WO2023208153A1 - 一种支化型有机硅材料 - Google Patents

一种支化型有机硅材料 Download PDF

Info

Publication number
WO2023208153A1
WO2023208153A1 PCT/CN2023/091383 CN2023091383W WO2023208153A1 WO 2023208153 A1 WO2023208153 A1 WO 2023208153A1 CN 2023091383 W CN2023091383 W CN 2023091383W WO 2023208153 A1 WO2023208153 A1 WO 2023208153A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
branched
patterning
present
silicone material
Prior art date
Application number
PCT/CN2023/091383
Other languages
English (en)
French (fr)
Inventor
杨宁远
高诗阳
刘心元
程鑫
张宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023208153A1 publication Critical patent/WO2023208153A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0874Reactions involving a bond of the Si-O-Si linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • C07F7/0872Preparation and treatment thereof
    • C07F7/0876Reactions involving the formation of bonds to a Si atom of a Si-O-Si sequence other than a bond of the Si-O-Si linkage
    • C07F7/0878Si-C bond
    • C07F7/0879Hydrosilylation reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Definitions

  • the invention relates to a branched organic silicon material, which can be used in the semiconductor field to pattern semiconductor substrates to form high-precision patterns.
  • the computing power of chips per unit area has gradually increased, and the efficiency of electronic products has become higher and higher.
  • the most critical patterning process has currently been developed to support mass production of the N5nm process node. It usually includes the following steps: using a predetermined pattern as a template, irradiating the coated substrate film through the template to form an irradiated coating area.
  • FIG. 1 shows a patterning flow chart according to the prior art.
  • patterning technology In the most advanced patterning process using short-wavelength rays below 15nm, patterning technology has low light source transmission efficiency and requires high sensitivity of patterned materials. Usually the exposure energy must be within 30mJ/ cm2 , and the highest resolution requirement must be Below 20nm, the edge roughness of LER/LWR is required to be within 8% of the resolution.
  • the currently used patterning materials cannot meet the highest theoretical resolution that can be achieved by the most advanced patterning, which is below 10nm.
  • the currently existing material systems include: organic polymer type, organic small molecule type, metal organic type, organic silicon type, etc. Among them, the organic polymer material system is a traditional patterning material. Before the application of short wavelengths below 15nm, organic polymer material systems were used.
  • the current pattern resolution limit formed by organic polymer material systems is 13nm. So the industry has started exploring a variety of material systems. Metal-organic system materials have high sensitivity and high resolution, but there is a risk of metal ion contamination.
  • the organic silicon material system has high resolution and small molecular size, but silicon has low sensitivity to light sources below 15nm and requires extremely high exposure energy. How to maintain the existing resolution advantages of the organic silicon material system and improve the photosensitivity of the system material has become a difficult problem in the industry.
  • WO2020030855A2 provides a chain polymer organic silicon alcohol-based organic-inorganic hybrid patterned material coating containing halogen and metal elements. Its main molecular structural formula is as follows. By adding halogen elements and metal elements to the polymer chain and branch chain (R group part), the photosensitivity of the organic silicon patterning material under light conditions of 1 to 15nm wavelength is improved, and by adjusting the organic group and silicon The proportion of alcohol groups modulates other properties of the patterned material.
  • the invention allows to obtain polyhydrogenated silsesquioxane resins without preselecting the silanol content, and the adjustment of the silanol content will make it possible to obtain highly sensitive coatings for illumination with a wavelength of 1 to 15 nm.
  • this invention uses organosilanol polymers with a chain structure.
  • the molecular size is relatively large, about 3 to 10 nm.
  • the maximum resolution of the pattern formed after exposure is limited by the molecular size.
  • the molecular size can easily cause pattern edges. The roughness is high, the quality of the formed pattern is low, and the resolution is insufficient.
  • WO2005022257A2 provides a photosensitive group-containing polyhedral oligomeric silsesquioxane photoinitiator, which contains both a photoactive structural part bonded to the polyhedral oligomeric silsesquioxane and an amine functional group. . That is, a photosensitizer is introduced into the organic branch chain of the silicon cage structure to improve the photosensitivity of the overall cage molecule.
  • the photoinitiators involved in this technology are mainly used as additives in coatings, such as fluorescent whitening agents, fillers, pigments, dyes, wetting agents, and leveling aids.
  • the problem solved by this technical solution is the problem of photoinitiators in photosensitive coatings, which are added as a secondary additive.
  • CN101974120A adds a copolymerizable silsesquioxane monomer to a film-forming resin formula generally based on poly(p-hydroxystyrene) for copolymerization to prepare a new type of film-forming resin.
  • the polystyrene structure and the silsesquioxane structure are shown below. Improve the adhesion and etching resistance of patterned materials under KrF (248nm) lighting conditions.
  • the copolymer needs to be mixed with 10 to 30 parts of film-forming resin, 0.5 to 6 parts of photoacid, 0.5 to 10 parts of cross-linking agent, 70 to 90 parts of solvent and 0.01 to 0.5 parts of organic base.
  • the polystyrene structure and the silsesquioxane structure are two structural units in the film-forming resin copolymer, of which styrene accounts for 40 to 90% and nano-silicon-containing units account for 1 to 20%.
  • this invention mainly uses poly-para-hydroxystyrene as the main polymer resin material, and adds a certain amount of nano-scale polysiloxane structure to improve the performance of the polymer main material under 248nm light source exposure. Nano-scale polysiloxane Oxane is not used as the main material.
  • the main material used in this technical solution is a polymer system with large molecular size.
  • CN101122742A discloses a hyperbranched polysiloxane-based patterned material.
  • the photo-cured resin has the disadvantage of high viscosity and the cured product cannot be converted into functional devices.
  • This invention provides a patterned material using hyperbranched polysiloxane as the base resin, and the composition is 30 to 90% by weight of hyperbranched polysiloxane.
  • the invention contains methacryloyl groups and has the characteristics of low viscosity, multi-functionality, high reactivity, etc. It can be quickly photocured and the cured product can be converted into silicone-based ceramics.
  • This technical solution mainly uses a branched silicone structure, but the overall branch volume is too large, the molecular weight is still higher than that of linear silicone materials, and the spatial volume is larger, resulting in higher edge roughness in the final exposure result.
  • Some existing technologies use polymer-type patterning materials derived from traditional organic polymer materials with added organic silicon structural units. Although they can improve the etching resistance of the patterned materials, due to their large molecular size, potential patterns The resolution is low and the pattern edge roughness is high, and the quality of the formed patterns is not enough to meet the needs of current patterning processes.
  • Some existing technologies use nanoscale polysiloxane to add an organic photosensitizer structure to increase sensitivity to light irradiation. However, its photosensitivity is mainly aimed at the long-wavelength ultraviolet light region with a wavelength of 248nm and above, and cannot increase the sensitivity to light with a wavelength smaller than 248nm. Photosensitivity to shorter wavelength electromagnetic radiation.
  • a patterning material that can be used under exposure conditions to electromagnetic radiation in a short wavelength range (for example, within a wavelength range of 1 to 15 nm) and has a significantly improved photosensitivity compared with patterning materials in the prior art. properties, especially the ability to simultaneously meet the requirements of high sensitivity, high etching resistance, high resolution and small molecule size.
  • the invention provides a patterning composition comprising one or more branched silicone materials according to the invention.
  • the invention provides a patterning method comprising the step of patterning a substrate using a branched silicone material according to the invention or a patterning composition according to the invention.
  • the present invention provides a method for preparing a branched organosilicon material according to the present invention, which method includes hydrolyzing Si(OR) a D (4-a) and reacting with halosilane, and then A step of reacting with a compound producing a B group and/or a C group, wherein R is a straight or branched chain hydrocarbon group having 1 to 20 carbon atoms.
  • the present invention provides a method for preparing a branched organosilicon material according to the invention, which method includes the step of modifying a synthesized branched organosilicon material.
  • the present invention provides a branched silicone material for patterning.
  • the branched structure of the silicone material has ⁇ 3 branch arms, and each branch arm end group can have further cross-linked Functional group.
  • This branched organic silicon material can greatly improve the sensitivity of organic silicon patterned materials, thereby solving the problem of insufficient sensitivity of existing patterned materials under electromagnetic radiation exposure conditions in the short wavelength range (such as the 1-15nm wavelength range) The problem.
  • the branched organosiloxane patterned material proposed by the present invention adopts a multi-terminal branched structure to maintain a three-dimensional structure while increasing reactive sites and increasing the reaction probability. The final result is fed back into the enhanced patterned material. sensitivity.
  • the present invention can provide high-performance patterned materials that can simultaneously meet the requirements of high sensitivity, high etching resistance, high resolution, and small molecule size.
  • Figure 1 shows a patterning flow chart according to the prior art.
  • Figure 2 shows a flow chart of the patterning process using short-wavelength electromagnetic radiation (such as soft X-ray, or soft X-ray) as the exposure light source.
  • short-wavelength electromagnetic radiation such as soft X-ray, or soft X-ray
  • Figure 3 shows a flow chart of the patterning process used in the embodiment of the present invention.
  • Figure 4 shows a nuclear magnetic spectrum of a branched silicone material according to one embodiment of the present invention.
  • Figures 5a and 5b illustrate the effect of a patterning process according to an embodiment of the present invention.
  • Figure 6 shows a nuclear magnetic spectrum showing a branched silicone material according to another embodiment of the present invention.
  • Figure 7 shows the effect of a patterning process according to another embodiment of the present invention.
  • the present invention is solved by providing a branched silicone material having an AB m C n branched structure and a patterned material formulation or composition containing the branched silicone material (the formulation and composition are interchangeable) Problems related to conventional patterning materials and methods are solved, and the preparation or composition allows the application of patterning materials based on the branched silicone material in patterning technology using short-wavelength electromagnetic radiation as the exposure light source. .
  • the branched silicone material of the present invention has ⁇ 3 branch arms, and each branch arm end group has a further cross-linked functional group.
  • Any Si-O structure in the branched structure of the present invention only forms a unidirectional connection, and there is no cyclic structure containing more than two Si-O structures.
  • the branched structure of the present invention can form three-branched, four-branched, multi-branched structures with Si as the center, etc., with reactive end groups of greater than or equal to 3 More than one branched structure.
  • the formed branched structure has R groups with reactive organic end groups. The R groups can be constructed through multiple reactions to eventually form 1-3 types of end groups, which undergo cross-linking and polymerization reactions during the patterning process. Form a negative glue structure.
  • the branched silicone material of the present invention is mainly composed of siloxane. Although the obtained molecular weight is small, the glass transition temperature (Tg) is generally higher than 200°C, which is much higher than the operating temperature of the patterning process, and can eliminate outgas. risk.
  • Tg glass transition temperature
  • the branched silicone material of the present invention for the patterning process the pattern formed has high sensitivity, that is, low exposure energy, low degassing, high resolution, and low molecular size, so it can correspond to the pattern obtained in the prior art.
  • the characteristics of low edge roughness solve the problem that existing patterned materials cannot meet the above requirements at the same time.
  • m is 0 in the AB m C n branched structure according to the invention.
  • m in the AB m C n branched structure according to the present invention is an integer greater than 0, for example, it can be an integer equal to or greater than 1, an integer equal to or greater than 2, an integer equal to or greater than 3, An integer equal to or greater than 4, an integer equal to or greater than 5, an integer equal to or greater than 6.
  • m can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, A value within the range limited by any two values of 40, 50, 60, 70, 80, 90, and 100.
  • n is 3 in the AB m C n branched structure according to the invention.
  • n in the AB m C n branched structure according to the present invention is an integer greater than 3, for example, it can be an integer equal to or greater than 4, an integer equal to or greater than 5, an integer equal to or greater than 6, An integer equal to or greater than 7, an integer equal to or greater than 8, an integer equal to or greater than 9.
  • n can be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, A value within the range limited by any two values of 70, 80, 90, and 100.
  • the AB m C n branched structure according to the invention may be selected from:
  • a in the AB m C n branched structure according to the present invention is the branch arm center
  • B and C are structural units that cannot react with themselves
  • structure B can have ⁇ 2 different end groups, wherein One end can react with A, and the rest are free end groups to gradually build branch arms.
  • Structure C has ⁇ 2 different end groups, one end of which can react with B; where m+n>0, and 1 ⁇ m/n ⁇ 0 , D is an end group that does not have cross-linking function or continues to react.
  • B in the AB m C n branched structure according to the present invention may be derived from at least one monomer selected from the following:
  • C in the AB m C n branched structure according to the present invention has at least one crosslinkable group selected from the following: azido, alkenyl, aldehyde, thiol, substituted or unsubstituted Amino group, alkynyl group, ester group, carboxylic acid group, halogen group, hydroxyl group, epoxy group, cyanate group, thiocyanate group, isothiocyanate group, groups used as multidentate ligands and its combination.
  • the cross-linkable group may be a terminal group of C, and preferably can cross-link itself or each other under the action of light/electricity/external photoelectrocatalyst.
  • C in the AB m C n branched structure according to the invention may be derived from at least one structure selected from the following:
  • D in the AB m C n branched structure according to the present invention may be derived from at least one structure selected from the following:
  • A, B and C in the AB m C n branched structure according to the present invention independently contain or do not contain at least one selected from metal elements, halogen elements and combinations thereof.
  • Metal elements may be, for example, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Ga, Nb , Mo, Tc, Ru, Rh, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm , Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Pb, Bi, Po and one or more of their combinations.
  • the halogen element may be one or more of F, Cl, Br, I and combinations thereof.
  • the preparation method of branched organosilicon compounds containing metal elements, halogen elements and their combinations is simple, has high yield, and is suitable for industrial production.
  • branched organosilicon compounds containing metal elements, halogen elements and their combinations, as patterning materials have good solubility, can be dissolved in most organic solvents, have good coating properties, and form patterned materials.
  • the surface of the film layer is smooth, the film thickness is easy to adjust, and the development conditions meet the requirements of the patterning process, making it easy to apply.
  • At least one of A, B and C in the AB m C n branched structure according to the present invention contains at least one selected from the group consisting of metal elements, halogen elements and combinations thereof.
  • At least two of A, B and C in the AB m C n branched structure according to the present invention each independently contain at least one selected from the group consisting of metal elements, halogen elements and combinations thereof.
  • A, B and C in the AB m C n branched structure according to the present invention each independently include at least one selected from metal elements, halogen elements and combinations thereof.
  • the branched silicone material according to the present invention contains halogen elements but does not contain metal elements.
  • the problem of substrate contamination caused by metal elements during the patterning process can be eliminated and the process steps can be reduced.
  • the invention provides a patterning composition comprising one or more branched silicone materials according to the invention.
  • the patterning composition of the present invention contains as a main component one or more branched silicone materials according to the present invention.
  • main ingredient refers to the ingredient that plays a major role in the application of the composition.
  • the "main ingredient” may be the highest content excluding the carrier in the composition (for example, in the case of a liquid, it may be water or a solvent, in the case of a solid, it may be a porous carrier such as zeolite)
  • the active ingredient, and in certain embodiments, the "main ingredient” is not necessarily the most abundant ingredient, but may be the only ingredient that plays a role in achieving certain functions of the composition.
  • the patterning composition of the present invention contains two or more branched silicone materials according to the present invention.
  • the patterning composition of the present invention is in the form of a mixed solution.
  • the patterning composition of the present invention includes two or more end-group crosslinkable branched silicone materials according to the present invention forming a mixed solution.
  • the patterning composition of the present invention is a mixed solution
  • its solid content may be in the range of 1% to 10% by weight, for example, it may be in the range of 1.5%, 2%, 2.5%, 3% by weight. , 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5% within the range limited by any two values .
  • the patterning composition of the present invention may contain solvents, such as inorganic solvents and/or organic solvents.
  • the patterning composition of the present invention includes an inorganic solvent, which may be water or other aqueous solvent.
  • the patterned composition of the present invention includes an organic solvent, which may be a ketone organic solvent, an alcohol organic solvent, an ether organic solvent, an ester organic solvent, a lactone organic solvent, and the like. one or more combinations.
  • the ketone organic solvent can be, for example, cyclohexanone, methyl-2-n-pentyl ketone or a combination thereof.
  • alcoholic organic solvents examples include 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, Diacetone alcohol, diethylene glycol, propylene glycol, glycerol, 1,4-butanediol, 1,3-butanediol or combinations thereof.
  • the ether organic solvent can be, for example, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether or a combination thereof.
  • ester organic solvents examples include propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-ethoxypropionate, 3- Ethoxyethyl propionate, tert-butyl acetate, tert-butyl propionate, propylene glycol mono-tert-butyl ether acetate or combinations thereof.
  • the lactone organic solvent may be, for example, ⁇ -butyrolactone.
  • the patterning composition of the present invention includes a mixture of the above-described inorganic solvents and organic solvents.
  • the patterned composition of the present invention may further include at least one selected from the group consisting of photocatalysts, photosensitizers, film-forming agents, dyes, organic solvents, inorganic solvents, stabilizers, dispersants, and the like. combination.
  • the patterning composition of the present invention comprises a photocatalyst, preferably the photocatalyst comprises a manganese-based photocatalyst.
  • the invention provides a patterning method comprising the step of patterning a substrate using a branched silicone material according to the invention or a patterning composition according to the invention.
  • the patterning method of the present invention includes the step of exposing the substrate to an exposure light source.
  • the patterning method of the present invention includes the step of exposing the substrate to an exposure light source.
  • the exposure light source used in the present invention can be electromagnetic radiation with a wavelength less than 1000nm, preferably electromagnetic radiation with a wavelength less than 400nm, or an electromagnetic radiation with a wavelength between 0, 0.01nm, 0.05nm, 0.1nm, 0.5nm, 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 18nm, 20nm, 50nm, 100nm, 150nm, 200nm, 220nm, 248nm, 300n m , electromagnetic radiation within the range limited by any two values of 350nm, 380nm, 400nm, 480nm, 500nm, 600nm, 700nm, 800nm, 900nm and 1000nm.
  • the patterning method of the present invention includes the step of exposing the substrate to one or more exposure light sources selected from: X-rays, ultraviolet light, deep ultraviolet light, soft X-rays, electron beams, ions bundles and their combinations.
  • exposure light sources selected from: X-rays, ultraviolet light, deep ultraviolet light, soft X-rays, electron beams, ions bundles and their combinations.
  • a high-precision pattern can be formed using an electromagnetic radiation exposure light source with a wavelength of 1 to 15 nm or electron beam etching.
  • FIG. 2 shows a flow chart of a patterning process using short-wavelength electromagnetic radiation (eg, soft X-ray, ie, soft X-ray) as an exposure light source.
  • short-wavelength electromagnetic radiation eg, soft X-ray, ie, soft X-ray
  • the patterned material is dissolved in a suitable solvent to form a solution of a certain concentration.
  • the solution concentration can be adjusted according to the film thickness requirements. Generally, the higher the solution concentration, the thicker the film layer.
  • a certain volume of The solution is coated on a silicon wafer or a silicon wafer covered by other coatings through a spin coating process, or any other coating with the silicon wafer as the final substrate, forming a patterned material film layer with a thickness of less than 100nm, such as Steps 1 and 2 are shown.
  • the solvent remaining in the film layer is usually removed through a baking process, as shown in step 3.
  • the patterned material film layer is selectively irradiated by any single wavelength ray or mixed wavelength ray in the soft X-ray range or the wavelength range of 1 to 15 nm, reflected by the mask plate, and the pattern on the mask plate is transferred to the patterned material.
  • the process is as shown in step 4.
  • the irradiated patterned material is cleaned, and the cleaning time ranges from 10 to 300 seconds, which can be single-step cleaning or multi-step cleaning.
  • the patterned material layer is washed away, forming a negative pattern.
  • the patterned material is called a negative patterned material, as shown in step 5a; the illuminated part is washed away, forming a positive pattern.
  • the patterned material is called a positive patterning material, as shown in step 5b.
  • the pattern formed by the patterned material forms a selective protection effect on the underlying base material during the etching step.
  • the patterned material and the unprotected base material are etched, but are protected by the patterned material.
  • the etching speed is slower than that of the unprotected area, and finally a pattern is formed on the base material.
  • the negative pattern obtained in step 6a is a positive pattern
  • the positive pattern obtained in step 6b is obtained.
  • the electromagnetic radiation exposure wavelength used is 1 to 15nm or maskless electron beam exposure. Under these conditions, the resulting pattern is required to have high resolution, low pattern edge roughness, and low exposure energy consumption. Currently, Materials cannot be fully satisfied.
  • the branched organic silicon material involved in the present invention is a compound formed by combining a branched siloxane core structure and an organic graft group.
  • the branched silicone material according to the present invention can be prepared by two synthesis methods. One is prepared starting from unbranched small molecule siloxanes, and the other is prepared by modifying existing branched siloxane molecules. After the branched silicone material is synthesized, it needs to be mixed with additives such as stabilizers, dispersants, solvents, etc. to form a formula and then enter the patterning process to prepare for the patterning process using short-wavelength electromagnetic radiation as the exposure light source.
  • the present invention provides a method for preparing a branched organosilicon material according to the present invention, the method comprising hydrolyzing Si(OR) a D (4-a) and hydrolyzing halosilane The step of reacting and further reacting with a compound that generates a B group and/or a C group, wherein in the formula Si(OR) a D (4-a) , R is a straight chain having 1 to 20 carbon atoms.
  • a branched chain hydrocarbon group for example, one having a A linear or branched chain hydrocarbon group with a number of carbon atoms within the range defined by any two values, a is an integer of 3 or 4, and D is an end group that does not have a cross-linking function or a continuous reaction function.
  • the B and C groups are as defined previously for the AB m C n branched structure.
  • each R in formula Si(OR) a D (4-a) is independently selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, Isobutyl, n-pentyl, isopentyl, neopentyl, n-hexyl.
  • the halosilane is a silane substituted by one or more of F, Cl, Br, and I, preferably having 1 to 5, 1 to 4, or 2 to 3 silicon atoms. of silanes.
  • the halosilane is a monohalosilane, a dihalosilane, a trihalosilane, a tetrahalosilane, or a combination thereof.
  • the halosilane is further substituted with one or more of an alkyl, alkenyl, or alkynyl group, which independently have 1 to 100 carbon atoms, For example, it has 1-50 carbon atoms, 1-20 carbon atoms or 1-10 carbon atoms, preferably any two of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. The number of carbon atoms within the range defined by the value.
  • the halosilane is selected from 1 or 2 independently selected from the group consisting of alkyl (eg, C 1 -C 10 alkyl), alkenyl (eg, C 1 -C 10 alkenyl), alkynyl Dihalosilanes or monohalosilanes substituted with groups (eg C 1 -C 10 alkynyl) or combinations thereof.
  • alkyl eg, C 1 -C 10 alkyl
  • alkenyl eg, C 1 -C 10 alkenyl
  • the halosilane is selected from the group consisting of dimethylsilyl chloride, dimethylsilyl bromide, dimethylsilyl iodide, trimethylsilyl chloride, trimethylsilyl bromide, silane trimethyliodide, n-butyl chlorosilane, diisobutyl chlorosilane, di-sec-butyl chlorosilane or combinations thereof.
  • the present invention provides a method for synthesizing branched organosilicon materials, which includes hydrolyzing siloxane and reacting with silane, and performing an addition reaction with cyclohexane under the catalysis of a catalyst to obtain three Branched small molecule products.
  • the siloxane is preferably triethoxyphenylsiloxane
  • the silane is preferably dimethylmonochlorosilane
  • the catalyst can be a metal catalyst, preferably a platinum catalyst
  • the cyclohexane is preferably 1,2-cyclohexane. Oxy-4-vinylcyclohexane.
  • the present invention provides a method for preparing a branched organosilicon material according to the invention, which method includes the step of modifying a synthesized branched organosilicon material.
  • the synthesized branched silicone material is selected from silsesquioxane, cyclosiloxane and combinations thereof, and the cyclosiloxane is preferably selected from cyclotrisiloxane, cyclotetrasiloxane. alkane, cyclopentasiloxane, cyclohexasiloxane, cycloheptasiloxane, cyclooctasiloxane and combinations thereof.
  • the synthesized branched silicone material is selected from vinyl silsesquioxane (CAS number: 69655-76-1), acrylic-cage polysilsesquioxane ( CAS number: 1620202-27-8), aminophenyl polysilsesquioxane (CAS number: 518359-82-5), ⁇ -glycidyl oxysilyl propyl silsesquioxane (CAS number: 68611- 45-0), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (CAS number: 2554-06-5), 2,4,6- Trivinyl-2,4,6-trimethylcyclotrisiloxane (CAS number: 3901-77-7) and combinations thereof.
  • vinyl silsesquioxane CAS number: 69655-76-1
  • acrylic-cage polysilsesquioxane CAS number: 1620202-27-8
  • aminophenyl polysilsesquioxane CAS number:
  • the method for preparing the branched organosilicon material according to the present invention by modifying the synthesized branched organosilicon material may include using an organic group-modified hydrogenated siloxane to modify the ends of the synthesized branched organosilicon material.
  • the step of selectively modifying the base may include using an organic group-modified hydrogenated siloxane to modify the ends of the synthesized branched organosilicon material.
  • the step of selectively modifying the base The type of organic group depends on the corresponding group in the target product, such as those described above.
  • Modify the synthesized branched siloxane and selectively modify its end groups such as using commercially available cyclosiloxanes such as cyclotrisiloxane or cyclotetrasiloxane, or sesquisiloxane.
  • Oxanes such as vinyl silsesquioxane use their organic group vinyl to react with hydrogenated siloxane groups under the catalysis of platinum (Pt).
  • Pt platinum
  • the patterned material of the present invention contains a branched polysiloxane compound with polymerizable end groups. Compared with the existing organic patterned materials used in patterning systems using short-wavelength electromagnetic radiation as the exposure light source, it has excellent It has high sensitivity, high pattern resolution, low pattern edge roughness and high etching resistance, so it is especially suitable for patterning technology that uses short-wavelength electromagnetic radiation (such as soft X-rays) as the exposure light source.
  • short-wavelength electromagnetic radiation such as soft X-rays
  • the branched silicone material according to the present invention or the patterned composition containing the same can form a 10-100nm film on a substrate, and can obtain a pattern of 10-80nm critical dimensions under exposure conditions combined with subsequent processing techniques.
  • the substrate may include, but is not limited to, chips, masks, semiconductors, etc.
  • short-wavelength electromagnetic radiation refers to electromagnetic radiation with a wavelength less than 400nm, especially electromagnetic radiation with a wavelength less than 248nm, for example, refers to wavelengths ranging from 0, 0.01nm, 0.05nm, 0.1nm, 0.5nm, 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 18nm, 20nm, 50 Electromagnetic radiation within the range limited by any two values of nm, 100nm, 150nm, 200nm, 220nm, 248nm, 300nm, 350nm, 380nm, and 400nm. In some embodiments, the term “short wavelength electromagnetic radiation” refers to electromagnetic radiation with wavelengths in the range of 1 to 15 nm.
  • patterning refers to lithography, patterning process, and photolithography process. It is an important step in the semiconductor device manufacturing process.
  • the exposure and development process in this step depicts a set of graphic structures on the patterned material.
  • the etching process transfers the pattern on the mask to the substrate and substrate.
  • the substrate and substrate include not only silicon wafers, but also other metal layers, dielectric layers, and surface modified or added materials. Supporting layer of the above base material.
  • patterning materials refers to the irradiation of light or electromagnetic radiation (such as ultraviolet light, deep ultraviolet light, soft X-rays, X-rays, electron beams, ion beams, etc.), or other methods that can form micro-nano patterns Etching-resistant thin film materials whose solubility changes in the developer due to processing methods (such as 3D printing, laser direct writing, etc.).
  • electromagnetic radiation such as ultraviolet light, deep ultraviolet light, soft X-rays, X-rays, electron beams, ion beams, etc.
  • developer refers to a pure or mixed solvent that dissolves the soluble areas of the patterned material resulting from changes in solubility caused by exposure.
  • positive tone means that after development, the exposed part of the patterned material is washed away by the developer, and the pattern formed is a positive tone.
  • negative tone means that after development, the unexposed parts of the patterned material are washed away by the developer, and the pattern formed is a negative tone.
  • spin coating refers to spin coating, which is a high-speed film-forming method that can obtain a uniform film. Uniformity is widely used in the preparation of thin films such as semiconductor materials and chemical materials. It uses the centrifugal force generated by rotation to evenly spread sol, solution or suspension onto the substrate surface.
  • mask means that during the patterning process, the mask serves as an optical element in the patterning light path.
  • the mask carries the design pattern, and the light is selectively transmitted or reflected through it, so that the design can be The pattern is transmitted on the patterned material film layer.
  • Different doses of electromagnetic radiation such as electron beams, ion beams, and X-rays are used to expose the material film layer, and the minimum energy required to obtain the target pattern is compared to obtain sensitivity.
  • Oxygen plasma is used to etch the formed pattern, and the etching properties are compared to obtain relative etching resistance.
  • Hydrophobic treatment Use the above-mentioned hydrophilic treated silicon wafer, and use evaporation or spin coating to evenly cover the surface of the above-mentioned silicon wafer with HMDS.
  • Anti-reflective layer treatment add a bottom anti-reflective layer BARC, or bottom SOC, SOG.
  • a single branched siloxane material with a purity of more than 98% is obtained through synthesis.
  • One or more branched siloxane materials can be mixed in proportion, and one or more stabilizers, dispersants, and Agents, photoacid, quenching agent, solvent, etc. form a patterned material formula.
  • the weight parts of other components are between 0.1 and 40 parts by weight relative to 100 parts by weight of the branched siloxane material.
  • the weight ratio of the solvent used depends on the thickness of the film layer, and the amount of solvent can be adjusted according to different film thickness requirements.
  • the patterning material formula mixture for spin coating.
  • a baking step can optionally be added after spin coating. The baking temperature is between 60 and 200°C and the time is between 20 and 120 seconds to remove residual solvent.
  • a baking step can be optionally added to promote the unfinished chemical reaction in the film layer.
  • the baking temperature is between 60 and 200°C, and the time is between 20 and 120 seconds.
  • developer 0.5 to 5% concentration of tetramethylammonium hydroxide (TMAH) aqueous solution, or organic solvents such as ketones, such as cyclohexanone and methyl-2-n-pentyl ketone; alcohols Class 3-A Oxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol and diacetone alcohol; ethers such as propylene glycol monomethyl ether , Ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diglyme glycol dimethyl ether; esters such as propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Esters, ethyl lactate, ethyl pyruvate, butyl
  • TMAH te
  • the developer should be in contact with the exposed film for 10 to 120 seconds. Afterwards, you can optionally add water for the rinsing process, and the rinsing time is 10 to 120 seconds. You can optionally add a baking process later.
  • the baking temperature is between 60 and 200°C, and the time is between 20 and 120 seconds.
  • the obtained pattern is observed and measured using an electron microscope or an atomic force microscope.
  • the obtained pattern resolution is between 3 and 200 nm, and the edge roughness is between 2 and 30% of the pattern resolution.
  • the pattern can be transferred to the underlying base substrate through an ion etching or ion implantation process.
  • Figure 3 shows a flow chart of the patterning process used in this embodiment.
  • the patterning process is a patterning process including the above steps a)-g).
  • triethoxyphenylsiloxane reacts with dimethylmonochlorosilane, and undergoes an addition reaction with 1,2-epoxy-4-vinylcyclohexane under platinum catalysis to obtain the target three branches of small molecule target products.
  • the synthesis route is shown below.
  • the molecular size of this new branched silsesquioxane is about 0.5nm, forming a 15nm patterned film thickness. After selective exposure, a sub-10nm patterned structure can be formed at lower energy, achieving the goals of the present invention. Solve the initial setup of highly sensitive, high-resolution patterned materials.
  • Figure 5a shows the implementation effect of the patterning process using the new branched silsesquioxane.
  • the patterned material film layer forms a solubility change.
  • the non-irradiated parts are washed away, and the irradiated parts remain.
  • a negative pattern is formed to complete the patterning process.
  • a negative pattern can be formed on the substrate.
  • the host material is used for exposure with HBL under the conditions of a silicon nitride (SiNx) suspended film as the substrate, and the resulting pattern is shown in Figure 5b.
  • the exposure dose is less than 50 ⁇ C/cm 2 and the minimum line width is less than 10 nm, which reflects the high resolution and high sensitivity of the material.
  • This new branched siloxane-based patterned material has a large number of polymerizable end groups, which means it has high sensitivity to short-wavelength electromagnetic radiation, especially soft X-ray sensitivity, and can absorb more than the existing technology. More short-wavelength photons such as soft X-ray photons, and the double bond connected to the fluorophenyl group can accelerate the polymerization reaction through free radical reaction, better improve the photochemical reaction efficiency, and further improve the photosensitivity of the patterned material.
  • Vinyl silsesquioxane is used as raw material and modified to synthesize a variety of branched siloxane materials. The synthesis route is shown below.
  • Figure 7 shows the implementation effect of the patterning process using the modified branched silsesquioxane.
  • the patterned material with the material synthesized in Example 2 as the main component is formed into a film on the base substrate.
  • the patterned material film layer forms a solubility change.
  • the non-irradiated parts are washed away, and the irradiated parts are left to form a negative pattern, completing the patterning process.
  • a negative pattern can be formed on the substrate.
  • Example 2 Using vinyl silsesquioxane as the modified raw material in Example 2 instead of the branched silicone material of the present invention to perform the above patterning process, the expected patterning cannot be achieved on the substrate substrate, and there is basically no patterning. performance.
  • the use of the branched silicone material of the present invention can not only achieve effective patterning, but also the pattern sensitivity can reach within 50uC.
  • the exposure energy of currently commercialized patterning materials ranges from 100uC to several thousand uC. , fully demonstrating the high sensitivity of the branched silicone material of the present invention.
  • the branched organic silicon material of the present invention can also achieve high resolution below 20 nm and high etching resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明提供一种支化型有机硅材料,其具有ABmCn支化结构,其中A=Si(OSi)aD(4-a),a是整数3或4,m是等于或大于0的整数,n是等于或大于3的整数,并且m≤n,B为连接基团,在存在时分别连接A与C,C具有至少一个可交联基团以构建支化臂,D是不具有交联功能或继续反应功能的端基基团。本发明还提供包含该支化型有机硅材料的组合物,以及使用该支化型有机硅材料或其组合物对衬底进行图案化的方法。

Description

一种支化型有机硅材料 技术领域
本发明涉及一种支化型有机硅材料,其可用于半导体领域对半导体衬底进行图案化而形成高精度图案。
背景技术
近年来集成电路行业发展越来越迅速,单位面积内芯片算力逐步提高,电子产品效能越来越高。支撑集成电路行业的快速发展,尤其是针对单位面积内芯片算力的提高,即对应关键尺寸越来越小,离不开图案化技术的迅猛发展。最关键的图案化工艺当前已发展到可支撑N5nm制程节点量产,通常包括以下步骤:以既定的图案为模板,透过模板照射涂覆的基材膜层,以形成具有被照射涂层区域和具有未被照射涂层区域的被照射结构;以及选择性地溶解清洗被照射结构/未被照射的结构之一,所残留的材料形成的图案与模板上的图案相同,残留的图案化材料可以在刻蚀步骤中具有抗刻蚀性,选择性地保护底层材料如基片不被刻蚀或被缓慢刻蚀,进而形成图形向底层基材转移,在基片(如硅片)上形成图案,该图案来自于最初选择性曝光的图案。图1示出了根据现有技术的图案化流程图。
在最先进的应用短波长15nm以下的射线实现图形化的过程中,图案化技术光源传输效率低,要求图案化材料敏感性高,通常曝光能量要在30mJ/cm2以内,最高分辨率要求达到20nm以下,LER/LWR边沿粗糙度要求在分辨率的8%以内。当前所搭配的图案化材料,并不能满足最先进图案化所能理论达成的最高分辨率,即10nm以下。当前所存在的材料体系有:有机高分子型、有机小分子型、金属有机型、有机硅型等。其中,有机高分子型材料体系为传统图案化材料,在应用15nm以下短波长前,均采用有机高分子材料体系,但当图案化光源波长降低到15nm以下之后,所形成图形分辨率要求提升,而有机高分子材料体系当前所形成的图案分辨率极限在13nm 左右,故业界已开展对多种材料体系的探索。金属有机体系材料敏感性高、分辨率高,但有金属离子污染风险。有机硅材料体系的分辨率高,分子尺寸小,但硅对15nm以下光源敏感性低,所需曝光能量极高。如何秉承有机硅材料体系既有分辨率的优势,提升该体系材料的光敏感性,成为业界难题。
为了解决上述技术问题,先前已进行了一些相关研究,但都未能很好地解决这一技术问题。与本发明相关的现有技术例举如下。
WO2020030855A2提供了一种含卤素及金属元素的链式高分子有机硅醇式有机-无机杂化图案化材料涂层,其分子主体结构式如下所示。通过在高分子链及支链中(R基部分)添加卤族元素及金属元素提高有机硅型图案化材料在1~15nm波长的光照条件下的光敏感性,并且通过调节有机基团及硅醇基团的比例调节图案化材料的其他性能。该发明允许不获得预选硅醇含量的聚氢化倍半硅氧烷树脂,并且硅醇含量的调节将使获得用于1~15nm波长的光照的高灵敏度涂层成为可能。然而,该发明采用链状结构的有机硅醇高分子,分子尺寸较大,约在3~10nm之间,曝光后所形成的图案最高分辨率受分子尺寸所限制,该分子尺寸易造成图案边沿粗糙度高,所形成图案质量低,分辨率不足。
WO2020030855A2公开的链式高分子有机硅醇主体结构
WO2005022257A2提供了一种含光敏基团的多面体齐聚倍半硅氧烷光敏引发剂,其中包含了与多面体齐聚倍半硅氧烷键合的光活性结构部分和胺官能团二者的光敏引发剂。即,在硅笼状结构有机支链中引入光敏剂,提高笼状分子整体的光敏性。此技术所涉及的光敏引发剂主要作为添加剂应用在涂料中,如荧光增白剂、填料、颜料、染料、润湿剂、流平助剂。然而,该技术方案所解决的问题为光敏涂料中的光引发剂问题,作为一种次要添加剂加 入到光敏型涂料当中,不涉及图案化过程,这与本发明所设计的应用场景不同。如将该类型材料,即在有机配体链中引入含胺官能团的光敏引发剂,在1~15nm波长的光照射条件下曝光,吸收主体为原子,光敏性并不因采用此处胺类光敏剂而显著提高。所以该技术发明,并不能提升图案化材料在短波长电磁辐射曝光条件下的敏感性。
CN101974120A在一般以聚对羟基苯乙烯为基础的成膜树脂配方中添加可共聚倍半硅氧烷单体进行共聚合制备成一类新的成膜树脂。聚苯乙烯结构和倍半硅氧烷结构如下所示。提高KrF(248nm)光照条件下的图案化材料的粘附性及抗刻蚀性。该共聚物需按照10~30份成膜树脂、0.5~6份的光致酸、0.5~10的交联剂、70~90的溶剂以及0.01~0.5的有机碱混合而成。聚苯乙烯结构和倍半硅氧烷结构为成膜树脂共聚物高分子中的两个结构单元,其中苯乙烯占40~90%,含纳米硅单元占1~20%。然而,该发明主要采用聚对羟基苯乙烯为高分子树脂主体材料,在其中添加一定量的纳米级聚硅氧烷结构以提高其高分子主体材料在248nm光源曝光下的性能,纳米级聚硅氧烷在其中并不作为主体材料。该技术方案采用的主体材料为高分子体系,分子尺寸大,在短波长(例如约1~15nm或甚至约3~10nm)电磁辐射条件下曝光,其图案分辨率受图案化材料分子尺寸影响较大,所得图案分辨率低,边沿粗糙度高,不易控制。
CN101974120A公开的聚苯乙烯结构(左)和倍半硅氧烷结构(右)
CN101122742A公开了一种超支化聚硅氧烷基图案化材料,为了克服现 有光固化树脂粘度大、固化物无法转化为功能器件的不足,该发明提供了一种以超支化聚硅氧烷为基体树脂的图案化材料,成份为重量百分比为30~90的超支化聚硅氧烷、10~70的活性稀释剂和2~5的光引发剂。该发明含有甲基丙烯酰基团,具有低粘度、多官能度、高反应活性等特性,可快速光固化且固化物可转化为硅氧基陶瓷。该技术方案主要采用支化型有机硅结构,但整体支化体积过大,分子量仍比线性有机硅材料高,空间体积较大,导致最终曝光结果边沿粗糙度较高。
CN101122742A公开的支化型有机硅图案化材料
部分现有技术采用的传统有机高分子材料衍生而来的添加有机硅结构单元的高分子型图案化材料,虽然可以提高图案化材料的抗刻蚀性,但由于其分子尺寸大,导致潜在图案分辨率低、图案边缘粗糙度高,所形成图案质量不足以满足现行图案化工艺需求。部分现有技术采用纳米级聚硅氧烷添加有机光敏剂结构增加对光线照射的敏感性,然而其光敏性主要针对波长为248nm及以上的长波长紫外光区域,并不能增加对波长小于248nm的较短波长电磁辐射的光敏感性。
因此,需要开发一种能够在短波长范围内(例如1~15nm波长范围内)的电磁辐射曝光条件下使用的图案化材料,与现有技术中的图案化材料相比具有大幅提升的光敏感性,尤其是可以同时满足高敏感性、高抗刻蚀性、高分辨率以及小分子尺寸的要求。
发明内容
在一个方面,本发明提供一种支化型有机硅材料,其特征在于所述支化型有机硅材料具有ABmCn支化结构,其中A=Si(OSi)aD(4-a),a是整数3或4,m是等于或大于0的整数,n是等于或大于3的整数,并且m≤n,B为连接基团,在存在时分别连接A与C,C具有至少一个可交联基团以构建支化臂,D是不具有交联功能或继续反应功能的端基基团。
在另一个方面,本发明提供一种图案化组合物,其包含一种或多种根据本发明的支化型有机硅材料。
在又一个方面,本发明提供一种图案化方法,其包括使用根据本发明的支化型有机硅材料或根据本发明的图案化组合物对衬底进行图案化的步骤。
在又一个方面,本发明提供一种制备根据本发明的支化型有机硅材料的方法,所述方法包括使Si(OR)aD(4-a)水解后与卤代硅烷进行反应,进而与产生B基团和/或C基团的化合物进行反应的步骤,其中R为具有1~20个碳原子的直链或支链烃基。
在再一个方面,本发明提供一种制备根据本发明的支化型有机硅材料的方法,所述方法包括对已合成的支化型有机硅材料进行改性的步骤。
因此,本发明提供了一种用于图案化的支化型有机硅材料,所述有机硅材料的支化结构具有≥3个支化臂,每个支化臂端基可具有进一步交联的官能团。该支化型有机硅材料能够大幅提升有机硅类图案化材料的敏感性,从而解决现有图案化材料在短波长范围内(例如1~15nm波长范围内)的电磁辐射曝光条件下敏感性不够的问题。本发明所提出的支化型有机硅氧烷图案化材料,采用多端基支化结构,保持具有立体型的结构同时,增加可反应位点,增加反应几率,最终结果反馈在增强图案化材料的敏感性。在优选的实施方案中,本发明可以提供能够同时满足高敏感性、高抗刻蚀性、高分辨率、小分子尺寸要求的高性能图案化材料。
附图说明
通过以下具体实施方式和附图对本发明进行详细的解释说明,以期本领 域技术人员能够更好地理解本发明,但是不能理解为以任何方式限制本发明的范围。
图1示出了根据现有技术的图案化流程图。
图2示出了以短波长电磁辐射(例如软X射线,即soft X-ray)作为曝光光源进行图案化工艺的流程图。
图3示出了本发明实施例中采用的图案化工艺流程图。
图4示出了根据本发明的一个实施方案的支化型有机硅材料的核磁图谱。
图5a和图5b示出了根据本发明的一个实施方案的图案化过程的实施效果。
图6示出了示出了根据本发明的另一个实施方案的支化型有机硅材料的核磁图谱。
图7示出了根据本发明的另一个实施方案的图案化过程的实施效果。
具体实施方式
本发明通过提供一种具有ABmCn支化结构的支化型有机硅材料和包含该支化型有机硅材料的图案化材料制剂或组合物(制剂和组合物是可互换的)解决了与常规图案化材料和方法相关的问题,所述制剂或组合物允许将以所述支化型有机硅材料为主的图案化材料应用在以短波长电磁辐射作为曝光光源的图案化技术中。
在一个实施方案中,本发明提供一种支化型有机硅材料,其特征在于所述支化型有机硅材料具有ABmCn支化结构,其中A=Si(OSi)aD(4-a),a是整数3或4,m是等于或大于0的整数,n是等于或大于3的整数,并且m≤n,B为连接基团,在存在时分别连接A与C,C具有至少一个可交联基团以构建支化臂,D是不具有交联功能或继续反应功能的端基基团。
因此,本发明的支化型有机硅材料具有≥3个支化臂,每个支化臂端基具有进一步交联的官能团。本发明的支化结构中任一Si-O结构仅构成单方向连接,不存在含两个以上Si-O结构的环状结构。本发明的支化结构可形成以Si为中心的三支化型、四支化型、多支化型结构等具有可反应端基大于等于3 个以上的支化型结构。所形成的支化结构中具有带有可反应有机端基的R基团,R基团可经由多次反应构建,最终形成1-3种端基,在图案化过程中经由交联、聚合反应形成负胶结构。本发明的支化型有机硅材料以硅氧烷为主体,所得分子量虽小,但玻璃化转变温度(Tg)普遍高于200℃,远大于图案化流程操作温度,可以排除漏气(outgas)风险。使用本发明的支化型有机硅材料进行图案化过程,所形成的图案具有高敏感性,即曝光能量低,脱气量低、分辨率高,分子尺寸低,因此能够对应现有技术中所得图案边沿粗糙度低等特点,解决现存图案化材料不能同时满足上述要求的问题。
在一个实施方案中,根据本发明的ABmCn支化结构中的m是0。
在一个实施方案中,根据本发明的ABmCn支化结构中的m是大于0的整数,例如可以是等于或大于1的整数、等于或大于2的整数、等于或大于3的整数、等于或大于4的整数、等于或大于5的整数、等于或大于6的整数。例如,m可以是由0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、30、40、50、60、70、80、90、100中的任意两个值所限定的范围内的数值。
在一个实施方案中,根据本发明的ABmCn支化结构中的n是3。
在一个实施方案中,根据本发明的ABmCn支化结构中的n是大于3的整数,例如可以是等于或大于4的整数、等于或大于5的整数、等于或大于6的整数、等于或大于7的整数、等于或大于8的整数、等于或大于9的整数。例如,n可以是由3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、30、40、50、60、70、80、90、100中的任意两个值所限定的范围内的数值。
在一个实施方案中,根据本发明的ABmCn支化结构可以选自:
在一个实施方案中,根据本发明的ABmCn支化结构中的A为支化臂中心,B和C为不能与自身反应的结构单元,结构B可以具有≥2种不同端基,其中一端可以与A反应,其余为自由端基以便逐步构建支化臂,结构C具有≥2种不同端基,其中一端可以与B反应;其中m+n>0,且1≥m/n≥0,D为不具有交联功能或继续反应的端基基团。
在一个实施方案中,根据本发明的ABmCn支化结构中的B可以源自选自以下的至少一种单体:
在一个实施方案中,根据本发明的ABmCn支化结构中的C具有至少一个选自以下的可交联基团:叠氮基、烯基、醛基、巯基、取代或未取代的氨基、炔基、酯基、羧酸基团、卤素基、羟基、环氧基、氰酸酯基、硫氰酸酯基、异硫氰酸酯基、用作多齿配体的基团及其组合。所述可交联基团可以是C的端基,优选地可在光/电/外部光电致催化剂的作用下进行自身或相互交联。
在一个实施方案中,根据本发明的ABmCn支化结构中的C可以源自选自以下的至少一种结构:
在一个实施方案中,根据本发明的ABmCn支化结构中的D可以源自选自以下的至少一种结构:
在一个实施方案中,根据本发明的ABmCn支化结构中的A、B和C相互独立地包含或不包含选自金属元素、卤族元素及其组合中的至少一种。金属元素可以是例如Na、Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Rb、Sr、Y、Ga、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Sn、Sb、Te、Cs、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Pb、Bi、Po及其组合中的一种或多种。卤族元素可以是F、Cl、Br、I及其组合中的一种或多种。一方面,含金属元素、卤族元素及其组合的支化型有机硅化合物制备方法简单,产率高,适合于工业化生产。在另一方面,含金属元素、卤族元素及其组合的支化型有机硅化合物作为图案化材料,溶解性好,可溶解于大部分有机溶剂中,涂布性能好,形成的图案化材料膜层表面光滑,膜厚度便于调节,显影条件符合图案化过程要求,便于应用。
在一个实施方案中,根据本发明的ABmCn支化结构中的A、B和C中的至少一个包含选自金属元素、卤族元素及其组合中的至少一种。
在一个实施方案中,根据本发明的ABmCn支化结构中的A、B和C中的至少两个各自独立地包含选自金属元素、卤族元素及其组合中的至少一种。
在一个实施方案中,根据本发明的ABmCn支化结构中的A、B和C各自独立地包含选自金属元素、卤族元素及其组合中的至少一种。
在一个实施方案中,根据本发明的支化型有机硅材料包含卤族元素但不包含金属元素。在这种情况下,在提高图案化材料在以短波长电磁辐射为曝光光源下保持高敏感性的同时,可去除金属元素对图案化过程中的衬底污染问题,减少工艺步骤。
在一个实施方案中,本发明提供一种图案化组合物,其包含一种或多种根据本发明的支化型有机硅材料。
在一个实施方案中,本发明的图案化组合物包含一种或多种根据本发明的支化型有机硅材料作为主要成分。在本文中,“主要成分”是指在应用该组合物时起到主要作用的成分。例如,在某些实施方案中,“主要成分”可以是除组合物中的载体(例如,在液态情况下可以是水或溶剂,在固态情况下可以是沸石等多孔载体)之外含量最高的活性成分,而在某些实施方案中,“主要成分”不一定是含量最高的,但是可以是在实现该组合物的某些功能方面唯一起作用的成分。
在一个实施方案中,本发明的图案化组合物包含两种或更多种根据本发明的支化型有机硅材料。
在一个实施方案中,本发明的图案化组合物呈混合溶液的形式。
在一个实施方案中,本发明的图案化组合物包含两种或更多种根据本发明的端基可交联的支化型有机硅材料形成混合溶液。
在本发明的图案化组合物为混合溶液的情况下,其固体含量可以在以重量计1%-10%的范围内,例如可以在以重量计由1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%中的任意两个值所限定的范围内。
本发明的图案化组合物可以包含溶剂,例如无机溶剂和/或有机溶剂。在一个实施方案中,本发明的图案化组合物包含无机溶剂,所述无机溶剂可以是水或其他水性溶剂。
在一个实施方案中,本发明的图案化组合物包含有机溶剂,所述有机溶剂可以是酮类有机溶剂、醇类有机溶剂、醚类有机溶剂、酯类有机溶剂、内酯类有机溶剂及其组合中的一种或多种。酮类有机溶剂例如可以是环己酮、甲基-2-正戊基酮或其组合。醇类有机溶剂例如可以是3-甲氧基丁醇、3-甲基-3-甲氧基丁醇、1-甲氧基-2-丙醇、1-乙氧基-2-丙醇、二丙酮醇、二乙二醇、丙二醇、甘油、1,4-丁二醇、1,3-丁二醇或其组合。醚类有机溶剂例如可以是丙二醇单甲醚、乙二醇单甲醚、丙二醇单乙醚、乙二醇单乙醚、丙二醇二甲醚、二乙二醇二甲醚或其组合。酯类有机溶剂例如可以是丙二醇单甲醚乙酸酯(PGMEA)、丙二醇单乙醚乙酸酯、乳酸乙酯、丙酮酸乙酯、乙酸丁酯、3-乙氧基丙酸甲酯、3-乙氧基丙酸乙酯、乙酸叔丁酯、丙酸叔丁酯、丙二醇单叔丁醚乙酸酯或其组合。内酯类有机溶剂例如可以是γ-丁内酯。
在一个实施方案中,本发明的图案化组合物包含上述无机溶剂和有机溶剂的混合物。
在一个实施方案中,本发明的图案化组合物还可以包括选自以下的至少一种:光致催化剂、感光剂、成膜剂、染料、有机溶剂、无机溶剂、稳定剂、分散剂及其组合。
在一个实施方案中,本发明的图案化组合物包含光致催化剂,优选地所述光致催化剂包含锰基光致催化剂。
在一个实施方案中,本发明提供一种图案化方法,其包括使用根据本发明的支化型有机硅材料或根据本发明的图案化组合物对衬底进行图案化的步骤。
在一个实施方案中,本发明的图案化方法包括使衬底暴露于曝光光源的步骤。
在一个实施方案中,本发明的图案化方法包括使衬底暴露于曝光光源的步骤。用于本发明的曝光光源可以为波长小于1000nm的电磁辐射,优选地为波长小于400nm的电磁辐射,或者为波长在由0、0.01nm、0.05nm、0.1nm、 0.5nm、1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm、15nm、18nm、20nm、50nm、100nm、150nm、200nm、220nm、248nm、300nm、350nm、380nm、400nm、480nm、500nm、600nm、700nm、800nm、900nm和1000nm中的任意两个值所限定的范围内的电磁辐射。在一个优选实施方案中,所述曝光光源为波长在1~15nm范围内的电磁辐射。
在一个实施方案中,本发明的图案化方法包括使衬底暴露于选自以下的一种或多种曝光光源的步骤:X射线、紫外光、深紫外光、软X射线、电子束、离子束及其组合。
根据本发明,可以使用波长为1~15nm的电磁辐射曝光光源或电子束刻蚀形成高精度图案。图2示出了以短波长电磁辐射(例如软X射线,即soft X-ray)作为曝光光源进行图案化工艺的流程图。首先,图案化材料被溶解在合适的溶剂当中形成一定浓度的溶液,溶液浓度可根据膜厚需求进行调节,通常溶液浓度越高对应膜层越厚,按照基底的大小尺寸,取一定量体积的溶液经旋涂过程涂布在硅晶元或被其他涂层覆盖的硅晶圆上或任何其他以硅晶圆为最终衬底的涂层上,形成小于100nm厚度的图案化材料膜层,如步骤1和2所示。在曝光前通常经烘烤过程除去残留在膜层中的溶剂,如步骤3所示。后经软X射线范围内或波长在1~15nm范围内的任意单一波长射线、或混合波长射线经掩模板反射选择性照射图案化材料膜层上,将掩模板上的图案转移到图案化材料膜层上,过程如步骤4所示。图案化材料经选择性照射后,被照射部分的化学性质发生变化,溶解性发生改变,通过显影液(可选自有机溶液、无机溶液、纯溶剂、混合溶剂、含添加剂的溶剂等)对被照射过的图案化材料进行清洗,清洗时间范围在10~300s之间,可为单步清洗或多步清洗。经清洗后图案化材料层,被照射部分未被洗掉,形成负性图案,图案化材料称为负性图案化材料,如步骤5a所示;被照射部分被洗掉,形成正性图案,图案化材料称为正性图案化材料,如步骤5b所示。图案化材料所形成的图案在刻蚀步骤中对底层基底材料形成选择性保护作用,经一定条件的刻蚀,图案化材料以及未被保护的基底材料被刻蚀,但被图案化材料保护 处刻蚀速度慢于未被保护处,最终在基底材料上形成图案,如步骤6a所得为负性图案,如步骤6b所得为正性图案。在以上图案化过程中,所使用电磁辐射曝光波长为1~15nm或无掩膜电子束曝光,在该条件下,要求所得图案分辨率高,图案边沿粗糙度低,所消耗曝光能量低,当前材料不能完全满足。
本发明所涉及的支化型有机硅材料为支化型硅氧烷核结构与有机接枝基团组合而形成的化合物。根据本发明的支化型有机硅材料可以通过两种合成方法来制备。一种是从非支化的小分子硅氧烷开始制备,另一种是通过对现有支化型硅氧烷分子进行改性而制备。支化型有机硅材料合成后,需与添加剂如稳定剂、分散剂、溶剂等混合形成配方后进入图案化工艺流程准备,进行以短波长电磁辐射为曝光光源的图案化过程。
在一个实施方案中,本发明提供一种制备根据本发明的支化型有机硅材料的方法,所述方法包括使Si(OR)aD(4-a)水解后与水解后的卤代硅烷进行反应,进而与产生B基团和/或C基团的化合物进行反应的步骤,其中在式Si(OR)aD(4-a)中,R为具有1~20个碳原子的直链或支链烃基,例如为具有由1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20中的任意两个值所限定的范围内的个数的碳原子的直链或支链烃基,a是整数3或4,D是不具有交联功能或继续反应功能的端基基团。B基团和C基团如前文针对ABmCn支化结构所定义。在一个优选实施方案中,式Si(OR)aD(4-a)中的每个R独立地选自甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、正戊基、异戊基、新戊基、正己基。
根据本发明的一个实施方案,所述卤代硅烷是被F、Cl、Br、I中的一个或多个取代的硅烷,优选地为具有1~5、1~4或2~3个硅原子的硅烷。在一个实施方案中,所述卤代硅烷是一卤代硅烷、二卤代硅烷、三卤代硅烷、四卤代硅烷或其组合。在一个实施方案中,所述卤代硅烷还被烷烃基、烯烃基、炔烃基中的一个或多个取代,所述烷烃基、烯烃基和炔烃基相互独立地具有1-100个碳原子,例如具有1-50个碳原子、1-20个碳原子或者1-10个碳原子,优选地具有由1、2、3、4、5、6、7、8、9、10中的任意两个值所限定的范围内的个数的碳原子。
在一个实施方案中,所述卤代硅烷选自由1或2个相互独立地选自烷烃基(例如C1-C10烷烃基)、烯烃基(例如C1-C10烯烃基)、炔烃基(例如C1-C10炔烃基)或其组合的基团取代的二卤代硅烷或一卤代硅烷。
在一个实施方案中,所述卤代硅烷选自二甲基氯硅烷、二甲基溴硅烷、二甲基碘硅烷、三甲基氯硅烷、三甲基溴硅烷、三甲基碘硅烷、二正丁基氯硅烷、二异丁基氯硅烷、二仲丁基氯硅烷或其组合。
在一个具体实施方案中,本发明提供一种支化型有机硅材料的合成方法,包括将硅氧烷水解后与硅烷进行反应,并在催化剂催化下与环己烷进行加成反应,获得三支化小分子产物。所述硅氧烷优选三乙氧基苯基硅氧烷,所述硅烷优选二甲基一氯硅烷,所述催化剂可以是金属催化剂,优选铂催化剂;所述环己烷优选1,2-环氧-4-乙烯基环己烷。
在另一个实施方案中,本发明提供一种制备根据本发明的支化型有机硅材料的方法,所述方法包括对已合成的支化型有机硅材料进行改性的步骤。优选地,所述已合成的支化型有机硅材料选自倍半硅氧烷、环硅氧烷及其组合,所述环硅氧烷优选地选自环三硅氧烷、环四硅氧烷、环五硅氧烷、环六硅氧烷、环七硅氧烷、环八硅氧烷及其组合。在一个优选实施方案中,所述已合成的支化型有机硅材料选自乙烯基倍半硅氧烷(CAS号:69655-76-1)、丙烯酸基-笼形聚倍半硅氧烷(CAS号:1620202-27-8)、胺苯基聚倍半硅氧烷(CAS号:518359-82-5)、γ-缩水甘油醚氧硅丙基倍半硅氧烷(CAS号:68611-45-0)、2,4,6,8-四甲基-2,4,6,8-四乙烯基环四硅氧烷(CAS号:2554-06-5)、2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷(CAS号:3901-77-7)及其组合。
通过改性已合成的支化型有机硅材料而制备根据本发明的支化型有机硅材料的方法可以包括使用有机基团修饰的氢化硅氧烷对已合成的支化型有机硅材料的端基进行选择性修饰的步骤。所述有机基团的种类取决于目标产物中的相应基团,如上文所述的那些。
对已合成的支化型硅氧烷进行改性,对其端基进行选择性修饰,如利用可采购到的环硅氧烷例如环三硅氧烷或环四硅氧烷,或者倍半硅氧烷例如乙烯基倍半硅氧烷,利用其有机基团乙烯基在铂(Pt)催化下可以与氢化硅氧烷基进 行反应,选取不同种有机基团修饰的氢化硅氧烷与其反应,从而对其进行端基修饰改性。这可以实现具有多种有机基团的支化型硅氧烷结构。
本发明的图案化材料含可聚合端基的支化型聚硅氧烷化合物,对比现有应用在以短波长电磁辐射为曝光光源的图案化系统中的有机型图案化材料,具有优良的高敏感性、高图案分辨率、低图案边沿粗糙度以及高抗刻蚀性,因此尤其适用于以短波长电磁辐射(例如软X射线)为曝光光源的图案化技术。
根据本发明的支化型有机硅材料或包含其的图案化组合物可以在基底上形成10-100nm薄膜,并可以在曝光条件下结合后续加工工艺获得10-80nm关键尺寸的图形。所述基底可包括但不限于芯片、掩膜、半导体等。
本发明实施方式中的各特征可以单独使用或彼此组合使用。
本文中提及的百分数是指基于组合物总重量的重量百分数,除非有明确相反的规定。
除非本文另有说明或上下文明显矛盾,否则本文所述的所有方法均可以任何合适的顺序进行。除非另外声明,否则本文提供的任何和所有实例或示例性语言(例如,“如”)的使用仅旨在更好地说明本发明,而不对本发明的范围构成限制。本说明书中的任何语言都不应被解释为表示任何未要求保护的要素对于本发明的实践是必要的。
实施例
以下通过实施例对本发明进行更加详细的解释和说明以便于本领域技术人员更好地理解本发明,但是本发明不限于这些实施例。
1.定义
在本文中,术语“短波长电磁辐射”是指波长小于400nm的电磁辐射,尤其是指波长小于248nm的电磁辐射,例如是指波长在由0、0.01nm、0.05nm、0.1nm、0.5nm、1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm、15nm、18nm、20nm、50 nm、100nm、150nm、200nm、220nm、248nm、300nm、350nm、380nm、400nm中的任意两个值所限定的范围内的电磁辐射。在一些实施方案中,术语“短波长电磁辐射”是指波长在1~15nm范围内的电磁辐射。
术语“图案化(patterning)”是指平板印刷术,图案化过程、微影过程,是半导体器件制造工艺中的重要步骤,该步骤曝光和显影过程在图案化材料上刻画集合图形结构,通过刻蚀工艺将掩模版上的图形转印到衬底基片、基材上,此处衬底基材基片不仅包括硅晶圆,也可以是其他金属层、介质层、以及经表面修饰或添加配套层的上述基材。
术语“图案化材料(patterning materials)”是指通过光或电磁辐射(例如紫外光、深紫外光、软X射线、X射线、电子束、离子束等)的照射,或其他能形成微纳图形的加工手段(例如3D打印,激光直写等),其在显影液中的溶解度发生变化的耐刻蚀性薄膜材料。
术语“显影液(developer)”是指溶解由曝光造成图案化材料溶解性变化后可溶解区域的一种纯或混合型溶剂。
术语“正性图案(Positive tone)”是指显影后,图案化材料被曝光部分被显影液洗掉,形成的图案为正性图案。
术语“负性图案(Negative tone)”是指显影后,图案化材料未被曝光部分被显影液洗掉,形成的图案为负性图案。
术语“旋涂过程(spin coat)”是指旋转涂覆,是一种高速成膜方法,可以得到均匀的薄膜,均匀性广泛应用于半导体材料及化工材料等薄膜制备。它利用旋转产生的离心力,将溶胶、溶液或悬浊液等均匀平铺到衬底表面。
术语“掩模板(mask)”是指在图案化过程中,掩模作为一个光学元件处于图案化光路之中,掩模上承载有设计图形,光线选择性的经其透射或反射,可以将设计图形透射在图案化材料膜层上。
以“约”字来描述数值和数值范围时是指这些数值和数值范围可以在±5%的范围内变化。
另外,以下示出了部分英文缩略语和完整的中英文表述的对照表:
2.材料
所使用的材料及其纯度如下表所示。
3.测试
进行了如下测试来例示根据本发明的支化型有机硅材料的性能和优势。
1)光敏感性测试
采用不同剂量的电子束、离子束、X射线等电磁辐射对材料膜层曝光,将获得目标图案所需的最小能量进行对比,以获得敏感性。
2)抗刻蚀性测试
采用氧等离子对形成的图案进行刻蚀,进行刻蚀性对比,以获得相对抗刻蚀性能。
4.图案化工艺
a)硅片表面处理
亲水性处理:在Piranha溶液(H2O:30%氨水:30%H2O2=5:1:1)中清洗15~20mins,然后去离子水洗,再用异丙醇洗,使用前用气枪吹干表面液体。
疏水性处理:使用上述亲水性处理过的硅片,利用蒸镀或者旋涂的方式使HMDS均匀覆盖在上述硅片表面。
抗反射层处理:添加底层抗反射层BARC,或底层SOC、SOG。
b)溶液制备
经合成获得纯度在98%以上的单种支化型硅氧烷材料,可将一种或多种支化型硅氧烷材料按照比例混合,可选择性添加一种或多种稳定剂、分散剂、光酸、淬灭剂、溶剂等形成图案化材料配方。在除溶剂外的图案化材料组合物中,相对于100重量份的支化型硅氧烷材料,其他组分的重量份数在0.1~40重量份之间。所使用溶剂重量比例取决于膜层厚度,可根据不同膜层厚度需求,调节溶剂量。
c)膜层制备
根据基片大小,取用适量图案化材料配方混合物进行旋涂,示例:4英寸基片通常取用1~5mL图案化材料配方混合物进行旋涂,取得5~200nm之间任一厚度均匀膜层,膜层表面粗糙度低于2nm。旋涂后可选择性添加烘烤步骤,烘烤温度在60~200℃之间,时间20~120s之间以除去残余溶剂。
d)膜层曝光
图案化材料膜层经电子束选择性照射后,被照射部分发生化学反应,溶解性发生变化。可选择性添加烘烤步骤,以促进膜层中未完成化学反应进行,烘烤温度在60~200℃之间,时间在20~120s之间。
e)显影过程
取合适的显影液,显影液示例:0.5~5%浓度的四甲基氢氧化铵(TMAH)水溶液,或有机溶剂如酮类,例如环己酮和甲基-2-正戊基酮;醇类例如3-甲 氧基丁醇,3-甲基-3-甲氧基丁醇,1-甲氧基-2-丙醇,1-乙氧基-2-丙醇和二丙酮醇;醚类例如丙二醇单甲醚,乙二醇单甲醚,丙二醇单乙醚,乙二醇单乙醚,丙二醇二甲醚,二乙二醇二甲醚;酯类例如丙二醇单甲醚乙酸酯(PGMEA),丙二醇单乙醚乙酸酯,乳酸乙酯,丙酮酸乙酯,乙酸丁酯,3-乙氧基丙酸甲酯,3-乙氧基丙酸乙酯,乙酸叔丁酯,丙酸叔丁酯和丙二醇单叔丁醚乙酸酯;和内酯类例如γ-丁内酯;高沸点醇溶剂如二乙二醇,丙二醇,甘油,1,4-丁二醇或1,3-丁二醇等以上一种溶剂或多种溶剂混合而成的显影液。显影液与曝光后膜层接触显影时间10~120s。后可选择性添加水润洗过程,润洗时间10~120s。后可选择性添加烘烤过程,烘烤温度在60~200℃之间,时间在20~120s之间。
f)图案表征
采用电子显微镜或者原子力显微镜对所得图案进行观察量测,所得图案分辨率在3~200nm之间,边沿粗糙度在图案分辨率的2~30%之间。
g)刻蚀过程
可经离子刻蚀或离子注入过程,将图案转移至底层基底基片上。
图3示出了本实施例中采用的图案化工艺流程图。
在以下实施例中,除非另有说明,所述图案化过程为包含上述步骤a)-g)的图案化工艺。
实施例1从三乙氧基苯基硅氧烷开始制备支化型有机硅材料
三乙氧基苯基硅氧烷水解后与二甲基一氯硅烷进行反应,并在铂催化下与1,2-环氧-4-乙烯基环己烷进行加成反应,获得目标三支化小分子目标产物。合成路线如下所示。
由此制得的支化型有机硅材料的核磁图谱如图4所示。
该新型支化型倍半硅氧烷的分子尺寸为约0.5nm,形成15nm图案化膜层厚度,在选择性曝光后在较低能量下可形成sub-10nm图案化结构,实现了本发明所要解决的高敏感性、高分辨率图案化材料的最初设定。
图5a示出了采用该新型支化型倍半硅氧烷进行图案化过程的实施效果。经电子束选择性照射后,图案化材料膜层形成溶解性变化,经异丙醇与水混合溶剂制成的显影液清洗后,没有被照射的部分被洗掉,被照射的部分留下,形成负性图案,完成图案化过程。后经氧离子刻蚀步骤,可在衬底基片上形成负性图案。更优的,采用该主体材料在氮化硅(SiNx)悬空膜为衬底条件下,用HBL进行曝光,所得图形如图5b所示。该实施例采用曝光剂量低于50μC/cm2,最小线宽低于10nm,体现了材料的高分辨率和高敏感性能。
该新型的支化型硅氧烷为主体材料的图案化材料具有大量的可聚合端基,代表具有高的短波长电磁辐射敏感性,尤其是软X射线敏感性,较现有技术可以吸收更多的短波长光子例如软X射线光子,并且,与氟苯基相连的双键,可以通过自由基反应加速聚合反应的进行,更好地提高光化学反应效率,进一步提高图案化材料的光敏性。
实施例2对乙烯基倍半硅氧烷进行改性而制备支化型有机硅材料
以乙烯基倍半硅氧烷为原料,对其进行改性,以合成多种支化型硅氧烷材料。合成路线如下所示。
由此制得的支化型有机硅材料的核磁图谱如图6所示。
图7示出了采用该改性支化型倍半硅氧烷进行图案化过程的实施效果。
与实施例1的实施效果类似,以实施例2所合成的材料为主要成分的图案化材料在基底基片上制成膜,膜层经射线选择性照射后,图案化材料膜层形成溶解性变化,经异丙醇与水混合溶剂制成的显影液清洗后,没有被照射的部分被洗掉,被照射的部分留下,形成负性图案,完成图案化过程。后经氧离子刻蚀步骤,可在衬底基片上形成负性图案。
然而由于在膜层中被光照后发生自由基聚合反应的机理不同,导致化学反应速率不同,即表观效果造成光敏感性有所区别,进而可以设计不同的端基,根据实际工艺条件需要,调节图案化材料的光敏感性。
比较例1
以实施例2中作为改性原料的乙烯基倍半硅氧烷代替本发明的支化型有机硅材料进行上述图案化工艺,无法在衬底基片上实现预期的图案化,基本不具备图案化性能。
可见,采用本发明的支化型有机硅材料不仅能够实现有效的图案化,而且图形敏感性可达50uC以内,而目前商业化的图案化材料的曝光能量都在100uC到几千uC的范围内,充分显示出本发明的支化型有机硅材料的高敏感性。此外,采用本发明的支化型有机硅材料还可以实现低于20nm的高分辨率和较高的抗刻蚀性。
尽管本申请中所提及的许多数值和数值范围没有用“约”字来描述,但是应当理解,这些数值和数值范围均可以在±5%的范围内变化而不会脱离本发明的范围。
除非有明确相反的规定,本文使用的所有技术和科学术语具有与本发明所属领域的技术人员普遍理解的相同的含义。尽管本文中具体描述了一些方法和材料,但是与本文所描述的类似或等同的方法和材料尽管在本文中没有具体提及也可用于实施本发明。例如,本文中所描述的各种具体的中空通道结构并非对可用于构造本文中提供的眼部植入物的各种结构的穷举。此外, 一个或多个所示中空通道结构的特征可与一个或多个其他所示中空通道结构的特征组合,以产生许多不同组合,这些组合在本申请的范围内。本文所提到的所有公开出版物、专利申请、专利和其他参考文献都通过引用全部并入本文。在有冲突的情形下,以本申请中的定义为准。此外,这些材料、方法和示例仅是示意性的,不应视为用来限制本申请所要求保护的范围。
尽管本说明书包含许多具体实施方式的细节,但这些细节不应被解释为对任何发明或所可能要求的内容的范围的限制,而是作为对可能是特定发明的特定实施方案的特征的具体描述。本说明书中在各单独的实施方案的上下文中描述的某些特征还可在单个实施方案中组合地实施,在单个实施方案的上下文中描述的各种特征也可在多个实施方案中单独地或以任何合适的子组合实施。

Claims (25)

  1. 一种支化型有机硅材料,其特征在于所述支化型有机硅材料具有ABmCn支化结构,其中
    A=Si(OSi)aD(4-a),a是整数3或4,
    m是等于或大于0的整数,n是等于或大于3的整数,并且m≤n,
    B为连接基团,在存在时分别连接A与C,
    C具有至少一个可交联基团以构建支化臂,
    D是不具有交联功能或继续反应功能的端基基团。
  2. 根据权利要求1所述的支化型有机硅材料,其中所述ABmCn支化结构选自:
  3. 根据权利要求1或2所述的支化型有机硅材料,其中C具有至少一个选自以下的可交联基团:叠氮基、烯基、醛基、巯基、取代或未取代的氨基、炔基、酯基、羧酸基团、卤素基、羟基、环氧基、氰酸酯基、硫氰酸酯基、异硫氰酸酯基、用作多齿配体的基团及其组合。
  4. 根据权利要求1或2所述的支化型有机硅材料,其中B源自选自以下的至少一种单体:
  5. 根据权利要求1或2所述的支化型有机硅材料,其中C源自选自以下的至少一种结构:
  6. 根据权利要求1或2所述的支化型有机硅材料,其中D源自选自以下的至少一种结构:
  7. 根据权利要求1或2所述的支化型有机硅材料,其中A、B和C相互独立地包含或不包含选自金属元素、卤族元素及其组合中的至少一种。
  8. 一种图案化组合物,其包含一种或多种根据权利要求1-7中任一项所述的支化型有机硅材料。
  9. 根据权利要求8所述的图案化组合物,其包含两种或更多种根据权利要求1-7中任一项所述的支化型有机硅材料。
  10. 根据权利要求8或9所述的图案化组合物,其呈混合溶液的形式。
  11. 根据权利要求10所述的图案化组合物,其固体含量在1%-10%之间。
  12. 根据权利要求8或9所述的图案化组合物,其还包括选自以下的至少一种:光致催化剂、感光剂、成膜剂、染料、有机溶剂、无机溶剂、稳定剂、分 散剂及其组合。
  13. 根据权利要求12所述的图案化组合物,其中所述光致催化剂包含锰基光致催化剂。
  14. 一种图案化方法,其包括使用根据权利要求1-7中任一项所述的支化型有机硅材料或根据权利要求8-13中任一项所述的图案化组合物对衬底进行图案化的步骤。
  15. 根据权利要求14所述的图案化方法,其包括使衬底暴露于曝光光源的步骤。
  16. 根据权利要求15所述的图案化方法,其中所述曝光光源为波长小于400nm的电磁辐射。
  17. 根据权利要求16所述的图案化方法,其中所述曝光光源为波长在0.01~248nm范围内的电磁辐射。
  18. 根据权利要求17所述的图案化方法,其中所述曝光光源为波长在1~15nm范围内的电磁辐射。
  19. 一种制备根据权利要求1-7中任一项所述的支化型有机硅材料的方法,所述方法包括使Si(OR)aD(4-a)水解后与水解后的卤代硅烷进行反应,进而与产生B基团和/或C基团的化合物进行反应的步骤,其中在式Si(OR)aD(4-a)中,R为具有1~20个碳原子的直链或支链烃基,a是整数3或4,D是不具有交联功能或继续反应功能的端基基团。
  20. 根据权利要求19所述的方法,其中R选自甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、正戊基、异戊基、新戊基、正己基。
  21. 根据权利要求19或20所述的方法,其中所述卤代硅烷选自二甲基氯硅烷、二甲基溴硅烷、二甲基碘硅烷、三甲基氯硅烷、三甲基溴硅烷、三甲基碘硅烷、二正丁基氯硅烷、二异丁基氯硅烷、二仲丁基氯硅烷或其组合。
  22. 一种制备根据权利要求1-7中任一项所述的支化型有机硅材料的方法,所述方法包括对已合成的支化型有机硅材料进行改性的步骤。
  23. 根据权利要求22所述的方法,所述已合成的支化型有机硅材料选自倍半硅氧烷、环硅氧烷及其组合。
  24. 根据权利要求22所述的方法,所述已合成的支化型有机硅材料选自乙烯基倍半硅氧烷、丙烯酸基-笼形聚倍半硅氧烷、胺苯基聚倍半硅氧烷、γ-缩水甘油醚氧硅丙基倍半硅氧烷、2,4,6,8-四甲基-2,4,6,8-四乙烯基环四硅氧烷、2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷及其组合。
  25. 根据权利要求22-24中任一项所述的方法,包括使用有机基团修饰的氢化硅氧烷对已合成的支化型有机硅材料的端基进行选择性修饰的步骤。
PCT/CN2023/091383 2022-04-29 2023-04-27 一种支化型有机硅材料 WO2023208153A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210476531.2A CN117003785A (zh) 2022-04-29 2022-04-29 一种支化型有机硅材料
CN202210476531.2 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023208153A1 true WO2023208153A1 (zh) 2023-11-02

Family

ID=88517866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091383 WO2023208153A1 (zh) 2022-04-29 2023-04-27 一种支化型有机硅材料

Country Status (2)

Country Link
CN (1) CN117003785A (zh)
WO (1) WO2023208153A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
US20070299165A1 (en) * 2006-06-27 2007-12-27 Gelcore Llc Phenyl-containing silicone epoxy formulations useful as encapsulants for LED applications
CN101122742A (zh) * 2007-09-14 2008-02-13 西北工业大学 超支化聚硅氧烷基光刻胶
CN101974120A (zh) * 2010-09-28 2011-02-16 昆山西迪光电材料有限公司 含纳米硅深紫外负性增幅型光刻胶及其成膜树脂
US20140050900A1 (en) * 2011-04-27 2014-02-20 Fujifilm Corporation Curable composition for imprints, pattern-forming method and pattern
JP2014227544A (ja) * 2013-05-27 2014-12-08 信越化学工業株式会社 光半導体素子封止用樹脂組成物及び該組成物を用いてなる光半導体装置
JP2016084373A (ja) * 2014-10-22 2016-05-19 信越化学工業株式会社 シリコーン変性エポキシ樹脂と多価カルボン酸化合物を含有するエポキシ樹脂およびその硬化物
CN107903587A (zh) * 2017-12-15 2018-04-13 江苏澳盛复合材料科技有限公司 一种碳纤维增强材料用环氧树脂体系

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
US20070299165A1 (en) * 2006-06-27 2007-12-27 Gelcore Llc Phenyl-containing silicone epoxy formulations useful as encapsulants for LED applications
CN101122742A (zh) * 2007-09-14 2008-02-13 西北工业大学 超支化聚硅氧烷基光刻胶
CN101974120A (zh) * 2010-09-28 2011-02-16 昆山西迪光电材料有限公司 含纳米硅深紫外负性增幅型光刻胶及其成膜树脂
US20140050900A1 (en) * 2011-04-27 2014-02-20 Fujifilm Corporation Curable composition for imprints, pattern-forming method and pattern
JP2014227544A (ja) * 2013-05-27 2014-12-08 信越化学工業株式会社 光半導体素子封止用樹脂組成物及び該組成物を用いてなる光半導体装置
JP2016084373A (ja) * 2014-10-22 2016-05-19 信越化学工業株式会社 シリコーン変性エポキシ樹脂と多価カルボン酸化合物を含有するエポキシ樹脂およびその硬化物
CN107903587A (zh) * 2017-12-15 2018-04-13 江苏澳盛复合材料科技有限公司 一种碳纤维增强材料用环氧树脂体系

Also Published As

Publication number Publication date
CN117003785A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
EP3203320B9 (en) Photosensitive resin composition, cured film, element provided with cured film, and method for manufacturing semiconductor device
EP1720075B1 (en) Coating compositions
JP2608429B2 (ja) パターン形成用材料およびパターン形成方法
KR101286631B1 (ko) 리버스 패터닝 방법 및 재료
JP5632387B2 (ja) 湿式エッチング可能な反射防止膜
US5457003A (en) Negative working resist material, method for the production of the same and process of forming resist patterns using the same
TWI531865B (zh) A multilayer photoresist process pattern forming method and an inorganic film forming composition for a multilayer photoresist process
KR101295858B1 (ko) 더블 패터닝 방법 및 물질
FI129480B (en) Silanol-containing organic-inorganic hybrid coatings for high-resolution patterning
JP4244315B2 (ja) レジストパターン形成用材料
US4981778A (en) Polysiloxane, resist for ion beam and electron beam lithography
CN112462572B (zh) 光刻胶、光刻胶的图案化方法及生成印刷电路板的方法
TWI588610B (zh) 用於裝置製造的可光圖案化及可顯影之倍半矽氧烷樹脂
CN1181109C (zh) 抗反射涂层用组合物、聚合物和其制法、以及形成薄膜图形的方法
EP0466025B1 (en) Resist material, method for the production of the same and process of forming resist patterns using the same
WO2023208153A1 (zh) 一种支化型有机硅材料
KR102324679B1 (ko) 금속 산화물을 함유하는 재료, 이것의 제조 방법 및 이것의 사용 방법
CN111607089B (zh) 官能性聚氢倍半硅氧烷树脂组成物、产生其的方法及其用途
CN110028928A (zh) 一种光刻胶粘附剂、制备方法及使用方法
KR20050044501A (ko) 포토리소그래피용 무반사 코팅 및 이의 제조 방법
WO2022022728A1 (zh) 图案化材料和图案化薄膜
JPH0425530A (ja) シロキサンポリマー及びレジスト組成物
TWI842839B (zh) 官能性聚氫倍半矽氧烷樹脂組成物、產生其的方法及其用途
KR102586109B1 (ko) 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법
JP2573996B2 (ja) パターン形成材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795585

Country of ref document: EP

Kind code of ref document: A1