the compound represented by Formula II
  • TLC which is the end point of the reaction.
  • the preparation method of abiraterone acetate or its intermediates includes the steps of: in a solvent, in the presence of a metal catalyst, a ligand and a base, 3-position protected 17-hydroxyester androsten-5 , 16-diene-3 ⁇ -hydroxy (ester) (compound shown in formula II) reacts with 3-halopyridine (compound shown in formula III-1) to obtain abiraterone acetate or its intermediate (compound shown in formula I ), the intermediate can be transformed to obtain abiraterone acetate.
  • R 1 is selected from hydrogen, C 1 -C 6 acyl, phenyl, benzyl, C 1 -C 6 acyl, alkyl, substituted or unsubstituted benzoyl, trialkylsilyl or dialkylaryl Protective groups such as silyl group, the alkyl group in the trialkylsilyl group and dialkylarylsilyl group is C 1 -C 3 alkyl group
  • R 2 is selected from C 1 -C 6 acyl group, substituted or Leaving groups such as unsubstituted benzoyl, dimethylaminoacyl, diethylaminoacyl or diphenylphosphinic acyl.
  • R 1 and R 2 may be the same or different.
  • substitution means that one or more hydrogen atoms on the group are independently substituted with a group selected from the following group: halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, ether group, nitrogen Key et al.
  • the molar ratio of the compound represented by formula II to the compound represented by formula III-1 is not particularly limited. It can be based on the conventional dosage of this type of reaction, preferably 1:1 to 3, more preferably 1:1 to 1.5, such as 1:1.02, 1:1.05, 1:1.1, 1:2, 1:3, 1:4, 1:5.
  • the molar ratio of the compound represented by formula II to the metal catalyst is not particularly limited, and can be based on the conventional dosage of this type of reaction, preferably 1:0.005 ⁇ 0.3; more preferably 1:0.01 ⁇ 0.2, such as 1:0.03, 1 :0.05; 1:0.07, 1:0.1.
  • the molar ratio of the compound represented by formula II to the ligand is not particularly limited, and can be based on the conventional dosage for this type of reaction, preferably 1:0.005 ⁇ 0.3; more preferably 1:0.01 ⁇ 0.2, such as 1:0.01 , 1:0.02, 1:0.05, 1:0.06, 1:0.08, 0.1.
  • the molar ratio of the compound represented by formula II to the base is not particularly limited, and can be based on the conventional dosage of this type of reaction, preferably 1:1-3; more preferably 1:1 ⁇ 2, such as 1:1, 1:1.5 or 1:2.
  • Bases that can be used in the present invention include, but are not limited to, potassium carbonate, sodium carbonate, potassium phosphate, lithium tert-butoxide, sodium hydroxide, sodium bicarbonate and other inorganic bases.
  • the function of the base is to act as an acid binding agent to absorb the acetate radicals after the reaction and promote the reaction.
  • Solvents that can be used in the present invention include, but are not limited to, tetrahydrofuran, toluene, acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and dimethyl sulfoxide.
  • the preparation method of abiraterone acetate or its intermediates includes the steps of: in a solvent, in the presence of a metal catalyst, the compound represented by formula II reacts with the compound represented by formula III-2 to obtain formula I The compounds shown.
  • R 1 is selected from hydrogen, C 1 -C 6 alkyl, phenyl, benzyl, C 1 -C 6 acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, tris Alkylsilyl or dialkylarylsilyl, the alkyl group in the trialkylsilyl and dialkylarylsilyl is C 1 -C 3 alkyl;
  • R 2 is selected from C 1 -C 6 Acyl, substituted or unsubstituted benzoyl, methanesulfonyl, substituted or unsubstituted benzenesulfonyl, dimethylaminoacyl, diethylaminoacyl or diphenylphosphinic acidyl;
  • M is magnesium, iron, zinc , metal ions such as copper, tin, manganese, bismuth or indium;
  • the reaction system of the above preparation method also includes ligands and/or auxiliaries.
  • the ligand is selected from phosphorus-containing ligands, amino acid ligands, nitrogen-containing ligands, or combinations thereof, and the auxiliary agent is selected from alkali metal salts.
  • the function of ligands and auxiliaries is to increase the activity of the reaction.
  • the compound represented by formula II and the compound represented by formula III-2 can also react without adding ligands and auxiliaries.
  • the molar ratio of the compound represented by formula II to the compound represented by formula III-2 is not particularly limited. It can be based on the conventional dosage of this type of reaction, preferably 1:1 ⁇ 4, more preferably 1:1 ⁇ 2, such as 1 :1.2, 1:1.5, 1:1.8, 1:2.0.
  • the molar ratio of the compound represented by Formula II to the metal catalyst is not particularly limited. It can be based on the conventional dosage of this type of reaction, preferably 1:0.005 ⁇ 0.3, more preferably 1:0.01 ⁇ 0.2, such as 1:0.03, 1 :0.05; 1:0.07, 1:0.1.
  • the molar ratio of the compound represented by formula II to the ligand is not particularly limited, and can be based on the conventional dosage for this type of reaction, preferably 1:0.005 ⁇ 0.3; more preferably 1:0.01 ⁇ 0.2, such as 1:0.01 , 1:0.02, 1:0.05, 1:0.06, 1:0.08, 0.1.
  • the molar ratio of the compound represented by Formula II to the auxiliary agent is not particularly limited, and can be based on the conventional dosage of this type of reaction, preferably 1:0.1 ⁇ 3, more preferably 1:1 ⁇ 2, such as 1:1.2 , 1:1.5, 1:1.8, 1:2.0.
  • the dropping temperature of the compound shown in III-2 is -30°C to 25°C, the reaction temperature is 0°C to 70°C, and the preferred reaction temperature is room temperature to 50°C.
  • Solvents used in the reaction include but are not limited to: tetrahydrofuran, 2-methyltetrahydrofuran, ethylene glycol dimethyl ether, methyl tert-butyl ether, diethyl ether and toluene.
  • Metal catalysts that can be used in this preparation method are metal salts, including but not limited to palladium salts, copper salts, iron salts, cobalt salts, and nickel salts.
  • Ligands that can be used in this preparation method include, but are not limited to, phosphorus-containing ligands, amino acid ligands, and nitrogen-containing ligands.
  • “Auxiliaries” that can be used in this preparation method include, but are not limited to, alkali metal salts.
  • compounds of formula II are obtained by acylation of dehydroepiandrosterone at the 3- and 17-positions.
  • the present invention has no special requirements on the acylation method, and can be carried out using methods commonly used in the art or with reference to the method of the present invention.
  • the method further includes the steps of:
  • the acylating reagent used to generate R 1 is selected from the following group: R 1 -halogen, R 1 -OR 1 , or a combination thereof.
  • the acylating reagent used to generate R2 is selected from the group consisting of R2 -halogen, R2 - OR2 , or a combination thereof.
  • the compound of formula I is an abiraterone derivative.
  • the abiraterone derivative can be converted into abiraterone acetate through the following steps:
  • the abiraterone derivative is hydrolyzed with a sodium hydroxide solution to obtain abiraterone
  • the alcohol solvent is selected from methanol, ethanol, isopropyl alcohol or a combination thereof.
  • the compound represented by formula III-2 can undergo Grignard exchange between 3-bromopyridine and isopropylmagnesium chloride, and then add a metal salt or metal powder for transmetalization to generate a pyridine metal salt.
  • the present invention has no special requirements on the preparation method of the compound represented by formula III-2. It can be carried out by using methods commonly used in this technical field or by referring to the method of the present invention.
  • the reaction formula for preparing the compound represented by Formula III-2 is as follows:
  • 3-bromopyridine can be replaced by cheap 3-chloropyridine, and the solvent is generally ether solvents such as tetrahydrofuran.
  • the successfully prepared pyridine metal salt solution should be used as soon as possible to avoid deterioration.
  • compounds of formula II are obtained by acylation of dehydroepiandrosterone at the 3- and 17-positions.
  • the present invention has no special requirements on the acylation method, and can be carried out using methods commonly used in the art or with reference to the method of the present invention.
  • the method further includes the steps of:
  • the acylating reagent used to generate R 1 is selected from the following group: R 1 -halogen, R 1 -OR 1 , or
  • the acylating reagent used to generate R 2 is selected from the group consisting of: R 2 -halogen, R 2 -OR 2 , or its
  • the compound of formula I is an abiraterone intermediate or derivative.
  • the reaction can be detected by conventional methods in the art to determine whether the reaction is completed, for example, by TLC method.
  • the disappearance of the main raw material ie, the compound represented by formula IV
  • the end point of the reaction is the end point of the reaction. .
  • the method of the present invention overcomes the shortcomings of expensive raw materials, high cost and harsh reaction conditions in the prior art, and provides a preparation method of abiraterone acetate with low cost, high yield, simple production method and suitable for industrial production, and has great advantages. application value.
  • Filter add 50 mL of ethanol and 10 mL of 30% sodium hydroxide solution to the filter cake, raise the temperature to reflux, and stir for 5 hours. Cool to room temperature, add 100mL drinking water, and age for 30 minutes. Filter and vacuum dry to obtain 5.8g of abiraterone, with a molar yield of 82.0%.
  • the temperature was lowered to 0-5°C at a constant speed for two hours, crystallized, filtered, and vacuum dried to obtain 678.8g of crude abiraterone acetate, with a molar yield of 86.8% and an HPLC purity of 98.4%.
  • the crude product was recrystallized with acetone solvent to obtain 645.5g of abiraterone acetate with a purity of 99.7%.
  • the electrochemical electrode (the anode is zinc and the cathode is platinum) in the reaction bottle, stir the reaction at 0 to 10°C for 5 hours under the action of a constant current of 0.05A (current density is about 0.01A/cm 2 ), and the reaction is completed. Filter and concentrate the filtrate to dryness. Add 50 mL of ethanol and 10 mL of 30% sodium hydroxide solution to the concentrate, raise the temperature to reflux, and stir for 3 hours. Cool to room temperature, add 100 mL of water, and age for 30 minutes. Filter and vacuum dry to obtain 5.87g of abiraterone, with a molar yield of 84.0%.
  • the electrochemical electrodes (magnesium as the anode and platinum as the cathode) were fixed in the reaction bottle, and the reaction was stirred at 50 degrees for 5 hours under the action of a constant current of 0.5A (current density is about 0.1A/cm 2 ).
  • current density is about 0.1A/cm 2
  • TLC time difference spectrometry
  • the temperature was cooled to room temperature. Slowly drop the reaction mixture into 200 mL of water and stir for 30 minutes. Filter, add 50 mL of ethanol and 10 mL of 30% sodium hydroxide solution to the filter cake, raise the temperature to reflux, and stir for 5 hours. Cool to room temperature, add 100 mL of water, and age for 30 minutes. Filter and vacuum dry to obtain 6.2g of abiraterone, with a molar yield of 86.2%.
  • the electrochemical electrode (the anode is magnesium and the cathode is platinum) is fixed in the reaction bottle, and the reaction is stirred at room temperature for 6 hours under the action of a constant current of 0.3A (current density is about 0.06A/cm 2 ). After the reaction was monitored by TLC, it was filtered and the filtrate was concentrated to dryness. Add 50 mL of ethanol and 10 mL of 30% sodium hydroxide solution to the concentrate, raise the temperature to reflux, and stir for 3 hours. Cool to room temperature, add 100 mL of water, and age for 30 minutes. Filter and vacuum dry to obtain 5.0 g of abiraterone, with a molar yield of 71.5%.
  • the temperature was lowered to 0-5°C for 2 hours, crystallized, filtered, and vacuum dried to obtain 6.4 g of crude abiraterone acetate, with a molar yield of 96.8% and an HPLC purity of 98.5%.
  • the crude product was recrystallized with acetone solvent to obtain 5.8g of abiraterone acetate with a purity of 99.7%.
  • Filter add the filter cake to a solution of 50 mLTHF and 7.8 g tetrabutylammonium fluoride, and stir at room temperature for 5 hours. Add 100 mL of water and age for 30 minutes. Filter and vacuum dry to obtain 5.6g of abiraterone, with a molar yield of 79.2%.
  • step 2 of Example 1 The role of ligands and auxiliaries is to increase the reaction activity, but the reaction can also proceed without adding ligands and auxiliaries, but the content of the target product in the reaction solution decreases.
  • the reaction conditions in step 2 of Example 1 are used as Model experiment, under the same experimental conditions (reaction substrate and its dosage, catalyst (if present in the reaction system) and its dosage, ligand (if present in the reaction system) and its dosage, auxiliary agent (if present in the reaction system) ) and its dosage, solvent, reaction temperature, etc. are all the same as step 2 of Example 1).
  • the reaction results when no ligands and/or auxiliaries are added are shown in Table 1 below.
  • the mixture was then cooled to 0-5°C in two hours, crystallized, filtered, and the filter cake was vacuum dried to obtain abiraterone acetate.
  • the crude product was 4.8g, the molar yield was 94.4%, and the HPLC purity was 98.0%.
  • the crude product was recrystallized from acetone to obtain 4.0 g of abiraterone acetate with a purity of 99.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种醋酸阿比特龙及其中间体的制备方法,具体涉及步骤:在有机溶剂中,在金属催化剂存在下,3-位保护的17-羟基酯雄甾-5,16-双烯-3β-羟基(酯)与3-取代吡啶衍生物反应得到醋酸阿比特龙或其中间体。本发明的方法成本低、收率高且操作简单、适合工业化大生产。

Description

一种醋酸阿比特龙及其中间体的制备方法 技术领域
本发明涉及药物化学技术领域,具体涉及一种醋酸阿比特龙及其中间体的制备方法。
背景技术
前列腺癌(prostate cancer,PCA)是指发生在前列腺的上皮性恶性肿瘤,仅次于肺癌,是全球男性第二大常见的恶性肿瘤,死亡率排名第六位,大约1/9的男性在其一生中会被诊断为前列腺癌,因此被称之为“男性杀手”。当前,全球前列腺癌发病率呈增加态势,2020年全球约新增150万例,占男性新发肿瘤病例的15%,预计到2022年,全球前列腺癌患病人数将达到1100万人。
醋酸阿比特龙(abiraterone acetate)是阿比特龙的前体药,在体内迅速转化为阿比特龙,后者是CYP17(17α-羟化酶和C17,20-裂解酶)的选择性、不可逆甾体类抑制剂,通过抑制酶活性从而阻止睾丸、肾上腺和肿瘤中的睾酮合成。该产品由美国强生公司研发,首次于2011年4月28日获得美国FDA上市批准,用于和泼尼松或泼尼松龙联合治疗雄激素去势疗法和多西他赛化疗无效患者的去势抵抗性转移性前列腺癌(mCRPC),之后又于2012年12月10日批准扩大适应症人群,用于去势抵抗性晚期转移性前列腺癌的治疗。
目前制备醋酸阿比特龙的方法主要有两种:
一、WO9509178报道的合成方法:以去氢表雄酮(DHEA)为原料,先在硫酸肼催化下与水合肼成腙,再在四甲基胍(TMG)催化下与碘单质发生碘代反应生成烯基碘化物,然后碘化物在双三苯基膦氯化钯催化下与二乙基(3-吡啶基)硼烷发生偶联反应生成阿比特龙,最后3位羟基乙酰化得到醋酸阿比特龙。
该路线第一步反应时间需要5天,第3步反应时间需要4天,生产周期过长,且总收率仅36.9%,工艺中还需要用到水合肼、碘、四甲基胍等恶臭试剂,环境污染大,因此不适合工业化大生产。
二、WO2006021777报道的合成方法:以醋酸去氢表雄酮为原料,在三乙胺等碱的催化下,与三氟甲磺酸酐反应制备其三氟甲烷磺酰衍生物,再在双三苯基膦氯化钯催化下与二乙基(3-吡啶基)硼烷偶联,然后出于纯化目的,与甲磺酸成盐得醋酸阿比特龙的甲磺酸盐,得到纯度为96.4%的甲磺酸醋酸阿比特龙的总收率为32.8%。由于三氟甲磺酸酐价格昂贵,造成该合成方法生产成本高,而且三氟甲磺酸酐具有较强的吸湿性和腐蚀性,使用风险较大,反应过程中还会生成3-去羟阿比特龙,这个杂质通过重结晶很难除去,一般需要通过柱层析除去。
CN103864878A公开了两种不使用二乙基(3-吡啶基)硼烷的制备方法,如路线3和路线4所示:
路线3的原料同路线2一样,所用的三氟甲磺酸酐价格昂贵,反应过程中还会生成3-去羟阿比特龙,这个杂质通过重结晶很难除去,一般需要通过柱层析除去。路线4的原料碘代物的 制备同样存在路线1中的反应时间长、环境污染等弊端。
因此本领域仍然需要寻找成本低、收率高且操作简单、适合工业化大生产的制备醋酸阿比特龙的新方法。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供操作简便、安全性高、成本低、收率更高,且适合工业化生产的制备醋酸阿比特龙及其中间体的新方法。
本发明第一方面提供了一种醋酸阿比特龙或其中间体的制备方法,所述的方法包括步骤:(i)有机溶剂中,金属催化剂、配体和还原剂的存在下,式II化合物与式III化合物反应得到式I化合物;
反应式如下:
R1选自下组:氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基或C1-C2三烷基硅基;
R2选自下组:C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、二甲胺基酰基或二乙胺基酰基或二苯基次膦酰基;且
X为氟,氯,溴或碘;
如未特别说明,所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:卤素、C1-C4烷基、C1-C4卤代烷基、醚基、硝基;
所述金属催化剂选自下组:钯盐、铜盐、铁盐、钴盐、镍盐,或其组合;且
所述配体选自下组:含磷配体、氨基酸配体、含氮配体,或其组合。
在另一优选例中,R1和R2相同或不同。
在另一优选例中,R1为乙酰基。
在另一优选例中,步骤(i)中,式II化合物与式III化合物的摩尔比为1:1~4,较佳地1:1.5~3,如1:2或1:3。
在另一优选例中,步骤(i)中,式II化合物与金属催化剂的摩尔比为1:0.005~0.3;较佳地1:0.01~0.2,如1:0.03、1:0.05、1:0.07或0.1。
在另一优选例中,步骤(i)中,式II化合物与所述配体的摩尔比为1:0.005~0.3;较佳地1:0.01~0.2,如1:0.03、1:0.05;1:0.07或0.1。
在另一优选例中,步骤(i)中,式II化合物与所述还原剂的摩尔比为1:1-4,较佳地1:1.5~3,如1:2或1:3。
在另一优选例中,所述金属催化剂选自下组:双三苯基膦氯化钯、醋酸钯、氯化钯、碘化亚铜、醋酸铜、三氯化铁、乙酰丙酮铁、氯化钴、乙酰丙酮钴、醋酸镍、氯化镍、三环己膦氯化镍,或其组合。
在另一优选例中,所述配体选自下组:三苯基膦及其衍生物、三环己基膦及其衍生物、L-脯氨酸及其衍生物、吡啶及其衍生物、2,2-联吡啶及其衍生物、1,10-菲啰啉及其衍生物,或其组合。
在另一优选例中,所述还原剂选自下组:二硼试剂、锌粉、铜粉、铁粉、镁粉、锰粉、锡粉、钐粉、铟粉,或其组合。
在另一优选例中,所述有机溶剂选自下组:四氢呋喃、甲苯、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜,或其组合。
在另一优选例中,步骤(i)的反应温度为20-120℃,较佳地,40-100℃。
在另一优选例中,所述方法还包括步骤:
(i-a)式IV化合物与酰基化试剂反应形成式II化合物;
反应式如下:
其中,用于生成R1的酰化试剂选自下组:R1-卤素、R1-O-R1、醋酸异丙烯酯、或其组合;和
用于生成R2的酰化试剂选自下组:R2-卤素、R2-O-R2、醋酸异丙烯酯、或其组合。
在另一优选例中,用于生成R1的酰化试剂选自下组:C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯、三甲基氯硅烷,或其组合。
在另一优选例中,用于生成R2的酰化试剂选自下组:醋酸异丙烯酯、取代或未取代的苯甲酸酐、取代或未取代的苯磺酸酐,或其组合。
本发明还提供了一种醋酸阿比特龙的制备方法,所述方法包括下述步骤:
(i)通过上述方法制备得到式I化合物;
(ii)在有机溶剂中,式I化合物与氢氧化钠溶液进行水解反应得到阿比特龙;和
(iii)阿比特龙与乙酸酐进行酯化反应得到醋酸阿比特龙。
在另一优选例中,步骤(ii)中,所述的有机溶剂选自甲醇、乙醇、异丙醇或其组合。
本发明第二方面提供了一种醋酸阿比特龙或其中间体的制备方法(电化学制备方法),该制备方法包括步骤:(1)在溶剂中,在金属催化剂、配体和电解质存在下,在恒电流的作用下,式II所示化合物与式III所示化合物反应生成式I所示化合物,反应式如下:
其中R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基或C1-C2的三烷基硅基或二烷基芳基硅基,所述二烷基芳基硅基中的烷基为C1-C3烷基;
R2选自C1-C6酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基,二甲胺基酰基,二乙胺基酰基或二苯基次膦酰基;
所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:
卤素、C1-C4烷基或C1-C4卤代烷基、醚基、硝基;
X为氟,氯,溴或碘;
所述金属催化剂选自:钯盐、铜盐、钴盐、镍盐,或其组合;以及
所述配体选自含磷配体、含氨基酸配体、含吡啶环配体,或其组合。
在另一优选例中,R1为乙酰基,式I所示化合物为醋酸阿比特龙。
在另一优选例中,步骤(1)中,所述式II所示化合物与所述式III所示化合物的摩尔比为1:1~4。在另一更优选例中,所述式II所示化合物与所述式III所示化合物的摩尔比为1:1~3。在另一更优选例中,所述式II所示化合物与所述式III所示化合物的摩尔比为1:1.5~2.2,如1:1.8或1:2.5;
在另一优选例中,步骤(1)中,所述式II所示化合物与金属催化剂的摩尔比为1:0.005~0.2。在另一更优选例中,所述式II所示化合物与金属催化剂的摩尔比为1:0.01~0.1。在另一更优选例中,所述式II所示化合物与金属催化剂的摩尔比为1:0.03~0.07,如1:0.04、1:0.005或1:0.006;
在另一优选例中,步骤(1)中,所述式II所示化合物与配体的摩尔比为1:0.005~0.3。在另一更优选例中,所述式II所示化合物与配体的摩尔比为1:0.01~0.2。在另一更优选例中,所述式II所示化合物与配体的摩尔比为1:0.05~0.12,如1:0.06、1:0.08、1:0.10。
在另一优选例中,步骤(1)中,电解质与反应溶液的摩尔体积比为0.1~0.5mol/L。
在另一优选例中,步骤(1)中,所述恒电流为0.05A~1.0A。在另一更优选例中,所述恒电流为0.1A~0.5A。
在另一优选例中,步骤(1)中,电流密度为0.01~0.2A/cm2。在另一更优选例中,电流密 度为0.02~0.1A/cm2
在另一优选例中,步骤(1)中,反应温度为0℃~60℃。在另一更优选例中,反应温度为10℃~50℃。
在另一优选例中,所述金属催化剂选自双三苯基膦氯化钯、醋酸钯、氯化钯、三氟甲烷磺酸钯、碘化亚铜、醋酸铜、氯化铜、氯化钴、乙酰丙酮钴、醋酸钴、硫酸钴、醋酸镍、三环己膦氯化镍或其组合。
在另一优选例中,所述配体选自三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉或其衍生物。
在另一优选例中,所述电解质选自四乙基高氯酸铵、四乙基对甲苯磺酸铵、四丁基醋酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵,四乙基四氟硼酸铵、四乙基六氟膦酸铵或其组合。
在另一优选例中,反应所用溶剂选自乙腈,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,二甲基亚砜或其组合。
在另一优选例中,反应所用阳极电极为铁、锌、镁、镍、铝或其组合,阴极电极为铂。
在另一优选例中,式II所示化合物中R2为乙酰基,式III所示化合物中X为溴,所述金属催化剂为PdCl2(PPh3)2,所述配体为联吡啶。
在另一优选例中,式II所示化合物中R2为乙酰基,式III所示化合物中X为碘,所述金属催化剂为醋酸镍,所述配体为三环己基膦。
在另一优选例中,式II所示化合物中R2为对甲苯磺酰基,式III所示化合物中X为氯,所述金属催化剂为碘化亚铜,所述配体为L-脯氨酸,或
在另一优选例中,式II所示化合物中R2为苯甲酰基,式III所示化合物中X为氟,所述金属催化剂为氯化镍,所述配体为1,10-菲啰啉。
在另一优选例中,所述步骤(1)包括:依次向反应容器中加入溶剂,式II所示化合物、式III所示化合物、金属催化剂、配体和电解质,然后将阳极电极和阴极电极固定到反应容器中,打开电源,在恒电流的作用下,进行反应。
在另一优选例中,所述方法还包括将式IV所示化合物与酰化试剂反应生成式II所示化合物。
反应式如下:
其中,用于生成R1的酰化试剂选自R1-卤素、R1-O-R1
用于生成R2的酰化试剂选自R2-卤素、R2-O-R2
在另一优选例中,用于生成R1的酰化试剂选自C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯或三甲基氯硅烷。
在另一优选例中,用于生成R2的酰化试剂选自醋酸异丙烯酯、取代或未取代的苯甲酸酐或取代或未取代的苯磺酸酐。
本发明还提供了阿比特龙的制备方法,所述制备方法包括步骤:(2)将上述制备方法制备的式I所示化合物脱保护基生成阿比特龙,反应式如下:
在另一优选例中,上述脱保护基是在溶剂中进行的,所述溶剂选自醇。
在另一优选例中,所述醇选自甲醇、乙醇、异丙醇,或其组合。
在另一优选例中,上述脱保护基是在碱存在下进行的,所述碱选自氢氧化钠和/或氢氧化钾。
在另一优选例中,上述脱保护基是50~100℃下进行的。
本发明还提供醋酸阿比特龙的制备方法,该制备方法包括步骤:(3)将上述制备方法制备的阿比特龙与醋酸酐反应,生成醋酸阿比特龙,反应式如下:
在另一优选例中,阿比特龙与醋酸酐反应所用溶剂选自二氯甲烷。
在另一优选例中,阿比特龙与醋酸酐反应是在碱存在下进行的,所述碱选自三乙胺。
在另一优选例中,阿比特龙与醋酸酐反应的温度为0~40℃,更优选10~30℃。
本发明第三方面提供了醋酸阿比特龙或其中间体的制备方法,该方法包括步骤:(1)在溶剂中,在金属催化剂、配体和碱存在下,式II所示化合物与式III-1所示化合物反应得到式I所示化合物。
反应式如下:
其中,R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、三烷基硅基或二烷基芳基硅基,所述三烷基硅基和二烷基芳基硅基中的烷基为C1-C3烷基,
R2选自C1-C6酰基、取代或未取代的苯甲酰基、二甲胺基酰基、二乙胺基酰基或二苯基次膦酰基;
所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:
卤素、C1-C4烷基、C1-C4卤代烷基、醚基、硝基等,
所述金属催化剂选自钯盐、铜盐、铁盐、钴盐、镍盐,或其组合;
所述配体选自含磷配体、氨基酸配体、含氮配体,或其组合。
在另一优选例中,R1选自C1-C6酰基、取代或未取代的苯甲酰基或三烷基硅基。在另一更优选例中,R1选自乙酰基。
在另一优选例中,R2选自C1-C6酰基、取代或未取代的苯甲酰基或二甲胺基酰基。在另一更优选例中,R2选自乙酰基。
在另一优选例中,步骤(1)中,式II所示化合物与式III-1所示化合物的摩尔比为1:1~3。在另一更优选例中,式II所示化合物与式III-1所示化合物的摩尔比为1:1~1.5。
在另一优选例中,步骤(1)中,式II所示化合物与金属催化剂的摩尔比为:0.005~0.3。在另一更优选例中,式II所示化合物与金属催化剂的摩尔比为1:0.01~0.2。
在另一优选例中,步骤(1)中,式II所示化合物与所述配体的摩尔比为1:0.005~0.3。在另一更优选例中,式II所示化合物与所述配体的摩尔比为1:0.01~0.2。
在另一优选例中,步骤(1)中,式II所示化合物与所述碱的摩尔比为1:1~3。在另一更优选例中,式II所示化合物与所述碱的摩尔比为1:1~2。
在另一优选例中,所述金属催化剂选自醋酸钯、氯化钯、碘化亚铜、醋酸铜、三氯化铁、乙酰丙酮铁、氯化钴、乙酰丙酮钴、醋酸镍、氯化镍,或其组合。
在另一优选例中,所述配体选自三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉,或它们的衍生物。
在另一优选例中,所述碱选自碳酸钾,碳酸钠,磷酸钾,叔丁醇锂,氢氧化钠,碳酸氢钠,或其组合。
在另一优选例中,所述溶剂选自四氢呋喃、甲苯、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜,或其组合。
在另一优选例中,式II所示化合物中R2为乙酰基,所述金属催化剂为氯化钯,所述配体 为三苯基膦,所述碱为碳酸钾。
在另一优选例中,式II所示化合物中R2为丙酰基,所述金属催化剂为醋酸镍,所述配体为2-联吡啶,所述碱为磷酸钾。
在另一优选例中,式II所示化合物中R2为N,N-二甲基甲酰胺基,所述金属催化剂为碘化亚铜,所述配体为1,10-菲啰啉,所述碱为碳酸氢钠。
在另一优选例中,式II所示化合物中R2为苯甲酰基,所述金属催化剂为氯化镍,所述配体为三环己基膦,所述碱为叔丁醇锂。
在另一优选例中,步骤(1)的反应温度为40-130℃。在另一优选例中,步骤(1)的反应温度为60-115℃。
在另一优选例中,所述制备方法还包括以下步骤:
(1-a)式IV所示化合物与酰基化试剂反应形成式II所示化合物;反应式如下:
其中,用于生成R1的酰化试剂选自R1-卤素、R1-O-R1用于生成R2的酰化试剂选自R2-卤素、R2-O-R2
在另一优选例中,在用于生成R1的酰化试剂选自C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯或三甲基氯硅烷,用于生成R2的酰化试剂选自醋酸异丙烯酯或取代或未取代的苯甲酸酐。
本发明还提供了一种阿比特龙的制备方法,该制备方法包括将上述制备方法得到的式I所示化合物脱保护基生成阿比特龙,反应式如下:
本发明还提供了一种醋酸阿比特龙的制备方法,该制备方法包括将上述制备方法得到的阿比特龙与醋酸酐反应,得到醋酸阿比特龙,反应式如下:
本发明第四方面提供了一种醋酸阿比特龙或其中间体的制备方法,该制备方法包括步骤:(1)在有机溶剂中,在金属催化剂存在下,式II所示化合物与式III-2所示化合物反应得到式I所示化合物;
反应式如下:
其中,R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、三烷基硅基或二烷基芳基硅基,所述三烷基硅基和二烷基芳基硅基中的烷基为C1-C3烷基,
R2选自C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、二甲胺基酰基或二乙胺基酰基或二苯基次膦酰基,
所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:
卤素、C1-C4烷基、C1-C4卤代烷基,醚基,硝基等,
M为镁,铁,锌,铜,锡,锰,铋或铟,
X为氟、氯、溴、碘或M的等配位阴离子,优选地,所述M的等配位阴离子选自特戊酸根或醋酸根,
所述金属催化剂选自钯盐、铜盐、铁盐、钴盐、镍盐,或其组合。
在另一优选例中,反应体系中还存在配体,所述配体选自含磷配体、氨基酸配体、含氮配体,或其组合。
在另一优选例中,反应体系中还存在助剂,所述助剂选自碱金属盐。
在另一优选例中,反应体系中还存在配体和助剂,所述配体选自含磷配体、氨基酸配体、含氮配体,或其组合,所述助剂选自碱金属盐。
在另一优选例中,R1选自C1-C6酰基、取代或未取代的苯甲酰基或三烷基硅基,所述三烷基硅基中的烷基为C1-C3烷基。在另一更优选例中,R1选自乙酰基。
在另一优选例中,R2选自C1-C6酰基,或取代或未取代的苯甲酰基。在另一更优选例中, R2选自乙酰基。
在另一优选例中,M为镁,锌,锡,或锰
在另一优选例中,X为溴或碘。
在另一优选例中,所述金属催化剂选自氯化钯、醋酸钯、氯化钯、碘化亚铜、醋酸铜、硫酸铜、氯化铁、氯化亚铁、乙酰丙酮铁、乙酰丙酮亚铁、氯化钴、醋酸钴、乙酰丙酮钴、氯化镍、溴化镍、醋酸镍、三环己膦氯化镍,或其组合。
在另一优选例中,步骤(1)中,所述有机溶剂选自四氢呋喃、2-甲基四氢呋喃,乙二醇二甲醚、甲基叔丁基醚、乙醚、甲苯,或其组合。
在另一优选例中,步骤(1)中,式II所示化合物与式III-2所示化合物的摩尔比为1:1.0~4.0。在另一更优选例中,式II所示化合物与式III-2所示化合物的摩尔比为1:1.0~2.0。
在另一优选例中,步骤(1)中,式II所示化合物与所述金属催化剂的摩尔比为1:0.005~0.3。在另一更优选例中,式II所示化合物与所述金属催化剂的摩尔比为1:0.01~0.2。
在另一优选例中,步骤(1)中,III-2所示化合物的滴加温度为-30℃~25℃,反应温度为0~70℃。在另一更优选例中,步骤(1)中,反应温度为室温~50℃。
在另一优选例中,所述配体选自三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉,或它们的衍生物。
在另一优选例中,式II所示化合物与所述配体的摩尔比为1:0.005~0.3。在另一更优选例中,式II所示化合物与所述配体的摩尔比为1:0.01~0.2。
在另一优选例中,所述助剂选自氯化钾、碳酸钾、叔丁醇钾、碳酸氢钾、磷酸钾、醋酸钾、碳酸钠、碳酸氢钠、醋酸钠,氯化锂、碳酸锂,或其组合。
在另一优选例中,式II所示化合物与所述助剂的摩尔比为1:0.1~3。在另一更优选例中,式II所示化合物与所述助剂的摩尔比为1:1~2。
在另一优选例中,式II所示化合物中,R2为乙酰基,III-2所示化合物为3-吡啶溴化镁,所述金属催化剂为PdCl2,所述配体为三苯基膦,以及所述助剂为醋酸钠。
在另一优选例中,式II所示化合物中,R2为乙酰基,III-2所示化合物为3-吡啶溴化锌,所述金属催化剂为无水氯化铁,所述配体为四甲基乙二胺(TMEDA),以及所述助剂为醋酸钾。
在另一优选例中,式II所示化合物中,R2为对苯甲磺酰基,III-2所示化合物为3-吡啶溴化锡,所述金属催化剂为醋酸镍,所述配体为三环己基膦,以及所述助剂为碳酸钠。
在另一优选例中,式II所示化合物中,R2为苯甲酰基,III-2所示化合物为3-吡啶溴化锰,所述金属催化剂为碘化亚铜,所述配体为L-脯氨酸,以及所述助剂为无水磷酸钾。
在另一优选例中,上述制备方法还包括以下步骤:
(1-a)式IV所示化合物与酰基化试剂反应形成式II所示化合物;
反应式如下:
其中,用于生成R1的酰化试剂选自R1-卤素、R1-O-R1用于生成R2的酰化试剂选自R2-卤素、R2-O-R2
在另一优选例中,用于生成R1的酰化试剂选自C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯或三甲基氯硅烷,
在另一优选例中,用于生成R2的酰化试剂选自醋酸异丙烯酯,或取代或未取代的苯甲酸酐。
本发明还提供了一种阿比特龙的制备方法,该制备方法包括步骤:(2)将上述制备方法制备得到的式I所示化合物脱保护基生成阿比特龙,反应式如下:
本发明还提供了一种醋酸阿比特龙的制备方法,该制备方法包括步骤:(3)将上述制备方法制备得到的阿比特龙与醋酸酐反应,得到醋酸阿比特龙,反应式如下:
具体实施方式
本发明人经过广泛而深入的研究,通过大量筛选和测试,提供了醋酸阿比特龙及其中间体的制备方法。与现有技术相比,本发明的方法操作简便、安全性高、成本低,且收率更高,非常适合工业化生产。
术语
除非另有定义,否则本文中所用的全部技术术语和科学术语均具有如本发明所属领域普通技术人员通常理解的相同含义。
如本文所用,术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…构成”或“由…构成”。
如本文所用,术语“室温”或“常温”是指温度为4-40℃,较佳地,25±5℃。
除非另有表述,术语“烷基”本身或作为另一取代基的一部分是指具有指定碳原子数的直链或支链烃基。烷基的例子包括甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、正戊基、正己基、正庚基、正辛基等。C1-C6烷基表示含1~6个碳的烷基,如C1-C3烷基表示含1~3个碳的烷基。
除非另有表述,术语“酰基”,单独或作为另一基团的一部分使用,是指在该基团的连接点的碳上两个氢被取代基=O取代。“C1-C6酰基”表示C1-C6烷基-(C=O)-。
除非另有表述,术语“卤素”包括氟、氯、溴、碘。
如未特别说明,术语“溶液”指水溶液。如未特别说明,溶液指质量浓度。
可用于本发明的钯盐包括但不局限于双三苯基膦氯化钯、醋酸钯、氯化钯、三氟甲烷磺酸钯或其组合。可用于本发明的铜盐包括但不局限于碘化亚铜、醋酸铜、氯化铜或其组合。可用于本发明的钴盐包括但不局限于氯化钴、乙酰丙酮钴、醋酸钴、硫酸钴。可用于本发明的镍盐包括但不局限于氯化镍、溴化镍、醋酸镍、三环己膦氯化镍。可用于本发明的铁盐包括但不局限于氯化铁、氯化亚铁、乙酰丙酮铁、乙酰丙酮亚铁。
可用于本发明的配体包括但不局限于含磷配体、氨基酸配体、含氮配体。“含磷配体”是指含有磷的可与金属催化剂形成配位催化剂以增加催化剂的活性的配体,该含磷配体包括但不局限于三苯基膦、三环己膦、三叔丁基膦,及其它们的衍生物。“含氨基酸配体”是指含有氨基酸的可与金属催化剂形成配位催化剂以增加催化剂的活性的配体,该含氨基酸配体包括但不局限于L-脯氨酸、丙氨酸、甲硫氨酸,及它们的衍生物。“含吡啶环配体”是指含有吡啶环的可与金属催化剂形成配位催化剂以增加催化剂的活性的配体,该含吡啶环配体包括但不局限于吡啶、2,2-联吡啶、1,10-菲啰啉,及它们的衍生物。
本发明的描述中,“电解质”能够溶解于电化学反应所用的溶剂并能够导电。可用于本发明的电解质包括但不局限于四乙基高氯酸铵、四乙基对甲苯磺酸铵、四丁基醋酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵,四乙基四氟硼酸铵、四乙基六氟膦酸铵或其组合。
可用于本发明的助剂包括但不局限于碱金属盐。碱金属盐包括但不局限于氯化钾、碳酸钾、叔丁醇钾、碳酸氢钾、磷酸钾、醋酸钾、碳酸钠、碳酸氢钠、醋酸钠、氯化锂、碳酸锂。
式I化合物的制备方法
作为本发明的第一方面,醋酸阿比特龙或其中间体的制备方法包括步骤:有机溶剂中,金属催化剂、配体和还原剂的存在下,3-位保护的17-羟基酯雄甾-5,16-双烯-3β-羟基(酯)(式II化 合物)与3-卤代吡啶(式III化合物)反应得到醋酸阿比特龙或阿比特龙衍生物(式I化合物),阿比特龙衍生物可经过转化得到醋酸阿比特龙。
反应式如下:
R1选自氢、C1-C6烷基、苯基、苄基、C1-C6的酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基或C1-C2的三烷基硅基等保护基团。
R2为C1-C6的酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基,二甲胺基酰基,二乙胺基酰基或二苯基次膦酰基等离去基团。
X为氟,氯,溴或碘。
式II化合物与式III化合物的摩尔比较佳地为1:1~4,更佳地为1:1.5~3,如1:2或1:3。
式II化合物与金属催化剂的摩尔比较佳地为1:0.005~0.3;更佳地为1:0.01~0.2,如1:0.03、1:0.05;1:0.07或0.1。
式II化合物与所述配体的摩尔比较佳地为1:0.005~0.3;更佳地为1:0.01~0.2,如1:0.03、1:0.05;1:0.07或0.1。
式II化合物与所述还原剂的摩尔比较佳地为1:1-4,更佳地为1:1.5~3,如1:2或1:3。
所述金属催化剂选自钯,铜,铁,钴,镍等金属盐催化剂,比如双三苯基膦氯化钯,醋酸钯,氯化钯,碘化亚铜,醋酸铜,三氯化铁,乙酰丙酮铁,氯化钴,乙酰丙酮钴,醋酸镍,氯化镍,三环己膦氯化镍等。
所述配位体选自三苯基膦、三环己基膦等含磷配位体,L-脯氨酸等氨基酸配体,以及吡啶、2,2-联吡啶、1,10-菲啰啉等含氮配体,配体的作用是增加催化剂的活性。
所述还原剂为二硼试剂,以及锌粉,铜粉,铁粉,镁粉,锰粉,锡粉,钐粉,铟粉等金属粉末。
所述有机溶剂选自四氢呋喃,甲苯,乙腈,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,二甲基亚砜或其组合。
作为本发明的第二方面,醋酸阿比特龙或其中间体的制备方法(电化学制备方法)包括步骤:(1)在溶剂中,在金属催化剂、配体和电解质存在下,在恒电流的作用下,式II所示化 合物与式III所示化合物反应生成式I所示化合物,反应式如下:
其中R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基或C1-C2的三烷基硅基或二烷基芳基硅基,所述二烷基芳基硅基中的烷基为C1-C3烷基;
R2选自C1-C6的酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基,二甲胺基酰基,二乙胺基酰基或二苯基次膦酰基;
所述“取代”指基团上的一个或多个氢原子独立地被选自下列的基团取代:
卤素、C1-C4烷基或C1-C4卤代烷基、醚基、硝基;
X为氟,氯,溴或碘;
所述金属催化剂选自钯盐、铜盐、钴盐、镍盐或其组合;以及
所述配体选自含磷配体、含氨基酸配体、含吡啶环配体或其组合。
式II所示化合物与式III所示化合物的摩尔比较佳地为1:1~4,更佳地为1:1~3,最佳地为1:1.5~2.2,如1:1.8或1:2.5;
式II所示化合物与金属催化剂的摩尔比较佳地为1:0.005~0.2,更佳地为1:0.01~0.1,最佳地为1:0.03~0.07,如1:0.04、1:0.005或1:0.006;
式II所示化合物与配体的摩尔比较佳地为1:0.005~0.3,更佳地为1:0.01~0.2,最佳地为1:0.05~0.12,如1:0.06、1:0.08、1:0.10。
电解质与反应溶液的摩尔体积较佳地为0.1~0.5mol/L。
恒电流较佳地为0.05A~1.0A,更佳地为0.1A~0.5A。
电流密度较佳地为0.01~0.2A/cm2,更佳地为0.02~0.1A/cm2
反应温度较佳地为0℃~60℃,较佳地为10℃~50℃。
金属催化剂包括但不局限于双三苯基膦氯化钯、醋酸钯、氯化钯、三氟甲烷磺酸钯、碘化亚铜、醋酸铜、氯化铜、氯化钴、乙酰丙酮钴、醋酸钴、硫酸钴、醋酸镍、三环己膦氯化镍或其组合。
配体包括但不局限于三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉或其组合。
电解质包括但不局限于四乙基高氯酸铵、四乙基对甲苯磺酸铵、四丁基醋酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵,四乙基四氟硼酸铵、四乙基六氟膦酸铵或其组合。
反应所用溶剂包括但不局限于乙腈,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡 咯烷酮,二甲基亚砜或其组合。
阳极电极包括但不局限于铁、锌、镁、镍、铝或其合金,阴极为铂。
本发明的式I所示化合物的制备过程中,反应可通过本领域常规的方式检测反应是否完成,例如通过TLC检测主要原料(即,式II所示化合物)消失,为反应终点。
作为本发明的第三方面,醋酸阿比特龙或其中间体的制备方法包括步骤:在溶剂中,在金属催化剂、配体和碱存在下,3-位保护的17-羟基酯雄甾-5,16-双烯-3β-羟基(酯)(式II所示化合物)与3-卤代吡啶(式III-1所示化合物)反应得到醋酸阿比特龙或其中间体(式I所示化合物),中间体可经过转化得到醋酸阿比特龙。
反应式如下:
其中R1选自氢、C1-C6酰基、苯基、苄基、C1-C6的酰基、烷基、取代或未取代的苯甲酰基、三烷基硅基或二烷基芳基硅基等保护基团,所述三烷基硅基和二烷基芳基硅基中的烷基为C1-C3烷基,R2选自C1-C6的酰基、取代或未取代的苯甲酰基、二甲胺基酰基、二乙胺基酰基或二苯基次膦酰基等离去基团。R1与R2可以是相同的也可以是不同的。所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:卤素、C1-C4烷基、C1-C4卤代烷基、醚基、硝基等。
式II所示化合物与式III-1所示化合物的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:1~3,更佳地为1:1~1.5,如1:1.02、1:1.05、1:1.1、1:2、1:3、1:4、1:5。
式II所示化合物与金属催化剂的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:0.005~0.3;更佳地为1:0.01~0.2,如1:0.03、1:0.05;1:0.07、1:0.1。
式II所示化合物与所述配体的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:0.005~0.3;更佳地为1:0.01~0.2,如1:0.01、1:0.02、1:0.05、1:0.06、1:0.08、0.1。
式II所示化合物与所述碱的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:1-3;更佳地为1:1~2,如1:1、1:1.5或1:2。
可用于本发明的碱包括但不局限于碳酸钾,碳酸钠,磷酸钾,叔丁醇锂,氢氧化钠,碳酸氢钠等无机碱。碱的作用是作为缚酸剂吸收反应后的醋酸根,促进反应进行。
可用于本发明的溶剂包括但不局限于四氢呋喃,甲苯,乙腈,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,二甲基亚砜。
作为本方面的第四方面,醋酸阿比特龙或其中间体的制备方法包括步骤:在溶剂中,在金属催化剂的存在下,式II所示化合物与式III-2所示化合物反应得到式I所示化合物。
反应式如下:
R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基,取代或未取代的苯磺酰基、三烷基硅基或二烷基芳基硅基,所述三烷基硅基和二烷基芳基硅基中的烷基为C1-C3烷基;R2选自C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、二甲胺基酰基、二乙胺基酰基或二苯基次膦酰基;M为镁,铁,锌,铜,锡,锰,铋或铟等金属离子;R1和R2可以相同也可以不同;X为氟、氯、溴、碘或M的等配位阴离子,优选地,所述M的等配位阴离子选自特戊酸根或醋酸根,所述金属催化剂选自钯盐、铜盐、铁盐、钴盐、镍盐,或其组合。
在一个具体实施例中,上述制备方法的反应体系还包括配体和/或助剂。所述配体选自含磷配体、氨基酸配体、含氮配体,或其组合,所述助剂选自碱金属盐。配体和助剂的作用是增加反应的活性,不加配体和助剂式II所示化合物与式III-2所示化合物也可以进行反应。
式II所示化合物与式III-2所示化合物的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:1~4,更佳地1:1~2,如1:1.2、1:1.5、1:1.8、1:2.0。式II所示化合物与金属催化剂的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:0.005~0.3,更佳地为1:0.01~0.2,如1:0.03、1:0.05;1:0.07、1:0.1。式II所示化合物与所述配体的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:0.005~0.3;更佳地为1:0.01~0.2,如1:0.01、1:0.02、1:0.05、1:0.06、1:0.08、0.1。式II所示化合物与所述助剂的摩尔比没有特别限定,可按照此类反应的常规用量,较佳地为1:0.1~3,更佳地为1:1~2,如1:1.2、1:1.5、1:1.8、1:2.0。
III-2所示化合物的滴加温度为-30℃~25℃,反应温度为0℃~70℃,较佳地反应温度为室温~50℃。
反应所用溶剂包括但不局限于:四氢呋喃、2-甲基四氢呋喃,乙二醇二甲醚、甲基叔丁基醚、乙醚和甲苯。
可用于该制备方法的“金属催化剂”是金属盐,包括但不局限于钯盐、铜盐、铁盐、钴盐、镍盐。
可用于该制备方法的“配体”包括但不局限于含磷配体、氨基酸配体、含氮配体。
可用于该制备方法的“助剂”包括但不局限于碱金属盐。
式II化合物的制备方法
典型地,式II化合物可通过脱氢表雄甾酮经3位和17位酰化得到。本发明对酰化方法没有特别有要求,可使用本领域常用的方法或参考本发明的方法进行。
优选地,所述方法还包括步骤:
(i-a)式IV化合物与酰基化试剂反应形成式II化合物;
反应式如下:
其中,用于生成R1的酰化试剂选自下组:R1-卤素、R1-O-R1、或其组合。用于生成R2的酰化试剂选自下组:R2-卤素、R2-O-R2、或其组合。
当R1为乙酰基时,式I化合物为醋酸阿比特龙。
当R1不为乙酰基时,式I化合物为阿比特龙衍生物。
优选地,阿比特龙衍生物可通过下述步骤转化得到醋酸阿比特龙:
(ii)醇类溶剂中,阿比特龙衍生物与氢氧化钠溶液进行水解反应得到阿比特龙;和
(iii)阿比特龙与乙酸酐进行酯化反应得到醋酸阿比特龙。
步骤(ii)中,所述的醇类溶剂选自甲醇、乙醇、异丙醇或其组合。
式III-2所示化合物的制备方法
典型地,式III-2所示化合物可通过3-溴吡啶与异丙基氯化镁发生格氏交换,再加入金属盐或金属粉末发生转金属化生成吡啶金属盐。本发明对式III-2所示化合物的制备方法没有特别有要求,可使用本技术领域常用的方法或参考本发明的方法进行。在本发明的一个具体实施中,制备式III-2所示化合物的反应式如下:
其中,3-溴吡啶可用廉价的3-氯吡啶代替,溶剂一般为四氢呋喃等醚类溶剂,制备成功的吡啶金属盐溶液应尽快使用,以免变质。
式II化合物的制备方法
典型地,式II化合物可通过脱氢表雄甾酮经3位和17位酰化得到。本发明对酰化方法没有特别有要求,可使用本领域常用的方法或参考本发明的方法进行。
优选地,所述方法还包括步骤:
(i-a)式IV化合物与酰基化试剂反应形成式II化合物;
反应式如下:
其中,用于生成R1的酰化试剂选自下组:R1-卤素、R1-O-R1、或用于生成R2的酰化试剂选自下组:R2-卤素、R2-O-R2、或其
当R1为乙酰基时,式I化合物为醋酸阿比特龙。
当R1不为乙酰基时,式I化合物为阿比特龙中间体或衍生物。
本发明的式II所示化合物的制备过程中,反应可通过本领域常规的方式检测反应是否完成,例如,通过TLC方法检测,以主要原料(即,式IV所示化合物)消失,为反应终点。
本发明的主要优点包括:
本发明方法克服了现有技术原料昂贵、成本高以及反应条件苛刻等缺陷,提供了一种成本低,收率高,生产方法简便并适宜于工业化生产的醋酸阿比特龙制备方法,具有很大的应用价值。
以下将结合实施例更详细地解释本发明,本发明的实施例仅用于说明本发明的技术方案,本发明的实质和范围并不局限于此。除非另外说明,否则百分比和份数是重量百分比和重量份数。
实施例1
反应瓶中加入脱氢表雄甾酮1.44Kg(5.0mol),对甲苯磺酸86.0g(0.5mol,0.1equiv),醋酸异丙烯酯10.0L,升温至120±5℃,常压蒸馏2小时。蒸馏至剩余物料体积约为3L,停止蒸馏,继续保温搅拌3小时。降温至0~5℃,搅拌30分钟。过滤,滤饼加入水5L,搅拌30分钟。过 滤,滤饼加入乙醇3L,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得到17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯1.72Kg,摩尔收率92.2%,HPLC纯度99.2%。
反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯744.0g(2.0mol),3-溴吡啶474.0g(3.0mol),PdCl2(PPh3)2 14.1g(0.02mol),2,2-联吡啶15.6g(0.10mol),双(频哪醇合)二硼508.0g(2.0mol),DMF 5.0L。氮气置换后,升温至60℃,搅拌5小时。TLC监控反应结束后,降温至室温。将反应混合液缓慢转移至含20L饮用水的50L反应釜中,搅拌30分钟。过滤,滤饼加入二氯甲烷10L,使溶解,依次用2L 1N盐酸水溶液,2L 1N碳酸氢钠水溶液,2L水洗涤。有机层减压浓缩至干,浓缩物中加入3L90%乙醇水溶液,升温至回流,使溶清。两小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品731.2g,摩尔收率为93.5%,HPLC纯度为98.7%。粗品用丙酮重结晶得到醋酸阿比特龙685.9g,纯度为99.8%。
ESI-MS(m/z):414[M+Na]+1H NMR(400MHz,DMSO-d6)δ(ppm):8.933(d,1H),8.822(d,1H),8.648(d,1H),8.072(dd,1H),6.568(s,1H),5.399(s,1H),4.485(m,1H),2.322(m,3H),2.146(m,2H),2.049(m,1H),1.994(s,3H),1.863(m,2H),1.741(m,3H),1.601(m,3H),1.450(m,1H),1.114(m,2H),1.055(s,3H),1.046(s,3H);
实施例2
反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使溶清。降温至0~5℃,缓慢滴加丙酰氯4.9g(52.5mmol)。滴毕,升温至室温,保温搅拌3小时。TLC监控反应结束后,缓慢加入饮用水50mL。分去水层,有机层无水硫酸钠干燥,过滤,滤液浓缩至干。浓缩物中加入对甲苯磺酸0.9g(5.0mmol),醋酸异丙烯酯100mL,升温至120±5℃,常压蒸馏1小时。蒸馏至剩余物料体积约为50mL,停止蒸馏,继续保温搅拌2小时。降温至0~5℃,搅拌30分钟。过滤,滤饼加入水80mL,搅拌30分钟。过滤,滤饼加入乙醇30mL,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯17.7g,摩尔收率91.5%,HPLC纯度99.3%。
反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯7.7g(0.02mol),3-碘吡啶4.1g(0.02mol), 醋酸镍0.2g(1.0mmol),三环己基膦0.3g(1.0mmol),锌粉2.6g(0.04mol),乙腈50mL。氮气置换后剧烈搅拌,升温至回流,回流5小时。TLC监控反应结束后,趁热过滤,滤液浓缩至干。浓缩物中加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,回流3小时。冷却至室温,加入100mL饮用水,陈化30分钟。过滤,真空干燥得阿比特龙6.4g,摩尔收率91.5%。ESI-MS(m/z):372[M+Na]+1H NMR(400MHz,DMSO-d6)δ(ppm):8.584(s,1H),8.434(d,1H),7.762(d,1H),7.342(q,1H),6.109(s,1H),5.301(s,1H),4.628(d,1H),2.190(m,3H),2.066(m,3H),1.771(m,1H),1.696(m,4H),1.534(m,2H),1.372(m,2H),1.012(m,2H),0.983(s,3H),0.965(s,3H);
反应瓶中加入阿比特龙6.4g(0.018mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol)。滴毕,升温至室温,保温反应3小时。过滤,有机层一次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水溶液升温至回流,使溶清。两小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.8g,摩尔收率为96.7%,HPLC纯度98.3%。粗品用丙酮重结晶得到醋酸阿比特龙6.2g,纯度为99.6%。
ESI-MS(m/z):414[M+Na]+1H NMR(400MHz,DMSO-d6)δ(ppm):8.935(d,1H),8.825(d,1H),8.650(d,1H),8.075(dd,1H),6.571(s,1H),5.402(s,1H),4.487(m,1H),2.324(m,3H),2.148(m,3H),1.996(s,3H),1.865(m,2H),1.743(m,3H),1.602(m,4H),1.116(m,2H),1.058(s,3H),1.046(s,3H);
实施例3
反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使溶清。降温至0~5℃,缓慢滴加三甲基氯硅烷5.7g(52.5mmol)。滴毕,升温至室温,保温搅拌4小时。TLC监控反应结束后,缓慢加入饮用水50mL。分去水层,有机层无水硫酸钠干燥,过滤,滤液浓缩至干。浓缩物中加入叔丁醇钾5.6g(0.05mol),四氢呋喃100mL,搅拌10分钟。降温至0~5℃,缓慢投入对甲苯磺酸酐16.3g(0.05mol),升温至60~65℃,保温搅拌5小时。TLC监控反应结束后,减压浓缩至剩余物料体积约为50mL,加入水80mL,搅拌30分钟。过滤,滤饼加入乙醇30mL,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-对甲苯磺酸酯雄甾-5,16-双烯-3β-三甲基硅酯 21.2g,摩尔收率82.6%,HPLC纯度98.3%。
反应瓶中加入17-对甲苯磺酸酯雄甾-5,16-双烯-3β-三甲基硅酯10.3g(0.02mol),3-氯吡啶6.8g(0.06mol),碘化亚铜0.8g(4.0mmol),L-脯氨酸0.8g(4.0mmol),镁粉1.5g(0.06mol),DMSO50mL。氮气置换后剧烈搅拌,升温至40℃,搅拌3小时。TLC监控反应结束后,降温至室温。将反应混合液缓慢滴入200mL饮用水中,搅拌30分钟。过滤,滤饼加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,搅拌5小时。冷却至室温,加入100mL饮用水,陈化30分钟。过滤,真空干燥得阿比特龙5.8g,摩尔收率82.0%。
反应瓶中加入阿比特龙5.8g(0.016mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol)。滴毕,升温至室温,保温反应3小时。过滤,有机层一次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水升温至回流,使溶清。两小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.2g,摩尔收率为95.1%,HPLC纯度98.0%。粗品用丙酮重结晶得到醋酸阿比特龙5.5g,纯度为99.5%。ESI-MS(m/z):414[M+Na]+
实施例4
反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),叔丁醇钾11.2g(0.1mol),四氢呋喃100mL,搅拌10分钟。降温至0~5℃,缓慢加入苯甲酸酐22.6g(0.1mol)。升温至60~65℃,保温搅拌5小时。TLC监控反应结束后,减压浓缩至剩余物料体积约为50mL,加入水80mL,搅拌30分钟。过滤,滤饼加入水50mL,搅拌30分钟。过滤,滤饼加入乙醇30mL,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-苯甲酸酯雄甾-5,16-双烯-3β-苯甲酸酯22.6g,摩尔收率91.2%,HPLC纯度98.6%。
反应瓶中加入17-苯甲酸酯雄甾-5,16-双烯-3β-苯甲酸酯9.9g(0.02mol),3-氟吡啶3.9g(0.04mol),氯化镍0.5g(4.0mmol),1,10-菲啰啉0.7g(4.0mmol),锰粉3.3g(0.06mol),四氢呋喃80mL。氮气置换后剧烈搅拌,升温至95~100℃,搅拌6小时。TLC监控反应结束后,趁热过滤,滤液浓缩至干。浓缩物中加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,搅拌3小时。冷却至室温,加入100mL饮用水,陈化30分钟。过滤,真空干燥得阿比特龙5.5g,摩尔收率78.6%。
反应瓶中加入阿比特龙5.5g(0.016mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol)。滴毕,升温至室温,保温反应3小时。过滤,有机层一次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水升温至回流,使溶清。两小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙 粗品5.9g,摩尔收率为95.0%,HPLC纯度98.8%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙5.4g,纯度为99.8%。
ESI-MS(m/z):414[M+Na]+
实施例5
反应瓶中加入脱氢表雄甾酮1.44Kg(5.0mol),对甲苯磺酸86.0g(0.5mol,0.1equiv),醋酸异丙烯酯10.0L,升温至120±5℃,常压蒸馏2小时。蒸馏至剩余物料体积约为3L,停止蒸馏,继续保温搅拌3小时。降温至0~5℃,搅拌30分钟。过滤,滤饼加入水5L,搅拌30分钟。过滤,将滤饼加入乙醇3L中,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇(200mL,0~5℃)淋洗,35~40℃下真空干燥得到17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯1.72Kg,摩尔收率92.2%,HPLC纯度99.2%。
反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯744.0g(2.0mol),3-溴吡啶474.0g(3.0mol),PdCl2(PPh3)2 14.1g(0.02mol),联吡啶31.2g(0.20mol),DMF 5.0L,加入四丁基四氟硼酸铵658.5g(2.0mol)。将电化学用的电极(阳极为铁,阴极为铂)固定在反应瓶中,在恒电流1.0A(电流密度约为0.1A/cm2)作用下室温搅拌反应3h,反应结束,将反应混合液缓慢转移至含有20L水的50L反应釜中,搅拌30分钟。过滤,滤饼加入二氯甲烷10L,使滤饼溶解,依次用2L 1N盐酸水溶液,2L 1N碳酸氢钠水溶液,2L水洗涤该溶液。有机层减压浓缩至干,浓缩物中加入3L乙醇,升温至回流,使混合物溶清。两小时匀速降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品678.8g,摩尔收率为86.8%,HPLC纯度为98.4%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙645.5g,纯度为99.7%。
mp:144.8℃-146.3℃(文献数据,mp:144℃-146℃).ESI-MS(m/z):414[M+Na]+1H NMR(400MHz,CDCl3-d1)δ(ppm):1H NMR(500MHz,CDCl3)δ(ppm):8.92(s,1H),8.82(d,1H),8.64(d,1H),8.08~8.05(dd,1H),6.56(s,1H),5.40(d,1H),4.48~4.42(m,1H),2.31~2.27(m,3H),2.15~2.09(m,2H),2.04~2.0(m,1H),1.99(s,3H),1.86~1.75(m,2H),1.74~1.66(m,3H),1.61~1.52(m,3H),1.44~1.39(m,1H),1.11~1.01(m,2H),1.05(s,3H),1.04(s,3H)。;13C NMR(400MHz,CDCl3-d1)δ(ppm):170.58,151.80,148.10,148.0,140.14,133.03,133.75,129.28,123.09,122.38,73.94,57.58,50.37,47.44,36.89,38.24,37.02,35.32,31.89,31.64,30.52,27.88,21.61,20.97,19.35,16.67。
实施例6
反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使混合物溶清。降温至0~5℃,向溶液中缓慢滴加丙酰氯4.9g(52.5mmol)。滴毕,升温至室温,保温搅拌3小时。TLC监控反应结束后,向反应液中缓慢加入水50mL。分去水层,有机层利用无水硫酸钠干燥,过滤,滤液浓缩至干。向浓缩物中加入对甲苯磺酸0.9g(5.0mmol),醋酸异丙烯酯100mL,升温至120±5℃,常压蒸馏1小时。蒸馏至剩余物料体积约为50mL,停止蒸馏,继续保温搅拌2小时。降温至0~5℃,搅拌30分钟。过滤,滤饼加入水80mL,搅拌30分钟。过滤,滤饼加入到乙醇30mL中,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇(5mL,0~5℃)淋洗,35~40℃下真空干燥得17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯17.7g,摩尔收率91.5%,HPLC纯度99.3%。
反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯7.7g(0.02mol),3-碘吡啶4.1g(0.02mol),醋酸镍0.2g(1.0mmol),三环己基膦0.3g(1.0mmol),乙腈50mL;加入四乙基四氟硼酸铵651.0mg(3.0mmol)。将电化学用的电极(阳极为锌,阴极为铂)固定在反应瓶中,在恒电流0.05A(电流密度约为0.01A/cm2)作用下0~10℃搅拌反应5h,反应结束,过滤,滤液浓缩至干。浓缩物中加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,搅拌3小时。冷却至室温,加入100mL水,陈化30分钟。过滤,真空干燥得阿比特龙5.87g,摩尔收率84.0%。
反应瓶中加入阿比特龙5.87g(0.017mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol)。滴毕,升温至室温,保温反应3小时,阿比特龙完全反应。过滤,有机层依次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水溶液升温至回流,使混合物溶清。两小时均速降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.2g,摩尔收率为96.5%,HPLC纯度98.4%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙5.7g,纯度为99.5%。ESI-MS(m/z):414[M+Na]+
实施例7
反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使混合物溶清。降温至0~5℃,缓慢滴加三甲基氯硅烷5.7g(52.5mmol)。滴毕,升温至室温,保温搅拌4小时。TLC监控反应结束后,缓慢加入水50mL。分去水层,有机层利用无水硫酸钠干燥,过滤,滤液浓缩至干。浓缩物中加入叔丁醇钾5.6g(0.05mol),四氢呋喃100mL,搅拌10分钟。降温至0~5℃,缓慢投入对甲苯磺酸酐16.3g(0.05mol),升温至60~65℃,保温搅拌5小时。TLC监控反应结束后,减压浓缩至剩余物料体积约为50mL,加入水80mL,搅拌30分钟。过滤,将滤饼加入乙醇30mL中,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇(5mL,0~5℃)淋洗,35~40℃下真空干燥得17-对甲苯磺酸酯雄甾-5,16-双烯-3β-三甲基硅酯21.2g,摩尔收率82.6%,HPLC纯度98.3%。
反应瓶中加入17-对甲苯磺酸酯雄甾-5,16-双烯-3β-三甲基硅酯10.3g(0.02mol),3-氯吡啶6.8g(0.06mol),碘化亚铜0.8g(4.0mmol),L-脯氨酸0.8g(4.0mmol),DMSO 50mL,加入四丁基六氟磷酸铵7.7g(2.0mmol)。将电化学用的电极(阳极为镁,阴极为铂)固定在反应瓶中,在恒电流0.5A(电流密度约为0.1A/cm2)作用下,50度搅拌反应5小时。TLC监控反应结束后,降温至室温。将反应混合液缓慢滴入200mL水中,搅拌30分钟。过滤,滤饼加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,搅拌5小时。冷却至室温,加入100mL水,陈化30分钟。过滤,真空干燥得阿比特龙6.2g,摩尔收率86.2%。
反应瓶中加入阿比特龙6.2g(0.017mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol)。滴毕,升温至室温,保温反应3小时,阿比特龙完全反应。过滤,有机层依次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水升温至回流,使混合物溶清。两小时匀速降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.4g,摩尔收率为95.1%,HPLC纯度98.0%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙5.7g,纯度为99.5%。ESI-MS(m/z):414[M+Na]+
实施例8
反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),叔丁醇钾11.2g(0.1mol),四氢呋喃100mL,搅拌10分钟。降温至0~5℃,缓慢加入苯甲酸酐22.6g(0.1mol)。升温至60~65℃,保温搅拌3小时。TLC监控反应结束后,减压浓缩至剩余物料体积约为50mL,加入水80mL,搅拌30分钟。过滤,滤饼加入水50mL,搅拌30分钟。过滤,将滤饼加入乙醇30mL中,室温打浆30分钟。降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇(5mL,0~5℃)淋洗,35~40℃下真空干燥得17-苯甲酸酯雄甾-5,16-双烯-3β-苯甲酸酯22.6g,摩尔收率91.2%,HPLC纯度98.6%。
反应瓶中加入17-苯甲酸酯雄甾-5,16-双烯-3β-苯甲酸酯9.9g(0.02mol),3-氟吡啶3.9g(0.04mol),氯化镍0.5g(4.0mmol),1,10-菲啰啉0.7g(4.0mmol),N,N-二甲基乙酰胺(DMAc)80mL,加入四乙基高氯酸铵9.2g(0.04mol)。将电化学用的电极(阳极为镁,阴极为铂)固定在反应瓶中,在恒电流0.3A(电流密度约为0.06A/cm2)作用下室温反应搅拌6小时。TLC监控反应结束后,过滤,滤液浓缩至干。浓缩物中加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,搅拌3小时。冷却至室温,加入100mL水,陈化30分钟。过滤,真空干燥得阿比特龙5.0g,摩尔收率71.5%。
反应瓶中加入阿比特龙5.0g(0.014mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol)。滴毕,升温至室温,保温反应3小时,阿比特龙完全反应。过滤,有机层依次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水升温至回流,使混合物溶清。两小时匀速降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品5.3g,摩尔收率为94.5%,HPLC纯度98.3%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙4.6g,纯度为99.5%。ESI-MS(m/z):414[M+Na]+
实施例9
向相反应瓶中加入脱氢表雄甾酮1.44Kg(5.0mol),对甲苯磺酸86.0g(0.5mol,0.1equiv),醋酸异丙烯酯10.0L,反应混合物升温至120±5℃,常压蒸馏2小时,蒸馏至剩余物料体积约为3L,停止蒸馏,继续保温搅拌3小时,降温至0~5℃,搅拌30分钟,过滤,滤饼加入到5L水中,搅拌30分钟,过滤,滤饼加入到3L乙醇中,室温打浆30分钟,降温至0~5℃,搅拌 30分钟,过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得到17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯1.72Kg。摩尔收率92.2%,HPLC纯度99.2%。
向反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯744.0g(2.0mol),二乙基(3-吡啶基)硼烷308.7g(2.1mol),PdCl2(PPh3)2 14.0g(0.02mol)(即金属催化剂为氯化钯,配体为三苯基膦),碳酸钾414.0g(3.0mol),DMF 4.0L,氮气置换后,反应混合物升温至60℃,搅拌5小时。TLC监控反应结束后,降温至室温。将反应混合液缓慢转移至含20L水的50L反应釜中,搅拌30分钟,过滤,滤饼加入到10L二氯甲烷中,使溶解,依次用2L 1N盐酸水溶液,2L 1N碳酸氢钠水溶液,2L水洗涤,有机层减压浓缩至干,浓缩物中加入3L90%乙醇水溶液,升温至回流,使溶清,2小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品736.5g。摩尔收率为94.1%,HPLC纯度为98.9%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙702.6g,纯度为99.8%。
经质谱和核磁检测确证为醋酸阿比特龙。
m.p.:144.8℃-146.3℃;ESI-MS(m/z):414[M+Na]+1H NMR(500MHz,CDCl3)δ(ppm):8.932(s,1H),8.812(d,1H),8.632(d,1H),8.072~8.032(dd,1H),6.561(s,1H),5.386(d,1H),4.483~4.424(m,1H),2.322~2.265(m,3H),2.141~2.093(m,2H),2.043~2.008(m,1H),1.992(s,3H),1.861~1.773(m,2H),1.743~1.642(m,3H),1.601~1.524(m,3H),1.452~1.392(m,1H),1.111~1.013(m,2H),1.052(s,3H),1.042(s,3H)
13C NMR(125MHz,CDCl3)δ(ppm):170.6,151.8,148.1,148.0,140.1,133.0,133.8,129.3,123.1,122.4,74.0,57.6,50.4,47.4,36.9,38.2,37.0,35.3,31.9,31.6,30.5,27.8,21.5,20.9,19.4,16.7。
实施例10
向反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使溶清。降温至0~5℃,缓慢滴加丙酰氯4.9g(52.5mmol),滴毕,反应混合物升温至室温,保温搅拌3小时。TLC监控反应结束后,缓慢加入水50mL。分去水层,有机层利用无水硫酸钠干燥,过滤,滤液浓缩至干。浓缩物中加入对甲苯磺酸0.9g(5.0mmol),醋酸异丙烯酯100mL,升温至120±5℃,常压蒸馏1小时。蒸馏至剩余物料体积约为50mL,停止蒸馏,继 续保温搅拌2小时;降温至0~5℃,搅拌30分钟;过滤,滤饼加入水80mL,搅拌30分钟;过滤,滤饼加入30mL乙醇中,室温打浆30分钟;降温至0~5℃,搅拌30分钟;过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯17.7g,摩尔收率91.5%,HPLC纯度99.3%。
向反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯7.7g(0.02mol),二乙基(3-吡啶基)硼烷2.94g(0.02mol),醋酸镍0.02g(0.1mmol),2,2-联吡啶0.02g(0.1mmol),磷酸钾4.24g(0.02mol),甲苯50mL,氮气置换后剧烈搅拌,反应混合物升温至回流,搅拌5小时。TLC监控反应结束后,趁热过滤,滤液浓缩至干。浓缩物加入到50mL乙醇和10mL 30%氢氧化钠溶液的混合液中,升温至回流,搅拌3小时。冷却至室温,加入100mL水,陈化30分钟。过滤,真空干燥得阿比特龙6.1g,摩尔收率87.6%。
经质谱和核磁检测确证为阿比特龙。
ESI-MS(m/z):372[M+Na]+1H NMR(500MHz,CDCl3)δ(ppm):8.58(s,1H),8.43(d,1H),7.76~7.74(d,1H),7.34~7.32(q,1H),6.11(s,1H),5.30(s,1H),4.62(d,1H),2.19~2.10(m,3H),2.07~2.02(m,3H),1.77(m,1H),1.69~1.61(m,4H),1.53~1.51(m,2H),1.37~1.35(m,2H),1.01~0.96(m,8H)。
向反应瓶中加入阿比特龙6.1g(0.017mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol),滴毕,反应混合物升温至室温,保温反应3小时,过滤,有机层依次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水溶液升温至回流,使溶清。2小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.4g,摩尔收率为96.8%,HPLC纯度98.5%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙5.8g,纯度为99.7%。
实施例11
向反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使溶清。降温至0~5℃,缓慢滴加三甲基氯硅烷5.7g(52.5mmol)。滴毕,反应混合物升温至室温,保温搅拌4小时。TLC监控反应结束后,缓慢加入水50mL。分去水层,有机层利 用无水硫酸钠干燥,过滤,滤液浓缩至干。浓缩物中加入三乙胺5.0g(0.05mol),四氢呋喃100mL,搅拌10分钟。降温至0~5℃,缓慢投入二甲氨基甲酰氯3.2g(0.05mol),升温至回流,保温搅拌5小时。TLC监控反应结束后,减压浓缩至剩余物料体积约为50mL,加入水80mL,搅拌30分钟。过滤,滤饼加入到30mL乙醇中,室温打浆30分钟,浆液降温至0~5℃,搅拌30分钟,过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-二甲胺基甲酰酯雄甾-5,16-双烯-3β-三甲基硅酯18.6g。摩尔收率86.5%,HPLC纯度98.6%。
反应瓶中加入二甲胺基甲酰酯雄甾-5,16-双烯-3β-三甲基硅酯8.6g(0.02mol),二乙基(3-吡啶基)硼烷4.41g(0.03mol),碘化亚铜0.8g(4.0mmol),1,10-菲啰啉0.7g(4.0mmol),碳酸氢钠2.5g(0.03mol),DMSO 50mL。氮气置换后剧烈搅拌,反应混合物升温至80度,搅拌3小时。TLC监控反应结束后,反应液降温至室温,向其中缓慢滴入200mL水中,搅拌30分钟。过滤,滤饼加入到50mLTHF和7.8g四丁基氟化铵形成的溶液中,室温搅拌5小时。加入100mL水,陈化30分钟。过滤,真空干燥得阿比特龙5.6g,摩尔收率79.2%。
反应瓶中加入阿比特龙5.6g(0.016mol),二氯甲烷50mL,三乙胺2.0g(0.02mol)。降温至0~5℃,缓慢滴加醋酸酐2.0g(0.02mol)。滴毕,升温至室温,保温反应3小时。过滤,有机层依次利用20mL水、20mL 1N碳酸氢钠水溶液洗涤一次,再用20mL 1NEDTA水溶液洗涤一次,除去铜离子。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水,升温至回流,使溶清。2小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.0g,摩尔收率为95.1%,HPLC纯度97.0%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙5.3g,纯度为99.2%。ESI-MS(m/z):414[M+Na]+
实施例12
向反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),叔丁醇钾11.2g(0.1mol),四氢呋喃100mL,搅拌10分钟。降温至0~5℃,缓慢加入苯甲酸酐22.6g(0.1mol),反应混合物升温至60~65℃,保温搅拌3小时。TLC监控反应结束后,减压浓缩至剩余物料体积约为50mL,加入水80mL,搅拌30分钟,过滤,滤饼加入到50mL水中,搅拌30分钟,过滤,滤饼加入到30mL乙醇中,室温打浆30分钟,降温至0~5℃,搅拌30分钟,过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-苯甲酸酯雄甾-5,16-双烯-3β-苯甲酸酯22.6g。摩尔收率91.2%,HPLC纯度98.6%。
向反应瓶中加入17-苯甲酸酯雄甾-5,16-双烯-3β-苯甲酸酯9.9g(0.02mol),二乙基(3-吡啶基)硼烷4.41g(0.03mol),三环己基膦氯化镍1.38g(2.0mmol)(即金属催化剂为氯化镍,配体为三环己基膦),叔丁醇锂2.4g(0.03mol),乙腈60mL。氮气置换后剧烈搅拌,反应混 合物升温至回流,搅拌6小时。TLC监控反应结束后,趁热过滤,滤液浓缩至干。浓缩物加入到50mL乙醇和10mL 30%氢氧化钠溶液的混合物中,升温至回流,搅拌3小时。冷却至室温,加入100mL水,陈化30分钟。过滤,真空干燥得阿比特龙5.7g,摩尔收率82.9%。
向反应瓶中加入阿比特龙5.7g(0.016mol),二氯甲烷50mL,三乙胺2.0g(0.02mol),降温至0~5℃,缓慢滴加醋酸酐2.0g(0.02mol),滴毕,反应混合物升温至室温,保温反应3小时,过滤,有机层依次用20mL水、20mL 1N碳酸氢钠水溶液洗涤,然后减压浓缩至干,浓缩物到加入20mL90%乙醇水溶液中升温至回流,使溶清。2小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品6.1g。摩尔收率为97.5%,HPLC纯度99.0%。粗品用丙酮重结晶得到醋酸阿比特龙5.4g,纯度为99.7%。ESI-MS(m/z):414[M+Na]+
实施例13
向反应瓶中加入脱氢表雄甾酮1.44Kg(5.0mol),对甲苯磺酸86.0g(0.5mol,0.1equiv),醋酸异丙烯酯10.0L,反应混合物升温至120±5℃,常压蒸馏2小时,蒸馏至剩余物料体积约为3L,停止蒸馏,继续保温搅拌3小时。降温至0~5℃,搅拌30分钟,过滤,滤饼加入到5L水中,搅拌30分钟,过滤,滤饼加入到3L乙醇中,室温打浆30分钟,降温至0~5℃,搅拌30分钟。过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得到17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯1.72Kg,摩尔收率92.2%,HPLC纯度99.2%。
带搅拌的三口反应瓶中加入3-溴吡啶(1当量,7.5mol,1185g),加入2.7L四氢呋喃,反应液冷却到-20℃,缓慢滴加异丙基氯化镁氯化锂的THF溶液(1.3M,1.0当量,7.5mol,5.8L),反应混合物升到室温,搅拌6小时以上,得到吡啶格氏试剂(浓度约1mol/L)。
反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-乙酸酯744.0g(2.0mol),醋酸钠164g(2.0mol),PdCl2(PPh3)2(相当于,金属催化剂为PdCl2,配体为PPh3),14.1g(0.02mol),四氢呋喃8.0L,搅拌溶清,降温至-30℃滴加吡啶格氏四氢呋喃溶液2.0L(2.0mol),滴加完毕后反应混合物升温至室温,搅拌5小时。TLC监控反应结束后,缓慢滴加饱和氯化铵溶液淬灭,减压浓缩至干。加入二氯甲烷溶解浓缩物,过滤,滤液依次用2L 1N盐酸水溶液,2L 1N碳酸氢钠水溶液,2L 1NEDTA二钠溶液,2L水洗涤。有机层减压浓缩至干,浓缩物中加入3L 90%乙醇水溶液,升温至回流,使溶清。两小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品716.6g,摩尔收率为91.6%,HPLC纯度为98.2%,阿比特龙杂质占0.6%。粗品用丙酮重结晶得到醋酸阿比特龙667.2g,纯度为99.8%。
经质谱和核磁检测确证为醋酸阿比特龙。
ESI-MS(m/z):414[M+Na]+
1H NMR(500MHz,CDCl3)δ(ppm):8.93(s,1H),8.82(d,1H),8.64(d,1H),8.07~8.04(dd,1H),6.56(s,1H),5.39(d,1H),4.48~4.42(m,1H),2.32~2.27(m,3H),2.14~2.09(m,2H),2.04~2.01(m,1H),1.99(s,3H),1.86~1.77(m,2H),1.74~1.64(m,3H),1.60~1.52(m,3H),1.45~1.39(m,1H),1.11~1.01(m,2H),1.05(s,3H),1.04(s,3H)。13C NMR(125MHz,CDCl3)δ(ppm):170.6,151.8,148.1,148.0,140.1,133.0,133.8,129.3,123.1,122.4,74.0,57.6,50.4,47.4,36.9,38.2,37.0,35.3,31.9,31.6,30.5,27.8,21.5,20.9,19.4,16.7。
配体和助剂的作用是为了增加反应活性,但不加配体和助剂时,该反应也能进行,但反应液中目标产物的含量下降,以实施例1的步骤2的反应条件作为模型实验,相同实验条件下(反应底物及其用量、催化剂(若存在于反应体系中)及其用量、配体(若存在于反应体系中)及其用量、助剂(若存在于反应体系中)及其用量、溶剂、反应温度等均与实施例1的步骤2相同),不添加配体和/或助剂时的反应结果见下表1。
表1
从上表1可以看出,实施例1-2的反应体系中没有配体,TLC监控反应结束后,HPLC检测反应液,目标产物的含量为约72.0%。实施例1-3的反应体系中没有助剂,TLC监控反应结束后,HPLC检测反应液,目标产物的含量为约84.2%。明显低于实施例1-1中反应液的目标产物的含量。实施例1-4的反应体系中没有催化剂,偶联反应不能发生。
实施例14
向反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使溶清,将混合物降温至0~5℃,向其中缓慢滴加丙酰氯4.9g(52.5mmol),滴加完毕后,将反应混合物升温至室温,保温搅拌3小时。TLC监控反应结束后,向反应液中缓慢加入50mL 水。静置,分层,分去水层,有机层利用无水硫酸钠干燥,过滤,滤液浓缩至干。浓缩物中加入对甲苯磺酸0.9g(5.0mmol),醋酸异丙烯酯100mL,升温至120±5℃,常压蒸馏1小时。蒸馏至剩余物料体积约为50mL,停止蒸馏,继续保温搅拌2小时。反应混合物降温至0~5℃,搅拌30分钟,过滤,滤饼加入到80mL水中,搅拌30分钟,过滤,滤饼加入到30mL乙醇中,室温打浆30分钟,降温至0~5℃,搅拌30分钟,过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯17.7g,摩尔收率91.5%,HPLC纯度99.3%。
取按照实施例1制备的吡啶格氏试剂(浓度约1mol/L)200ml加入三口烧瓶中,冷却至0℃,搅拌情况下加入锌粉13.0g(0.2mol),待加料结束,升温至室温继续搅拌3小时,制得吡啶锌试剂,待用。
向反应瓶中加入17-乙酸酯雄甾-5,16-双烯-3β-丙酸酯7.7g(0.02mol),2-甲基四氢呋喃50mL,无水氯化铁0.64g(0.004mol),TMEDA2.3g(0.02mol),醋酸钾5.88g(0.06mol),室温下滴加吡啶锌试剂30ml(0.03mol),剧烈搅拌,升温至50℃,反应5小时。TLC监控反应结束后,趁热过滤,滤液浓缩至干。向浓缩物中加入50mL乙醇和30%氢氧化钠溶液10mL,升温至回流,回流3小时,冷却至室温,加入100mL水,陈化30分钟,过滤,滤饼真空干燥得阿比特龙5.7g,摩尔收率81.7%。
经质谱和核磁氢谱检测确证为阿比特龙。
ESI-MS(m/z):372[M+Na]+
1H NMR(500MHz,CDCl3)δ(ppm):8.58(s,1H),8.43(d,1H),7.76~7.74(d,1H),7.34~7.32(q,1H),6.11(s,1H),5.30(s,1H),4.62(d,1H),2.19~2.10(m,3H),2.07~2.02(m,3H),1.77(m,1H),1.69~1.61(m,4H),1.53~1.51(m,2H),1.37~1.35(m,2H),1.01~0.96(m,8H)。
向反应瓶中加入阿比特龙5.7g(0.016mol),二氯甲烷50mL,三乙胺3.0g(0.03mol)。降温至0~5℃,缓慢滴加醋酸酐3.0g(0.03mol),滴加完毕后,反应混合物升温至室温,保温反应3小时。过滤除去不溶物,滤液依次利用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,向浓缩物中加入20mL90%乙醇水溶液,升温至回流,使混合物溶清,并在2小时降温至0~5℃,析晶,过滤,滤饼真空干燥得到醋酸阿比特龙粗品5.9g,摩尔收率为92.5%,HPLC纯度97.8%。粗品用丙酮重结晶得到醋酸阿比特龙5.1g,纯度为99.5%。ESI-MS(m/z):414[M+Na]+
实施例15

向反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),二氯甲烷100mL,三乙胺6.1g(0.06mol),搅拌使溶清,混合物降温至0~5℃,缓慢滴加三甲基氯硅烷5.7g(52.5mmol),滴加完毕,混合物升温至室温,保温搅拌4小时。TLC监控反应结束后,向反应液中缓慢加入水50mL。静置,分层,分去水层,有机层利用无水硫酸钠干燥,过滤,滤液浓缩至干。向浓缩物中加入叔丁醇钾5.6g(0.05mol)和四氢呋喃100mL,搅拌10分钟,混合物降温至0~5℃,缓慢投入对甲苯磺酸酐16.3g(0.05mol),升温至60~65℃,保温搅拌5小时。TLC监控反应结束后,反应液减压浓缩至剩余物料体积约为50mL,向其中加入80mL水,搅拌30分钟,过滤,滤饼加入到30mL乙醇中,室温打浆30分钟。浆液降温至0~5℃,搅拌30分钟,过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-对甲苯磺酸酯雄甾-5,16-双烯-3β-三甲基硅酯21.2g,摩尔收率82.6%,HPLC纯度98.3%。
取按照实施例1制备的吡啶格氏试剂(浓度约1mol/L)200ml加入三口烧瓶中,冷却至0℃,搅拌情况下加入无水氯化锡52.0g(0.2mol),待加料结束,升温至室温继续搅拌3小时,制得吡啶锡试剂,待用。
向反应瓶中加入17-对甲苯磺酸酯雄甾-5,16-双烯-3β-三甲基硅酯10.3g(0.02mol),醋酸镍0.35g(0.002mol),三环己基膦0.56g(0.002mol),碳酸钠2.12g(0.02mol),乙二醇二甲醚50mL,搅拌均匀后室温下向其中加入吡啶锡试剂20ml,反应混合物升温至40℃,搅拌5小时。TLC监控反应结束后,降温至室温,过滤,浓缩滤液至干,浓缩物加入到50mL乙醇和10mL 30%氢氧化钠溶液中,升温至回流,搅拌5小时,混合液冷却至室温,加入100mL饮用水,陈化30分钟,过滤,滤饼真空干燥得阿比特龙4.6g,摩尔收率66.1%。
向反应瓶中加入阿比特龙4.6g(0.013mol),二氯甲烷50mL,三乙胺2.0g(0.02mol),混合物降温至0~5℃,缓慢滴加醋酸酐2.0g(0.02mol),滴加完毕,升温至室温,保温反应3小时。过滤除去不溶物,滤液依次用20mL水、20mL 1N碳酸氢钠水溶液洗涤。有机层减压浓缩至干,浓缩物中加入20mL90%乙醇水升温至回流,使混合物溶清,并在两小时降温至0~5℃,析晶,过滤,滤饼真空干燥得到醋酸阿比特龙粗品4.8g,摩尔收率为94.4%,HPLC纯度98.0%。粗品用丙酮重结晶得到醋酸阿比特龙4.0g,纯度为99.5%。ESI-MS(m/z):414[M+Na]+
实施例16
向反应瓶中加入脱氢表雄甾酮14.4g(0.05mol),叔丁醇钾11.2g(0.1mol),DMF 50mL,搅拌10分钟,混合物降温至0~5℃,向其中缓慢加入碘甲烷7.1g(0.05mol),反应混合物升温至40℃,搅拌过夜,向其中加入水200ml,过滤,滤饼直接烘干,滤饼用100mL四氢呋喃溶解,加入苯甲酸酐12.4g(0.55mol),回流反应,保温搅拌5小时。TLC监控反应结束后,反应液减压浓缩至剩余物料体积约为50mL,向其中加入80mL水,搅拌30分钟。过滤,滤饼加入到50mL水中,搅拌30分钟,过滤,滤饼加入到30mL乙醇中,室温打浆30分钟。浆液降温至0~5℃,搅拌30分钟,过滤,滤饼用少量冷乙醇淋洗,35~40℃下真空干燥得17-苯甲酸酯雄甾-5,16-双烯-3β-甲醚16.8g,摩尔收率83.0%,HPLC纯度97.5%。
取按照实施例1制备的吡啶格氏试剂(浓度约1mol/L)200ml加入到三口烧瓶中,冷却至0℃,向其中加入甲苯100ml,搅拌情况下加入无水氯化锰25.2g(0.2mol),加料结束后,反应混合物升温至室温继续搅拌3小时,制得吡啶锰试剂,待用。
向反应瓶中加入17-苯甲酸酯雄甾-5,16-双烯-3β-甲醚8.1g(0.02mol),碘化亚铜0.38g(0.002mol),L-脯氨酸0.23g(0.002mol),无水磷酸钾6.4g(0.03mol),四氢呋喃40mL,缓慢滴加吡啶锰试剂33ml,剧烈搅拌,反应混合物升温至50℃,搅拌6小时。TLC监控反应结束后,趁热过滤,滤液浓缩至干,再用二氯甲烷带蒸一次。浓缩物中加入50mL二氯甲烷溶解,降温至0℃,缓慢加入三溴化硼5mL,搅拌3小时,缓慢滴加甲醇10mL淬灭,加入100mL水,静置,分层,分出有机层浓缩至干,用60%乙醇水溶液结晶,过滤,真空干燥得阿比特龙4.9g,摩尔收率70.2%。
向反应瓶中加入阿比特龙4.9g(0.014mol),二氯甲烷50mL,三乙胺3.0g(0.03mol),混合物降温至0~5℃,向其中缓慢滴加醋酸酐3.0g(0.03mol),滴加完毕,升温至室温,保温反应3小时,过滤除去不溶物,滤液依次利用20mL水、20mL 1N碳酸氢钠水溶液洗涤,减压浓缩至干,浓缩物加入到20mL90%乙醇水中,升温至回流,使溶清,溶液两小时降温至0~5℃,析晶,过滤,真空干燥得到醋酸阿比特龙粗品5.2g,摩尔收率为95.0%,HPLC纯度98.0%。粗品用丙酮溶剂重结晶得到醋酸阿比特龙4.7g,纯度为99.6%。ESI-MS(m/z):414[M+Na]+
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明 作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (40)

  1. 一种醋酸阿比特龙或其中间体的制备方法,其特征在于,所述的方法包括步骤:(i)有机溶剂中,金属催化剂、配体和还原剂的存在下,式II化合物与式III化合反物应得到式I化合物;
    反应式如下:
    R1选自下组:氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基或C1-C2三烷基硅基;
    R2选自下组:C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、二甲胺基酰基或二乙胺基酰基或二苯基次膦酰基;且
    X为氟,氯,溴或碘;
    其中所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:卤素、C1-C4烷基、C1-C4卤代烷基、醚基、硝基;
    所述金属催化剂选自下组:钯盐、铜盐、铁盐、钴盐、镍盐,或其组合;且
    所述配体选自下组:含磷配体、氨基酸配体、含氮配体,或其组合,
    所述还原剂选自下组:二硼试剂、锌粉、铜粉、铁粉、镁粉、锰粉、锡粉、钐粉、铟粉,或其组合。
  2. 如权利要求1所述的制备方法,其特征在于,R1为乙酰基。
  3. 如权利要求1所述的制备方法,其特征在于,步骤(i)具有一个或多个选自下组的特征:
    式II化合物与式III化合物的摩尔比为1:1~4,
    式II化合物与金属催化剂的摩尔比为1:0.005~0.3,
    式II化合物与所述配体的摩尔比为1:0.005~0.3,和
    式II化合物与所述还原剂的摩尔比为1:1~4。
  4. 如权利要求3所述的制备方法,其特征在于,步骤(i)具有一个或多个选自下组的特征:
    式II化合物与式III化合物的摩尔比为1:1.5~3;
    式II化合物与金属催化剂的摩尔比为1:0.01~0.2;
    式II化合物与所述配体的摩尔比为1:0.01~0.2;和/或
    式II化合物与所述还原剂的摩尔比为1:1.5~3。
  5. 如权利要求1所述的制备方法,其特征在于,步骤(i)具有一个或多个选自下组的特征:
    所述金属催化剂选自下组:双三苯基膦氯化钯、醋酸钯、氯化钯、碘化亚铜、醋酸铜、三氯化铁、乙酰丙酮铁、氯化钴、乙酰丙酮钴、醋酸镍、氯化镍、三环己膦氯化镍,或其组合;
    所述配体选自下组:三苯基膦、三环己基膦、L-脯氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉,或其衍生物;
    所述还原剂选自下组:二硼试剂、锌粉、铜粉、铁粉、镁粉、锰粉、锡粉、钐粉、铟粉,或其组合;和/或
    所述有机溶剂选自下组:四氢呋喃、甲苯、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜,或其组合。
  6. 如权利要求1所述的制备方法,其特征在于,步骤(i)的反应温度为20-120℃,较佳地,40-100℃。
  7. 如权利要求1所述的制备方法,其特征在于,所述方法还包括步骤:(i-a)式IV化合物与酰基化试剂反应形成式II化合物;
    反应式如下:
    其中,用于生成R1的酰化试剂选自下组:R1-卤素、R1-O-R1、醋酸异丙烯酯、或其组合;和
    用于生成R2的酰化试剂选自下组:R2-卤素、R2-O-R2、醋酸异丙烯酯、或其组合。
  8. 如权利要求7所述的制备方法,其特征在于,用于生成R1的酰化试剂选自下组:C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯、三甲基氯硅烷,或其组合。
  9. 如权利要求7所述的制备方法,其特征在于,用于生成R2的酰化试剂选自下组:醋酸异丙烯酯、取代或未取代的苯甲酸酐、取代或未取代的苯磺酸酐,或其组合。
  10. 一种醋酸阿比特龙的制备方法,其特征在于,所述方法包括下述步骤:
    (i)通过如权利要求1~9任一项所述的方法制备得到式I化合物;
    (ii)在有机溶剂中,式I化合物与氢氧化钠溶液进行水解反应得到阿比特龙;和
    (iii)阿比特龙与乙酸酐进行酯化反应得到醋酸阿比特龙。
  11. 一种醋酸阿比特龙或其中间体的制备方法,其特征在于,所述制备方法包括步骤:(1)在溶剂中,在金属催化剂、配体和电解质存在下,在恒电流的作用下,式II所示化合物与式III所示化合物反应生成式I所示化合物,反应式如下:
    其中R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基或C1-C2的三烷基硅基或二烷基芳基硅基,所述二烷基芳基硅基中的烷基为C1-C3烷基;
    R2选自C1-C6酰基,取代或未取代的苯甲酰基,甲磺酰基,取代或未取代的苯磺酰基,二甲胺基酰基,二乙胺基酰基或二苯基次膦酰基;
    所述“取代”指基团上的一个或多个氢原子独立地被选自下列的基团取代:
    卤素、C1-C4烷基或C1-C4卤代烷基、醚基、硝基;
    X为氟,氯,溴或碘;
    所述金属催化剂选自钯盐、铜盐、钴盐、镍盐,或其组合;以及
    所述配体选自含磷配体、含氨基酸配体、含吡啶环配体,或其组合。
  12. 根据权利要求11所述的制备方法,其特征在于,R1为乙酰基,式I所示化合物为醋酸阿比特龙。
  13. 根据权利要求11所述的制备方法,其特征在于,所述步骤(1)具有一个或多个选自下列的特征:
    (i)所述式II所示化合物与所述式III所示化合物的摩尔比为1:1~4,较佳地,1:1~3,更佳地,1:1.5~2.2,如1:1.8或1:2.0;
    (ii)所述式II所示化合物与所述金属催化剂的摩尔比为1:0.005~0.2,较佳地,1:0.01~0.1,更佳地,1:0.03~0.07,如1:0.04、1:0.005或1:0.006;
    (iii)所述式II所示化合物与所述配体的摩尔比为1:0.005~0.3,较佳地,1:0.01~0.2,更佳地,1:0.05~0.12,如1:0.06、1:0.08、1:0.10;
    (iv)电解质与反应溶液的摩尔体积比为0.1~0.5mol/L。
  14. 根据权利要求11所述的制备方法,其特征在于,所述步骤(1)中,所述恒电流为0.05A~1.0A,更佳地,0.1A~0.5A,和/或
    电流密度为0.01~0.2A/cm2,更佳地,0.02~0.1A/cm2;和/或
    反应温度为0℃~60℃,更佳地,10℃~50℃。
  15. 根据权利要求11所述的制备方法,其特征在于,所述步骤(1)具有一个或多个选自下列的特征:
    (i)所述金属催化剂选自双三苯基膦氯化钯、醋酸钯、氯化钯、三氟甲烷磺酸钯、碘化 亚铜、醋酸铜、氯化铜、氯化钴、乙酰丙酮钴、醋酸钴、硫酸钴、醋酸镍、三环己膦氯化镍或其组合,
    (ii)所述配体选自三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉或其衍生物。
    (iii)所述电解质选自四乙基高氯酸铵、四乙基对甲苯磺酸铵、四丁基醋酸铵、四丁基六氟磷酸铵、四丁基四氟硼酸铵,四乙基四氟硼酸铵、四乙基六氟膦酸铵或其组合;
    (iv)反应所用溶剂选自乙腈,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基吡咯烷酮,二甲基亚砜或其组合。
  16. 根据权利要求11所述的制备方法,其特征在于,
    式II所示化合物中R2为乙酰基,式III所示化合物中X为溴,所述金属催化剂为PdCl2(PPh3)2,所述配体为联吡啶,或
    式II所示化合物中R2为乙酰基,式III所示化合物中X为碘,所述金属催化剂为醋酸镍,所述配体为三环己基膦,或
    式II所示化合物中R2为对甲苯磺酰基,式III所示化合物中X为氯,所述金属催化剂为碘化亚铜,所述配体为L-脯氨酸,或
    式II所示化合物中R2为苯甲酰基,式III所示化合物中X为氟,所述金属催化剂为氯化镍,所述配体为1,10-菲啰啉。
  17. 根据权利要求11所述的制备方法,其特征在于,所述制备方法还包括将式IV所示化合物与酰化试剂反应生成式II所示化合物;
    反应式如下:
    其中,用于生成R1的酰化试剂选自R1-卤素、R1-O-R1
    用于生成R2的酰化试剂选自R2-卤素、R2-O-R2
  18. 根据权利要求17所述的制备方法,其特征在于,用于生成R1的酰化试剂选自C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯或三甲基氯硅烷,和/或
    用于生成R2的酰化试剂选自醋酸异丙烯酯、取代或未取代的苯甲酸酐或取代或未取代的苯磺酸酐。
  19. 一种阿比特龙的制备方法,其特征在于,所述制备方法还包括步骤:(2)将权利要求 11至18任一项所述的制备方法制备得到的式I所示化合物脱保护基生成阿比特龙,反应式如下:
  20. 一种醋酸阿比特龙的制备方法,其特征在于,所述制备方法包括步骤:(3)将权利要求19所述的制备方法制备得到的阿比特龙与醋酸酐反应,得到醋酸阿比特龙,反应式如下:
  21. 一种醋酸阿比特龙或其中间体的制备方法,其特征在于,所述的方法包括步骤:(1)在溶剂中,在金属催化剂、配体和碱存在下,式II所示化合物与式III-1所示化合物反应得到式I所示化合物。
    反应式如下:
    其中,R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、三烷基硅基或二烷基芳基硅基,所述三烷基硅基和二烷基芳基硅基中的烷基为C1-C3烷基,
    R2选自C1-C6酰基、取代或未取代的苯甲酰基、二甲胺基酰基、二乙胺基酰基或二苯基次膦酰基;
    所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:
    卤素、C1-C4烷基、C1-C4卤代烷基、醚基、硝基,
    所述金属催化剂选自钯盐、铜盐、铁盐、钴盐、镍盐,或其组合;
    所述配体选自含磷配体、氨基酸配体、含氮配体,或其组合。
  22. 如权利要求21所述的制备方法,其特征在于,R1选自C1-C6酰基、取代或未取代的苯甲酰基或三烷基硅基,更优选乙酰基,和/或
    R2选自C1-C6酰基、取代或未取代的苯甲酰基或二甲氨基甲酰,更优选乙酰基。
  23. 如权利要求21所述的制备方法,其特征在于,步骤(1)具有一个或多个选自下组的特征:
    式II所示化合物与式III-1所示化合物的摩尔比为1:1~3,较佳地,1:1~1.5;
    式II所示化合物与所述金属催化剂的摩尔比为1:0.005~0.3,较佳地,1:0.01~0.2;
    式II所示化合物与所述配体的摩尔比为1:0.005~0.3,较佳地,1:0.01~0.2;
    式II所示化合物与所述碱的摩尔比为1:1~3,较佳地,1:1~2。
  24. 如权利要求21所述的制备方法,其特征在于,步骤(1)具有一个或多个选自下组的特征:
    所述金属催化剂选自醋酸钯、氯化钯、碘化亚铜、醋酸铜、三氯化铁、乙酰丙酮铁、氯化钴、乙酰丙酮钴、醋酸镍、氯化镍或其组合;
    所述配体选自三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉或其衍生物;
    所述碱选自碳酸钾,碳酸钠,磷酸钾,叔丁醇锂,氢氧化钠,碳酸氢钠或其组合;
    所述溶剂选自四氢呋喃、甲苯、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜或其组合。
  25. 根据权利要求21所述的制备方法,其特征在于,
    式II所示化合物中R2为乙酰基,所述金属催化剂为氯化钯,所述配体为三苯基膦,所述碱为碳酸钾,或
    式II所示化合物中R2为丙酰基,所述金属催化剂为醋酸镍,所述配体为2-联吡啶,所述碱为磷酸钾,或
    式II所示化合物中R2为N,N-二甲基甲酰胺基,所述金属催化剂为碘化亚铜,所述配体为1,10-菲啰啉,所述碱为碳酸氢钠,或
    式II所示化合物中R2为苯甲酰基,所述金属催化剂为氯化镍,所述配体为三环己基膦,所述碱为叔丁醇锂。
  26. 如权利要求21所述的制备方法,其特征在于,步骤(1)的反应温度为40-130℃,较佳地,60-115℃。
  27. 如权利要求21所述的制备方法,其特征在于,所述方法还包括以下步骤:
    (1-a)式IV所示化合物与酰基化试剂反应形成式II所示化合物;
    反应式如下:
    其中,用于生成R1的酰化试剂选自R1-卤素、R1-O-R1用于生成R2的酰化试剂选自R2-卤素、R2-O-R2
  28. 如权利要求27所述的制备方法,其特征在于,用于生成R1的酰化试剂选自C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯或三甲基氯硅烷,
    用于生成R2的酰化试剂选自醋酸异丙烯酯或取代或未取代的苯甲酸酐。
  29. 一种阿比特龙的制备方法,其特征在于,所述制备方法包括将权利要求21至28任一项所述的制备方法制备得到的式I所示化合物脱保护基生成阿比特龙,反应式如下:
  30. 一种醋酸阿比特龙的制备方法,其特征在于,所述制备方法包括步骤:(3)将权利要求29所述的制备方法制备得到的阿比特龙与醋酸酐反应,得到醋酸阿比特龙,反应式如下:
  31. 一种醋酸阿比特龙或其中间体的制备方法,其特征在于,所述制备方法包括步骤:(1)在有机溶剂中,在金属催化剂存在下,式II所示化合物与式III-2所示化合物反应得到式I所示化合物;
    反应式如下:
    R1选自氢、C1-C6烷基、苯基、苄基、C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、三烷基硅基或二烷基芳基硅基,所述三烷基硅基和二烷基芳基硅基中的烷基为C1-C3烷基,
    R2选自C1-C6酰基、取代或未取代的苯甲酰基、甲磺酰基、取代或未取代的苯磺酰基、二甲胺基酰基、二乙胺基酰基或二苯基次膦酰基,
    所述“取代”指基团上的一个或多个氢原子独立地被选自下组的基团取代:
    卤素、C1-C4烷基、C1-C4卤代烷基、醚基、硝基,
    M为镁、铁、锌、铜、锡、锰、铋或铟,
    X为氟、氯、溴、碘或M的等配位阴离子,优选地,所述M的等配位阴离子选自特戊酸根或醋酸根,
    所述金属催化剂选自钯盐、铜盐、铁盐、钴盐、镍盐,或其组合。
  32. 根据权利要求31所述的制备方法,其特征在于,反应体系中还可存在配体和/或助剂,
    所述配体选自含磷配体、氨基酸配体、含氮配体,或其组合,
    所述助剂选自碱金属盐。
  33. 根据权利要求31或32所述的制备方法,其特征在于,R1选自C1-C6酰基、取代或未取代的苯甲酰基、三烷基硅基、更优选乙酰基,和/或
    R2选自C1-C6酰基、取代或未取代的苯甲酰基,更优选乙酰基,和/或
    M为镁、锌、锡或锰,和/或
    X为氯或溴。
  34. 根据权利要求31或32所述的方法,其特征在于,步骤(1)具有一个或多个选自下组的特征:
    所述金属催化剂选自双三苯基膦氯化钯、醋酸钯、氯化钯、碘化亚铜、醋酸铜、硫酸铜、氯化铁、氯化亚铁、乙酰丙酮铁、乙酰丙酮亚铁、氯化钴、醋酸钴、乙酰丙酮钴、氯化镍、溴化镍、醋酸镍、三环己膦氯化镍,或其组合,
    所述有机溶剂选自四氢呋喃、2-甲基四氢呋喃,乙二醇二甲醚、甲基叔丁基醚、乙醚、甲苯或其组合,
    式II所示化合物与式III-2所示化合物的摩尔比为1:1.0~4.0,较佳地,1:1.0~2.0,
    式II所示化合物与所述金属催化剂的摩尔比为1:0.005~0.3;较佳地,1:0.01~0.2,
    III-2所示化合物的滴加温度为-30℃~25℃,反应温度为0~70℃,较佳地,反应温度为室温~50℃。
  35. 根据权利要求32所述的方法,其特征在于,
    所述配体选自三苯基膦、三环己膦、三叔丁基膦、L-脯氨酸、丙氨酸、甲硫氨酸、吡啶、2,2-联吡啶、1,10-菲啰啉或其衍生物,和/或
    式II所示化合物与所述配体的摩尔比为1:0.005~0.3;较佳地,1:0.01~0.2,和/或
    所述助剂选自氯化钾、碳酸钾、叔丁醇钾、碳酸氢钾、磷酸钾、醋酸钾、碳酸钠、碳酸氢钠、醋酸钠,氯化锂、碳酸锂或其组合,和/或
    式II所示化合物与所述助剂的摩尔比为1:0.1~3;更优选为1:1~2。
  36. 根据权利要求32所述的方法,其特征在于,
    式II所示化合物中,R2为乙酰基,III-2所示化合物为3-吡啶溴化镁,所述金属催化剂为PdCl2,所述配体为三苯基膦,以及所述助剂为醋酸钠,或
    式II所示化合物中,R2为乙酰基,III-2所示化合物为3-吡啶溴化锌,所述金属催化剂为无水氯化铁,所述配体为四甲基乙二胺,以及所述助剂为醋酸钾,或
    式II所示化合物中,R2为对苯甲磺酰基,III-2所示化合物为3-吡啶溴化锡,所述金属催化剂为醋酸镍,所述配体为三环己基膦,以及所述助剂为碳酸钠,或
    式II所示化合物中,R2为苯甲酰基,III-2所示化合物为3-吡啶溴化锰,所述金属催化剂为碘化亚铜,所述配体为L-脯氨酸,以及所述助剂为无水磷酸钾。
  37. 根据权利要求31或32所述的制备方法,其特征在于,所述方法还包括以下步骤:
    (1-a)式IV所示化合物与酰基化试剂反应形成式II所示化合物;
    反应式如下:
    其中,用于生成R1的酰化试剂选自R1-卤素、R1-O-R1用于生成R2的酰化试剂选自R2-卤素、R2-O-R2
  38. 如权利要求37所述的制备方法,其特征在于,用于生成R1的酰化试剂选自C1-C6烷基酰氯、取代或未取代的苯甲酸酐、醋酸异丙烯酯或三甲基氯硅烷,和/或
    用于生成R2的酰化试剂选自醋酸异丙烯酯或取代或未取代的苯甲酸酐。
  39. 一种阿比特龙的制备方法,其特征在于,所述制备方法包括步骤:(2)将权利要求31至38任一项所述的制备方法制备得到的式I所示化合物脱保护基生成阿比特龙,反应式如下:
  40. 一种醋酸阿比特龙的制备方法,其特征在于,所述制备方法包括步骤:(3)将权利要求39所述的制备方法制备得到的阿比特龙与醋酸酐反应,得到醋酸阿比特龙,反应式如下:
PCT/CN2023/083006 2022-05-06 2023-03-22 一种醋酸阿比特龙及其中间体的制备方法 WO2023213151A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210488520.6A CN114853838B (zh) 2022-05-06 2022-05-06 一种醋酸阿比特龙的制备方法
CN202210488520.6 2022-05-06
CN202210925624.9A CN116121780A (zh) 2022-08-03 2022-08-03 阿比特龙及其衍生物的电化学制备方法
CN202210925624.9 2022-08-03
CN202310235429.8 2023-03-13
CN202310235319.1 2023-03-13
CN202310235319.1A CN116178475A (zh) 2023-03-13 2023-03-13 一种醋酸阿比特龙及其中间体的制备方法
CN202310235429.8A CN116574151A (zh) 2023-03-13 2023-03-13 一种醋酸阿比特龙及其中间体的制备方法

Publications (1)

Publication Number Publication Date
WO2023213151A1 true WO2023213151A1 (zh) 2023-11-09

Family

ID=88646225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083006 WO2023213151A1 (zh) 2022-05-06 2023-03-22 一种醋酸阿比特龙及其中间体的制备方法

Country Status (1)

Country Link
WO (1) WO2023213151A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046185A (en) * 1996-07-11 2000-04-04 Inflazyme Pharmaceuticals Ltd. 6,7-oxygenated steroids and uses related thereto
CN103360458A (zh) * 2012-03-26 2013-10-23 信泰制药(苏州)有限公司 一种阿比特龙的合成方法
CN103450313A (zh) * 2013-08-21 2013-12-18 苏州明锐医药科技有限公司 一种醋酸阿比特龙的制备方法
CN103864878A (zh) * 2012-12-12 2014-06-18 天津大学 阿比特龙醋酸酯的制备方法
CN109689673A (zh) * 2016-07-11 2019-04-26 萨奇治疗股份有限公司 C17、c20和c21取代的神经活性类固醇及其使用方法
CN110790809A (zh) * 2018-08-03 2020-02-14 奥锐特药业股份有限公司 一种醋酸阿比特龙的制备方法
CN112812147A (zh) * 2019-11-15 2021-05-18 江苏佳尔科药业集团股份有限公司 一种醋酸阿比特龙的合成方法及其中间体
CN114853838A (zh) * 2022-05-06 2022-08-05 奥锐特药业股份有限公司 一种醋酸阿比特龙的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046185A (en) * 1996-07-11 2000-04-04 Inflazyme Pharmaceuticals Ltd. 6,7-oxygenated steroids and uses related thereto
CN103360458A (zh) * 2012-03-26 2013-10-23 信泰制药(苏州)有限公司 一种阿比特龙的合成方法
CN103864878A (zh) * 2012-12-12 2014-06-18 天津大学 阿比特龙醋酸酯的制备方法
CN103450313A (zh) * 2013-08-21 2013-12-18 苏州明锐医药科技有限公司 一种醋酸阿比特龙的制备方法
CN109689673A (zh) * 2016-07-11 2019-04-26 萨奇治疗股份有限公司 C17、c20和c21取代的神经活性类固醇及其使用方法
CN110790809A (zh) * 2018-08-03 2020-02-14 奥锐特药业股份有限公司 一种醋酸阿比特龙的制备方法
CN112812147A (zh) * 2019-11-15 2021-05-18 江苏佳尔科药业集团股份有限公司 一种醋酸阿比特龙的合成方法及其中间体
CN114853838A (zh) * 2022-05-06 2022-08-05 奥锐特药业股份有限公司 一种醋酸阿比特龙的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VANESSA KOCH; MARTIN NIEGER; STEFAN BRÄSE: "Stille and Suzuki Cross‐Coupling Reactions as Versatile Tools for Modifications at C‐17 of Steroidal Skeletons – A Comprehensive Study", ADVANCED SYNTHESIS AND CATALYSIS, JOHN WILEY & SONS, INC., HOBOKEN, USA, vol. 359, no. 5, 15 February 2017 (2017-02-15), Hoboken, USA, pages 832 - 840, XP072353571, ISSN: 1615-4150, DOI: 10.1002/adsc.201601289 *

Similar Documents

Publication Publication Date Title
EP2794633A2 (en) Synthesis of abiraterone and related compounds
US9663550B2 (en) Method for preparing abiraterone acetate
WO2018120923A1 (zh) 1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸的制备方法
US20140011992A1 (en) Synthesis of abiraterone and related compounds
WO2023213151A1 (zh) 一种醋酸阿比特龙及其中间体的制备方法
CN114853838B (zh) 一种醋酸阿比特龙的制备方法
Mochida et al. Synthesis and properties of azole-substituted ferrocenes
CN116574151A (zh) 一种醋酸阿比特龙及其中间体的制备方法
JPS5848545B2 (ja) シンキホウコウゾクカルボンサンアミドユウドウタイ ノ セイゾウホウホウ
US9650410B2 (en) Process for the preparation of abiraterone and abiraterone acetate
JP2863715B2 (ja) エステル及びエステル交換可能キサンテートの合成のために有用な方法及び反応体
CN116121780A (zh) 阿比特龙及其衍生物的电化学制备方法
CN101429224B (zh) 1,4-双烯-6-亚甲基甾体化合物的合成方法及中间体
TW200904823A (en) Process for preparing aromatase inhibitors
CN116178475A (zh) 一种醋酸阿比特龙及其中间体的制备方法
CN104558091A (zh) 一种醋酸阿比特龙的合成方法
JP4477510B2 (ja) 10−ヒドロキシ−4−(s)カンプトテンシンからトポテカンを調製する方法
WO2024124895A1 (zh) 一种手性磷酸催化剂的合成方法
CN114349752B (zh) 一种可溶液加工的电子传输层修饰材料及其制备方法和应用
Gelbart et al. Cardenolide analogs. 9. Synthesis and biological activity of 17. beta.-carbomethoxyethylene and 17. beta.-cyanoethylene 14. alpha.-H steroids
US8273908B2 (en) Process for the preparation of estrone and/or estradiol-derivatives
Aljuhani et al. Convenient syntheses of phthalocyanine and tetrabenzotriazaporphyrin (TBTAP) mono-alkynes; unhindered building blocks for click chemistry and beyond
CN113896683A (zh) 一种帕唑帕尼关键中间体的制备方法
US6593475B1 (en) Preparation of derivative of 3-sulfonamido-4-phenylaminopyridine
CN100588658C (zh) 4,7-二氮杂吲哚的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799139

Country of ref document: EP

Kind code of ref document: A1