WO2023213031A1 - 一种转子盘及其制造设备和制造方法 - Google Patents

一种转子盘及其制造设备和制造方法 Download PDF

Info

Publication number
WO2023213031A1
WO2023213031A1 PCT/CN2022/114706 CN2022114706W WO2023213031A1 WO 2023213031 A1 WO2023213031 A1 WO 2023213031A1 CN 2022114706 W CN2022114706 W CN 2022114706W WO 2023213031 A1 WO2023213031 A1 WO 2023213031A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
support unit
unit
steel block
manufacturing equipment
Prior art date
Application number
PCT/CN2022/114706
Other languages
English (en)
French (fr)
Inventor
陈翾
孙显旺
崔豪杰
梁雨生
曲喜家
王治会
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Publication of WO2023213031A1 publication Critical patent/WO2023213031A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to the field of axial magnetic field motors, and in particular to a rotor disk and its manufacturing equipment and manufacturing method.
  • Radial magnetic field motors and axial magnetic field motors are two major branches in the field of motors.
  • Axial magnetic field motors are also called disk motors. They have the characteristics of small size, light weight, short axial size and high power density, and can be used in most applications. It is used in thin installation situations, so it is widely used.
  • the motor includes a stator and a rotor, and the rotor of an axial magnetic field motor is mainly composed of a bracket and magnets. Several magnets are arranged at circumferential intervals on the bracket to form a disc-shaped structure of the rotor as a whole. The ability of the bracket to fix the magnets will directly affect the operating performance of the motor. If the magnets become detached due to the high-speed rotation of the rotor, the motor will not be able to function normally.
  • the fixing performance of the magnets is particularly important.
  • the magnets and brackets are assembled manually. It is easy to fail to ensure the fixing ability of the magnets due to improper operation. Moreover, the combination ability of the magnets and brackets Poor performance also affects the stability and reliability of the rotor structure.
  • the present invention provides a rotor disk that effectively improves structural stability and reliability and ensures normal operation of the motor, as well as manufacturing equipment and manufacturing methods with the rotor disk.
  • the present invention provides a rotor disk, which includes a silicon steel unit and a support unit.
  • the silicon steel unit includes a plurality of silicon steel blocks arranged at circumferential intervals, and the support unit is integrally formed on the silicon steel unit. And it can be wrapped around the periphery of each silicon steel block so that both axial ends of each silicon steel block are exposed.
  • the silicon steel unit further includes connecting bars, and the connecting bars are connected between any two adjacent silicon steel blocks to separate the two adjacent silicon steel blocks into separate parts.
  • the support unit includes multiple layers of laminated sheets, and the multiple layers of laminated sheets are respectively stacked in the slots on both sides of the axial direction of the silicon steel block.
  • the lamination includes an inner ring part and a plurality of engaging parts, the plurality of engaging parts are arranged at circumferential intervals on the outer edge of the inner ring part, and the engaging parts are embedded in the inner ring part.
  • the inner ring portion is correspondingly wrapped in the inner peripheral edge of each silicon steel block.
  • the lamination further includes an outer ring part, the inner ring part and the outer ring part are arranged from inside to outside, and the engaging part is connected to the inner ring part and the outer ring part. Between the outer ring parts, the outer ring part is correspondingly wrapped around the outer peripheral edge of the silicon steel block.
  • the support unit further includes a ring body wrapped around the outer periphery of each silicon steel block.
  • the support unit includes an injection molded body, which is injection molded on the periphery of each silicon steel block.
  • the present invention also provides a rotor disk manufacturing equipment, including two mold pressure plates.
  • the two mold pressure plates are molded together to form a molding space for accommodating the silicon steel unit and the support unit.
  • the silicon steel unit includes a plurality of silicon steel blocks arranged at intervals around the periphery. The two axial ends of the silicon steel blocks are respectively engaged with the two mold pressure plates.
  • the support unit is filled in the forming space and wrapped around each of the silicon steel blocks. The peripheral edge of the support unit is integrally formed on the silicon steel unit.
  • the mold pressure plate has an engaging surface, and the engaging surface is provided with a number of positioning holes arranged at circumferential intervals.
  • the positioning holes of the two mold pressure plates correspond one to one for engagement. Both axial ends of the silicon steel block.
  • the intermediate mold also includes an intermediate mold.
  • the intermediate mold is provided with a sleeve hole.
  • the side walls of the sleeve are respectively connected to the clamping holes of the two mold pressure plates.
  • the edges of the surfaces are joined together so that the molding space is formed inside the set hole.
  • the mold pressure plate is provided with a cavity, the bottom of the cavity is formed by the engaging surface, and the cavities of the two mold pressure plates communicate to form the molding space.
  • the mold pressure plate is provided with an injection hole communicating with the molding space.
  • it also includes an intermediate column, which can be disposed in the molding space and connect the centers of the engaging surfaces of the two mold pressure plates respectively to form a hole in the center of the support unit. .
  • the present invention also provides a manufacturing method of a rotor disk, which includes the following steps:
  • S1 provide a silicon steel unit, the silicon steel unit includes several silicon steel blocks arranged at circumferential intervals;
  • the silicon steel unit further includes connecting bars, and the connecting bars are connected between any two adjacent silicon steel blocks to separate the two adjacent silicon steel blocks into separate parts.
  • the punched strip-shaped silicon steel sheet has multiple sets of slotted portions spaced apart along the length direction, and adjacent two sets of slotted portions define a space for rolling to form silicon steel.
  • the number of the slotted hole parts in each group is two, and they are relatively arranged on both sides of the strip-shaped silicon steel sheet in the width direction, and a space is defined between the two slotted hole parts in each group.
  • the ribs are rolled to form the connecting ribs.
  • the support unit includes multi-layer laminates
  • step S2 includes:
  • the step S21 and the step S23 further include:
  • the support unit includes an injection molded body
  • step S2 includes:
  • the support unit follows the contour of the air gap surface of the silicon steel block and wraps around the periphery of the silicon steel block, which not only exposes the air gap surface of the silicon steel block, but also improves the support unit's impact on the silicon steel block.
  • the fixing ability, and the support unit is integrally formed on the silicon steel unit, further improves the bonding ability of the support unit and the silicon steel block, and improves the strength, stability and reliability of the rotor disk structure. This prevents the rotor disk from rotating at high speed and causing the silicon steel block to detach.
  • the support unit can be formed by injection molding or lamination hot pressing, and can be quickly and easily processed using manufacturing equipment, so that the support unit can be integrally formed on the silicon steel unit and can be wrapped around each of the silicon steel units. the perimeter of the block. It not only reduces motor manufacturing costs and labor hours, but also reduces excessive accumulated tolerances in the assembly process and ensures critical dimensions, thereby ensuring the strength of the motor rotor and improving the stability and reliability of the
  • Figure 1 is a schematic structural diagram of the rotor disk according to the present invention.
  • Figure 2 is a schematic diagram of the cooperation between the silicon steel unit and the support unit according to the present invention.
  • Figure 3 is a schematic structural diagram of the silicon steel unit according to the present invention.
  • Figure 4 is a schematic diagram of the rolling of the silicon steel unit according to the present invention.
  • Figure 5 is a schematic structural diagram of the first embodiment of the laminate according to the present invention.
  • Figure 6 is a schematic structural diagram of a second embodiment of the laminate according to the present invention.
  • Figure 7 is a schematic diagram of the cooperation between the ring body and the silicon steel unit according to the present invention.
  • Figure 8 is a schematic structural diagram of the first embodiment of the manufacturing equipment according to the present invention.
  • Figure 9 is a schematic diagram of mold closing according to the first embodiment of the manufacturing equipment of the present invention.
  • Figure 10 is a schematic structural diagram of the mold pressure plate in the first embodiment of the manufacturing equipment of the present invention.
  • Figure 11 is a schematic structural diagram of a second embodiment of the manufacturing equipment according to the present invention.
  • Figure 12 is a schematic structural diagram of a third embodiment of the manufacturing equipment according to the present invention.
  • Figure 13 is a schematic structural diagram of the fourth embodiment of the manufacturing equipment of the present invention.
  • the rotor disk 100 includes a silicon steel unit 110 and a support unit 120.
  • the silicon steel unit 110 includes a plurality of silicon steel blocks 111 arranged at circumferential intervals.
  • the support unit 120 is integrally formed on the silicon steel unit 110. and can be wrapped around the periphery of each silicon steel block 111 so that both axial ends of each silicon steel block 111 are exposed.
  • the two axial ends of the silicon steel block 111 are flush with each other and form an air gap surface with the air gap of the rotor, and the support unit 120 follows the contour of the air gap surface of the silicon steel block 111 and is wrapped around the silicon steel block.
  • the periphery of 111 not only exposes the air gap surface of the silicon steel block 111, but also improves the fixing ability of the support unit 120 to the silicon steel block 111, and the support unit 120 is integrally formed on the silicon steel unit. 110, the bonding ability of the support unit 120 and the silicon steel block 111 is further improved, and the strength, stability and reliability of the rotor disk 100 structure are improved. This prevents the rotor disk 100 from rotating at high speed and causing the silicon steel block 111 to detach.
  • the silicon steel block 111 can be prevented from moving in the radial and circumferential directions. And because the support unit 120 is integrally formed with the silicon steel unit 110, it can be avoided.
  • the silicon steel block 111 moves in the axial direction, thereby ensuring the ability of the support unit 120 to the silicon steel block 111 .
  • the axial size of the support unit 120 may be smaller than the axial size of the silicon steel block 111 , so that both axial ends of the silicon steel block 111 can be exposed outside the support unit 120 .
  • the silicon steel block 111 of the silicon steel unit 110 can be a split structure or an integrally formed structure. The following is introduced through two embodiments:
  • the first embodiment of the silicon steel unit 110 is the first embodiment of the silicon steel unit 110:
  • each silicon steel block 111 has a split structure, and the air gap surface profile of each silicon steel block 111 can be trapezoidal, wherein the trapezoidal upper bottom of the silicon steel block 111 is a concave surface.
  • the trapezoidal bottom of block 111 is convex.
  • the silicon steel block 111 can be made by pressing soft magnetic powder or stacking silicon steel sheets to form corresponding rotor magnetic poles, and the corresponding number can be selected according to the number of poles of the motor.
  • the periphery of the silicon steel block 111 includes an inner periphery 1111, an outer periphery 1113 and two side peripheries 1112.
  • the two side peripheries 1112 are respectively connected to both sides of the inner periphery 1111 and the outer periphery 1113 to surround the city.
  • the air gap surface profile of the silicon steel block 111 is trapezoidal
  • the inner peripheral edge 1111 corresponds to the upper bottom of the trapezoid
  • the outer peripheral edge 1113 corresponds to the lower bottom of the trapezoid
  • the side peripheral edges 1112 correspond to the two waists of the trapezoid.
  • the inner peripheral edge 1111 is a concave surface
  • the outer peripheral edge 1113 is a convex surface.
  • the second embodiment of the silicon steel unit 110 is the second embodiment of the silicon steel unit 110:
  • the second embodiment of the silicon steel unit 110 is different from the first embodiment in that the silicon steel unit 110 also includes connecting bars 112, wherein any two adjacent silicon steel blocks 111 are connected to each other.
  • the connecting ribs 112 are used to separate two adjacent silicon steel blocks 111 into slots 113 located on both axial sides of the silicon steel blocks 111.
  • the support unit 120 is embedded in the slots 113. .
  • the connecting ribs 112 can be integrally formed with the silicon steel block 111, for example, by rolling. This not only improves the molding efficiency of the silicon steel unit 110, but also facilitates the transportation of each silicon steel block 111 as a whole, for example, placing the entire silicon steel block 111 in the manufacturing equipment 200 and combining it with the support unit 120.
  • a slot 113 can be formed to be combined with the support unit 120, thereby increasing the contact area between the two and improving the fixing ability of the support unit 120 to the silicon steel block 111.
  • each connecting rib 112 can be located on the same plane, specifically located at the middle position of the silicon steel block 111 in the axial direction.
  • the support unit 120 has an annular flat structure, and a hole 123 is opened in the center of the support unit 120 for assembling the rotating shaft.
  • the support unit 120 can be laminated or injection molded through the lamination 121, and is introduced in detail through the following three embodiments:
  • the first embodiment of the support unit 120 is the first embodiment of the support unit 120.
  • the support unit 120 includes an injection molded body, which is injection molded on the periphery of each silicon steel block 111 .
  • the injection molded body can be potted with epoxy resin, PPS, PTFE, PEEK and other materials.
  • the second embodiment of the support unit 120 is the second embodiment of the support unit 120.
  • the support unit 120 includes multiple layers of laminations 121, wherein the laminations 121 are stacked in the axial direction of the silicon steel block 111, and the multiple layers of the laminations 121 are respectively laminated on the silicon steel block. 111 in the slots 113 on both sides of the axis.
  • the laminate 121 may be made of non-metallic material, such as epoxy resin fiber material.
  • the laminate 121 includes an inner ring part 1211 and a plurality of engaging parts 1212.
  • the plurality of engaging parts 1212 are arranged at circumferential intervals on the outer edge of the inner ring part 1211.
  • the inner ring part 1212 Embedded in the slot 113 and correspondingly wrapped around the side peripheral edge 1112 of the silicon steel block 111, the inner ring portion 1211 is correspondingly wrapped around the inner peripheral edge 1111 of each silicon steel block 111.
  • the support unit 120 also includes a ring body 122, which is wrapped around the outer peripheral edge 1113 of each silicon steel block 111. Refer to FIG. 7, so that the peripheral edges of the silicon steel blocks 111 are wrapped.
  • the ring body 122 may be wound by fiber threads or the like.
  • the third embodiment of the support unit 120 is the third embodiment of the support unit 120.
  • the third embodiment of the support unit 120 is different from the second embodiment in that the lamination 121 further includes an outer ring part 1213 , the inner ring part 1211 and the outer ring part 1213 They are arranged from the inside to the outside, and the engaging portion 1212 is connected between the inner ring portion 1211 and the outer ring portion 1213 .
  • the outer ring portion 1213 is correspondingly wrapped around the outer peripheral edge 1113 of the silicon steel block 111 .
  • the ring body 122 can be mounted on the outer ring portion 1213 to further enhance the fixing ability of the support unit 120 to the silicon steel block 111 .
  • the first embodiment of the support unit 120 is an injection molding method, which can be applied to the split structure of the first embodiment of the silicon steel unit 110 and the one-piece structure of the second embodiment.
  • the lamination method of the second and third embodiments of the support unit 120 is mainly applicable to the one-piece structure of the second embodiment of the silicon steel unit 110, but can also be applied to the first embodiment of the silicon steel unit 110.
  • a plurality of silicon steel blocks 111 are arranged at annular intervals, and laminations 121 are stacked between two adjacent silicon steel blocks 111 to wrap the periphery of the silicon steel blocks 111 .
  • the support unit 120 follows the contour of the air gap surface of the silicon steel block 111 and wraps around the periphery of the silicon steel block 111, which not only exposes the air gap surface of the silicon steel block 111, but also improves the
  • the support unit 120 has the ability to fix the silicon steel block 111, and the support unit 120 is integrally formed on the silicon steel unit 110, which further improves the bonding ability of the support unit 120 and the silicon steel block 111. And improve the strength, stability and reliability of the rotor disk 100 structure. This prevents the rotor disk 100 from rotating at high speed and causing the silicon steel block 111 to detach.
  • the rotor disk manufacturing equipment 200 includes two mold pressure plates 210.
  • the two mold pressure plates 210 are molded together to form a molding space 2000 for accommodating the silicon steel unit 110 and the support unit 120.
  • the silicon steel unit 110 includes a plurality of silicon steel blocks 111 arranged at intervals around the periphery. Both axial ends of the silicon steel blocks 111 engage the two mold pressure plates 210 respectively, and the support unit 120 is filled in the forming space 2000 And wrapped around the periphery of each silicon steel block 111, so that the support unit 120 is integrally formed on the silicon steel unit 110.
  • the silicon steel unit 110 and the support unit 120 are integrally formed in the molding space 2000, which reduces motor manufacturing costs and man-hours, avoids excessive accumulated tolerances caused by improper operations caused by manual assembly, and ensures the consistency of key dimensions and dimensions, thereby improving Rotor disc strength, as well as structural stability and reliability.
  • the mold pressure plate 210 has an engaging surface 211.
  • the engaging surface 211 is provided with a plurality of positioning holes 2111 arranged at circumferential intervals.
  • the positioning holes 2111 of the two mold pressure plates 210 One-to-one correspondence for engaging the two axial ends of the silicon steel block 111 .
  • the engaging surfaces 211 of the two mold pressure plates 210 are parallel to shape the flatness of both end surfaces of the molded silicon steel plate 100 .
  • the shape of the positioning hole 2111 is consistent with the peripheral shape of the silicon steel block 111. Since the axial end of the silicon steel block 111 is engaged in the positioning hole 2111, the support unit 120 can avoid the positioning hole 2111. The two axial ends of the silicon steel block 111 are formed between the engaging surfaces 211 of the two mold pressure plates 210, thereby exposing the two axial ends of the silicon steel block 111. It can be seen that the positioning holes 2111 not only position the silicon steel block 111, but also prevent the support unit 120 from wrapping the two axial ends of the silicon steel block 111.
  • the depth of the positioning hole 2111 determines the exposed positions of both axial ends of the silicon steel block 111.
  • the manufacturing equipment 200 may have the following different structures corresponding to the different molding methods of the support unit 120:
  • the first embodiment of the manufacturing equipment 200 is the first embodiment of the manufacturing equipment 200.
  • the mold pressure plate 210 is provided with an injection hole 212 connected to the molding space 2000.
  • the molding space 2000 can be injected through the injection hole 212 to form the injection molded support unit 120.
  • the injection molding hole 212 can be used as a vent.
  • the number of the injection holes 212 may be multiple, and they may be provided corresponding to the gap between two adjacent silicon steel blocks 111 .
  • the injection holes 212 may be provided corresponding to the slot 113 of the silicon steel unit 110 , see FIG. 3 .
  • the manufacturing equipment 200 further includes an intermediate column 230, which can be disposed in the molding space 2000 and connect the centers of the engagement surfaces 211 of the two mold pressure plates 210 respectively.
  • a hole 123 is formed in the center of the support unit 120 .
  • the middle column 230 can be integrally connected to a mold pressure plate 210. When the two mold pressure plates 210 are closed, the middle column 230 is located at the center of the engagement surface 211 of the two mold pressure plates 210.
  • the mold pressure plate 210 is provided with a cavity 2100, the bottom of the cavity 2100 is formed by the engaging surface 211, and the cavities 2100 of the two mold pressure plates 210 are communicated to form the The forming space 2000 is described.
  • the shape of the support unit 120 is determined by the molding space 2000, wherein the support unit 120 has an annular flat structure.
  • first embodiment of the manufacturing equipment 200 can be applied to the split structure of the first embodiment of the silicon steel unit 110 and the integrated structure of the second embodiment.
  • the second embodiment of the manufacturing equipment 200 is different from the first embodiment in that the manufacturing equipment 200 further includes an intermediate mold 220.
  • the intermediate mold 220 is provided with a set hole 221. Between the mold pressure plates 210, the side walls of the sleeve holes 221 are respectively connected to the edges of the engaging surfaces 211 of the two mold pressure plates 210, so that the molding space 2000 is formed inside the sleeve holes 221, see Figure 11.
  • the second embodiment of the manufacturing equipment 200 is also applicable to the split structure of the first embodiment of the silicon steel unit 110 and the one-piece structure of the second embodiment.
  • the third embodiment of the manufacturing equipment 200 is the third embodiment of the manufacturing equipment 200.
  • the third embodiment of the manufacturing equipment 200 is different from the first embodiment in that the injection holes 212 for injection molding are omitted to laminate the laminations 121 to form the support unit. 120.
  • the fourth embodiment of the manufacturing equipment 200 is the fourth embodiment of the manufacturing equipment 200.
  • the fourth embodiment of the manufacturing equipment 200 is different from the second embodiment in that the injection holes 212 for injection molding are omitted to laminate the laminations 121 to form the support unit 120 .
  • the manufacturing equipment 200 may further include a heating module to subject the laminates 121 to high temperature and pressure fixation, and form the support unit 120 .
  • the silicon steel unit 110 and the support unit 120 are integrally formed in the forming space 2000, which reduces motor manufacturing costs and man-hours, avoids excessive accumulated tolerances caused by improper operations caused by manual assembly, and ensures the accuracy of key dimensions and dimensions. Consistency, thereby improving the strength of the rotor disk, as well as the stability and reliability of the structure.
  • the manufacturing method of the rotor disk includes the following steps:
  • S1 provide a silicon steel unit 110, which includes several silicon steel blocks 111 arranged at circumferential intervals;
  • the support unit 120 is integrally formed on the silicon steel unit 110, wherein the support unit 120 is wrapped around the periphery of each silicon steel block 111, and both axial ends of each silicon steel block 111 are exposed.
  • the first embodiment of the manufacturing method involves injection molding the silicon steel unit 110 of a split structure to form the support unit 120 of the injection molded body.
  • the support unit 120 includes an injection molded body
  • the step S2 includes:
  • S22 Inject molding into the molding space 2000 to form the support unit 120.
  • the manufacturing equipment 200 includes two mold pressure plates 210 and a middle column 230.
  • the step S21 includes engaging the two axial ends of the plurality of silicon steel blocks 111 in opposite positions of the two mold pressure plates 210 one by one. hole 2111, and the two mold pressure plates 210 are molded together to form the molding space 2000, wherein the middle column 230 can be disposed in the molding space 2000 and connect the engaging surfaces of the two mold pressure plates 210 respectively. 211 central location.
  • S22 includes injecting molding into the molding space 2000 through the injection hole 212 on the mold pressure plate 210 to form the support unit 120, where the center of the support unit 120 is acted upon by the middle column 230 and forms The hole 123.
  • the manufacturing equipment 200 may also include an intermediate mold 220.
  • the intermediate mold 220 is provided with a set hole 221. When the intermediate mold 220 is closed between the two mold pressure plates 210, the side walls of the set hole 221 are connected respectively. The edges of the engaging surfaces 211 of the two mold pressing plates 210 form the molding space 2000 inside the set hole 221, see FIG. 11 .
  • the manufacturing equipment 200 is demoulded to remove the integrally formed silicon steel plate 100, and then the hole 123 of the support unit 120 is processed to the required assembly size so that the rotating shaft can be correspondingly installed. .
  • the second embodiment of the manufacturing method involves injection molding the silicon steel unit 110 of an integrally formed structure to form a support unit 120 of the injection molded body.
  • the silicon steel unit 110 also includes connecting ribs 112, and the connecting ribs 112 are connected between any two adjacent silicon steel blocks 111 to connect the two adjacent silicon steel blocks 111. They are separated into slots 113 located on both axial sides of the silicon steel block 111, and step S1 includes: rolling the punched and sheared strip-shaped silicon steel sheet 1100 to form an integrally connected silicon steel block 111 and connecting ribs. 112.
  • the punched strip-shaped silicon steel sheet 1100 has multiple sets of slot portions 1103 spaced apart along the length direction, and adjacent two sets of slot portions 1103 define a hole for rolling the silicon steel.
  • the number of the slot portions 1103 in each group is two, and they are arranged oppositely on both sides of the strip-shaped silicon steel sheet 1100 in the width direction.
  • the two slot portions 1103 in each group are A rib portion 1103 for rolling to form the connecting rib 113 is defined therebetween, see FIGS. 3 and 4 .
  • the third embodiment of the manufacturing method involves laminating silicon steel units 110 with an integrally formed structure to form a laminated support unit 120 .
  • the support unit 120 includes a multi-layer laminate 121, and the step S2 includes:
  • the silicon steel unit 110 after laminating the laminations 121 is placed in the manufacturing equipment 200 as a whole, and the manufacturing equipment 200 closes the mold to form the molding space 2000, so that the laminations 121 are in the molding space 2000. Hot pressing.
  • the manufacturing equipment 200 includes two mold pressure plates 210 and a middle column 230.
  • the step S23 includes engaging the two axial ends of the plurality of silicon steel blocks 111 in opposite positions of the two mold pressure plates 210 one by one. hole 2111, and the two mold pressing plates 210 are molded together to form the molding space 2000, so that the laminates 121 are stacked and shaped in the molding space 2000, wherein the middle column 230 can be disposed in the molding space 2000.
  • the center positions of the engaging surfaces 211 of the two mold pressure plates 210 are respectively connected to form a hole 123 in the center of the support unit 120 .
  • the manufacturing equipment 200 may also include an intermediate mold 220.
  • the intermediate mold 220 is provided with a set hole 221. When the intermediate mold 220 is closed between the two mold pressure plates 210, the side walls of the set hole 221 are connected respectively. The edges of the engaging surfaces 211 of the two mold pressing plates 210 form the molding space 2000 inside the set hole 221, see FIG. 11 .
  • the lamination 121 may or may not have an outer ring part 1213 .
  • the lamination 121 does not have the outer ring part 1213 , there is still a gap between step S21 and step S23 .
  • the ring body 122 can also be placed outside the outer ring portion 1213 to further improve the fixing ability of the silicon steel block 111.
  • the support unit 120 can be formed by injection molding or lamination hot pressing, and the manufacturing equipment 200 can be used for quick and easy processing, so that the support unit 120 can be integrally formed on the silicon steel unit. And can be wrapped around the periphery of each silicon steel block 111. It not only reduces motor manufacturing costs and labor hours, but also reduces excessive accumulated tolerances in the assembly process and ensures critical dimensions, thereby ensuring the strength of the motor rotor and improving the stability and reliability of the rotor.

Abstract

一种转子盘及其制造设备和制造方法,其中转子盘(100)包括硅钢单元(110)和支撑单元(120),硅钢单元(110)包括若干个圆周间隔排列的硅钢块(111),支撑单元(120)一体成型于硅钢单元(110)上,并能够包裹于各硅钢块(111)的周缘,以使各硅钢块(111)的轴向两端暴露在支撑单元(120)外部,这样不仅能够使硅钢块(111)的气隙面露出,而且提升了支撑单元(120)对硅钢块(111)的固定能力,并且支撑单元(120)一体成型于硅钢单元(110)上,提升了转子盘(100)结构的强度、稳定性和可靠性。

Description

一种转子盘及其制造设备和制造方法 技术领域
本发明涉及轴向磁场电机领域,尤其涉及一种转子盘及其制造设备和制造方法。
背景技术
径向磁场电机和轴向磁场电机是电机领域的两大分支,其中轴向磁场电机也称为盘式电机,其具有体积小、重量轻、轴向尺寸短和功率密度高等特点,可在多数薄型安装场合使用,因此被广泛应用。
电机包括定子和转子,而轴向磁场电机的转子主要由支架和磁钢组成,若干个磁钢在支架上圆周间隔排列,以使转子整体形成盘状结构。其中支架对磁钢的固定能力,将直接影响电机的运行性能,如若磁钢因转子高速旋转而出现脱离,则电机无法正常使用。
可见在转子设计和制造中,磁钢的固定性能尤为重要,目前磁钢和支架是通过手动装配完成的,极易因操作不当而无法保证磁钢的固定能力,而且磁钢和支架的结合能力较差,同样影响转子结构的稳定和可靠性。
发明内容
为了解决上述问题,本发明提供了一种有效提升结构稳定和靠性,且保证电机正常运行的转子盘,以及具有该转子盘的制造设备和制造方法。
依据本发明的一个目的,本发明提供了一种转子盘,包括硅钢单元和支撑单元,所述硅钢单元包括若干个圆周间隔排列的硅钢块,所述支撑单元一体成型于所述硅钢单元上,并能够包裹于各所述硅钢块的周缘,以使各所述硅钢块的轴向两端暴露。
作为优选的实施例,所述硅钢单元还包括连接筋,任意相邻的两所述硅钢块之间连接所述连接筋,以将相邻的两所述硅钢块之间分隔为分设于所述硅钢块轴向两侧的卡槽,所述支撑单元内嵌于所述卡槽内。
作为优选的实施例,所述支撑单元包括多层叠片,多层所述叠片分别叠压于所述硅钢块轴向两侧的卡槽内。
作为优选的实施例,所述叠片包括一内环部和若干个卡合部,若干个所述卡合部圆周间隔排列于所述内环部外边缘,所述卡合部内嵌于所述卡槽内,并对应包裹在所述硅钢块的侧周缘,所述内环部对应包裹在各所述硅钢块的内周缘。
作为优选的实施例,所述叠片还包括一外环部,所述内环部和所述外环部从内至外排列,并且所述卡合部连接于所述内环部和所述外环部之间,所述外环部对应包裹在所述硅钢块的外周缘。
作为优选的实施例,所述支撑单元还包括环体,所述环体包裹在各所述硅钢块的外周缘。
作为优选的实施例,所述支撑单元包括注塑体,所述注塑体注塑成型于各所述硅钢块的周缘。
依据本发明的另一个目的,本发明还提供了一种转子盘的制造设备,包括两模具压板,两所述模具压板合模形成一成型空间,以用于容置硅钢单元和支撑单元,所述硅钢单元包括若干个周缘间隔排列的硅钢块,所述硅钢块的轴向两端分别卡合两所述模具压板,所述支撑单元填充于所述成型空间内并包裹于各所述硅钢块的周缘,以使所述支撑单元一体成型于所述硅钢单元上。
作为优选的实施例,所述模具压板具有卡合面,所述卡合面设置有若干个圆周间隔排列的定位孔,两所述模具压板的所述定位孔一一对应,以用于卡合所述硅钢块的轴向两端。
作为优选的实施例,还包括中间模具,所述中间模具开设有套孔,当所述中间模具合模于两所述模具压板之间,所述套侧壁分别连接两所述模具压板的卡合面边缘,以使所述套孔内部形成所述成型空间。
作为优选的实施例,所述模具压板设置有腔室,所述腔室的底部由所述卡合面形成,两个所述模具压板的腔室相通以形成所述成型空间。
作为优选的实施例,所述模具压板上开设有连通所述成型空间的注塑孔。
作为优选的实施例,还包括中间柱,所述中间柱能够被设置于所述成型空间内,且分别连接两所述模具压板卡合面的中心位置,以在所述支撑单元中心形成孔洞。
根据本发明的另一个目的,本发明还提供了一种转子盘的制造方法,包括以下步骤:
S1,提供硅钢单元,所述硅钢单元包括若干个圆周间隔排列的硅钢块;
S2,将支撑单元一体成型于所述硅钢单元上,其中所述支撑单元包裹于各硅钢块的周缘,并且各所述硅钢块的轴向两端暴露。
作为优选的实施例,所述硅钢单元还包括连接筋,任意相邻的两所述硅钢块之间连接所述连接筋,以将相邻的两所述硅钢块之间分隔为分设于所述硅钢块轴向两侧的卡槽,进而所述步骤S1包括:卷制冲剪后的带状硅钢片,以形成一体连接的硅钢块和连接筋。
作为优选的实施例,冲剪后的所述带状硅钢片,其具有沿长度方向间隔排列的多组槽孔部,相邻两组所述槽孔部之间界定了用于卷制形成硅钢块的块片部,每组所述槽孔部的数量 为两个,且相对设置于所述带状硅钢片宽度方向的两侧,每组的两个所述槽孔部之间界定了用于卷制形成连接筋的筋片部。
作为优选的实施例,所述支撑单元包括多层叠片,进而所述步骤S2包括:
S21,将多层所述叠片分别叠压于所述硅钢块轴向两侧的卡槽内;
S23,将叠压所述叠片后的硅钢单元整体置于制造设备内,通过所述制造设备合模来形成成型空间,使得所述叠片在所述成型空间内热压。
作为优选的实施例,所述步骤S21和所述步骤S23之间还包括:
S22,将环体包裹在各所述硅钢块的外周缘。
作为优选的实施例,所述支撑单元包括注塑体,进而所述步骤S2包括:
S21,将所述硅钢单元置于制造设备的成型空间内;
S22,向所述成型空间注塑,以形成所述支撑单元。
与现有技术相比,本技术方案具有以下优点:
所述支撑单元沿着所述硅钢块气隙面轮廓,并包裹于所述硅钢块的周缘,不仅能够使所述硅钢块的气隙面露出,而且提升了所述支撑单元对所述硅钢块的固定能力,并且所述支撑单元是一体成型于所述硅钢单元上,进一步提升了所述支撑单元和所述硅钢块的结合能力,以及提升转子盘结构的强度、稳定和可靠性。防止所述转子盘高速旋转,而出现所述硅钢块脱离的现象。所述支撑单元可采用注塑或叠片热压的方式成型,并利用制造设备进行快速简便的加工,以使所述支撑单元能够一体成型于所述硅钢单元上,并能够包裹于各所述硅钢块的周缘。不仅减少电机制造成本和工时,还减少装配过程存在的过多累计公差、确保关键尺寸,从而保证电机转子强度,以及提升转子的稳定和可靠性。
以下结合附图及实施例进一步说明本发明。
附图说明
图1为本发明所述转子盘的结构示意图;
图2为本发明所述硅钢单元和支撑单元的配合示意图;
图3为本发明所述硅钢单元的结构示意图;
图4为本发明所述硅钢单元的卷制示意图;
图5为本发明所述叠片第一实施例的结构示意图;
图6为本发明所述叠片第二实施例的结构示意图;
图7为本发明所述环体和硅钢单元的配合示意图;
图8为本发明所述制造设备第一实施例的结构示意图;
图9为本发明所述制造设备第一实施例的合模示意图;
图10为本发明所述制造设备第一实施例中模具压板的结构示意图;
图11为本发明所述制造设备第二实施例的结构示意图;
图12为本发明所述制造设备第三实施例的结构示意图;
图13为本发明所述制造设备第四实施例的结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
如图1所示,所述转子盘100,包括硅钢单元110和支撑单元120,所述硅钢单元110包括若干个圆周间隔排列的硅钢块111,所述支撑单元120一体成型于所述硅钢单元110上,并能够包裹于各所述硅钢块111的周缘,以使各所述硅钢块111的轴向两端暴露。
所述硅钢块111的轴向两端分别齐平,并形成与转子气隙的气隙面,而所述支撑单元120沿着所述硅钢块111气隙面轮廓,并包裹于所述硅钢块111的周缘,不仅能够使所述硅钢块111的气隙面露出,而且提升了所述支撑单元120对所述硅钢块111的固定能力,并且所述支撑单元120是一体成型于所述硅钢单元110上,进一步提升了所述支撑单元120和所述硅钢块111的结合能力,以及提升转子盘100结构的强度、稳定和可靠性。防止所述转子盘100高速旋转,而出现所述硅钢块111脱离的现象。
进一步说明。由于所述支撑单元120包裹于所述硅钢块111的周缘,可避免所述硅钢块111沿径向和周向移动,而由于所述支撑单元120一体成型于所述硅钢单元110,可避免所述硅钢块111沿轴向移动,进而保证所述支撑单元120对所述硅钢块111的能力。再者所述支撑单元120的轴向尺寸可小于所述硅钢块111的轴向尺寸,这样所述硅钢块111的轴向两端能够暴露于所述支撑单元120外。
所述硅钢单元110的硅钢块111可为分体结构,或者一体成型结构,以下通过两个实施例来介绍:
所述硅钢单元110的第一实施例:
如图13所示,各所述硅钢块111为分体结构,并且每个所述硅钢块111的气隙面轮廓可 呈梯形,其中所述硅钢块111的梯形上底为凹面,所述硅钢块111的梯形下底为凸面。
所述硅钢块111可由软磁磁粉压合或硅钢片叠合而成,以形成相应的转子磁极,可根据电机极数涉及进行选定相应的数量。
参考图3,所述硅钢块111周缘包括内周缘1111、外周缘1113和两侧周缘1112,两所述侧周缘1112分别连接于所述内周缘1111和所述外周缘1113的两侧,以围城相应形状的所述硅钢块111周缘。其中当所述硅钢块111的气隙面轮廓呈梯形时,所述内周缘1111对应梯形的上底,所述外周缘1113对应梯形的下底,所述侧周缘1112对应梯形的两个腰部,另外所述内周缘1111为凹面,所述外周缘1113为凸面。
所述硅钢单元110的第二实施例:
如图3所示,所述硅钢单元110的第二实施例与第一实施例不同在于,所述硅钢单元110还包括连接筋112,其中任意相邻的两所述硅钢块111之间连接所述连接筋112,以将相邻的两所述硅钢块111之间分隔为分设于所述硅钢块111轴向两侧的卡槽113,所述支撑单元120内嵌于所述卡槽113内。
所述连接筋112可与所述硅钢块111一体成型,例如采用卷制的方式卷绕而成。不仅能够提升硅钢单元110的成型效率,而且便于各所述硅钢块111整体搬运,例如整体置于制造设备200中,进行与支撑单元120的结合。另外还能形成与所述支撑单元120结合的卡槽113,进而增加两者的接触面积,提升所述支撑单元120对所述硅钢块111的固定能力。
具体地,所述连接筋112的内边缘和所述硅钢块111的内周缘1111齐平,均呈凹面。所述连接筋112的外边缘和所述硅钢块111的外周缘1113齐平,均呈凸面,以使所述硅钢单元110整体形成环形结构。并且各连接筋112可位于同一平面,具体位于所述硅钢块111轴向的中间位置。
如图1和图2所示,所述支撑单元120呈环形的扁状结构,并且所述支撑单元120的中心开设有孔洞123,以用于装配转轴。另外所述支撑单元120可通过叠片121叠压或注塑成型,并通过以下三个实施例来详细介绍:
所述支撑单元120的第一实施例:
所述支撑单元120包括注塑体,所述注塑体注塑成型于各所述硅钢块111的周缘。其中所述注塑体可由环氧树脂、PPS、PTFE、PEEK等材料灌封而成。
所述支撑单元120的第二实施例:
如图2所示,所述支撑单元120包括多层叠片121,其中所述叠片121在所述硅钢块111轴向上层叠,并且多层所述叠片121分别叠压于所述硅钢块111轴向两侧的卡槽113内。
所述叠片121可采用非金属材料,例如环氧树脂纤维材料。
进一步地,所述叠片121包括一内环部1211和若干个卡合部1212,若干个所述卡合部1212圆周间隔排列于所述内环部1211外边缘,所述卡合部1212内嵌于所述卡槽113内,并对应包裹在所述硅钢块111的侧周缘1112,所述内环部1211对应包裹在各所述硅钢块111的内周缘1111,参考图6,
更进一步地,所述支撑单元120还包括环体122,所述环体122包裹在各所述硅钢块111的外周缘1113,参考图7,这样所述硅钢块111的周缘都受到包裹。其中所述环体122可由纤维线等缠绕而成。
所述支撑单元120的第三实施例:
如图5所示,所述支撑单元120的第三实施例与第二实施例不同在于,所述叠片121还包括一外环部1213,所述内环部1211和所述外环部1213从内至外排列,并且所述卡合部1212连接于所述内环部1211和所述外环部1213之间,所述外环部1213对应包裹在所述硅钢块111的外周缘1113。
另外还可在所述外环部1213外套接所述环体122,以进一步提升所述支撑单元120对所述硅钢块111的固定能力。
所述支撑单元120的第一实施例为注塑成型方式,其可适用于所述硅钢单元110的第一实施例的分体结构,以及第二实施例的一体成型结构。而所述支撑单元120第二和第三实施例的叠压方式,其主要适用于所述硅钢单元110第二实施例的一体成型结构,但也可适用于所述硅钢单元110的第一实施例的分体结构,例如将若干个所述硅钢块111呈环形间隔排列,并将叠片121叠压于相邻的两个所述硅钢块111之间,以包裹所述硅钢块111的周缘。
综上所述,所述支撑单元120沿着所述硅钢块111气隙面轮廓,并包裹于所述硅钢块111的周缘,不仅能够使所述硅钢块111的气隙面露出,而且提升了所述支撑单元120对所述硅钢块111的固定能力,并且所述支撑单元120是一体成型于所述硅钢单元110上,进一步提升了所述支撑单元120和所述硅钢块111的结合能力,以及提升转子盘100结构的强度、稳定和可靠性。防止所述转子盘100高速旋转,而出现所述硅钢块111脱离的现象。
如图8至图13所示,所述转子盘的制造设备200,包括两模具压板210,两所述模具压板210合模形成一成型空间2000,以用于容置硅钢单元110和支撑单元120,所述硅钢单元110包括若干个周缘间隔排列的硅钢块111,所述硅钢块111的轴向两端分别卡合两所述模具压板210,所述支撑单元120填充于所述成型空间2000内并包裹于各所述硅钢块111的周缘, 以使所述支撑单元120一体成型于所述硅钢单元110上。
所述硅钢单元110和支撑单元120在所述成型空间2000内一体成型,减少电机制造成本和工时,避免手工装配造成操作不当而引发过多累计公差,确保关键尺寸和尺寸的一致性,从而提升转子盘强度,以及结构的稳定和可靠性。
如图8和图10所述,所述模具压板210具有卡合面211,所述卡合面211设置有若干个圆周间隔排列的定位孔2111,两所述模具压板210的所述定位孔2111一一对应,以用于卡合所述硅钢块111的轴向两端。当两个所述模具压板210合模时,两所述模具压板210的卡合面211平行,以对成型硅钢盘100两端面的平面度整形。
所述定位孔2111的形状与所述硅钢块111的周缘形状相一致,由于所述硅钢块111的轴向端部是卡合在所述定位孔2111内的,因此支撑单元120可避让所述硅钢块111的轴向两端,以在两个所述模具压板210的卡合面211之间成型,进而使所述硅钢块111的轴向两端暴露。可见所述定位孔2111不仅起到对所述硅钢块111定位的作用,而且避免支撑单元120包裹所述硅钢块111的轴向两端。
需要说明的是,所述定位孔2111的深度决定了所述硅钢块111的轴向两端暴露的位置,以所述硅钢单元110第二实施例的一体成型结构为例,参考图12,所述连接筋112至所述卡合面211之间存在空隙,以容纳注塑体或叠片121。
所述制造设备200对应所述支撑单元120不同的成型方式,可具有以下不同的结构:
所述制造设备200第一实施例:
如图12所示,所述模具压板210上开设有连通所述成型空间2000的注塑孔212,可通过所述注塑孔212向所述成型空间2000注塑,以形成注塑成型的所述支撑单元120。当然所述注塑孔212可作为排气孔使用。
所述注塑孔212的数量可为多个,且对应相邻两所述硅钢块111之间空隙设置,例如所述注塑孔212对应所述硅钢单元110的卡槽113设置,参考图3。
如图12所示,所述制造设备200还包括中间柱230,所述中间柱230能够被设置于所述成型空间2000内,且分别连接两所述模具压板210卡合面211的中心位置,以在所述支撑单元120中心形成孔洞123。其中所述中间柱230可与一模具压板210一体连接,当两个所述模具压板210合模时,所述中间柱230就位于两所述模具压板210卡合面211的中心位置。
继续参考图10和图12,所述模具压板210设置有腔室2100,所述腔室2100的底部由所述卡合面211形成,两个所述模具压板210的腔室2100相通以形成所述成型空间2000。所述支撑单元120的形状是由成型空间2000决定的,其中所述支撑单元120呈环形的扁状结构。
需要说明的是,所述制造设备200第一实施例可适用于所述硅钢单元110的第一实施例的分体结构,以及第二实施例的一体成型结构。
所述制造设备200第二实施例:
所述制造设备200第二实施例与第一实施例不同在于,所述制造设备200还包括中间模具220,所述中间模具220开设有套孔221,当所述中间模具220合模于两所述模具压板210之间,所述套孔221侧壁分别连接两所述模具压板210的卡合面211边缘,以使所述套孔221内部形成所述成型空间2000,参考图11。
相对于所述制造设备200第一实施例,无需对所述模具压板210进行挖槽以形成腔室2100,只要加工深度较浅的所述定位孔2111即可,从而降低了加工难度。
所述制造设备200第二实施例同样适用于所述硅钢单元110的第一实施例的分体结构,以及第二实施例的一体成型结构。
所述制造设备200第三实施例:
如图8和图9所示,所述制造设备200第三实施例与第一实施例不同在于,省略了用于注塑的注塑孔212,以对所述叠片121叠压形成所述支撑单元120。
所述制造设备200第四实施例:
如图11所示,所述制造设备200第四实施例与第二实施例不同在于,省略了用于注塑的注塑孔212,以对所述叠片121叠压形成所述支撑单元120。
对于所述制造设备200的第三和第四实施例,所述制造设备200可还包括加热模块,以使所述叠片121受高温加压固定,并形成所述支撑单元120。
综上所述,所述硅钢单元110和支撑单元120在所述成型空间2000内一体成型,减少电机制造成本和工时,避免手工装配造成操作不当而引发过多累计公差,确保关键尺寸和尺寸的一致性,从而提升转子盘强度,以及结构的稳定和可靠性。
参考图1,所述转子盘的制造方法,包括以下步骤:
S1,提供硅钢单元110,所述硅钢单元110包括若干个圆周间隔排列的硅钢块111;
S2,将支撑单元120一体成型于所述硅钢单元110上,其中所述支撑单元120包裹于各硅钢块111的周缘,并且各所述硅钢块111的轴向两端暴露。
所述制造方法第一实施例:
所述制造方法第一实施例为对分体结构的硅钢单元110进行注塑,以形成注塑体的支撑单元120。如图12和图13所示,所述支撑单元120包括注塑体,进而所述步骤S2包括:
S21,将所述硅钢单元110置于制造设备200的成型空间2000内;
S22,向所述成型空间2000注塑,以形成所述支撑单元120。
所述制造设备200包括两模具压板210和以中间柱230,所述步骤S21包括,逐一将多个所述硅钢块111的轴向两端分别卡合在两个所述模具压板210相对的定位孔2111内,并且将两所述模具压板210合模形成所述成型空间2000,其中所述中间柱230能够被设置于所述成型空间2000内,且分别连接两所述模具压板210卡合面211的中心位置。
S22包括,通过所述模具压板210上的注塑孔212,并向所述成型空间2000注塑,以形成所述支撑单元120,其中所述支撑单元120的中心受所述中间柱230作用,并形成所述孔洞123。
所述制造设备200还可包括中间模具220,所述中间模具220开设有套孔221,当所述中间模具220合模于两所述模具压板210之间,所述套孔221侧壁分别连接两所述模具压板210的卡合面211边缘,以使所述套孔221内部形成所述成型空间2000,参考图11。
另外在所述步骤S2之后还包括对制造设备200进行脱模,以取下一体成型的硅钢盘100,然后对所述支撑单元120的孔洞123加工至所需的装配尺寸,以能够对应安装转轴。
所述制造方法第二实施例:
如图12所示,所述制造方法第二实施例为对一体成型结构的硅钢单元110进行注塑,以形成注塑体的支撑单元120。其与第一实施例不同在于,所述硅钢单元110还包括连接筋112,任意相邻的两所述硅钢块111之间连接所述连接筋112,以将相邻的两所述硅钢块111之间分隔为分设于所述硅钢块111轴向两侧的卡槽113,进而所述步骤S1包括:卷制冲剪后的带状硅钢片1100,以形成一体连接的硅钢块111和连接筋112。
具体地,冲剪后的所述带状硅钢片1100,其具有沿长度方向间隔排列的多组槽孔部1103,相邻两组所述槽孔部1103之间界定了用于卷制形成硅钢块111的块片部1101,每组所述槽孔部1103的数量为两个,且相对设置于所述带状硅钢片1100宽度方向的两侧,每组的两个所述槽孔部1103之间界定了用于卷制形成连接筋113的筋片部1103,参考图3和图4。
所述制造方法第三实施例:
如图1、图2、图8和图9所示,所述制造方法第三实施例为对一体成型结构的硅钢单元110进行叠片层叠,以形成叠压的支撑单元120。
所述支撑单元120包括多层叠片121,进而所述步骤S2包括:
S21,将多层所述叠片121分别叠压于所述硅钢块111轴向两侧的卡槽113内;
S23,将叠压所述叠片121后的硅钢单元110整体置于制造设备200内,通过所述制造设 备200合模来形成成型空间2000,使得所述叠片121在所述成型空间2000内热压。
所述制造设备200包括两模具压板210和以中间柱230,所述步骤S23包括,逐一将多个所述硅钢块111的轴向两端分别卡合在两个所述模具压板210相对的定位孔2111内,并且将两所述模具压板210合模形成所述成型空间2000,以使所述叠片121在所述成型空间2000内叠压定型,其中所述中间柱230能够被设置于所述成型空间2000内,且分别连接两所述模具压板210卡合面211的中心位置,,以在所述支撑单元120中心形成孔洞123。
所述制造设备200还可包括中间模具220,所述中间模具220开设有套孔221,当所述中间模具220合模于两所述模具压板210之间,所述套孔221侧壁分别连接两所述模具压板210的卡合面211边缘,以使所述套孔221内部形成所述成型空间2000,参考图11。
如图5和图6所示,所述叠片121可具有或没有外环部1213,当所述叠片121没有所述外环部1213时,所述步骤S21和所述步骤S23之间还包括:
S22,将环体122包裹在各所述硅钢块111的外周缘,以保证所述支撑单元120能够包裹各所述硅钢块111的周缘。
而当所述叠片121具有所述外环部1213,可同样在所述外环部1213外套设所述环体122,以进一步提升对所述硅钢块111的固定能力。
综上所述,所述支撑单元120可采用注塑或叠片热压的方式成型,并利用制造设备200进行快速简便的加工,以使所述支撑单元120能够一体成型于所述硅钢单元上,并能够包裹于各所述硅钢块111的周缘。不仅减少电机制造成本和工时,还减少装配过程存在的过多累计公差、确保关键尺寸,从而保证电机转子强度,以及提升转子的稳定和可靠性。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利采用范围,即凡依本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (18)

  1. 一种转子盘(100),其特征在于,包括硅钢单元(110)和支撑单元(120),所述硅钢单元(110)包括若干个圆周间隔排列的硅钢块(111),所述支撑单元(120)一体成型于所述硅钢单元(110)上,并能够包裹于各所述硅钢块(111)的周缘,以使各所述硅钢块(111)的轴向两端暴露。
  2. 如权利要求1所述的转子盘(100),其特征在于,所述硅钢单元(110)还包括连接筋(112),任意相邻的两所述硅钢块(111)之间连接所述连接筋(112),以将相邻的两所述硅钢块(111)之间分隔为分设于所述硅钢块(111)轴向两侧的卡槽(113),所述支撑单元(120)内嵌于所述卡槽(113)内。
  3. 如权利要求2所述的转子盘(100),其特征在于,所述支撑单元(120)包括多层叠片(121),多层所述叠片(121)分别叠压于所述硅钢块(111)轴向两侧的卡槽(113)内。
  4. 如权利要求3所述的转子盘(100),其特征在于,所述叠片(121)包括一内环部(1211)和若干个卡合部(1212),若干个所述卡合部(1212)圆周间隔排列于所述内环部(1211)外边缘,所述卡合部(1212)内嵌于所述卡槽(113)内,并对应包裹在所述硅钢块(111)的侧周缘(1112),所述内环部(1211)对应包裹在各所述硅钢块(111)的内周缘(1111)。
  5. 如权利要求4所述的转子盘(100),其特征在于,所述叠片(121)还包括一外环部(1213),所述内环部(1211)和所述外环部(1213)从内至外排列,并且所述卡合部(1212)连接于所述内环部(1211)和所述外环部(1213)之间,所述外环部(1213)对应包裹在所述硅钢块(111)的外周缘(1113)。
  6. 如权利要求1所述的转子盘(100),其特征在于,所述支撑单元(120)还包括环体(122),所述环体(122)包裹在各所述硅钢块(111)的外周缘(1113)。
  7. 如权利要求1或2所述的转子盘(100),其特征在于,所述支撑单元(120)包括注塑体,所述注塑体注塑成型于各所述硅钢块(111)的周缘。
  8. 一种转子盘的制造设备(200),其特征在于,包括两模具压板(210),两所述模具压板(210)合模形成一成型空间(2000),以用于容置硅钢单元(110)和支撑单元(120),所述硅钢单元(110)包括若干个周缘间隔排列的硅钢块(111),所述硅钢块(111)的轴向两端分别卡合两所述模具压板(210),所述支撑单元(120)填充于所述成型空间(2000)内并包裹于各所述硅钢块(111)的周缘,以使所述支撑单元(120)一体成型于所述硅钢单元(110)上。
  9. 如权利要求8所述的制造设备(200),其特征在于,所述模具压板(210)具有卡合 面(211),所述卡合面(211)设置有若干个圆周间隔排列的定位孔(2111),两所述模具压板(210)的所述定位孔(2111)一一对应,以用于卡合所述硅钢块(111)的轴向两端。
  10. 如权利要求9所述的制造设备(200),其特征在于,还包括中间模具(220),所述中间模具(220)开设有套孔(221),当所述中间模具(220)合模于两所述模具压板(210)之间,所述套孔(221)侧壁分别连接两所述模具压板(210)的卡合面(211)边缘,以使所述套孔(221)内部形成所述成型空间(2000)。
  11. 如权利要求9所述的制造设备(200),其特征在于,所述模具压板(210)设置有腔室(2100),所述腔室(2100)的底部由所述卡合面(211)形成,两个所述模具压板(210)的腔室(2100)相通以形成所述成型空间(2000)。
  12. 如权利要求8所述的制造设备(200),其特征在于,所述模具压板(210)上开设有连通所述成型空间(2000)的注塑孔(212)。
  13. 如权利要求8所述的制造设备(200),其特征在于,还包括中间柱(230),所述中间柱(230)能够被设置于所述成型空间(2000)内,且分别连接两所述模具压板(210)卡合面(211)的中心位置,以在所述支撑单元(120)中心形成孔洞(123)。
  14. 一种转子盘的制造方法,其特征在于,包括以下步骤:
    S1,提供硅钢单元(110),所述硅钢单元(110)包括若干个圆周间隔排列的硅钢块(111);
    S2,将支撑单元(120)一体成型于所述硅钢单元(110)上,其中所述支撑单元(120)包裹于各硅钢块(111)的周缘,并且各所述硅钢块(111)的轴向两端暴露。
  15. 如权利要求14所述的制造方法,其特征在于,所述硅钢单元(110)还包括连接筋(112),任意相邻的两所述硅钢块(111)之间连接所述连接筋(112),以将相邻的两所述硅钢块(111)之间分隔为分设于所述硅钢块(111)轴向两侧的卡槽(113),进而所述步骤S1包括:卷制冲剪后的带状硅钢片(1100),以形成一体连接的硅钢块(111)和连接筋(112)。
  16. 如权利要求15所述的制造方法,其特征在于,所述支撑单元(120)包括多层叠片(121),进而所述步骤S2包括:
    S21,将多层所述叠片(121)分别叠压于所述硅钢块(111)轴向两侧的卡槽(113)内;
    S23,将叠压所述叠片(121)后的硅钢单元(110)整体置于制造设备(200)内,通过所述制造设备(200)合模来形成成型空间(2000),使得所述叠片(121)在所述成型空间(2000)内热压。
  17. 如权利要求16所述的制造方法,其特征在于,所述步骤S21和所述步骤S23之间还包括:
    S22,将环体(122)包裹在各所述硅钢块(111)的外周缘(1113)。
  18. 如权利要求14或15所述的制造方法,其特征在于,所述支撑单元(120)包括注塑体,进而所述步骤S2包括:
    S21,将所述硅钢单元(110)置于制造设备(200)的成型空间(2000)内;
    S22,向所述成型空间(2000)注塑,以形成所述支撑单元(120)。
PCT/CN2022/114706 2022-05-06 2022-08-25 一种转子盘及其制造设备和制造方法 WO2023213031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210484758.1A CN114640203A (zh) 2022-05-06 2022-05-06 一种转子盘及其制造设备和制造方法
CN202210484758.1 2022-05-06

Publications (1)

Publication Number Publication Date
WO2023213031A1 true WO2023213031A1 (zh) 2023-11-09

Family

ID=81953185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114706 WO2023213031A1 (zh) 2022-05-06 2022-08-25 一种转子盘及其制造设备和制造方法

Country Status (2)

Country Link
CN (1) CN114640203A (zh)
WO (1) WO2023213031A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640203A (zh) * 2022-05-06 2022-06-17 浙江盘毂动力科技有限公司 一种转子盘及其制造设备和制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546820A (zh) * 2019-01-03 2019-03-29 核心驱动科技(金华)有限公司 一种轴向磁场电机转子及其成型工艺
CN111483112A (zh) * 2019-01-28 2020-08-04 上海盘毂动力科技股份有限公司 一种轴向电机定子铁芯注塑模具
CN113422481A (zh) * 2021-07-06 2021-09-21 浙江盘毂动力科技有限公司 盘式电机转子及制造设备和制造方法
CN214958957U (zh) * 2021-07-06 2021-11-30 浙江盘毂动力科技有限公司 多层保持架结构的转子
CN114268197A (zh) * 2021-12-27 2022-04-01 浙江盘毂动力科技有限公司 一种轴向磁通电机的转子盘及成型方法
CN114285199A (zh) * 2021-12-27 2022-04-05 浙江盘毂动力科技有限公司 一种磁阻式轴向磁通电机转子及成型方法
CN114640203A (zh) * 2022-05-06 2022-06-17 浙江盘毂动力科技有限公司 一种转子盘及其制造设备和制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546820A (zh) * 2019-01-03 2019-03-29 核心驱动科技(金华)有限公司 一种轴向磁场电机转子及其成型工艺
CN111483112A (zh) * 2019-01-28 2020-08-04 上海盘毂动力科技股份有限公司 一种轴向电机定子铁芯注塑模具
CN113422481A (zh) * 2021-07-06 2021-09-21 浙江盘毂动力科技有限公司 盘式电机转子及制造设备和制造方法
CN214958957U (zh) * 2021-07-06 2021-11-30 浙江盘毂动力科技有限公司 多层保持架结构的转子
CN114268197A (zh) * 2021-12-27 2022-04-01 浙江盘毂动力科技有限公司 一种轴向磁通电机的转子盘及成型方法
CN114285199A (zh) * 2021-12-27 2022-04-05 浙江盘毂动力科技有限公司 一种磁阻式轴向磁通电机转子及成型方法
CN114640203A (zh) * 2022-05-06 2022-06-17 浙江盘毂动力科技有限公司 一种转子盘及其制造设备和制造方法

Also Published As

Publication number Publication date
CN114640203A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
US11277045B2 (en) Radially embedded permanent magnet rotor and methods thereof
US20130127283A1 (en) Rotor of an electric motor and manufacturing method of same
US20140103771A1 (en) Radially embedded permanent magnet rotor and methods thereof
US20140103769A1 (en) Radially embedded permanent magnet rotor and methods thereof
US20140103770A1 (en) Permanent magnet rotor and methods thereof
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
WO2023213031A1 (zh) 一种转子盘及其制造设备和制造方法
EP3579384B1 (en) Bonded rotor shaft
JP5916569B2 (ja) 回転電機の固定子及び回転電機
JP2015053831A (ja) 回転電機のロータ
JP3882721B2 (ja) 回転電機の冷却構造及びその製造方法
WO2018025407A1 (ja) コンシクエントポール型の回転子、電動機および空気調和機
JP5693521B2 (ja) 永久磁石埋込型電動機
JP4848584B2 (ja) 永久磁石ロータ、永久磁石ロータの製造方法、モータ
CN110311491B (zh) 一种具有低漏磁柔性转子的高效永磁电机
JP3615014B2 (ja) 磁石回転子及びその製造方法
JP2008029157A (ja) ステーターコア
JP2008278684A (ja) 一体成形方法
WO2013080342A1 (ja) 永久磁石埋込型電動機
CN102857047A (zh) 电机定子壳体制造方法
CN108604845B (zh) 轴向间隙型旋转电机
KR20170066868A (ko) 자석 압입형 모터 회전자
US8575805B2 (en) Electric motor rotor selectively formed of one of two different magnetic units
EP2963775A1 (en) A fluid tight spoke type rotor
WO2022195941A1 (ja) 埋め込み磁石同期モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940725

Country of ref document: EP

Kind code of ref document: A1