WO2023210661A1 - CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途 - Google Patents

CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途 Download PDF

Info

Publication number
WO2023210661A1
WO2023210661A1 PCT/JP2023/016351 JP2023016351W WO2023210661A1 WO 2023210661 A1 WO2023210661 A1 WO 2023210661A1 JP 2023016351 W JP2023016351 W JP 2023016351W WO 2023210661 A1 WO2023210661 A1 WO 2023210661A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
protein
extracellular vesicle
extracellular
cell
Prior art date
Application number
PCT/JP2023/016351
Other languages
English (en)
French (fr)
Inventor
力成 華山
友義 山野
一隆 的場
克彦 木田
志保 阿武
泰斗 西野
Original Assignee
国立大学法人金沢大学
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 日産化学株式会社 filed Critical 国立大学法人金沢大学
Publication of WO2023210661A1 publication Critical patent/WO2023210661A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a composition that controls CAR-T cell activation, hematopoietic stem cell proliferation, and iPS cell differentiation, and uses thereof.
  • Antigen-specific T cells e.g., cytotoxic T cells, helper T cells, etc.
  • Antigen-specific T cells play a central role in immune responses such as the elimination of cancer cells by living organisms and the regulation of responses to self-antigens, allergic substances, etc. It is known to have a similar function.
  • Antigen-specific T cells use their T cell receptors to recognize binding complexes between MHC molecules on the cell surface of antigen-presenting cells such as dendritic cells and macrophages and antigens derived from cancer, allergic substances, etc. activation, proliferation, differentiation, etc.
  • Activated antigen-specific T cells specifically damage antigen-presenting cancer cells, etc., and regulate responses to self-antigens, allergic substances, etc. Therefore, activation, proliferation, differentiation, etc. of antigen-specific T cells are considered to be particularly important in immune reactions.
  • Patent Document 1 discloses that nanoparticles containing MHC molecules and T cell costimulatory molecules on their surface proliferate antigen-specific T cells. Furthermore, Non-Patent Document 1 discloses that exosomes in which IL-12 is expressed on the membrane via PTGFRN proliferate model antigen-specific CD8-positive T cells.
  • the present inventors have also disclosed a method for activating various T cells using exosomes containing antigen-presenting MHC molecules and T cell costimulatory molecules on their surfaces (Patent Documents 2 and 3).
  • the purpose of the present invention is to provide a novel cell activation method, a composition for cell activation, and uses thereof, which activate specific cells (i.e., proliferate and/or differentiate) more efficiently than co-administering cytokine molecules. .
  • iPS cells iPS cells
  • iPS cells can be activated (i.e., proliferated and/or differentiated).
  • the invention includes: [0] Extracellular vesicles that extracellularly present at least one cytokine. [1] Extracellular vesicles that present at least one target factor extracellularly. [2] Extracellular vesicles that extracellularly present at least one target factor and at least one cytokine.
  • [1A] The extracellular vesicle according to [2], wherein the target factor is an antigen and the cytokine is a T cell-stimulating cytokine.
  • [2A] The extracellular vesicle according to [2], wherein the target factor is an antigen and a T cell costimulatory molecule, and the cytokine is a T cell stimulating cytokine.
  • Possible proteins or (2) (C) an extracellular vesicle containing the antigen and a protein capable of extramembranely presenting the antigen and the T cell-stimulating cytokine, including the T cell-stimulating cytokine or a subunit thereof.
  • [5A] The extracellular vesicle according to [2A], the membrane of which has the following: (1) (B) A protein containing the antigen and capable of presenting the antigen outside the membrane; (A) a protein capable of extramembranely presenting the cell-stimulating cytokine, including the T-cell-stimulating cytokine or a subunit thereof; and (D) a protein capable of presenting the T-cell costimulatory molecule, including the T-cell costimulatory molecule.
  • Protein (B) is antigen and Any one of [3A] to [5A], which is a fusion protein with a membrane protein capable of localizing in the membrane of an extracellular vesicle or a protein capable of binding to the membrane of an extracellular vesicle. Extracellular vesicles as described in.
  • Protein (A) is the T cell-stimulating cytokine or a subunit thereof; The extracellular according to [4A] or [5A], which is a fusion protein with a membrane protein capable of localizing in the membrane of an extracellular vesicle or a protein capable of binding to the membrane of an extracellular vesicle. vesicle.
  • Protein (C) is the antigen; the T cell-stimulating cytokine or a subunit thereof;
  • vesicle. [9A]
  • the membrane protein capable of localizing in the membrane of an extracellular vesicle or the protein capable of binding to the membrane of an extracellular vesicle comprises a tetraspanin or its transmembrane domain or MFG-E8 or its membrane binding domain.
  • Protein (C) is From the N-terminal side, (C-1) antigen peptide, (C-2) a spacer sequence that may be present; and (C-3) a fusion comprising a tetraspanin or its transmembrane domain or MFG-E8 or its transmembrane domain and the T cell-stimulating cytokine or its subunit.
  • the extracellular vesicle according to [4A] or [5A] which comprises an amino acid sequence encoding a peptide in this order.
  • Protein (C) is From the N-terminal side, (C-1) A fusion peptide comprising a tetraspanin or its transmembrane domain or MFG-E8 or its transmembrane domain and the T cell-stimulating cytokine or its subunit (C-2) a spacer sequence that may be present, and (C-3) antigen peptide,
  • C-1 A fusion peptide comprising a tetraspanin or its transmembrane domain or MFG-E8 or its transmembrane domain and the T cell-stimulating cytokine or its subunit
  • C-3 antigen peptide The extracellular vesicle according to [4A] or [5A], which contains the amino acid sequence encoded in this order.
  • [12A] The fusion peptide, from the N-terminal side, (1) A partial sequence of a tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3, (2) a spacer sequence that may be present; (3) the T cell-stimulating cytokine or a subunit thereof; (4) an optional spacer sequence, and (5) an amino acid sequence encoding a partial sequence of tetraspanin containing transmembrane domain 4 in this order, the extracellular small according to [10A] or [11A].
  • Cell A partial sequence of a tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3, (2) a spacer sequence that may be present; (3) the T cell-stimulating cytokine or a subunit thereof; (4) an optional spacer sequence, and (5) an amino acid sequence encoding a partial
  • [13A] The fusion peptide, from the N-terminal side, (1) the T cell-stimulating cytokine or a subunit thereof; (2) a spacer sequence that may be present, and (3) MFG-E8
  • the fusion protein defined in (D) above comprises a T cell costimulatory molecule; [ 5A].
  • [15A] The fusion protein defined in (D) above comprises a T cell costimulatory molecule;
  • the extracellular vesicle according to [5A] comprising a tetraspanin or its transmembrane domain, or MFG-E8 or its membrane binding domain.
  • [16A] From the N-terminal side of the fusion protein defined in (D) above, (D-1) Amino acid sequence of T cell costimulatory molecule, (D-2) The extracellular vesicle according to [5A], comprising an optional spacer sequence, and (D-3) an amino acid sequence comprising the amino acid sequence of a tetraspanin or a transmembrane domain thereof in this order. [17A] The extracellular vesicle according to any one of [0A] to [16A], wherein the extracellular vesicle is an exosome.
  • [1AA] (a) A polynucleotide encoding the protein (A) defined in [4A]; (b) a polynucleotide encoding the protein (B) defined by [3A] or [4A]; (c) a polynucleotide encoding the protein (C) defined in [4A]; (d) A polynucleotide encoding the protein (D) defined in [5A]; or (e) A polynucleotide encoding the protein (E) defined in [5A]. [2AA] A vector comprising the polynucleotide described in [1AA].
  • [3AA] (a) a polynucleotide encoding a protein (A) as defined in [4A]; and (b) a polynucleotide encoding a protein (B) as defined in [3A] or [4A].
  • [4AA] (c) A cell transformed with a vector containing a polynucleotide encoding protein (C) defined in [5A].
  • [5AA] (d) The cell according to [3AA] or [4AA], further comprising a polynucleotide encoding the protein (D) defined in [5A].
  • [6AA] (e) A cell transformed with a vector containing a polynucleotide encoding the protein (E) defined in [5A].
  • [7AA] A culture supernatant obtained by culturing the cells according to any one of [3AA] to [6AA].
  • [8AA] Extracellular vesicles contained in the culture supernatant according to [7AA].
  • [9AA] A method for producing the extracellular vesicle according to [1A], comprising: 1) culturing the cells according to [3AA] or [4AA], 2) collecting the culture supernatant after culturing; and 3) optionally purifying extracellular vesicles from the collected culture supernatant.
  • [10AA] A method for producing the extracellular vesicle according to [2A], comprising: 1) culturing the cells according to [5AA] or [6AA], 2) collecting the culture supernatant after culturing; and 3) optionally purifying extracellular vesicles from the collected culture supernatant.
  • [1AB] A pharmaceutical composition comprising the extracellular vesicle according to any one of [0A] to [3A].
  • [2AB] A pharmaceutical composition for proliferating chimeric antigen receptor gene-transferred T cells (CAR-T cells) specific for the antigen in vivo or in vitro, the composition according to any one of [0A] to [3A].
  • a pharmaceutical composition comprising an extracellular vesicle as described.
  • [3AB] A pharmaceutical composition for treating cancer containing cancer cells expressing the antigen, comprising the extracellular vesicle according to any one of [0A] to [3A], A pharmaceutical composition that is administered to a patient who has received chimeric antigen receptor gene-transferred T cells (CAR-T cells).
  • [4AB] The pharmaceutical composition according to [2AB] or [3AB], wherein the antigen is Her2 protein or a fragment thereof, or CD19 protein or a fragment thereof.
  • [1AC] A method for activating and/or proliferating CAR-T cells in a subject to which the antigen-specific chimeric antigen receptor gene-transferred T cells (CAR-T cells) have been administered, the method comprising: ] to [3A], comprising administering the extracellular vesicle according to any one of [3A],
  • the chimeric antigen receptor of the CAR-T cell reacts with the antigen presented on the extracellular membrane of the extracellular vesicle, and preferably, the T cell-stimulating cytokine receptor on the CAR-T cell and the extracellular vesicle react with each other.
  • the T cell-stimulating cytokines presented on the extracellular membrane of the vesicle react, and preferably, CD28, CD134, etc. present on the membrane of the CAR-T cell and the T cells presented on the extracellular membrane of the extracellular vesicle react with each other.
  • the chimeric antigen receptor of the CAR-T cell reacts with the antigen presented on the extracellular membrane of the extracellular vesicle, and preferably, the T cell-stimulating cytokine receptor on the CAR-T cell and the extracellular vesicle react with each other.
  • the T cell-stimulating cytokines presented on the extracellular membrane of the vesicle react, and preferably, CD28, CD134, etc. present on the membrane of the CAR-T cell and the T cells presented on the extracellular membrane of the extracellular vesicle react with each other.
  • CAR-T cells Due to the interaction of the stimulating molecules, CAR-T cells are activated and/or proliferated within the subject, and the activated and/or proliferated CAR-T cells attack the cancer cells, resulting in cancer cells.
  • a method for treating cancer by suppressing the proliferation of. [3AC] The method according to [1AC] or [2AC], wherein the antigen is Her2 protein or a fragment thereof, or CD19 protein or a fragment thereof.
  • [1AD] In the production of a medicament for activating and/or proliferating CAR-T cells in a subject to whom the antigen-specific chimeric antigen receptor gene-transferred T cells (CAR-T cells) have been administered, [0A] to [0] 3A].
  • [2AD] Use of the extracellular vesicle according to any one of [0A] to [3A] in the manufacture of a medicament for treating cancer containing cancer cells expressing the antigen in a subject, the use of the extracellular vesicle according to any one of [0A] to [3A], Use in which specific chimeric antigen receptor transgenic T cells (CAR-T cells) are administered to the subject.
  • [3AD] The method according to [1AD] or [2AD], wherein the antigen is Her2 protein or a fragment thereof, or CD19 protein or a fragment thereof.
  • TPO thrombopoietin
  • SCF stem cell factor
  • [4B] (B) The extracellular small according to any one of [1B] to [3B], which contains L-selectin and/or CXCL12 and further contains a protein capable of extramembrane display of L-selectin and/or CXCL12.
  • Protein (A)-1 is a fusion protein of TPO and a membrane protein capable of localizing in the membrane of extracellular vesicles or a protein capable of binding to the membrane of extracellular vesicles, [ 2B].
  • Protein (A)-2 is a fusion protein of SCF and a membrane protein capable of localizing in the membrane of extracellular vesicles or a protein capable of binding to the membrane of extracellular vesicles, [ 2B].
  • Protein (A)-3 is The TPO; The SCF; The extracellular vesicle according to [3B], which is a fusion protein with a membrane protein capable of localizing in the membrane of the extracellular vesicle or a protein capable of binding to the membrane of the extracellular vesicle.
  • Protein (B) is The L-selectin or CXCL12; The extracellular vesicle according to [4B], which is a fusion protein with a membrane protein capable of localizing in the membrane of an extracellular vesicle or a protein capable of binding to the membrane of an extracellular vesicle.
  • the membrane protein capable of localizing in the membrane of an extracellular vesicle or the protein capable of binding to the membrane of an extracellular vesicle comprises a tetraspanin or its transmembrane domain or MFG-E8 or its membrane binding domain.
  • [11B] (a)-1 A polynucleotide encoding protein (A)-1 defined in [2B]; (a)-2 A polynucleotide encoding protein (A)-2 defined in [2B]; (a)-3 A polynucleotide encoding protein (A)-3 defined in [3B]; or (b) A polynucleotide encoding protein (B) defined in [4B].
  • [12B] A vector comprising the polynucleotide described in [11B].
  • [13B] (a)-1 A polynucleotide encoding protein (A)-1 defined in [2B]; and/or (a)-2 A polynucleotide encoding protein (A)-2 defined in [2B] Cells transformed with a single vector or a combination of two or more vectors, including: [14B] (a)-3 A cell transformed with a vector containing a polynucleotide encoding protein (A)-3 defined in [3B]. [15B] (d) The cell according to [13B] or [14B], further comprising a polynucleotide encoding the protein (B) defined in [4B].
  • [16B] A culture supernatant obtained by culturing the cells according to any one of [13B] to [15B].
  • [17B] Extracellular vesicles contained in the culture supernatant according to [16B].
  • [18B] A method for producing the extracellular vesicle according to [1B], comprising: 1) culturing the cell according to any one of [13B] to [15B], 2) collecting culture supernatant after culturing; and 3) optionally purifying extracellular vesicles from the collected culture supernatant.
  • [19B] A pharmaceutical composition comprising the extracellular vesicle according to [1B] or the culture supernatant according to [16B].
  • [20B] A pharmaceutical composition for activating and/or proliferating hematopoietic stem cells in vivo or in vitro, comprising the extracellular vesicle according to [1B] or the culture supernatant according to [16B].
  • [21B] A pharmaceutical composition for treating aplastic anemia in a subject, comprising the extracellular vesicles according to [1B] or the culture supernatant according to [16B], and which is administered to a subject who has received hematopoietic stem cells.
  • a pharmaceutical composition A pharmaceutical composition.
  • [22B] A pharmaceutical composition for treating blood cancer or immunodeficiency in a subject, the composition comprising the extracellular vesicle according to [1B] or the culture supernatant according to [16B], wherein the subject receives chemotherapy and A pharmaceutical composition in which hematopoietic stem cells are administered after/or a radiotherapy treatment.
  • [23B] A method for activating and/or proliferating hematopoietic stem cells in a subject who has been administered hematopoietic stem cells, the method comprising administering to the subject the extracellular vesicles described in [1B] or the culture supernatant described in [16B] including doing;
  • the method according to [22B] wherein the subject suffers from aplastic anemia.
  • [24B] A method for treating blood cancer or immunodeficiency in a subject, the method comprising: Administering hematopoietic stem cells to the subject after chemotherapy and/or radiotherapy treatment, and then administering the extracellular vesicles according to [1B] or the culture supernatant according to [16B],
  • the cytokine receptors on the administered hematopoietic stem cells and the cytokines presented outside the membrane of extracellular vesicles react, and the hematopoietic stem cells are activated and/or proliferate within the subject, resulting in hematopoietic function in the subject. How to recover.
  • [25B] Use of the extracellular vesicle according to [1B] or the culture supernatant according to [16B] in the manufacture of a medicament for activating and/or proliferating hematopoietic stem cells in a subject to whom the hematopoietic stem cells have been administered.
  • [26B] The use according to [25B], wherein the subject suffers from aplastic anemia.
  • [27B] Use of the extracellular vesicles according to [1B] or the culture supernatant according to [16B] in the manufacture of a medicament for treating blood cancer or immunodeficiency in a subject,
  • the subject has been administered hematopoietic stem cells after chemotherapy and/or radiotherapy treatment, and cytokine receptors on the administered hematopoietic stem cells and cytokines presented outside the membrane of extracellular vesicles react.
  • [1C] The extracellular vesicle according to [0], wherein the cytokine is ActivinA.
  • [2C] The extracellular vesicle according to [1], wherein the target factor is Bc2Lc and the cytokine is ActivinA.
  • [3C] The extracellular vesicle according to [1C], the membrane of which has the following: (A) An extracellular vesicle containing the Activin A and a protein capable of displaying the Activin A outside the membrane.
  • Protein (B) is a fusion protein of Bc2Lc and a membrane protein capable of localizing in the membrane of extracellular vesicles or a protein capable of binding to the membrane of extracellular vesicles [4C] Extracellular vesicles as described in. [7C]
  • the protein (A) is a fusion protein of Activin A and a membrane protein capable of localizing in the membrane of extracellular vesicles or a protein capable of binding to the membrane of extracellular vesicles [3C] Or the extracellular vesicle according to [4C].
  • Protein (C) is The Bc2Lc and the ActivinA;
  • the extracellular vesicle according to [5C] which is a fusion protein with a membrane protein capable of localizing in the membrane of the extracellular vesicle or a protein capable of binding to the membrane of the extracellular vesicle.
  • the membrane protein capable of localizing in the membrane of an extracellular vesicle or the protein capable of binding to the membrane of an extracellular vesicle comprises a tetraspanin or its transmembrane domain or MFG-E8 or its membrane binding domain.
  • [10C] The extracellular vesicle according to any one of [1C] to [9C], wherein the extracellular vesicle is an exosome.
  • [11C] (a) A polynucleotide encoding a protein (A) defined by [3C] or [4C]; (b) A polynucleotide encoding a protein (B) defined by [4C]; or (c) a polynucleotide encoding a protein (C) defined by [5C].
  • [12C] A vector comprising the polynucleotide described in [11C].
  • [13C] (a) a polynucleotide encoding the protein (A) defined in [3C] or [4C]; and/or (b) a polynucleotide encoding the protein (B) defined in [4C].
  • [14C] (c) A cell transformed with a vector containing a polynucleotide encoding protein (C) defined in [5C].
  • [15C] A culture supernatant obtained by culturing the cells according to any one of [11C] and [12C].
  • [16C] Extracellular vesicles contained in the culture supernatant according to [15C].
  • [17C] A method for producing the extracellular vesicle according to [1C], comprising: 1) culturing the cells according to [11C] or [12C], 2) collecting the culture supernatant after culturing; and 3) optionally purifying extracellular vesicles from the collected culture supernatant.
  • [18C] An agent for inducing differentiation of iPS cells or ES cells, comprising the extracellular vesicle according to [1C] or the culture supernatant according to [13C].
  • MHC Major Histocompatibility Complex
  • Example 1.2.1 Results of flow cytometry analysis of fusion proteins contained in the membrane of extracellular vesicles. Upper row: extracellular vesicles of sample 3; lower row: extracellular vesicles of sample 4.
  • Example 1.3.1 Results of cell proliferation evaluation using human bone marrow CD34-positive progenitor cells.
  • Example 2.2.1 Results of flow cytometry analysis of fusion proteins contained in the membrane of extracellular vesicles.
  • Example 2.3.2. Results of an iPSC differentiation induction experiment using Activin A-expressing extracellular vesicles.
  • Example 3.1 Schematic diagram of each gene structure in . (A) For mouse CAR-T cell experiment.
  • Control exosomes (negative control), hCD19-hCD81, hCD19-hCD81 and hCD80-hCD9, hCD19-hCD81-hIL-2, hCD19-hCD81-hIL-2 and hCD80-hCD9.
  • Extracellular vesicles as used herein are not particularly limited as long as they are vesicles secreted from cells, but examples include Exosomes and Microvesicles (MV). , Apoptotic Bodies, and the like.
  • exosome refers to about 20 to about 500 nm (preferably about 20 to about 200 nm, more preferably about 25 to about 150 nm, even more preferably about 30 to about 100 nm).
  • Components of exosomes include, for example, proteins, nucleic acids (mRNA, miRNA, non-coating RNA), and the like. Exosomes may have the function of controlling intercellular communication. Examples of exosome marker molecules include Alix, Tsg101, tetraspanin, flotillin, and phosphatidylserine.
  • Microvesicles refers to vesicles of about 50 to about 1000 nm that originate from the cytoplasmic membrane.
  • the components of the microvesicle include proteins, nucleic acids (mRNA, miRNA, non-coated RNA, etc.), and the like.
  • Microvesicles can have functions such as controlling intercellular communication.
  • marker molecules for microvesicles include integrins, selectins, CD40, and CD154.
  • apoptotic bodies refers to vesicles of about 500 to about 2000 nm that originate from the cytoplasmic membrane.
  • Components of apoptotic bodies include, for example, fragmented nuclei, organelles, and the like. Apoptotic bodies may have functions such as inducing phagocytosis.
  • marker molecules for apoptotic bodies include Annexin V, phosphatidylserine, and the like.
  • Cytokine refers to a physiologically active protein substance secreted from cells.
  • interferon IFN
  • interleukin IL
  • chemokine CCL, etc.
  • SCF stem cell factor
  • hematopoietic factors colony stimulating factor (CSF), erythropoietin (EPO), thrombopoietin (TPO), etc.
  • TNF tumor necrosis factor
  • growth factors EGF, FGF- ⁇ , etc.
  • activin inhibin, and the like.
  • cytokines may include not only immature (inactive) or mature (active) cytokines, but also partial sequences thereof, subunits of active cytokines.
  • Cytokines may be derived from any animal species. For example, rodents such as mice and rats; lagomorphs such as rabbits; ungulates such as pigs, cows, goats, horses, and sheep; felines such as dogs and cats; humans, monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, Examples include those derived from animals such as mammals such as primates such as orangutans and chimpanzees.
  • the cytokines described herein are preferably of rodent or mammalian origin, more preferably of murine or human origin.
  • the cytokine described herein has an amino acid sequence identity of 80% or more, preferably 90% or more, to its wild type amino acid sequence, as long as it can exert its function. It is preferably 95% or more, more preferably 98% or more, even more preferably 99% or more.
  • the cytokine described herein may have one or more amino acid deletions, insertions, additions, and /or may be substituted.
  • T cell-stimulating cytokine is a cytokine that can stimulate (eg, activate, suppress, etc.) T cells via receptors expressed on the membrane of T cells.
  • T cell stimulating cytokines include, but are not limited to, IL-2, IL-4, IL-6, IL-7, IL-12, IL-15, TGF- ⁇ , IFN- ⁇ , IFN- ⁇ and the like.
  • those that can form multimers of homo or hetero subunits for example, IL-12, TGF- ⁇ , etc.
  • are functional i.e., as long as they can have the desired pharmacological activity).
  • , or may be a continuous amino acid sequence connected via a peptide linker or the like as the case may be. It may be bound or fused to other full-length proteins or partial sequence peptides thereof (eg, the Sushi domain of the IL-15 receptor) as long as the ability to stimulate T cells is maintained.
  • Target factor refers to a molecule that can bind to a molecule present on the surface of a cell that is stimulated by the extracellular vesicle according to the present invention.
  • Molecules present on the surface of cells include, but are not particularly limited to, antibodies, receptors, cell adhesion molecules, sugar chains (and sugar chain proteins), and the like.
  • the molecule present on the cell surface is an antibody, the antigen recognized by the antibody; if the molecule present on the cell surface is a receptor, its ligand (for example, a chemokine such as CXCL12); in the case of a cell adhesion factor, the antigen recognized by the antibody; Molecules that bind to the cell adhesion molecules; if the molecules present on the cell surface are sugar chains (and sugar chain proteins), sugar chain binding proteins that bind to the sugar chains (for example, selectins such as L-selectin and Bc2Lc lectins) etc. correspond to target factors.
  • antigen used herein is not particularly limited as long as it has antigenicity, and includes not only peptidic antigens (i.e., antigenic peptides) but also phospholipids, complex carbohydrates, etc.
  • Non-peptidic antigens such as (eg, bacterial membrane components such as mycolic acid and lipoarabinoannan) are also included.
  • the "antigen peptide” used herein is not particularly limited as long as it is a peptide composed of two or more amino acids (including one composed of more than 50 amino acids) that can serve as an antigen, and is a naturally occurring peptide. It may be derived from natural sources, synthetically derived, or commercially available.
  • the antigenic peptide may include the full-length amino acid sequence of the gene product or a partial amino acid sequence thereof.
  • Antigenic peptides include, but are not limited to, Axl, BAFF-R, B7-H3, BCMA, CAIX, CD19, CD20, CD22, CD38, CD70, CD138, CEA, CLDN6, EpCAM, FAP, Flt3, folate receptor- ⁇ , GD2, Glypican 3, GM-CSF receptor, GRP78, GPC1, HGFR, Integrin ⁇ v ⁇ 6, IL3R, IL13Ra2, TAG72, Mesothelin, MUC1, MUC16, PSCA, PSMA, ROR1, 5T4, WT-1 , ⁇ -fetal protein, MAGE-1, MAGE-3, placental alkaline phosphatase sialyl-Lewis X, CA-125, CA-19, TAG-72, epithelial glycoprotein 2, ⁇ -fetal protein receptor, M2A, tyrosinase, Ras , p53, Her-2/neu, EGF-R, estrogen receptor, progesterone receptor
  • viruses e.g. adenovirus, herpes simplex virus, papillomavirus, respiratory syncytiavirus, poxvirus, HIV, influenza viruses, coronaviruses such as SARS-CoV and SARS-CoV2
  • intracellular parasites e.g. Chlamydiaceae, Mycoplasmatae, Acholeplasmatidae, Rickettsiaceae
  • helminths e.g.
  • Antigenic peptides may include allergens that cause allergic symptoms.
  • allergens include foreign peptides, such as house dust, mites, animals (e.g., companion animals such as cats and dogs), and Examples include peptides derived from pollen (for example, cedar and cypress).
  • a protein (including its full-length sequence and partial sequence) contained in cedar pollen, such as Cryj1 is exemplified.
  • the allergen that causes allergic symptoms may be of food origin.
  • allergens that overcome allergic symptoms to food include peptides derived from chicken eggs, milk, wheat, buckwheat, crab, shrimp, and peanuts (including their full-length sequences and partial sequences).
  • the antigenic peptide may be subjected to any processing or modification (for example, phosphorylation or sugar chain modification).
  • co-stimulatory molecule refers to a secondary signaling molecule that immune cells rely on to activate an immune response upon antigen presentation.
  • the immune cell when the immune cell is a T cell, it refers to a molecule that can contribute to the activation of T cells by interacting with molecules present on the membrane of T cells, such as CD28 and CD134.
  • T cell costimulatory molecules include, but are not limited to, molecules such as CD80 and CD86, or their extracellular domains or functional fragments thereof; anti-CD28 antibodies, anti-CD134 antibodies, etc.
  • antibodies or antigen-binding fragments thereof (e.g., scFv, Fab, nanobody), etc.; fusion proteins (or complexes, aggregates) of these with the transmembrane domain of other proteins, the Fc portion of antibodies, etc. can be mentioned.
  • Extracellular vesicles that display cytokines and/or target factors outside the membrane are those that contain proteins defined in (A) to (E) below in their membranes to display cytokines and/or target factors. may be presented extramembranely. Alternatively, cytokines or target factors may be attached to the membrane surface of the isolated extracellular vesicles afterwards. The attachment method is not particularly limited, but the cytokine or target factor may be attached to the membrane surface by binding a phospholipid to the cytokine or target factor, respectively, and incorporating the new lipid moiety into the membrane of the extracellular vesicle. . Phosphatidylserine is present on the surface of extracellular vesicles.
  • Extracellular vesicles can be created that display cytokines or target factors.
  • a PNE-tagged cytokine or target factor may be added to an extracellular vesicle in which a peptide neoepitope (PNE) nanobody has been expressed in advance and presented on the membrane surface of the extracellular vesicle.
  • PNE peptide neoepitope
  • a biotinylated cytokine or target factor may be added to the extracellular vesicle expressing streptavidin and displayed on the membrane surface of the extracellular vesicle.
  • a protein containing XXX and capable of presenting XXX to the outside of the membrane refers to a protein that contains at least XXX and is capable of presenting XXX to the outside of the membrane of an extracellular vesicle.
  • Protein capable of displaying XXX outside the membrane means that XXX and a membrane protein or a fragment containing a membrane-spanning domain thereof are combined using a plasmid or the like so that XXX is expressed on the membrane of cells or extracellular vesicles. It may also be expressed as a fusion protein containing.
  • a protein containing XXX and capable of presenting XXX to the outside of the membrane refers to soluble XXX (including, but not limited to, XXX itself; a fusion protein of XXX and the Fc portion of an antibody; and an antibody that recognizes XXX, or an antigen-binding fragment thereof (e.g., scFv, Fab, or nanobody), etc.), soluble XXX and extracellular vesicles are added as necessary. It may be bound to the membrane of an extracellular vesicle via a lipid linker, a peptide linker, or the like (for example, the method described in JP-A-2018-104341 may be referred to).
  • a desired tag for example, His tag, FLAG tag, PNE tag
  • soluble XXX for example, the tag is expressed as a fusion protein together with other components.
  • an antibody against the tag or its antigen-binding fragment for example, scFv, Fab, or nanobody, etc.
  • the protein containing e.g., an antibody against the tag or an antigen-binding fragment thereof (e.g., scFv, Fab, or nanobody) bound to the membrane of the extracellular vesicle via a linker or the like as necessary
  • the extracellular vesicle A membrane protein capable of being expressed in the membrane of the membrane protein or an extracellular vesicle containing in its membrane a nanobody for the tag (fusion protein, etc.) bound to the N-terminal side or C-terminal side of its transmembrane domain.
  • a PNE tag and an antibody against the tag as described in Raj D, et al., Gut., 2019 Jun;68(6):1052-1064, etc.
  • a PNE tag and an antibody against the tag as described in Raj D, et al., Gut., 2019 Jun;68(6):1052-1064, etc.
  • XXX formed by a multimer of subunits
  • one of the subunits is a protein that can be presented outside the membrane of an extracellular vesicle.
  • the remaining subunits do not need to be in a form that can be displayed outside the membrane.
  • one of the subunits is a protein that can be displayed outside the membrane of an extracellular vesicle, the other subunits can be displayed outside the membrane.
  • functional XXX can be assembled outside the membrane of extracellular vesicles.
  • membrane proteins or transmembrane domains thereof capable of being expressed on the membrane of extracellular vesicles include any protein that can be expressed on the membrane of extracellular vesicles. Any membrane protein or transmembrane domain thereof can be selected.
  • Membrane proteins or transmembrane domains thereof that can be expressed in the membrane of extracellular vesicles are membrane proteins that are known to be expressed in extracellular vesicles (e.g., exosomes, etc.) (e.g., tetraspanins). , CD58, ICAM-1, PTGFRN (for example, see Non-Patent Document 1, International Publication No. 2019/183578, etc.), or their transmembrane domains, etc. are preferable.
  • the "protein or domain thereof capable of binding to the membrane of extracellular vesicles” includes any protein as long as it is capable of binding to the membrane of extracellular vesicles. Or you can select that domain.
  • Proteins or domains thereof capable of binding to the membrane of extracellular vesicles are those known to be able to bind to the membrane of extracellular vesicles (for example, exosomes, etc.) (for example, MFG-E8 , or domains thereof (for example, the C1 and C2 domains of MFG-E8 described in Alain Delcayre, et al., Blood Cells, Molecules, and Diseases 35 (2005) 158-168), etc. are preferred.
  • the "membrane protein or its transmembrane domain capable of being expressed on the membrane of extracellular vesicles” or “the protein or its domain capable of binding to the membrane of extracellular vesicles” described herein is , may be from any animal species.
  • rodents such as mice and rats; lagomorphs such as rabbits; ungulates such as pigs, cows, goats, horses, and sheep; felines such as dogs and cats; humans, monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, Examples include those derived from animals such as mammals such as primates such as orangutans and chimpanzees.
  • membrane protein or its transmembrane domain capable of being expressed on the membrane of extracellular vesicles or "the protein or its domain capable of binding to the membrane of extracellular vesicles” described herein is , preferably from a rodent or a mammal, more preferably from a mouse or a human.
  • mammalian extracellular vesicle markers are classified as follows.
  • Membrane proteins or GPI-anchored proteins that can be used as extracellular vesicle marker proteins include: 1) Non-tissue specific Tetraspanins (CD63, CD9, CD81, CD82), other multi-transmembrane membrane proteins (CD47, heterotrimeric G protein (GNA: Guanine nucleotide-binding proteins), etc.) MHC class I (HLA-A/B/C, H2-K/D/Q), Integrin (ITGA/ITGB), transferrin receptor (TFR2); LAMP1/2; Heparan sulfate proteoglycans (including syndecan (SDC)); Extracellular matrix metalloproteinase inducer (EMMPRIN) (also known as BSG or CD147); ADAM10; CD73 (NT5E), a GPI-anchored 5'nucleotidase; GPI-anchored complement fixation proteins CD55 and CD59; Sonic
  • proteins that are markers of extracellular vesicles are defined as "membrane proteins capable of being expressed on the membrane of extracellular vesicles” or “membrane proteins that bind to the membrane of extracellular vesicles” in the present invention, but are not limited thereto. It may also be used as a protein capable of
  • Tetraspanin as used herein means a protein belonging to the tetraspanin family (eg, but not limited to, CD9, CD53, CD63, CD81, CD82, CD151, etc.). Tetraspanins usually have, from the N-terminus, transmembrane domain 1 (hereinafter also referred to as "TM1”), small extracellular loop (hereinafter also referred to as "SEL”), and transmembrane domain 2 (hereinafter referred to as "TM2").
  • TM1 transmembrane domain 1
  • SEL small extracellular loop
  • TM2 transmembrane domain 2
  • TM3 small intracellular loop
  • LEL large extracellular loop
  • TM4 transmembrane domain 4
  • the amino acid sequence when the tetraspanin is mouse CD63, the amino acid sequence generally ranges from about 1 to about 110 and includes TM1, SEL, TM2, SIL, and TM3, and the amino acid sequence ranges from about 111 to about 200 and includes LEL, and the amino acid sequence ranges from about 201 to about 200. At about 238, it may contain TM4.
  • Each domain (for example, TM1, SEL, SIL, LTL, etc.) in the "tetraspanin" described herein may be derived from the same tetraspanin, or may be derived from a different tetraspanin in whole or in part. It may be.
  • the tetraspanin described herein has an amino acid sequence identity of 80% or more, preferably 80% or more, to its wild-type amino acid sequence, as long as it can be expressed in the membrane of extracellular vesicles. It may be 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more.
  • the tetraspanin described herein may contain a deletion of one or more amino acids from its wild-type amino acid sequence, as long as it can be expressed in the membrane of extracellular vesicles. , insertion, addition, and/or substitution.
  • the partial sequence of tetraspanin described herein (e.g., each domain; partial sequence including TM1, SEL, TM2, SIL, and TM3; partial sequence including TM4) has amino acid
  • the sequence identity may be 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more.
  • the partial sequence of tetraspanin described herein is one in which one or more amino acids are deleted, inserted, added, and/or substituted with respect to its wild-type amino acid sequence. Good too.
  • MFG-E8 described herein has an amino acid sequence identity of 80% or more with respect to its wild type amino acid sequence, as long as it is capable of binding to the membrane of extracellular vesicles. Preferably it is 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more.
  • the MFG-E8 described herein may have one or more amino acids added to its wild-type amino acid sequence, as long as it is capable of binding to the membrane of extracellular vesicles. It may be deleted, inserted, added, and/or substituted.
  • CD58, PTGFRN, etc. described herein are capable of being expressed on the membrane of extracellular vesicles or capable of binding to the membrane of extracellular vesicles.
  • the amino acid sequence has an identity of 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more with respect to the wild-type amino acid sequence. There may be.
  • CD58, PTGFRN, etc. described herein are capable of being expressed on the membrane of extracellular vesicles or capable of binding to the membrane of extracellular vesicles.
  • the wild-type amino acid sequence is one or more amino acids may be deleted, inserted, added, and/or substituted.
  • Spacer sequence refers to at least one protein that exists between two or more proteins or their subsequences or domains, etc. Refers to any sequence having amino acid residues.
  • a spacer sequence can be used, for example, when connecting two or more proteins or partial sequences or domains thereof. Spacer sequences are usually 1 to about 50 amino acid residues in length, preferably about 2 to about 28, and more preferably about 4 to about 25. Examples of spacer sequences include, but are not limited to, (GGGXS) n G m (wherein, each occurrence of X is independently A or G, and n is 1 to 8).
  • Polynucleotide as used herein means a single-stranded or double-stranded DNA molecule, an RNA molecule, a DNA-RNA chimera molecule, etc. Polynucleotides include genomic DNA, cDNA, hnRNA, mRNA, etc., and all naturally occurring or artificially modified derivatives thereof. Polynucleotides may be linear or circular.
  • At least one (1, 2, 3, 4 or 5) cytokines to identify each cytokine, hereinafter a first cytokine, a second cytokine, a further
  • the present invention provides extracellular vesicles that display cytokines (sometimes referred to as cytokines, etc.) outside the membrane.
  • at least one (1, 2, 3, 4 or 5) target factors hereinafter referred to as a first target factor, a second target factor, etc. to identify each target factor
  • the present invention provides extracellular vesicles that display extracellular vesicles (sometimes referred to as target factors, etc.) extracellularly.
  • at least one (1, 2, 3, 4 or 5) cytokines and at least one (1, 2, 3, 4 or 5) target factors are presented extramembranely. Provide extracellular vesicles.
  • an extracellular vesicle extramembranically displaying at least one cytokine the membrane comprising: (A) a protein that includes at least one cytokine or a subunit thereof and is capable of presenting the cytokine extramembrane; Provides extracellular vesicles containing.
  • an extracellular vesicle exhibiting at least one target factor extracellularly the membrane comprising: (B) a protein that includes at least one target factor or a subunit thereof and is capable of presenting the target factor outside the membrane; Provides extracellular vesicles containing.
  • an extracellular vesicle exhibiting at least one cytokine and at least one target factor extracellularly the membrane comprising: (A) A protein comprising at least one cytokine or a subunit thereof and capable of presenting the cytokine extramembrane; and (B) A protein comprising at least one target factor or a subunit thereof and capable of presenting the target factor outside the membrane. protein; Provides extracellular vesicles containing.
  • extracellular vesicles display cytokines and target factors extramembrane, the membrane comprising: (C) An extracellular vesicle is provided, which contains a first cytokine or a subunit thereof and a target factor, and includes a protein capable of displaying the first cytokine and the target factor extramembranely.
  • an extracellular vesicle extramembrane ly presents a first cytokine, a first target factor, and a second target factor
  • the membrane comprising: (A) a protein capable of displaying the first cytokine or a subunit thereof outside the membrane; (B) a protein capable of presenting the target factor to the outside of the membrane, including a first target factor or a subunit thereof; and (D) a protein capable of presenting the target factor to the outside of the membrane, including a second target factor or a subunit thereof;
  • Extracellular vesicles containing presentable proteins are provided.
  • an extracellular vesicle that presents a cytokine, a first target factor, and a second target factor extracellularly, the membrane comprising: (C) a protein comprising a first cytokine or a subunit thereof and a target factor and capable of presenting the first cytokine and target factor outside the membrane; and (D) a second target factor or a subunit thereof;
  • An extracellular vesicle containing a protein capable of displaying the second target factor outside the membrane is provided.
  • an extracellular vesicle that presents a cytokine, a first target factor, and a second target factor extracellularly, the membrane comprising: (E) a first cytokine or a subunit thereof, a first target factor or a subunit thereof, and a second target factor or a subunit thereof, the first cytokine, the first target factor, and the second target factor; extracellular vesicles containing a protein capable of extramembranely displaying a target factor.
  • the above-mentioned (A) "protein containing a cytokine or its subunit and capable of displaying the cytokine outside the membrane” is any other protein or protein thereof, as long as it is a protein capable of displaying the cytokine outside the membrane of an extracellular vesicle. It may also include a domain etc.
  • the above (A) binds a cytokine or a subunit thereof to a membrane protein or its transmembrane domain capable of being expressed on the membrane of an extracellular vesicle, or to the membrane of an extracellular vesicle. It is a fusion protein or protein complex that is capable of displaying the antigen outside the membrane, and includes a protein or a domain thereof that is capable of displaying the antigen.
  • the above (A) is: (A) A fusion protein capable of presenting the first cytokine outside the membrane, the protein comprising a first cytokine or a subunit thereof and a partial sequence of a tetraspanin, the partial sequence of the tetraspanin comprising two transmembrane or (A) a first cytokine or a subunit thereof and an MFG- E8 or a domain thereof, and is a fusion protein capable of displaying the first cytokine outside the membrane.
  • the partial sequence of a tetraspanin has at least two transmembrane domains, and the first cytokine or a subunit thereof is located between the two transmembrane domains.
  • the partial sequence of tetraspanin includes at least tetraspanin TM1 and TM2, and the first cytokine or its subunit is located between TM1 and TM2
  • the partial sequence of tetraspanin is Examples include a case where the first cytokine or a subunit thereof is located between TM3 and TM4, and the first cytokine or a subunit thereof is located between TM3 and TM4.
  • the above (A) is 1.
  • the first cytokine is a protein that can display the first cytokine outside the membrane.
  • tetraspanins can be expressed in membranes even if their large extracellular loops (LELs) are replaced in whole or in part with different amino acid sequences. It has been reported. Therefore, the first cytokine of (A-3) or its subunit may be inserted in place of the LEL of the tetraspanin via a spacer sequence that may be present, or may be inserted into the LEL of the tetraspanin or its subunit. It may be inserted at any position in the partial sequence.
  • A-1) "partial sequence of a tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3" usually includes transmembrane domain 4 of tetraspanin. do not have.
  • A-1) “Tetraspanin partial sequence including transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3” does not include the large extracellular loop or its partial sequence. It's okay to stay.
  • each of the transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3 may be a sequence derived from a different tetraspanin, or All sequences may be derived from the same tetraspanin.
  • transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3 are all sequences derived from the same tetraspanin.
  • the partial sequence of tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3 in (A-1) is all CD9 origin, a partial sequence derived from CD63 or CD81.
  • the partial sequences of tetraspanins comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3 of (B-1) are all CD63 or CD81. This is a partial sequence derived from
  • the "partial sequence of tetraspanin containing transmembrane domain 4" in (A-5) usually includes transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3 of tetraspanin. do not have.
  • the "partial sequence of tetraspanin containing transmembrane domain 4" of (A-5) may include a large extracellular loop or a partial sequence thereof.
  • the transmembrane domain 4 in (A-5) may be a sequence derived from a tetraspanin different from that in (A-1), or may be the same sequence derived from a tetraspanin as in (A-1).
  • transmembrane domain 4 in (A-5) is the same tetraspanin-derived sequence as in (A-1).
  • the partial sequence of tetraspanin containing transmembrane domain 4 in (A-5) is a partial sequence derived from CD9, CD63, or CD81.
  • the partial sequence of tetraspanin containing transmembrane domain 4 (A-5) is a partial sequence derived from CD63 or CD81.
  • the "partial sequence of tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3" of (A-1) is derived from CD63. and (A-5) "partial sequence of tetraspanin containing transmembrane domain 4" is a partial sequence derived from CD63.
  • the "partial sequence of tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3" of (A-1) is derived from CD81.
  • (A-5) "partial sequence of tetraspanin containing transmembrane domain 4" is a partial sequence derived from CD81.
  • MFG-E8 in (A-5) above preferably has SEQ ID NO: 37, 63, 73, 83, etc., or has an amino acid sequence identity of 80% or more, preferably 90% or more, and more preferably is 95% or more, more preferably 98% or more, even more preferably 99% or more.
  • the N-terminus of tetraspanins resides inside extracellular vesicles. Therefore, so that the cytokine of (A-3) or its subunit is presented on the outside of the extracellular vesicle, the "sequence containing any transmembrane domain and tetraspanin" of (A-5) above is (A-5) is a fusion of an amino acid sequence encoding an odd-numbered (1, 3, 5) transmembrane domain and a tetraspanin sequence so that the N terminus is located outside the extracellular vesicle. It is preferable.
  • CD8 single transmembrane protein
  • CD81 single transmembrane protein
  • the extracellular vesicles described herein may further contain a second (or more) cytokine in addition to the first cytokine.
  • the extracellular vesicles described herein may further comprise a second (or more) cytokine.
  • the second (or more) cytokine may be inserted into (A) above (for example, at the N-terminus and/or C-terminus of the "first cytokine" in (A-3)).
  • a second (or more) cytokine may be linked to the cytokine via a spacer sequence or the like as necessary).
  • the second (or more) cytokine has a structure similar to component (A) described herein, and thus is a protein of component (A) described herein (or Similar to the first cytokine, it may be included in the membrane of the antigen-presenting extracellular vesicles described herein as a separate protein (or fusion protein).
  • the "spacer sequence that may be present" in (A-2) and (A-4) of each of the above embodiments, if present, can be independently selected.
  • (A-2), if present, may be a spacer sequence such as SEQ ID NO: 31, 35, 45, 49, 61, 71, 81, 87, etc.
  • (A-4), if present, may be a spacer sequence such as SEQ ID NO: 31, 35, 45, 49, 61, 71, 81, 87, etc.
  • the cytokine when the cytokine has activity by forming a multimer (homo/heteromer) with multiple subunits, (A-6)
  • the extracellular vesicle may further contain subunits necessary for having activity.
  • a protein containing a target factor or a subunit thereof and capable of presenting the target factor to the outside of the membrane is a protein that can present the target factor to the outside of the membrane of an extracellular vesicle. It may also contain proteins or domains thereof.
  • the above (B) comprises a target factor or a subunit thereof, and a membrane protein or a transmembrane domain thereof capable of being expressed in the membrane of an extracellular vesicle, or A fusion protein or protein complex that includes a protein or domain thereof that is capable of binding and that is capable of displaying the antigen outside the membrane.
  • the above (B) comprises a target factor or a subunit thereof, and a membrane protein or a transmembrane domain thereof capable of being expressed in the membrane of an extracellular vesicle, or A fusion protein or protein complex that includes a protein or domain thereof that is capable of binding and that is capable of displaying the antigen outside the membrane.
  • the above (B) is: (B) A fusion protein capable of displaying the target factor outside the membrane, comprising a target factor or a subunit thereof, and a partial sequence of a tetraspanin, the partial sequence of the tetraspanin having at least two transmembrane domains.
  • a fusion protein capable of extramembrane display of the target factor comprising a target factor or a subunit thereof, and MFG-E8 or a domain thereof, or (B) a target factor or a subunit thereof, a tetraspanin, and optionally A fusion protein capable of extramembrane presentation of a target factor, containing any transmembrane domain that may be present.
  • the partial sequence of a tetraspanin has at least two transmembrane domains, and the first target factor or a subunit thereof is located between the two transmembrane domains
  • the partial sequence of tetraspanin includes at least TM1 and TM2 of tetraspanin, and the first target factor or its subunit is located between TM1 and TM2
  • the partial sequence of tetraspanin is For example, it includes at least the tetraspanins TM3 and TM4, and the first target factor or a subunit thereof is located between TM3 and TM4.
  • the above (B) is: 1.
  • B-1 A partial sequence of tetraspanin including, from the N-terminus, transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3,
  • B-2) Spacer sequence that may be present,
  • B-3) Amino acid sequence of the first target factor or its subunit,
  • B-4) a spacer sequence that may be present; and
  • B-5) an amino acid sequence consisting of a partial sequence of a tetraspanin containing transmembrane domain 4, capable of presenting the first target factor outside the membrane.
  • fusion protein 2.
  • tetraspanins can be expressed in membranes even if their large extracellular loops (LELs) are replaced in whole or in part with different amino acid sequences. It has been reported. Therefore, the first target factor (B-3) or its subunit may be inserted in place of the LEL of the tetraspanin via a spacer sequence that may be present, or in the LEL of the tetraspanin or It may be inserted at any position within the partial sequence.
  • the "partial sequence of a tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3" in (B-1) usually includes transmembrane domain 4 of tetraspanin. do not have.
  • (B-1) “Tetraspanin partial sequence including transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3” does not include the large extracellular loop or its partial sequence. It's okay to stay.
  • each of the transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3 may be a sequence derived from a different tetraspanin, or All sequences may be derived from the same tetraspanin.
  • transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3 are all sequences derived from the same tetraspanin.
  • the partial sequence of tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3 in (B-1) is all CD9 origin, a partial sequence derived from CD63 or CD81.
  • the partial sequences of tetraspanins comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3 of (B-1) are all CD63 or CD81. (subsequence derived from the origin).
  • transmembrane domain 4 “Tetraspanin partial sequence containing transmembrane domain 4” usually includes transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3 of tetraspanin. do not have.
  • the "partial sequence of tetraspanin containing transmembrane domain 4" of (B-5) may include a large extracellular loop or a partial sequence thereof.
  • the transmembrane domain 4 in (B-5) may be a sequence derived from a tetraspanin different from that in (B-1), or may be the same sequence derived from a tetraspanin as in (B-1).
  • transmembrane domain 4 in (B-5) is the same tetraspanin-derived sequence as in (B-1).
  • the partial sequence of tetraspanin containing transmembrane domain 4 in (B-5) is a partial sequence derived from CD9, CD63, or CD81.
  • the partial sequence of tetraspanin containing transmembrane domain 4 in (B-5) is a partial sequence derived from CD63 or CD81.
  • the "partial sequence of tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3" of (B-1) is derived from CD63.
  • (B-5) "partial sequence of tetraspanin containing transmembrane domain 4" is a partial sequence derived from CD63.
  • the "partial sequence of tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop, and transmembrane domain 3" of (B-1) is derived from CD81.
  • (B-5) "partial sequence of tetraspanin containing transmembrane domain 4" is a partial sequence derived from CD81.
  • MFG-E8 in (B-5) above preferably has SEQ ID NO: 37, 63, 73, 83, etc., or has an amino acid sequence identity of 80% or more, preferably 90% or more, and more preferably is 95% or more, more preferably 98% or more, even more preferably 99% or more.
  • (B-5) is a fusion of an amino acid sequence encoding an odd-numbered (1, 3, 5) transmembrane domain and a tetraspanin sequence so that the N terminus is located outside the extracellular vesicle. It is preferable that there be.
  • CD8 single transmembrane protein; e.g. SEQ ID NO: 5 or 21, or having an amino acid sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more) , more preferably 98% or more, even more preferably 99% or more
  • CD81 single transmembrane protein; e.g. SEQ ID NO: 5 or 21, or having an amino acid sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more
  • the extracellular vesicles described herein may further contain a second (or more) target factor in addition to the first target factor. Accordingly, in one embodiment of the invention, the extracellular vesicles described herein may further comprise a second (or more) targeting factor.
  • the second (or more) target factor or subunit thereof may be inserted into (B) above (for example, the "first target factor or subunit thereof" in (B-3)).
  • a second (or more) target factor or a subunit thereof may be linked to the N-terminal side and/or C-terminal side of the target factor, if necessary, via a spacer sequence, etc.).
  • the second (or more) target factor or its subunit has the same configuration as the component (B) described herein, thereby satisfying the component (B) described herein. ) as a separate protein (or fusion protein) from the protein (or fusion protein) contained in the membrane of the antigen-presenting extracellular vesicles described herein, similar to the first target factor.
  • Good i.e. constituent requirement (D) ).
  • the "spacer sequence that may be present" in (B-2) and (B-4) of each of the above embodiments, if present, can be independently selected.
  • (B-2), if present, may be a spacer sequence such as SEQ ID NO: 31, 35, 45, 49, 61, 71, 81, 87, etc.
  • (B-4), if present, may be a spacer sequence such as SEQ ID NO: 31, 35, 45, 49, 61, 71, 81, 87, etc.
  • the target factor when the target factor forms a multimer (homo/heteromer) with multiple subunits and has activity, (B-6)
  • the extracellular vesicle may further contain subunits necessary for having activity.
  • (A) and (B) may be fused into one molecule.
  • a fusion molecule may be translated as a single protein molecule with or without a spacer sequence between (A) and (B), or the proteins (A) and (B) may be chemically cross-linked. may be fused into one molecule by being bonded (for example, disulfide bond between cysteine residues).
  • (A) and (B) above are elements for localizing the protein in extracellular vesicles, i.e., "a membrane protein capable of being expressed in the membrane of an extracellular vesicle or its transmembrane domain.” ” or “a protein or domain thereof capable of binding to the membrane of extracellular vesicles” may be functionally fused.
  • the above-mentioned (C) "protein containing a cytokine or its subunit and a target factor or its subunit and capable of displaying the cytokine and the target factor outside the membrane” refers to The protein may contain other proteins or domains thereof, as long as the protein can be presented to the protein.
  • the above (C) comprises a cytokine or a subunit thereof, a target factor or a subunit thereof, and a membrane protein or a transmembrane domain thereof that can be localized in the membrane of an extracellular vesicle.
  • it may contain a protein capable of binding to the membrane of extracellular vesicles or a membrane-binding domain thereof.
  • the membrane protein capable of localizing in the membrane of extracellular vesicles or the protein capable of binding to the membrane of extracellular vesicles is a tetraspanin or MFG-E8; Good too.
  • the fusion protein includes, from the N-terminal side, (C-3) Amino acid sequence of target factor or its subunit, (C-4) a spacer sequence that may be present; and (C-5) a fusion peptide comprising a tetraspanin or its transmembrane domain or MFG-E8 or its transmembrane domain and the at least one cytokine. It may also include amino acid sequences encoding sequences.
  • the fusion protein includes, from the N-terminal side, (C-1) A fusion peptide comprising tetraspanin or its transmembrane domain or MFG-E8 or its transmembrane domain and the at least one cytokine (C-2) a spacer sequence that may be present, and (C- 3)
  • the amino acid sequence of the target factor or its subunit It may also contain amino acid sequences encoded in this order.
  • the fusion peptide includes, from the N-terminal side, (1) A partial sequence of a tetraspanin comprising transmembrane domain 1, small extracellular loop, transmembrane domain 2, small intracellular loop and transmembrane domain 3, (2) a spacer sequence that may be present; (3) the amino acid sequence of the at least one cytokine; (4) a spacer sequence that may be present; and (5) an amino acid sequence encoding a partial sequence of a tetraspanin containing transmembrane domain 4 in this order.
  • the fusion peptide includes, from the N-terminal side, (1) the amino acid sequence of at least one cytokine; (2) a spacer sequence that may be present; and (3) an amino acid sequence encoding the amino acid sequence of MFG-E8 or its membrane binding domain in this order.
  • the extracellular vesicle may further contain subunits necessary for having the activity.
  • the cytokine of each embodiment above is a T cell-stimulating cytokine.
  • the T cell stimulatory cytokine is IL-2 (preferably SEQ ID NO: 89, or with an amino acid sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more) % or more, more preferably 98% or more, even more preferably 99% or more), IL-4, TGF- ⁇ , IL-7 (preferably SEQ ID NO: 93, or amino acid sequence identity thereto).
  • IL-15 preferably SEQ ID NO: 121, or amino acid sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more.
  • those that can form multimers of homo or hetero subunits are functional (i.e., as long as they can have the desired pharmacological activity).
  • IL-12 preferably, TGF- ⁇ , etc.
  • IL-15 preferably SEQ ID NO: 121, or amino acid sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more.
  • those that can form multimers of homo or hetero subunits for example, IL-12, TGF- ⁇ , etc.
  • are functional i.e., as long as they can have the desired pharmacological activity.
  • the Sushi domain of the IL-15 receptor (preferably SEQ ID NO: 117, or with which the amino acid sequence identity is 80% or more, preferably 90% or more, more preferably 95% or more, even more preferably (98% or more, more preferably 99% or more)) and may have a continuous amino acid sequence, optionally linked via a peptide linker or the like.
  • T cell-stimulating cytokines bind to the corresponding receptors present on the surface of cells such as T cells, B cells, and NK cells, and the signal is transmitted into the cells, thereby stimulating T cells, B cells, and NK cells. Differentiates and proliferates cells, monocytes, macrophages, etc.
  • the cytokine of each of the above embodiments is thrombopoietin (TPO; also referred to as Megakaryocyte Stimulating Factor) and/or stem cell factor (SCF; also referred to as Kit ligand).
  • TPO thrombopoietin
  • SCF stem cell factor
  • the first cytokine in each of the above embodiments is TPO (preferably SEQ ID NO: 19, or has an amino acid sequence identity of 80% or more, preferably 90% or more, more preferably SEQ ID NO: 19). is 95% or more, more preferably 98% or more, even more preferably 99% or more)
  • the second cytokine is SCF (preferably SEQ ID NO: 29 or 33, or an amino acid sequence identical to this).
  • the TPO gene encodes a protein of 353 amino acid residues, of which 21 residues are a signal sequence, and after removal, it is secreted as a 60-70 kDa glycoprotein.
  • TPO receptor By binding to c-mpl, a TPO receptor, and transmitting a signal into cells, it stimulates the proliferation of hematopoietic stem cells, the maturation and proliferation of megakaryocytes, and promotes the formation of platelets.
  • TPO also includes a fragment peptide of TPO having only a receptor binding domain.
  • the SCF gene encodes a 273-residue protein, and the N-terminal 25 residues are a signal sequence, and residues 26 to 273 are secreted as a membrane protein-type SCF that is sugar-modified, and its extracellular domain is processed. , released as soluble SCF.
  • SCF is a homodimer that binds to a receptor (two molecules) known as c-Kit (CD117) (heterotetramerization), and the KIT molecule is autophosphorylated and a signal is transmitted into the cell, thereby promoting hematopoietic stem cells. Propagation and maintenance, etc.
  • SCF includes membrane protein type, soluble type, and homodimer thereof bound with a linker.
  • the cytokine of each of the above embodiments is Activin or a subunit thereof.
  • Actinbin A is a product of the inhibitor ⁇ A chain preproprotein (also referred to as inhibitorn ⁇ A subunit precursor) gene product, which is cleaved by a processing enzyme and its C-terminal peptide ⁇ A subunit is homodimerized by SS bonds; actinbin B, in which the C-terminal peptide ⁇ B subunit, which is cleaved from the gene product by a processing enzyme (inhibin ⁇ B subunit precursor), is homodimerized by SS bonds; ⁇ A subunit and ⁇ B subunit are homodimerized by SS bonds; There is a heterodimerized actinbin AB.
  • the cytokine is the inhibitor ⁇ A chain preproprotein gene product itself or a fragment thereof (e.g., SEQ ID NO: 59, or 80% or more, preferably 90% or more, more preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more of amino acid sequence identity to No. 69, or those having an amino acid sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more) good.
  • SEQ ID NO: 59 e.g., SEQ ID NO: 59, or 80% or more, preferably 90% or more, more preferably 95% or more, even more preferably 98% or more, even more preferably 99% or more
  • These can function as active actinbin A within cells.
  • Activin A specifically binds to two forms of activin type I receptor (RI-A and RI-B) and two forms of activin type II receptor (RII-A and RII-B) to send signals into cells. is transmitted to induce differentiation of iPSCs (induced pluripotent stem cells)/ESCs (embryonic stem cells).
  • iPSCs induced pluripotent stem cells
  • ESCs embryonic stem cells
  • the target factor in each of the above embodiments is an antigen.
  • the targeting agent is an antigenic peptide.
  • the targeting factor is HER2 or a fragment thereof (preferably SEQ ID NO: 77 or 97, or with which the amino acid sequence identity is 80% or more, preferably 90% or more, more preferably 95%). % or more, more preferably 98% or more, even more preferably 99% or more), or CD19 or a fragment thereof.
  • antigenic peptides those that can form a multimer of homo or hetero subunits may be linked via a peptide linker, etc., as long as they are functional (that is, as long as they have the desired pharmacological activity).
  • it may be a continuous amino acid sequence.
  • the target factor in each of the above embodiments is a costimulatory molecule.
  • the targeting agent is a T cell costimulatory molecule.
  • the first target agent is an antigen and the second target agent is a T cell costimulatory molecule.
  • the target factor in each of the above embodiments is L-selectin and/or CXCL12.
  • the target factor is L-selectin (also referred to as CD62L) (preferably SEQ ID NO: 11, or has an amino acid sequence identity of 80% or more, preferably 90% or more, more preferably is 95% or more, more preferably 98% or more, even more preferably 99% or more) or CXCL12 (also referred to as SDF1) (preferably SEQ ID NO: 3, or has an amino acid sequence identity of 80% or more to this) , preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more).
  • the first target factor may be L-selectin
  • the second target factor may be CXCL12.
  • L-selectin recognizes CD34 on hematopoietic stem cells (CD34 positive)
  • CXCL12 recognizes chemokine (C-X-C motif) receptor 4.
  • the target factor in each of the above embodiments is lecithin or a subunit thereof.
  • the lectin (sugar chain binding protein) Bc2Lc of Burkholderia cenocepacia bacteria is used.
  • the targeting factor is the Bc2Lc gene product or a multimer thereof linked via a linker (e.g. SEQ ID NOs: 43, 47, 51; may be 90% or more, more preferably 95% or more, still more preferably 98% or more, even more preferably 99% or more; or a multimer thereof).
  • Bc2Lc is a multimer that recognizes glycosylated proteins (eg, podocalyxin with Fuc ⁇ 1-2Gal ⁇ 1-3GalNAc) on the surface of iPSCs (induced pluripotent stem cells)/ESCs (embryonic stem cells).
  • glycosylated proteins eg, podocalyxin with Fuc ⁇ 1-2Gal ⁇ 1-3GalNAc
  • the extracellular vesicle is an exosome.
  • the extracellular vesicles described herein may contain or be bound to substances that may be therapeutically useful (e.g., low molecular weight compounds, nucleic acids, etc.) within or in their membranes. You can.
  • Methods for encapsulating the substance within the membrane of extracellular vesicles include, but are not limited to, mixing the substance and the extracellular vesicles described herein in a suitable solvent. Examples include a method to do so.
  • the extracellular vesicles may include any protein formulation.
  • Protein preparations include, but are not limited to, naturally occurring proteins such as erythropoietin, synthetic proteins that do not exist naturally such as immunoglobulin-CTLA4 fusion protein, and monoclonal antibodies or active fragments thereof. But that's fine. These protein preparations include membrane proteins capable of localizing in the membrane of extracellular vesicles or fusion proteins with their transmembrane domains or proteins capable of binding to the membrane of extracellular vesicles or their membrane-binding domains. It may also be localized on the surface of extracellular vesicles. Such extracellular vesicles can be obtained by transfecting cells that produce extracellular vesicles with a vector for expressing the fusion protein, and causing the cells to secrete the extracellular vesicles.
  • Each fusion protein or protein complex or protein formulation contained in the membrane of the extracellular vesicles described herein may include one or more detectable labels.
  • a fusion protein or protein complex or protein preparation may be labeled with a specific reporter molecule, fluorophore, radioactive material, enzyme (eg, peroxidase, phosphatase), etc. in a conventional manner. These may be linked to the N-terminus or C-terminus of the fusion protein, protein complex, or protein preparation, for example, as a component of the fusion protein, protein complex, or protein preparation.
  • each protein (or fusion protein) in (A), (B), (C), (D) and (E) contained in the membrane of the extracellular vesicle described herein ) is provided.
  • sequence encoding a fusion protein (D) comprising a second targeting factor or a subunit thereof and capable of presenting a targeting factor outside the membrane of an extracellular vesicle; and (e) at least one cytokine or its subunits; a subunit, a first target factor or a subunit thereof, and a second target factor or a subunit thereof;
  • Sequence encoding a fusion protein (E) that can be displayed externally
  • a polynucleotide comprising at least one sequence selected from the group consisting of:
  • the above sequences (a) to (e) are highly homologous to the sequences specifically described in the present specification (preferably 90% or more, more preferably 95% or more, still more preferably 99% or more homologous) gender), but is not particularly limited. They may be paralogs (gene sequences resulting from gene duplication) or orthologs (groups of genes with homologous functions existing in different organisms) as long as they have equivalent functions; This also includes
  • each protein (or fusion protein) in (A) to (E) is the amino acid sequence of each component in each fusion protein or protein complex (for example, in the case of (A), (A-1) It can be appropriately determined with reference to the amino acid sequences of ⁇ (A-5) or (A-3) ⁇ (A-5), and optionally (A-6)).
  • Any type of codon can be selected to be used when determining a polynucleotide.
  • the polynucleotide may be determined in consideration of the codon frequency of cells to be transformed using a vector containing the polynucleotide.
  • a polynucleotide encoding a signal peptide may be added to the N-terminus of the polynucleotide encoding each protein (or fusion protein) in (A) to (E) above. .
  • any amino acid sequence of the signal peptide can be used, and may be determined by taking into consideration, for example, the amino acid sequence of the fusion protein to be expressed.
  • polynucleotides encoding signal peptides include polynucleotides encoding CD8 signal peptides (eg, SEQ ID NOs: 1, 17, and 41) (eg, SEQ ID NOs: 2, 18, and 42), and MEG-E8 signal peptides. (eg, SEQ ID NO: 27) (eg, SEQ ID NO: 28), and the like.
  • each component of each protein (or fusion protein) in (A) to (E) described above (for example, in the case of (A), (A-1) to (A-5) or (A-3) ⁇ (A-5), optionally (A-6)), signal peptides, and other amino acid sequences, as well as information on polynucleotides encoding these, can be found, for example, in known documents or from NCBI (http://www.ncbi You may also search a database such as .nlm.nih.gov/guide/) and obtain it as appropriate. Furthermore, for the amino acid sequence in the partial sequence of tetraspanin and the polynucleotide encoding the same, International Publication No. 2016/139354 may be referred to.
  • One embodiment of the present invention provides a vector comprising at least one polynucleotide selected from the polynucleotides described herein.
  • Vector refers to any vector, including, but not limited to, plasmid vectors, cosmid vectors, phage vectors such as phages, adenovirus vectors, baculovirus vectors, etc. (including viral vectors, artificial chromosome vectors, etc.).
  • Vectors include expression vectors, cloning vectors, and the like.
  • Expression vectors generally contain the desired coding sequence and appropriate polynucleotides necessary for expression of the operably linked coding sequence in a host organism (e.g., plant, insect, animal, etc.) or in vitro expression system. may contain.
  • Cloning vectors may be used to manipulate and/or amplify desired polynucleotide fragments. Cloning vectors may lack functional sequences required for expression of the desired polynucleotide fragment.
  • the polynucleotides described herein may all be inserted into the same vector, as long as they can be operably inserted, or two or more polynucleotides may be inserted into separate vectors. It may be inserted into a vector.
  • a kit is provided that combines two or more vectors comprising at least one polynucleotide selected from the polynucleotides described herein.
  • Transformed Cells In one embodiment of the invention: (i) a polynucleotide encoding at least one protein (or fusion protein) of (A) as described herein; (ii) a polynucleotide encoding at least one protein (or fusion protein) of (B) as described herein; (iii) a polynucleotide encoding at least one protein (or fusion protein) of (C) as described herein; (iv) a polynucleotide encoding at least one (D) protein (or fusion protein) as described herein; and/or (v) at least one (E) protein as described herein. (or a fusion protein) that has been transformed with a single vector or a combination of two or more vectors.
  • At least one polynucleotide of (a) as described herein at least one polynucleotide of (b) as described herein, and/or (iii) at least one polynucleotide of (c) as described herein; and/or (v) a polynucleotide encoding a protein (or fusion protein) of at least one (e) polynucleotide as described herein.
  • Cells transformed with one vector or a combination of two or more vectors are provided.
  • Transformed with a single vector or a combination of two or more vectors means, for example, that cells are transformed with polynucleotides (i) to (v) above all inserted into the same vector. It means that they may be transformed or may be transformed by a combination of two or more vectors, two or more of which are inserted into separate vectors.
  • the cells to be transformed are not particularly limited as long as the extracellular vesicles described herein can be obtained after transformation, and even if they are primary cultured cells, subcultured cells or established cell lines, and these may be normal cells or diseased cells including cancerous or tumorous cells.
  • the origin of cells to be transformed is not particularly limited, but examples include rodents such as mice, rats, hamsters, and guinea pigs, lagomorphs such as rabbits, pigs, cows, goats, horses, sheep, etc.
  • Cells derived from animals such as ungulates, dogs, cats, and other mammals; humans, monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans, and primates such as chimpanzees; cells derived from plants; cells derived from insects. etc.
  • the cells to be transformed are preferably cells derived from animals.
  • animal-derived cells include, but are not limited to, human embryonic kidney cells (including HEK293T cells, etc.), human FL cells, Chinese hamster ovary cells (CHO cells), COS-7, Vero, Examples include mouse L cells and rat GH3.
  • the method for transforming cells is not particularly limited as long as it can introduce the polynucleotide of interest into the cells.
  • electroporation method microinjection method, calcium phosphate method, cationic lipid method, method using liposome, method using non-liposomal material such as polyethyleneimine, virus infection method, etc. may be used.
  • the transformed cell may be a transformed cell that transiently expresses the protein (or fusion protein) of (A), (B), (C), (D) and/or (E). Alternatively, it may be a transformed cell (stable cell line) that stably expresses it.
  • the culture conditions for transformed cells are not particularly limited.
  • the transformed cell is an animal-derived cell, for example, a medium commonly used for cell culture, etc. (e.g., RPMI1640 medium, Eagle's MEM medium, Dulbecco's modified Eagle medium (DMEM medium), Ham F12
  • a medium commonly used for cell culture, etc. e.g., RPMI1640 medium, Eagle's MEM medium, Dulbecco's modified Eagle medium (DMEM medium), Ham F12
  • a desired period of time e.g., about 0.5 to about 240 hours (preferably about 5 to about 120 hours). , more preferably for about 12 to about 72 hours
  • cultured for example, under standing or shaking.
  • the culture supernatant obtained by culturing transformed cells may contain the extracellular vesicles described herein. Therefore, when culturing transformed cells for the purpose of obtaining the antigen-presenting extracellular vesicles described herein, if necessary, a medium from which extracellular vesicles such as exosomes have been removed (for example, a medium from which exosomes have been removed) Dulbecco's modified Eagle's medium containing about 1 to about 5% fetal bovine serum, etc.) may also be used.
  • a medium from which extracellular vesicles such as exosomes have been removed for example, a medium from which exosomes have been removed
  • Dulbecco's modified Eagle's medium containing about 1 to about 5% fetal bovine serum, etc.
  • a culture supernatant obtained by culturing the transformed cells described herein is provided.
  • Extracellular vesicles contained in the culture supernatant described herein can be recovered by, for example, purifying (e.g., centrifugation, chromatography, etc.), concentrating, isolating, etc. the culture supernatant. can do.
  • extracellular vesicles obtained from the culture supernatants described herein are provided.
  • the extracellular vesicles described herein can be produced, for example, by means such as, but not limited to, genetic recombination techniques known to those skilled in the art (e.g., by the methods described below or in the Examples). or a method similar thereto.
  • each may be operably linked to the same or different promoters.
  • the obtained single or two or more vectors are transformed into cells simultaneously or sequentially, and the transformed cells (which may be transformed cells that express these fusion proteins transiently or stably) It is possible to obtain transformed cells (which may be stable strains) that express the same expression.
  • the obtained transformed cells are cultured under desired conditions to obtain a culture supernatant, and the obtained culture supernatant is purified as necessary (e.g. centrifugation, antibody (e.g. extracellular vesicle membrane)
  • the extracellular vesicles described herein can be purified by purification using an antibody that recognizes the protein contained therein), chromatography, flow cytometry, etc., concentration (e.g., ultrafiltration, etc.), drying, etc. can be obtained.
  • the extracellular vesicles described herein can be detected by methods such as flow cytometry, ELISA, and Western blotting. It may be confirmed that (C) instead of; (A) and (B) and (E) instead of (D) are included in the film.
  • a method for producing an antigen-presenting extracellular vesicle as described herein comprising: A method is provided, comprising collecting a culture supernatant.
  • a method for producing an extracellular vesicle as described herein comprising: (i) a polynucleotide (or polynucleotide (a)) encoding the protein (A) (or fusion protein) described herein; (ii) a polynucleotide (or polynucleotide (b)) encoding the protein (B) (or fusion protein) described herein; (iii) a polynucleotide (or polynucleotide (c)) encoding the protein (C) (or fusion protein) described herein; (iv) a polynucleotide (or polynucleotide of (d)) encoding the protein (D) (or fusion protein) described herein, and/or (v) (E) as described herein; ) (or polynucleotide of (e)) encoding the protein (or fusion protein) transforming cells simultaneously or sequentially (preferably
  • a composition comprising an antigen-presenting extracellular vesicle, a polynucleotide and/or a vector comprising the same, and/or a transformed cell and/or a culture supernatant thereof, as described herein.
  • a pharmaceutical composition e.g., a pharmaceutical composition.
  • medicaments and reagents are provided that include antigen-presenting extracellular vesicles as described herein, or culture supernatants as described herein.
  • compositions described herein include, but are not limited to, excipients, lubricants, binders, disintegrants, pH adjusters, Additives such as solvents, solubilizers, suspending agents, tonicity agents, buffers, soothing agents, preservatives, antioxidants, colorants, sweeteners, surfactants, and the like can be included.
  • additives such as solvents, solubilizers, suspending agents, tonicity agents, buffers, soothing agents, preservatives, antioxidants, colorants, sweeteners, surfactants, and the like can be included.
  • the type of these additives, the amount used, etc. can be appropriately selected by those skilled in the art depending on the purpose.
  • these additives are preferably pharmacologically acceptable carriers.
  • composition described herein contains a polynucleotide
  • a carrier suitable for DD (drug delivery) of the nucleic acid include lipid nanoparticles (LNPs). and polymers (eg PEI).
  • composition described herein can be prepared, for example, into tablets, coated tablets, orally disintegrating tablets, chewable preparations, pills, etc., together with the above-mentioned additives, by a method known per se.
  • the formulation may further contain other beneficial ingredients (eg, other therapeutically beneficial ingredients) depending on its purpose.
  • the composition that is an embodiment of the present invention can be used to generate genetically modified T cells that recognize the antigen, such as T cells that recognize and bind to the antigen.
  • T cells TCR-T cells in which the cell receptor (TCR) is forcibly expressed; the region that recognizes and binds to the antigen (e.g., single chain variable region scFv (scFv) containing VH and VL, and heavy chain A fusion protein containing a lymphocyte activation molecule (e.g., the intracellular domain of CD28 or the intracellular domain of mCD3z), such as a nanobody containing the variable region of an immunoglobulin (antibody) consisting of a target antigen recognition portion of an antibody (for example, the intracellular domain of CD28 or the intracellular domain of mCD3z).
  • scFv single chain variable region scFv
  • mCD3z heavy chain A fusion protein containing a lymphocyte activation molecule
  • CAR-T cells chimeric antigen receptor
  • CAR-T cells chimeric antigen receptor
  • the pharmaceutical composition that is an embodiment of the present invention to a subject, the T cell receptor of TCR-T cells, CAR -
  • the antigen presented on the extracellular membrane of the extracellular vesicle reacts with a chimeric antigen receptor, etc. of a T cell, and preferably also with a T cell-stimulating cytokine receptor on a TCR-T cell, a CAR-T cell, etc.
  • T cell costimulatory molecules are also presented outside the membrane of extracellular vesicles, they interact with molecules (e.g., CD28, CD134, etc.) present on the membrane of TCR-T cells, CAR-T cells, etc. This further contributes to the activation and/or proliferation of TCR-T cells, CAR-T cells, etc.
  • Activated and/or proliferated TCR-T cells, CAR-T cells, etc. attack cancer cells that express the antigen or its fragment on the surface, suppressing the proliferation of cancer cells and treating cancer. do.
  • Cancer includes any solid cancer and blood cancer, but is not limited to, for example, small cell lung cancer, non-small cell lung cancer, breast cancer, esophageal cancer, stomach cancer, small intestine cancer. , colorectal cancer, colon cancer, rectal cancer, pancreatic cancer, prostate cancer, bone marrow cancer, kidney cancer (including renal cell cancer, etc.), parathyroid cancer, adrenal gland cancer, and ureteral cancer.
  • cancer liver cancer, bile duct cancer, cervical cancer, ovarian cancer (for example, the histological types are serous adenocarcinoma, mucinous adenocarcinoma, clear cell adenocarcinoma, etc.), testicular cancer, and bladder cancer.
  • Vulvar cancer penile cancer, thyroid cancer, head and neck cancer, craniopharyngeal cancer, pharyngeal cancer, tongue cancer, skin cancer, Merkel cell cancer, melanoma (malignant melanoma, etc.) , epithelial cancer, squamous cell carcinoma, basal cell carcinoma, pediatric cancer, cancer of unknown primary origin, fibrosarcoma, mucosal sarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, lymphangiosarcoma , intralymphatic sarcoma, Kaposi's sarcoma, leiomyosarcoma, rhabdomyosarcoma, synovioma, mesothelioma, Ewing tumor, seminoma, Wilms tumor, brain tumor, glioma, glioblastoma, astrocytoma , medulloblastoma, men
  • the composition that is an embodiment of the present invention is capable of activating/proliferating endogenous or externally transplanted hematopoietic stem cells in vitro or in vivo. Therefore, it can be used for recovery treatment of hematopoietic stem cells against aplastic anemia and decrease in blood cells after cancer radiotherapy.
  • Aplastic anemia causes various symptoms due to a decrease in red blood cells, neutrophils, and platelets. Transplanting healthy hematopoietic stem cells to treat or prevent aplastic anemia by regenerating the patient's hematopoietic capacity.
  • Hematopoietic stem cell transplants are also performed for the purpose of completely curing blood cancers and immunodeficiency diseases that are difficult to cure with conventional chemotherapy and immunosuppressive therapy alone.
  • pre-transplant treatment which includes high-dose chemotherapy and whole-body radiation therapy
  • hematopoietic stem cells collected in advance from the patient or from a donor are administered via an intravenous drip.
  • Cancers that are easily treated with chemotherapy or radiation therapy, such as blood or lymph cancer are suitable for treatment.
  • the purpose of pre-transplant treatment is to reduce tumor cells and suppress the patient's own immune cells.
  • the transplanted hematopoietic stem cells take root (engraft) in the patient's bone marrow, restoring normal hematopoietic function.
  • allogeneic hematopoietic stem cell transplantation allogeneic transplantation
  • a graft-versus-leukemia effect in which the donor's lymphocytes attack the patient's tumor cells can be expected.
  • the composition that is an embodiment of the present invention is capable of inducing differentiation of iPS cells/embryonic stem cells in vitro or in vivo.
  • Subjects to be treated or prevented for the various diseases mentioned above include, but are not limited to, rodents such as mice, rats, hamsters, and guinea pigs; lagomorphs such as rabbits; pigs, and cows. , animals such as ungulates such as goats, horses, and sheep; felids such as dogs and cats; primates such as humans, monkeys, rhesus monkeys, cynomolgus monkeys, marmosets, orangutans, and chimpanzees; and plants such as mammals.
  • the animal is preferably an animal, more preferably a rodent or a primate, and even more preferably a mouse or a human.
  • the dosage of the drug can be determined as appropriate by taking into account the sex, age, weight, health condition, degree of medical condition, or diet of the subject to be administered; administration time; administration method; combination with other drugs; and other factors. can.
  • Example 1 Effect on hematopoietic stem cells 1.1. Preparation of plasmids A polynucleotide (SEQ ID NO: 2) encoding the signal peptide of CD8A (SEQ ID NO: 1), a polynucleotide (SEQ ID NO: 4) encoding the full-length sequence of CXCL12 (SEQ ID NO: 3), a polynucleotide encoding the signal peptide of CD8A (SEQ ID NO: 1), a polynucleotide (SEQ ID NO: 4) encoding the full-length sequence of CXCL12 (SEQ ID NO: 3), An artificially synthesized gene sequence (SEQ ID NO: 9) consisting of a polynucleotide (SEQ ID NO: 6) encoding the full-length sequence (SEQ ID NO: 5) and a polynucleotide (SEQ ID NO: 8) encoding the full-length sequence of CD81 (SEQ ID NO: 7).
  • pcDNA (trademark) 3.1 (+) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific) to express CXCL-12 on the membrane of extracellular vesicles.
  • pcDNA (trademark) 3.1 (+) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific) to express CXCL-12 on the membrane of extracellular vesicles.
  • pcDNA (trademark) 3.1 (+) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific) to express CXCL-12 on the membrane of extracellular vesicles.
  • pcDNA (trademark) 3.1 (+) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific) to express CXCL-12 on the membrane of extracellular vesicles.
  • SEQ ID NO: 12 a polynucleotide encoding the full-length sequence of L-Selectin
  • SEQ ID NO: 14 polynucleotide
  • the polynucleotide (SEQ ID NO: 16) encoding the artificially synthesized gene sequence (SEQ ID NO: 15) was added to pcDNA (trademark) 3.1 (+) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific), and the signal peptide of CD8A (SEQ ID NO: 17) (SEQ ID NO: 18), a polynucleotide encoding the full-length sequence of Thrombopoietin (TPO) (SEQ ID NO: 19) (SEQ ID NO: 20), a full-length sequence of CD8A excluding the signal peptide (SEQ ID NO: 21)
  • a polynucleotide (SEQ ID NO: 22) encoding an artificially synthesized gene sequence (SEQ ID NO: 25) consisting of a polynucleotide (SEQ ID NO: 24) encoding the full-length sequence of CD81 (SEQ ID NO: 23) SEQ ID NO: 26) was added
  • HEK293 HEK293 cells derived from human embryonic kidney (manufactured by JCRB Cell Bank) were grown in E-MEM medium containing 10% FBS (L- Preculture was performed using glutamine (containing phenol red) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • HEK293 was seeded at 1 ⁇ 10 6 cells/10 mL/10 cm dish and cultured in a static state in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours.
  • Example 1 Lipofectamine (registered trademark) 3000 Reagent (manufactured by Thermo Fisher Scientific) and Opti-MEM (trademark) I Reduced Serum Medium, no phenol red (Thermo Fisher Scientific) were added. isher Scientific) was used to test the non-vector-introduced group (sample 1) Introduce 5 ⁇ g each of SCF and TPO expression vector introduction group (sample 2), SCF, TPO and L-Selectin expression vector introduction group (sample 3), and SCF, TPO and CXCL12 expression vector introduction group (sample 4), The cells were cultured in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours.
  • a CO 2 incubator 37° C., 5% CO 2
  • the collected culture supernatant was concentrated using Vivaspin 20 (100k) (manufactured by Sartorius), and the concentrated solution was used to perform PS Capture (trademark) exosome flow cytometry kit (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Immunostaining was performed according to the manufacturer's instructions.
  • the antibodies used for staining are as follows. The staining time was 60 minutes for both the primary antibody and the secondary antibody at 4°C. After staining, the expression of each fusion protein was detected using a flow cytometer LSRFortessaX-20 (manufactured by BD Biosciences).
  • HEK293 cell-derived extracellular vesicles and quantitative evaluation of SCF and TPO Human fetal kidney-derived HEK293 cells (manufactured by JCRB Cell Bank) were grown in E-MEM medium containing 10% FBS (containing L-glutamine and phenol red) (Fujifilm Wako Pure Preculture was carried out using a commercially available product (manufactured by Yakusha).
  • HEK293 was seeded at 1 ⁇ 10 6 cells/10 mL/10 cm dish and cultured in a static state in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours.
  • Lipofectamine 3000 Reagent manufactured by Thermo Fisher Scientific
  • Opti-MEM I Reduced Serum Medium no phenol red (manufactured by Thermo Fisher Scientific) were added.
  • the vector-unintroduced group (sample 1), SCF and TPO expression 5 ⁇ g each of the vector introduction group (sample 2), the SCF, TPO and L-Selectin expression vector introduction group (sample 3), and the SCF, TPO and CXCL12 expression vector introduction group (sample 4) were introduced and placed in a CO 2 incubator (37°C, The cells were cultured for 24 hours in 5% CO 2 ).
  • each 10 cm dish washed with D-PBS was treated with E-MEM medium (L-glutamine, 10 mL of phenol red (containing phenol red) and cultured in a CO 2 incubator (37° C., 5% CO 2 ) for 48 hours. After 48 hours, the culture supernatant was collected. The collected culture supernatant was centrifuged at 2000xg for 10 minutes, the supernatant was collected, and then passed through a 0.22 ⁇ m filter (manufactured by Millipore).
  • E-MEM medium L-glutamine, 10 mL of phenol red (containing phenol red)
  • CO 2 incubator 37° C., 5% CO 2
  • the treated culture supernatant was added to a UC tube (manufactured by Beckman Coulter), set in SW41Ti (manufactured by Beckman Coulter), and incubated at 35,000 rpm using Optima L-90K (manufactured by Beckman Coulter). Centrifugation was performed at °C for 70 minutes. After centrifugation, the supernatant was removed, 10 mL of D-PBS was added to the UC tube, and the mixture was centrifuged at 35,000 rpm and 4°C for 70 minutes. After centrifugation, the supernatant was removed and suspended in 50 ⁇ L of D-PBS.
  • Human SCF ELISA Kit manufactured by ABCAM
  • Human Thrombopoietin ELISA Kit manufactured by ABCAM
  • 50 ⁇ L of a 10-fold diluted extracellular vesicle solution or a serially diluted standard curve solution was added to each plate used.
  • 50 ⁇ L of Antibody Cocktail prepared with Antibody Diluent CPI or Antibody Diluent 5BI to a final concentration of 1 ⁇ Capture Antibody and 1 ⁇ Detector Antibody, and shake at room temperature for 1 hour. Last night. After 1 hour, the solution was discarded and washed three times with 350 uL of 1 ⁇ Wash Buffer PT.
  • SCF and TPO The final concentrations of SCF and TPO are SCF: 3 pg/mL, TPO: 1.63 pg/mL (sample 2); SCF: 3 pg/mL, TPO: 3.69 pg/mL (sample 3) and SCF: 3 pg/mL, TPO :
  • Each extracellular vesicle solution prepared in 1.2.2 above was added so that the concentration was 2.92 pg/mL (sample 4).
  • Sample 1 was added in a manner that matched Sample 2, which had the largest amount added.
  • recombinant SCF manufactured by R&D Systems
  • recombinant TPO manufactured by Peprotech
  • a D-PBS treatment group was set as a control.
  • the final volume of each group was adjusted with the medium and D-PBS solution so that it was 100 ⁇ L.
  • the treated plates were cultured in a CO 2 incubator (37° C., 5% CO 2 ) for 96 hours.
  • a polynucleotide encoding an artificially synthesized gene sequence consisting of a polynucleotide (SEQ ID NO: 64) encoding the full-length sequence of MFGE8 excluding the signal peptide (SEQ ID NO: 63) (SEQ ID NO: 63); 66) into pcDNA (trademark) 3.1/Zeo(+) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific), a polynucleotide (SEQ ID NO: 68) encoding the signal peptide of MFGE8 (SEQ ID NO: 67), and Mature Activin.
  • a polynucleotide (SEQ ID NO: 76) encoding an artificially synthesized gene sequence (SEQ ID NO: 75) consisting of a polynucleotide (SEQ ID NO: 74) encoding SEQ ID NO: 73) was added to pcDNA(TM) 3.1/Zeo(+ ) Mammalian Expression Vector (manufactured by Thermo Fisher Scientific) to prepare vectors for expressing Mutation Activin A and Mature Activin A on the membrane of extracellular vesicles.
  • Each constructed vector was E.
  • the cells were transformed into E. coli DH5 ⁇ Competent Cells (manufactured by Takara Bio Inc.).
  • the transformed E. coli was amplified using LB medium, and a large amount of vector was prepared using EndoFree Plasmid Maxi Kit (manufactured by QIAGEN).
  • the sequence information used is shown in Tables 6 to 8 below.
  • HEK293 cell-derived extracellular vesicles and flow cytometry analysis of fusion proteins contained in the membrane of the extracellular vesicles
  • Human embryonic kidney-derived HEK293 cells (manufactured by JCRB Cell Bank) were grown in E-MEM medium containing 10% FBS (L- Preculture was performed using glutamine (containing phenol red) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • HEK293 was seeded at 8 ⁇ 10 5 cells/10 mL/10 cm dish and cultured in a static state in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours.
  • Immunostaining was performed using the concentrated solution using PS Capture (trademark) Exosome Flow Cytometry Kit (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) according to the manufacturer's instructions.
  • PS Capture trademark
  • AlexaFluor registered trademark
  • 647 conjugate anti-human Activin A antibody manufactured by Bioss antibodies
  • reaction was performed at room temperature for 60 minutes.
  • the expression of each fusion protein was detected using a flow cytometer LSRFortessaX-20 (manufactured by BD Biosciences).
  • HEK293 cell-derived extracellular vesicles and quantitative evaluation of Activin A Human fetal kidney-derived HEK293 cells (manufactured by JCRB Cell Bank) were cultured in E-MEM medium containing 10% FBS (containing L-glutamine and phenol red) (Fujifilm Wako Pure Chemical Industries, Ltd.) Preculture was carried out using a commercially available commercially available product. HEK293 was seeded at 8 ⁇ 10 5 cells/10 mL/10 cm dish and cultured in a static state in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours.
  • FBS containing L-glutamine and phenol red
  • Mutation Activin A expression vector introduction group (Example conditions 1) 7.5 ⁇ g of each vector, 3.75 ⁇ g of each vector for the Bc2l-C and Mutation Activin A expression vector introduced group (Example conditions 2), and 7.5 ⁇ g of each vector for the Mature Activin A expression vector introduced group (Example conditions 3). and cultured in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours.
  • a group without vector introduction that was operated in the same manner was used as a comparative example. After 24 hours, each 10 cm dish washed with D-PBS was treated with E-MEM medium (L-glutamine) containing 10% Fetal Bovine Serum, exosome-depleted, One Shot format (manufactured by Thermo Fisher Scientific). , 10 mL of phenol red (containing phenol red) and cultured in a CO 2 incubator (37° C., 5% CO 2 ) for 48 hours. After 48 hours, the culture supernatant was collected.
  • E-MEM medium L-glutamine
  • phenol red containing phenol red
  • CO 2 incubator 37° C., 5% CO 2
  • Extracellular vesicles from the collected culture supernatant were purified using Capturem (trademark) Extracellular Vesicle Isolation Kit (Maxi) (manufactured by Takara Bio Inc.), and the resulting solution was purified using Amicon Ultra-0.5, PLGC Ultracel, It was concentrated using 10kDa (manufactured by Merck Millipore) and replaced with D-PBS(-).
  • the concentrated solution was measured using Human Activin A ELISA (manufactured by RayBiotech).
  • the number and average particle diameter of extracellular vesicles contained in the same solution were measured using a nanoparticle tracking analyzer ZetaView (manufactured by DKSH Japan).
  • the obtained cells were suspended in StemFit (registered trademark) medium supplemented with 10 ⁇ M Y-27632 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and placed in a 24-well plate coated with iMatrix-511 at 0.5 ⁇ g/cm 2 .
  • the cells were seeded at 2 ⁇ 10 5 cells/well and cultured in a static state in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours. (Day-1). The day after seeding, it was confirmed that the cells had adhered, and the medium was replaced with a differentiation medium to start differentiation (Day 0).
  • the differentiation medium contained 2mM L-glutamine (manufactured by DS Pharma Biomedical), 1% MEM non-essential amino acid solution (x100) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and 0.1mM 2-mercaptoethanol (Thermo Fisher Scientific).
  • DMEM (high glucose) containing penicillin-streptomycin manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the HEK293-derived Activin A-expressing extracellular vesicles obtained were added and cultured for 3 days in a static state in a CO 2 incubator (37° C., 5% CO 2 ).
  • recombinant Activin A protein manufactured by Shenandoah was added at the same concentration as the ELISA quantitative results of the HEK293-derived Activin A-expressing extracellular vesicles used, and cultured for 3 days.
  • the TaqMan probes shown in Table 10 both manufactured by Thermo Fisher Scientific were used for gene expression analysis, and the expression level of each gene was corrected by the expression level of GAPDH, a housekeeping gene. The results are shown in Table 11.
  • iPSC differentiation induction experiment using Activin A-expressing extracellular vesicles derived from HEK293 cells
  • Extracellular vesicles obtained by introducing the Mature Activin A vector into HEK293 cells were obtained in the same manner as in Condition 3 above.
  • the amount of extracellular vesicles added and the expression of differentiation markers were evaluated.
  • Human iPSCs (RPChiPS771 strain, manufactured by Repro Cell) were detached as single cells in the same manner as above.
  • the obtained cells were suspended in StemFit (registered trademark) medium supplemented with 10 ⁇ M Y-27632 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and placed in a 48-well plate coated with iMatrix-511 at 0.5 ⁇ g/cm 2 .
  • the cells were seeded at 2 ⁇ 10 4 cells/well and cultured in a static state in a CO 2 incubator (37° C., 5% CO 2 ) for 24 hours. (Day-1). On the day after seeding, it was confirmed that the cells had adhered, and the medium was replaced with a differentiation medium to start differentiation (Day 0).
  • HEK293-derived Mature Activin A-expressing extracellular vesicles whose Activin A concentration was determined by ELISA were added to the differentiation medium at concentrations of 0.05, 0.1, 0.2, and 0.5 ng/mL, and incubated for 3 days. Cultured. For comparison, Activin A recombinant protein (manufactured by Shenandoah) was added at concentrations of 0, 1, 10, and 100 ng/mL, and the medium was replaced every day in the control group. The results of evaluating gene expression 3 days after differentiation in the same manner as above are shown in FIG. 4.
  • mesodermal marker T and endodermal markers SOX17 and FOXA2 increased at low concentrations compared to the recombinant protein.
  • the endodermal marker T was highly expressed at the concentration of extracellular vesicles added, far exceeding the expression level of recombinant protein, suggesting that it may be particularly useful for differentiation into mesoderm. .
  • it is necessary to change the medium and add recombinant proteins each time during the 3-day differentiation period but in the case of extracellular vesicles, it is necessary to add recombinant proteins only on the first day without changing the medium. It was possible to induce iPSC differentiation.
  • Example 3 Effect on CAR-T cells 3.1. Preparation of plasmids 3.1.0.
  • CAR-P2A-Venus A polynucleotide (SEQ ID NO: 106) encoding a chimeric antigen receptor (CAR) (SEQ ID NO: 105) that recognizes Her2, a polynucleotide (SEQ ID NO: 108) encoding one of the 2A peptides, P2A (SEQ ID NO: 107).
  • CAR-P2A-Venus A polynucleotide (SEQ ID NO: 106) encoding a chimeric antigen receptor (CAR) (SEQ ID NO: 105) that recognizes Her2, a polynucleotide (SEQ ID NO: 108) encoding one of the 2A peptides, P2A (SEQ ID NO: 107).
  • a polynucleotide (SEQ ID NO: 112) encoding the artificially synthesized gene sequence CAR-P2A-Venus (SEQ ID NO: 111), which is composed of a polynucleotide (SEQ ID NO: 110) encoding Venus (SEQ ID NO: 109), is put into a pMX vector.
  • a vector for producing CAR-T cells was created. Since the 2A peptide sequence causes ribosome skipping, if a sequence encoding CAR-P2A-Venus is actually translated, an independent CAR-containing protein and an independent Venus-containing protein will be translated. 3.1.1.
  • Her2-MFGE8 Polynucleotide (SEQ ID NO: 80) encoding human Her2 signal peptide (SEQ ID NO: 79), polynucleotide encoding human Her2 (extracellular domain) (SEQ ID NO: 77) (SEQ ID NO: 78), peptide linker (SEQ ID NO: 81) ) (SEQ ID NO: 82) and a polynucleotide (SEQ ID NO: 84) encoding MFG-E8 (SEQ ID NO: 83), the artificially synthesized gene sequence Her2-MFG-E8 (SEQ ID NO: 85) ) was inserted into the pCAG-puro vector to create a vector for expressing Her2 on the membrane of extracellular vesicles.
  • Her2-MFGE8-IL-2 and Her2-MFGE8-IL-7 Gene sequence Her2-MFGE8- in which IL-2 (SEQ ID NO: 89) or IL-7 (SEQ ID NO: 93) is further fused to the C-terminus of Her2-MFG-E8 constructed above via a linker (SEQ ID NO: 87).
  • a polynucleotide (SEQ ID NO: 92 or 96) encoding IL-2 (SEQ ID NO: 91) or Her2-MFGE8-IL-7 (SEQ ID NO: 95), respectively, is inserted into a pCAG-puro vector, and Her2 and IL-2, or A vector was created to express Her2 and IL-7 on the membrane of extracellular vesicles.
  • Her2-CD81 A polynucleotide (SEQ ID NO: 98) encoding human Her2 (including a signal peptide, an extracellular domain, a transmembrane domain, and some intracellular domains) (SEQ ID NO: 97), and a polynucleotide encoding mouse CD81 (SEQ ID NO: 99)
  • Her2-CD81-IL-2 A sequence consisting of linker 8 (SEQ ID NO: 87), the sequence of IL-2 excluding the signal peptide, and linker 8 (SEQ ID NO: 87) was introduced into the 2nd loop of Her2-CD81 constructed above to create Her2-CD81-IL. -2 (SEQ ID NO: 103) was inserted into the pCAG-puro vector to create a vector for expressing Her2 and IL-2 on the membrane of extracellular vesicles. .
  • Her2-CD81-IL-15sa (super agonist) A polynucleotide encoding the N-terminal peptide (SEQ ID NO: 113) of TfR (transferrin receptor 1) (SEQ ID NO: 114); A polynucleotide (SEQ ID NO: 116) encoding linker 9 (SEQ ID NO: 115); A polynucleotide (SEQ ID NO: 118) encoding the IL-15R ⁇ sushi domain (SEQ ID NO: 117); A polynucleotide (SEQ ID NO: 120) encoding linker 10 (SEQ ID NO: 119); and a polynucleotide (SEQ ID NO: 122) encoding IL-15 (SEQ ID NO: 121) are linked in this order to form Her2-CD81- A polynucleotide (SEQ ID NO: 124) encoding IL-15sa (SEQ ID NO: 123) was prepared and inserted into the pCAG-puro vector,
  • hHer2-hCD81 It was created by replacing CD81 in 3.1.3 above with a human gene (amino acid sequence: SEQ ID NO: 129; polynucleotide sequence: SEQ ID NO: 130). 3.1.7. hHer2-hCD81-hIL-2 It was created by replacing CD81 and IL-2 in 3.1.4 above with human genes (amino acid sequence: SEQ ID NO: 131; polynucleotide sequence: SEQ ID NO: 132). 3.1.8. hCD19-hCD81 It was created by replacing Her2, the target factor (ie, antigen) in 3.1.6 above, with human CD19 (amino acid sequence: SEQ ID NO: 133; polynucleotide sequence: SEQ ID NO: 134). 3.1.9.
  • hCD19-hCD81-hIL-2 It was created by replacing Her2, the target factor (ie, antigen) in 3.1.7 above, with human CD19 (amino acid sequence: SEQ ID NO: 135; polynucleotide sequence: SEQ ID NO: 136).
  • hCD80-hCD9 In order to express human CD80, which is one of costimulatory molecules, on the membrane of extracellular vesicles, a polynucleotide (SEQ ID NO: 139) encoding a fusion protein (SEQ ID NO: 137) of human CD80 and human CD9, a tetraspanin, was used. ) was inserted into pCAG-puro or pMX vector to prepare a vector expressing the fusion protein.
  • FIG. 5 shows a schematic diagram of each gene structure, and Tables 12 to 14 show the sequence information.
  • the medium was changed 12 hours after transfection, and the supernatant was collected 60 hours after transfection and centrifuged at 300 g for 5 minutes. The collected supernatant was used as virus particles.
  • the recovered virus particles were spread on a plate coated with RetroNection according to the manufacturer's instructions. Lymph nodes removed from C57BL/6 mice were crushed on a 100 ⁇ m filter to obtain a lymph node cell suspension. 2 x 10 5 lymph node cells were suspended in 200 ⁇ L of RPMI 1640 medium supplemented with 10% fetal bovine serum, 50 ⁇ M 2-mercaptoethanol and penicillin/streptomycin, 10 ng/ml mIL-2 and cultured in Dynabeads Mouse according to the manufacturer's instructions.
  • T-Activator CD3/CD28 was added and cultured for 2 days. After culturing, the Dynabeads were removed, 2 ⁇ 10 5 cells were seeded on the plate coated with the virus particles, centrifuged at 500 g for 10 minutes, and cultured O/N to obtain CAR-T cells.
  • Lenti-X293T cells (TAKARA BIO) were seeded in a cell culture dish and cultured in Dulbecco's modified Eagle's medium supplemented with 2% fetal bovine serum and penicillin/streptomycin. .
  • the collected supernatant was used as virus particles.
  • the recovered virus particles were spread on a plate coated with RetroNection (TAKARA BIO) according to the manufacturer's instructions.
  • PBMC were separated from human peripheral blood using ficol, and 10 ng/m using Dynabeads TM Human T-Activator CD3/CD28 for T Cell Expansion and Activation (Thermo Fisher).
  • l's IL-2 Biolegend
  • the Dynabeads were removed, and 5 ⁇ 10 5 cells were seeded on the plate coated with the virus particles, centrifuged at 800 g for 30 minutes, and cultured for 2 days to obtain CAR-T cells.
  • HEK293T cells Preparation of extracellular vesicles containing Her2 molecules and T cell-stimulating cytokines in their membranes HEK293T cells were seeded in cell culture dishes and cultured in Dulbecco's modified Eagle's medium supplemented with 2% fetal bovine serum and penicillin/streptomycin. Cells at approximately 50% confluence were incubated with plasmids (Her2-CD81, Her2-CD81-IL-2, Her2-MFG-E8, Her2-MFG-E8-IL-2 or Her2-CD81-IL) according to the manufacturer's instructions.
  • plasmids Her2-CD81, Her2-CD81-IL-2, Her2-MFG-E8, Her2-MFG-E8-IL-2 or Her2-CD81-IL
  • pCAG vector encoding -15sa was transfected using Polyethylenenimine “Max” (manufactured by Polysciences).
  • the medium was changed 6 hours after transfection and 24 hours after transfection to Dulbecco's modified Eagle's medium supplemented with 2% fetal bovine serum and penicillin/streptomycin depleted of exosomes.
  • 72 hours after transfection the supernatant was collected, passed through a 0.22 ⁇ m filter, and then centrifuged at 300 g for 5 minutes. The supernatant was collected and centrifuged at 2,000g for 20 minutes. The supernatant was collected and centrifuged at 10,000g for 30 minutes. After collecting the supernatant and centrifuging it at 100,000 g for 2 hours, the supernatant was removed and the pellet was washed with PBS.
  • control exosomes or 293 exosomes were collected under similar conditions from HEK293 cells not transfected with the plasmid (hereinafter referred to as control exosomes or 293 exosomes).
  • 3.2.2.2 Preparation of extracellular vesicles containing human Her2 or CD19 molecules and T cell-stimulating cytokines in their membrane HEK293T cells were seeded in cell culture dishes and cultured in Dulbecco's modified Eagle's medium supplemented with 2% fetal bovine serum and penicillin/streptomycin. Cultured. Add plasmids (pCAG vector encoding hHer2-hCD81, hHer2-hCD81-hIL-2, hCD80-hCD9 or hCD19-hCD81, hCD19-hCD81-hIL-2) to cells at approximately 50% confluence according to the manufacturer's instructions.
  • control exosomes or 293 exosomes were collected under similar conditions from HEK293 cells not transfected with the plasmid (hereinafter referred to as control exosomes or 293 exosomes).
  • Extracellular small cells expressing Her2-CD81-IL-2 (approximately 3.8 times), Her2-CD81-IL-2 (approximately 8.2 times), or Her2-CD81-IL-15sa (approximately 7.4 times) cells significantly proliferated Venus-expressing CAR-T cells compared to controls.
  • Example 3.2.1.2. 7 ⁇ 10 4 Her2CAR-T cells prepared in Example 3.2 were suspended in 200 ⁇ L of X-VIVO 15 medium (Lonza) supplemented with 5% human serum and 10 mM neutralized N-acetyl L-Cysteine. .2.2.
  • extracellular vesicles hHer2-hCD81; hHer2-hCD81&hCD80-hCD9;hHer2-hCD81-hIL-2;hHer2-hCD81-hIL-2&hCD80-hCD9; or control extracellular vesicles (293 exosome) at a final concentration of 35 ⁇ g/
  • proliferation of Her2CAR-T cells was detected using a flow cytometer FACS Canto II (manufactured by BD Biosciences). The following antibodies were used for immunostaining (staining time: 15 minutes, temperature: 4°C).
  • Her2CAR-T cell proliferation was detected by Myc expression using a flow cytometer FACS Canto II (manufactured by BD Biosciences). ⁇ Alexa-fluor647 conjugate anti-human Myc antibody (manufactured by 9B11 Cell Signaling Technology) The results are shown in FIG. 7(B). Extracellular vesicles expressing Her2, CD80, and IL-2 significantly expanded Her2CAR-T cells.
  • extracellular vesicles (CD19-CD81; CD19-CD81 &CD80-CD9;CD19-CD81-IL-2; CD19-CD81-IL-2 & CD80-CD9) or control extracellular vesicles (293 exosome) at a final concentration of 35 ⁇ g/
  • proliferation of CAR-T cells was detected using a flow cytometer FACS Canto II (manufactured by BD Biosciences).
  • the following antibodies are used for immunostaining (staining time: 15 minutes, temperature: 4°C).
  • CAR-T cell proliferation was detected by GFP expression using a flow cytometer FACS Canto II (manufactured by BD Biosciences).
  • the results are shown in FIG. 7(C).
  • Extracellular vesicles expressing CD19, CD80, and IL-2 significantly expanded CD19CAR-T cells.
  • Table 15 below shows details of the sequence information used in the examples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[0] 少なくとも1種のサイトカインを膜外に提示する細胞外小胞; [1] 少なくとも1種のターゲット因子を膜外に提示する細胞外小胞;又は [2] 少なくとも1種のターゲット因子及び少なくとも1種のサイトカインを膜外に提示する細胞外小胞を提供する。

Description

CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途
<Cross Reference>
 本出願は、2022年4月25日出願の日本特許出願(特願2022-071611)からの優先権を享受し、先行技術文献を含む、その内容全体を引用により本明細書に含める。
 本発明は、CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途に関する。
 生体によるがん細胞等の排除や、自己抗原、アレルギー性物質等に対する応答の調節等の免疫反応には、抗原特異的なT細胞(例えば、細胞傷害性T細胞、ヘルパーT細胞等)が中心的な働きをしていることが知られている。抗原特異的なT細胞は、樹状細胞やマクロファージ等の抗原提示細胞の細胞表面のMHC分子と、がん、アレルギー性物質等に由来する抗原との結合複合体をT細胞受容体で認識して活性化、増殖、分化等する。活性化等した抗原特異的なT細胞は、抗原を提示しているがん細胞等を特異的に傷害することや、自己抗原、アレルギー性物質等に対する応答を調節する。したがって、抗原特異的なT細胞を活性化、増殖、分化等させることが、免疫反応において特に重要であると考えられている。
 抗原特異的なT細胞を活性化等させる方法としては、既に実用化されているT細胞にキメラ抗原受容体を発現させる方法だけでなく、その他の方法も開発されている。例えば、特許文献1は、MHC分子とT細胞共刺激分子とを表面上に含むナノ粒子が、抗原特異的なT細胞を増殖させることを開示している。また、非特許文献1は、PTGFRNを介してIL-12を膜上に発現させたエクソソームが、モデル抗原特異的なCD8陽性T細胞を増殖させることを開示している。
 本願発明者らも、抗原を提示するMHC分子とT細胞共刺激分子とをその表面に含むエクソソームを用いて、各種T細胞を活性化させる方法を開示している(特許文献2及び3)。
特表2016-520518号公報 国際公開2021/172595号公報 国際公開2021/172596号公報
Katherine Kirwin, et al., "Exosome Surface Display of IL-12 Results in Tumor-Retained Pharmacology with Superior Potency and Limited Systemic Exposure Compared to Recombinant IL-12", 令和1年11月6日, 34th Annual Meeting of the Society for Immuno-therapy of Cancer Journal of Extracellular Vesicles(2018);7:1535750
 サイトカイン分子を共投与するよりも効率よく特定細胞を活性化(すなわち、増殖及び/又は分化)させる、新規な細胞活性化法、細胞活性化用組成物およびその用途を提供することを目的とする。
 本発明者らは、鋭意研究の結果、MHC分子を用いなくても、サイトカイン又はターゲット因子を膜外に提示する細胞外小胞であれば、特定の細胞(たとえばCAR-T細胞、造血幹細胞、iPS細胞)を活性化(すなわち、増殖及び/又は分化)できることを新たに見出し、本願発明を完成させた。
 したがって、本発明は、以下のものを含む:
[0] 少なくとも1種のサイトカインを膜外に提示する細胞外小胞。
[1] 少なくとも1種のターゲット因子を膜外に提示する細胞外小胞。 
[2] 少なくとも1種のターゲット因子及び少なくとも1種のサイトカインを膜外に提示する細胞外小胞。
[0A] 
 前記ターゲット因子が抗原である、[1]に記載の細胞外小胞。
[1A]
 前記ターゲット因子が抗原であり、前記サイトカインがT細胞刺激性サイトカインである、[2]に記載の細胞外小胞。
[2A]
 前記ターゲット因子が抗原及びT細胞共刺激分子であり、前記サイトカインがT細胞刺激性サイトカインである、[2]に記載の細胞外小胞。
[3A]
 [0A]に記載の細胞外小胞であって、その膜に以下:
(B)前記抗原を含む、該抗原を膜外に提示可能なタンパク質;
を含む、細胞外小胞。
[4A]
 [1A]に記載の細胞外小胞であって、その膜に以下:
(1)(A)前記T細胞刺激性サイトカイン又はそのサブユニットを含む、該T細胞刺激性サイトカインを膜外に提示可能なタンパク質;及び
   (B)前記抗原を含む、該抗原を膜外に提示可能なタンパク質;
又は
(2)(C)前記抗原と、前記T細胞刺激性サイトカイン又はそのサブユニットを含む、抗原及びT細胞刺激性サイトカインを膜外に提示可能なタンパク質
を含む、細胞外小胞。
[5A]
 [2A]に記載の細胞外小胞であって、その膜に以下:
(1)(B)前記抗原を含む、該抗原を膜外に提示可能なタンパク質;
   (A)前記T細胞刺激性サイトカイン又はそのサブユニットを含む、該細胞刺激性サイトカインを膜外に提示可能なタンパク質;及び
   (D)前記T細胞共刺激分子を含む、該T細胞共刺激分子を膜外に提示可能なタンパク質、
(2)(C)前記抗原と、前記T細胞刺激性サイトカイン又はそのサブユニットを含む、抗原及びT細胞刺激性サイトカインを膜外に提示可能なタンパク質;及び
   (D)前記T細胞共刺激分子を含む、該T細胞共刺激分子を膜外に提示可能なタンパク質、
又は
(3)(E)前記抗原と、前記T細胞刺激性サイトカイン又はそのサブユニットと、前記T細胞共刺激分子を含む、抗原、T細胞刺激性サイトカイン及び共刺激分子を膜外に提示可能なタンパク質
を含む、細胞外小胞。
[6A]
 タンパク質(B)が、
抗原と、
細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
との融合タンパク質である、[3A]~[5A]のいずれか一項に記載の細胞外小胞。
[7A]
 タンパク質(A)が、
前記T細胞刺激性サイトカイン又はそのサブユニットと、
細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
との融合タンパク質である、[4A]又は[5A]に記載の細胞外小胞。
[8A]
 タンパク質(C)が、
前記抗原と、
前記T細胞刺激性サイトカイン又はそのサブユニットと、
細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
との融合タンパク質である、[4A]又は[5A]に記載の細胞外小胞。
[9A]
 細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質が、テトラスパニン若しくはその膜貫通ドメイン又はMFG-E8若しくはその膜結合ドメインを含む、[6A]~[8A]のいずれか一項に記載の細胞外小胞。
[10A]
 タンパク質(C)が、
N末端側から、
 (C-1)抗原ペプチド、
 (C-2)存在していてもよいスペーサー配列、及び
 (C-3)テトラスパニン又はその膜貫通ドメインあるいはMFG-E8又はその膜貫通ドメインと、前記T細胞刺激性サイトカイン又はそのサブユニットを含む融合ペプチドを、この順番でコードするアミノ酸配列を含む、[4A]又は[5A]に記載の細胞外小胞。
[11A]
 タンパク質(C)が、
N末端側から、
 (C-1)テトラスパニン又はその膜貫通ドメインあるいはMFG-E8又はその膜貫通ドメインと、前記T細胞刺激性サイトカイン又はそのサブユニットを含む融合ペプチド
 (C-2)存在していてもよいスペーサー配列、及び
 (C-3)抗原ペプチドを、
この順にコードするアミノ酸配列を含む、[4A]又は[5A]に記載の細胞外小胞。
[12A]
 前記融合ペプチドが、N末端側から、
  (1)膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列、
  (2)存在していてもよいスペーサー配列、
  (3)前記T細胞刺激性サイトカイン又はそのサブユニット、
  (4)存在していてもよいスペーサー配列、並びに
  (5)膜貫通ドメイン4を含むテトラスパニンの部分配列
をこの順番でコードするアミノ酸配列を含む、[10A]又は[11A]に記載の細胞外小胞。
[13A]
 前記融合ペプチドが、N末端側から、
 (1)前記T細胞刺激性サイトカイン又はそのサブユニット、
 (2)存在していてもよいスペーサー配列、及び
 (3)MFG-E8
をこの順番でコードするアミノ酸配列を含む、[10A]又は[11A]に記載の細胞外小胞。
[14A]
 前記(D)で規定される融合タンパク質が、T細胞共刺激分子と、
  細胞又は細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン、あるいは
  細胞又は細胞外小胞の膜に結合することが可能なタンパク質若しくはその膜結合ドメイン
とを含む、[5A]に記載の細胞外小胞。
[15A]
 前記(D)で規定される融合タンパク質が、T細胞共刺激分子と、
  テトラスパニン若しくはその膜貫通ドメイン、あるいは
  MFG-E8若しくはその膜結合ドメイン
とを含む、[5A]に記載の細胞外小胞。
[16A]
 前記(D)で規定される融合タンパク質が
そのN末端側から、
 (D-1)T細胞共刺激分子のアミノ酸配列、
 (D-2)存在していてもよいスペーサー配列、及び
 (D-3)テトラスパニン又はその膜貫通ドメインのアミノ酸配列
をこの順番で含むアミノ酸配列を含む、[5A]に記載の細胞外小胞。
[17A] 細胞外小胞が、エクソソームである、[0A]~[16A]のいずれか一項記載の細胞外小胞。
[1AA]
 (a)[4A]で定義されるタンパク質(A)をコードするポリヌクレオチド;
 (b)[3A]又は[4A]で定義されるタンパク質(B)をコードするポリヌクレオチド;
 (c)[4A]で定義されるタンパク質(C)をコードするポリヌクレオチド;
 (d)[5A]で定義されるタンパク質(D)をコードするポリヌクレオチド;又は
 (e)[5A]で定義されるタンパク質(E)をコードするポリヌクレオチド。
[2AA]
 [1AA]に記載のポリヌクレオチドを含むベクター。
[3AA]
 (a)[4A]で定義されるタンパク質(A)をコードするポリヌクレオチド;及び
 (b)[3A]又は[4A]で定義されるタンパク質(B)をコードするポリヌクレオチド
を含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞。
[4AA]
 (c)[5A]で定義されるタンパク質(C)をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
[5AA]
 (d)[5A]で定義されるタンパク質(D)をコードするポリヌクレオチドを更に含む、[3AA]又は[4AA]に記載の細胞。
[6AA]
 (e)[5A]で定義されるタンパク質(E)をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
[7AA]
 [3AA]~[6AA]のいずれか一項に記載の細胞を培養して得られる培養上清。
[8AA]
 [7AA]に記載の培養上清に含まれる、細胞外小胞。
[9AA]
 [1A]に記載の細胞外小胞を製造するための方法であって、
  1)[3AA]又は[4AA]に記載の細胞を培養する工程、
  2)培養後の培養上清を回収する工程、及び
  3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
[10AA]
 [2A]に記載の細胞外小胞を製造するための方法であって、
  1)[5AA]又は[6AA]に記載の細胞を培養する工程、
  2)培養後の培養上清を回収する工程、及び
  3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
[1AB]
  [0A]~[3A]のいずれか一項に記載の細胞外小胞を含む、医薬組成物。
[2AB]
 前記抗原に特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)をin vivo又はin vitroで増殖させるため医薬組成物であって、[0A]~[3A]のいずれか一項に記載の細胞外小胞を含む、医薬組成物。
[3AB]
 前記抗原を発現するがん細胞を含むがんを治療するための医薬組成物であって、[0A]~[3A]のいずれか一項に記載の細胞外小胞を含み、前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)を投与された患者に投与される、医薬組成物。
[4AB]
 前記抗原がHer2タンパク質あるいはその断片、又はCD19タンパク質あるいはその断片である、[2AB]又は[3AB]に記載の医薬組成物。
[1AC]
 前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)を投与された対象において、該CAR-T細胞を活性化及び/又は増殖させるための方法であって、対象に[0A]~[3A]のいずれか一項に記載の細胞外小胞を投与することを含み、
 ここで、CAR-T細胞のキメラ抗原受容体と細胞外小胞の膜外に提示された前記抗原が反応し、好ましくは更にCAR-T細胞上のT細胞刺激性サイトカイン受容体と細胞外小胞の膜外に提示された前記T細胞刺激性サイトカインが反応し、好ましくは更にCAR-T細胞の膜上に存在するCD28、CD134等と細胞外小胞の膜外に提示されたT細胞共刺激分子が相互作用することにより、CAR-T細胞が対象内で活性化及び/又は増殖する、方法。
[2AC]
 対象において前記抗原を発現するがん細胞を含むがんを治療するための方法であって、
 対象に、前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)を投与し、その後、[0A]~[3A]のいずれか一項に記載の細胞外小胞を投与することを含み、
 ここで、CAR-T細胞のキメラ抗原受容体と細胞外小胞の膜外に提示された前記抗原が反応し、好ましくは更にCAR-T細胞上のT細胞刺激性サイトカイン受容体と細胞外小胞の膜外に提示された前記T細胞刺激性サイトカインが反応し、好ましくは更にCAR-T細胞の膜上に存在するCD28、CD134等と細胞外小胞の膜外に提示されたT細胞共刺激分子が相互作用することにより、CAR-T細胞が対象内で活性化及び/又は増殖し、活性化及び/又は増殖したCAR-T細胞が前記がん細胞を攻撃することにより、がん細胞の増殖を抑制してがんを治療する、方法。
[3AC]
 前記抗原がHer2タンパク質あるいはその断片、又はCD19タンパク質あるいはその断片である、[1AC]又は[2AC]に記載の方法。
[1AD]
 前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)を投与された対象において、該CAR-T細胞を活性化及び/又は増殖させるための医薬の製造における[0A]~[3A]のいずれか一項に記載の細胞外小胞の使用。
[2AD]
 対象において前記抗原を発現するがん細胞を含むがんを治療するための医薬の製造における[0A]~[3A]のいずれか一項に記載の細胞外小胞の使用であって、前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)が対象に投与されている、使用。
[3AD]
 前記抗原がHer2タンパク質あるいはその断片、又はCD19タンパク質あるいはその断片である、[1AD]又は[2AD]に記載の方法。
[1B]
 前記サイトカインがトロンボポエチン(TPO)及び/又は幹細胞因子(SCF)である、[0]に記載の細胞外小胞。
[2B]
 [1B]に記載の細胞外小胞であって、その膜に以下:
(A)-1 前記TPOを含む、該TPOを膜外に提示可能なタンパク質;及び
(A)-2 前記SCFを含む、該SCFを膜外に提示可能なタンパク質;
を含む、細胞外小胞。
[3B]
 [1B]に記載の細胞外小胞であって、その膜に以下:
(A)―3 前記TPOと、前記SCFを含む、TPO及びSCFを膜外に提示可能なタンパク質
を含む、細胞外小胞。
[4B]
 (B)L-selectin及び/又はCXCL12を含み、L-selectin及び/又はCXCL12を膜外に提示可能なタンパク質をさらに含む、[1B]~[3B]のいずれか一項に記載の細胞外小胞。 
[5B]
 タンパク質(A)―1が、TPOと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、[2B]に記載の細胞外小胞。
[6B]
 タンパク質(A)―2が、SCFと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、[2B]に記載の細胞外小胞。
[7B]
 タンパク質(A)―3が、
前記TPOと、
前記SCFと、
細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
との融合タンパク質である、[3B]に記載の細胞外小胞。
[8B]
 タンパク質(B)が、
前記L-selectin又はCXCL12と、
細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
との融合タンパク質である、[4B]に記載の細胞外小胞。
[9B]
 細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質が、テトラスパニン若しくはその膜貫通ドメイン又はMFG-E8若しくはその膜結合ドメインを含む、[5B]~[8B]のいずれか一項に記載の細胞外小胞。
[10B]
 細胞外小胞が、エクソソームである、[1B]~[8B]のいずれか一項記載の細胞外小胞。
[11B]
 (a)―1 [2B]で定義されるタンパク質(A)―1をコードするポリヌクレオチド;
 (a)―2 [2B]で定義されるタンパク質(A)―2をコードするポリヌクレオチド;
 (a)―3 [3B]で定義されるタンパク質(A)―3をコードするポリヌクレオチド;又は
 (b)   [4B]で定義されるタンパク質(B)をコードするポリヌクレオチド。
[12B]
 [11B]に記載のポリヌクレオチドを含むベクター。
[13B]
 (a)―1 [2B]で定義されるタンパク質(A)―1をコードするポリヌクレオチド;及び/又は
 (a)―2 [2B]で定義されるタンパク質(A)―2をコードするポリヌクレオチドを含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞。
[14B]
 (a)―3 [3B]で定義されるタンパク質(A)―3をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
[15B]
 (d)[4B]で定義されるタンパク質(B)をコードするポリヌクレオチドをさらに含む、[13B]又は[14B]に記載の細胞。
[16B]
 [13B]~[15B]のいずれか一項に記載の細胞を培養して得られる培養上清。
[17B]
 [16B]に記載の培養上清に含まれる、細胞外小胞。
[18B]
 [1B]に記載の細胞外小胞を製造するための方法であって、
  1)[13B]~[15B]のいずれか一項に記載の細胞を培養する工程、
  2)培養後の培養上清を回収する工程、及び
  3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
[19B]
  [1B]に記載の細胞外小胞、又は[16B]記載の培養上清を含む、医薬組成物。
[20B]
 造血幹細胞をin vivo又はin vitroで活性化及び/又は増殖させるため医薬組成物であって、[1B]に記載の細胞外小胞又は[16B]記載の培養上清を含む、医薬組成物。
[21B]
 対象において再生不良性貧血を治療するための医薬組成物であって、[1B]に記載の細胞外小胞又は[16B]記載の培養上清を含み、造血幹細胞を投与された対象に投与される、医薬組成物。
[22B]
 対象において血液がんや免疫不全症を治療するための医薬組成物であって、[1B]に記載の細胞外小胞又は[16B]記載の培養上清を含み、前記対象が、化学療法及び/又は放射線治療処置後、造血幹細胞を投与されている、医薬組成物。
[23B]
 造血幹細胞を投与された対象において、該造血幹細胞を活性化及び/又は増殖させるための方法であって、対象に[1B]に記載の細胞外小胞又は[16B]記載の培養上清を投与することを含み、
 ここで、造血幹細胞上のサイトカインレセプターと細胞外小胞の膜外に提示されたサイトカインが反応することにより、造血幹細胞が対象内で活性化及び/又は増殖する、方法。
[23B]
 前記対象が、再生不良性貧血を患っている、[22B]に記載の方法。
[24B]
 対象において血液がんや免疫不全症を治療するための方法であって、
 対象に、化学療法及び/又は放射線治療処置後、造血幹細胞を投与し、その後、[1B]に記載の細胞外小胞又は[16B]記載の培養上清を投与することを含み、
 ここで、投与された造血幹細胞上のサイトカインレセプターと細胞外小胞の膜外に提示されたサイトカインが反応することにより、造血幹細胞が対象内で活性化及び/又は増殖して、対象における造血機能が回復する、方法。
[25B]
 造血幹細胞を投与された対象において、該造血幹細胞を活性化及び/又は増殖させるための医薬の製造における、[1B]に記載の細胞外小胞又は[16B]記載の培養上清の使用。
[26B]
 前記対象が、再生不良性貧血を患っている、[25B]に記載の使用。
[27B]
 対象において血液がんや免疫不全症を治療するための医薬の製造における、[1B]に記載の細胞外小胞又は[16B]記載の培養上清の使用であって、
 ここで、前記対象が、化学療法及び/又は放射線治療処置後、造血幹細胞を投与されており、投与された造血幹細胞上のサイトカインレセプターと細胞外小胞の膜外に提示されたサイトカインが反応することにより、造血幹細胞が対象内で活性化及び/又は増殖して、対象における造血機能が回復する、使用。
[1C]
 前記サイトカインがActivinAである、[0]に記載の細胞外小胞。
[2C]
 前記ターゲット因子がBc2Lcであり、前記サイトカインがActivinAである、[1]に記載の細胞外小胞。
[3C]
 [1C]に記載の細胞外小胞であって、その膜に以下:
(A)前記ActivinAを含む、該ActivinAを膜外に提示可能なタンパク質を含む、細胞外小胞。
[4C]
 [2C]に記載の細胞外小胞であって、その膜に以下:
(A)前記ActivinAを含む、該ActivinAを膜外に提示可能なタンパク質;及び
(B)前記Bc2Lcを含む、該Bc2Lcを膜外に提示可能なタンパク質;
を含む、細胞外小胞。
[5C]
 [2C]に記載の細胞外小胞であって、その膜に以下:
(C)前記Bc2Lcと、前記ActivinAを含む、Bc2Lc及びActivinAを膜外に提示可能なタンパク質
を含む、細胞外小胞。
[6C]
 タンパク質(B)が、Bc2Lcと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、[4C]に記載の細胞外小胞。
[7C]
 タンパク質(A)が、ActivinAと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、 [3C]又は[4C]に記載の細胞外小胞。
[8C]
 タンパク質(C)が、
前記Bc2Lcと、
前記ActivinAと、
細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
との融合タンパク質である、[5C]に記載の細胞外小胞。
[9C]
 細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質が、テトラスパニン若しくはその膜貫通ドメイン又はMFG-E8若しくはその膜結合ドメインを含む、[6C]~[8C]のいずれか一項に記載の細胞外小胞。
[10C]
 細胞外小胞が、エクソソームである、[1C]~[9C]のいずれか一項記載の細胞外小胞。
[11C]
 (a)[3C]又は[4C]で定義されるタンパク質(A)をコードするポリヌクレオチド;
 (b)[4C]で定義されるタンパク質(B)をコードするポリヌクレオチド;又は
 (c)[5C]で定義されるタンパク質(C)をコードするポリヌクレオチド。 
[12C]
 [11C]に記載のポリヌクレオチドを含むベクター。
[13C]
 (a)[3C]又は[4C]で定義されるタンパク質(A)をコードするポリヌクレオチド;及び/又は
 (b)[4C]で定義されるタンパク質(B)をコードするポリヌクレオチドを含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞。
[14C]
 (c)[5C]で定義されるタンパク質(C)をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
[15C]
 [11C]又は[12C]のいずれか一項に記載の細胞を培養して得られる培養上清。
[16C]
 [15C]に記載の培養上清に含まれる、細胞外小胞。
[17C]
 [1C]に記載の細胞外小胞を製造するための方法であって、
  1)[11C]又は[12C]に記載の細胞を培養する工程、
  2)培養後の培養上清を回収する工程、及び
  3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
[18C]
  [1C]に記載の細胞外小胞、又は[13C]記載の培養上清を含む、iPS細胞又はES細胞の分化誘導剤。
 本発明によれば、主要組織適合遺伝子複合体(Major Histocompatibility Complex、以下、「MHC」ともいう。)分子を用いなくても、サイトカインを膜外に提示する細胞外小胞であれば、特定の細胞を活性化(すなわち、増殖及び/又は分化)できる。さらに特定の細胞を認識するターゲット因子を共存させることにより、選択的に特定の細胞を活性化(すなわち、増殖及び/又は分化)できる。
[規則91に基づく訂正 02.05.2023]
実施例1.2.1.における細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析の結果。上段:サンプル3の細胞外小胞;下段:サンプル4の細胞外小胞。 実施例1.3.1.におけるヒト骨髄CD34陽性前駆細胞を用いた細胞増殖評価の結果。 実施例2.2.1.における細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析の結果。 実施例2.3.2.におけるActivin A発現細胞外小胞を用いたiPSC分化誘導実験の結果。 実施例3.1.における、各遺伝子構成の模式図。(A)マウスCAR-T細胞実験用。 実施例3.1.における、各遺伝子構成の模式図。(B)ヒトCAR-T細胞実験用。 実施例3.2.3.における細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析の結果。(A)及び(B):マウスAP-ExoのFACS解析。 実施例3.2.3.における細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析の結果。(C):ヒトAP-ExoのFACS解析。 実施例3.2.3.における細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析の結果。(D):ヒトAP-ExoのFACS解析。 実施例3.3.におけるIn vitroでの細胞外小胞の評価の結果。(A):マウスAP-Exo。(A)陰性対照,Her2-CD81,Her2-CD81-IL-2,Her2-CD81-IL-15sa。 実施例3.3.におけるIn vitroでの細胞外小胞の評価の結果。(B):ヒトAP-Exo。(B)コントロールエクソソーム(陰性対照),hHer2-hCD81,hHer2-hCD81及びhCD80-hCD9,hHer2-hCD81-hIL-2,hHer2-hCD81-hIL-2及びhCD80-hCD9。 実施例3.3.におけるIn vitroでの細胞外小胞の評価の結果。(C):ヒトAP-Exo。(C)コントロールエクソソーム(陰性対照),hCD19-hCD81,hCD19-hCD81及びhCD80-hCD9,hCD19-hCD81-hIL-2,hCD19-hCD81-hIL-2及びhCD80-hCD9。 実施例3.4.の実験スケジュールとその結果。
 本明細書において「含む」(comprising)は、「実質的に含む」態様(substantially comprising)、「必須に含む」態様(essentially comprising)、「本質的に…からなる」態様(consisting essentially of)、及び「からなる」態様(consisting of)を包含する。
 本明細書中で用いられる「細胞外小胞」とは、細胞から分泌される小胞である限り特段限定されるものではないが、例えば、Exosomes(エクソソーム)、Microvesicles(MV;微小小胞体)、Apoptotic Bodies(アポトーシス小体)等が挙げられる。
 本明細書中で用いられる「エクソソーム」とは、エンドサイト-シス・パスウエイに由来する、約20~約500nm(好ましくは約20~約200nm、より好ましくは約25~約150nm、更に好ましくは約30~約100nm)の小胞を意味する。エクソソームの構成成分としては、例えば、タンパク質、核酸(mRNA、miRNA、ノン・コーティングRNA)等が挙げられる。エクソソームは、細胞間コミュニケーションを司る機能を有しうる。エクソソームのマーカー分子としては、例えば、Alix、Tsg101、テトラスパニン、flotillin、フォスファチジルセリン等が挙げられる。
 本明細書中で用いられる「微小小胞体」とは、細胞質膜に由来する、約50~約1000nmの小胞を意味する。微小小胞体の構成成分としては、例えば、タンパク質、核酸(mRNA、miRNA、ノン・コーティングRNA等)等が挙げられる。微小小胞体は、細胞間コミュニケーションを司る機能等を有しうる。微小小胞体のマーカー分子としては、例えば、インテグリン、セレクチン、CD40、CD154等が挙げられる。
 本明細書中で用いられる「アポトーシス小体」とは、細胞質膜に由来する、約500~約2000nmの小胞を意味する。アポトーシス小体の構成成分としては、例えば、断片化された核、細胞小器官(オルガネラ)等が挙げられる。アポトーシス小体は、ファゴサイトーシスを誘導する機能等を有しうる。アポトーシス小体のマーカー分子としては、例えば、Annexin V、フォスファチジルセリン等が挙げられる。
 「サイトカイン (cytokine)」 は、細胞から分泌されるタンパク質の生理活性物質をいう。特に限定しないが、インターフェロン(IFN)、インターロイキン(IL)、ケモカイン(CCLなど)、幹細胞因子(SCF)、造血因子(コロニー刺激因子(CSF)、エリスロポエチン(EPO)、トロンボポエチン(TPO)など)、腫瘍壊死因子(TNF)、増殖因子(EGF、FGF、TGF-βなど)、アクチビン、インヒビンなどが挙げられる。
 本明細書においては、未成熟(不活性型)又は成熟(活性型)なサイトカインだけでなく、その部分配列、活性型のサイトカインのサブユニットもサイトカインに含めてよい。
 サイトカインは、任意の動物種由来のものであってもよい。例えば、マウス、ラット等のげっ歯類;ウサギ等のウサギ目;ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄類;イヌ、ネコ等のネコ目;ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジー等の霊長類等の哺乳動物等の動物に由来するものが挙げられる。本明細書中に記載のサイトカインは、好ましくは、げっ歯類又は哺乳類動物に由来するものであり、より好ましくは、マウス又はヒトに由来するものである。
 本明細書中に記載のサイトカインは、その機能を発揮することができるものである限り、その野生型のアミノ酸配列に対して、アミノ酸配列同一性が、80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものであってもよい。或いは、本明細書中に記載のサイトカインは、その機能を発揮することができるものである限り、その野生型のアミノ酸配列に対して、1個又は複数個のアミノ酸の欠失、挿入、付加及び/又は置換等されたものであってもよい。
 「T細胞刺激性サイトカイン」とは、T細胞の膜上に発現する受容体等を介して、T細胞を刺激(例えば、活性化、抑制等)することが可能なサイトカインである。T細胞刺激性サイトカインとしては、これらに限定されるものではないが、例えば、IL-2、IL-4、IL-6、IL-7、IL-12、IL-15、TGF-β、IFN-α、IFN-γ等が挙げられる。これらのうち、ホモ若しくはヘテロのサブユニットの多量体を形成しうるもの(例えば、IL-12、TGF-β等)は、機能的である限り(即ち、所望の薬理活性を有しうる限り)、場合によりペプチドリンカー等を介して連結された、連続したアミノ酸配列のものであってもよい。T細胞を刺激する能力を維持する限り、他の完全長タンパク質又はその部分配列ペプチド(たとえば、IL-15受容体のSushiドメイン)と結合又は融合していてもよい。
 本明細書中で用いられる「ターゲット因子」とは、本願発明に係る細胞外小胞が刺激する細胞の表面に存在する分子と結合できる分子を指す。細胞の表面に存在する分子としては、特に限定しないが、抗体、受容体、細胞接着分子、糖鎖(及び糖鎖タンパク質)などが挙げられる。細胞の表面に存在する分子が抗体の場合は、その抗体が認識する抗原;細胞の表面に存在する分子が受容体の場合はそのリガンド(たとえばCXCL12のようなケモカイン);細胞接着因子の場合はその細胞接着分子と結合する分子;細胞の表面に存在する分子が糖鎖(及び糖鎖タンパク質)の場合はその糖鎖と結合する糖鎖結合タンパク質(たとえば、L-selectinのようなセレクチンやBc2Lcのようなレクチン)等がターゲット因子に相当する。
 本明細書中で用いられる「抗原」とは、抗原性を有しうるものである限り特段限定されるものではなく、ペプチド性の抗原(すなわち、抗原ペプチド)だけでなく、リン脂質、複合炭水化物等の非ペプチド性の抗原(例えば、ミコール酸、リポアラビノアンナン等の細菌性膜構成要素等)も包含される。
 本明細書中で用いられる「抗原ペプチド」は、抗原となりうる2以上のアミノ酸で構成されるペプチド(50超のアミノ酸で構成されるものを含む)である限り特段限定されるものではなく、天然由来のものであっても、合成由来のものであっても、市販されているものであってもよい。抗原ペプチドは、遺伝子産物の全長アミノ配列又はその部分アミノ酸配列を含んでもよい。抗原ペプチドは、これらに限定されるものではないが、例えば、Axl、BAFF-R、B7-H3、BCMA、CAIX、CD19、CD20、CD22、CD38、CD70、CD138、CEA、CLDN6、EpCAM、FAP、Flt3、葉酸受容体-α、GD2、Glypican 3、GM-CSF受容体、GRP78、GPC1、HGFR、Integrinαvβ6、IL3R、IL13Ra2、TAG72、Mesothelin、MUC1、MUC16、PSCA、PSMA、ROR1、5T4、WT-1、α-胎児タンパク質、MAGE-1、MAGE-3、胎盤アルカリ性ホスファターゼシアリル-ルイスX、CA-125、CA-19、TAG-72、上皮糖タンパク質2、α胎児タンパク質受容体、M2A、チロシナーゼ、Ras、p53、Her-2/neu、EGF-R、エストロゲン受容体、プロゲステロン受容体、myc、BCR-ABL、HPV型16、メラノトランスフェリン、MUC1、CD10、CD37、CD45R、IL-2受容体α鎖、T細胞受容体、前立腺酸性ホスファターゼ、GP100、MelanA/Mart-1、gp75/ブラウン、BAGE、S-100、イトケラチン、CYFRA21-1等の腫瘍関連抗原ペプチド(その全長配列及び部分配列を含む);インスリン、グルタミン酸デカルボキシラーゼ、ICA512/IA-2タンパク質チロシンホスファターゼ、ICA12、ICA69、プレプロインスリン、HSP60、カルボキシペプチダーゼH、ペリフェリン、GM1-2、ビトロネクチン、βクリスタリン、カルレティキュリン、セロトランスフェリン、ケラチン、ピルビン酸カルボキシラーゼ、C1、ビリン2、ヌクレオソーム、リボヌクレオタンパク質、ミエリンオリゴデンドロサイト糖タンパク質、ミエリン関連糖タンパク質、ミエリン/オリゴデンドロサイト塩基性タンパク質、オリゴデンドロサイト特異的タンパク質、ミエリン塩基性タンパク質、プロテオリピドアポタンパク質等の自己抗原ペプチド(その全長配列及び部分配列を含む);原生動物(例えば、マラリア原虫、リーシュマニア種、トリパノソーマ種)、細菌(例えば、グラム陽性球菌、グラム陽性桿菌、グラム陰性細菌、嫌気性菌)、真菌(例えば、アスペルギルス、ブラストミセス、カンジダ、コクシジオイデス、クリプトコッカス、ヒストプラスマ、パラコクシジオイデス、スポロスリックス)、ウイルス(例えば、アデノウイルス、単純ヘルペスウイルス、パピローマウイルス、呼吸シンシチアウイルス、ポックスウイルス、HIV、インフルエンザウイルス、SARS-CoVやSARS-CoV2のようなコロナウイルス)、細胞内寄生体(例えば、クラミジア科、マイコプラズマ科、アコレプラスマ科、リケッチア科)、蠕虫(例えば、線虫、吸虫、条虫)等の感染病原体に由来する抗原ペプチド(その全長配列及び部分配列を含む);プリオン等のその他の抗原ペプチド(その全長配列及び部分配列を含む)等が挙げられる。
 抗原ペプチドは、アレルギー症状を引き起こすアレルゲンを含んでもよい。アレルゲンとしては、上記原生動物、細菌、真菌、細胞内寄生体及び蠕虫に由来するペプチド以外に、外来性のペプチド、たとえば、ハウスダスト、ダニ、動物(たとえばネコ、イヌなどのコンパニオンアニマル)、及び花粉(たとえば、スギやヒノキ)由来のペプチド等が例示される。より詳細には、 Cryj1などのスギ花粉に含まれるタンパク質(その全長配列及び部分配列を含む)が例示される。あるいは、アレルギー症状を引き起こすアレルゲンは、食物由来のものであってよい。食物に対するアレルギー症状を引き超すアレルゲンとしては、鶏卵、牛乳、小麦、そば、かに、えび及び落花生由来のペプチド(その全長配列及び部分配列を含む)等が例示される。
 抗原ペプチドは、任意のプロセシングや修飾(たとえば、リン酸化や糖鎖修飾)をされていてもよい。
 本明細書中で用いられる「共刺激分子」とは、免疫細胞が、抗原提示下で免疫応答を活性化するために依存する二次シグナル分子を意味する。
 免疫細胞がT細胞の場合、CD28、CD134等のT細胞の膜上に存在する分子と相互作用することで、T細胞の活性化等に寄与しうる分子を意味する。「T細胞共刺激分子」としては、これらに限定されるものではないが、例えば、CD80、CD86等の分子、又はこれらの細胞外ドメイン若しくはその機能的なフラグメント;抗CD28抗体、抗CD134抗体等の抗体、又はこれらの抗原結合性フラグメント(例えば、scFv、Fab若しくはナノボディ)等;これらと、他のタンパク質の膜貫通ドメイン若しくは抗体のFc部分等との融合タンパク質(若しくは複合体、会合体)等が挙げられる。
 サイトカイン及び/又はターゲット因子を「膜外に提示する細胞外小胞」とは以下に規定される(A)~(E)に規定されるタンパク質を膜に含むことによって、サイトカイン及び/又はターゲット因子を膜外に提示させてもよい。
 あるいは、単離した細胞外小胞にあとから、その膜表面にサイトカイン又はターゲット因子を付着させてもよい。付着させる方法は特に限定しないが、サイトカイン又はターゲット因子に各々リン脂質を結合し、細胞外小胞の膜に新脂質部分を取り込ませることにより、膜表面にサイトカイン又はターゲット因子を付着させてもよい。細胞外小胞にはフォスファチジルセリンが表面に存在している。従って、フォスファチジルセリンと結合するMFG-E8に、提示させたいサイトカイン又はターゲット因子を融合させたタンパク質を各々合成精製して、その融合タンパク質と細胞外小胞を混合することにより、膜表面にサイトカイン又はターゲット因子を提示する細胞外小胞を作製することができる。また、ペプチドネオエピトープ(PNE)ナノボディをあらかじめ発現させた細胞外小胞に、後からPNEtagを付けたサイトカイン又はターゲット因子を加えて細胞外小胞の膜表面に提示させてもよい。ストレプトアビジンを発現させた細胞外小胞にビオチン化したサイトカイン又はターゲット因子を加えて、細胞外小胞の膜表面に提示させてもよい。
 本明細書中で用いられる「XXXを含む、該XXXを膜外に提示可能なタンパク質」とは、XXXを少なくとも含み、細胞外小胞の膜外に該XXXを提示することが可能なタンパク質を意味する。「XXXを膜外に提示可能なタンパク質」は、XXXが細胞又は細胞外小胞の膜に発現するように、プラスミド等を用いて、XXXと膜タンパク質又はその膜貫通ドメインを含むフラグメント等とを含む融合タンパク質として発現させたものであってもよい。或いは、「XXXを含む、XXXを膜外に提示可能なタンパク質」は、可溶性のXXX(これらに限定されるものではないが、例えば、XXXそのもの;XXXと抗体のFc部分との融合タンパク質;XXXと、XXXを認識する抗体、又はその抗原結合性フラグメント(例えば、scFv、Fab若しくはナノボディ)等と、の複合体等)を用いる場合、可溶性のXXXと細胞外小胞とを、必要に応じて脂質リンカー、ペプチドリンカー等を介して、細胞外小胞の膜に結合させたものであってもよい(例えば、特開2018-104341号公報等に記載の方法を参考にしてもよい)。或いは、可溶性のXXXのN末端側又はC末端側に所望のタグ(例えば、Hisタグ、FLAGタグ、PNEタグを付加したもの(該タグは、例えば、他の構成要素とともに融合タンパク質として発現させてもよいし、別途用意した可溶性のXXXに、必要に応じてリンカー等を介して結合させてもよい)と、該タグに対する抗体又はその抗原結合性フラグメント(例えば、scFv、Fab若しくはナノボディ)等を含むタンパク質(例えば、必要に応じてリンカー等を介して細胞外小胞の膜に結合した、該タグに対する抗体又はその抗原結合性フラグメント(例えば、scFv、Fab若しくはナノボディ)等自体;細胞外小胞の膜に発現することが可能な膜タンパク質又はその膜貫通ドメインのN末端側又はC末端側に、該タグに対するナノボディが結合した、融合タンパク質等)を膜に含む細胞外小胞とを、所望の条件で混合したものであってもよい(例えば、Raj D, et al., Gut., 2019 Jun;68(6):1052-1064等に記載の、PNEタグと該タグに対する抗体等とを用いる方法を参考にしてもよい)。なお、サブユニットの多量体で形成されるXXXの場合、そのサブユニットの1つが、細胞外小胞の膜外に提示することが可能なタンパク質であれば、残りのサブユニットは膜外に提示可能な態様である必要はない。そのサブユニットの1つが、細胞外小胞の膜外に提示することが可能なタンパク質であれば、他のサブユニットを添加又は共発現させることにより、機能的なXXXが細胞外小胞の膜外に構築されうる。
 本明細書中で用いられる「細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン」としては、細胞外小胞の膜に発現することが可能なものである限り、任意の膜タンパク質又はその膜貫通ドメインを選択することができる。「細胞外小胞の膜に発現することが可能な膜タンパク質又はその膜貫通ドメイン」は、細胞外小胞(例えば、エクソソーム等)に発現しうることが知られている膜タンパク質(例えば、テトラスパニン、CD58、ICAM-1、PTGFRN(例えば、非特許文献1、国際公開第2019/183578号等を参照)等)、又はこれらの膜貫通ドメイン等が好ましい。
 本明細書中で用いられる「細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメイン」としては、細胞外小胞の膜に結合することが可能なものである限り、任意のタンパク質又はそのドメインを選択することができる。「細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメイン」は、細胞外小胞(例えば、エクソソーム等)の膜に結合しうることが知られているもの(例えば、MFG-E8、又はそのドメイン(例えば、Alain Delcayre, et al., Blood Cells, Molecules, and Diseases 35 (2005) 158-168に記載のMFG-E8のC1、C2ドメイン))等が好ましい。
 本明細書中に記載の「細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン」又は「細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメイン」は、任意の動物種由来のものであってもよい。例えば、マウス、ラット等のげっ歯類;ウサギ等のウサギ目;ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄類;イヌ、ネコ等のネコ目;ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジー等の霊長類等の哺乳動物等の動物に由来するものが挙げられる。本明細書中に記載の「細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン」又は「細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメイン」は、好ましくは、げっ歯類又は哺乳類動物に由来するものであり、より好ましくは、マウス又はヒトに由来するものである。
 非特許文献2によると、哺乳動物の細胞外小胞のマーカーは以下のように分類される。
 細胞外小胞のマーカータンパク質として用いることのできる膜タンパク質又はGPIアンカータンパク質としては、
1)組織非特異的なもの
 テトラスパニン(CD63,CD9,CD81,CD82),他の複数膜貫通型の膜タンパク質(CD47やヘテロ3量体Gタンパク質(GNA:Guanine nucleotide-binding proteins)など)
 MHC クラスI(HLA-A/B/C,H2-K/D/Q),
インテグリン(ITGA/ITGB)、トランスフェリン受容体(TFR2);
 LAMP1/2;
 ヘパラン硫酸プロテオグリカン(シンデカン(SDC)を含む);
 細胞外マトリックスメタロプロテアーゼ誘導物質(EMMPRIN)(BSG又はCD147ともいう);
 ADAM10;
 GPIアンカー型の5’ヌクレオチダーゼであるCD73(NT5E),
 GPIアンカー型の補体結合タンパク質であるCD55及びCD59; 
 ソニックヘッジホッグタンパク質(SHH)
2)細胞/組織特異的なもの
 いくつかのテトラスパニン:TSPAN8(上皮細胞特異的)、CD37及びCD53(白血球特異的);
 PECAM1(内皮細胞特異的);
 ERBB2(乳癌特異的);
 EPCAM(上皮性特異的);
 CD90(THY1)(間葉系幹細胞特異的);
 CD45(PTPRC)(免疫細胞特異的)、CD41(ITGA2B)又はCD42a(GP9)(血小板特異的);
 グリコホリンA(GYPA)(赤血球特異的);
 CD14(単球特異的),MHCクラスII(HLA-DR/DP/DQ,H2-A);
 CD3(T細胞特異的);
 アセチルコリンエステラーゼ/AChE-S(神経細胞特異的)、AChE-E(赤血球特異的);
 アミロイドβA4/APP(神経細胞特異的);
などが挙げられる。
 従って、これらに限定しないが、細胞外小胞のマーカーであるタンパク質を本発明における「細胞外小胞の膜に発現することが可能な膜タンパク質」又は「細胞外小胞の膜に結合することが可能なタンパク質」として用いてもよい。
 本明細書中で用いられる「テトラスパニン」とは、テトラスパニンファミリーに属するタンパク質(これらに限定されるものではないが、例えば、CD9、CD53、CD63、CD81、CD82、CD151等)を意味する。テトラスパニンは、通常、N末端側から、膜貫通ドメイン1(以下、「TM1」ともいう。)、小型細胞外ループ(以下、「SEL」ともいう。)、膜貫通ドメイン2(以下、「TM2」ともいう。)、小型細胞内ループ(以下、「SIL」ともいう。)、膜貫通ドメイン3(以下、「TM3」ともいう。)、大型細胞外ループ(以下、「LEL」ともいう。)、及び膜貫通ドメイン4(以下、「TM4」ともいう。)を有することから、4回膜貫通型であり、かつ、N末端側及びC末端側の両方が細胞質側に存在する。例えば、テトラスパニンがマウスCD63の場合、通常、アミノ酸配列 約1~約110において、TM1、SEL、TM2、SIL及びTM3を含み、アミノ酸配列 約111~約200において、LELを含み、アミノ酸配列 約201~約238において、TM4を含みうる。
 本明細書中に記載の「テトラスパニン」における各ドメイン(例えば、TM1、SEL、SIL、LTL等)は、同一のテトラスパニン由来のものであってもよいし、全部又は一部が異なるテトラスパニン由来のものであってもよい。
 本明細書中に記載のテトラスパニンは、細胞外小胞の膜に発現することが可能なものである限り、その野生型のアミノ酸配列に対して、アミノ酸配列同一性が、80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものであってもよい。或いは、本明細書中に記載のテトラスパニンは、細胞外小胞の膜に発現することが可能なものである限り、その野生型のアミノ酸配列に対して、1個又は複数個のアミノ酸の欠失、挿入、付加及び/又は置換等されたものであってもよい。
 本明細書中に記載のテトラスパニンの部分配列(例えば、各ドメイン;TM1、SEL、TM2、SIL及びTM3を含む部分配列;TM4を含む部分配列)は、その野生型のアミノ酸配列に対して、アミノ酸配列同一性が、80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものであってもよい。或いは、本明細書中に記載のテトラスパニンの部分配列は、その野生型のアミノ酸配列に対して、1個又は複数個のアミノ酸の欠失、挿入、付加及び/又は置換等されたものであってもよい。
 本明細書中に記載のMFG-E8は、細胞外小胞の膜に結合することが可能なものである限り、その野生型のアミノ酸配列に対して、アミノ酸配列同一性が、80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものであってもよい。或いは、本明細書中に記載のMFG-E8は、細胞外小胞の膜に結合することが可能なものである限り、その野生型のアミノ酸配列に対して、1個又は複数個のアミノ酸の欠失、挿入、付加及び/又は置換等されたものであってもよい。
 本明細書中に記載のCD58、PTGFRN等は、細胞外小胞の膜に発現することが可能なものであるか、又は細胞外小胞の膜に結合することが可能なものである限り、その野生型のアミノ酸配列に対して、アミノ酸配列同一性が、80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものであってもよい。或いは、本明細書中に記載のCD58、PTGFRN等は、細胞外小胞の膜に発現することが可能なものであるか、又は細胞外小胞の膜に結合することが可能なものである限り、その野生型のアミノ酸配列に対して、1個又は複数個のアミノ酸の欠失、挿入、付加及び/又は置換等されたものであってもよい。
 本明細書中で用いられる「スペーサー配列(以下、「ペプチドリンカー配列」又は「リンカー配列」ともいう)」とは、2以上のタンパク質又はその部分配列若しくはドメイン等の間に存在する、少なくとも1つのアミノ酸残基を有する任意の配列を意味する。スペーサー配列は、例えば、2以上のタンパク質又はその部分配列若しくはドメイン等を連結する際に使用されうる。スペーサー配列は、アミノ酸残基の長さとして、通常、1~約50であり、好ましくは、約2~約28であり、より好ましくは、約4~約25である。スペーサー配列としては、これらに限定されるものではないが、例えば、(GGGXS)(式中、Xは出現するごとに独立して、A又はGであり、nは、1~8であり、mは、0~3である);T(GGX)(式中、Xは出現するごとに独立して、S又はTであり、nは、1~8であり、mは、0~3であり、aは、0又は1であり、bは、0又は1である);等が挙げられる。
 本明細書中で用いられる「ポリヌクレオチド」は、一本鎖又は二本鎖DNA分子、RNA分子又はDNA-RNAキメラ分子等を意味する。ポリヌクレオチドには、ゲノムDNA、cDNA、hnRNA、mRNA等、及びこれらの全ての天然に存在するか又は人工的に修飾された誘導体等が含まれる。ポリヌクレオチドは、鎖状であっても、環状であってもよい。
 本発明の一実施態様では、少なくとも1つ(1、2、3、4又は5種)のサイトカイン(各々のサイトカインを識別するために、以下、第1のサイトカイン、第2のサイトカイン、それ以上のサイトカイン等と呼称する場合がある)を膜外に提示する細胞外小胞を提供する。
 本発明の一実施態様では、少なくとも1つ(1、2、3、4又は5種)のターゲット因子(各々のターゲット因子を識別するために、以下、第1のターゲット因子、第2のターゲット因子、それ以上のターゲット因子等と呼称する場合がある)を膜外に提示する細胞外小胞を提供する。
 本発明の一実施態様では、少なくとも1つ(1、2、3、4又は5種)のサイトカインとすくなくとも1つ(1、2、3、4又は5種)のターゲット因子を膜外に提示する細胞外小胞を提供する。
 本発明の一実施態様では、すくなくとも1つのサイトカインを膜外に提示する細胞外小胞であって、その膜に以下:
(A)すくなくとも1つのサイトカイン又はそのサブユニットを含む、該サイトカインを膜外に提示可能なタンパク質;
を含む、細胞外小胞を提供する。
 本発明の一実施態様では、すくなくとも1つのターゲット因子を膜外に提示する細胞外小胞であって、その膜に以下:
(B)すくなくとも1つのターゲット因子又はそのサブユニットを含む、該ターゲット因子を膜外に提示可能なタンパク質;
を含む、細胞外小胞を提供する。
 本発明の一実施態様では、すくなくとも1つのサイトカインとすくなくとも1つのターゲット因子を膜外に提示する細胞外小胞であって、その膜に以下:
(A)すくなくとも1つのサイトカイン又はそのサブユニットを含む、該サイトカインを膜外に提示可能なタンパク質;及び
(B)すくなくとも1つのターゲット因子又はそのサブユニットを含む、該ターゲット因子を膜外に提示可能なタンパク質;
を含む、細胞外小胞を提供する。
 本発明の一実施態様では、サイトカインとターゲット因子を膜外に提示する細胞外小胞であって、その膜に以下:
(C)第1のサイトカイン又はそのサブユニット及びターゲット因子を含む、該第1のサイトカイン及びターゲット因子を膜外に提示可能なタンパク質を含む、細胞外小胞を提供する。
 本発明の一実施態様では、第1のサイトカイン、第1のターゲット因子及び第2のターゲット因子を膜外に提示する細胞外小胞であって、その膜に以下:
(A)第1のサイトカイン又はそのサブユニットを含む、該サイトカインを膜外に提示可能なタンパク質;
(B)第1のターゲット因子又はそのサブユニットを含む、該ターゲット因子を膜外に提示可能なタンパク質;及び
(D)第2のターゲット因子又はそのサブユニットを含む、該ターゲット因子を膜外に提示可能なタンパク質を含む、細胞外小胞を提供する。
 本発明の一実施態様では、サイトカイン、第1のターゲット因子及び第2のターゲット因子を膜外に提示する細胞外小胞であって、その膜に以下:
(C)第1のサイトカイン又はそのサブユニット及びターゲット因子を含む、該第1のサイトカイン及びターゲット因子を膜外に提示可能なタンパク質;及び
(D)第2のターゲット因子又はそのサブユニットを含む、該第2のターゲット因子を膜外に提示可能なタンパク質を含む、細胞外小胞を提供する。
 本発明の一実施態様では、サイトカイン、第1のターゲット因子及び第2のターゲット因子を膜外に提示する細胞外小胞であって、その膜に以下:
(E)第1のサイトカイン又はそのサブユニット、第1のターゲット因子又はそのサブユニット及び第2のターゲット因子又はそのサブユニットを含む、該第1のサイトカイン、該第1のターゲット因子及び該第2のターゲット因子を膜外に提示可能なタンパク質を含む、細胞外小胞を提供する。
構成要件(A)
 上記(A)の「サイトカイン又はそのサブユニットを含む、該サイトカインを膜外に提示可能なタンパク質」は、サイトカインを細胞外小胞の膜外に提示可能なタンパク質である限り、他のタンパク質又はそのドメイン等を含んでいてもよい。
 本発明の一実施態様では、上記(A)は、サイトカイン又はそのサブユニットと、細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン又は細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメインを含む、該抗原を膜外に提示可能な融合タンパク質又はタンパク質複合体である。
 本発明の一実施態様では、上記(A)は、
(A)第1のサイトカイン又はそのサブユニットと、テトラスパニンの部分配列とを含む、該第1のサイトカインを膜外に提示可能な融合タンパク質であって、該テトラスパニンの部分配列が、2つの膜貫通ドメインを少なくとも有し、該第1のサイトカイン又はそのサブユニットが、該2つの膜貫通ドメインの間に配置されている、融合タンパク質、又は
(A)第1のサイトカイン又はそのサブユニットと、MFG-E8又はそのドメインとを含む、該第1のサイトカインを膜外に提示可能な融合タンパク質である。
 本明細書中で用いられる「テトラスパニンの部分配列が、2つの膜貫通ドメインを少なくとも有し、該第1のサイトカイン又はそのサブユニットが、該2つの膜貫通ドメインの間に配置されている」とは、例えば、テトラスパニンの部分配列がテトラスパニンのTM1とTM2とを少なくとも含み、かつ該第1のサイトカイン又はそのサブユニットがTM1とTM2との間に配置されている場合、テトラスパニンの部分配列がテトラスパニンのTM3とTM4とを少なくとも含み、かつ該第1のサイトカイン又はそのサブユニットがTM3とTM4との間に配置されている場合等が挙げられる。
 本発明の一実施態様では、上記(A)は、
1.(A)N末端側から、
 (A-1)N末端側から、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列、
 (A-2)存在していてもよいスペーサー配列、
 (A-3)第1のサイトカイン又はそのサブユニットのアミノ酸配列、
 (A-4)存在していてもよいスペーサー配列、並びに
 (A-5)膜貫通ドメイン4を含むテトラスパニンの部分配列
からなるアミノ酸配列を含む、該第1のサイトカインを膜外に提示可能なタンパク質;
2.(A)N末端側から、
 (A-3)第1のサイトカイン又はそのサブユニットのアミノ酸配列、
 (A-4)存在していてもよいスペーサー配列、及び
 (A-5)MFG-E8のアミノ酸配列;
からなるアミノ酸配列を含む、該第1のサイトカインを膜外に提示可能なタンパク質;
又は
3.(A)N末端側から、
 (A-3)第1のサイトカイン又はそのサブユニットのアミノ酸配列、
 (A-4)存在していてもよいスペーサー配列、並びに
 (A-5)任意の膜貫通ドメインとテトラスパニンを含む配列;
からなるアミノ酸配列を含む、該第1のサイトカインを膜外に提示可能なタンパク質
である。
 国際公開第2016/139354号で開示されているとおり、テトラスパニンは、その大型細胞外ループ(LEL)が全体的に又は部分的に異なるアミノ酸配列に置き換えられていても、膜に発現しうることが報告されている。したがって、(A-3)の第1のサイトカイン又はそのサブユニットは、存在していてもよいスペーサー配列を介して、テトラスパニンのLELに替えて挿入されていてもよいし、テトラスパニンのLEL中又はその部分配列中の任意の位置に挿入されていてもよい。
 (A-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、通常、テトラスパニンの膜貫通ドメイン4を含まない。(A-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、大型細胞外ループ又はその部分配列を含んでいてもよい。(A-1)における、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3の各ドメインは、それぞれ別のテトラスパニン由来の配列であってもよいし、全て同じテトラスパニン由来の配列であってもよい。好ましくは、(A-1)における、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3の各ドメインは、全て同じテトラスパニン由来の配列である。
 本発明の一実施態様では、(A-1)における、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列が、全て、CD9由来、CD63由来又はCD81由来の部分配列である。本発明の一実施態様では、(B-1)の膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列は、全てCD63又はCD81由来の部分配列である。
 (A-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」は、通常、テトラスパニンの膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含まない。(A-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」は、大型細胞外ループ又はその部分配列を含んでいてもよい。(A-5)における膜貫通ドメイン4は、(A-1)とは別のテトラスパニン由来の配列であってもよいし、(A-1)と同じテトラスパニン由来の配列であってもよい。好ましくは、(A-5)における膜貫通ドメイン4は、(A-1)と同じテトラスパニン由来の配列である。本発明の一実施態様では、(A-5)における、膜貫通ドメイン4を含むテトラスパニンの部分配列が、CD9由来、CD63由来又はCD81由来の部分配列である。本発明の一実施態様では、(A-5)の膜貫通ドメイン4を含むテトラスパニンの部分配列は、CD63又はCD81由来の部分配列である。
 本発明の一実施態様では、(A-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、CD63由来の部分配列であり、かつ、(A-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」が、CD63由来の部分配列である。本発明の一実施態様では、(A-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、CD81由来の部分配列であり、かつ、(A-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」が、CD81由来の部分配列である。
 上記(A-5)の「MFG-E8」は、好ましくは、配列番号37、63、73、83等、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものである。
 テトラスパニンのN端は細胞外小胞の内側に存在する。それ故、(A-3)のサイトカイン又はそのサブユニットが、細胞外小胞の外側に提示されるように、上記(A-5)の「任意の膜貫通ドメインとテトラスパニンを含む配列」は、(A-5)のN端が細胞外小胞の外側に存在するように、任意の奇数(1,3,5)の膜貫通ドメインをコードするアミノ酸配列とテトラスパニンの配列が融合したものであることが好ましい。
 本発明の一実施態様では、CD8(一回膜貫通型タンパク質)(配列番号5、21、53等;又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものである)とCD81(配列番号7、13、23、55、99等;又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものである)の融合タンパク質をコードする配列である。
 本明細書中に記載の細胞外小胞は、第1のサイトカインに加えて、第2(又はそれ以上)のサイトカインを更に含んでいてもよい。したがって、本発明の一実施態様では、本明細書中に記載の細胞外小胞は、第2(又はそれ以上)のサイトカインを更に含んでもよい。
 第2(又はそれ以上)のサイトカインは、例えば、上記(A)中に挿入されていてもよい(例えば、(A-3)の「第1のサイトカイン」のN末端側及び/又はC末端側に、必要に応じてスペーサー配列等を介して、第2(又はそれ以上)のサイトカインが連結されていてもよい)。或いは、第2(又はそれ以上)のサイトカインは、本明細書中に記載の構成要件(A)と同様の構成を有することにより、本明細書中に記載の構成要件(A)のタンパク質(又は融合タンパク質)とは別個のタンパク質(又は融合タンパク質)として、第1のサイトカインと同様に、本明細書中に記載の抗原提示細胞外小胞の膜に含まれていてもよい。
 上記各実施態様の(A-2)及び(A-4)における「存在していてもよいスペーサー配列」は、存在する場合、独立して選択されうる。(A-2)は、存在する場合、例えば、配列番号31、35、45、49、61,71,81、87等のスペーサー配列であってもよい。(A-4)は、存在する場合、例えば、配列番号31、35、45、49、61,71,81、87等のスペーサー配列であってもよい。
 本発明の一実施態様では、サイトカインが複数のサブユニットとマルチマー(ホモ/ヘテロマー)を形成して活性を有する場合、
(A-6)活性を有するために必要なサブユニット
を、細胞外小胞はさらに含んでもよい。
構成要件(B)
 上記(B)の「ターゲット因子又はそのサブユニットを含む、該ターゲット因子を膜外に提示可能なタンパク質」は、ターゲット因子を細胞外小胞の膜外に提示可能なタンパク質である限り、他のタンパク質又はそのドメイン等を含んでいてもよい。
 本発明の一実施態様では、上記(B)は、ターゲット因子又はそのサブユニットと、細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン又は細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメインを含む、該抗原を膜外に提示可能な融合タンパク質又はタンパク質複合体である。
 本発明の一実施態様では、上記(B)は、ターゲット因子又はそのサブユニットと、細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン又は細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメインを含む、該抗原を膜外に提示可能な融合タンパク質又はタンパク質複合体である。
 本発明の一実施態様では、上記(B)は、
(B)ターゲット因子又はそのサブユニットと、テトラスパニンの部分配列とを含む、該ターゲット因子を膜外に提示可能な融合タンパク質であって、該テトラスパニンの部分配列が、2つの膜貫通ドメインを少なくとも有し、該ターゲット因子又はそのサブユニットが、該2つの膜貫通ドメインの間に配置されている、融合タンパク質、
(B)ターゲット因子又はそのサブユニットと、MFG-E8又はそのドメインとを含む、ターゲット因子を膜外に提示可能な融合タンパク質、又は
(B)ターゲット因子又はそのサブユニットと、テトラスパニンと、場合によって存在してもよい任意の膜貫通ドメインを含む、ターゲット因子を膜外に提示可能な融合タンパク質である。
 本明細書中で用いられる「テトラスパニンの部分配列が、2つの膜貫通ドメインを少なくとも有し、該第1のターゲット因子又はそのサブユニットが、該2つの膜貫通ドメインの間に配置されている」とは、例えば、テトラスパニンの部分配列がテトラスパニンのTM1とTM2とを少なくとも含み、かつ該第1のターゲット因子又はそのサブユニットがTM1とTM2との間に配置されている場合、テトラスパニンの部分配列がテトラスパニンのTM3とTM4とを少なくとも含み、かつ該第1のターゲット因子又はそのサブユニットがTM3とTM4との間に配置されている場合等が挙げられる。
 本発明の一実施態様では、上記(B)は、
1.(B)N末端側から、
 (B-1)N末端側から、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列、
 (B-2)存在していてもよいスペーサー配列、
 (B-3)第1のターゲット因子又はそのサブユニットのアミノ酸配列、
 (B-4)存在していてもよいスペーサー配列、並びに
 (B-5)膜貫通ドメイン4を含むテトラスパニンの部分配列
からなるアミノ酸配列を含む、該第1のターゲット因子を膜外に提示可能な融合タンパク質;
2.(B)N末端側から、
 (B-3)第1のターゲット因子又はそのサブユニットのアミノ酸配列、
 (B-4)存在していてもよいスペーサー配列、及び
 (B-5)MFG-E8のアミノ酸配列
からなるアミノ酸配列を含む、該第1のターゲット因子を膜外に提示可能な融合タンパク質;
又は
3.(B)N末端側から、
 (B-3)第1のターゲット因子又はそのサブユニットのアミノ酸配列、
 (B-4)存在していてもよいスペーサー配列、並びに
 (B-5)任意の膜貫通ドメインとテトラスパニンを含む配列;
からなるアミノ酸配列を含む、該第1のターゲット因子を膜外に提示可能な融合タンパク質である。
 国際公開第2016/139354号で開示されているとおり、テトラスパニンは、その大型細胞外ループ(LEL)が全体的に又は部分的に異なるアミノ酸配列に置き換えられていても、膜に発現しうることが報告されている。したがって、(B-3)の第1のターゲット因子又はそのサブユニットは、存在していてもよいスペーサー配列を介して、テトラスパニンのLELに替えて挿入されていてもよいし、テトラスパニンのLEL中又はその部分配列中の任意の位置に挿入されていてもよい。
 (B-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、通常、テトラスパニンの膜貫通ドメイン4を含まない。(B-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、大型細胞外ループ又はその部分配列を含んでいてもよい。(B-1)における、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3の各ドメインは、それぞれ別のテトラスパニン由来の配列であってもよいし、全て同じテトラスパニン由来の配列であってもよい。好ましくは、(A-1)における、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3の各ドメインは、全て同じテトラスパニン由来の配列である。
 本発明の一実施態様では、(B-1)における、膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列が、全て、CD9由来、CD63由来又はCD81由来の部分配列である。本発明の一実施態様では、(B-1)の膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列は、全てCD63又はCD81由来の部分配列)である。
 (B-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」は、通常、テトラスパニンの膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含まない。(B-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」は、大型細胞外ループ又はその部分配列を含んでいてもよい。(B-5)における膜貫通ドメイン4は、(B-1)とは別のテトラスパニン由来の配列であってもよいし、(B-1)と同じテトラスパニン由来の配列であってもよい。好ましくは、(B-5)における膜貫通ドメイン4は、(B-1)と同じテトラスパニン由来の配列である。本発明の一実施態様では、(B-5)における、膜貫通ドメイン4を含むテトラスパニンの部分配列が、CD9由来、CD63由来又はCD81由来の部分配列である。本発明の一実施態様では、(B-5)の膜貫通ドメイン4を含むテトラスパニンの部分配列は、CD63又はCD81由来の部分配列である。
 本発明の一実施態様では、(B-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、CD63由来の部分配列であり、かつ、(B-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」が、CD63由来の部分配列である。本発明の一実施態様では、(B-1)の「膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列」は、CD81由来の部分配列であり、かつ、(B-5)の「膜貫通ドメイン4を含むテトラスパニンの部分配列」が、CD81由来の部分配列である。
 上記(B-5)の「MFG-E8」は、好ましくは、配列番号37、63、73、83等、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものである。
 テトラスパニンのN端は細胞外小胞の内側に存在する。それ故、(B-3)のターゲット因子又はそのサブユニットが、細胞外小胞の外側に提示されるように、上記(B-5)の「任意の膜貫通ドメインとテトラスパニンを含む配列」は、(B-5)のN端が細胞外小胞の外側に存在するように、任意の奇数(1,3,5)の膜貫通ドメインをコードするアミノ酸配列とテトラスパニンの配列が融合したものであることが好ましい。
 本発明の一実施態様では、CD8(一回膜貫通型タンパク質;例えば配列番号5又は21、あるいはこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のものである)とCD81の融合タンパク質をコードする配列である。
 本明細書中に記載の細胞外小胞は、第1のターゲット因子に加えて、第2(又はそれ以上)のターゲット因子を更に含んでいてもよい。したがって、本発明の一実施態様では、本明細書中に記載の細胞外小胞は、第2(又はそれ以上)のターゲット因子を更に含んでもよい。
 第2(又はそれ以上)のターゲット因子又はそのサブユニットは、例えば、上記(B)中に挿入されていてもよい(例えば、(B-3)の「第1のターゲット因子又はそのサブユニット」のN末端側及び/又はC末端側に、必要に応じてスペーサー配列等を介して、第2(又はそれ以上)のターゲット因子又はそのサブユニットが連結されていてもよい)。或いは、第2(又はそれ以上)のターゲット因子又はそのサブユニットは、本明細書中に記載の構成要件(B)と同様の構成を有することにより、本明細書中に記載の構成要件(B)のタンパク質(又は融合タンパク質)とは別個のタンパク質(又は融合タンパク質)として、第1のターゲット因子と同様に、本明細書中に記載の抗原提示細胞外小胞の膜に含まれていてもよい(すなわち構成要件(D))。
 上記各実施態様の(B-2)及び(B-4)における「存在していてもよいスペーサー配列」は、存在する場合、独立して選択されうる。(B-2)は、存在する場合、例えば、配列番号31、35、45、49、61,71,81、87等のスペーサー配列であってもよい。(B-4)は、存在する場合、例えば、配列番号31、35、45、49、61,71,81、87等のスペーサー配列であってもよい。 
 本発明の一実施態様では、ターゲット因子が複数のサブユニットとマルチマー(ホモ/ヘテロマー)を形成して活性を有する場合、
(B-6)活性を有するために必要なサブユニット
を、細胞外小胞はさらに含んでもよい。
 本発明の一実施態様では、上記(A)及び(B)について、(A)と(B)が融合して、1分子となっていてもよい。かかる融合分子は、(A)及び(B)間にスペーサー配列を含む又は含まない形で1つのタンパク質分子として翻訳されていてもよいし、(A)及び(B)のタンパク質が化学的に架橋されること(たとえばシステイン残基間のジスルフィド結合)によって融合して1分子となっていてもよい。
 あるいは、上記(A)及び(B)は、そのタンパク質が細胞外小胞に局在するための要素、すなわち、「細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン」又は「細胞外小胞の膜に結合することが可能なタンパク質若しくはそのドメイン」の部分を共有することにより、機能的に融合していてもよい。
構成要件(C)
 上記(C)の「サイトカイン又はそのサブユニット及びターゲット因子又はそのサブユニットを含む、該サイトカイン及び該ターゲット因子を膜外に提示可能なタンパク質」は、サイトカイン及びターゲット因子を細胞外小胞の膜外に提示可能なタンパク質である限り、他のタンパク質又はそのドメイン等を含んでいてもよい。
 本発明の一実施態様では、上記(C)は、サイトカイン又はそのサブユニットと、ターゲット因子又はそのサブユニットと、細胞外小胞の膜に局在することが可能な膜タンパク質若しくはその膜貫通ドメインあるいは細胞外小胞の膜に結合することが可能なタンパク質若しくはその膜結合ドメインとを含んでもよい。
 本発明の一実施態様では、前記細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質は、テトラスパニン又はMFG-E8であってもよい。
 前記融合タンパク質は、N末端側から、
 (C-3)ターゲット因子又はそのサブユニットのアミノ酸配列、
 (C-4)存在していてもよいスペーサー配列、及び
 (C-5)テトラスパニン又はその膜貫通ドメインあるいはMFG-E8又はその膜貫通ドメインと、前記すくなくとも1種のサイトカインを含む融合ペプチドを、この順番でコードするアミノ酸配列を含んでもよい。
 前記融合タンパク質は、N末端側から、
 (C-1)テトラスパニン又はその膜貫通ドメインあるいはMFG-E8又はその膜貫通ドメインと、前記すくなくとも1種のサイトカインを含む融合ペプチド
 (C-2)存在していてもよいスペーサー配列、及び
 (C-3)ターゲット因子又はそのサブユニットのアミノ酸配列を、 
この順にコードするアミノ酸配列を含んでもよい。
 ここで、前記融合ペプチドは、N末端側から、
  (1)膜貫通ドメイン1、小型細胞外ループ、膜貫通ドメイン2、小型細胞内ループ及び膜貫通ドメイン3を含むテトラスパニンの部分配列、
  (2)存在していてもよいスペーサー配列、
  (3)前記すくなくとも1つのサイトカインのアミノ酸配列、
  (4)存在していてもよいスペーサー配列、並びに
  (5)膜貫通ドメイン4を含むテトラスパニンの部分配列
をこの順番でコードするアミノ酸配列を含んでもよい。
 前記融合ペプチドは、N末端側から、
 (1)前記すくなくとも1のサイトカインのアミノ酸配列、
 (2)存在していてもよいスペーサー配列、及び
 (3)MFG-E8又はその膜結合ドメインのアミノ酸配列
をこの順番でコードするアミノ酸配列を含んでもよい。
 本発明の一実施態様では、サイトカイン又は/及びターゲット因子が複数のサブユニットとマルチマー(ホモ/ヘテロマー)を形成して活性を有する場合、
(C-6)活性を有するために必要なサブユニット
を、細胞外小胞はさらに含んでもよい。
構成要件(E)
 上記(E)の「サイトカイン又はそのサブユニット、第1のターゲット因子、及び第2のターゲット因子を含む、該サイトカイン、該第1のターゲット因子及び該第2のターゲット因子を膜外に提示可能なタンパク質」は、サイトカイン、第1のターゲット因子及び第2のターゲット因子を細胞外小胞の膜外に提示可能なタンパク質である限り、他のタンパク質又はそのドメイン等を含んでいてもよい。
 特に限定しないが、上記構成要件(C)にさらに第2のターゲット因子を含ませることにより(例えば、(C)のN端やC端に第2のターゲット因子を任意のスペーサー配列、任意の膜貫通ドメイン等を介して)、構成要件(E)としてもよい。
 本発明の一実施態様では、上記各実施態様のサイトカインは、T細胞刺激性サイトカインである。本発明の一実施態様では、T細胞刺激性サイトカインが、IL-2(好ましくは、配列番号89、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)、IL-4、TGF-β、IL-7(好ましくは、配列番号93、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)、IL-15(好ましくは配列番号121、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)を含む。これらのうち、ホモ若しくはヘテロのサブユニットの多量体を形成しうるもの(例えば、IL-12、TGF-β等)は、機能的である限り(即ち、所望の薬理活性を有しうる限り)、場合によりペプチドリンカー等を介して連結された、連続したアミノ酸配列のものであってもよい。IL-15の場合、IL-15受容体のSushiドメイン(好ましくは配列番号117、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)と、場合によりペプチドリンカー等を介して連結された、連続したアミノ酸配列のものであってもよい。これらのT細胞刺激性サイトカインは、T細胞、B細胞、NK細胞などの細胞表面に存在する対応する受容体と結合し、細胞内へシグナルが伝達されることで、T細胞、B細胞、NK細胞、単球、マクロファージなどを分化・増殖させる。
 本発明の一実施態様では、上記各実施態様のサイトカインは、トロンボポエチン(TPO;Megakaryocyte Stimulating Factorともいう)及び/又は幹細胞因子(SCF;Kit ligandともいう)である。本発明の一実施態様では、上記各実施態様における第1のサイトカインが、TPO(好ましくは、配列番号19、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)であり、第2のサイトカインが、SCF(好ましくは、配列番号29又は33、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)である。
 TPO遺伝子は353アミノ酸残基のタンパク質をコードするが、21残基がシグナル配列であり、除去された後に60-70kDaの糖タンパク質として分泌される。TPO受容体であるc-mplと結合し、細胞内へシグナルが伝達されることで、造血幹細胞の増殖、巨核球の成熟・増殖を刺激、血小板の形成促進等をする。本明細書においては受容体結合ドメインのみをもつTPOの断片ペプチドもTPOに含まれる。
 SCF遺伝子は273残基のタンパク質をコードするが、N端25残基がシグナル配列であり、26~273残基が糖修飾された膜タンパク型のSCFとして分泌され、その細胞外ドメインがプロセシングにより、可溶型SCFとして遊離する。SCFは、ホモダイマーでc-Kit(CD117)として知られる受容体(2分子)に結合し(ヘテロテトラマー化)、KIT分子が自己リン酸化して細胞内へシグナルが伝達されることで、造血幹細胞の増殖および維持等を行う。本明細書においては、膜タンパク型、可溶型、リンカーで結合したそれらのホモダイマー、いずれもSCFに含まれる。
 本発明の一実施態様では、上記各実施態様のサイトカインは、アクチンビン(Activin)又はそのサブユニットである。アクチンビンは、inhibin βA chain preproprotein(inhibin βA subunit precursorともいう)遺伝子産物からプロセシング酵素により切断されたそのC末端側ペプチドであるβサブユニットがSS結合によりホモダイマー化したアクチンビンA;inhibin βB chain preproprotein(inhibin βB subunit precursorともいう)遺伝子産物からプロセッシング酵素により切断されたそのC末端側ペプチドであるβサブユニットがSS結合によりホモダイマー化したアクチンビンB;βサブユニットとβサブユニットがSS結合によりヘテロダイマー化したアクチンビンABが存在する。本発明の一実施態様では、サイトカインは、変異を有しているためプロセシングを受けなくてもアクチンビンとして機能しうるinhibin β A chain preproprotein遺伝子産物そのもの又はその断片(たとえば、配列番号59、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの);あるいはβサブユニット(たとえば配列番号69、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)であってよい。これらは細胞内で活性型のアクチンビンAとなり機能しうる。アクチビンAは、アクチビンI型受容体の2形態(RI-AおよびRI-B)およびアクチビンII型受容体の2形態(RII-AおよびRII-B)に特異的に結合して細胞内へシグナルが伝達されることで、iPSC(人工多能性幹細胞)/ESC(胚性幹細胞)を分化誘導する。
 本発明の一実施態様では、上記各実施態様のターゲット因子は抗原である。本発明の一実施態様では、ターゲット因子は抗原ペプチドである。本発明の一実施態様では、ターゲット因子は、HER2あるいはその断片(好ましくは、配列番号77又は97、又はこれらに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)又はCD19あるいはその断片である。抗原ペプチドのうち、ホモ若しくはヘテロのサブユニットの多量体を形成しうるものは、機能的である限り(即ち、所望の薬理活性を有しうる限り)、場合によりペプチドリンカー等を介して連結された、連続したアミノ酸配列のものであってもよい。
 本発明の一実施態様では、上記各実施態様のターゲット因子は共刺激分子である。本発明の一実施態様では、ターゲット因子はT細胞共刺激分子である。本発明の一実施態様では、第1のターゲット因子が抗原であり、第2のターゲット因子がT細胞共刺激分子である。
 本発明の一実施態様では、上記各実施態様のターゲット因子は、L-セレクチン及び/又はCXCL12である。本発明の一実施態様では、ターゲット因子が、L-セレクチン(CD62Lともいう)(好ましくは、配列番号11、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)又はCXCL12(SDF1ともいう)(好ましくは、配列番号3、又はこれに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの)である。また、本発明の一実施態様では、第1のターゲット因子が、L-セレクチンであり、第2のターゲット因子が、CXCL12であってもよい。L-セレクチンは造血幹細胞(CD34陽性)上のCD34を認識し、CXCL12はケモカイン (C-X-C motif) 受容体4を認識する。
 本発明の一実施態様では、上記各実施態様のターゲット因子はレシチン又はそのサブユニットである。本発明の一実施態様では、Burkholderia cenocepacia菌のレクチン(糖鎖結合タンパク質)Bc2Lcである。本発明の一実施態様では、ターゲット因子は、Bc2Lc遺伝子産物又はリンカーを介して結合したその多量体(たとえば配列番号43、47、51;又はこれらに対してアミノ酸配列同一性が80%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、より更に好ましくは99%以上のもの;あるいはこれらの多量体)であってもよい。Bc2Lcは多量体でiPSC(人工多能性幹細胞)/ESC(胚性幹細胞)細胞表面の糖鎖修飾タンパク質(たとえばFucα1-2Galβ1-3GalNAcのついたポドカリキシン)を認識する。
 本発明の一実施態様では、細胞外小胞は、エクソソームである。
 本明細書中に記載の細胞外小胞は、その膜内又は膜中に、治療上有益でありうる物質(例えば、低分子化合物、核酸等)が包含されていてもよいし、結合されていてもよい。細胞外小胞の膜内に該物質を封入する方法は、これらに限定されるものではないが、例えば、該物質と本明細書中に記載の細胞外小胞とを好適な溶媒中で混合する方法等が挙げられる。
 本発明の一実施態様では、細胞外小胞は、任意のタンパク製剤を含んでもよい。タンパク製剤としては、特に限定しないが、エリスロポエチンなどの天然にも存在しうるタンパク質でも、イムノグロブリン-CTLA4融合タンパクのように天然には存在しない合成タンパク質であってもよく、モノクローナル抗体またはその活性断片でもよい。これらのタンパク製剤は、細胞外小胞の膜に局在することが可能な膜タンパク質若しくはその膜貫通ドメイン細胞外小胞の膜に結合することが可能なタンパク質若しくはその膜結合ドメインとの融合タンパク質として細胞外小胞の表面に局在させてもよい。かかる細胞外小胞は、融合タンパク質を発現させるためのベクターを、細胞外小胞を産生する細胞にトランスフェクションし、その細胞から細胞外小胞を分泌させることにより得られる。
 本明細書中に記載の細胞外小胞の膜に含まれる各融合タンパク質又はタンパク質複合体あるいはタンパク製剤は、1つ又は複数の検出可能な標識を含んでいてもよい。例えば、融合タンパク質又はタンパク質複合体あるいはタンパク製剤は、従来の方法で、特定のリポータ分子、発蛍光団、放射性材料、又は酵素(例えば、ペルオキシダーゼ、ホスファターゼ)等で標識されていてもよい。これらは、例えば、融合タンパク質又はタンパク質複合体あるいはタンパク製剤の構成要素として、該融合タンパク質又はタンパク質複合体あるいはタンパク製剤のN末端側又はC末端側に連結されていてもよい。
 本発明の一実施態様では、本明細書中に記載の細胞外小胞の膜に含まれる(A)、(B)、(C)、(D)及び(E)における各タンパク質(又は融合タンパク質)をコードするポリヌクレオチドを提供する。
 本発明の一実施態様では、
(a) すくなくとも1種のサイトカイン又はそのサブユニットを含む、サイトカインを細胞外小胞の膜外に提示可能な融合タンパク質(A)をコードする配列;
(b) 第1のターゲット因子又はそのサブユニットを含む、ターゲット因子を細胞外小胞の膜外に提示可能な融合タンパク質(B)をコードする配列;
(c) すくなくとも1種のサイトカイン又はそのサブユニットと、すくなくとも1種のターゲット因子またはそのサブユニットを含み、該サイトカインと該ターゲット因子を細胞外小胞の膜外に提示可能な融合タンパク質(C)をコードする配列;
(d) 第2のターゲット因子又はそのサブユニットを含む、ターゲット因子を細胞外小胞の膜外に提示可能な融合タンパク質(D)をコードする配列;及び
(e) すくなくとも1種のサイトカイン又はそのサブユニットと、第1のターゲット因子またはそのサブユニットと、第2のターゲット因子又はそのサブユニットを含み、該サイトカインと該第1のターゲット因子と該第2のターゲット因子を細胞外小胞の膜外に提示可能な融合タンパク質(E)をコードする配列 
からなる群から選択されるすくなくとも1つの配列を含むポリヌクレオチド
を提供する。
 上記配列は(a)~(e)は本願明細書に具体的記載された配列及び相同性の高い配列(好ましくは、90%以上、より好ましくは95%以上、さらに好ましくは99%以上の相同性)を含むが、特に限定しない。同等の機能を有するものであればパラログ(遺伝子重複によって生じた遺伝子配列)やオーソログ(異なる生物に存在する相同な機能を持った遺伝子群)であってもよく、配列情報の改変(不可、欠失、置換など)された配列も含むものとする。
 上述した(A)~(E)における各タンパク質(又は融合タンパク質)をコードするポリヌクレオチドは、当業者であれば、上記融合タンパク質又はタンパク質複合体のアミノ酸配列を参考に適宜決定しうる。なお、(A)~(E)における各融合タンパク質又はタンパク質複合体のアミノ酸配列は、各融合タンパク質又はタンパク質複合体における各構成要素(例えば、(A)の場合であれば、(A-1)~(A-5)又は(A-3)~(A-5)、場合により(A-6))のアミノ酸配列を参考に適宜決定しうる。ポリヌクレオチドを決定する際に使用されるコドンの種類は、任意のものを選択することができる。例えば、該ポリヌクレオチドを含むベクターを使用して形質転換させる細胞のコドンの頻度等を考慮して、ポリヌクレオチドを決定してもよい。
 上述した(A)~(E)における各タンパク質(又は融合タンパク質)をコードするポリヌクレオチドのN末端側には、必要に応じてシグナルペプチド(シグナルシークエンス)をコードするポリヌクレオチドを付加してもよい。
 シグナルペプチドのアミノ酸配列は、任意のものを使用することができ、例えば、発現させようとする融合タンパク質のアミノ酸配列等を考慮して決定してもよい。シグナルペプチドをコードするポリヌクレオチドとしては、例えば、CD8のシグナルペプチド(例えば、配列番号1、17、41)をコードするポリヌクレオチド(例えば、配列番号2、18、42)、MEG-E8のシグナルペプチド(例えば、配列番号27)をコードするポリヌクレオチド(例えば、配列番号28)等が挙げられる。
 上述した(A)~(E)における各タンパク質(又は融合タンパク質)の各構成要素(例えば、(A)の場合であれば、(A-1)~(A-5)又は(A-3)~(A-5)、場合により(A-6))、及びシグナルペプチド等のアミノ酸配列、並びにこれらをコードするポリヌクレオチドの情報は、例えば、公知の文献やNCBI(http://www.ncbi.nlm.nih.gov/guide/)等のデータベースを検索して適宜入手してもよい。また、テトラスパニンの部分配列におけるアミノ酸配列及びこれをコードするポリヌクレオチドは、国際公開第2016/139354号を参考にしてもよい。
 本発明の一実施態様では、本明細書中に記載のポリヌクレオチドから選択される少なくとも1種のポリヌクレオチドを含むベクターを提供する。
 本明細書中で用いられる「ベクター」とは、任意のベクター(これらに限定されるものではないが、例えば、プラスミドベクター、コスミドベクター、ファージ等のファージベクター、アデノウイルスベクター、バキュロウイルスベクター等のウイルスベクター、人工染色体ベクター等を含む)を意味する。ベクターは、発現ベクター、クローニングベクター等を含む。発現ベクターは、一般的に、所望のコード配列、及び宿主生物(例えば、植物、昆虫、動物等)又はインビトロでの発現系における作動可能に連結されたコード配列の発現に必要な適切なポリヌクレオチドを含有していてもよい。クローニングベクターは、所望のポリヌクレオチド断片を操作及び/又は増幅させるために使用してもよい。クローニングベクターは、所望のポリヌクレオチド断片の発現に必要とされる機能的な配列を欠失していてもよい。
 本発明の一実施態様では、本明細書中に記載のポリヌクレオチドは、これらが作動可能に挿入されうる限り、全て同一のベクター内に挿入されていてもよし、2以上のポリヌクレオチドが別個のベクターに挿入されていてもよい。本発明の一実施態様では、本明細書中に記載のポリヌクレオチドから選択される少なくとも1種のポリヌクレオチドを含んでなる2種以上のベクターを組み合わせたキットを提供する。
形質転換細胞
 本発明の一実施態様では、以下:
 (i)  本明細書中に記載のすくなくとも1つの(A)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド、
 (ii) 本明細書中に記載のすくなくとも1つの(B)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド、
 (iii)本明細書中に記載のすくなくとも1つの(C)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド、
 (iv) 本明細書中に記載のすくなくとも1つの(D)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド、及び/又は
 (v)  本明細書中に記載のすくなくとも1つの(E)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド
を含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞を提供する。
 本発明の一実施態様では、以下:
 (i)  本明細書中に記載のすくなくとも1つの(a)のポリヌクレオチド、
 (ii) 本明細書中に記載のすくなくとも1つの(b)のポリヌクレオチド、及び/又は
 (iii)本明細書中に記載のすくなくとも1つの(c)のポリヌクレオチド
 (iv) 本明細書中に記載のすくなくとも1つの(d)のポリヌクレオチド、及び/又は
 (v)  本明細書中に記載のすくなくとも1つの(e)のポリヌクレオチドのタンパク質(又は融合タンパク質)をコードするポリヌクレオチド
を含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞を提供する。
 「単一のベクター又は2以上のベクターの組み合わせにより形質転換された」とは、例えば、細胞が、上記(i)~(v)のポリヌクレオチドが全て同一のベクター内に挿入されたものにより形質転換されてもよいし、これらのうち2以上が別個のベクターに挿入された2以上のベクターの組み合わせにより形質転換されてもよいことを意味する。
 形質転換させる細胞は、形質転換させた後に本明細書中に記載の細胞外小胞を得ることができるものである限り特段限定されるものではなく、初代培養細胞であっても、継代細胞であっても、株化細胞であってもよく、これらは正常細胞であっても、がん化又は腫瘍化した細胞を含む病変細胞であってもよい。また、形質転換させる細胞の由来は、特段限定されるものではないが、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄類、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジー等の霊長類等の哺乳動物等の動物由来の細胞;植物由来の細胞;昆虫由来の細胞等が挙げられる。形質転換させる細胞としては、好ましくは動物由来の細胞である。動物由来の細胞としては、これらに限定されるものではないが、例えば、ヒト胚腎臓細胞(HEK293T細胞等を含む)、ヒトFL細胞、チャイニーズハムスター卵巣細胞(CHO細胞)、COS-7、Vero、マウスL細胞、ラットGH3等が挙げられる。
 細胞を形質転換させる方法は、細胞に目的のポリヌクレオチドを導入しうる方法であれば特に限定されるものではない。例えば、エレクトロポレーション法、マイクロインジェクション法、リン酸カルシウム法、カチオン性脂質法、リポソームを使用する方法、ポリエチレンイミン等の非リポソーム性のものを使用する方法、ウイルス感染法等であってもよい。
 形質転換された細胞は、(A)、(B)、(C)、(D)及び/又は(E)のタンパク質(又は融合タンパク質)を、一過性に発現する形質転換細胞であってもよいし、安定的に発現する形質転換細胞(安定細胞株)であってもよい。
 形質転換された細胞の培養条件は、特段限定されるものではない。例えば、形質転換された細胞が動物由来の細胞である場合、例えば、細胞培養等に一般に使用されている培地(例えば、RPMI1640培地、EagleのMEM培地、ダルベッコ改変イーグル培地(DMEM培地)、Ham F12培地、又はこれらの任意の組み合わせ等)、又はこれにウシ胎児血清、抗生物質、アミノ酸等の他の成分を添加した培地等を使用し、例えば、約1~約10%(好ましくは約2~約5%)COの存在下、約30~約40℃(好ましくは約37℃)で、所望の時間(例えば、約0.5時間~約240時間(好ましくは、約5~約120時間、より好ましくは、約12~約72時間))、培養(例えば、静置下又は振盪下)してもよい。
 形質転換された細胞を培養して得られてなる培養上清中には、本明細書中に記載の細胞外小胞が含まれうる。そのため、本明細書中に記載の抗原提示細胞外小胞を得る目的で形質転換細胞を培養する際、必要に応じて、エクソソーム等の細胞外小胞を除去した培地(例えば、エクソソームを除去した約1~約5%ウシ胎児血清を含むダルベッコ改変イーグル培地等)を用いてもよい。
 本発明の一実施態様では、本明細書中に記載の形質転換された細胞を培養して得られてなる、培養上清を提供する。
 本明細書中に記載の培養上清中に含まれる細胞外小胞は、例えば、該培養上清を精製(例えば、遠心分離、クロマトグラフィー等)、濃縮、単離等をすることにより、回収することができる。
 本発明の一実施態様では、本明細書中に記載の培養上清から得られる、細胞外小胞を提供する。
 本明細書中に記載の細胞外小胞は、これらに限定されるものではないが、例えば、当業者に公知の遺伝子組み換え技術等の手段により(例えば、以下に記載の方法により、若しくは実施例に記載の方法により、又はこれらに類似する方法により、得てもよい。
 通常の遺伝子組み換え技術により、上記(A)、(B)、(C)、(D)又は(E)のタンパク質(又は融合タンパク質)をそれぞれコードするポリヌクレオチド(あるいは上記(a)、(b)、(c)、(d)及び(e)のポリヌクレオチド)を得、これらを同一の又は別個のベクターに作動可能に挿入することができる。2種以上のポリヌクレオチドを同一のベクターに挿入する場合、それぞれが同一の又は別個のプロモーターに作動可能に連結されていてもよい。
 得られた単一の又は2以上のベクターを、細胞に同時に又は逐次的に形質転換させ、形質転換細胞(これら融合タンパク質を、一過性に発現する形質転換細胞であってもよいし、安定的に発現する形質転換細胞(安定株)であってもよい)を得ることができる。得られた形質転換細胞を所望の条件下で培養して培養上清を得、得られた培養上清を必要に応じて精製(例えば、遠心分離、抗体(例えば、細胞外小胞の膜に含まれるタンパク質等を認識する抗体)、クロマトグラフィー、フローサイトメトリー等を用いた精製)、濃縮(例えば、限外濾過等)、乾燥等することで、本明細書中に記載の細胞外小胞を得ることができる。
 本明細書中に記載の細胞外小胞は、例えば、フローサイトメトリー、ELISA、ウェスタンブロッティング等の手法により、(A)、(B)及び/又は(D)(あるいは(A)と(B)の代わりに(C);(A)と(B)と(D)の代わりに(E))が膜に含まれていることを確認してもよい。
 本発明の一実施態様では、本明細書中に記載の抗原提示細胞外小胞を製造するための方法であって、本明細書中に記載の形質転換された細胞を培養して得られてなる培養上清を回収することを含む、方法を提供する。
 本発明の一実施態様では、本明細書中に記載の細胞外小胞を製造するための方法であって、
 (i)  本明細書中に記載の(A)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド(あるいは(a)のポリヌクレオチド)、
 (ii) 本明細書中に記載の(B)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド(あるいは(b)のポリヌクレオチド)、
 (iii)本明細書中に記載の(C)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド(あるいは(c)のポリヌクレオチド)、
 (iv) 本明細書中に記載の(D)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド(あるいは(d)のポリヌクレオチド)、及び/又は
 (v)  本明細書中に記載の(E)のタンパク質(又は融合タンパク質)をコードするポリヌクレオチド(あるいは(e)のポリヌクレオチド)
を含んでなる、単一のベクター又は2以上のベクターの組み合わせを、細胞に同時又は逐次的に(好ましくは、同時に)形質転換させることと、
 得られた形質転換細胞を培養して得られてなる培養上清を回収することと
を含む、方法を提供する。
 本発明の一実施態様では、本明細書中に記載の抗原提示細胞外小胞、ポリヌクレオチド及び/又はこれを含むベクター、並びに/又は形質転換細胞及び/又はその培養上清、を含む組成物(例えば、医薬組成物)を提供する。本発明の一実施態様では、本明細書中に記載の抗原提示細胞外小胞、又は本明細書中に記載の培養上清を含む医薬及び試薬を提供する。
 本明細書中に記載の組成物(例えば、医薬用や試薬用)は、これらに限定されるものではないが、例えば、賦形剤、滑沢剤、結合剤、崩壊剤、pH調整剤、溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤、防腐剤、抗酸化剤、着色剤、甘味剤、界面活性剤等の添加剤を含むことができる。これら添加剤の種類、その使用量等は、目的に応じて当業者が適宜選択しうる。医薬組成物として用いる場合、これらの添加剤は薬理学的に許容できる担体であることが好ましい。さらに、本明細書中に記載の組成物がポリヌクレオチドを含む場合、必須ではないが、核酸のDD(ドラッグデリバリー)に適した担体を含むことが好ましく、これらの担体として脂質ナノ粒子(LNP)及びポリマー(たとえばPEI)が挙げられる。
 本明細書中に記載の組成物(例えば、医薬用や試薬用)は、上述した添加剤と共に、自体公知の方法により、例えば、錠剤、被覆錠剤、口腔内崩壊錠、チュアブル剤、丸剤、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、液剤(例えば、シロップ剤、注射剤、ローション剤等を含む)、懸濁剤、乳剤、ゼリー剤、貼付剤、軟膏剤、クリーム剤、吸入剤、坐剤等に製剤化することができる。これらは、経口剤であってもよいし、非経口剤であってもよい。製剤化されたものは、その目的に応じて、有益な他の成分(例えば、治療上有益な他の成分)を更に含んでいてもよい。
 本発明の一実施態様である組成物は、実施例3が示すように、ターゲット因子として抗原を用いた場合、その抗原を認識する遺伝子改変T細胞、たとえば、その抗原を認識して結合するT細胞受容体(TCR)を強制発現させたT細胞(TCR-T細胞);その抗原を認識して結合する領域(たとえば、VHおよびVLを含む単鎖可変領域scFv(single chain Fv)や重鎖のみから成る免疫グロブリン(抗体)の可変領域を含むナノボディのような抗体の標的抗原認識部分)とリンパ球活性化分子(たとえば、CD28の細胞内ドメインやmCD3zの細胞内ドメイン)を含む融合蛋白(Chimeric antigen receptor:CAR)を強制発現させたT細胞(CAR-T細胞)等を特異的に増殖可能である。従って、本発明の一実施態様である医薬組成物の対象への投与によって、TCR-T細胞、CAR―T細胞等を投与された対象の体内において、TCR-T細胞のT細胞受容体、CAR-T細胞のキメラ抗原受容体等と細胞外小胞の膜外に提示された前記抗原が反応し、好ましくは更にTCR-T細胞、CAR-T細胞等上のT細胞刺激性サイトカイン受容体と細胞外小胞の膜外に提示された前記T細胞刺激性サイトカインが反応することにより、TCR-T細胞、CAR-T細胞等が対象内で活性化及び/又は増殖する。その際、T細胞共刺激分子も細胞外小胞の膜外に提示されていた場合、TCR-T細胞、CAR-T細胞等の膜上に存在する分子(たとえばCD28、CD134等)と相互作用することで、TCR-T細胞、CAR-T細胞等の活性化及び/又は増殖にさらに寄与する。活性化及び/又は増殖したTCR-T細胞、CAR-T細胞等がその抗原又はその断片を表面に発現するがん細胞を攻撃することにより、がん細胞の増殖を抑制してがんを治療する。
 がんとしては、何れの固形がん及び血液がんが含まれ、これらに限定されるものではないが、例えば、小細胞肺がん、非小細胞肺がん、乳がん、食道がん、胃がん、小腸がん、大腸がん、結腸がん、直腸がん、膵臓がん、前立腺がん、骨髄がん、腎臓がん(腎細胞がん等を含む)、副甲状腺がん、副腎がん、尿管がん、肝がん、胆管がん、子宮頸がん、卵巣がん(例えば、その組織型が、漿液性腺がん、粘液性腺がん、明細胞腺がん等)、精巣がん、膀胱がん、外陰部がん、陰茎がん、甲状腺がん、頭頸部がん、頭蓋咽頭がん、咽頭がん、舌がん、皮膚がん、メルケル細胞がん、黒色腫(悪性黒色腫等)、上皮がん、扁平上皮細胞がん、基底細胞がん、小児がん、原発不明がん、繊維肉腫、粘膜肉腫、脂肪肉腫、軟骨肉腫、骨原生肉腫、脊索腫、血管肉腫、リンパ管肉腫、リンパ管内皮肉腫、カポジ肉腫、平滑筋肉腫、横紋筋肉腫、滑膜腫、中皮腫、ユーイング腫瘍、精上皮腫、ウィルムス腫瘍、脳腫瘍、神経膠腫、膠芽腫、星状細胞腫、骨髄芽腫、髄膜腫、神経芽細胞腫、髄芽腫、網膜芽細胞腫、脊椎腫瘍、悪性リンパ腫(例えば、非ホジキンリンパ腫、ホジキンリンパ腫等)、慢性又は急性リンパ球性白血病、成人T細胞白血病等が挙げられる。
 また、本発明の一実施態様である組成物は、実施例1が示すように、in vitro又はin vivoで、内在する又は外部から移植された造血幹細胞の活性/増殖が可能である。従って、再生不良性貧血やがん放射線治療後においての血球細胞減少に対する、造血幹細胞の回復治療に用いることができる。
 再生不良性貧血では赤血球、好中球、血小板が減少することによって、さまざまな症状が現れる。健常な造血幹細胞を移植して、患者の造血力を再生することにより再生不良性貧血を治療又は予防する。
 造血幹細胞移植は、通常の化学療法や免疫抑制療法だけでは治すことが難しい血液がんや免疫不全症などに対して、完治させることを目的としても行われる。造血幹細胞移植では、大量の化学療法や全身への放射線治療などからなる移植前処置のあとに、自分またはドナーから事前に採取した造血幹細胞を点滴で投与する。血液やリンパのがんなど化学療法や放射線治療が効きやすいがんが治療に好適である。移植前処置の目的は、腫瘍細胞を減少させ、患者自身の免疫細胞を抑制することである。これによって、移植された造血幹細胞が患者の骨髄に根づき(生着する)、正常な造血機能が回復する。また、ドナーから提供された造血幹細胞を移植する同種造血幹細胞移植(同種移植)の場合は、ドナーのリンパ球が患者の腫瘍細胞を攻撃する移植片対白血病効果(GVL効果)も期待できる。
 また、本発明の一実施態様である組成物は、実施例2が示すように、in vitro又はin vivoで、iPS細胞/胚性幹細胞の分化誘導が可能である。
 上述した各種疾患を処置又は予防する対象となる被験体は、これらに限定されるものではないが、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類;ウサギ等のウサギ目;ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄類;イヌ、ネコ等のネコ目;ヒト、サル、アカゲザル、カニクイザル、マーモセット、オランウータン、チンパンジー等の霊長類;等の哺乳動物等の動物、或いは植物が挙げられるが、好ましくは動物であり、より好ましくはげっ歯類又は霊長類であり、更に好ましくはマウス又はヒトである。
 本明細書中に記載の抗原提示細胞外小胞、ポリヌクレオチド及び/又はこれを含むベクター、並びに/又は形質転換細胞及び/又はその培養上清、或いはこれらを含む組成物又はこれを製剤化したものの投与量は、投与する被験体の性別、年齢、体重、健康状態、病状の程度若しくは食事;投与時間;投与方法;他の薬物との組み合わせ;その他の要因を考慮して適宜決定することができる。
 以下、実施例を用いて本発明をより詳細に説明するが、これら実施例は、本発明の範囲を何ら限定するものではない。 
実施例1.造血幹細胞への影響
1.1.プラスミドの調製
 CD8Aのシグナルペプチド(配列番号1)をコードするポリヌクレオチド(配列番号2)、CXCL12の全長配列(配列番号3)をコードするポリヌクレオチド(配列番号4)、シグナルペプチドを除いたCD8Aの全長配列(配列番号5)をコードするポリヌクレオチド(配列番号6)、CD81の全長配列(配列番号7)をコードするポリヌクレオチド(配列番号8)から構成される人工合成した遺伝子配列(配列番号9)をコードするポリヌクレオチド(配列番号10)をpcDNA(商標)3.1(+)Mammalian Expression Vector(Thermo Fisher Scientific社製)に挿入し、CXCL-12を細胞外小胞の膜上に発現させるためのベクターを作製した。
 同様の方法で、L―Selectinの全長配列(配列番号11)をコードするポリヌクレオチド(配列番号12)、CD81の全長配列(配列番号13)をコードするポリヌクレオチド(配列番号14)から構成される人工合成した遺伝子配列(配列番号15)をコードするポリヌクレオチド(配列番号16)をpcDNA(商標)3.1(+)Mammalian Expression Vector(Thermo Fisher Scientific社製)に、CD8Aのシグナルペプチド(配列番号17)をコードするポリヌクレオチド(配列番号18)、Thrombopoietin(TPO)の全長配列(配列番号19)をコードするポリヌクレオチド(配列番号20)、シグナルペプチドを除いたCD8Aの全長配列(配列番号21)をコードするポリヌクレオチド(配列番号22)、CD81の全長配列(配列番号23)をコードするポリヌクレオチド(配列番号24)から構成される人工合成した遺伝子配列(配列番号25)をコードするポリヌクレオチド(配列番号26)をpcDNA(商標)3.1/Zeo (+) Mammalian Expression Vector(Thermo Fisher Scientific社製)に、MFG-E8のシグナルペプチド(配列番号27)をコードするポリヌクレオチド(配列番号28)、Stem cell factor(SCF)の全長配列(配列番号29)をコードするポリヌクレオチド(配列番号30)、ペプチドリンカー1(配列番号31)をコードするポリヌクレオチド(配列番号32)、Stem cell factor(SCF)の全長配列(配列番号33)をコードするポリヌクレオチド(配列番号34)、ペプチドリンカー2(配列番号35)をコードするポリヌクレオチド(配列番号36)、MFG-E8の48番目のDをEに変更したシグナルペプチドを除いた全長配列(配列番号37)をコードするポリヌクレオチド(配列番号38)から構成される人工合成した遺伝子配列(配列番号39)をコードするポリヌクレオチド(配列番号40)をpcDNA(商標)3.1/Hygro(+) Mammalian Expression Vector(Thermo Fisher Scientific社製)にそれぞれ挿入し、L―Selectin、TPO、SCFを細胞外小胞の膜上に発現させるためのベクターを作製した。
 構築した各ベクターはE.coli DH5α Competent Cells(タカラバイオ社製)に形質転換した。形質転換した大腸菌に関してLB培地を用いて増幅し、EndoFree Plasmid Maxi Kit(QIAGEN社製)を用いてベクターの大量調製を行った。
 用いた配列情報を以下の表1~3に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011
1.2.細胞外小胞の調製
1.2.1.HEK293細胞由来細胞外小胞の取得及び細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析
 ヒト胎児腎由来HEK293細胞(JCRB細胞バンク製)は10%FBS含有E-MEM培地(L-グルタミン、フェノールレッド含有)(富士フイルム和光純薬社製)を用いて前培養を行った。1×106cells/10mL/10cm dishとなるようにHEK293を播種し、COインキュベーター(37℃、5%CO)内にて静置状態で24時間培養した。24時間後、Lipofectamine(登録商標) 3000 Reagent(Thermo Fisher Scientific社製)及びOpti-MEM(商標)I Reduced Serum Medium, no phenol red(Thermo Fisher Scientific社製)を用いて、ベクター未導入群(サンプル1)、SCF及びTPO発現ベクター導入群(サンプル2)、SCF、TPO及びL―Selectin発現ベクター導入群(サンプル3)、SCF、TPO及びCXCL12発現ベクター導入群(サンプル4)を5μgずつ導入し、COインキュベーター(37℃、5%CO)内にて24時間培養した。24時間後、D-PBS(富士フイルム和光純薬社製)で洗浄した各10cm dishに10%Fetal Bovine Serum, exosome-depleted, One Shot(商標)format(Thermo Fisher Scientific社製)含有E-MEM培地(L-グルタミン、フェノールレッド含有)を10mL添加し、COインキュベーター(37℃、5%CO)内にて48時間培養した。48時間後、培養上清を回収した。回収した培養上清は、Vivaspin 20(100k)(Sartorius社製)を用いて濃縮し、濃縮した溶液を用いてPS Capture(商標) エクソソームフローサイトメトリーキット(富士フイルム和光純薬株式会社製)によって、製造業者の指示にしたがって免疫染色を行った。染色に使用した抗体は以下のとおりである。染色時間は1次抗体、2次抗体共に60分間、4℃で反応させた。染色後、各融合タンパク質の発現を、フローサイトメーターLSRFortessaX-20(BDバイオサイエンシス社製)で検出した。
Figure JPOXMLDOC01-appb-T000012
 結果を図1に示す。SCF、TPO及びL―SelectinもしくはCXCL12の3つのベクターを発現させた細胞外小胞において、各分子の発現が認められた。
1.2.2.HEK293細胞由来細胞外小胞の取得並びにSCF及びTPO定量評価
 ヒト胎児腎由来HEK293細胞(JCRB細胞バンク製)は10%FBS含有E-MEM培地(L-グルタミン、フェノールレッド含有)(富士フイルム和光純薬社製)を用いて前培養を行った。1×106cells/10mL/10cm dishとなるようにHEK293を播種し、COインキュベーター(37℃、5%CO)内にて静置状態で24時間培養した。24時間後、Lipofectamine 3000 Reagent(Thermo Fisher Scientific社製)及びOpti-MEM I Reduced Serum Medium, no phenol red(Thermo Fisher Scientific社製)を用いて、ベクター未導入群(サンプル1)、SCF及びTPO発現ベクター導入群(サンプル2)、SCF、TPO及びL―Selectin発現ベクター導入群(サンプル3)、SCF、TPO及びCXCL12発現ベクター導入群(サンプル4)を5μgずつ導入し、COインキュベーター(37℃、5%CO)内にて24時間培養した。24時間後、D-PBSで洗浄した各10cm dishに10%Fetal Bovine Serum,exosome-depleted, One Shot format(Thermo Fisher Scientific社製)含有E-MEM培地(L-グルタミン、フェノールレッド含有)を10mL添加し、COインキュベーター(37℃、5%CO)内にて48時間培養した。48時間後、培養上清を回収した。回収した培養上清は2000xgで10分間遠心し上清を回収後、0.22μmフィルター(ミリポア社製)を通過させた。処理を行った培養上清をUCチューブ(ベックマン・コールター社製)に添加し、SW41Ti(ベックマン・コールター社製)にセットし、Optima L-90K(ベックマン・コールター社製)を用いて35000rpm、4℃の条件で70分間遠心した。遠心後、上清を除去し、UCチューブにD-PBSを10mL添加し、35000rpm、4℃の条件で70分間遠心した。遠心後、上清を除去し、50μLのD-PBSに懸濁した。
細胞外小胞上に発現したSCF及びTPOを定量するために、Human SCF ELISA Kit(abcam社製)及びHuman Thrombopoietin ELISA Kit(abcam社製)を用いた。それぞれ用いるプレートに10倍希釈した細胞外小胞溶液もしくは段階希釈した検量線溶液を50μL添加した。そこへAntibody Diluent CPIもしくはAntibody Diluent 5BIで終濃度が1×Capture Antibodyと1×Detector Antibodyとなるように調製したAntibody Cocktailを50μL添加し、1時間室温下で振とうした。1時間後に、溶液を捨て350uLの1×Wash Buffer PTで3回洗浄を行った。続いて、100μLのTMB Development Solution室温で10分間振とうした。最後に、100μLのStop Solutionを添加して反応を停止させた後、450nmの吸光度を測定した。各検量線の吸光度からサンプル1からサンプル4に含まれるSCF及びTPO濃度を算出した。
 その結果、サンプル2からサンプル4では表5に示すような発現量が認められた。一方、サンプル1ではいずれも定量下限値未満となった。
Figure JPOXMLDOC01-appb-T000013
1.3.In vitroでの効果
1.3.1. ヒト骨髄CD34陽性前駆細胞を用いた細胞増殖評価
 ヒト骨髄CD34陽性前駆細胞(Lonza社製)を37℃の湯浴で溶解させ、StemSpan(商標)Serum-Free Expansion Medium(STEMCELLtechnologies社製)10mLに懸濁した。300xgで10分間遠心後、上清を除き、培地で再懸濁し、5000cells/80uL/wellとなるように96ウェル透明平底未処理セルカルチャープレート(Falcon社製)に播種した。SCF及びTPOが終濃度でSCF:3pg/mL、TPO:1.63pg/mL(サンプル2);SCF:3pg/mL、TPO:3.69pg/mL(サンプル3)及びSCF:3pg/mL、TPO:2.92pg/mL(サンプル4)となるように上記1.2.2で調製した各細胞外小胞溶液を添加した。また、最も添加量が多かったサンプル2に合わせる形でサンプル1の添加を行った。さらに、サンプル2からサンプル4と同様の終濃度となるようにレコンビナントSCF(R&DSystems社製)及びレコンビナントTPO(Peprotech社製)の処置も行った(サンプル5~7)。対照として、D―PBS処置群(control)を置いた。いずれの群も最終的な容量は100μLとなるように培地及びD―PBS溶液で調節した。処置を行ったプレートはCOインキュベーター(37℃、5%CO)内にて96時間培養した。96時間後に100uLのCellTiter-Glo(登録商標) Luminescent Cell Viability Assay(Promega社製)を添加し、10分間反応させたのち、Enspire(PerkinElmer社製)を用いて発光度を測定することで各時点における細胞数を測定した。算出された発光度をもとに、controlに対する値を% of controlとして各群で求めた。
 その結果、サンプル2、サンプル3及びサンプル4を処置した群においてcontrol、サンプル1及びサンプル5、サンプル6及びサンプル7と比較して発光度の増加が認められた(図2)。
実施例2.iPSC分化誘導
2.1.プラスミドの調製
 CD8のシグナルペプチド(配列番号41)をコードするポリヌクレオチド(配列番号42)、Bc2l-Cのフラグメント1(配列番号43)をコードするポリヌクレオチド(配列番号44)、ペプチドリンカー(配列番号45)をコードするポリヌクレオチド(配列番号46)、Bc2l-Cのフラグメント2(配列番号47)をコードするポリヌクレオチド(配列番号48)、ペプチドリンカー(配列番号49)をコードするポリヌクレオチド(配列番号50)、Bc2l-Cのフラグメント3(配列番号51)をコードするポリヌクレオチド(配列番号52)、CD8の細胞外ドメイン、膜貫通ドメイン、細胞質ドメイン(配列番号53)をコードするポリヌクレオチド(配列番号54)、CD81の全長配列(配列番号55)をコードするポリヌクレオチド(配列番号56)から構成される人工合成した遺伝子配列(配列番号57)をコードするポリヌクレオチド(配列番号58)をpcDNA(商標)3.1/Hygro(+)Mammalian Expression Vector(Thermo Fisher Scientific社製)に挿入し、Bc2l-Cを細胞外小胞の膜上に発現させるためのベクターを作製した。
 同様の方法で、C35S、C244S、C247Sの変異をさせたMutation ActivinAの全長配列(配列番号59)をコードするポリヌクレオチド(配列番号60)、ペプチドリンカー(配列番号61)をコードするポリヌクレオチド(配列番号62)、シグナルペプチドを除いたMFGE8の全長配列(配列番号63)をコードするポリヌクレオチド(配列番号64)から構成される人工合成した遺伝子配列(配列番号65)をコードするポリヌクレオチド(配列番号66)をpcDNA(商標)3.1/Zeo(+)Mammalian Expression Vector(Thermo Fisher Scientific社製)に、MFGE8のシグナルペプチド(配列番号67)をコードするポリヌクレオチド(配列番号68)、Mature Activin Aのうちアミノ酸 306~426(配列番号69)をコードするポリヌクレオチド(配列番号70)、ペプチドリンカー(配列番号71)をコードするポリヌクレオチド(配列番号72)、シグナルペプチドを除いたMFGE8の全長配列(配列番号73)をコードするポリヌクレオチド(配列番号74)から構成される人工合成した遺伝子配列(配列番号75)をコードするポリヌクレオチド(配列番号76)をpcDNA(商標)3.1/Zeo(+)Mammalian Expression Vector(Thermo Fisher Scientific社製)にそれぞれ挿入し、Mutation Activin AおよびMature Activin Aを細胞外小胞の膜上に発現させるためのベクターを作製した。構築した各ベクターはE. coli DH5α Competent Cells(タカラバイオ社製)に形質転換した。形質転換した大腸菌に関してLB培地を用いて増幅し、EndoFree Plasmid Maxi Kit(QIAGEN社製)を用いてベクターの大量調製を行った。
 用いた配列情報を以下の表6~8に示す。
Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017

Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019

Figure JPOXMLDOC01-appb-T000020

Figure JPOXMLDOC01-appb-T000021

Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024

Figure JPOXMLDOC01-appb-T000025
2.2.細胞外小胞の調製
2.2.1.HEK293細胞由来細胞外小胞の取得及び細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析
 ヒト胎児腎由来HEK293細胞(JCRB細胞バンク製)は10%FBS含有E-MEM培地(L-グルタミン、フェノールレッド含有)(富士フイルム和光純薬社製)を用いて前培養を行った。8×10cells/10mL/10cm dishとなるようにHEK293を播種し、COインキュベーター(37℃、5%CO)内にて静置状態で24時間培養した。24時間後、Lipofectamine(登録商標) 3000 Reagent(Thermo Fisher Scientific社製)及びOpti-MEM(商標)I Reduced Serum Medium, no phenol red(Thermo Fisher Scientific社製)を用いて、Mutation Activin A発現ベクター導入群、Mature Activin A発現ベクター導入群を7.5μg、となるように導入し、COインキュベーター(37℃、5%CO)内にて24時間培養した。24時間後、D-PBS(富士フイルム和光純薬社製)で洗浄した各10cm dishに10%Fetal Bovine Serum, exosome-depleted, One Shot(商標)format(Thermo Fisher Scientific社製)含有E-MEM培地(L-グルタミン、フェノールレッド含有)を10mL添加し、COインキュベーター(37℃、5%CO)内にて48時間培養した。48時間後、培養上清を回収した。回収した培養上清は、Capturem(商標)Extracellular Vesicle Isolation Kit(Maxi)(タカラバイオ社製)を用いて細胞外小胞を精製し、得られた溶液をAmicon Ultra-0.5,PLGC Ultracel,10kDa(メルクミリポア社製)を用いて濃縮し、D-PBS(-)に置換した。濃縮した溶液を用いてPS Capture(商標) エクソソームフローサイトメトリーキット(富士フイルム和光純薬株式会社製)によって、製造業者の指示にしたがって免疫染色を行った。染色には、AlexaFluor(登録商標)647コンジュゲート抗ヒトActivin A抗体(Bioss  antibodies社製)を用い、室温にて60分反応させた。染色後、各融合タンパク質の発現を、フローサイトメーターLSRFortessaX-20(BDバイオサイエンシス社製)で検出した。
 結果を図3に示す。2通りのベクターにてActivin Aを発現させた細胞外小胞において、いずれもActivin Aの発現が認められた。
2.2.2.HEK293細胞由来細胞外小胞の取得及びActivin A定量評価
 ヒト胎児腎由来HEK293細胞(JCRB細胞バンク製)は10%FBS含有E-MEM培地(L-グルタミン、フェノールレッド含有)(富士フイルム和光純薬社製)を用いて前培養を行った。8×10cells/10mL/10cm dishとなるようにHEK293を播種し、COインキュベーター(37℃、5%CO)内にて静置状態で24時間培養した。24時間後、Lipofectamine 3000 Reagent(Thermo Fisher Scientific社製)及びOpti-MEM I Reduced Serum Medium, no phenol red(Thermo Fisher Scientific社製)を用いて、Mutation Activin A発現ベクター導入群(実施例条件1)では7.5μg、Bc2l-C及びMutation Activin A発現ベクター導入群(実施例条件2)では各ベクター3.75ug、Mature Activin A発現ベクター導入群(実施例条件3)ではベクター7.5μgとなるように導入し、COインキュベーター(37℃、5%CO)内にて24時間培養した。同様に操作したベクター未導入群を比較例とした。24時間後、D-PBSで洗浄した各10cm dishに10%Fetal Bovine Serum, exosome-depleted, One Shot format(Thermo Fisher Scientific社製)含有E-MEM培地(L-グルタミン、フェノールレッド含有)を10mL添加し、COインキュベーター(37℃、5%CO)内にて48時間培養した。48時間後、培養上清を回収した。回収した培養上清は、Capturem(商標)Extracellular Vesicle Isolation Kit(Maxi)(タカラバイオ社製)を用いて細胞外小胞を精製し、得られた溶液をAmicon Ultra-0.5,PLGC Ultracel,10kDa(メルクミリポア社製)を用いて濃縮し、D-PBS(-)に置換した。細胞外小胞上に発現したActivin Aを定量するために、濃縮した溶液をHuman Activin A ELISA(RayBiotech社製)にて測定した。また、同溶液中に含まれる細胞外小胞の粒子数および平均粒子径をナノ粒子トラッキング解析装置ZetaView(DKSHジャパン社製)にて測定した。
 その結果、いずれのサンプルにおいても平均粒子径が50~150nmの細胞外小胞が得られた。Activin Aの定量結果はサンプル2からサンプル5では表に示すような発現量が認められた一方で、サンプル1ではいずれも定量下限値未満となったことから、ベクターの導入により、細胞外小胞にActivinAを発現させることができたことが明らかとなった。
Figure JPOXMLDOC01-appb-T000026
2.3.In vitroでの効果
2.3.1.HEK293細胞由来Activin A発現細胞外小胞を用いたiPSC分化誘導実験
 上記で得られたActivin Aを発現させた細胞外小胞がヒトiPSCを分化誘導できるか検証した。ヒトiPSC(RPChiPS771株、リプロセル社製)をiMatrix-511 silk(マトリクソーム社製)を0.5μg/cmとなるようにコーティングした6ウェルプレートにてStemFit(登録商標)AK02N(味の素ヘルシーサプライ社製)にて培養した。得られた細胞を0.5mM EDTA溶液を加えて37℃で10分間インキュベートし、シングルセルにて剥離した。得られた細胞を10μM Y-27632(富士フイルム和光純薬社製)を添加したStemFit(登録商標)培地に懸濁し、iMatrix-511を0.5μg/cmとなるようにコーティングした24ウェルプレートに2×10cells/wellとなるように播種し、COインキュベーター(37℃、5%CO)内にて静置状態で24時間培養した。(Day-1)。播種翌日、細胞が接着していることを確認し、分化培地に培地を交換し分化を開始した(Day0)。分化培地には、2mM L-glutamine(DSファーマバイオメディカル社製)、1%MEM非必須アミノ酸溶液(×100)(富士フイルム和光純薬社製)、0.1mM 2-メルカプトエタノール(Thermo Fisher Scientific社製)、2%B-27サプリメントXenoFreeCTS(Thermo Fisher Scientific社製)、ペニシリンストレプトマイシンを含むDMEM(high glucose)(富士フイルム和光純薬社製)を用いた。この分化培地に実施例2.2.1.にて得られたHEK293由来Activin A発現細胞外小胞を添加し、COインキュベーター(37℃、5%CO)内にて静置状態で3日間培養した。比較対象として、用いたHEK293由来Activin A発現細胞外小胞のELISA定量結果と同じ濃度になるように、リコンビナントActivin Aタンパク質(Shenandoah社製)を加え、3日間培養した。
 分化3日後に得られた細胞よりRNeasy Mini Kit(キアゲン社製)を用いてRNAを回収し、PrimeScript(商標) RT Master Mix(Perfect Real Time)(タカラバイオ社製)を用いて逆転写後、Premix Ex Taq(Perfect Real Time)およびApplied Biosystems 7500 Real-Time PCR System(Thermo Fisherc Scientific社製)を用いて遺伝子発現を解析した。遺伝子発現の解析には表10のTaqManプローブ(いずれもThermo Fisher Scientific社製)を使用し、各遺伝子の発現量はハウスキーピング遺伝子であるGAPDHの発現量で補正した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 その結果、同じ添加濃度となるようにリコンビナントタンパク質とHEK293由来Activin A発現細胞外小胞を用いてiPSCの分化誘導をしたところ、細胞外小胞を用いた群において、中胚葉マーカーTや内胚葉マーカーSOX17およびFOXA2の発現が顕著に増加することが明らかとなった。したがって、リコンビナントタンパク質と比べてActivin A発現細胞外小胞はより低濃度でiPSCの分化を誘導できることが示唆された。
2.3.2.HEK293細胞由来Activin A発現細胞外小胞を用いたiPSC分化誘導実験
 上記の条件3と同様にして、HEK293細胞にMature Activin Aベクターを導入して得られた細胞外小胞を得た。iPSCの分化誘導において、この細胞外小胞の添加量と分化マーカーの発現について評価した。
 ヒトiPSC(RPChiPS771株、リプロセル社製)を上記と同様にしてシングルセルにて剥離した。得られた細胞を10μM Y-27632(富士フイルム和光純薬社製)を添加したStemFit(登録商標)培地に懸濁し、iMatrix-511を0.5μg/cmとなるようにコーティングした48ウェルプレートに2×10cells/wellとなるように播種し、COインキュベーター(37℃、5%CO)内にて静置状態で24時間培養した。(Day-1)。播種翌日、細胞が接着していることを確認し、分化培地に培地を交換し分化を開始した(Day0)。分化培地には、ELISAにてActivinA濃度を定量したHEK293由来Mature Activin A発現細胞外小胞を0.05、0.1、0.2、0.5ng/mLとなるように添加し、3日間培養した。比較対象として、ActivinAリコンビナントタンパク質(Shenandoah社製)を0、1、10、100ng/mLになるように加え、比較対照群では毎日培地交換を実施した。上記と同様にして、分化3日後の遺伝子発現を評価した結果を図4に示す。
 その結果、リコンビナントタンパク質と比較して低濃度で中胚葉マーカーTや内胚葉マーカーSOX17およびFOXA2の発現が増加することが明らかとなった。特に内胚葉マーカーTについては、今回の細胞外小胞の添加濃度でリコンビナントタンパク質での発現量を大きく超えて高い発現が確認され、特に中胚葉への分化に有用である可能性が示唆された。また、リコンビナントタンパク質の場合は、3日間の分化期間において、培地交換を行い、都度リコンビナントタンパク質の添加が必要であるが、細胞外小胞の場合は、初日の添加のみで培地交換をせずにiPSCの分化誘導が可能であった。これらの点から、Activin Aを発現させた細胞外小胞は、低濃度で安定的にiPSCの分化を誘導できることが示唆された。
実施例3.CAR-T細胞への影響
3.1. プラスミドの調製
3.1.0.CAR-P2A-Venus
 Her2を認識するキメラ抗原受容体(CAR)(配列番号105)をコードするポリヌクレオチド(配列番号106)、2Aペプチドの1つであるP2A(配列番号107)をコードするポリヌクレオチド(配列番号108)、Venus(配列番号109)をコードするポリヌクレオチド(配列番号110)から構成される人工合成した遺伝子配列CAR-P2A-Venus(配列番号111)をコードするポリヌクレオチド(配列番号112)をpMXベクターに挿入し、CAR-T細胞を作製するためのベクターを作製した。2Aペプチド配列はリボソームスキッピングを起こすので、CAR-P2A-Venusをコードする配列が実際に翻訳された場合、独立したCARを含むタンパク質と独立したVenusを含むタンパク質が翻訳される。
3.1.1.Her2-MFGE8
 ヒトHer2のシグナルペプチド(配列番号79)をコードするポリヌクレオチド(配列番号80)、ヒトHer2(細胞外ドメイン)(配列番号77)をコードするポリヌクレオチド(配列番号78)、ペプチドリンカー(配列番号81)をコードするポリヌクレオチド(配列番号82)、及び、MFG-E8(配列番号83)をコードするポリヌクレオチド(配列番号84)から構成される人工合成した遺伝子配列Her2-MFG-E8(配列番号85)をコードするポリヌクレオチド(配列番号86)をpCAG-puroベクター挿入し、Her2を細胞外小胞の膜上に発現させるためのベクターを作製した。
3.1.2.Her2-MFGE8-IL-2及びHer2-MFGE8-IL-7
 上記で構成したHer2-MFG-E8に更にリンカー(配列番号87)を介してIL-2(配列番号89)又はIL-7(配列番号93)をC端に融合させた遺伝子配列Her2-MFGE8-IL-2(配列番号91)又はHer2-MFGE8-IL-7(配列番号95)を各々コードするポリヌクレオチド(配列番号92又は96)をpCAG-puroベクターに挿入し、Her2及びIL-2、又はHer2及びIL-7を細胞外小胞の膜上に発現させるためのベクターを作製した。
3.1.3.Her2-CD81
 ヒトHer2(シグナルペプチド、細胞外ドメイン、膜貫通ドメイン及び一部の細胞内ドメインを含む)(配列番号97)をコードするポリヌクレオチド(配列番号98)、及び、マウスCD81(配列番号99)をコードするポリヌクレオチド(配列番号100)から構成される人工合成した遺伝子配列Her2-CD81(配列番号101)をコードするポリヌクレオチド(配列番号102)をpCAG-puroベクターに挿入し、Her2を細胞外小胞の膜上に発現させるためのベクターを作製した。
3.1.4.Her2-CD81-IL-2
 上記で構成したHer2-CD81の2nd loopにリンカー8(配列番号87)~シグナルペプチドを除いたIL-2の配列~リンカー8(配列番号87)からなる配列を導入して、Her2-CD81-IL-2(配列番号103)をコードするポリヌクレオチド(配列番号92又は96)をpCAG-puroベクターに挿入し、Her2及びIL-2を細胞外小胞の膜上に発現させるためのベクターを作製した。
3.1.5.Her2-CD81-IL-15sa(スーパーアゴニスト)
 上記で構成したHer2-CD81をコードするポリヌクレオチドに
 TfR(トランスフェリン受容体1)のN端ペプチド(配列番号113)をコードするポリヌクレオチド(配列番号114);
 リンカー9(配列番号115)をコードするポリヌクレオチド(配列番号116);
 IL-15Rα sushiドメイン(配列番号117)をコードするポリヌクレオチド(配列番号118);
 リンカー10(配列番号119)をコードするポリヌクレオチド(配列番号120);及び
 IL-15(配列番号121)をコードするポリヌクレオチド(配列番号122)を、この順番で連結して、Her2-CD81-IL-15sa(配列番号123)をコードするポリヌクレオチド(配列番号124)を作製して、pCAG-puroベクターに挿入し、Her2及びIL-15sa(2型膜貫通タンパク質であるTfRの働きにより、C末側に融合したIL-15saが細胞外小胞の膜外に提示される)を細胞外小胞の膜上に発現させるためのベクターを作製した。
3.1.6.hHer2-hCD81
 上記3.1.3におけるCD81をヒト遺伝子に置き換えて作成した(アミノ酸配列:配列番号129;ポリヌクレオチド配列:配列番号130)。
3.1.7.hHer2-hCD81-hIL-2
 上記3.1.4におけるCD81及びIL-2をヒト遺伝子に置き換えて作成した(アミノ酸配列:配列番号131;ポリヌクレオチド配列:配列番号132)。
3.1.8.hCD19-hCD81
 上記3.1.6におけるターゲット因子(すなわち、抗原)であるHer2をヒトCD19に置き換えて作成した(アミノ酸配列:配列番号133;ポリヌクレオチド配列:配列番号134)。
3.1.9.hCD19-hCD81-hIL-2
 上記3.1.7におけるターゲット因子(すなわち、抗原)であるHer2をヒトCD19に置き換えて作成した(アミノ酸配列:配列番号135;ポリヌクレオチド配列:配列番号136)。
3.1.10.hCD80-hCD9
 共刺激分子の一つであるヒトCD80を細胞外小胞の膜上に発現させるため、ヒトCD80と、テトラスパニンであるヒトCD9との融合タンパク質(配列番号137)をコードするポリヌクレオチド(配列番号139)をpCAG-puro又はpMXベクターに挿入して、融合タンパク質を発現するベクターを調製した。
 図5に各遺伝子構成の模式図を示し、表12~14にその配列情報を示す。
Figure JPOXMLDOC01-appb-T000029

Figure JPOXMLDOC01-appb-T000030

Figure JPOXMLDOC01-appb-T000031

Figure JPOXMLDOC01-appb-T000032

Figure JPOXMLDOC01-appb-T000033

Figure JPOXMLDOC01-appb-T000034

Figure JPOXMLDOC01-appb-T000035

Figure JPOXMLDOC01-appb-T000036

Figure JPOXMLDOC01-appb-T000037

Figure JPOXMLDOC01-appb-T000038

Figure JPOXMLDOC01-appb-T000039

Figure JPOXMLDOC01-appb-T000040

Figure JPOXMLDOC01-appb-T000041

Figure JPOXMLDOC01-appb-T000042

Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044

Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046

Figure JPOXMLDOC01-appb-T000047

Figure JPOXMLDOC01-appb-T000048

Figure JPOXMLDOC01-appb-T000049

Figure JPOXMLDOC01-appb-T000050

Figure JPOXMLDOC01-appb-T000051

Figure JPOXMLDOC01-appb-T000052

Figure JPOXMLDOC01-appb-T000053

Figure JPOXMLDOC01-appb-T000054

Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056

Figure JPOXMLDOC01-appb-T000057

Figure JPOXMLDOC01-appb-T000058

Figure JPOXMLDOC01-appb-T000059

Figure JPOXMLDOC01-appb-T000060

Figure JPOXMLDOC01-appb-T000061

Figure JPOXMLDOC01-appb-I000062

Figure JPOXMLDOC01-appb-I000063

Figure JPOXMLDOC01-appb-I000064

Figure JPOXMLDOC01-appb-I000065

Figure JPOXMLDOC01-appb-I000066

Figure JPOXMLDOC01-appb-I000067

Figure JPOXMLDOC01-appb-I000068

Figure JPOXMLDOC01-appb-I000069

Figure JPOXMLDOC01-appb-I000070

Figure JPOXMLDOC01-appb-I000071

Figure JPOXMLDOC01-appb-I000072

Figure JPOXMLDOC01-appb-I000073

Figure JPOXMLDOC01-appb-I000074

Figure JPOXMLDOC01-appb-I000075

Figure JPOXMLDOC01-appb-I000076

Figure JPOXMLDOC01-appb-I000077

Figure JPOXMLDOC01-appb-I000078

Figure JPOXMLDOC01-appb-I000079

Figure JPOXMLDOC01-appb-I000080
3.2. CAR-T細胞と細胞外小胞の調製
3.2.1.1.マウスCAR-T細胞の調製
 PLAT―E細胞(レトロウイルスパッケージング細胞株)を細胞培養ディッシュに播種し、2%ウシ胎児血清及びペニシリン/ストレプトマイシンを加えたダルベッコ改変イーグル培地で培養した。約50%コンフルエンスの細胞に、製造業者の指示にしたがって、CAR-P2A-VenusをコードするpMXベクターをPolyethylenimine“Max”(Polysciences社製)を用いてトランスフェクトした。トランスフェクションの12時間後に培地を交換し、トランスフェクションの60時間後、上清を回収し、300gで5分間遠心分離した。回収した上清をウイルス粒子として用いた。回収したウイルス粒子を製造業者の指示にしたがってRetroNectionをcoatしたプレートに撒いた。
 C57BL/6マウスから摘出したリンパ節を100μmフィルター上で破砕し、リンパ節細胞懸濁液を得た。リンパ節細胞 2×10個を、10%ウシ胎児血清、50μM 2-メルカプトエタノール及びペニシリン/ストレプトマイシン、10ng/ml mIL-2を加えたRPMI1640培地 200μLに懸濁し、製造業者の指示にしたがってDynabeads Mouse T-Activator CD3/CD28を加え2日間培養した.培養後、Dynabeadsを取り除き、2×10個の細胞を上記ウイルス粒子がcoatされたプレートに撒き、500g 10分間遠心した後、O/Nで培養したものをCAR-T細胞とした。
3.2.1.2 ヒトCAR-T細胞の調製
 Lenti-X293T細胞(TAKARA BIO社)を細胞培養ディッシュに播種し、2%ウシ胎児血清及びペニシリン/ストレプトマイシンを加えたダルベッコ改変イーグル培地で培養した。約50%コンフルエンスの細胞に、製造業者の指示にしたがって、CARをコードするそれぞれのベクター、pHR_SFFv_4D5-Low-CAR_RHL001(mycタグが融合した抗Her2CAR(アミノ酸配列:配列番号125;ポリヌクレオチド配列:配列番号126)をコードする;addgene社)、pSLCAR-CD19-BBz(抗CD19CAR(アミノ酸配列:配列番号127;ポリヌクレオチド配列:配列番号128)とEGFPをコードする;addgene社)をパッケージングベクターであるpCMV-dR8.2(addgene社)pMD2Gと(addgene社)同時にPolyethylenimine“Max”(Polysciences社製)を用いてトランスフェクトした。トランスフェクションの12時間後に培地を交換し、トランスフェクションの60時間後、上清を回収し、300gで5分間遠心分離した。回収した上清をウイルス粒子として用いた。回収したウイルス粒子を製造業者の指示にしたがってRetroNection(TAKARA BIO社)をcoatしたプレートに撒いた。
 ヒトの末梢血からPBMCを、ficolを用いて分離し、DynabeadsTM Human T-Activator CD3/CD28 for T Cell Expansion and Activation(Thermo Fisher社)を用いて10ng/mlのIL-2(Biolegend社)と2日間培養した。培養後、Dynabeadsを取り除き、5×10個の細胞を上記ウイルス粒子がcoatされたプレートに撒き、800g 30分間遠心した後、2日間培養したものをCAR-T細胞とした。
3.2.2.1.Her2分子及びT細胞刺激性サイトカインを膜に含む細胞外小胞の調製
 HEK293T細胞を細胞培養ディッシュに播種し、2%ウシ胎児血清及びペニシリン/ストレプトマイシンを加えたダルベッコ改変イーグル培地で培養した。約50%コンフルエンスの細胞に、製造業者の指示にしたがって、プラスミド(Her2-CD81、Her2-CD81-IL-2、Her2-MFG-E8、Her2-MFG-E8-IL-2又はHer2-CD81-IL-15saをコードするpCAGベクター)をPolyethylenimine“Max”(Polysciences社製)を用いてトランスフェクトした。トランスフェクションの6時間後に培地を交換し、トランスフェクションの24時間後にエクソソームを除去した2%ウシ胎児血清及びペニシリン/ストレプトマイシンを加えたダルベッコ改変イーグル培地に培地を交換した。トランスフェクションの72時間後、上清を回収し、該上清を0.22μmフィルターに通した後、300gで5分間遠心分離した。上清を回収し、該上清を2,000g、20分間、遠心分離した。上清を回収し、該上清を10,000g、30分間、遠心分離した。上清を回収し、該上清を100,000gで2時間遠心分離した後、上清を取り除き、ペレットをPBSで洗浄した。ペレットにPBSを加え、100,000gで2時間、遠心分離した後、上清を取り除き、ペレットを100μLのPBSで懸濁したものを、実施例3の細胞外小胞として用いた。細胞外小胞の濃度は、BCAタンパクアッセイキット(Thermo Fisher Scientific社製)を用い、製造業者の指示にしたがって測定した。コントロールとしてプラスミドをトランスフェクトしないHEK293細胞から同様の条件で細胞外小胞を回収した(以下コントロールエクソソーム又は293エクソソームと呼称する)。
3.2.2.2.ヒトHer2分子又はCD19分子、及びT細胞刺激性サイトカインを膜に含む細胞外小胞の調製
 HEK293T細胞を細胞培養ディッシュに播種し、2%ウシ胎児血清及びペニシリン/ストレプトマイシンを加えたダルベッコ改変イーグル培地で培養した。約50%コンフルエンスの細胞に、製造業者の指示にしたがって、プラスミド(hHer2-hCD81、hHer2-hCD81-hIL-2、hCD80-hCD9またはhCD19-hCD81、hCD19-hCD81―hIL-2をコードするpCAGベクター)をPolyethylenimine“Max”(Polysciences社製)を用いてトランスフェクトした。トランスフェクションの6時間後に培地を交換し、トランスフェクションの24時間後にエクソソームを除去した2%ウシ胎児血清及びペニシリン/ストレプトマイシンを加えたダルベッコ改変イーグル培地に培地を交換した。トランスフェクションの72時間後、上清を回収し、該上清を0.22μmフィルターに通した後、300gで5分間遠心分離した。上清を回収し、該上清を2,000g、20分間、遠心分離した。上清を回収し、該上清を10,000g、30分間、遠心分離した。上清を回収し、該上清を100,000gで2時間遠心分離した後、上清を取り除き、ペレットをPBSで洗浄した。ペレットにPBSを加え、100,000gで2時間、遠心分離した後、上清を取り除き、ペレットを100μLのPBSで懸濁したものを、実施例〇の細胞外小胞として用いた。細胞外小胞の濃度は、BCAタンパクアッセイキット(Thermo Fisher Scientific社製)を用い、製造業者の指示にしたがって測定した。コントロールとしてプラスミドをトランスフェクトしないHEK293細胞から同様の条件で細胞外小胞を回収した(以下コントロールエクソソーム又は293エクソソームと呼称する)。
3.2.3.細胞外小胞の膜に含まれる融合タンパク質のフローサイトメトリー解析
 3.2.2.1及び2で調製した抗原提示細胞外小胞を、PS Capture(商標) エクソソームフローサイトメトリーキット(富士フイルム和光純薬株式会社製)によって、製造業者の指示にしたがって免疫染色を行った。染色に使用した抗体は以下のとおりである(染色時間:15分、温度:4℃)。染色後、各融合タンパク質の発現を、以下の抗体を用いてフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。
 ・APCコンジュゲート抗マウスIL-2抗体(JES6-5H4 Biolegend社製)
 ・PEコンジュゲート抗ヒトCD340(HER2)抗体(24D2 Biolegend社製)
 ・APCコンジュゲート抗ヒトIL-2抗体(MQ1-17H12 Biolegend社製)
・FITCコンジュゲート抗ヒトCD19抗体(HIB19 Biolegend社製)
・PEコンジュゲート抗ヒトCD80抗体(2D10 Biolegend社製)
 結果を図6に示す。
3.3.In vitroでの効果
 CAR-T細胞活性化細胞外小胞がCAR-T細胞を活性化等するかどうかを調べるために、in vitroにおいて以下の試験を実施した。
3.3.1.マウスCAR-T細胞
 実施例3.2.1.1.で作製したCAR-T細胞2×10個を、10%ウシ胎児血清、50μM 2-メルカプトエタノール及びペニシリン/ストレプトマイシンを加えたRPMI1640培地 200μLに懸濁し、実施例3.2.2.1.の細胞外小胞(Her2-CD81-IL-2、Her2-CD81-IL-2又はHer2-CD81-IL-15sa)又はコントロールの細胞外小胞(293exosome)を最終濃度20μg/ml)を加え、96穴丸底プレートで4日間培養した後、Venusの発現をフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。
 結果を図7(A)に示す。Her2-CD81-IL-2(約3.8倍)、Her2-CD81-IL-2(約8.2倍)又はHer2-CD81-IL-15sa(約7.4倍)を発現する細胞外小胞はコントロールに比べてVenusを発現するCAR-T細胞を顕著に増殖させた。
3.3.2.ヒトCAR-T細胞(抗HER2)
 実施例3.2.1.2.で作製したHer2CAR-T細胞7×10個を、5%ヒト血清および10 mM neutralized N-acetyl L-Cysteineを加えたX-VIVO 15培地(Lonza社)200μLに懸濁し、実施例3.2.2.2.の細胞外小胞(hHer2-hCD81;hHer2-hCD81&hCD80-hCD9;hHer2-hCD81-hIL-2;hHer2-hCD81-hIL-2&hCD80-hCD9)、又はコントロールの細胞外小胞(293exosome)を最終濃度35μg/mlを加え、96穴丸底プレートで3日間培養した後、Her2CAR-T細胞の増殖をフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。免疫染色には以下の抗体を用いた(染色時間:15分、温度:4℃)。Her2CAR-T細胞増殖はMycの発現をフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。
 ・Alexa-fluor647コンジュゲート抗ヒトMyc抗体(9B11 Cell Signaling Technology社製)
 結果を図7(B)に示す。Her2、CD80、IL-2を発現する細胞外小胞はHer2CAR-T細胞を顕著に増殖させた。
3.3.3.ヒトCAR-T細胞(抗CD19)
 実施例3.2.1.2.で作製したCD19CAR-T細胞7×10個を、5%ヒト血清および10 mM neutralized N-acetyl L-Cysteineを加えたX-VIVO 15培地(Lonza社)200μLに懸濁し、実施例3.2.2.2.の細胞外小胞(CD19-CD81;CD19-CD81&CD80-CD9;CD19-CD81-IL-2;CD19-CD81-IL-2&CD80-CD9)、又はコントロールの細胞外小胞(293exosome)を最終濃度35μg/mlを加え、96穴丸底プレートで3日間培養した後、CAR-T細胞の増殖をフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。免疫染色には以下の抗体を用いる(染色時間:15分、温度:4℃)。CAR-T細胞増殖はGFP発現をフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。
 結果を図7(C)に示す。CD19、CD80、IL-2を発現する細胞外小胞はCD19CAR-T細胞を顕著に増殖させた。
3.4.In vivoでの効果
3.4.1.In vivoでのCAR-T細胞活性化
 CAR-T細胞活性化用の細胞外小胞がCAR-T細胞を活性化等するかどうかを調べるために、in vivoにおいて以下の試験を実施した。CD45.1/CD45.2コンジェニックマウスに実施例3.2.1.1.で作製したCAR-T細胞4×10個を移入し、同時にCAR-T細胞活性化用の細胞外小胞(Her2MFGE8又はHer2CD81)又はコントロールの細胞外小胞(Control exosome)200μgをレシピエントマウスの尾静脈から移入した。細胞移入4日後、レシピエントマウスから脾臓を摘出し、リンパ球懸濁液を調製し、免疫染色を行った。染色には以下の抗体を用いる(染色時間:15分、温度:4℃)。染色後、移入したCAR-T細胞増殖見るためにVenusをフローサイトメーターFACSCantoII(BDバイオサイエンシス社製)で検出した。
 ・APCcy7コンジュゲート抗マウスCD45.1抗体(A20 Biolegend社製)
 ・Percpcy5 コンジュゲート抗マウスCD45.2抗体(104 Biolegend社製)
 結果を図8に示す。Her2MFGE8又はHer2CD81を発現する細胞外小胞はVenusを発現するCAR-T細胞を顕著に活性化及び増殖させた。
 以下表15に実施例で用いた配列情報の詳細を示す。
Figure JPOXMLDOC01-appb-T000081

Figure JPOXMLDOC01-appb-T000082

Figure JPOXMLDOC01-appb-I000083

Claims (69)

  1.  抗原を膜外に提示する細胞外小胞。
  2.  T細胞刺激性サイトカインを膜外に更に提示する、請求項1に記載の細胞外小胞。
  3.  T細胞共刺激分子を膜外に更に提示する、請求項2に記載の細胞外小胞。
  4.  請求項2記載の細胞外小胞であって、その膜に以下:
    (B)前記抗原を含む、該抗原を膜外に提示可能なタンパク質;及び
    (A)前記T細胞刺激性サイトカイン又はそのサブユニットを含む、該細胞刺激性サイトカインを膜外に提示可能なタンパク質;
    を含む、細胞外小胞。
  5.  請求項2に記載の細胞外小胞であって、その膜に以下:
    (C)前記抗原と、前記T細胞刺激性サイトカイン又はそのサブユニットを含む、抗原及びT細胞刺激性サイトカインを膜外に提示可能なタンパク質
    を含む、細胞外小胞。
  6.  請求項3に記載の細胞外小胞であって、その膜に以下:
    1)
    (B)前記抗原を含む、該抗原を膜外に提示可能なタンパク質;
    (A)前記T細胞刺激性サイトカイン又はそのサブユニットを含む、該細胞刺激性サイトカインを膜外に提示可能なタンパク質;及び
    (D)前記T細胞共刺激分子を含む、該T細胞共刺激分子を膜外に提示可能なタンパク質、
    2)
    (C)前記抗原と、前記T細胞刺激性サイトカイン又はそのサブユニットを含む、抗原及びT細胞刺激性サイトカインを膜外に提示可能なタンパク質;及び
    (D)前記T細胞共刺激分子を含む、該T細胞共刺激分子を膜外に提示可能なタンパク質、
    又は
    3)
    (E)前記抗原と、前記T細胞刺激性サイトカイン又はそのサブユニットと、前記共刺激分子を含む、抗原、T細胞刺激性サイトカイン及びT細胞共刺激分子を膜外に提示可能なタンパク質
    を含む、細胞外小胞。
  7.  タンパク質(B)が、抗原と、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、請求項4に記載の細胞外小胞。
  8.  タンパク質(A)が、前記T細胞刺激性サイトカイン又はそのサブユニットと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、請求項4に記載の細胞外小胞。
  9.  タンパク質(C)が、
    前記抗原と、
    前記T細胞刺激性サイトカイン又はそのサブユニットと、
    細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
    との融合タンパク質である、請求項4に記載の細胞外小胞。
  10.  細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質が、テトラスパニン若しくはその膜貫通ドメイン又はMFG-E8若しくはその膜結合ドメインを含む、請求項5~7のいずれか一項に記載の細胞外小胞。
  11.  タンパク質(C)が、
    N末端側から、
     (C-1)抗原ペプチド、
     (C-2)存在していてもよいスペーサー配列、及び
     (C-3)テトラスパニン又はその膜貫通ドメインあるいはMFG-E8又はその膜貫通ドメインと、前記T細胞刺激性サイトカイン又はそのサブユニットを含む融合ペプチドを、この順番でコードするアミノ酸配列を含む、請求項4に記載の細胞外小胞。
  12.  前記(D)で規定される融合タンパク質が、T細胞共刺激分子と、
      細胞又は細胞外小胞の膜に発現することが可能な膜タンパク質若しくはその膜貫通ドメイン、あるいは
      細胞又は細胞外小胞の膜に結合することが可能なタンパク質若しくはその膜結合ドメイン
    とを含む、請求項6に記載の細胞外小胞。
  13.  前記(D)で規定される融合タンパク質が、T細胞共刺激分子と、
      テトラスパニン若しくはその膜貫通ドメイン、あるいは
      MFG-E8若しくはその膜結合ドメイン
    とを含む、請求項6に記載の細胞外小胞。
  14.  前記(D)で規定される融合タンパク質が
    そのN末端側から、
     (D-1)T細胞共刺激分子のアミノ酸配列、
     (D-2)存在していてもよいスペーサー配列、及び
     (D-3)テトラスパニン又はその膜貫通ドメインのアミノ酸配列
    をこの順番で含むアミノ酸配列を含む、請求項6に記載の細胞外小胞。
  15.  細胞外小胞が、エクソソームである、請求項1~14のいずれか一項記載の細胞外小胞。
  16.  (a)請求項4で定義されるタンパク質(A)をコードするポリヌクレオチド;
     (b)請求項4で定義されるタンパク質(B)をコードするポリヌクレオチド;
     (c)請求項5で定義されるタンパク質(C)をコードするポリヌクレオチド;
     (d)請求項6で定義されるタンパク質(D)をコードするポリヌクレオチド;又は
     (e)請求項6で定義されるタンパク質(E)をコードするポリヌクレオチド。
  17.  請求項16に記載のポリヌクレオチドを含むベクター。
  18.  (a)請求項4で定義されるタンパク質(A)をコードするポリヌクレオチド;及び/又は
     (b)請求項4で定義されるタンパク質(B)をコードするポリヌクレオチドを含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞。
  19.  (c)請求項5で定義されるタンパク質(C)をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
  20.  (d)請求項6で定義されるタンパク質(D)をコードするポリヌクレオチドを更に含む、請求項18又は19に記載の細胞。
  21. (e)請求項6で定義されるタンパク質(E)をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
  22.  請求項17~21のいずれか一項に記載の細胞を培養して得られる培養上清。
  23.  請求項22記載の培養上清に含まれる、細胞外小胞。
  24.  請求項1又は2に記載の細胞外小胞を製造するための方法であって、
      1)請求項18又は19に記載の細胞を培養する工程、
      2)培養後の培養上清を回収する工程、及び
      3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
  25.   請求項3に記載の細胞外小胞を製造するための方法であって、
      1)請求項20又は21に記載の細胞を培養する工程、
      2)培養後の培養上清を回収する工程、及び
      3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
  26.  請求項1~3のいずれか一項に記載の細胞外小胞、又は請求項22に記載の培養上清を含む、医薬組成物。
  27.  前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)を増殖させるための医薬組成物であって、請求項1~3のいずれか一項に記載の細胞外小胞を含む、医薬組成物。
  28.  前記抗原を発現するがん細胞を含むがんを治療するための医薬組成物であって、請求項1~3のいずれか一項に記載の細胞外小胞を含み、前記抗原特異的なキメラ抗原受容体遺伝子導入T細胞(CAR-T細胞)を投与された患者に投与される、医薬組成物。
  29.  前記抗原がHer2タンパク質あるいはその断片、又はCD19タンパク質あるいはその断片である、請求項27又は28に記載の医薬組成物。
  30.  トロンボポエチン(TPO)と幹細胞因子(SCF)を膜外に提示する細胞外小胞。
  31.  請求項30に記載の細胞外小胞であって、その膜に以下:
    (A)―1 前記TPOを含む、該TPOを膜外に提示可能なタンパク質;及び
    (A)―2 前記SCFを含む、該SCFを膜外に提示可能なタンパク質;
    を含む、細胞外小胞。
  32.  請求項30に記載の細胞外小胞であって、その膜に以下:
    (A)―3 前記TPOと、前記SCFを含む、TPO及びSCFを膜外に提示可能なタンパク質
    を含む、細胞外小胞。
  33.  (B)L-selectin又はCXCL12を含み、L-selectin又はCXCL12を膜外に提示可能なタンパク質をさらに含む、請求項30~32のいずれか一項に記載の細胞外小胞。 
  34.  タンパク質(A)―1が、TPOと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、請求項31に記載の細胞外小胞。
  35.  タンパク質(A)―2が、SCFと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、請求項31に記載の細胞外小胞。
  36.  タンパク質(A)―3が、
    前記TPOと、
    前記SCFと、
    細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
    との融合タンパク質である、請求項32に記載の細胞外小胞。
  37.  タンパク質(B)が、
    前記L-selectin又はCXCL12と、
    細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
    との融合タンパク質である、請求項33に記載の細胞外小胞。
  38.  細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質が、テトラスパニン若しくはその膜貫通ドメイン又はMFG-E8若しくはその膜結合ドメインを含む、請求項34~37のいずれか一項に記載の細胞外小胞。
  39.  細胞外小胞が、エクソソームである、請求項30~38のいずれか一項記載の細胞外小胞。
  40.  (a)―1 請求項31で定義されるタンパク質(A)―1をコードするポリヌクレオチド;
     (a)―2 請求項31で定義されるタンパク質(A)―2をコードするポリヌクレオチド;
     (a)―3 請求項32で定義されるタンパク質(A)―3をコードするポリヌクレオチド;又は
     (b)   請求項33で定義されるタンパク質(B)をコードするポリヌクレオチド。
  41.  請求項40に記載のポリヌクレオチドを含むベクター。
  42.  (a)―1 請求項31で定義されるタンパク質(A)―1をコードするポリヌクレオチド;及び
     (a)―2 請求項31で定義されるタンパク質(A)―2をコードするポリヌクレオチドを含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞。
  43.  (a)―3 請求項32で定義されるタンパク質(A)―3をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
  44.  (d)請求項33で定義されるタンパク質(B)をコードするポリヌクレオチドをさらに含む、請求項42又は43に記載の細胞。
  45.  請求項42~44のいずれか一項に記載の細胞を培養して得られる培養上清。
  46.  請求項45に記載の培養上清に含まれる、細胞外小胞。
  47.  請求項30に記載の細胞外小胞を製造するための方法であって、
      1)請求項42~44のいずれか一項に記載の細胞を培養する工程、
      2)培養後の培養上清を回収する工程、及び
      3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
  48.  請求項30に記載の細胞外小胞を含む、医薬組成物。
  49.  造血幹細胞をin vivo又はin vitroで活性化及び/又は増殖させるため医薬組成物であって、請求項30に記載の細胞外小胞を含む、医薬組成物。
  50.  対象において再生不良性貧血を治療するための医薬組成物であって、請求項30に記載の細胞外小胞を含み、造血幹細胞を投与された対象に投与される、医薬組成物。
  51.  対象において血液がんや免疫不全症を治療するための医薬組成物であって、請求項30に記載の細胞外小胞を含み、前記対象が、化学療法及び/又は放射線治療処置後、造血幹細胞を投与されている、医薬組成物。
  52.  ActivinAを膜外に提示する細胞外小胞。
  53.  請求項52に記載の細胞外小胞であって、その膜に以下:
    (A)前記ActivinAを含む、該ActivinAを膜外に提示可能なタンパク質
    を含む、細胞外小胞。
  54.  さらにBc2Lcを膜外に提示する、請求項53に記載の細胞外小胞。
  55.  請求項54に記載の細胞外小胞であって、その膜に以下:
    (A)前記ActivinAを含む、該ActivinAを膜外に提示可能なタンパク質;及び
    (B)前記Bc2Lcを含む、該Bc2Lcを膜外に提示可能なタンパク質;
    を含む、細胞外小胞。
  56.  請求項54に記載の細胞外小胞であって、その膜に以下:
    (C)前記Bc2Lcと、前記ActivinAを含む、Bc2Lc及びActivinAを膜外に提示可能なタンパク質
    を含む、細胞外小胞。
  57.  タンパク質(A)が、ActivinAと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、 請求項53又は55に記載の細胞外小胞。
  58.  タンパク質(B)が、Bc2Lcと、細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質との融合タンパク質である、請求項55に記載の細胞外小胞。
  59.  タンパク質(C)が、
    前記Bc2Lcと、
    前記ActivinAと、
    細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質
    との融合タンパク質である、請求項56に記載の細胞外小胞。
  60.  細胞外小胞の膜に局在することが可能な膜タンパク質又は細胞外小胞の膜に結合することが可能なタンパク質が、テトラスパニン若しくはその膜貫通ドメイン又はMFG-E8若しくはその膜結合ドメインを含む、請求項57~59のいずれか一項に記載の細胞外小胞。
  61.  細胞外小胞が、エクソソームである、請求項52~60のいずれか一項記載の細胞外小胞。
  62.  (a)請求項55で定義されるタンパク質(A)をコードするポリヌクレオチド;
     (b)請求項55で定義されるタンパク質(B)をコードするポリヌクレオチド;又は
     (c)請求項56で定義されるタンパク質(C)をコードするポリヌクレオチド。 
  63.  請求項62に記載のポリヌクレオチドを含むベクター。
  64.  (a)請求項55で定義されるタンパク質(A)をコードするポリヌクレオチド;及び/又は
     (b)請求項55で定義されるタンパク質(B)をコードするポリヌクレオチドを含む、単一のベクター又は2以上のベクターの組み合わせにより形質転換された細胞。
  65.  (c)請求項56で定義されるタンパク質(C)をコードするポリヌクレオチドを含むベクターにより形質転換された細胞。
  66.  請求項64又は請求項65のいずれか一項に記載の細胞を培養して得られる培養上清。
  67.  請求項66に記載の培養上清に含まれる、細胞外小胞。
  68.  請求項52又は54に記載の細胞外小胞を製造するための方法であって、
      1)請求項64又は65に記載の細胞を培養する工程、
      2)培養後の培養上清を回収する工程、及び
      3)任意選択で回収された培養上清から細胞外小胞を精製する方法を含む、方法。
  69.  請求項52又は54に記載の細胞外小胞を含む、iPS細胞又はES細胞の分化誘導剤。
PCT/JP2023/016351 2022-04-25 2023-04-25 CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途 WO2023210661A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071611 2022-04-25
JP2022-071611 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210661A1 true WO2023210661A1 (ja) 2023-11-02

Family

ID=88519051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016351 WO2023210661A1 (ja) 2022-04-25 2023-04-25 CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途

Country Status (1)

Country Link
WO (1) WO2023210661A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533494A (ja) * 2011-11-21 2014-12-15 ユニバーシティ・ヘルス・ネットワーク 造血前駆体の集団および造血前駆体のための幹細胞を富化する方法
JP2016520518A (ja) * 2013-03-14 2016-07-14 ザ・ジョンズ・ホプキンス・ユニバーシティー ナノスケール人工抗原提示細胞
WO2018139548A1 (ja) * 2017-01-26 2018-08-02 国立大学法人大阪大学 幹細胞の中胚葉系細胞への分化誘導用培地および中胚葉系細胞の製造方法
WO2020191361A2 (en) * 2019-03-21 2020-09-24 Codiak Biosciences, Inc. Extracellular vesicles for vaccine delivery
WO2021172595A1 (ja) * 2020-02-28 2021-09-02 国立大学法人金沢大学 抗原提示細胞外小胞、それを含む組成物、及びそれらを製造するための方法
WO2023033124A1 (ja) * 2021-09-01 2023-03-09 国立大学法人金沢大学 免疫制御法、免疫制御用核酸組成物およびその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533494A (ja) * 2011-11-21 2014-12-15 ユニバーシティ・ヘルス・ネットワーク 造血前駆体の集団および造血前駆体のための幹細胞を富化する方法
JP2016520518A (ja) * 2013-03-14 2016-07-14 ザ・ジョンズ・ホプキンス・ユニバーシティー ナノスケール人工抗原提示細胞
WO2018139548A1 (ja) * 2017-01-26 2018-08-02 国立大学法人大阪大学 幹細胞の中胚葉系細胞への分化誘導用培地および中胚葉系細胞の製造方法
WO2020191361A2 (en) * 2019-03-21 2020-09-24 Codiak Biosciences, Inc. Extracellular vesicles for vaccine delivery
WO2021172595A1 (ja) * 2020-02-28 2021-09-02 国立大学法人金沢大学 抗原提示細胞外小胞、それを含む組成物、及びそれらを製造するための方法
WO2021172596A1 (ja) * 2020-02-28 2021-09-02 国立大学法人金沢大学 免疫制御法、免疫制御用核酸組成物およびその用途
WO2023033124A1 (ja) * 2021-09-01 2023-03-09 国立大学法人金沢大学 免疫制御法、免疫制御用核酸組成物およびその用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANAYAMA, RIKINARI: "Development of immune-regulatory methods using designer exosomes", ABSTRACTS OF THE 41ST ANNUAL MEETING OF THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH; SEPTEMBER 29 - OCTOBER 01, 2022, JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH, JP, 7 September 2022 (2022-09-07) - 1 October 2022 (2022-10-01), JP, pages 77, XP009549883 *
YASUFUKU, HIROTAKA ET AL.: "Stress evaluation system by measuring nasal skin temperature", IPSJ SYMPOSIUM SERIES: MULTIMEDIA, DISTRIBUTED, COOPERATIVE AND MOBILE SYMPOSIUM (DICOMO2015); JULY 8-10, 2015, vol. 2015, 8 July 2015 (2015-07-08) - 10 July 2015 (2015-07-10), pages 374 - 380, XP009549431 *

Similar Documents

Publication Publication Date Title
JP7287990B2 (ja) 治療用分子のt細胞送達のための組成物および方法
CN107206024B (zh) 改变cart细胞中的基因表达及其用途
US20230287347A1 (en) Exosome for stimulating t cell and pharmaceutical use thereof
JP2021516996A (ja) 生物学的に関連する直交サイトカイン/受容体対
WO2021172595A1 (ja) 抗原提示細胞外小胞、それを含む組成物、及びそれらを製造するための方法
JP2019511234A (ja) 標的化核酸ナノ担体を使用して治療用細胞をプログラムするための組成物及び方法
WO2019096115A1 (zh) 分离的t细胞受体、其修饰的细胞、编码核酸、表达载体、制备方法、药物组合物和应用
JP7013240B2 (ja) Her2/Neu (ERBB2)受容体タンパク質に由来する369~377位エピトープに特異的な完全ヒトT細胞受容体
US20210214416A1 (en) Suicide module compositions and methods
CN113795263A (zh) 包含可负载抗原呈递多肽的工程化红系细胞及使用方法
CN113366102A (zh) 包含hla-e和hla-g分子的人工抗原呈递细胞和使用方法
WO2021256522A1 (ja) キメラ抗原受容体発現免疫担当細胞
KR20230060488A (ko) 개선된 t 세포 수용체-공동자극 분자 키메라
JP7131775B2 (ja) 新規t細胞受容体
WO2019177151A1 (ja) 遺伝子改変細胞及びその作製方法
WO2023033124A1 (ja) 免疫制御法、免疫制御用核酸組成物およびその用途
McBride et al. Applications of molecular engineering in T‐cell‐based immunotherapies
US20150361150A1 (en) Methods and compositions for treating gastrointestinal stromal tumor (gist)
US20240084256A1 (en) Method for culturing cord blood-derived natural killer cells using transformed t-cells
WO2023210661A1 (ja) CAR-T細胞活性化、造血幹細胞増殖、iPS細胞分化を制御する組成物およびその用途
WO2023060212A1 (en) Enhancing adoptive cell transfer by promoting a superior population of adaptive immune cells
EP2267118A1 (en) Method for production of transfected cell
WO2023249071A1 (ja) T細胞受容体
WO2023276395A1 (ja) キメラサイトカイン受容体
US11364267B1 (en) Bi-specific targeting human NKG2DL and CLDN18A2 chimeric antigen receptor cells, preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796401

Country of ref document: EP

Kind code of ref document: A1