WO2023210200A1 - 冷却器 - Google Patents

冷却器 Download PDF

Info

Publication number
WO2023210200A1
WO2023210200A1 PCT/JP2023/010271 JP2023010271W WO2023210200A1 WO 2023210200 A1 WO2023210200 A1 WO 2023210200A1 JP 2023010271 W JP2023010271 W JP 2023010271W WO 2023210200 A1 WO2023210200 A1 WO 2023210200A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage material
cold storage
cooler
material container
refrigerant
Prior art date
Application number
PCT/JP2023/010271
Other languages
English (en)
French (fr)
Inventor
晃一 西村
元康 市場
航 安部
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023210200A1 publication Critical patent/WO2023210200A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a cooler.
  • Patent Document 1 discloses a refrigerator.
  • This refrigerator has a cooler that cools the storage compartment by operating a compressor, and a cooling room that houses the cooler.
  • a cooling room that houses the cooler.
  • the amount of cooling is achieved by the heat storage material and the cold heat of the cooler. This reduces the temperature rise in the storage room and cools the compressor while operating it at a lower rotational speed than before, improving cooling performance while suppressing the compressor's high rotational speed. This makes it possible to improve energy efficiency.
  • the present disclosure provides a cooler that can efficiently cool a cold storage material using a refrigerant and can save energy by using the cooled cold storage material.
  • the cooler in the present disclosure includes a refrigerant conduction member made of flat tubes formed at intervals from each other, and a cold storage material container arranged in a gap between the adjacent flat tubes of the refrigerant conduction member and filled with a cold storage material.
  • the cold storage material container is made of a flexible metal material.
  • the cold storage material is made of fluid.
  • the cooler according to the present disclosure can efficiently cool the cold storage material with the refrigerant, and can save energy by using the cooled cold storage material.
  • FIG. 1 is a schematic sectional view showing an outline of a refrigerator in Embodiment 1.
  • FIG. 2 is a schematic front view showing the outline of the refrigerator in Embodiment 1.
  • FIG. 3 is a refrigeration cycle diagram showing the refrigeration cycle of Embodiment 1.
  • FIG. 4 is a perspective view of the refrigeration cooler of Embodiment 1 seen from the right side.
  • FIG. 5 is a perspective view of the refrigeration cooler of Embodiment 1 seen from the left side.
  • FIG. 6 is a plan view showing the refrigerator cooler of Embodiment 1.
  • FIG. 7 is a bottom view showing the refrigerator cooler of Embodiment 1.
  • Figure 8 is a perspective view showing the installation structure of a cooler in a refrigerator.
  • Figure 9 is a front view of the cooler installation part.
  • FIG. 10 is an enlarged view of part A in Figure 9.
  • FIG. 11 is a side view of FIG. Figure 12 is an enlarged view of part B in Figure 9.
  • FIGS. 13(a), (b), and (c) are explanatory diagrams showing the state of contact with the cold storage material storage section due to cooling of the cold storage material container.
  • FIG. 14 is a cross-sectional view of a refrigerating cooler showing a modified example of the guide.
  • the cold storage material was placed in contact with or in close proximity to a cooler that cools the storage room by operating a compressor, and the storage room was cooled by the cold heat of the cooler and the cold storage material.
  • a technology that uses the amount of cooling from the cold energy of the cold storage material and the cooler to cool the food when the load is applied when loading and unloading food.
  • the cold storage material is made of a resin case and is placed in the space between the side walls of the cooling chamber at the side of the cooler, so the refrigerant piping and the cold storage material are Since the contact area cannot be increased and the cold storage material is made of a resin case, the thermal resistance between the cold storage material and the cooler is large, so the cold storage material is efficiently cooled by the refrigerant. I can't. Therefore, the inventors discovered the problem that it is necessary to efficiently exchange heat between the refrigerant and the cold storage material, and in order to solve this problem, the subject matter of the present disclosure was constituted. Therefore, the present disclosure provides a cooler that can efficiently cool a cold storage material using a refrigerant and can save energy by using the cooled cold storage material.
  • FIG. 1 is a schematic sectional view showing the outline of a refrigerator according to the present invention.
  • the refrigerator 1 includes a box-shaped main body 10.
  • An upper partition plate 11 and a lower partition plate 12 are provided at two locations in the vertical direction of the main body 10 to partition the interior of the main body 10 into three spaces, upper and lower.
  • the space above the upper partition plate 11 is used as a refrigerator compartment 13, the space between the upper partition plate 11 and the lower partition plate 12 is used as a freezer compartment 14, and the space below the lower partition plate 12 is used as a vegetable compartment 15.
  • a cold room 16 having a lower temperature than the refrigerator compartment 13 is provided below the refrigerator compartment 13 .
  • a shelf board 17 on which food is placed is provided inside the refrigerator compartment 13.
  • An ice making compartment 18 for storing ice is provided inside the freezing compartment 14.
  • a rotary refrigerator compartment door 20 is provided at the front of the refrigerator compartment 13 so as to be openable and closable.
  • a freezer drawer door 21 is provided on the front surface of the freezer compartment 14 so as to be openable and closable, and a freezer drawer case 22 for storing food therein is provided inside the freezer drawer door 21.
  • a vegetable compartment drawer door 23 is provided in the front opening of the vegetable compartment 15 so as to be openable and closable, and a vegetable compartment drawer case 24 for storing food inside is provided inside the vegetable compartment drawer door 23. It is provided.
  • a cooling chamber 30 for refrigeration is provided on the back side of the refrigerator compartment 13 of the refrigerator 1.
  • a refrigerating compartment duct 31 extending above the refrigerating compartment 13 is connected above the cooling compartment 30 for refrigeration.
  • a refrigeration cooler 32 is housed in the refrigeration cooling chamber 30 .
  • the refrigeration cooler 32 is a microchannel type cooler.
  • a microchannel type cooler is, for example, a cooler composed of a flat porous tube and fins.
  • a flat porous tube is a flat tube in which a plurality of channels through which a refrigerant flows are formed. Note that details of the refrigerating cooler 32 will be described later.
  • a refrigeration fan 33 is arranged above the refrigeration cooler 32 of the refrigeration cooling chamber 30.
  • a centrifugal fan is used as the refrigeration fan 33.
  • the centrifugal fan is a fan that sucks in cold air that has passed through the refrigeration cooler 32 from the central portion of one side in the axial direction of the rotating blade and blows it out in the centrifugal direction. Further, the centrifugal fan sucks cold air from the rear of the cooling chamber 30 for refrigeration and blows it out in a centrifugal direction.
  • the centrifugal fan is configured to suck in cold air from the rear of the cooling chamber 30 for refrigeration, but it may also be configured to suck in cold air from the front of the cooling chamber 30 for refrigeration.
  • the refrigeration fan 33 may be, for example, an axial fan.
  • the axial fan is arranged so as to be inclined so that the blowing side thereof faces upward so as to efficiently blow out the cold air cooled by the refrigerator cooler 32 into the refrigerator compartment 13. By using an axial fan, you can easily blow out cold air downward.
  • the frost attached to the refrigerator cooler 32 can be defrosted by the air inside the refrigerator compartment. In this case, it is preferable to drive the refrigeration fan 33 without flowing the refrigerant into the refrigeration cooler 32.
  • the refrigerating chamber duct 31 is connected to a casing 33a on the blowing side of the refrigerating fan 33, and the refrigerating chamber duct 31 is formed in a tapered shape whose width gradually increases upward.
  • the refrigerator compartment duct 31 includes a branch duct 34 extending left and right in the middle.
  • a refrigerating outlet 35 is formed in the refrigerating compartment 13 and communicating with the refrigerating compartment duct 31 and the branch duct 34 .
  • a refrigerator compartment damper 36 is provided in the middle of the refrigerator compartment duct 31.
  • the refrigerator compartment damper 36 is configured to switch between blowing cold air cooled by the refrigerator cooler 32 to the refrigerator compartment duct 31 and stopping the ventilation by opening and closing operations.
  • a shielding plate 39 is provided on the lower surface side of the refrigerating cooler 32 and below a header to be described later.
  • the shielding plate 39 has a function of guiding the internal air sent from the refrigerator compartment 13 to an air flow path of the refrigeration cooler 32, which will be described later, by covering the lower part of the header.
  • the shielding plate 39 may be provided in the cooling chamber 30 for refrigeration. In this case, the shielding plate 39 is provided at a position corresponding to the lower part of the header, which will be described later.
  • a freezing cooling chamber 40 is provided on the back side of the freezing chamber 14 of the refrigerator 1.
  • a freezing cooler 41 is housed in the freezing cooling chamber 40 .
  • the freezing cooler 41 is, for example, a fin tube type cooler.
  • a fin-tube type cooler is, for example, a cooler configured with a circular pipe and flat fins.
  • a refrigeration fan 42 is arranged above the refrigeration cooler 41 to send the cold air cooled by the refrigeration cooler 41 into the freezer compartment 14 .
  • fin tube type coolers Compared to microchannel type coolers, fin tube type coolers have poor heat conduction efficiency because the distance between the refrigerant piping and the fin tips is large, and the temperature at the fin tips is less likely to drop. Therefore, clogging due to frost formation can be suppressed, and the number of times the heater is energized for defrosting can be reduced. Therefore, power consumption can be suppressed.
  • the freezing fan 42 for example, an axial fan is used.
  • the axial fan is arranged so as to be inclined so that the blowing side thereof faces upward so as to efficiently blow out the cold air cooled by the freezing cooler 41 into the freezer compartment 14.
  • a freezing outlet 43 is formed on the back side of the freezing chamber 14 .
  • the freezing fan 42 may be, for example, a centrifugal fan.
  • a glass tube heater 44 for defrosting frost attached to the freezing cooler 41 is arranged below the freezing cooler 41.
  • a pipe heater that directly warms the freezing cooler 41 may be used.
  • the cold air in the freezing cooling chamber 40 is configured to be sent to the vegetable compartment 15 through a communication hole 45 formed in the lower partition plate 12.
  • a freezing dew tray 37 is arranged below the refrigerator cooler 32.
  • a freezing condensation tray 46 is arranged below the freezing cooler 41.
  • An evaporating dish 47 is arranged below the back side of the vegetable compartment 15.
  • a refrigeration drain pipe 38 is connected to the refrigeration dew pan 37 .
  • a freezing drain pipe 48 is connected to the freezing drip pan 46 .
  • the lower ends of the refrigeration drain pipe 38 and the freezing drain pipe 48 extend through the upper partition plate 11 and the lower partition plate 12, respectively, to near the upper part of the evaporating dish 47.
  • the condensate accumulated in the refrigerating dew pan 37 and the refrigerating dew pan 46 can be sent to the evaporation pan 47 via the refrigerating drain pipe 38 and the freezing drain pipe 48, and the evaporating pan 47 evaporates the condensate. is configured to do so.
  • a compressor 50 is installed above the rear of the main body.
  • FIG. 3 is a refrigeration cycle diagram showing the refrigeration cycle of the refrigerator 1.
  • the refrigerator 1 includes a compressor 50, a condenser 51, a switching valve 52, a refrigeration pressure reduction means 53, a refrigeration cooler 32, a refrigeration return pipe 55a, and a refrigeration pressure reduction.
  • the means 54, the freezing cooler 41, and the freezing return pipe 55b are connected by a refrigerant return pipe 55.
  • a refrigeration capillary tube is provided as the refrigeration decompression means 53
  • a freezing capillary tube is provided as the refrigeration decompression means 54.
  • the refrigeration pressure reducing means 53 and the refrigeration cooler 32 and the freezing pressure reducing means 54 and the freezing cooler 41 are connected in parallel to each other via the switching valve 52.
  • FIG. 4 is a perspective view of the refrigerating cooler 32 according to the first embodiment, viewed from the right side.
  • FIG. 5 is a perspective view of the refrigerating cooler 32 according to the first embodiment, viewed from the left side.
  • FIG. 6 is a plan view showing the refrigerating cooler 32 of the first embodiment.
  • FIG. 7 is a bottom view showing the refrigerating cooler 32 of the first embodiment.
  • the refrigeration cooler 32 includes a refrigerant conduction member 60 through which refrigerant flows.
  • the refrigerant conduction member 60 is composed of a flat porous tube in which a plurality of substantially square passages are continuously arranged.
  • the refrigerant conduction member 60 is formed in a meandering shape and includes a plurality of flat tubes 61 that are formed approximately parallel to each other at predetermined intervals in the vertical direction, and a bent portion 62 that connects the ends of each of these flat tubes 61. ing.
  • four flat tubes 61 are provided between the headers, which will be described later. Note that the number of flat tubes 61 is not limited to this, and can be set arbitrarily.
  • each flat tube 61 and the bending part 62 may be integrated, and one flat tube 61 may be made to meander and be formed between the headers.
  • the flat tube 61 and the bent portion 62 are vertically divided into three regions: an upper region 63, a middle region 64, and a lower region 65.
  • the area is divided into three areas in the vertical direction, but it may be divided into two areas, or four or more areas in the up and down direction.
  • An inlet header 66 and an outlet header 67 that extend vertically are provided at one end of the outermost flat tube 61, respectively.
  • the inlet header 66 and the outlet header 67 are made of, for example, circular pipes. As shown in FIG. 6, the inlet header 66 and the outlet header 67 are attached so as not to protrude from the end surface of the flat tube 61 in the depth direction (front-back direction).
  • the inlet header 66 is connected to the flat tube 61 via a bent portion 61a formed by bending the end of the flat tube 61, and the outlet header 67 is connected to the flat tube 61 through a bent portion 61a formed by bending the end of the flat tube 61. It is connected to the flat tube 61 via the curved portion 61a.
  • the inlet header 66 and the outlet header 67 By arranging the inlet header 66 and the outlet header 67 in this way, the end surfaces of the inlet header 66 and the outlet header 67 are flush with the outer surface of the flat tube 61 of the refrigerant conducting member 60, and the inlet header 66 and the side surfaces of the outlet header 67 are arranged so as not to protrude from the thickness of the flat tube 61. Thereby, the thickness dimension of the refrigerator cooler 32 can be reduced, and when the refrigerator cooler 32 is housed inside the refrigerator cooling chamber 30, the internal space of the refrigerator compartment duct 31 can be reduced. can. As a result, the internal space of the refrigerator compartment 13 can be increased.
  • an inlet pipe 68 is connected to a side surface of the inlet header 66 at a height corresponding to the lower region 65 .
  • an inlet pipe 68 is connected to the side surface of the inlet header 66 and to the outermost surface in the left-right direction.
  • the inlet side pipe 68 is formed to extend in the left-right direction and then extend upward via a curved portion 68a that curves upward.
  • An outlet pipe 69 located above the upper end of the upper region 63 is connected to the upper end surface of the outlet header 67 .
  • the inlet header 66 and the outlet header 67 are arranged with their positions shifted in the width direction (horizontal direction) of the refrigerating cooler 32, with the inlet header 66 being arranged near the flat tube 61 and , the outlet header 67 may be arranged at a position farther from the flat tube 61 than the inlet header 66, and the inlet header 66 and the outlet header 67 may be provided alternately.
  • the outlet header 67 may be disposed near the flat tube 61, and the inlet header 66 may be disposed further away from the flat tube 61 than the outlet header 67 is.
  • the inlet pipe 68 may be connected to a side surface of the inlet header 66 facing toward the rear of the refrigerator compartment 13 and at a height corresponding to the lower region 65 .
  • the inlet pipe 68 may be connected to the side surface of the inlet header 66 in the direction toward the flat tube 61 to which the outlet header 67 is connected.
  • the inlet side pipe 68 is connected substantially parallel to the depth direction (front-back direction) of the refrigeration cooler 32.
  • the outlet header 67 may be formed higher than the height of the inlet header 66.
  • Outlet side piping 69 may be connected to a side surface of outlet side header 67 in the front direction of refrigerator compartment 13 at a position above the upper end of upper region 63 .
  • the outlet pipe 69 may be connected to the side surface of the outlet header 67 in the direction toward the flat tube 61 to which the inlet header 66 is connected.
  • the outlet side pipe 69 is connected to the inlet side pipe 68 substantially in parallel. That is, the outlet side pipe 69 may be connected to a position above the upper end of the flat pipe 61 at the uppermost stage.
  • the inlet side pipe 68 extends upward substantially parallel to the inlet header 66, and the outlet pipe 69 extends upward substantially parallel to the outlet header 67.
  • the inlet side piping 68 and the outlet side piping 69 have smaller diameters than the diameters of the inlet side header 66 and the outlet side header 67, respectively.
  • a refrigeration pressure reducing means 53 is connected to the inlet side pipe 68, and a refrigeration return pipe 55a is connected to the outlet side pipe 69.
  • the refrigeration decompression means 53 extends above the inlet header 66 and is then buried within the back insulation wall of the main body 10.
  • the refrigeration return pipe 55a extends above the outlet header 67 and is then buried in the back insulation wall of the main body 10.
  • the refrigeration depressurizing means 53 and the refrigeration return pipe 55a are closely connected within the back heat insulating wall so as to exchange heat.
  • an accumulator gas-liquid separator for preventing liquid refrigerant from flowing into the compressor 50 is not provided between the outlet side pipe 69 and the refrigeration return pipe 55a connected downstream.
  • the refrigerant is configured to flow in from the lower part of the inlet side header 66, and the refrigerant is configured to flow out from the upper part of the outlet side header 67.
  • the flow of the refrigerant is parallel to the direction of cold air ventilation.
  • parallel flow refers to a case where the flow direction of the refrigerant and the ventilation direction of the cold air are the same.
  • the inlet header 66 and the outlet header 67 may be provided at different ends of the flat tube 61, and the inlet header 66 and the outlet header 67 may be arranged on both sides of the refrigerant conducting member 60.
  • the refrigerant inlet of the inlet header 66 may be provided above, and the refrigerant outlet of the outlet header 67 may be provided below.
  • a partition plate 70 is provided at a position corresponding to the boundary between the lower region 65 and the middle region 64 of the entrance header 66. As shown in FIG. The middle region 64 and the upper region 63 of the entrance header 66 are in communication with each other.
  • a partition plate 71 that blocks communication within the outlet header 67 is provided at a position corresponding to the boundary between the upper region 63 and the middle region 64 of the outlet header 67 . Positions corresponding to the middle region 64 and lower region 65 of the outlet side header 67 are in communication.
  • the refrigerant flowing from the lower part of the inlet header 66 passes through the lower region 65 of the refrigerant conducting member 60 and flows to the outlet header 67 .
  • the refrigerant that has flowed into the outlet header 67 flows into the middle region 64 of the refrigerant conducting member 60 and flows into the inlet header 66 , flows through the lower region 65 via the inlet header 66 , and then flows into the upper part of the outlet header 67 . It is leaked from. That is, the refrigerant that has flowed into the inlet header 66 sequentially flows through the lower region 65 , middle region 64 , and upper region 63 of the flat tube 61 and flows in series so as to reach the outlet header 67 .
  • each flat tube 61 is connected in series. Thereby, even when the ventilation direction of cold air is aligned with the vertical direction, it is possible to suppress the refrigerant from accumulating in the lower part due to gravity. Therefore, it becomes possible to spread the refrigerant throughout the cooler, and a decrease in heat exchange efficiency can be suppressed.
  • An air flow path 72 is formed between each flat tube 61 of the refrigerant conducting member 60.
  • an air flow path 72 located between the outermost flat tube 61 and the adjacent flat tube 61 is provided with an air flow path 72 that is inclined at a predetermined angle with respect to the flat tube 61 and bent in a zigzag shape.
  • the fins 73 are arranged in series, and these fins 73 continuously form an air flow path 72 having a substantially triangular cross-sectional shape inside the air flow path 72 .
  • the air flow path 72 having a rectangular cross-sectional shape may be formed continuously.
  • the air flow path 72 is formed in the vertical direction along the vertical direction of the cooling chamber 30 for refrigeration.
  • the air flow path located between the inner flat tubes 61 is used as a cold storage material storage section 74 .
  • a cold storage material container 80 containing a cold storage material 81 is accommodated in the cold storage material storage section 74 .
  • a stop plate 75 that connects the upper region 63, the middle region 64, and the lower region 65 of the flat tube 61. is installed. The stop plate 75 fixes each flat tube 61 and holds the flat tube 61 so that it does not deform in the front-back direction or the up-down direction.
  • a bottom plate member 76 is attached to the lower surface side of the flat tube 61 to close off a part of the bottom of the cold storage material storage section 74 .
  • a cold storage material storage section 74 surrounded by the stop plate 75, the bottom plate member 76, and the flat tube 61 is configured.
  • the cold storage material container 80 By inserting the cold storage material container 80 into the gap between the flat tubes 61 , the cold storage material container 80 comes into close contact with the surface of each flat tube 61 . It is possible to hold it.
  • the lower surface of the cold storage material container 80 is supported by the bottom plate member 76, and is flattened by the stop plate 75 when the cold storage material container 80 is inserted or when the cold storage material 81 inside the cold storage material container 80 expands due to solidification. It is possible to prevent the tube 61 from deforming in the front-back direction or the up-down direction.
  • the portion of the cold storage material storage portion 74 other than the attachment location of the bottom plate member 76 is used as a water drain portion 77 .
  • the condensed water that has entered the inside of the cold storage material storage portion 74 can be discharged to the lower part of the cold storage material storage portion 74, and a sanitary condition can be maintained in good condition. .
  • the bottom plate member 76 may be configured to close the entire bottom of the cold storage material storage section 74. In this case, it is preferable to configure a part of the bottom plate member 76 as a drain hole. Thereby, the condensed water that has entered the inside of the cold storage material storage section 74 can be discharged below the cold storage material storage section 74, and a sanitary condition can be maintained in good condition.
  • An engaging piece 78 is formed protruding from the lower portion of the lower region 65 on the side opposite to the side where the inlet side header 66 and the outlet side header 67 are connected. Furthermore, an engagement piece 78 may be formed to protrude from the lower left-right surface of the stop plate 75. That is, the stop plate 75 may be formed in an L-shape.
  • the internal air flowing from the bottom to the top of the refrigerating cooling chamber 30 flows through the air flow path 72, and at this time, it exchanges heat with the refrigerant flowing inside the refrigerant conduction member 60, and is cooled to a predetermined temperature. Furthermore, the refrigerant flowing inside the refrigerant conduction member 60 cools the cool storage material container 80 together with the cool storage material container 80, so that the cool storage material container 80 is cooled to a predetermined temperature.
  • the fins 73 in the lower region 65 and the fins 73 in the upper region 63 may be arranged with their positions shifted, and more specifically, the fins 73 in the lower region 65 and the fins 73 in the upper region 63 may be arranged with the phase shifted by 1/2. That is, the substantially triangular air passage 72 in the upper region 63 and the substantially triangular air passage 72 in the lower region 65 may be formed so as to overlap each other in plan view. Further, the phase of the fins 73 may be shifted by shifting the phase of the fins 73 in the middle region 64 with respect to the fins in the upper region 63.
  • the inclination angle of the fins 73 in the lower region 65 on the upstream side of the air flow path may be made larger than the inclination angle of the fins 73 in the upper region 63 on the downstream side of the air flow path. That is, the fins 73 in the lower region 65 may be formed with a large angle corresponding to the apex of the substantially triangular air flow path 72. With this configuration, a large cross-sectional area of the air flow path 72 in the lower region 65 on the upstream side of the air flow path 72 can be ensured. Therefore, even if frost or dew condensation adheres to the fins 73 when the internal air exchanges heat with the refrigerant, it is possible to prevent the air flow path 72 from being blocked by the frost or dew condensation. It is possible to ensure the flow of
  • the lower ends of the fins 73 are located below the lower ends of the refrigerant conduction member 60. Thereby, when the air inside the refrigerator and the refrigerant exchange heat, water generated due to frost formation, dew condensation, etc. can be collected at the lower ends of the fins 73, and drainage performance can be improved.
  • the upper ends of the fins 73 may be located above the upper ends of the coolant conduction member 60. Thereby, since the fin area becomes larger, the amount of heat exchange between the fins 73 and the air inside the refrigerator increases, and the heat exchange efficiency of the air inside the refrigerator can be improved.
  • unevenness is formed on the inner side surface of the cool storage material storage section 74, that is, on the side surface of the refrigerant conduction member 60.
  • the unevenness may be formed all over the inner side surface of the cold storage material storage section 74, or may be formed locally.
  • a thermally conductive material may be applied to the inner side surface of the cold storage material storage section 74.
  • the thermal conductivity between the cold storage material container 80 and the cold storage material storage section 74 can be improved, and the cold storage material container 80 can be easily stored.
  • the thermally conductive material for example, highly thermally conductive grease or adhesive is used.
  • FIG. 8 is a perspective view showing the installation structure of a cooler in a refrigerator.
  • FIG. 9 is a front view of the installed portion of the cooler.
  • FIG. 10 is an enlarged view of part A in FIG. 9.
  • FIG. 11 is a side view of FIG. 10.
  • FIG. 12 is an enlarged view of portion B in FIG.
  • the refrigerator compartment duct 31 is provided with a first support member 90 that supports the engagement piece 78 at a position corresponding to the engagement piece 78 of the refrigerator cooler 32.
  • the first support member 90 has a slit 91 into which the engagement piece 78 is inserted, and is configured to support the engagement piece 78 from above and below.
  • a second support member 92 that supports the inlet side piping 68 is provided in the refrigerator compartment duct 31 at a position corresponding to the inlet side piping 68 of the refrigerator compartment duct 31 .
  • the second support member 92 includes an engaging portion 93 with which the curved portion 68a of the inlet side pipe 68 is engaged, and by engaging the curved portion 68a of the inlet side pipe 68 with the engaging portion 93, It is configured to support the side pipe 68.
  • the cold storage material container 80 is made of an outer sheathing material made of a metal material such as aluminum, for example, by folding back a single film constituting the outer sheathing material and thermally welding both sides and end edges. By doing so, the cold storage material container 80 is formed.
  • the cold storage material container 80 may be formed by pasting together a plurality of films constituting the outer covering material and thermally welding the four sides.
  • the fin portion 82 is formed in the thermally welded portion of the cold storage material container 80.
  • the fin portion 82 of the cold storage material container 80 is preferably provided at a location located at the upper end when the cold storage material container 80 is stored in the cold storage material storage section 74. This is so that when storing the cold storage material container 80 in the cold storage material storage section 74, the fin portion 82 can be grasped to facilitate the storage work.
  • the fin portion 82 of the cold storage material container 80 be provided at a location located at the lower end when the cold storage material container 80 is stored in the cold storage material storage section 74 . This is so that when storing the cold storage material container 80 in the cold storage material storage section 74, the storing operation can be easily performed by inserting the cold storage material container 80 from the fin portion 82.
  • a portion of the cold storage material container 80 that comes into contact with the cold storage material 81 is made of a corrosion-resistant layer. Thereby, corrosion of the cold storage material container 80 can be suppressed.
  • the cold storage material container 80 has flexibility and can be deformed.
  • the thickness of the cold storage material container 80 is configured to be approximately the same as the gap between the flat tubes 61 .
  • the cold storage material 81 accommodated in the cold storage material container 80 is made of a low viscosity material. Specifically, it is made of a material having a viscosity of about 1 to 10,000 mPa ⁇ s at about 20°C to 22°C. That is, the cold storage material 81 is made of fluid. Note that the cold storage material 81 may be made of a fluid liquid or a viscoelastic body. Further, the amount of the cold storage material 81 is set to be smaller than the volume of the internal space of the cold storage material container 80. Specifically, it is 91% or less of the volume of the internal space.
  • the internal space of the cold storage material container 80 is reduced.
  • the volume can be secured, and even if the internal cold storage material 81 expands due to solidification, damage to the cold storage material container 80 can be suppressed.
  • the outer surface of the cold storage material container 80 may be made of resin. In this way, by forming the outer surface of the cold storage material container 80 with resin, the strength of the cold storage material container 80 can be ensured, although the effect is slightly inferior compared to the case where the cold storage material container 80 is made of a metal material. Therefore, damage to the cold storage material container 80 can be suppressed.
  • FIG. 14 is a sectional view of a refrigerating cooler showing a modified example of the guide.
  • a chamfered portion 85 may be formed by chamfering the corner of the flat tube 61 in the upper region 63 on the side of the cold storage material storage portion 74 into an arc shape.
  • a chamfered portion 85 may be formed by chamfering the corner portion of the lower part of the flat tube 61 in the upper region 63 on the side of the cold storage material storage portion 74 into an arc shape. By forming in this way, it is possible to prevent the cool storage material container 80 from being damaged when the cool storage material container 80 is taken out from the cold storage material storage section 74 . Further, a chamfered portion 85 may be formed by chamfering a corner portion on the side of the cold storage material storage portion 74 in an arc shape at the upper or lower portion of the flat tube 61 in the middle region 64 or the lower region 65. By forming in this way, it is possible to suppress damage to the cold storage material container 80 when inserting the cold storage material container 80 into the cold storage material storage section 74 or when taking out the cold storage material container 80 from the cold storage material storage section 74. be able to.
  • the refrigerant sent to the refrigeration cooler 32 flows from the inlet header 66 of the refrigerant conducting member 60 and flows inside the lower region 65.
  • the refrigerant flowing into the outlet header 67 flows through the middle region 64 via the outlet header 67, is sent to the inlet header 66, and flows through the upper region 63 via the inlet header 66.
  • the refrigerant that has flowed through the upper region 63 flows out of the outlet header 67 and is returned to the compressor 50.
  • the refrigeration cooler By driving the refrigeration fan 33 while the refrigerant is flowing inside the refrigerant conduction member 60, when the air inside the refrigerator compartment 13 flows from the bottom to the top of the refrigerator compartment duct 31, the refrigeration cooler It passes through 32 air flow paths 72. That is, the ventilation direction of the cold air passing through the refrigeration cooler 32 is from the bottom to the top of the refrigeration cooler 32. Thereby, the air inside the refrigerator compartment 13 exchanges heat with the refrigerant flowing through the refrigerant conduction member 60 and is cooled.
  • the refrigerant sent to the freezing cooler 41 exchanges heat with the air inside the freezer flowing upward from the bottom of the freezing cooling chamber 40, and the air cooled by the refrigerant is transferred to the freezer. Returned to room 14.
  • FIGS. 13A, 13B, and 13C are explanatory diagrams showing the state of contact with the cool storage material storage section 74 due to cooling of the cool storage material container 80.
  • the cold storage material 81 before the cold storage material 81 solidifies, the cold storage material 81 is in contact with the lower region 65 and the middle region 64 of the flat tube 61, but is not in contact with the upper region 63.
  • the upper region 63 corresponds to the first position of the flat tube 61 in the present disclosure. Since the refrigerant flows from the lower region 65 toward the upper region 63, the lower region 65 has a lower temperature. Therefore, as shown in FIG. 13(b), the cold storage material 81 starts to solidify at the point where it contacts the lower region 65.
  • the cold storage material 81 solidifies, its volume expands, but the amount of the cold storage material 81 is set to be 91% or less of the volume of the internal space of the cold storage material container 80, and since there is sufficient internal space, damage to the cold storage material container 80 is prevented. Can be suppressed.
  • the cold storage material 81 gradually solidifies from below, and eventually solidification is completed over the entire area. With the solidification of the cold storage material 81 completed in this manner, the cold storage material container 80 is also brought into contact in the upper region 63, which is the first position, as shown in FIG. 13(c). Thereby, the cold storage material 81 and the cold storage material storage section 74 are held in close contact with each other.
  • the refrigerant cooler 32 has a refrigerant conduction member formed of flat tubes 61 formed at intervals, and a gap between adjacent flat tubes 61 of the refrigerant conduction member. It includes a cool storage material container 80 arranged and sealed with a cool storage material 81, an air flow path formed between the other flat tubes 61 through which air flows, and fins provided in the air flow path. Furthermore, the cold storage material container 80 is made of a flexible metal material, and the cold storage material 81 is made of fluid. Thereby, the cool storage material 81 can be efficiently cooled by the refrigerant, and the cooled cool storage material 81 can save energy.
  • the shape of the cold storage material 81 easily changes to match the shape of the gap between the flat tubes 61.
  • the insertability of the material 81 is improved.
  • the cold storage material 81 changes its shape to match the shape of the container due to its own weight, adhesion is improved.
  • the cool storage material container 80 is damaged, the cool storage material 81 has fluidity, so it is difficult to get clogged with a drain hose, etc., and it is possible to suppress the occurrence of water leakage due to a clogged drain hose.
  • the cold storage material container 80 does not come into close contact with the flat tube 61 at the first position, but comes into close contact with the flat tube 61 at the first position while the cold storage material 81 of the cold storage material container 80 is solidified.
  • the cold storage material 81 expands and comes into contact with the first position that was not in contact with the heat exchanger before solidifying, so the contact area with the heat exchanger is expanded and the heat exchange efficiency is increased. improves.
  • the liquid phase cold storage material 81 flows as if being pushed by the solidified and expanded cold storage material 81, so that the liquid phase easily comes into contact with the flat tube 61, and heat is generated. Exchange efficiency is improved.
  • the refrigerant conduction member is configured to allow the refrigerant to flow from below, and the cold storage material 81 has a low viscosity.
  • the cold storage material 81 solidifies sequentially from the bottom and the liquid phase moves upward, so that the adhesion between the cold storage material container 80 and the flat tube 61 is improved, and the heat exchange efficiency is improved.
  • the amount of cold storage material 81 is smaller than the internal space volume of cold storage material container 80. Therefore, even if the cold storage material 81 expands due to solidification, damage to the cold storage material container 80 can be suppressed.
  • At least one side of the cold storage material container 80 is provided with a heat-welded fin portion 82 .
  • the fin portion 82 is provided at the upper part of the cold storage material container 80, and the fin portion 82 extends upward. Thereby, even if the cold storage material 81 expands due to solidification, damage to the cold storage material container 80 can be suppressed.
  • the portion of the cool storage material container 80 that comes into contact with the cool storage material 81 is constituted by a corrosion-resistant layer. Thereby, corrosion of the cold storage material container 80 can be suppressed.
  • the outer surface of the cool storage material container 80 is made of a resin material. Thereby, damage to the cold storage material container 80 can be suppressed.
  • a cold storage material storage section 74 for storing a pre-cooling material container is provided in the gap between adjacent flat tubes 61 of the refrigerant conduction member, and the entrance of the cold storage material storage section 74 is formed to widen. has been done. Thereby, the cold storage material container 80 can be easily accommodated in the cold storage material storage section 74.
  • a water drain section 77 is formed at the lower part of the cold storage material storage section 74. Thereby, by forming the water draining portion 77, the condensed water that has entered the inside of the cold storage material storage portion 74 can be discharged below the cold storage material storage portion 74, and a good sanitary condition can be maintained. .
  • the inner side surface of the cold storage material storage section 74 is formed with unevenness. As a result, by forming the unevenness on the inner side surface of the cold storage material storage section 74, when the cold storage material container 80 is inserted, the frictional resistance with the cold storage material container 80 can be reduced, and the cold storage material container 80 can be easily inserted. can be stored in.
  • a thermally conductive material is applied to the inner side surface of the cool storage material storage section 74.
  • the thermal conductivity between the cold storage material container 80 and the cold storage material storage section 74 can be improved, and the cold storage material container 80 can be easily stored.
  • Embodiment 1 has been described as an example of the technology disclosed in this application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made.
  • the present disclosure can be suitably used in a cooler that can efficiently cool a cold storage material using a refrigerant and can save energy by using the cooled cold storage material.
  • Refrigerator 10 Main unit 11 Upper partition plate 12 Lower partition plate 13 Refrigerator compartment 14 Freezer compartment 15 Vegetable compartment 16 Cold room 17 Shelf board 18 Ice making compartment 20 Refrigerator door 30 Cooling compartment for refrigeration 31 Refrigeration compartment duct 32 Refrigeration cooler 33 Refrigeration fan 34 Branch duct 35 Refrigeration outlet 36 Refrigerator damper 38 Refrigeration drain pipe 39 Shielding plate 40 Refrigeration cooling chamber 41 Refrigeration cooler 42 Refrigeration fan 43 Refrigeration outlet 50 Compressor 51 Condenser 60 Refrigerant Conduction member 61 Flat tube 62 Bend part 63 Upper region 64 Middle region 65 Lower region 66 Inlet header 67 Outlet header 68 Inlet pipe 68a Curved part 69 Outlet pipe 70 Partition plate 71 Partition plate 72 Air flow path 73 Fin 74 Cold storage material storage section 75 Stopping plate 76 Bottom plate member 77 Water drain section 78 Engagement piece 80 Cold storage material container 81 Cold storage material 82 Fin section 84 Guide 85 Chamfered section 90 First support member 92 Second support member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本開示は、冷媒により蓄冷材を効率よく冷却することができ、冷却された蓄冷材により省エネを図ることができる冷却器を提供する。 冷蔵用冷却器32は、互いに間隔をおいて形成された扁平管61からなる冷媒導通部材と、冷媒導通部材の隣接する扁平管61の間隙に配置され蓄冷材81が封入された蓄冷材容器80と、扁平管61の他の間に形成され空気が流れる空気流路と、空気流路に設けられたフィンと、を備えている。また、蓄冷材容器80は、可撓性を有する金属材料により形成されており、蓄冷材81は、流体により構成されている。

Description

冷却器
 本開示は、冷却器に関する。
 特許文献1は、冷蔵庫を開示する。この冷蔵庫は、圧縮機の運転で貯蔵室を冷却する冷却器と、冷却器を収納する冷却室を有し、蓄冷材は冷却器に接触又は近接配置して、冷却器と蓄冷材の冷熱で貯蔵室を冷却することにより、食品出し入れ時の負荷投入時に、蓄熱材と冷却器の冷熱による冷却量で冷却する。これにより、貯蔵室内の温度上昇を低減し、圧縮機の駆動回転数を、従来より低回転で運転しながら冷却するので、圧縮機の高回転による運転を抑制しながら、冷却性能を向上させることにより、エネルギー効率の向上を図ることができる。
特開2017-172848号公報
 本開示は、冷媒により蓄冷材を効率よく冷却することができ、冷却された蓄冷材により省エネを図ることができる冷却器を提供する。
 本開示における冷却器は、互いに間隔をおいて形成された扁平管からなる冷媒導通部材と、前記冷媒導通部材の隣接する前記扁平管の間隙に配置され蓄冷材が封入された蓄冷材容器と、前記扁平管の他の間に形成され空気が流れる空気流路と、前記空気流路に設けられたフィンと、を備えた冷却器において、前記蓄冷材容器は、可撓性を有する金属材料により形成されており、前記蓄冷材は、流体により構成されている。
 この明細書には、2022年4月26日に出願された日本国特許出願・特願2022-072678号の全ての内容が含まれるものとする。
 本開示における冷却器は、冷媒により蓄冷材を効率よく冷却することができ、冷却された蓄冷材により省エネを図ることができる。
図1は、実施の形態1における冷蔵庫の概略を示す概略断面図 図2は、実施の形態1における冷蔵庫の概略を示す概略正面図 図3は、実施の形態1の冷凍サイクルを示す冷凍サイクル図 図4は、実施の形態1の冷蔵用冷却器を右側から見た斜視図 図5は、実施の形態1の冷蔵用冷却器を左側から見た斜視図 図6は、実施の形態1の冷蔵用冷却器を示す平面図 図7は、実施の形態1の冷蔵用冷却器を示す底面図 図8は、冷蔵庫への冷却器の設置構造を示す斜視図 図9は、冷却器の設置部分の正面図 図10は、図9のA部分の拡大図 図11は、図10の側面図 図12は、図9のB部分の拡大図 図13(a),(b),(c)は、蓄冷材容器の冷却による蓄冷材収納部との接触状態を示す説明図 図14は、ガイドの変形例を示す冷蔵用冷却器の断面図
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、蓄冷材を、圧縮機の運転で貯蔵室を冷却する冷却器に接触又は近接配置して、冷却器と蓄冷材の冷熱で貯蔵室を冷却することにより、食品出し入れ時の負荷投入時に、蓄冷材と冷却器の冷熱による冷却量で冷却する技術があった。
 しかしながら、従来の技術では、蓄冷材は、樹脂製ケースで構成されており、冷却器の側部で冷却室の両側壁との間のスペースに配置されているので、冷媒配管と蓄冷材との接触面積を大きくすることができず、しかも、蓄冷材が樹脂製ケースで構成されているため、蓄冷材と冷却器との間の熱抵抗が大きいことから、冷媒により効率よく蓄冷材を冷却することができない。そのため、冷媒と蓄冷材との熱交換を効率的に行う必要があるという課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで本開示は、冷媒により蓄冷材を効率よく冷却することができ、冷却された蓄冷材により省エネを図ることができる冷却器を提供する。
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図1~図6を用いて、実施の形態1を説明する。
 [1-1.構成]
 [1-1-1.冷蔵庫の構成]
 図1は、本発明に係る冷蔵庫の概略を示す概略断面図である。
 図1に示すように、冷蔵庫1は、箱型の本体10を備えている。本体10の上下方向の2箇所には、本体10の内部を上下3つの空間に仕切る上部仕切板11および下部仕切板12が設けられている。
 上部仕切板11の上側空間は、冷蔵室13とされ、上部仕切板11と下部仕切板12との間の空間は、冷凍室14とされ、下部仕切板12の下側空間は、野菜室15とされている。
 冷蔵室13の内部下方には、冷蔵室13より低温とされる低温室16が設けられている。冷蔵室13の内部には、食品を載置する棚板17が設けられている。
 冷凍室14の内部には、氷を溜める製氷室18が設けられている。
 冷蔵室13の前面には、回転式の冷蔵室用扉20が開閉自在に設けられている。
 冷凍室14の前面には、冷凍室用引き出し扉21が開閉自在に設けられており、冷凍用引き出し扉21の内側には、内部に食品を収容する冷凍用引き出しケース22が設けられている。
 野菜室15の前面の開口部には、野菜室用引き出し扉23が開閉自在に設けられており、野菜室用引き出し扉23の内側には、内部に食品を収容する野菜室用引き出しケース24が設けられている。
 図1および図2に示すように、冷蔵庫1の冷蔵室13の背面側には、冷蔵用冷却室30が設けられている。冷蔵用冷却室30の上方には、冷蔵室13の上方に延在する冷蔵室ダクト31が接続されている。
 冷蔵用冷却室30には、冷蔵用冷却器32が収容されている。冷蔵用冷却器32は、マイクロチャネル式の冷却器とされている。マイクロチャネル式の冷却器とは、例えば、扁平多孔管とフィンで構成された冷却器である。扁平多孔管は、内部に冷媒が流れる流路が複数形成された扁平管である。なお、冷蔵用冷却器32の詳細については、後述する。
 冷蔵用冷却室30の冷蔵用冷却器32の上方には、冷蔵用ファン33が配置されている。冷蔵用ファン33は、例えば、遠心ファンが用いられる。遠心ファンは、回転羽根の軸方向の一面側中央部分から冷蔵用冷却器32を通過した冷気を吸い込み、遠心方向に吹き出すファンである。また、遠心ファンは、冷蔵用冷却室30の後方から冷気を吸い込み、遠心方向に吹き出す。遠心ファンを用いることで、薄いダクトでも風量を確保することができる。
 なお、本実施の形態において遠心ファンは、冷蔵用冷却室30の後方から冷気を吸い込む構成としているが、冷蔵用冷却室30の前方から冷気を吸い込む構成としてもよい。
 また、冷蔵用ファン33は、例えば、軸流ファンであってもよい。軸流ファンは、冷蔵用冷却器32により冷却された冷気を冷蔵室13に効率よく吹き出すように、吹き出し側が上方を向くように傾斜して配置されている。軸流ファンを用いることで、下方向へも冷気を吐出しやすくできる。
 冷蔵用冷却器32に付着した霜は、冷蔵室の庫内空気によって除霜することができる。この場合、冷蔵用冷却器32には冷媒は流さずに、冷蔵用ファン33を駆動させることが好ましい。
 冷蔵室ダクト31は、冷蔵用ファン33の吹き出し側のケーシング33aに接続されており、冷蔵室ダクト31は、上方に向かって徐々に幅寸法が大きくなるテーパ状に形成されている。
 冷蔵室ダクト31は、途中左右に延在する分岐ダクト34を備えている。冷蔵室13には、冷蔵室ダクト31および分岐ダクト34に連通する冷蔵用吹出口35が形成されている。
 冷蔵室ダクト31の中途部には、冷蔵室ダンパ36が設けられている。冷蔵室ダンパ36は、開閉動作を行うことで、冷蔵用冷却器32により冷却された冷気を冷蔵室ダクト31に送風または送風停止を切り替えるように構成されている。
 冷蔵用冷却器32の下面側であって後述するヘッダの下部には、遮蔽板39が設けられる。遮蔽板39は、ヘッダの下部を覆うことで、冷蔵室13から送られる庫内空気を冷蔵用冷却器32の後述する空気流路に導く機能を備えている。
 なお、遮蔽板39は、冷蔵用冷却室30に設けられていてもよい。この場合、遮蔽板39は、後述するヘッダの下部に対応する位置に設けられる。
 冷蔵庫1の冷凍室14の背面側には、冷凍用冷却室40が設けられている。冷凍用冷却室40には、冷凍用冷却器41が収容されている。
 冷凍用冷却器41は、例えば、フィンチューブ式の冷却器とされている。フィンチューブ式の冷却器とは、例えば、円管のパイプとフラットフィンとで構成された冷却器である。冷凍用冷却器41の上方には、冷凍用冷却器41により冷却された冷気を冷凍室14の内部に送る冷凍用ファン42が配置されている。
 フィンチューブ式の冷却器は、マイクロチャネル式の冷却器と比較して、冷媒配管とフィン先端との距離が大きいため熱伝導効率が悪く、フィン先端の温度が低下しにくい。そのため、着霜による目詰まりを抑制でき、除霜するためのヒータに通電する回数を減らすことができる。従って、消費電力量を抑制することができる。
 冷凍用ファン42は、例えば、軸流ファンが用いられる。軸流ファンは、冷凍用冷却器41により冷却された冷気を冷凍室14に効率よく吹き出すように、吹き出し側が上方を向くように傾斜して配置されている。冷凍室14の背面には、冷凍用吹出口43が形成されている。
 なお、冷凍用ファン42は、例えば、遠心ファンであってもよい。
 冷凍用冷却器41の下方には、冷凍用冷却器41に付着した霜を除霜するためのガラス管ヒータ44が配置されている。
 なお、ガラス管ヒータ44を用いずに、冷凍用冷却器41に付着した霜を除霜するために、冷凍用冷却器41を直接温めるパイプヒータを用いてもよい。
 冷凍用冷却室40の冷気は、下部仕切板12に形成された連通孔45を介して野菜室15に送られるように構成されている。
 冷蔵用冷却器32の下方には、冷凍用露受け皿37が配置されている。冷凍用冷却器41の下方には、冷凍用露受け皿46が配置されている。
 野菜室15の背面側下方には、蒸発皿47が配置されている。
 冷蔵用露受け皿37には、冷蔵用排水管38が接続されている。冷凍用露受け皿46には、冷凍用排水管48が接続されている。冷蔵用排水管38および冷凍用排水管48の下端部は、上部仕切板11および下部仕切板12をそれぞれ貫通して蒸発皿47の上部近傍まで延在している。
 これにより、冷蔵用露受け皿37および冷蔵用露受け皿46に溜まったドレンを冷蔵用排水管38および冷凍用排水管48を介して蒸発皿47に送ることができ、蒸発皿47でドレンの蒸発を行うように構成されている。
 本体の後部上方には、圧縮機50が設置されている。
 [1-1-2.冷凍サイクルの構成]
 次に、冷蔵庫1の冷凍サイクル構成について説明する。
 図3は、冷蔵庫1の冷凍サイクルを示す冷凍サイクル図である。
 図3に示すように、冷蔵庫1は、圧縮機50と、凝縮器51と、切替弁52と、冷蔵用減圧手段53と、冷蔵用冷却器32と、冷蔵用戻り配管55aと、冷凍用減圧手段54と、冷凍用冷却器41と、冷凍用戻り配管55bと、を冷媒戻り配管55で接続して構成されている。冷蔵用減圧手段53として冷蔵用キャピラリチューブが、冷凍用減圧手段54として冷凍用キャピラリチューブが配設されている。
 冷蔵用減圧手段53および冷蔵用冷却器32と、冷凍用減圧手段54および冷凍用冷却器41とは、切替弁52を介して互いに並列となるように接続されている。
 [1-1-3.冷蔵用冷却器の構成]
 次に、冷蔵庫1に搭載される冷蔵用冷却器32の構成について説明する。
 図4は、実施の形態1の冷蔵用冷却器32を示す右側から見た斜視図である。図5は、実施の形態1の冷蔵用冷却器32を示す左側から見た斜視図である。図6は、実施の形態1の冷蔵用冷却器32を示す平面図である。図7は、実施の形態1の冷蔵用冷却器32を示す底面図である。
 図4から図7に示すように、冷蔵用冷却器32は、冷媒が流れる冷媒導通部材60を備えている。冷媒導通部材60は、略四角形状の複数の通路が連続して配列された扁平多孔管で構成されている。
 冷媒導通部材60は、上下方向に所定間隔をもって略平行に形成された複数の扁平管61と、これら各扁平管61の端部を接続する曲成部62と、を備えて蛇行状に形成されている。
 本実施の形態においては、後述するヘッダ間に扁平管61は、4つで構成されている。
 なお、扁平管61の数はこれに限定されるものではなく、任意に設定可能である。
 また、各扁平管61と曲成部62が一体で、1本の扁平管61を蛇行させてヘッダ間に形成してもよい。
 また、扁平管61および曲成部62は、本実施形態においては、上下方向に3つの上部領域63、中部領域64、下部領域65に分割されている。
 なお、本実施の形態においては、上下方向に3つの領域に分割するようにしたが、上下方向に2つの領域、または4つ以上の領域に分割するようにしてもよい。
 最も外側に位置する扁平管61の一端部には、上下に延在する入口側ヘッダ66および出口側ヘッダ67がそれぞれ設けられている。
 入口側ヘッダ66および出口側ヘッダ67は、例えば、円管で構成されている。
 図6に示すように、入口側ヘッダ66および出口側ヘッダ67は、扁平管61の奥行方向(前後方向)における端面から突出しないように取付けられている。入口側ヘッダ66は、扁平管61の端部を折り曲げて形成された折曲部61aを介して扁平管61と接続され、出口側ヘッダ67は扁平管61の端部を折り曲げて形成された折曲部61aを介して扁平管61と接続されている。
 このように入口側ヘッダ66および出口側ヘッダ67を配置することで、入口側ヘッダ66および出口側ヘッダ67の端面は、冷媒導通部材60の扁平管61の外面と面一とされ、入口側ヘッダ66および出口側ヘッダ67の側面が扁平管61の厚みから突出しないように配置される。
 これにより、冷蔵用冷却器32の厚さ寸法を低減させることができ、冷蔵用冷却室30の内部に冷蔵用冷却器32を収容した場合に、冷蔵室ダクト31の内部スペースを小さくすることができる。その結果、冷蔵室13の内部空間を大きくすることができる。
 また、入口側ヘッダ66の側面であって下部領域65に対応する高さには、入口側配管68が接続されている。具体的には、入口側ヘッダ66の側面であって左右方向の最外面に、入口側配管68が接続されている。入口側配管68は、左右方向に延びた後、上方に湾曲する湾曲部68aを介して上方に延在するように形成されている。
 出口側ヘッダ67の上端面には、上部領域63の上端より上方に位置する出口側配管69が接続されている。
 なお、入口側ヘッダ66および出口側ヘッダ67は、冷蔵用冷却器32の幅方向(左右方向)に位置をずらして配置されており、入口側ヘッダ66が扁平管61の近くに配置されるとともに、出口側ヘッダ67が入口側ヘッダ66より扁平管61から離れる位置に配置されて、入口側ヘッダ66および出口側ヘッダ67は、互い違いに設けられていてもよい。また、出口側ヘッダ67が扁平管61の近くに配置されるとともに、入口側ヘッダ66が出口側ヘッダ67より扁平管61から離れる位置に配置されてもよい。
 この場合、入口側ヘッダ66の側面のうち冷蔵室13の後方向の側面であって下部領域65に対応する高さには、入口側配管68が接続されていてもよい。具体的には、入口側ヘッダ66の側面であって出口側ヘッダ67が接続されている扁平管61に向かう方向に、入口側配管68が接続されていてもよい。さらに、入口側配管68は、冷蔵用冷却器32の奥行方向(前後方向)と略平行に接続されていることが好ましい。
 出口側ヘッダ67は、入口側ヘッダ66の高さ寸法より高く形成されていてもよい。出口側ヘッダ67の側面のうち冷蔵室13の前方向の側面であって上部領域63の上端より上方位置には、出口側配管69が接続されていてもよい。具体的には、出口側ヘッダ67の側面であって入口側ヘッダ66が接続されている扁平管61に向かう方向に、出口側配管69が接続されていてもよい。さらに、出口側配管69は、入口側配管68と略平行に接続されていることが好ましい。すなわち、出口側配管69は、最上段の扁平管61の上端よりも上方位置に接続されていてもよい。
 入口側配管68は、入口側ヘッダ66と略平行に上方に延在しており、出口側配管69は、出口側ヘッダ67と略平行に上方に延在している。
 入口側配管68および出口側配管69は、それぞれ入口側ヘッダ66および出口側ヘッダ67の径に対して小径とされている。
 前述のように入口側配管68および出口側配管69を配置することで、入口側配管68および出口側配管69の配置スペースが少なくて済む。
 また、入口側配管68には、冷蔵用減圧手段53が接続され、出口側配管69には、冷蔵用戻り配管55aが接続されている。
 冷蔵用減圧手段53は、入口側ヘッダ66の上方へ延びた後、本体10の背面断熱壁内に埋設される。また、冷蔵用戻り配管55aは、出口側ヘッダ67の上方へ延びた後、本体10の背面断熱壁内に埋設される。
 そして、背面断熱壁内で冷蔵用減圧手段53と冷蔵用戻り配管55aとが熱交換するように密着接続されている。
 また、出口側配管69と、下流に接続される冷蔵用戻り配管55aとの間には、液冷媒が圧縮機50に流入するのを防止するアキュムレータ(気液分離器)は備えていない。
 本実施の形態においては、入口側ヘッダ66の下部から冷媒が流入するように構成されており、出口側ヘッダ67の上部から冷媒が流出するように構成されている。これにより、冷媒の流れは、冷気の通風方向に対して並行流とされる。ここで、並行流とは、冷媒の流れ方向と冷気の通風方向とが同じ場合を指す。
 なお、入口側ヘッダ66および出口側ヘッダ67は、扁平管61の異なる端部にそれぞれ設け、入口側ヘッダ66と出口側ヘッダ67とが冷媒導通部材60の両側に配置されるようにしてもよい。また、入口側ヘッダ66の冷媒入口は、上方に設けるようにしてもよいし、出口側ヘッダ67の冷媒出口は、下方に設けるようにしてもよい。
 図4に示すように、入口側ヘッダ66の下部領域65と中部領域64との境界に相当する位置には、仕切板70が設けられている。入口側ヘッダ66の中部領域64と上部領域63に相当する位置は、連通している。
 出口側ヘッダ67の上部領域63と中部領域64との境界に相当する位置には、出口側ヘッダ67内の連通を遮断する仕切板71が設けられている。出口側ヘッダ67の中部領域64と下部領域65に相当する位置は、連通している。
 入口側ヘッダ66の下部から流入した冷媒は、冷媒導通部材60の下部領域65の内部を通って、出口側ヘッダ67に流れる。出口側ヘッダ67に流れた冷媒は、冷媒導通部材60の中部領域64に流入して入口側ヘッダ66に流れ、入口側ヘッダ66を介して下部領域65を流れた後、出口側ヘッダ67の上部から流出される。
 すなわち、入口側ヘッダ66に流入した冷媒は、扁平管61の下部領域65、中部領域64、上部領域63を順次流れて出口側ヘッダ67に至るように直列に流れる。ここで、各扁平管61は、直列に接続されている。
 これにより、冷気の通風方向を上下方向と揃えた場合でも、冷媒が重力により下部に溜まることを抑制できる。従って、冷却器全体に冷媒を行き渡らせることが可能となり、熱交換効率の低下を抑制させることができる。
 冷媒導通部材60の各扁平管61の間には、空気流路72が形成される。
 空気流路のうち、最も外側の扁平管61とこれに隣り合う扁平管61との間に位置する空気流路72の内部には、扁平管61に対して所定角度で傾斜されジグザグ状に折り曲げて連続して設けられたフィン73が配列されており、これらフィン73により、空気流路72の内部に、断面形状略三角形状の空気流路72が連続して形成される。
 なお、断面形状が矩形状の空気流路72が連続して形成されていてもよい。
 空気流路72は、冷蔵用冷却室30の上下方向に沿うように、上下方向に形成される。
 空気流路のうち、内側に位置する扁平管61の間に位置する空気流路は、蓄冷材収納部74とされている。蓄冷材収納部74には、蓄冷材81が収容された蓄冷材容器80が収容される。
 扁平管61の入口側ヘッダ66および出口側ヘッダ67が接続されている端部と反対側の端部には、扁平管61の上部領域63、中部領域64、下部領域65を接続する止め板75が取付けられている。
 止め板75は、各扁平管61を固定し、前後方向あるいは上下方向に扁平管61が変形しないように保持するものである。また、扁平管61の下面側には、蓄冷材収納部74の底部の一部を閉塞する底板部材76が取付けられている。
 これにより、止め板75と底板部材76と、扁平管61とに囲まれた蓄冷材収納部74が構成される。
 そして、蓄冷材容器80を扁平管61の間隙に挿入することで、蓄冷材容器80が各扁平管61の面に密着することになり、これにより、蓄冷材容器80を扁平管61の間に保持することが可能となっている。蓄冷材容器80の下面は、底板部材76により支持され、止め板75により、蓄冷材容器80を挿入した際、あるいは、蓄冷材容器80の内部の蓄冷材81が凝固により膨張した際に、扁平管61が前後方向あるいは上下方向に変形してしまうことを抑制することができる。
 なお、蓄冷材収納部74の底板部材76の取付箇所以外の部分は、水抜き部77とされている。このように水抜き部77を形成することで、蓄冷材収納部74の内部に入った結露水を蓄冷材収納部74の下方に排出することができ、衛生状態を良好に保持することができる。
 なお、底板部材76は、蓄冷材収納部74の底部の全部を閉塞するように構成されていてもよい。この場合、底板部材76の一部を水抜き孔として構成することが好ましい。こにより、蓄冷材収納部74の内部に入った結露水を蓄冷材収納部74の下方に排出することができ、衛生状態を良好に保持することができる。
 下部領域65の入口側ヘッダ66および出口側ヘッダ67が接続されている側と反対側の下部には、係合片78が突出形成されている。また、止め板75の下部の左右方向の面に係合片78が突出形成されていてもよい。すなわち、止め板75はL字形状として形成されていてもよい。
 冷蔵用冷却室30の下方から上方に向かって流れる庫内空気は、空気流路72を流れ、このとき、冷媒導通部材60の内部を流れる冷媒と熱交換を行い、所定温度に冷却される。また、冷媒導通部材60の内部を流れる冷媒により、蓄冷材容器80も一緒に冷却され、蓄冷材容器80を所定温度に冷却するように構成されている。
 なお、下部領域65のフィン73と、上部領域63のフィン73との位置をずらして配置するようにしてもよく、より詳細には、下部領域65のフィン73と、上部領域63のフィン73とは、位相を1/2ずらして配置されていてもよい。すなわち、上部領域63における略三角形状の空気流路72と、下部領域65における略三角形状の空気流路72と、が平面視において互いに重なるように形成されるようにしてもよい。また、フィン73の位相をずらすのは、上部領域63のフィンに対して中部領域64のフィン73の位相をずらすようにしてもよい。このように構成することで、庫内空気が空気流路72を流れる際の抵抗は、多少増加するものの、空気の流れ方向に対してフィン73の端部との熱交換面積が増えることで前縁効果を高めることができ、そのため、熱交換効率を高めることができる。
 また、空気流路の上流側となる下部領域65のフィン73の傾斜角度は、空気流路の下流側となる上部領域63のフィン73の傾斜角度より大きく形成するようにしてもよい。すなわち、下部領域65のフィン73は、略三角形状の空気流路72の頂点に相当する角度が大きく形成されるようにしてもよい。このように構成することで、空気流路72の上流側となる下部領域65における空気流路72の断面積を大きく確保することができる。そのため、庫内空気が冷媒と熱交換した際に、フィン73に霜や結露が付着した場合でも、霜や結露により、空気流路72が塞がれてしまうことを防止することができ、空気の流れを確保することができる。
 また、本実施の形態においては、フィン73の下端は、冷媒導通部材60の下端よりも下方に位置している。これにより、庫内空気と冷媒とが熱交換した際に、着霜や結露などで発生する水をフィン73の下端に集めることができ、排水性を高めることが可能となる。
 また、フィン73の上端を冷媒導通部材60の上端より上方に位置させるようにしてもよい。これにより、フィン面積が大きくなることから、フィン73と庫内空気との熱交換量が増大し、庫内空気の熱交換効率を高めることができる。
 また、蓄冷材収納部74の内側側面、すなわち、冷媒導通部材60の側面には、凹凸(図示せず)が形成されている。
 この凹凸は、蓄冷材収納部74の内側側面全域に形成されていてもよいし、局部的に形成されていてもよい。
 このように蓄冷材収納部74の内側側面に凹凸を形成することで、蓄冷材容器80を挿入する際に、蓄冷材容器80との摩擦抵抗を低減させることができ、蓄冷材容器80を容易に収納することができる。
 なお、蓄冷材81が冷却により凝固して蓄冷材容器80が膨張することにより、凹凸が埋められるので、蓄冷材収納部74の内側側面に対して蓄冷材容器80を密着させることができる。
 また、蓄冷材収納部74に蓄冷材容器80を挿入する際に、蓄冷材収納部74の内側側面に熱伝導性材料を塗布するようにしてもよい。これにより、蓄冷材容器80と蓄冷材収納部74との熱伝導率を向上させることができるとともに、蓄冷材容器80の収納を容易に行うことができる。なお、熱伝導性材料としては、例えば、熱伝導性の高いグリスや接着剤などが用いられる。
 [1-1-4.冷蔵用冷却器の設置構成]
 図8は、冷蔵庫への冷却器の設置構造を示す斜視図である。図9は、冷却器の設置部分の正面図である。図10は、図9のA部分の拡大図である。図11は、図10の側面図である。図12は、図9のB部分の拡大図である。
 図8から図12に示すように、冷蔵庫の冷蔵室ダクト31には、冷蔵用冷却器32の係合片78に対応する位置に、係合片78を支持する第1支持部材90が設けられている。第1支持部材90は、係合片78が挿入されるスリット91が形成されており、このスリット91により、係合片78を上下方向から支持するように構成されている。
 また、冷蔵室ダクト31の冷蔵室ダクト31の入口側配管68に対応する位置には、入口側配管68を支持する第2支持部材92が設けられている。
 第2支持部材92は、入口側配管68の湾曲部68aが係合される係合部93を備えており、入口側配管68の湾曲部68aを係合部93に係合させることで、入口側配管68を支持するよう構成されている。
 これにより、冷蔵用冷却器32の入口側配管68を第2支持部材92の係合部93に係合させるとともに、係合片78を第1支持部材90のスリットに挿入することで、冷蔵用冷却器32を容易に冷蔵室ダクト31に設置することが可能となる。
 [1-1-5.蓄冷材容器・蓄冷材の構成]
 次に、蓄冷材容器80および蓄冷材81の構成について説明する。
 蓄冷材容器80には、蓄冷材81が収容される。
 蓄冷材容器80は、例えば、例えば、アルミニウムなどの金属材料からなる外被材により構成されており、例えば、外被材を構成する単体フィルムを折り返した状態で、両側辺および端辺を熱溶着することで、蓄冷材容器80が形成される。
 なお、その他の例として、外被材を構成する複数のフィルムを互いに貼り合わせ、4辺を熱溶着することで、蓄冷材容器80を形成するようにしてもよい。
 このように外被材を熱溶着することで、蓄冷材容器80は、熱溶着部分にひれ部82が形成される。
 なお、蓄冷材容器80のひれ部82は、蓄冷材収納部74に蓄冷材容器80を収納した際に、上端に位置する箇所に設けることが好ましい。これは、蓄冷材収納部74に蓄冷材容器80を収納する際に、ひれ部82を把持することで、収納作業を容易に行うことができるようにするためである。
 また、蓄冷材容器80のひれ部82は、蓄冷材収納部74に蓄冷材容器80を収納した際に、下端に位置する箇所に設けることが好ましい。これは、蓄冷材収納部74に蓄冷材容器80を収納する際に、ひれ部82から挿入することで、収納作業を容易に行うことができるようにするためである。
 蓄冷材容器80の蓄冷材81と接触する部分は、耐食層により構成されている。これにより、蓄冷材容器80の腐食を抑制することができる。
 蓄冷材容器80は、可撓性を有し、変形が可能となっている。蓄冷材容器80の厚さ寸法は、各扁平管61の間隙と略同一の寸法を有するように構成されている。
 蓄冷材容器80に収容される蓄冷材81は、低粘度の材料により構成されている。具体的には、約20℃~22℃において1~10000mPa・s程度の粘度の材料により構成される。すなわち、蓄冷材81は、流体により構成されている。なお、蓄冷材81は、流動性のある液体や粘弾性体により構成されていてもよい。
 また、蓄冷材81の量は、蓄冷材容器80の内部空間の容積より少ない量とされる。具体的には、内部空間の容積の91%以下とされる。
 そして、蓄冷材81の量を蓄冷材容器80の内部空間の体積の91%以下にし、蓄冷材容器80のひれ部82の長さ寸法を大きく形成することで、蓄冷材容器80の内部空間の体積を確保することができ、かつ、内部の蓄冷材81が凝固により膨張した場合でも蓄冷材容器80の破損を抑制することができる。
 なお、蓄冷材容器80の外表面を樹脂により構成するようにしてもよい。
 このように、蓄冷材容器80の外表面を樹脂により構成することで、金属材料からなる蓄冷材容器80を用いる場合に比較するとやや効果は劣るものの、蓄冷材容器80の強度を確保することができ、蓄冷材容器80の破損を抑制することができる。
 また、蓄冷材収納部74の上部には、開口部分が前後方向に広がったガイド84(図13参照)が形成されている。
 このようにガイド84を設けることで、蓄冷材容器80を蓄冷材収納部74に収容する作業を容易に行うことができる。
 図14は、ガイドの変形例を示す冷蔵用冷却器の断面図である。
 図14に示すように、上部領域63の扁平管61の蓄冷材収納部74の側の角部を円弧状に面取してなる面取部85を形成するようにしてもよい。
 このように形成することで、面取部85が蓄冷材容器80を挿入する際のガイドとして機能し、蓄冷材容器80を容易に挿入することができるとともに、蓄冷材容器80が損傷してしまうことを抑制することができる。
 また、上部領域63の扁平管61の下部において蓄冷材収納部74の側の角部を円弧状に面取りしてなる面取部85を形成するようにしてもよい。
 このように形成することで、蓄冷材容器80を蓄冷材収納部74から取り出す時に、蓄冷材容器80が損傷してしまうことを抑制することができる。
 また、中部領域64や下部領域65の扁平管61の上部または下部において蓄冷材収納部74の側の角部を円弧状に面取してなる面取部85を形成するようにしてもよい。
 このように形成することで、蓄冷材容器80を蓄冷材収納部74に挿入する時もしくは蓄冷材容器80を蓄冷材収納部74から取り出す時に、蓄冷材容器80が損傷してしまうことを抑制することができる。
 [1-2.動作]
 以上のように構成された冷蔵庫1について、その動作を以下説明する。
 まず、圧縮機50を駆動することにより、冷媒を凝縮器51に送り、切替弁を切り替えることで、冷蔵用冷却器32または冷凍用冷却器41のいずれかに冷媒を送る。
 冷蔵用冷却器32に送られた冷媒は、冷媒導通部材60の入口側ヘッダ66から流入して下部領域65の内部を流れる。出口側ヘッダ67に流れた冷媒は、出口側ヘッダ67を介して中部領域64を流れ、入口側ヘッダ66に送られ、入口側ヘッダ66を介して上部領域63を流れる。上部領域63を流れた冷媒は、出口側ヘッダ67から流出して、圧縮機50に戻される。
 冷媒導通部材60の内部を冷媒が流れている状態で、冷蔵用ファン33を駆動することで、冷蔵室13の庫内空気が冷蔵室ダクト31の下方から上方に流れる際に、冷蔵用冷却器32の空気流路72を通過する。すなわち、冷蔵用冷却器32を通る冷気の通風方向は、冷蔵用冷却器32の下方から上方に向かう方向である。
 これにより、冷蔵室13の庫内空気が冷媒導通部材60を流れる冷媒と熱交換して冷却される。
 冷凍用冷却器41に送られた冷媒は、冷凍用ファン42を駆動することで、冷凍用冷却室40の下方から上方に流れる庫内空気と熱交換し、冷媒により冷却された空気は、冷凍室14に戻される。
 また、冷媒導通部材60の内部を冷媒が流れることで、蓄冷材81も同様に冷却される。
 図13(a),(b),(c)は、蓄冷材容器80の冷却による蓄冷材収納部74との接触状態を示す説明図である。
 図13(a)に示すように、蓄冷材81が凝固する前は、蓄冷材81は、扁平管61の下部領域65および中部領域64に接触しているが、上部領域63には、接触していない。本実施の形態においては、上部領域63が本開示における扁平管61の第1の位置に相当する。
 そして、冷媒は、下部領域65から上部領域63に向かって流れるため、下部領域65の方がより低温となる。
 そのため、図13(b)に示すように、蓄冷材81は、下部領域65に接触する箇所から凝固が始まる。
 蓄冷材81が固まると容積が膨張するが、蓄冷材81の量は、蓄冷材容器80の内部空間の体積の91%以下としており、内部空間に余裕があるため、蓄冷材容器80の破損を抑制することができる。
 蓄冷材81は、下方から徐々に凝固し、やがて全域にわたって凝固が完了する。
 このように蓄冷材81の凝固が完了した状態で、図13(c)に示すように、第1の位置である上部領域63においても、蓄冷材容器80が接触される。
 これにより、蓄冷材81と蓄冷材収納部74とは密着した状態に保持される。
 [1-3.効果等]
 以上述べたように、本実施の形態においては、冷蔵用冷却器32は、互いに間隔をおいて形成された扁平管61からなる冷媒導通部材と、冷媒導通部材の隣接する扁平管61の間隙に配置され蓄冷材81が封入された蓄冷材容器80と、扁平管61の他の間に形成され空気が流れる空気流路と、空気流路に設けられたフィンと、を備えている。また、蓄冷材容器80は、可撓性を有する金属材料により形成されており、蓄冷材81は、流体により構成されている。
 これにより、冷媒により蓄冷材81を効率よく冷却することができ、冷却された蓄冷材81により省エネを図ることができる。また、蓄冷材81を流体により構成することにより、蓄冷材81を扁平管61の間隙に挿入する時に、蓄冷材81の形状が扁平管61の間隙形状に合わせて容易に形状変化するため、蓄冷材81の挿入性が向上する。また、蓄冷材81は、自重により容器形状に合わせて形状変化するため、密着性が向上する。さらに、万が一、蓄冷材容器80が破損した場合でも、蓄冷材81に流動性があるため、ドレンホース等で詰まりにくく、ドレンホース詰まりによる水漏れの発生抑制が可能である。
 また、本実施の形態においては、蓄冷材容器80は、扁平管61の第1の位置で密着せず、蓄冷材容器80の蓄冷材81が凝固した状態で、第1の位置で密着する。
 これにより、凝固する際に蓄冷材81は膨張し、凝固前に熱交換器と接触していなかった第1の位置と接触するため、熱交換器との接触面積が拡大し、熱交換効率が向上する。また、蓄冷材81に流動性を持たせることで、凝固し膨張した蓄冷材81に押されるように液相の蓄冷材81が流動するため、液相が扁平管61に接触しやすくなり、熱交換効率が向上する。
 また、本実施の形態においては、冷媒導通部材は、冷媒を下方から流すように構成され、蓄冷材81は、低粘度である。
 これにより、蓄冷材81は、下方から順次凝固していき、液相が上方に移動していくので、蓄冷材容器80と扁平管61との密着性が向上し、熱交換効率が向上する。
 また、本実施の形態においては、蓄冷材81の量は、蓄冷材容器80の内部空間内容積より少ない量である。
 これにより、蓄冷材81が凝固により膨張した場合でも、蓄冷材容器80の破損を抑制することができる。
 また、本実施の形態においては、蓄冷材容器80の少なくとも一辺は、熱溶着されたひれ部82を備えている。
 これにより、ひれ部82を持って扁平管61の間に収納することができ、収納作業を容易に行うことができる。
 また、本実施の形態においては、ひれ部82は、蓄冷材容器80の上部に設けられ、ひれ部82は、上方に延在している。
 これにより、蓄冷材81が凝固により膨張した場合でも、蓄冷材容器80の破損を抑制することができる。
 また、本実施の形態においては、蓄冷材容器80の蓄冷材81と接触する部分は、耐食層により構成されている。
 これにより、蓄冷材容器80の腐食を抑制することができる。
 また、本実施の形態においては、蓄冷材容器80の外表面は、樹脂材料により構成されている。
 これにより、蓄冷材容器80の破損を抑制することができる。
 また、本実施の形態においては、冷媒導通部材の隣接する扁平管61の間隙に、前冷材容器を収容する蓄冷材収納部74を設け、蓄冷材収納部74の入口は、広がるように形成されている。
 これにより、蓄冷材容器80を蓄冷材収納部74に容易に収容することができる。
 また、本実施の形態においては、蓄冷材収納部74の下部には、水抜き部77が形成されている。
 これにより、水抜き部77を形成することで、蓄冷材収納部74の内部に入った結露水を蓄冷材収納部74の下方に排出することができ、衛生状態を良好に保持することができる。
 また、本実施の形態においては、蓄冷材収納部74の内側側面は凹凸が形成されている。
 これにより、蓄冷材収納部74の内側側面に凹凸を形成することで、蓄冷材容器80を挿入する際に、蓄冷材容器80との摩擦抵抗を低減させることができ、蓄冷材容器80を容易に収納することができる。
 また、本実施の形態においては、蓄冷材収納部74の内側側面には、熱伝導性材料が塗布されている。
 これにより、蓄冷材容器80と蓄冷材収納部74との熱伝導率を向上させることができるとともに、蓄冷材容器80の収納を容易に行うことができる。
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 本開示は、冷媒により蓄冷材を効率よく冷却することができ、冷却された蓄冷材により省エネを図ることができる冷却器に好適に利用可能である。
 1 冷蔵庫
 10 本体
 11 上部仕切板
 12 下部仕切板
 13 冷蔵室
 14 冷凍室
 15 野菜室
 16 低温室
 17 棚板
 18 製氷室
 20 冷蔵室用扉
 30 冷蔵用冷却室
 31 冷蔵室ダクト
 32 冷蔵用冷却器
 33 冷蔵用ファン
 34 分岐ダクト
 35 冷蔵用吹出口
 36 冷蔵室ダンパ
 38 冷蔵用排水管
 39 遮蔽板
 40 冷凍用冷却室
 41 冷凍用冷却器
 42 冷凍用ファン
 43 冷凍用吹出口
 50 圧縮機
 51 凝縮器
 60 冷媒導通部材
 61 扁平管
 62 曲成部
 63 上部領域
 64 中部領域
 65 下部領域
 66 入口側ヘッダ
 67 出口側ヘッダ
 68 入口側配管
 68a 湾曲部
 69 出口側配管
 70 仕切板
 71 仕切板
 72 空気流路
 73 フィン
 74 蓄冷材収納部
 75 止め板
 76 底板部材
 77 水抜き部
 78 係合片
 80 蓄冷材容器
 81 蓄冷材
 82 ひれ部
 84 ガイド
 85 面取部
 90 第1支持部材
 92 第2支持部材

Claims (12)

  1.  互いに間隔をおいて形成された扁平管からなる冷媒導通部材と、
     前記冷媒導通部材の隣接する前記扁平管の間隙に配置され蓄冷材が封入された蓄冷材容器と、
     前記扁平管の他の間に形成され空気が流れる空気流路と、
     前記空気流路に設けられたフィンと、を備えた冷却器において、
     前記蓄冷材容器は、可撓性を有する金属材料により形成されており、
     前記蓄冷材は、流体により構成されている
     冷却器。
  2.  前記蓄冷材容器は、前記扁平管の第1の位置で密着せず、
     前記蓄冷材容器の蓄冷材が凝固した状態で、前記第1の位置で密着する
     請求項1に記載の冷却器。
  3.  前記冷媒導通部材は、冷媒を下方から流すように構成され、
     前記蓄冷材は、低粘度である
     請求項2に記載の冷却器。
  4.  前記蓄冷材の量は、前記蓄冷材容器の内部空間内容積より少ない量である
     請求項1または請求項2に記載の冷却器。
  5.  前記蓄冷材容器の少なくとも一辺は、熱溶着されたひれ部を備えている
     請求項1または請求項2に記載の冷却器。
  6.  前記ひれ部は、前記蓄冷材容器の上部に設けられ、前記ひれ部は、上方に延在している
     請求項5に記載の冷却器。
  7.  前記蓄冷材容器の前記蓄冷材と接触する部分は、耐食層により構成されている
     請求項1または請求項2に記載の冷却器。
  8.  前記蓄冷材容器の外表面は、樹脂材料により構成されている
     請求項1または請求項2に記載の冷却器。
  9.  前記冷媒導通部材の隣接する前記扁平管の間隙に、前記蓄冷材容器を収容する蓄冷材収納部を設け、
     前記蓄冷材収納部の入口は、広がるように形成されている
     請求項1または請求項2に記載の冷却器。
  10.  前記蓄冷材収納部の下部には、水抜き部が形成されている
     請求項9に記載の冷却器。
  11.  前記蓄冷材収納部の内側側面は凹凸がある
     請求項9に記載の冷却器。
  12.  前記蓄冷材収納部の内側側面には、熱伝導性材料が塗布されている
     請求項9に記載の冷却器。
PCT/JP2023/010271 2022-04-26 2023-03-16 冷却器 WO2023210200A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022072678A JP2023161995A (ja) 2022-04-26 2022-04-26 冷却器
JP2022-072678 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210200A1 true WO2023210200A1 (ja) 2023-11-02

Family

ID=88518628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010271 WO2023210200A1 (ja) 2022-04-26 2023-03-16 冷却器

Country Status (2)

Country Link
JP (1) JP2023161995A (ja)
WO (1) WO2023210200A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712776B2 (ja) * 1985-07-16 1995-02-15 日本電装株式会社 車両用冷房冷凍冷蔵装置
JP2000171126A (ja) * 1998-12-09 2000-06-23 Mitsubishi Cable Ind Ltd 蓄冷冷却システム
JP2011012947A (ja) * 2009-06-05 2011-01-20 Denso Corp 蓄冷熱交換器
JP2017067430A (ja) * 2015-10-01 2017-04-06 株式会社デンソー 蓄冷熱交換器
JP2018021725A (ja) * 2016-08-04 2018-02-08 株式会社日本クライメイトシステムズ 蓄冷エバポレータ
JP2018071960A (ja) * 2016-10-20 2018-05-10 パナソニック株式会社 蓄熱装置
JP2021188836A (ja) * 2020-05-29 2021-12-13 パナソニックIpマネジメント株式会社 熱交換器および冷蔵庫
WO2022091908A1 (ja) * 2020-10-26 2022-05-05 パナソニックIpマネジメント株式会社 熱交換器および冷蔵庫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712776B2 (ja) * 1985-07-16 1995-02-15 日本電装株式会社 車両用冷房冷凍冷蔵装置
JP2000171126A (ja) * 1998-12-09 2000-06-23 Mitsubishi Cable Ind Ltd 蓄冷冷却システム
JP2011012947A (ja) * 2009-06-05 2011-01-20 Denso Corp 蓄冷熱交換器
JP2017067430A (ja) * 2015-10-01 2017-04-06 株式会社デンソー 蓄冷熱交換器
JP2018021725A (ja) * 2016-08-04 2018-02-08 株式会社日本クライメイトシステムズ 蓄冷エバポレータ
JP2018071960A (ja) * 2016-10-20 2018-05-10 パナソニック株式会社 蓄熱装置
JP2021188836A (ja) * 2020-05-29 2021-12-13 パナソニックIpマネジメント株式会社 熱交換器および冷蔵庫
WO2022091908A1 (ja) * 2020-10-26 2022-05-05 パナソニックIpマネジメント株式会社 熱交換器および冷蔵庫

Also Published As

Publication number Publication date
JP2023161995A (ja) 2023-11-08

Similar Documents

Publication Publication Date Title
JP2011102599A (ja) 真空断熱パネル及びそれを用いた冷蔵庫
JP7164286B2 (ja) 冷蔵庫
JP5450462B2 (ja) 冷蔵庫
US20140318168A1 (en) Air conditioning device
WO2013088462A1 (ja) 冷蔵庫
JP5369157B2 (ja) 冷凍冷蔵庫
JP2020133933A (ja) 除霜装置およびこれを備えた冷蔵庫
JP4945365B2 (ja) 冷蔵庫
JP6741912B2 (ja) 冷蔵庫
WO2023210200A1 (ja) 冷却器
JP2018048799A (ja) 冷蔵庫
JP6815540B2 (ja) 冷蔵庫
CN205980523U (zh) 冰箱
JP2006078053A (ja) 冷蔵庫
WO2023063165A1 (ja) 冷蔵庫
EP3757484B1 (en) Refrigerator appliance
JP6940424B2 (ja) 冷蔵庫
JP5020159B2 (ja) 熱交換器、冷蔵庫及び空調装置
JP2003314946A (ja) 冷蔵庫
CN112113381A (zh) 蒸发器异形的冰箱
WO2023068023A1 (ja) 冷蔵庫
CN219063813U (zh) 一种蒸发器组件和冰箱
WO2023095527A1 (ja) 冷蔵庫
WO2023095537A1 (ja) 冷蔵庫
WO2024122126A1 (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795947

Country of ref document: EP

Kind code of ref document: A1