WO2023208066A1 - 车灯、投射组件和车辆 - Google Patents

车灯、投射组件和车辆 Download PDF

Info

Publication number
WO2023208066A1
WO2023208066A1 PCT/CN2023/090953 CN2023090953W WO2023208066A1 WO 2023208066 A1 WO2023208066 A1 WO 2023208066A1 CN 2023090953 W CN2023090953 W CN 2023090953W WO 2023208066 A1 WO2023208066 A1 WO 2023208066A1
Authority
WO
WIPO (PCT)
Prior art keywords
asymmetric unit
light
asymmetric
reflective surface
section
Prior art date
Application number
PCT/CN2023/090953
Other languages
English (en)
French (fr)
Inventor
孙渤林
唐斌斌
张士颖
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2023208066A1 publication Critical patent/WO2023208066A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to the technical field of automobile accessories, and specifically to a projection assembly, a car lamp and a vehicle.
  • the automobile low beam includes a light source, a reflector and a lens.
  • the light source, reflective surface and corresponding light incident surface form an optical unit.
  • a plurality of light sources, a plurality of reflective surfaces and a plurality of light incident surfaces form multiple optical units.
  • the light emitted by the light source is reflected by the corresponding reflective surface and then converges near the focus of the corresponding light incident surface.
  • the light emitted by multiple light sources is finally refracted by the lens to the road surface to form illumination.
  • the light shape formed by each optical unit is a left-right symmetrical light shape, resulting in more energy in the middle of each optical unit and less energy on the left and right sides, ultimately resulting in poor road illumination uniformity.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • an embodiment of the present disclosure proposes a projection assembly to improve the uniformity of road illumination of a vehicle lamp having the projection assembly.
  • the projection assembly of the embodiment of the present disclosure includes a plurality of optical units, each of the optical units includes a reflector lens, the reflector has a reflective surface; and the lens has a light incident surface, the light incident surface corresponds to the A reflective surface is provided; wherein each of the optical units has an optical axis extending along the X direction, the reflective surface and the corresponding light incident surface are arranged along the X direction, and a part of the plurality of optical units
  • the optical unit is an asymmetric unit, and the asymmetric unit satisfies the following requirements: in the same asymmetric unit, the optical axis and the geometric center line of the reflective surface are spaced apart along the Y direction.
  • a first low-beam cut-off line that can form a first light-dark cut-off line is provided on the side of the reflective surface away from the light-incident surface, and the first low-beam cut-off line
  • the line has a first inflection point that can form the elbow of the first light-dark cutoff line, and the first inflection point is provided on the optical axis of the asymmetric unit.
  • the number of the asymmetric units is multiple, the multiple asymmetric units are arranged along the Y direction, and two of the asymmetric units among the multiple asymmetric units form an asymmetric unit.
  • the unit group, the asymmetric unit group satisfies: the optical axis of each asymmetric unit is located between the geometric center lines of the two reflective surfaces in the Y direction.
  • one of the asymmetric units is a first asymmetric unit
  • the other asymmetric unit is a second asymmetric unit
  • one of the first asymmetric units The distance between the optical axis and the geometric centerline of the reflective surface is L1
  • the distance between the optical axis and the geometric centerline of the reflective surface in the second asymmetric unit is L2
  • the L1 is equal to the L2 or the L1 is greater than the L2.
  • the size of the reflective surface of the first asymmetric unit in the Y direction is L01
  • the size of the reflective surface of the second asymmetric unit in the Y direction is L01.
  • L02 the ratio of L1 to L01 is 0.05-0.49, and/or the ratio of L2 to L02 is 0.05-0.49.
  • the number of the asymmetric unit groups is multiple, and the multiple asymmetric unit groups are arranged along the Y direction.
  • At least one of the asymmetric unit groups is a first asymmetric unit group, at least one of the asymmetric unit groups is a second asymmetric unit group, and one of the first asymmetric unit groups
  • the asymmetric unit is a first asymmetric unit, the other asymmetric unit is a second asymmetric unit, and the distance between the optical axis in the first asymmetric unit and the geometric centerline of the reflective surface The distance is L1, and the distance between the optical axis and the geometric centerline of the reflective surface in the second asymmetric unit is L2.
  • one of the asymmetric units is The third asymmetric unit
  • the other asymmetric unit is the fourth asymmetric unit
  • the distance between the optical axis in the third asymmetric unit and the geometric center line of the reflective surface is L3
  • the The distance between the optical axis and the geometric centerline of the reflective surface in the fourth asymmetric unit is L4; wherein, the L1 is equal to the L2, the L3 is equal to the L4, and the L3 is greater than the L1, or L1 is greater than L2, L3 is greater than L4, or L1 is equal to L2, and L3 is greater than L4.
  • the size of the reflective surface of the first asymmetric unit in the Y direction is L01
  • the size of the reflective surface of the second asymmetric unit in the Y direction is L01.
  • L02 the size of the reflective surface of the third asymmetric unit in the Y direction
  • L04 the size of the reflective surface of the fourth asymmetric unit in the Y direction
  • the ratio of L1 to the L01 is 0.05 ⁇ 0.35, and/or
  • the ratio of L2 to L02 is 0.05-0.35, and/or the ratio of L3 to L03 is 0.1-0.49, and/or the ratio of L4 to L04 is 0.1-0.49.
  • two of the asymmetric units in the asymmetric unit group are arranged adjacently.
  • the light incident surfaces of two asymmetric units are symmetrically arranged in the Y direction.
  • the first low-beam cutoff line includes a first section, a second section and a third section sequentially connected along the Y direction, and the first section and the third section are in the Z direction.
  • the second section is arranged at intervals in the direction, the second section is arranged at an angle, the connection between the third section and the second section forms the first inflection point, and the connection between the first section and the second section forms the third inflection point.
  • the second inflection point can form the shoulder of the first light-dark cutoff line; the inclination angle of the second section is 45°, and/or the first section, the second section and the At least one of the third section is a straight line, and/or at least one of the first section, the second section and the third section is a curve.
  • the first low beam cutoff line further includes a fourth section and a fifth section, and the third section, the fourth section and the fifth section are connected in sequence along the Y direction, so The third section and the fifth section are spaced apart in the Z direction.
  • the fourth section is arranged obliquely, and the fourth section is located between the first section and the third section in the Z direction.
  • At least one of the fourth segment and the fifth segment is a straight line; and/or at least one of the fourth segment and the fifth segment is a curve.
  • the lens has a light exit surface corresponding to the light entrance surface, the light entrance surface is a light entrance surface collimated in the Y direction, and the light exit surface is a light exit surface collimated in the Z direction.
  • the reflective surface is a paraboloid; and/or the size of the reflective surface in the Y direction is 5 mm to 15 mm; and/or the focal length of the reflective surface is 0.5 mm to 3 mm.
  • another part of the optical units among the plurality of optical units is a symmetrical unit, and the symmetrical unit satisfies that: the optical axis of the symmetrical unit intersects the geometric centerline of the reflective surface.
  • the number of the symmetrical units is multiple.
  • an end of the reflective surface away from the light incident surface is provided with a second light-dark cutoff line that can form the second light-dark cutoff line.
  • a low-beam cut-off line, the second low-beam cut-off line has a third inflection point that can form the elbow of the second light-dark cut-off line, and the third inflection point is set on the optical axis of the symmetrical unit.
  • An embodiment of the present disclosure provides a vehicle lamp to improve the uniformity of road illumination of the vehicle lamp.
  • the vehicle lamp according to the embodiment of the present disclosure includes the projection assembly described in any of the above embodiments.
  • Embodiments of the present disclosure provide a vehicle to improve the safety of the vehicle.
  • the vehicle according to the embodiment of the present disclosure includes the vehicle lamp described in any of the above embodiments.
  • the asymmetric unit can be used to increase the energy of at least one side of the light shape formed by the projection assembly.
  • the geometric centerline of the reflective surface is located on the right side of the optical axis of the optical unit, the light formed by the asymmetric unit
  • the asymmetric unit can be used to increase the energy of the left side of the light shape formed by the projection component. Therefore, the energy uniformity of the light shape formed by the projection component in the left and right directions can be improved, thereby improving the uniformity of road illumination of the vehicle lamp with the projection component, and improving driving safety.
  • Figure 1 is a perspective view of a projection assembly according to an embodiment of the present disclosure.
  • Figure 2 is a front view of a projection assembly according to an embodiment of the present disclosure.
  • Figure 3 is a top view of a projection assembly according to an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of the first asymmetric unit group and the second asymmetric unit group in FIG. 3 .
  • FIG. 5 is a front view of the first asymmetric unit group and the second asymmetric unit group in FIG. 3 .
  • FIG. 6 is a top view of the first asymmetric unit group and the second asymmetric unit group in FIG. 3 .
  • Figure 7 is a light shape effect diagram of the first asymmetric unit in Figure 6.
  • Figure 8 is a light shape effect diagram of the second asymmetric unit in Figure 6.
  • FIG. 9 is a light shape effect diagram formed by superimposing the first asymmetric unit and the second asymmetric unit in FIG. 6 .
  • Figure 10 is a light shape effect diagram of the third asymmetric unit in Figure 6.
  • Figure 11 is a light shape effect diagram of the fourth asymmetric unit in Figure 6.
  • FIG. 12 is a light shape effect diagram formed by superimposing the third asymmetric unit and the fourth asymmetric unit in FIG. 6 .
  • Figure 13 is a light shape effect diagram formed by the superposition of four asymmetric units in Figure 6.
  • Figure 14 is the light shape effect diagram formed by the superposition of all optical units in Figure 3.
  • Figure 15 is an exploded view of a vehicle lamp according to an embodiment of the present disclosure.
  • Figure 16 is a front view of a vehicle lamp according to an embodiment of the present disclosure (with the radiator hidden).
  • FIG. 17 is a view taken along line A-A in FIG. 16 .
  • Figure 18 is an exploded view of the lens, light blocking member and frame in Figure 15.
  • FIG. 19 is a perspective view of the lens in FIG. 15 .
  • FIG. 20 is a perspective view of the reflector in FIG. 15 .
  • FIG. 21 is a front view of the reflector in FIG. 15 .
  • Fig. 22 is a view taken along line B-B in Fig. 21 .
  • Car lights include high beam and low beam.
  • the light of the high beam is emitted in parallel.
  • the light is concentrated and bright, and can illuminate higher and farther objects.
  • the light emitted by the low beam is divergent and can illuminate close objects. objects within a larger range.
  • Car lights, as the eyes of a car, are not only related to the external image of a car owner, but are also closely related to safe driving at night or in bad weather conditions. Therefore, the road illumination effect of car lights is crucial to safe driving.
  • low beam lights have more energy in the middle and less energy on both sides, resulting in poor uniformity of road illumination.
  • embodiments of the present application provide a projection assembly, a vehicle lamp and a vehicle, which can effectively increase the energy of at least one side of the light shape formed by the projection assembly, thereby improving the performance of the vehicle lamp with the projection assembly. uniformity of road illumination, thereby improving driving safety.
  • the projection assembly 100 of the embodiment of the present disclosure includes multiple optical units.
  • Each optical unit includes a reflector 1 and a lens 2.
  • the reflector 1 has a reflective surface 101
  • the lens 2 has a light incident surface 2011, which is arranged corresponding to the reflective surface 101.
  • Each optical unit has an optical axis extending along the X direction (front and rear direction), the reflective surface 101 and the corresponding light incident surface 2011 are arranged along the X direction, and some of the optical units among the plurality of optical units are asymmetric units.
  • the asymmetric unit satisfies the following requirements: the optical axis of the same asymmetric unit and the geometric center line of the reflective surface 101 are spaced apart along the Y direction (left and right direction), or the optical axis of the asymmetric unit and the geometric center line of the reflective surface 101 are staggered along the Y direction. set up.
  • the optical unit also includes a light source 3.
  • the light emitted by the light source 3 is reflected by the reflective surface 101 of the reflector 1 to near the focus of the light incident surface 2011 of the lens 2, and is finally refracted by the lens 2 to the road surface to form a light shape, which is used for lighting.
  • the shape of the light refracted by the lens 2 onto the road surface is essentially that the lens 2 uses the illuminated reflective surface 101 of the reflector 1 as an object and projects it to the front of the vehicle through the lens 2, forming an image that is reversed in up, down, left and right directions.
  • the optical axis of the optical unit intersects (coplanar) with the geometric centerline of the reflective surface 101
  • the light shape of the light emitted by the light source 3 refracted to the road surface through the lens 2 is a left-right symmetrical light shape.
  • the optical axis and the geometric centerline of the reflective surface 101 are spaced along the Y direction (left-right direction)
  • the light shape emitted by the light source 3 and refracted onto the road surface through the lens 2 is a left-right asymmetric light shape.
  • the asymmetric unit can be used to increase the energy of at least one side of the light shape formed by the projection assembly 100.
  • the asymmetric unit forms The light shape is biased to the left, and the asymmetric unit can be used to increase the energy of the left side of the light shape formed by the projection assembly 100 . Therefore, the energy uniformity of the light shape formed by the projection assembly 100 in the left and right directions can be improved, thereby improving the road illumination uniformity of the vehicle lamp 1000 having the projection assembly 100 and improving driving safety.
  • the projection assembly 100 of the embodiment of the present disclosure has the advantage of forming a light shape with good energy uniformity in the left and right directions.
  • the above-mentioned X direction and Y direction are consistent with the coordinate system of the vehicle to which the projection component 100 is applied.
  • the above-mentioned X direction and Y direction are the X direction and Y direction of the vehicle coordinate system respectively.
  • the X direction is the front and rear direction of the vehicle
  • the Y direction is the left and right direction of the vehicle.
  • the Y direction may also be other directions, for example, the Y direction may be the up and down direction of the vehicle.
  • the lens 2 has a light exit surface 2012 corresponding to the light entrance surface 2011.
  • the light entrance surface 2011 is the light entrance surface 2011 collimated in the Y direction.
  • the light exit surface 2012 is The light exit surface 2012 is aligned in the Z direction.
  • the above-mentioned Z direction is consistent with the coordinate system of the vehicle to which the projection component 100 is applied.
  • the above-mentioned Z direction is the Z direction of the vehicle coordinate system.
  • the Z direction is the up and down direction of the vehicle.
  • the light incident surface 2011 is a light incident surface 2011 that is collimated in the Y direction. It can be understood as: the cross section of the light incident surface 2011 in the Y direction (left and right direction) is a convex curve, and the light incident surface 2011 deflects light in the left and right directions. It is larger and can have a certain collimating effect on divergent light; the cross-section of the light incident surface 2011 in the Z direction (up and down direction) is a straight line, and the light incident surface 2011 has a weak deflection ability of the light in the up and down direction and cannot Has a collimating effect.
  • the light-emitting surface 2012 is a light-emitting surface 2012 that is collimated in the Z direction. It can be understood that the cross-section of the light-emitting surface 2012 in the Z direction (up and down direction) is a convex curve. The light emitting surface 2012 deflects light to a greater extent in the up and down directions, and can It has a certain collimating effect on divergent light; the cross-section of the light-emitting surface 2012 in the Y direction (left and right direction) is a straight line, and the light-emitting surface 2012 has a weak ability to deflect light in the left and right directions and has no collimating effect.
  • a symmetrical light shape forms a rectangular light shape with large dimensions in the left and right directions and small dimensions in the up and down directions.
  • the light incident surface 2011 and the light exit surface 2012 are spaced apart along the X direction.
  • the light incident surface 2011 and the light emergent surface 2012 are spaced apart along the front and rear directions.
  • the reflective surface 101 is a paraboloid.
  • the reflective surface 101 as a paraboloid, it is not only convenient to design and process the reflector 1, but also the reflective effect of the reflective surface 101 is better.
  • the reflective surface 101 can also be of other surface types.
  • the size of the reflective surface 101 in the Y direction is 5 mm to 15 mm.
  • the size of the reflective surface 101 in the left-right direction is 10 mm.
  • the focal length of the reflective surface 101 is 0.5 mm to 3 mm.
  • the focal length of the reflective surface 101 is 1 mm, which makes the focal length of the reflective surface 101 smaller, which is beneficial to improving the brightness and light efficiency of the projection assembly 100 illuminated on the road surface.
  • part of the optical units is the main optical unit, and the main optical unit can form a main light shape with a bright and dark cutoff line, and the other part of the optical unit is an auxiliary optical unit, and the auxiliary optical unit can only form A fill light shape that does not have a cutoff line.
  • the main light shape has a horizontal line extending in the left and right direction, a part of the main light shape is located below the horizontal line, and the other part of the main light shape is located above the horizontal line. Most or all of the fill light shape is below the horizontal line.
  • the left part of the main light shape is below the horizontal line
  • the right part of the main light shape is above the horizontal line
  • the entire auxiliary light shape is below the horizontal line.
  • the side of the reflective surface 101 away from the light incident surface 2011 is provided with a first low beam cutoff line 103 that can form a first light and dark cutoff line, and the first low beam cutoff line 103 has a The first inflection point forming the "elbow" of the first light-dark cutoff line is set on the optical axis of the asymmetric unit.
  • the image (light shape) formed ) has a bright line consistent with the shape of the first low beam cut-off line 103, and the bright line is the first light-dark cut-off line.
  • the first low-beam cut-off line 103 is a broken line, and the first low-beam cut-off line includes a plurality of line segments connected in sequence, and the connection point between two adjacent line segments is an inflection point.
  • the first low beam cutoff line 103 has an adjacent first inflection point and a second inflection point, the first inflection point is located on the right side of the second inflection point, and the first inflection point is higher than the second inflection point.
  • the image of the first inflection point and the image of the second inflection point are both located on the first light-dark cutoff line, and the image of the first inflection point It is located to the left of the image of the second inflection point, and the image of the first inflection point is lower than the image of the second inflection point.
  • the image of the first inflection point on the first light-dark cut-off line is similar to the human "elbow", which is called the “elbow” of the first light-dark cut-off line; the image of the second inflection point is similar to the human “shoulder” Similarly, it is called the “shoulder” of the first cutoff line.
  • the asymmetric unit when the portion of the reflective surface 101 located between the first inflection point and the second inflection point is projected to the front of the vehicle through the lens 2, the image (light shape) formed is located on the upper right side. As a result, the energy of the upper right side of the light shape formed by the asymmetric unit is higher.
  • the asymmetric unit can be used to increase the energy of the upper right side of the light shape formed by the projection assembly 100, so that the energy of the upper right side of the light shape formed by the projection assembly 100 can be increased. Improving the road lighting effect of the vehicle lamp 1000 with the projection assembly 100 is conducive to further improving driving safety.
  • the number of asymmetric units is multiple, the multiple asymmetric units are arranged along the Y direction, and two of the multiple asymmetric units form an asymmetric unit group.
  • the asymmetric unit group satisfies the following requirements: the optical axis of each asymmetric unit is located between the geometric center lines of the two reflective surfaces 101 in the Y direction, that is, the optical axis of each asymmetric unit is located between the two reflective surfaces 101 in the left and right directions. between the geometric center lines.
  • the two asymmetric units are the first asymmetric unit 801 and the second asymmetric unit 802, and the first asymmetric unit 801 is located at the Two asymmetric units 802 are on the left.
  • the reflector 1, light source 3 and lens 2 of the first asymmetric unit 801 are the first reflector 104, the first reflector 104 and the second lens 2 respectively.
  • a light source 301 and the first lens 203, the first reflector 104, the first light source 301 and the first lens 203 are arranged along the X direction.
  • the reflector 1, light source 3 and lens 2 of the second asymmetric unit 802 are respectively the second reflector 105, the second light source 302 and the second lens 204.
  • the second reflector 105, the second light source 302 and the second lens 204 are along the Arrangement in X direction.
  • the reflective surface 101 of the first reflective mirror 104 is the first reflective surface
  • the reflective surface 101 of the second reflective mirror 105 is the second reflective surface
  • the optical axis of the first asymmetric unit 801 is the first optical axis
  • the second asymmetric unit 801 is the first optical axis.
  • the optical axis of 802 is the second optical axis.
  • the first optical axis is located on the right side of the geometric center line of the first reflective surface in the left and right direction.
  • the second optical axis is located on the left side of the geometric center line of the second reflective surface in the left and right direction. side, that is, the first optical axis and the second optical axis are located between the geometric centerline of the first reflective surface and the geometric centerline of the second reflective surface in the left-right direction.
  • the light shape formed by the first asymmetric unit 801 arranged on the left side is biased to the right side; as shown in Figure 8, the light shape formed by the second asymmetric unit 802 arranged on the right side The light shape is biased to the left; as shown in Figure 9, the first asymmetric unit 801 and the second asymmetric unit 802 jointly form a light shape with higher energy on the left side and higher energy on the right side.
  • the left and right sides of the light shape formed by the asymmetric unit group can have higher energy, which is beneficial to improving
  • the energy uniformity of the light shape formed by the projection assembly 100 in the left and right directions can further improve the road illumination uniformity of the vehicle lamp 1000 equipped with the projection assembly 100 and improve driving safety.
  • the distance between the optical axis in the first asymmetric unit 801 and the geometric centerline of the reflective surface 101 is L1
  • the distance between the optical axis in the second asymmetric unit 802 and the geometric centerline of the reflective surface 101 is L1.
  • the distance is L2, L1 is equal to L2 or L1 is greater than L2.
  • the distance between the optical axis of the first asymmetric unit 801 and the geometric centerline of the first reflective surface is L1
  • the distance between the optical axis of the second asymmetric unit 802 and the geometric centerline of the first reflective surface is L1.
  • the distance between the geometric center lines of the second reflective surface is L2, and L1 is equal to L2.
  • L1 and L2 are equal, so that the light shape formed by the two asymmetric units in the asymmetric unit group is symmetrical (except for the low beam cutoff line part), thereby making it convenient to make the light shape formed by the projection assembly 100 left and right. Energy balance is conducive to further improving the uniformity of road illumination of the vehicle lamp 1000 with the projection assembly 100 .
  • the light shape formed by the two asymmetric units in the asymmetric unit group is asymmetrical, so that the light shape formed by the projection assembly 100 can be adjusted according to the needs of road lighting by adjusting the sizes of L1 and L2.
  • the energy on the left and right sides is relatively high, which is conducive to further improving the road illumination effect of the vehicle light 1000 with the projection assembly 100 .
  • the size of the reflective surface 101 of the first asymmetric unit in the Y direction is L01
  • the size of the reflective surface 101 of the second asymmetric unit in the Y direction is L02
  • the ratio of L1 to L01 is 0.05 to 0.49.
  • the ratio of L2 to L02 is 0.05 ⁇ 0.49.
  • the size of the first reflective surface in the left and right direction of the first asymmetric unit 801 is L01
  • the size of the second reflective surface in the second asymmetric unit 802 is L01 in the left and right directions.
  • the dimension in the direction is L02.
  • the ratio of L1 to L01 in the first asymmetric unit 801 is 0.26
  • the ratio of L2 to L0 in the second asymmetric unit 802 is 0.26.
  • the energy-rich part of the light shape formed by the first asymmetric unit 801 is located in the range of 5° to 15°.
  • the light shape formed by the second asymmetric unit 802 has The part with more energy is located in the range of -5° ⁇ -15°.
  • the energy-rich portions of the first asymmetric unit 801 and the second asymmetric unit 802 are located in areas commonly used by the driver. Within the angle range, it is beneficial to further improve the road illumination effect of the vehicle light 1000 with the projection assembly 100.
  • L1 is equal to L2
  • L01 is equal to L02.
  • the number of asymmetric unit groups is multiple, and the multiple asymmetric unit groups are arranged along the Y direction.
  • the number of asymmetric unit groups is two, and the two asymmetric unit groups are arranged along the left and right directions.
  • the number of asymmetric unit groups can also be more than three.
  • the multiple asymmetric unit groups can be set to different values as needed, so that the energy of each part on the left and right sides of the light shape formed by the projection assembly 100 is relatively high, and It is beneficial to further improve the road illumination effect; on the other hand, at least two asymmetric unit groups can be set to be the same as needed, so that the energy of a certain part of the left and right sides of the light shape formed by the projection assembly 100 is set to be larger, which is beneficial to further improving the road illumination effect. Road lighting effect.
  • At least one asymmetric unit group is a first asymmetric unit group, and at least one asymmetric unit group is a second asymmetric unit group.
  • first asymmetric unit group one of the asymmetric units is the first asymmetric unit 801, and the other asymmetric unit is the second asymmetric unit 802.
  • the distance between the optical axis in the first asymmetric unit 801 and the geometric center line of the corresponding reflective surface 101 is L1
  • the distance between the optical axis in the second asymmetric unit 802 and the geometric center line of the corresponding reflective surface 101 is L1. for L2.
  • one of the asymmetric units is the third asymmetric unit 803, the other asymmetric unit is the fourth asymmetric unit 804, and the geometric center of the optical axis in the third asymmetric unit 803 and the reflective surface 101
  • the distance between the lines is L3
  • the distance between the optical axis in the fourth asymmetric unit 804 and the corresponding geometric center line of the reflective surface 101 is L4.
  • L1 is equal to L2, L3 is equal to L4, and L3 is greater than L1; or L1 is greater than L2, L3 is greater than L4; or L1 is equal to L2, and L3 is greater than L4.
  • L1 and L2 may be equal or unequal
  • L3 and L4 may be equal or unequal.
  • the third asymmetric unit 803 is provided on the left side of the fourth asymmetric unit 804 .
  • the reflector 1, light source 3 and lens 2 of the third asymmetric unit 803 are the third reflector 106,
  • the third light source 303303 and the third lens 205, the third reflector 106, the third light source 303303 and the third lens 205 are arranged along the X direction.
  • the reflector 1, light source 3 and lens 2 of the fourth asymmetric unit 804 are respectively the fourth reflector 107, the fourth light source 304 and the fourth lens 206.
  • the fourth reflector 107, the fourth light source 304 and the fourth lens 206 are along the Arrangement in X direction.
  • the reflective surface 101 of the third reflective mirror 106 is the third reflective surface
  • the reflective surface 101 of the fourth reflective mirror 107 is the fourth reflective surface
  • the optical axis of the third asymmetric unit 803 is the third optical axis
  • the optical axis of 804 is the fourth optical axis.
  • the third optical axis is located on the right side of the geometric center line of the third reflective surface in the left and right direction.
  • the fourth optical axis is located on the left side of the geometric center line of the fourth reflective surface in the left and right direction. side, that is, the third optical axis and the fourth optical axis are located between the geometric center line of the third reflective surface and the geometric center line of the fourth reflective surface in the left and right direction.
  • L1 in the first asymmetric unit group is equal to L2, L3 in the second asymmetric unit group is equal to L4, and L3 is greater than L1.
  • the light shape formed by the first asymmetric unit 801 and the second asymmetric unit 802 in the first asymmetric unit group is symmetrical (excluding the low beam cutoff line part);
  • Figure 10 As shown in Figure 12, the light shape formed by the third asymmetric unit 803 and the fourth asymmetric unit 804 in the second asymmetric unit group is symmetrical (except for the low beam cutoff line part); and the second asymmetric unit group forms The angle of the energy-rich part of the light shape formed by the first asymmetric unit group is different from the energy-rich part of the light shape formed by the second asymmetric unit group.
  • the energy-rich part of the light shape formed by the second asymmetric unit group is located between 8° and 18° ° and -8° ⁇ -18°
  • the energy part of the light shape formed by the first asymmetric unit group is located at 5° ⁇ 15° and -5° ⁇ -15°. Therefore, as shown in Figure 13, the energy-rich parts of the light shape formed by the first asymmetric unit group and the second asymmetric unit group are located at 4° to 19° and -4° to -19°, making it easy to
  • the energy of each part on the left and right sides of the light shape formed by the projection assembly 100 is relatively high, which is conducive to further improving the road illumination effect.
  • the size of the reflective surface 101 of the first asymmetric unit in the Y direction is L01
  • the size of the reflective surface 101 of the second asymmetric unit in the Y direction is L02
  • the size of the reflective surface of the third asymmetric unit is L02.
  • the size of 101 in the Y direction is L03
  • the size of the reflective surface 101 of the fourth asymmetric unit in the Y direction is L04.
  • the ratio of L1 to L01 is 0.05-0.35, and/or the ratio of L2 to L02 is 0.05-0.35, and/or the ratio of L3 to L03 is 0.1-0.49, and/or the ratio of L4 to L04 is 0.1-0.49.
  • the ratio of L1 to L01 is 0.05 to 0.35
  • the ratio of L2 to L02 is 0.05 to 0.35
  • the ratio of L3 to L03 is 0.1 to 0.49
  • the ratio of L4 to L04 is 0.1 to 0.49
  • one of the ratios of L2 and L02 is 0.05 ⁇ 0.35
  • one of the ratios of L3 and L03 and the ratio of L4 and L04 is 0.1 ⁇ 0.49
  • One is 0.05 to 0.35
  • one of the ratio of L3 to L03 and the ratio of L4 to L04 is 0.1 to 0.49.
  • the ratio of L1 to L01 in the first asymmetric unit 801 is 0.26; the ratio of L2 to L02 in the second asymmetric unit 802 is 0.26; the ratio of L3 to L03 in the third asymmetric unit 803 is 0.314; and the ratio of L3 to L03 in the third asymmetric unit 803 is 0.314.
  • the ratio of L4 to L04 in symmetric unit 804 is 0.314.
  • the energy part of the light shape formed by the third asymmetric unit 803 is located at 8° ⁇ 18°, as shown in Figure 10.
  • the energy-rich part of the light shape formed by the fourth asymmetric unit 804 is located between -8° and -18°. Therefore, as shown in FIG. 13 , the energy-rich parts of the light shape formed by the first asymmetric unit group and the second asymmetric unit group are located at 4° to 19° and -4° to -19°.
  • the energy-rich parts of the first asymmetric unit group and the second asymmetric unit group are both located in the driving position.
  • the angle range commonly used by athletes it is helpful to further improve the road illumination effect of the vehicle light 1000 with the projection assembly 100.
  • two asymmetric units in the asymmetric unit group are arranged adjacently.
  • the first asymmetric unit 801 and the second asymmetric unit 802 in the first asymmetric unit group are arranged adjacently, and the third asymmetric unit 803 in the second asymmetric unit group It is arranged adjacent to the fourth asymmetric unit 804.
  • the asymmetric unit group can be treated as a whole when designing and assembling the projection assembly 100 , thereby facilitating the design and assembly of the projection assembly 100 .
  • the reflective surfaces 101 of two asymmetric units are symmetrically arranged in the Y direction.
  • the light incident surface 2011 of the first lens 203 and the light incident surface 2011 of the second lens 204 are symmetrically arranged; in the second asymmetric unit group, The light incident surface 2011 of the third lens 205 and the light incident surface 2011 of the fourth lens 206 are arranged symmetrically.
  • the design and processing of the lens 2 is facilitated.
  • the light incident surface 2011 of the first lens 203 and the light incident surface 2011 of the second lens 204 are tangent to the same plane, and the plane is perpendicular to the X direction.
  • the first low beam cutoff line 103 includes a first section 1031 , a second section 1032 and a third section 1033 that are sequentially connected along the Y direction, and the first section 1031 and the third section 1033 are spaced apart in the Z direction.
  • the second section 1032 is set at an inclination.
  • a second inflection point is formed between the first section 1031 and the second section 1032, and a first inflection point is formed between the third section 1033 and the second section 1032.
  • the first inflection point may form the "elbow" of the first light-dark cutoff line; the second inflection point may form the "shoulder" of the first light-dark cutoff line.
  • the first low beam cutoff line 103 includes a first section 1031, a second section 1032 and a third section 1033 connected in sequence from left to right.
  • the first section 1031 is located below the third section 1033. side, the left end of the second segment 1032 is lower and the right end is higher.
  • the connection point between the first section 1031 and the second section 1032 forms the second inflection point, and the connection point between the third section 1033 and the second section 1032 forms the first inflection point.
  • the first asymmetric unit 801 can form a light shape with a first light and dark cutoff line, and the first inflection point of the first reflector 104 can form the first light shape.
  • the "elbow" of the cut-off line and the second inflection point of the first reflector 104 can form the "shoulder" of the first cut-off line.
  • the second segment 1032 is tilted at an angle of 45°.
  • the inclination angle ⁇ of the second section 1032 is 45°.
  • At least one of the first segment 1031, the second segment 1032, and the third segment 1033 is a straight line.
  • first segment 1031, the second segment 1032, and the third segment 1033 are all straight lines. At this time, the first segment 1031, the second segment 1032, and the third segment 1033 form a polyline.
  • first section 1031 and the third section 1033 are straight lines
  • first section 1031 and the third section 1033 can be straight lines parallel to the left and right directions, or can be oblique lines intersecting the left and right directions.
  • At least one of the first segment 1031, the second segment 1032, and the third segment 1033 is a curve.
  • first segment 1031 and the third segment 1033 are straight lines, and the second segment 1032 is a curve.
  • the first low beam cutoff line 103 further includes a fourth section 1034 and a fifth section 1035, and the third section 1033, the fourth section 1034 and the fifth section 1035 are sequentially connected along the Y direction.
  • the third section 1033 and the fifth section 1035 are spaced apart in the Z direction, the fourth section 1034 is arranged obliquely, and the fourth section 1034 is located between the first section 1031 and the third section 1033 in the Z direction.
  • the first low beam cutoff line 103 also includes a fourth section 1034 and a fifth section 1035.
  • the third section 1033, the fourth section 1034 and the fifth section 1035 are connected in sequence from left to right.
  • the segment 1033 is provided on the lower side of the fifth segment 1035, the left end of the fourth segment 1034 is higher than the right end, and the fourth segment 1034 is located between the first segment 1031 and the third segment 1033 in the up-down direction.
  • At least one of the fourth segment 1034 and the fifth segment 1035 is a straight line.
  • the fourth section 1034 and the fifth section 1035 are both straight lines. It can be understood that when the fifth section 1035 is a straight line, the fifth section 1035 can be a straight line parallel to the left and right directions, or can also be a straight line intersecting with the left and right directions. slash.
  • At least one of the fourth segment 1034 and the fifth segment 1035 is a curve.
  • the fourth segment 1034 and the fifth segment 1035 are both curves.
  • another part of the optical units among the plurality of optical units is a symmetrical unit, and the symmetrical unit satisfies the following conditions: the optical axis of the symmetrical unit intersects the geometric centerline of the reflective surface 101 .
  • the optical axis of the symmetric unit and the geometric center line of the reflective surface 101 are located on the same plane perpendicular to the left and right directions, and the optical axis of the symmetric unit intersects with the geometric center line of the reflective surface 101 .
  • the light shape formed by the symmetrical unit is a left-right symmetrical light shape. Therefore, by combining asymmetric units and symmetric units, we can Therefore, the middle energy of the light shape formed by the projection component 100 and the energy on at least one side of the left and right sides are both higher, so that the energy uniformity of the light shape formed by the projection component 100 in the left and right directions is better.
  • the number of symmetrical units is multiple.
  • an end of the reflective surface 101 away from the light incident surface 2011 is provided with a second low-beam cutoff line 108 that can form a second light-dark cutoff line.
  • the second low beam cutoff line 108 has a third inflection point that can form the elbow of the second light and dark cutoff line, and the third inflection point is set on the optical axis of the symmetrical unit.
  • the second low beam cutoff line 108 is a fold line.
  • the second low beam cutoff line 108 can form a second light and dark cutoff line, and the third inflection point can form the "elbow" of the second light and dark cutoff line. .
  • the light shape formed by the symmetrical unit not only has left-right symmetry, but also has a second light-dark cutoff line, so that the symmetry
  • the unit may serve as a main optical unit, and the light shape formed by the main optical unit is the main light shape.
  • the left and right energy of the light shape formed by the superposition of the symmetrical unit with the second low beam cutoff line 108 and the asymmetrical unit is more uniform, which can further improve the road illumination effect of the vehicle lamp 1000 with the projection assembly 100 and is conducive to further improving driving. safety.
  • the second cutoff line formed by the asymmetric unit coincides with the first cutoff line formed by the symmetric unit, forming a cutoff line of the vehicle lamp 1000 having the projection assembly 100 .
  • Only one symmetrical unit among the plurality of symmetrical units may be provided with the second low-beam cutoff line 108 , or more than two symmetrical units may be provided with the second low-beam cutoff line 108 .
  • the light source 3, the reflective surface 101 and the light incident surface 2011 correspond one to one and form an optical unit.
  • the light source 3 is a surface light source, and the number of the light sources 3 is 5 to 10.
  • the number of light sources 3 is eight.
  • the light source 3 is an LED.
  • multiple lenses 2 have an integrated structure, and a separation portion 2013 is formed between the light incident surfaces 2011 of adjacent lenses 2 .
  • eight lenses 2 have an integrated structure, and the eight lenses 2 form a lens group, and the eight light incident surfaces 2011 of the lens group are connected in sequence to form a wavy surface; The two light-emitting surfaces 2012 are connected in sequence to form a convex curved surface.
  • the plurality of reflectors 1 are of an integrated structure.
  • eight reflectors 1 form a reflector group.
  • the reflective mirror 1 includes a reflective part and a fixed part 102.
  • the reflective part and the fixed part 102 are an integrated structure, and the reflective surface 101 is provided on the reflective part.
  • the vehicle lamp 1000 in the embodiment of the present disclosure includes the projection assembly 100 described in any of the above embodiments.
  • the vehicle lamp 1000 according to the embodiment of the present disclosure has the advantages of good uniformity of road illumination.
  • the light shape formed by the vehicle lamp 1000 on the road surface has stray light phenomenon, which affects the road illumination effect of the vehicle lamp 1000.
  • the vehicle lamp 1000 in the embodiment of the present disclosure also includes a light blocking member 4.
  • the light blocking member 4 includes a light blocking part 401.
  • the light blocking part 401 is provided between two adjacent light incident surfaces 2011, that is, the light blocking part 401 corresponds to the partition part. 2013 is set to separate two adjacent light incident surfaces 2011.
  • the vehicle lamp 1000 in the embodiment of the present disclosure is provided with a light blocking member 4 and uses the light blocking part 401 of the light blocking member 4 to separate two adjacent light incident surfaces 2011, thereby effectively preventing the light emitted by the light source 3 from irradiating the corresponding light. Stray light is formed on the light incident surface 2011 of the adjacent optical unit. When the vehicle lamp 1000 according to the embodiment of the present disclosure is working, stray light can be greatly reduced or even avoided, which is beneficial to improving the road illumination effect of the vehicle lamp 1000 .
  • the vehicle lamp 1000 according to the embodiment of the present disclosure has the advantages of good road illumination effect.
  • multiple light blocking portions 401 are provided, and a light blocking portion 401 is provided between any two adjacent light incident surfaces 2011 .
  • the light blocking portion 401 By disposing the light blocking portion 401 between any two adjacent light incident surfaces 2011, the light emitted by any one light source 3 can be effectively prevented from irradiating the light incident surface 2011 of the adjacent optical unit to form stray light, which is beneficial to further Improve the road lighting effect of car lights 1000.
  • the light blocking member 4 further includes a connecting portion 402 , multiple light blocking portions 401 are connected to the connecting portion 402 , and the connecting portion 402 is connected to the lens 2 .
  • connection portion 402 can be used to first connect the light blocking member 4 and the lens 2 to form a first sub-assembly, and then connect the first sub-assembly to other components, thereby making it convenient Fix the light blocking member 4 at the preset position of the lens 2.
  • connecting portion 402 on the light blocking member 4 and connecting the connecting portion 402 to the lens 2 it not only facilitates the assembly of the vehicle lamp 1000; it can also effectively improve the assembly accuracy between the light blocking portion 401 and the light incident surface 2011, which is beneficial to Further improve the road lighting effect of car lights 1000.
  • the connecting part 402 and the light blocking part 401 are an integral structure.
  • the light blocking component 4 is a stainless steel component, a plastic component, or an aluminum alloy component.
  • the light blocking part 401 is a light blocking plate or a light blocking strip.
  • the connecting portion 402 is a connecting plate, and the connecting plate has an escape portion 4021 for avoiding the light incident surface 2011.
  • the escape portion 4021 can be an escape hole or an escape groove.
  • the vehicle lamp 1000 further includes a frame body 5 , and the connecting portion 402 and the lens 2 are both connected to the frame body 5 .
  • the frame body 5 is a cover body having a receiving cavity 501
  • the lens 2 is disposed in the receiving cavity 501
  • the light blocking member 4 is disposed in the receiving cavity 501 .
  • the lens 2 includes a lens body 201 and a connecting arm 202.
  • the light incident surface 2011 and the light exit surface 2012 are provided on the lens body 201.
  • the frame body 5 has a first connection hole
  • the connecting arm 202 has a second connection hole
  • the connecting part 402 has a third connection hole.
  • the vehicle light 1000 also includes a first fastener 901 , and the first fastener 901 passes through the third connection hole.
  • the first connection hole and the second connection hole are connected with the first connection hole, and the first fastener is used to realize the connection between the light blocking member 4, the lens 2 and the frame body 5.
  • the first fastener 901 may be a bolt, a screw, or the like.
  • the vehicle light 1000 further includes a PCB board 6 and a heat sink 7 , the light source 3 is provided on the PCB board 6 , and the PCB board 6 is connected to the heat sink 7 through a second fastener 902 .
  • the fixing part 102 is connected to the heat sink 7 through a third fastener 903 .
  • the frame 5 has a flange 504 , and the radiator 7 and the flange 504 are connected through a fourth fastener 904 .
  • the second fastener 902, the third fastener 903 and the fourth fastener 904 may be bolts, screws, etc.
  • the lens 2 When assembling the vehicle light 1000, first, the lens 2, the light blocking member 4 and the frame 5 are assembled into the first sub-assembly, and the reflector 1, light source 3, PCB board 6 and radiator 7 are assembled into the second sub-assembly. Then, the second sub-assembly is connected to the first sub-assembly through the fourth fastener 904.
  • the vehicle in the embodiment of the present disclosure includes the vehicle lamp 1000 described in any of the above embodiments.
  • the vehicle according to the embodiment of the present disclosure has the advantages of good safety.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be mechanically connected, electrically connected or communicable with each other; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements, Unless otherwise expressly limited. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature of the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is directly above or diagonally above the second feature.
  • the feature level is higher than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” or the like mean that a particular feature, structure, material, or other feature is described in connection with the embodiment or example.
  • Features are included in at least one embodiment or example of the disclosure.
  • the schematic expressions of the above terms are not necessarily directed to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

提供了一种车灯、投射组件和车辆。所述投射组件包括多个光学单元,每个所述光学单元包括反射镜和透镜,所述反射镜具有反光面;所述透镜具有入光面,所述入光面对应所述反光面设置;其中,每个所述光学单元均具有沿X方向延伸的光轴,所述反光面和对应的所述入光面沿所述X方向布置,多个所述光学单元中的一部分光学单元为非对称单元,所述非对称单元满足:所述非对称单元的光轴与所述反光面的几何中心线沿Y方向间隔设置。

Description

车灯、投射组件和车辆
相关申请的交叉引用
本申请要求在2022年04月29日在中国提交的中国专利申请号2022210464445的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及汽车配件技术领域,具体涉及一种投射组件、车灯和车辆。
背景技术
汽车近光灯包括光源、反射镜和透镜,光源设有多个,反射镜具有多个反光面,透镜具有多个入光面,光源、反光面和对应的入光面形成一个光学单元,多个光源、多个反光面和多个入光面形成多个光学单元。每个光学单元中,光源发出的光经对应的反光面反射后汇聚到对应的入光面的焦点附近,多个光源发出的光最终经透镜折射到路面形成照明。相关技术中,各光学单元形成的光形均为左右对称光形,导致每个光学单元的中间能量多,左右两侧能量少,最终导致路照均匀性差。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的实施例提出一种投射组件,以提高具有该投射组件的车灯的路照均匀性。
本公开实施例的投射组件包括多个光学单元,每个所述光学单元包括反射镜透镜,所述反射镜具有反光面;和所述透镜具有入光面,所述入光面对应所述反光面设置;其中,每个所述光学单元均具有沿X方向延伸的光轴,所述反光面和对应的所述入光面沿所述X方向布置,多个所述光学单元中的一部分所述光学单元为非对称单元,所述非对称单元满足:同一所述非对称单元中所述光轴与所述反光面的几何中心线沿Y方向间隔设置。
在一些实施例中,所述非对称单元中,所述反光面远离所述入光面的一侧设有可形成第一明暗截止线的第一近光截止线,所述第一近光截止线上具有可形成所述第一明暗截止线的肘部的第一拐点,所述第一拐点设在所述非对称单元的所述光轴上。
在一些实施例中,所述非对称单元的数量为多个,多个所述非对称单元沿所述Y方向布置,多个所述非对称单元中的两个所述非对称单元形成非对称单元组,所述非对称单元组满足:每个所述非对称单元的所述光轴在所述Y方向上位于两个所述反光面的所述几何中心线之间。
在一些实施例中,所述非对称单元组中,其中一个所述非对称单元为第一非对称单元,另一个所述非对称单元为第二非对称单元,所述第一非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L1,所述第二非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L2,所述L1等于所述L2或者所述L1大于所述L2。
在一些实施例中,所述第一非对称单元的所述反光面在所述Y方向上的尺寸为L01,所述第二非对称单元的所述反光面在所述Y方向上的尺寸为L02;所述L1与所述L01的比值为0.05~0.49,和/或所述L2与所述L02的比值为0.05~0.49。
在一些实施例中,所述非对称单元组的数量为多个,多个所述非对称单元组沿所述Y方向布置。
在一些实施例中,至少一个所述非对称单元组为第一非对称单元组,至少一个所述非对称单元组为第二非对称单元组,所述第一非对称单元组中,其中一个所述非对称单元为第一非对称单元,另一个所述非对称单元为第二非对称单元,所述第一非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L1,所述第二非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L2,所述第二非对称单元组中,其中一个所述非对称单元为第三非对称单元,另一个所述非对称单元为第四非对称单元,所述第三非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L3,所述第四非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L4;其中,所述L1等于所述L2,所述L3等于所述L4,且所述L3大于所述L1,或者所述L1大于所述L2,所述L3大于所述L4,或者所述L1等于所述L2,所述L3大于所述L4。
在一些实施例中,所述第一非对称单元的所述反光面在所述Y方向上的尺寸为L01,所述第二非对称单元的所述反光面在所述Y方向上的尺寸为L02,所述第三非对称单元的所述反光面在所述Y方向上的尺寸为L03,所述第四非对称单元的所述反光面在所述Y方向上的尺寸为L04;所述L1与所述L01的比值为0.05~0.35,和/或
所述L2与所述L02的比值为0.05~0.35,和/或所述L3与所述L03的比值为0.1~0.49,和/或所述L4与所述L04的比值为0.1~0.49。
在一些实施例中,所述非对称单元组中的两个所述非对称单元相邻设置。
在一些实施例中,所述非对称单元组中,两个所述非对称单元的所述入光面在所述Y方向上对称设置。
在一些实施例中,所述第一近光截止线包括沿所述Y方向依次相连的第一段、第二段和第三段,所述第一段和所述第三段在所述Z方向上间隔设置,所述第二段倾斜设置,所述第三段和所述第二段的连接处形成所述第一拐点,所述第一段和所述第二段的连接处形成第二拐点,所述第二拐点可形成所述第一明暗截止线的肩部;所述第二段的倾斜角度为45°,和/或所述第一段、所述第二段和所述第三段中的至少一者为直线,和/或所述第一段、所述第二段和所述第三段中的至少一者为曲线。
在一些实施例中,所述第一近光截止线还包括第四段和第五段,所述第三段、所述第四段和所述第五段沿所述Y方向依次相连,所述第三段和所述第五段在所述Z方向上间隔 设置,所述第四段倾斜设置,所述第四段在所述Z方向上位于所述第一段和所述第三段之间。
在一些实施例中,所述第四段和所述第五段中的至少一者为直线;和/或所述第四段和所述第五段中的至少一者为曲线。
在一些实施例中,所述透镜具有与所述入光面对应的出光面,所述入光面为Y方向准直的入光面,所述出光面为Z方向准直的出光面。
在一些实施例中,所述反光面为抛物面;和/或所述反光面在所述Y方向上的尺寸为5mm~15mm;和/或所述反光面的焦距为0.5mm~3mm。
在一些实施例中,多个所述光学单元中的另一部分所述光学单元为对称单元,所述对称单元满足:所述对称单元的光轴与所述反光面的几何中心线相交。
在一些实施例中,所述对称单元的数量为多个,至少一个所述对称单元中,所述反光面远离所述入光面的一端设有可形成所述第二明暗截止线的第二近光截止线,所述第二近光截止线上具有可形成所述第二明暗截止线的肘部的第三拐点,所述第三拐点设在所述对称单元的所述光轴上。
本公开的实施例提出一种车灯,以提高车灯的路照均匀性。
本公开实施例的车灯包括上述任一实施例所述的投射组件。
本公开的实施例提出一种车辆,以提高车辆的安全性。
本公开实施例的车辆包括上述任一实施例所述的车灯。
本公开实施例的投射组件,由于非对称单元的光轴与反光面的几何中心线沿Y方向间隔设置,使得非对称单元形成的光形为左右非对称光形。由此,可以利用非对称单元增加投射组件形成的光形的左右至少一侧的能量,例如,当反光面的几何中心线设在光学单元的光轴右侧时,该非对称单元形成的光形偏向左侧,可以利用该非对称单元增加投射组件形成的光形的左侧能量。从而可以提高投射组件形成的光形在左右方向上的能量均匀性,进而可以提高具有该投射组件的车灯路照均匀性,提高驾驶安全性。
附图说明
图1是本公开一个实施例的投射组件的立体图。
图2是本公开一个实施例的投射组件的主视图。
图3是本公开一个实施例的投射组件的俯视图。
图4是图3中第一非对称单元组和第二非对称单元组的立体图。
图5是图3中第一非对称单元组和第二非对称单元组的主视图。
图6是图3中第一非对称单元组和第二非对称单元组的俯视图。
图7是图6中第一非对称单元的光形效果图。
图8是图6中第二非对称单元的光形效果图。
图9是图6中的第一非对称单元和第二非对称单元叠加形成的光形效果图。
图10是图6中第三非对称单元的光形效果图。
图11是图6中第四非对称单元的光形效果图。
图12是图6中的第三非对称单元和第四非对称单元叠加形成的光形效果图。
图13是图6中四个非对称单元叠加形成的光形效果图。
退14是图3中所有光学单元叠加形成的光形效果图。
图15是本公开一个实施例的车灯的爆炸图。
图16是本公开一个实施例的车灯的主视图(隐去了散热器)。
图17是图16的A-A向视图。
图18是图15中透镜、挡光件和架体的爆炸图。
图19是图15中的透镜的立体图。
图20是图15中反射镜的立体图。
图21是图15中反射镜的主视图。
图22是图21的B-B向视图。
附图标记:
车灯1000;
投射组件100;
反射镜1;反光面101;固定部102;第一近光截止线103;第一段1031;第二段1032;
第三段1033;第四段1034;第五段1035;第一反射镜104;第二反射镜105;第三反射镜106;第四反射镜107;第二近光截止线108;
透镜2;透镜本体201;入光面2011;出光面2012;分隔部2013;连接臂202;第一
透镜203;第二透镜204;第三透镜205;第四透镜206;
光源3;第一光源301;第二光源302;第三光源303;第四光源304;
挡光件4;挡光部401;连接部402;避让部4021;
架体5;容纳腔501;翻边504;
PCB板6;
散热器7;
第一非对称单元801;第二非对称单元802;第三非对称单元803;第四非对称单元804;
第一紧固件901;第二紧固件902;第三紧固件903;第四紧固件904。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
车灯包括远光灯和近光灯,远光灯的光线平行射出,光线集中且亮度较大,可以照到更高更远的物体,近光灯发出的光呈现发散状态,可以照到近处较大范围内的物体。车灯作为汽车的眼睛,不仅关系到一个车主的外在形象,更与夜间开车或坏天气条件下的安全驾驶紧密联系,因此,车灯的路照效果对于安全行驶至关重要。相关技术中,近光灯的中间能量多,两侧能量少,导致路照均匀性较差。
基于上述技术问题中的至少一者,本申请实施例提供一种投射组件、车灯和车辆,可以有效增加投射组件形成的光形的至少一侧的能量,从而提高具有该投射组件的车灯的路照均匀性,进而提高驾驶安全性。
如图1至图6、图15至图17所示,本公开实施例的投射组件100包括多个光学单元,每个光学单元包括反射镜1和透镜2,反射镜1具有反光面101,透镜2具有入光面2011,入光面2011对应反光面101设置。其中,每个光学单元均具有沿X方向(前后方向)延伸的光轴,反光面101和对应的入光面2011沿X方向布置,多个光学单元中的一部分光学单元为非对称单元。非对称单元满足:同一非对称单元的光轴与反光面101的几何中心线沿Y方向(左右方向)间隔设置,或者说非对称单元的光轴与反光面101的几何中心线沿Y方向错开设置。
光学单元还包括光源3,光源3发出的光线通过反射镜1的反光面101反射到透镜2的入光面2011的焦点附近,最终经透镜2折射到路面形成光形,该光形用于照明。透镜2折射到路面上的光形本质上是透镜2将被照亮的反射镜1的反光面101作为物,通过透镜2投影到车辆的前方,并形成一个上下左右两个方向颠倒的像。可以理解的是,当光学单元的光轴与反光面101的几何中心线相交(共面)时,光源3发出的光线经透镜2折射到路面的光形为左右对称光形,当光学单元的光轴与反光面101的几何中心线沿Y方向(左右方向)间隔设置时,光源3发出的光线经透镜2折射到路面的光形为左右非对称光形。
本公开实施例的投射组件100,由于非对称单元的光轴与反光面101的几何中心线沿Y方向间隔设置,使得非对称单元形成的光形为左右非对称光形。由此,可以利用非对称单元增加投射组件100形成的光形的左右至少一侧的能量,例如,当反光面101的几何中心线设在光学单元的光轴右侧时,该非对称单元形成的光形偏向左侧,可以利用该非对称单元增加投射组件100形成的光形的左侧能量。从而可以提高投射组件100形成的光形在左右方向上的能量均匀性,进而可以提高具有该投射组件100的车灯1000路照均匀性,提高驾驶安全性。
因此,本公开实施例的投射组件100具有形成的光形在左右方向上能量均匀性好等优点。
在一些实施例中,上述X方向和Y方向与投射组件100所应用的车辆的坐标系一致,换言之,上述X方向和Y方向分别为车辆坐标系的X方向和Y方向。其中,X方向为车辆的前后方向,Y方向为车辆的左右方向。当然,在另一些实施例中,上述Y方向也可以为其他方向,例如Y方向为车辆的上下方向。
在一些实施例中,如1、图15和图19所示,透镜2具有与入光面2011对应的出光面2012,入光面2011为Y方向准直的入光面2011,出光面2012为Z方向准直的出光面2012。
可以理解的是,上述Z方向与投射组件100所应用的车辆的坐标系一致,换言之,上述Z方向为车辆坐标系的Z方向。其中,Z方向为车辆的上下方向。
入光面2011为Y方向准直的入光面2011可以理解为:入光面2011在Y方向(左右方向)上的截线为凸曲线,入光面2011对光线在左右方向上偏折程度较大,能够对发散光线具有一定的准直作用;入光面2011在Z方向(上下方向)上的截线为直线,入光面2011对光线在上下方向上的偏折能力较弱,不具有准直作用。
出光面2012为Z方向准直的出光面2012可以理解为:出光面2012在Z方向(上下方向)上的截线为凸曲线,出光面2012对光线在上下方向上偏折程度较大,能够对发散光线具有一定的准直作用;出光面2012在Y方向(左右方向)上的截线为直线,出光面2012对光线在左右方向上的偏折能力较弱,不具有准直作用。
通过将透镜2的入光面2011设置为具有Y方向准直的入光面2011,并将透镜2的出光面2012设置为Z方向准直的出光面2012,便于投射组件100在路面上形成非对称光形,例如,形成左右方向尺寸大、上下方向尺寸小的长方形光形。
在一些实施例中,入光面2011和出光面2012沿X方向间隔设置。
例如,入光面2011和出光面2012沿前后方向间隔设置。
在一些实施例中,反光面101为抛物面。
通过将反光面101设为抛物面,不仅方便反射镜1的设计加工,而且反光面101的反光效果较好。
当然,在另一些实施例中,反光面101也可以为其他面型。
在一些实施例中,反光面101在Y方向上的尺寸为5mm~15mm。
例如,反光面101在左右方向上的尺寸为10mm。
在一些实施例中,反光面101的焦距为0.5mm~3mm。
例如,反光面101的焦距为1mm,使得反光面101的焦距较小,有利于提高投射组件100照射在路面上的亮度与光效率。
相关技术中,投射组件100的各光学单元中,一部分光学单元为主光学单元,主光学单元可以形成具有明暗截止线的主光形,另一部分光学单元为辅光学单元,辅光学单元只可以形成不具有明暗截止线的辅助光形。其中,主光形具有沿左右方向延伸的水平线,主光形的一部分位于水平线以下,主光形的另一部分位于水平线以上。辅助光形的大部分甚至全部位于水平线以下。例如,主光形的左侧部分位于水平线以下,主光形的右侧部分位于水平线以上;辅助光形整体位于水平线以下。由此,使得投射组件100的各光学单元共同形成的光形的右上侧能量较低,路照效果较差。
在一些实施例中,非对称单元中,反光面101远离入光面2011的一侧设有可形成第一明暗截止线的第一近光截止线103,第一近光截止线103上具有可形成第一明暗截止线的“肘部”的第一拐点,第一拐点设在非对称单元的光轴上。
通过在非对称单元的反光面101上设置第一近光截止线103,使得被照亮的反射镜1的反光面101作为物,通过透镜2投影到车辆的前方时,形成的像(光形)具有与第一近光截止线103形状一致的亮线,该亮线即为第一明暗截止线。其中,第一近光截止线103为折线,第一近光截止线包括依次相连的多条线段,相邻两条线段之间的连接点为一个拐点。第一近光截止线103上具有相邻的第一拐点和第二拐点,第一拐点位于第二拐点的右侧,第一拐点高于第二拐点。被照亮的反射镜1的反光面101作为物,通过透镜2投影到车辆的前方时,第一拐点的像和第二拐点的像均位于第一明暗截止线上,且第一拐点的像位于第二拐点的像的左侧、第一拐点的像低于第二拐点的像。从外观来看,第一明暗截止线上第一拐点的像与人类的“肘部”相似,称为第一明暗截止线的“肘部”;第二拐点的像与人类的“肩部”相似,称为第一明暗截止线的“肩部”。
通过对非对称单元的上述设计,反光面101上位于第一拐点和第二拐点之间的部分,通过透镜2投影到车辆的前方时,形成的像(光形)位于右上侧。由此,使得该非对称单元形成的光形右上侧能量较高,当该非对称单元作为辅光学单元时,可以利用该非对称单元增加投射组件100形成的光形的右上侧能量,从而可以提高具有该投射组件100的车灯1000路照效果,有利于进一步提高驾驶安全性。
在一些实施例中,非对称单元的数量为多个,多个非对称单元沿Y方向布置,多个非对称单元中的两个形成非对称单元组。非对称单元组满足:每个非对称单元的光轴在Y方向上位于两个反光面101的几何中心线之间,即每个非对称单元的光轴在左右方向上位于两个反光面101的几何中心线之间。
例如,如图4至图6所示,其中一个非对称单元组中,两个非对称单元分别为第一非对称单元801和第二非对称单元802,且第一非对称单元801设在第二非对称单元802的左侧。其中,第一非对称单元801的反射镜1、光源3和透镜2分别为第一反射镜104、第 一光源301和第一透镜203,第一反射镜104、第一光源301和第一透镜203沿X方向布置。第二非对称单元802的反射镜1、光源3和透镜2分别为第二反射镜105、第二光源302和第二透镜204,第二反射镜105、第二光源302和第二透镜204沿X方向布置。第一反射镜104的反光面101为第一反光面,第二反射镜105的反光面101为第二反光面,第一非对称单元801的光轴为第一光轴,第二非对称单元802的光轴为第二光轴,第一光轴在左右方向上位于第一反光面的几何中心线的右侧,第二光轴在左右方向上位于第二反光面的几何中心线的左侧,即第一光轴和第二光轴在左右方向上位于第一反光面的几何中心线和第二反光面的几何中心线之间。
可以理解的是,如图7所示,上述设置在左侧的第一非对称单元801形成的光形偏向右侧;如图8所示,设置在右侧的第二非对称单元802形成的光形偏向左侧;如图9所示,第一非对称单元801和第二非对称单元802共同形成左侧能量和右侧能量均较高的光形。
通过每个非对称单元的光轴在左右方向上位于两个反光面101的几何中心线之间,可以使得该非对称单元组形成的光形左侧和右侧能量均较高,有利于提高投射组件100形成的光形在左右方向上的能量均匀性,进而可以进一步提高具有该投射组件100的车灯1000路照均匀性,提高驾驶安全性。
在一些实施例中,第一非对称单元801中光轴与反光面101的几何中心线之间的距离为L1,第二非对称单元802中光轴与反光面101的几何中心线之间的距离为L2,L1等于L2或者L1大于L2。
例如,如图2、图3、图5和图6所示,第一非对称单元801的光轴与第一反光面的几何中心线的距离为L1,第二非对称单元802的光轴与第二反光面的几何中心线的距离为L2,L1与L2相等。此外,可以理解的是,当第一透镜203的入光面2011与第二透镜204的入光面2011相同时,第一透镜203和第二透镜204在左右方向上对称设置。
通过将L1和L2设为相等,一方面,第一非对称单元801和第二非对称单元802的部分部件可以相同或相对称,从而方便非对称单元组的加工制造,进而方便投射组件100的加工制造;另一方面,L1和L2相等,使得非对称单元组中的两个非对称单元形成的光形左右对称(除去近光截止线部分),从而方便使投射组件100形成的光形左右能量均衡,有利于进一步提高具有该投射组件100的车灯1000的路照均匀性。
此外,当L1大于L2时,非对称单元组中的两个非对称单元形成的光形左右不对称,从而方便根据路照需要,通过调整L1和L2的大小,使投射组件100形成的光形左右一侧的能量偏高,有利于进一步提高具有该投射组件100的车灯1000的路照效果。
在一些实施例中,第一非对称单元的反光面101在Y方向上的尺寸为L01,第二非对称单元的反光面101在Y方向上的尺寸为L02,L1与L01比值为0.05~0.49,和/或L2与L02的比值为0.05~0.49。
例如,如图2、图3、图5和图6所示,第一非对称单元801中第一反光面在左右方向上的尺寸为L01,第二非对称单元802中第二反光面在左右方向上的尺寸为L02。第一非对称单元801中L1与L01的比值为0.26,第二非对称单元802中L2与L0的比值为0.26。此时,如图7所示,第一非对称单元801形成的光形的能量较多部分位于5°~15°范围内,如图8所示,第二非对称单元802形成的光形的能量较多部分位于-5°~-15°范围内。
通过将L1与L01的比值设为0.05~0.49,将L2与L02的比值设为0.05~0.49,使得第一非对称单元801和第二非对称单元802的能量较多部分,位于驾驶员常用到的角度范围内,有利于进一步提高具有该投射组件100的车灯1000的路照效果。
在一些实施例中,L1等于L2,且L01等于L02。
在一些实施例中,非对称单元组的数量为多个,多个非对称单元组沿Y方向布置。
例如,如图2、图3、图5和图6所示,非对称单元组的数量为两个,两个非对称单元组沿左右方向布置。当然,非对称单元组的数量也可以为三个以上。
通过将非对称单元组的数量设为多个,一方面,可以根据需要将多个非对称单元组设为不同,从而方便将投射组件100形成的光形左右侧各部分能量均较高,有利于进一步提高路照效果;另一方面,可以根据需要将至少两个非对称单元组设为相同,从而将投射组件100形成的光形左右侧某一部分的能量设置的较大,有利于进一步提高路照效果。
在一些实施例中,至少一个非对称单元组为第一非对称单元组,至少一个非对称单元组为第二非对称单元组。第一非对称单元组中,其中一个非对称单元为第一非对称单元801,另一个非对称单元为第二非对称单元802。第一非对称单元801中的光轴与对应的反光面101的几何中心线之间的距离为L1,第二非对称单元802中光轴与对应的反光面101的几何中心线之间的距离为L2。第二非对称单元组中,其中一个非对称单元为第三非对称单元803,另一个非对称单元为第四非对称单元804,第三非对称单元803中光轴与反光面101的几何中心线之间的距离为L3,第四非对称单元804中光轴与对应的反光面101的几何中心线之间的距离为L4。
其中,L1等于L2,L3等于L4,且L3大于L1;或者L1大于L2,L3大于L4;或者L1等于L2,L3大于L4。换言之,L1与L2可以相等或不相等,L3与L4可以相等或不相等。
例如,如图2、图3、图5和图6所示,第三非对称单元803设在第四非对称单元804的左侧。其中,第三非对称单元803的反射镜1、光源3和透镜2分别为第三反射镜106、 第三光源303303和第三透镜205,第三反射镜106、第三光源303303和第三透镜205沿X方向布置。第四非对称单元804的反射镜1、光源3和透镜2分别为第四反射镜107、第四光源304和第四透镜206,第四反射镜107、第四光源304和第四透镜206沿X方向布置。第三反射镜106的反光面101为第三反光面,第四反射镜107的反光面101为第四反光面,第三非对称单元803的光轴为第三光轴,第四非对称单元804的光轴为第四光轴,第三光轴在左右方向上位于第三反光面的几何中心线的右侧,第四光轴在左右方向上位于第四反光面的几何中心线的左侧,即第三光轴和第四光轴在左右方向上位于第三反光面的几何中心线和第四反光面的几何中心线之间。
第一非对称单元组中L1等于L2,第二非对称单元组中L3等于L4,且L3大于L1。此时,如图7至9所示,第一非对称单元组中的第一非对称单元801和第二非对称单元802形成的光形左右对称(除去近光截止线部分);如图10至图12所示,第二非对称单元组中的第三非对称单元803和第四非对称单元804形成的光形左右对称(除去近光截止线部分);且第二非对称单元组形成的光形的能量较多部分与第一非对称单元组形成的光形的能量较多部分的角度不同,例如,第二非对称单元组形成的光形的能量较多部分位于8°~18°和-8°~-18°,第一非对称单元组形成的光形的能量较多部分位于5°~15°和-5°~-15°。由此,如图13所示,第一非对称单元组和第二非对称单元组共同形成的光形的能量较多部分位于4°~19°和-4°~-19°,从而方便将投射组件100形成的光形左右侧各部分能量均较高,有利于进一步提高路照效果。
在一些实施例中,第一非对称单元的反光面101在Y方向上的尺寸为L01,第二非对称单元的反光面101在Y方向上的尺寸为L02,第三非对称单元的反光面101在Y方向上的尺寸为L03,第四非对称单元的反光面101在Y方向上的尺寸为L04。
L1与L01的比值为0.05~0.35,和/或L2与L02的比值为0.05~0.35,和/或L3与L03的比值为0.1~0.49,和/或L4与L04的比值为0.1~0.49。换言之,L1与L01的比值为0.05~0.35,L2与L02的比值为0.05~0.35,L3与L03的比值为0.1~0.49,且L4与L04的比值为0.1~0.49;或者,L1与L01的比值以及L2与L02的比值中的一个为0.05~0.35;或者,L3与L03的比值以及L4与L04的比值中的一个为0.1~0.49;或者,L1与L01的比值以及L2与L02的比值中的一个为0.05~0.35,且L3与L03的比值以及L4与L04的比值中的一个为0.1~0.49。
例如,第一非对称单元801中L1与L01的比值为0.26;第二非对称单元802中L2与L02的比值为0.26,第三非对称单元803中L3与L03的比值为0.314,第四非对称单元804中L4与L04的比值为0.314。此时,如图7所示,第一非对称单元801形成的光形的能量较多部分位于5°~15°,如图8所示,第二非对称单元802形成的光形的能量较多部分位于-5°~-15°,如图10所示,第三非对称单元803形成的光形的能量较多部分位于8°~18°,如 图11所示,第四非对称单元804形成的光形的能量较多部分位于-8°~-18°。由此,如图13所示,第一非对称单元组和第二非对称单元组共同形成的光形的能量较多部分位于4°~19°和-4°~-19°。
通过上述L1与L01的比值、L2与L02的比值、L3与L03的比值以及L4与L04的比值设置,使得第一非对称单元组和第二非对称单元组的能量较多部分,均位于驾驶员常用到的角度范围内,有利于进一步提高具有该投射组件100的车灯1000的路照效果。
在一些实施例中,非对称单元组中两个非对称单元相邻设置。
例如,如图4至图6所示,第一非对称单元组中的第一非对称单元801和第二非对称单元802相邻设置,第二非对称单元组中的第三非对称单元803和第四非对称单元804相邻设置。
通过加工非对称单元组中两个非对称单元相邻设置,在进行投射组件100的设计和组装时,可以将非对称单元组作为一个整体,从而方便投射组件100的设计和组装。
在一些实施例中,非对称单元组中,两个非对称单元的反光面101在Y方向上对称设置。
例如,如图1至图6所示,第一非对称单元组中,第一透镜203的入光面2011和第二透镜204的入光面2011左右对称设置;第二非对称单元组中,第三透镜205的入光面2011和第四透镜206的入光面2011左右对称设置。
通过将非对称单元组中,两个非对称单元中透镜2的入光面2011在Y方向上对称设置,方便透镜2的设计加工。
在一些实施例中,如图19所示,第一透镜203的入光面2011和第二透镜204的入光面2011与同一平面相切,该平面垂直于X方向。
在一些实施例中,第一近光截止线103包括沿Y方向依次相连的第一段1031、第二段1032和第三段1033,第一段1031和第三段1033在Z方向上间隔设置,第二段1032倾斜设置。第一段1031和第二段1032之间形成第二拐点,第三段1033和第二段1032之间形成第一拐点。其中,第一拐点可形成第一明暗截止线的“肘部”;第二拐点可形成第一明暗截止线的“肩部”。
例如,如图5所示,第一近光截止线103包括自左向右依次相连的第一段1031、第二段1032和第三段1033,第一段1031设在第三段1033的下侧,第二段1032的左端低右端高。第一段1031和第二段1032的连接点形成第二拐点,第三段1033和第二段1032的连接点形成第一拐点。具体地,以第一非对称单元为例,如图7所示,第一非对称单元801能够形成具有第一明暗截止线的光形,第一反射镜104的第一拐点能够形成该第一明暗截止线的“肘部”,第一反射镜104的第二拐点能够形成该第一明暗截止线的“肩部”。
在一些实施例中,第二段1032的倾斜角度为45°。
例如,如图5所示,第二段1032的倾斜角度α为45°。
在一些实施例中,第一段1031、第二段1032和第三段1033中的至少一者为直线。
例如,第一段1031、第二段1032和第三段1033均为直线,此时,第一段1031、第二段1032和第三段1033形成折线。
可以理解的是,当第一段1031和第三段1033为直线时,第一段1031和第三段1033可以为与左右方向平行的直线,也可以为与左右方向相交的斜线。
在一些实施例中,第一段1031、第二段1032和第三段1033中的至少一者为曲线。
例如,第一段1031和第三段1033为直线,第二段1032为曲线。
在一些实施例中,第一近光截止线103还包括第四段1034和第五段1035,第三段1033、第四段1034和第五段1035沿Y方向依次相连。第三段1033和第五段1035在Z方向上间隔设置,第四段1034倾斜设置,第四段1034在Z方向上位于第一段1031和第三段1033之间。
例如,如图5所示,第一近光截止线103还包括第四段1034和第五段1035,第三段1033、第四段1034和第五段1035自左向右依次相连,第三段1033设在第五段1035的下侧,第四段1034的左端高右端低,且第四段1034在上下方向上位于第一段1031和第三段1033之间。
由此,如图8所示,通过在第三段1033的右侧设置第四段1034和第五段1035,且第三段1033和第五段1035在上下方向上间隔设置,使得该非对称单元形成的光形,左侧部分位于水平线的上侧,从而在避免近光灯照射到对面驾驶员驾驶位的情况下,使得车辆的左侧路照效果更好。
在一些实施例中,第四段1034和第五段1035中的至少一者为直线。
例如,第四段1034和第五段1035均为直线,可以理解的是,当第五段1035为直线时,第五段1035可以为与左右方向平行的直线,也可以为与左右方向相交的斜线。
在一些实施例中,第四段1034和第五段1035中的至少一者为曲线。
例如,第四段1034和第五段1035均为曲线。
在一些实施例中,多个光学单元中的另一部分光学单元为对称单元,对称单元满足:对称单元的光轴与反光面101的几何中心线相交。
例如,对称单元中,对称单元的光轴与反光面101的几何中心线,位于与左右方向垂直的同一平面上,且对称单元的光轴与反光面101的几何中心线相交。
本公开实施例的投射组件100,由于对称单元的光轴与反光面101的几何中心线相交,使得对称单元形成的光形为左右对称光形。由此,利用非对称单元和对称单元结合,可以 使得投射组件100形成的光形的中间能量以及左右至少一侧的能量均较高,使得投射组件100形成的光形在左右方向上的能量均匀性更好。
在一些实施例中,对称单元的数量为多个,至少一个对称单元中,反光面101远离入光面2011的一端设有可形成第二明暗截止线的第二近光截止线108。第二近光截止线108上具有可形成第二明暗截止线的肘部的第三拐点,第三拐点设在对称单元的光轴上。
与第一近光截止线103相似,第二近光截止线108为折线,第二近光截止线108可形成第二明暗截止线,第三拐点可形成第二明暗截止线的“肘部”。通过在对称单元的反光面101上设置第二近光截止线108,使得利用该投射组件100实现照明时,该对称单元形成的光形除了左右对称,还具有第二明暗截止线,从而该对称单元可以作为主光学单元,该主光学单元形成的光形为主光形。由此,该具有第二近光截止线108的对称单元与非对称单元叠加形成的光形左右能量更均匀,可以进一步提高具有该投射组件100的车灯1000路照效果,有利于进一步提高驾驶安全性。
可以理解的是,非对称单元形成的第二明暗截止线和对称单元形成的第一明暗截止线相重合,形成具有该投射组件100的车灯1000的明暗截止线。多个对称单元中可以仅一个对称单元设有第二近光截止线108,也可以两个以上对称单元设有第二近光截止线108。
在一些实施例中,光源3、反光面101和入光面2011一一对应,并形成一个光学单元。
在一些实施例中,光源3为面光源,光源3的数量为5~10个。
例如,如图1至图3所示,光源3的数量为8个。在一个实施例中,光源3为LED。
在一些实施例中,多个透镜2为一体式结构,相邻透镜2的入光面2011之间形成分隔部2013。
例如,如图15至图18所示,八个透镜2为一体式结构,八个透镜2形成一个透镜组,该透镜组的八个入光面2011依次相连形成波浪面;该透镜组的八个出光面2012依次相连形成一个凸曲面。
在一些实施例中,多个反射镜1为一体式结构。
例如,如图14、图20至图22所示,八个反射镜1形成一个反射镜组。
在一些实施例中,反射镜1包括反射部和固定部102,反射部与固定部102为一体式结构,反光面101设在反射部上。
本公开实施例的车灯1000包括上述任一实施例所述的投射组件100。
因此,本公开实施例的车灯1000具有路照均匀性好等优点。
相关技术中,车灯1000在路面上形成的光形存在杂散光现象,影响车灯1000的路照效果。
本公开实施例的车灯1000还包括挡光件4,挡光件4包括挡光部401,挡光部401设在相邻两个入光面2011之间,即挡光部401对应分隔部2013设置,以将相邻两个入光面2011隔开。
本公开实施例的车灯1000,通过设置挡光件4,利用挡光件4的挡光部401将相邻两个入光面2011隔开,可以有效避免光源3发出的光线,照射到相邻光学单元的入光面2011上而形成杂散光。具有本公开实施例的车灯1000工作时,可以大大减少甚至避免杂散光,有利于提高车灯1000的路照效果。
因此,具有本公开实施例的车灯1000具有路照效果好等优点。
在一些实施例中,图15至图18所示,挡光部401设有多个,任意相邻两个入光面2011之间均设有挡光部401。
通过在任意相邻两个入光面2011之间设置挡光部401,可以有效避免任意一个光源3发出的光线照射到相邻光学单元的入光面2011上,而形成杂散光,有利于进一步提高车灯1000的路照效果。
在一些实施例中,如图15和图18所示,挡光件4还包括连接部402,多个挡光部401均与连接部402相连,连接部402与透镜2相连。
在进行车灯1000的组装时,可以先利用连接部402实现挡光件4与透镜2的连接,形成一个第一分总成,然后再进行第一分总成与其他部件的连接,从而方便将挡光件4固定在透镜2的预设位置处。
因此,通过在挡光件4上设置连接部402,连接部402与透镜2相连不仅方便车灯1000的组装;而且可以有效提高挡光部401和入光面2011之间的装配精度,有利于进一步提高车灯1000的路照效果。
在一些实施例中,连接部402和挡光部401为一体式结构。
在一些实施例中,挡光件4为不锈钢件、塑料件或铝合金件。
在一些实施例中,挡光部401为挡光板或挡光条。
在一些实施例中,连接部402为连接板,连接板上具有用于避让入光面2011的避让部4021,避让部4021可以为避让孔或避让槽。
在一些实施例中,车灯1000还包括架体5,连接部402和透镜2均与架体5相连。
例如,如图15至图18所示,架体5为具有容纳腔501的罩体,透镜2设在容纳腔501内,挡光件4设在容纳腔501内。透镜2包括透镜本体201和连接臂202,入光面2011和出光面2012设在透镜本体201上。
架体5具有第一连接孔,连接臂202具有第二连接孔,连接部402具有第三连接孔,车灯1000还包括第一紧固件901,第一紧固件901穿过第三连接孔和第二连接孔并与第一连接孔相连,利用第一紧固件实现挡光件4、透镜2与架体5的连接。
在一些实施例中,第一紧固件901可以为螺栓、螺钉等。
在一些实施例中,如图15所示,车灯1000还包括PCB板6和散热器7,光源3设在PCB板6上,PCB板6通过第二紧固件902与散热器7相连。固定部102通过第三紧固件903与散热器7相连。
在一些实施例中,如图15、图16和图18所示,架体5具有翻边504,散热器7与翻边504通过第四紧固件904相连。
其中,第二紧固件902、第三紧固件903和第四紧固件904可以为螺栓、螺钉等。
在进行车灯1000的组装时,首先,透镜2、挡光件4和架体5组装成第一分总成,反射镜1、光源3、PCB板6和散热器7组装成第二分总成;然后,第二分总成与第一分总成通过第四紧固件904相连。
本公开实施例的车辆包括上述任一实施例所述的车灯1000。
因此,本公开实施例的车辆具有安全性好等优点。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一 特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本公开的保护范围内。

Claims (19)

  1. 一种投射组件,其特征在于,包括多个光学单元,每个所述光学单元包括:
    反射镜,所述反射镜具有反光面;和
    透镜,所述透镜具有入光面,所述入光面对应所述反光面设置;
    其中,每个所述光学单元均具有沿X方向延伸的光轴,所述反光面和对应的所述入光面沿所述X方向布置,多个所述光学单元中的一部分所述光学单元为非对称单元,所述非对称单元满足:同一所述非对称单元中所述光轴与所述反光面的几何中心线沿Y方向间隔设置。
  2. 根据权利要求1所述的投射组件,其特征在于,所述非对称单元中,所述反光面远离所述入光面的一侧设有可形成第一明暗截止线的第一近光截止线,所述第一近光截止线上具有可形成所述第一明暗截止线的肘部的第一拐点,所述第一拐点设在所述非对称单元的所述光轴上。
  3. 根据权利要求1或2所述的投射组件,其特征在于,所述非对称单元的数量为多个,多个所述非对称单元沿所述Y方向布置,多个所述非对称单元中的两个所述非对称单元形成非对称单元组,所述非对称单元组满足:每个所述非对称单元的所述光轴在所述Y方向上位于两个所述反光面的所述几何中心线之间。
  4. 根据权利要求3所述的投射组件,其特征在于,所述非对称单元组中,其中一个所述非对称单元为第一非对称单元,另一个所述非对称单元为第二非对称单元,所述第一非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L1,所述第二非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L2,所述L1等于所述L2或者所述L1大于所述L2。
  5. 根据权利要求4所述的投射组件,其特征在于,所述第一非对称单元的所述反光面在所述Y方向上的尺寸为L01,所述第二非对称单元的所述反光面在所述Y方向上的尺寸为L02;
    所述L1与所述L01的比值为0.05~0.49,和/或
    所述L2与所述L02的比值为0.05~0.49。
  6. 根据权利要求3至5中任一项所述的投射组件,其特征在于,所述非对称单元组的数量为多个,多个所述非对称单元组沿所述Y方向布置。
  7. 根据权利要求6所述的投射组件,其特征在于,至少一个所述非对称单元组为第一非对称单元组,至少一个所述非对称单元组为第二非对称单元组,
    所述第一非对称单元组中,其中一个所述非对称单元为第一非对称单元,另一个所述非对称单元为第二非对称单元,所述第一非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L1,所述第二非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L2,
    所述第二非对称单元组中,其中一个所述非对称单元为第三非对称单元,另一个所述非对称单元为第四非对称单元,所述第三非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L3,所述第四非对称单元中所述光轴与所述反光面的几何中心线之间的距离为L4;
    其中,所述L1等于所述L2,所述L3等于所述L4,且所述L3大于所述L1,或者
    所述L1大于所述L2,所述L3大于所述L4,或者
    所述L1等于所述L2,所述L3大于所述L4。
  8. 根据权利要求7所述的投射组件,其特征在于,所述第一非对称单元的所述反光面在所述Y方向上的尺寸为L01,所述第二非对称单元的所述反光面在所述Y方向上的尺寸为L02,所述第三非对称单元的所述反光面在所述Y方向上的尺寸为L03,所述第四非对称单元的所述反光面在所述Y方向上的尺寸为L04;
    所述L1与所述L01的比值为0.05~0.35,和/或
    所述L2与所述L02的比值为0.05~0.35,和/或
    所述L3与所述L03的比值为0.1~0.49,和/或
    所述L4与所述L04的比值为0.1~0.49。
  9. 根据权利要求3至8中任一项所述的投射组件,其特征在于,所述非对称单元组中的两个所述非对称单元相邻设置。
  10. 根据权利要求3至9中任一项所述的投射组件,其特征在于,所述非对称单元组中,两个所述非对称单元的所述入光面在所述Y方向上对称设置。
  11. 根据权利要求2至10中任一项所述的投射组件,其特征在于,所述第一近光截止线包括沿所述Y方向依次相连的第一段、第二段和第三段,所述第一段和所述第三段在Z方向上间隔设置,所述第二段倾斜设置,所述第三段和所述第二段的连接处形成所述第一拐点,所述第一段和所述第二段的连接处形成第二拐点,所述第二拐点可形成所述第一明暗截止线的肩部;
    所述第二段的倾斜角度为45°,和/或
    所述第一段、所述第二段和所述第三段中的至少一者为直线,和/或
    所述第一段、所述第二段和所述第三段中的至少一者为曲线。
  12. 根据权利要求11所述的投射组件,其特征在于,所述第一近光截止线还包括第四段和第五段,所述第三段、所述第四段和所述第五段沿所述Y方向依次相连,所述第三段和所述第五段在所述Z方向上间隔设置,所述第四段倾斜设置,所述第四段在所述Z方向上位于所述第一段和所述第三段之间。
  13. 根据权利要求12所述的投射组件,其特征在于,所述第四段和所述第五段中的至少一者为直线;和/或
    所述第四段和所述第五段中的至少一者为曲线。
  14. 根据权利要求1至13中任一项所述的投射组件,其特征在于,所述透镜具有与所述入光面对应的出光面,所述入光面为Y方向准直的入光面,所述出光面为Z方向准直的出光面。
  15. 根据权利要求1至14中任一项所述的投射组件,其特征在于,所述反光面为抛物面;和/或
    所述反光面在所述Y方向上的尺寸为5mm~15mm;和/或
    所述反光面的焦距为0.5mm~3mm。
  16. 根据权利要求1至15中任一项所述的投射组件,其特征在于,多个所述光学单元中的另一部分所述光学单元为对称单元,所述对称单元满足:同一所述对称单元中所述光轴与所述反光面的几何中心线相交。
  17. 根据权利要求16所述的投射组件,其特征在于,所述对称单元的数量为多个,至少一个所述对称单元中,所述反光面远离所述入光面的一端设有可形成第二明暗截止线的第二近光截止线,所述第二近光截止线上具有可形成所述第二明暗截止线的肘部的第三拐点,所述第三拐点设在所述对称单元的所述光轴上。
  18. 一种车灯,其特征在于,包括权利要求1至17中任一项所述的投射组件。
  19. 一种车辆,其特征在于,包括权利要求18所述的车灯。
PCT/CN2023/090953 2022-04-29 2023-04-26 车灯、投射组件和车辆 WO2023208066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221046444.5 2022-04-29
CN202221046444.5U CN217684748U (zh) 2022-04-29 2022-04-29 车灯、投射组件和车辆

Publications (1)

Publication Number Publication Date
WO2023208066A1 true WO2023208066A1 (zh) 2023-11-02

Family

ID=83737704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090953 WO2023208066A1 (zh) 2022-04-29 2023-04-26 车灯、投射组件和车辆

Country Status (2)

Country Link
CN (1) CN217684748U (zh)
WO (1) WO2023208066A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217785015U (zh) * 2022-04-29 2022-11-11 北京车和家汽车科技有限公司 投射组件、车灯和车辆
CN217684748U (zh) * 2022-04-29 2022-10-28 北京车和家汽车科技有限公司 车灯、投射组件和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176603A (ja) * 1992-12-07 1994-06-24 Koito Mfg Co Ltd 配光可変型プロジェクタランプのレンズ駆動機構
JPH0650111U (ja) * 1992-12-10 1994-07-08 株式会社小糸製作所 プロジェクタ型車両用灯具の配光可変構造
CN101285562A (zh) * 2007-04-10 2008-10-15 株式会社小糸制作所 车辆用灯具单元
US20140233253A1 (en) * 2013-02-15 2014-08-21 Stanley Electric Co., Ltd. Vehicle headlight
CN112762407A (zh) * 2019-11-05 2021-05-07 华域视觉科技(上海)有限公司 近光光学模组及车灯
CN217684748U (zh) * 2022-04-29 2022-10-28 北京车和家汽车科技有限公司 车灯、投射组件和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06176603A (ja) * 1992-12-07 1994-06-24 Koito Mfg Co Ltd 配光可変型プロジェクタランプのレンズ駆動機構
JPH0650111U (ja) * 1992-12-10 1994-07-08 株式会社小糸製作所 プロジェクタ型車両用灯具の配光可変構造
CN101285562A (zh) * 2007-04-10 2008-10-15 株式会社小糸制作所 车辆用灯具单元
US20140233253A1 (en) * 2013-02-15 2014-08-21 Stanley Electric Co., Ltd. Vehicle headlight
CN112762407A (zh) * 2019-11-05 2021-05-07 华域视觉科技(上海)有限公司 近光光学模组及车灯
CN217684748U (zh) * 2022-04-29 2022-10-28 北京车和家汽车科技有限公司 车灯、投射组件和车辆

Also Published As

Publication number Publication date
CN217684748U (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2023208066A1 (zh) 车灯、投射组件和车辆
US8287167B2 (en) Lamp unit
US7441928B2 (en) Lighting device
US6386743B1 (en) Projection-type light
US20070177400A1 (en) Vehicle lighting device
CN106764783B (zh) 一种车辆用前照灯
CN113958921A (zh) 照明模组、照明装置及车辆
WO2022100058A1 (zh) 远近光一体车灯光学元件、车灯模组、车灯及车辆
JP2022522258A (ja) ロービーム光学モジュール、ロービーム照明モジュール、車両用灯具及び車両
WO2023208065A1 (zh) 投射组件、车灯和车辆
TWM639399U (zh) 車燈結構
WO2023208064A1 (zh) 反射镜、投射组件、车灯和车辆
WO2023208067A1 (zh) 透镜组件、车灯和车辆
WO2024093061A1 (zh) 反射式光学模组及使用其的照明装置及车辆
CN114719226B (zh) 一种透镜条、配光透镜、条形灯及道路照明装置
WO2021218826A1 (zh) 透镜单元、光学透镜、照明模组、车灯及车辆
TWI788114B (zh) 車燈裝置
TWI418741B (zh) Lighting device
JPH01601A (ja) 車両用灯具の反射鏡
CN210166611U (zh) 可使光斑产生截止线的直反光杯
WO2011116635A1 (zh) 一种led灯发光单元及所形成的汽车、摩托车led前照灯
CN215372307U (zh) 照明模组、照明装置及车辆
TWI491833B (zh) 車用照明裝置
TWI829442B (zh) 車燈結構
CN220017112U (zh) 路灯透镜结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795498

Country of ref document: EP

Kind code of ref document: A1