WO2023207964A1 - 反向散射通信方法及设备 - Google Patents

反向散射通信方法及设备 Download PDF

Info

Publication number
WO2023207964A1
WO2023207964A1 PCT/CN2023/090558 CN2023090558W WO2023207964A1 WO 2023207964 A1 WO2023207964 A1 WO 2023207964A1 CN 2023090558 W CN2023090558 W CN 2023090558W WO 2023207964 A1 WO2023207964 A1 WO 2023207964A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
information bits
antenna
bsc
antennas
Prior art date
Application number
PCT/CN2023/090558
Other languages
English (en)
French (fr)
Inventor
简荣灵
黄伟
沈晓冬
谭俊杰
郑敏华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023207964A1 publication Critical patent/WO2023207964A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a backscattering communication method and equipment.
  • Backscatter Communication means that backscatter communication equipment uses radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information. Due to various interferences in the wireless channel, the digital baseband signal needs to be modulated into a modulated signal suitable for wireless channel transmission to cope with the signal waveform distortion and fading caused by interference, so as to reduce the bit error rate and detection difficulty.
  • BSC signals are usually modulated in methods such as ASK, PSK or FSK, and their communication distances are mostly less than 10 meters, which is far from the goal of cellular coverage of 100 meters.
  • BSC equipment can enhance coverage through multiple antenna configurations.
  • Specific technologies include space-time coding and precoding. These technologies change the amplitude or phase of the BSC signal by switching different load impedances. There are certain requirements for the number of impedances, which increases Hardware complexity and power consumption. Therefore, how to enhance BSC coverage with as little load impedance as possible is an urgent technical problem that those skilled in the art need to solve.
  • Embodiments of the present application provide a backscatter communication method and equipment, which can solve the problem of how to enhance BSC coverage with as little load impedance as possible.
  • a backscatter communication method including:
  • the backscatter communication BSC device is based on the switching frequency of the switch associated with each of the multiple antennas of the BSC device in the transmission period of different information bits, and the switching frequency of the adjacent antennas in the multiple antennas corresponding to different information bits.
  • the frequency offset between the two transmits the target information bits.
  • a backscatter communication method including:
  • the first device receives a reference signal based on the target beam direction; the reference signal is a backscatter communication BSC The device is based on the switching frequency of the switch associated with each of the multiple antennas of the BSC device in the transmission period of different information bits, and the frequency offset transmission between adjacent antennas in the multiple antennas corresponding to different information bits. of;
  • the first device decodes the target information bits sent by the BSC device based on the strength of the reference signal.
  • a backscatter communication device including:
  • a backscatter communication device including:
  • a receiving module configured to receive a reference signal based on the target beam direction;
  • the reference signal is a backscatter communication BSC device based on switching of switches associated with each of the antennas in the multiple antennas of the BSC device in different information bit transmission periods. frequency, and the frequency offset between adjacent antennas in the multiple antennas corresponding to different information bits;
  • a processing module configured to decode the target information bits sent by the BSC device based on the strength of the reference signal.
  • a BSC device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the programs or instructions are implemented when executed by the processor. The steps of the method as described in the first aspect.
  • a BSC device including a processor and a communication interface, wherein the communication interface is used to transmit different information bits based on switches associated with each of the multiple antennas of the BSC device.
  • the switching frequency and the frequency offset between adjacent antennas among the plurality of antennas corresponding to different information bits are used to send the target information bits.
  • a first device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions executable on the processor. The programs or instructions are executed by the processor. When implementing the steps of the method described in the second aspect.
  • a first device including a processor and a communication interface, wherein the communication interface is used to receive a reference signal based on the target beam direction; the reference signal is a backscatter communication BSC device based on the BSC
  • the switch associated with each of the multiple antennas of the device is transmitted at the switching frequency of the transmission cycle of different information bits, and the frequency offset between adjacent antennas in the multiple antennas corresponding to different information bits; the processing The processor is configured to decode the target information bits sent by the BSC device based on the strength of the reference signal.
  • a communication system including: a BSC device and a first device.
  • the BSC device can be used to perform the steps of the backscatter communication method as described in the first aspect.
  • the first device can be used to perform The steps of the backscatter communication method as described in the second aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect.
  • the backscatter communication BSC device is based on the switching frequency of each antenna in the multiple antennas of the BSC device at the switching frequency of the transmission cycle of different information bits, and the adjacent multiple antennas corresponding to different information bits.
  • the frequency offset between antennas transmits target information bits and controls the beam direction through frequency, thereby enhancing coverage without requiring more impedance and lower hardware complexity and power consumption.
  • Figure 1 is a structural diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is one of the schematic diagrams of the application scenario architecture provided by the embodiment of this application.
  • Figure 3 is the second schematic diagram of the application scenario architecture provided by the embodiment of this application.
  • FIG. 4 is a schematic structural diagram of the BSC equipment provided by the embodiment of the present application.
  • Figure 5 is a schematic diagram of a frequency controlled array provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the virtual array principle provided by the embodiment of the present application.
  • Figure 7 is one of the schematic flow diagrams of the backscatter communication method provided by the embodiment of the present application.
  • Figure 8 is one of the schematic diagrams of the frequency control principle of the BSC equipment provided by the embodiment of the present application.
  • Figure 9 is the second schematic diagram of the frequency control principle of the BSC equipment provided by the embodiment of the present application.
  • Figure 10 is the second schematic flow chart of the backscatter communication method provided by the embodiment of the present application.
  • Figure 11 is one of the structural schematic diagrams of the backscatter communication device provided by the embodiment of the present application.
  • Figure 12 is the second structural schematic diagram of the backscatter communication device provided by the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal devices such as mobile phones
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • a station may be called a Node B, an Evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a Basic Service Set (BSS), an extension Service set (Extended Service Set, ESS), home B-node, home evolved B-node, transmitting receiving point (Transmitting Receiving Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, all
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B-node home evolved B-node
  • transmitting receiving point Transmitting Receiving Point, TRP
  • TRP Transmitting Receiving Point
  • the terminal in Figure 1 may also be a BSC device.
  • Figures 2 and 3 show two common architectures for backscatter communications.
  • Figure 2 shows the single-base BSC architecture.
  • This architecture means that the downlink signal transmitter and the uplink signal receiver belong to the same device.
  • the BSC receiver (Receiver) is used to represent this device;
  • Figure 3 Represents the dual-base BSC architecture. This architecture indicates that the downlink signal transmitter and the uplink signal receiver belong to different devices.
  • BSC Receiver and BSC transmitter Transmitter
  • the BSC Receiver is not only the radio frequency source, but also the downlink data transmitter of the BSC equipment and the uplink data receiver of the BSC equipment.
  • the BSC Receiver communicates directly with the BSC equipment.
  • This deployment architecture has high requirements on the receiving sensitivity of network side equipment and BSC equipment.
  • the architecture is simple to deploy, but the effective communication distance is short.
  • the BSC device is a device that modulates information for transmission on carrier waves sent by other devices.
  • the BSC Transmitter is the radio frequency source and is the downlink data sending end of the BSC equipment, while the uplink data receiving end of the BSC equipment is the BSC Receiver.
  • the downlink coverage performance of this architecture is limited by the hardware capabilities of the BSC equipment and the ability of the BSC Receiver to demodulate the BSC signal. There are many variations of this architecture, only one of which is listed here.
  • the BSC device is a device that modulates the information to be sent onto the signal source carrier through the BSC method.
  • the BSC system includes the following parts: BSC transmitter (also called BSC terminal) and BSC receiver.
  • BSC transmitter also called BSC terminal
  • BSC receiver As one form of BSC transmitter, BSC equipment is also called Tag. Its structure is shown in Figure 4.
  • the BSC system uses radio frequency signals in the environment, such as from cellular, TV broadcasts and wireless fidelity WiFi signals.
  • the Tag collects its energy and loads the information to be sent into the signal in the environment and sends it to the receiver (this application uses the receiver as the base station For example) to achieve communication between the passive Tag and the receiver.
  • Tag is mainly composed of several important parts: radio frequency energy collector, switch, modulation module and information decoder.
  • the Tag receives the radio frequency source signal in the environment, obtains energy from it, and stores it in the energy collector to provide energy for the Tag's own hardware modules such as signal processing and signal transmission. Subsequently, the received signal in the environment is modulated and transmitted through the transmitting antenna to the receiver.
  • Tag changes the amplitude and phase of the backscattered signal by controlling the switching load impedance to achieve modulation of the carrier wave in the received environment.
  • the receiver Can receive and decode backscattered signals.
  • the reflection coefficient as ⁇
  • the impedance of each antenna of Tag is ZA
  • the i-th load impedance is Zi. Available:
  • ⁇ A and ⁇ i represent the phases of the antenna and the i-th load impedance respectively.
  • Tag has M antennas (M ⁇ 2) and N load impedances, and the antenna impedance of each antenna is equal, then the reflection coefficient ⁇ i corresponding to the i-th load impedance Z i is defined as follows:
  • the BSC device can implement FSK modulation by controlling the switching frequency of the switch, which is controlled by hardware devices such as square wave signals or oscillators generated by the MCU.
  • phased arrays are the freedom to achieve beam scanning.
  • each array element of a phased array emits the same signal.
  • the phased array has the following problem: within each scanning snapshot, the beam pointing is constant in the range direction, which means that the beam pointing is independent of the distance.
  • the signal frequency of the phased array is also unchanged.
  • the frequency controlled array emits coherent signals just like the phased array, except that the frequency controlled array adds a small frequency offset (the frequency is much smaller than its carrier frequency) to the excitation current of each antenna to control the emission of the radiation signal.
  • Frequency controlled array can be seen as an extension of phased array, and phased array is a special case of frequency controlled array.
  • the frequency controlled array adds a frequency offset ⁇ f to the transmitted signal on adjacent array elements that is much smaller than the carrier frequency.
  • the radiation frequency of the first array element is f 0 and the radiation signal frequency of the m-th array element is: the relationship between ⁇ f and f 0
  • M is the number of array elements.
  • d is the array element spacing
  • c is the speed of light
  • phase factor ⁇ 0 is:
  • the frequency controlled array has the following characteristics: (1) The frequency offset of the frequency controlled array is additional, instead of the array itself transmitting orthogonal multi-frequency signals: the frequency controlled array transmits the same signal as the phased array The coherent signals are only different in frequency after additional frequency offset control. Therefore, frequency controlled array still belongs to the category of phased array. (2) The array pointing of the frequency controlled array will be affected by the loaded frequency offset ⁇ f.
  • the main feature of the frequency controlled array is that its array factor is distance-dependent, so its pattern has a unique "S" shape, which is caused by ⁇ f(ct-r+df 0 sin ⁇ / ⁇ f+d sin ⁇ )/c .
  • the array factor is periodic, and the peak of the array pattern will appear at:
  • FIG. 6 shows different delays for different frequency components, using two actual array elements to virtually expand the array. Among them, the position of the first array element remains unchanged, and the second array element moves to the right by a distance of ⁇ d each time.
  • ⁇ d ( ⁇ f/f 0 )d
  • f 0 represents the center frequency
  • ⁇ f represents the frequency offset between two adjacent sub-bands.
  • the expansion of the virtual array can be achieved by changing the frequency offset.
  • FIG 7 is one of the schematic flow charts of the backscatter communication method provided by the embodiment of the present application. As shown in Figures 7 and 8, the method provided by this embodiment includes:
  • Step 101 The backscatter communication BSC device is based on the switching frequency of the switch associated with each antenna in the multiple antennas of the BSC device in the transmission cycle of different information bits, and the frequency between adjacent antennas in the multiple antennas corresponding to different information bits. Bias, sending target information bits.
  • the BSC device determines the switching frequency of the switch according to the target information bits that need to be sent in different transmission cycles, further determines the frequency offset corresponding to different information bits, and realizes the modulation of the information bits and the control of different beam directions.
  • the target information bit is bit 0 or bit 1, for example.
  • the transmission cycle is a time period, and the time units include, for example: symbols, time slots, frames, nanoseconds ns, microseconds us, milliseconds ms, seconds s, etc.
  • the schematic diagram of frequency control of BSC equipment is shown in Figure 8.
  • the switching frequency of the switches associated with different antennas is controlled in asymmetrical increments or decrements.
  • the backscatter communication BSC device is based on the switching frequency of the switch associated with each antenna among the multiple antennas of the BSC device in the transmission cycle of different information bits, and the adjacent antennas among the multiple antennas corresponding to different information bits.
  • the frequency offset between the two transmits the target information bits, and the beam direction is controlled by frequency, thereby enhancing coverage without requiring more impedance, and the hardware complexity and power consumption are lower.
  • the target information bits include first information bits and second information bits
  • the switching frequency of the switch associated with the i-th antenna is the first frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the second frequency
  • the frequency offset between the i antenna and the i+1th antenna corresponding to the bit is the first frequency offset
  • the value range of i is [1, M-1], and M is the number of antennas;
  • the switching frequency of the switch associated with the i-th antenna is the third frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the fourth frequency
  • the second information The frequency offset between the i-th antenna and the i+1-th antenna corresponding to the bit is the second frequency offset.
  • the first information bit of the BSC device is sent in the tth period, and the BSC device determines that the switching frequency of the switch associated with the i-th antenna is the first frequency, and the switching frequency of the switch associated with the i+1th antenna is determined based on the first information bit.
  • the frequency is the second frequency, generating a first frequency offset, which carries information of the first information bit;
  • the second information bit of the BSC device is sent in the qth period. Based on the second information bit, the BSC device determines that the switching frequency of the switch associated with the i-th antenna is the third frequency, and the switching frequency of the switch associated with the i+1th antenna is the third frequency. Four frequencies produce a second frequency offset, which carries the information of the second information bit.
  • the BSC device Based on the target information bits to be sent, the BSC device sends the first information bit or the second information bit in each transmission cycle.
  • the first frequency and the third frequency are different; and/or,
  • the second frequency is not the same as the fourth frequency.
  • the first frequency and the third frequency are zero; or,
  • the second frequency and the fourth frequency are zero.
  • the BSC device is configured with M antennas and N load impedances, and M and N may be equal or unequal.
  • Different ways of generating frequency offset include:
  • the i-th antenna (i ⁇ [1, M]) corresponds to the a frequency
  • the i+1-th antenna corresponds to the b-frequency
  • the frequency difference between the i-th antenna and the i+1-th antenna generates the a frequency offset (a-b);
  • the i-th antenna corresponds to c frequency
  • the i+1-th antenna corresponds to d frequency
  • the second frequency offset (c-d) caused by the frequency difference between the i-th antenna and the i+1-th antenna
  • frequency a may be equal to or not equal to frequency c, that is, the frequency corresponding to the i-th antenna may remain unchanged or change when different information bits are transmitted, or no frequency may be generated to reduce power consumption.
  • b frequency may be equal to or not equal to d frequency, that is, the frequency corresponding to the i+1th antenna may remain unchanged or change when different information bits are transmitted, or no frequency may be generated to reduce power consumption.
  • a frequency and c frequency, b frequency and d frequency cannot all be equal, but they can all be unequal, that is, when a frequency and c frequency are the same, b frequency and d frequency are not the same; or, when b frequency and d frequency In different cases, a frequency and c frequency are not the same.
  • the beam direction is controlled by frequency. Compared with precoding technology, less load impedance is used and power consumption is lower, which effectively reduces system complexity. Compared with the space-time coding scheme, the beam direction can be flexibly controlled to enhance coverage. , and low-complexity decoding can be achieved by measuring the transmitted signal.
  • the first frequency offset is used to control the direction of the first beam
  • the second frequency offset is used to control the direction of the second beam.
  • the direction of the first beam and the direction of the second beam are different.
  • different frequency offsets can be used to control different beam directions.
  • the first beam and the second beam in different directions correspond to different information bits.
  • step 101 can be implemented in the following ways:
  • the BSC device uses a virtual array to form beams corresponding to each antenna in the transmission period of different information bits based on the switching frequency and frequency offset, and uses each antenna to correspond to The beam transmits the target information bits;
  • the BSC equipment uses a virtual array or frequency controlled array to form beams corresponding to each antenna in the transmission period of different information bits based on the switching frequency and frequency offset, and uses The beam corresponding to each antenna transmits the target information bits.
  • the BSC forms a beam in the corresponding direction based on the target information bits to be sent based on the switching frequency of the switch associated with the antenna and the frequency offset between adjacent antennas, and uses the beam to send the target information bits.
  • the beam forming method can be a virtual array or a frequency controlled array.
  • the first frequency offset and the second frequency offset are the same, only the virtual array method can be used.
  • the virtual array method can be used.
  • the frequency offsets are different, virtual array or frequency controlled array can be used.
  • the method also includes:
  • the BSC device receives the first indication information sent by the first device, and the first indication information is used to indicate the switching frequency of the switch associated with each antenna in the transmission period of different information bits.
  • the first device may be a network side device, such as an access network device, and the first indication information is used to indicate the switching frequency of the switch associated with each antenna in the transmission cycle of different information bits.
  • the BSC device determines the switching frequency of the switch associated with each antenna in the transmission period of different information bits and the corresponding frequency offset based on the switching frequency indicated by the first indication information and the target information bits.
  • the network side device can instruct the switching frequency of the switch associated with each antenna of the BSC device in the transmission period of different information bits. Based on the target information bits to be sent, the BSC device determines the switching frequency corresponding to the current target information bit, and the corresponding frequency deviation.
  • the antenna-switch-impedance in the BSC device may have a one-to-one correspondence, or one antenna may correspond to multiple radio frequency switches.
  • the radio frequency switch can be a PIN diode, a field effect transistor switch, a radio frequency microelectromechanical system (RF MEMS) switch, a single pole double throw switch, a switch chip or other radio frequency switches.
  • RF MEMS radio frequency microelectromechanical system
  • this embodiment provides an implementation of a frequency controlled array corresponding to different frequency offsets.
  • the BSC equipment has two transmitting antennas (the first antenna and the second antenna), and the impedances are both Z A , corresponding to two load impedances Z 1 and Z 2 respectively.
  • the switching frequency of the switch is controlled by the microcontroller MCU and can also be further controlled by the oscillator of the BSC device.
  • the switching frequencies corresponding to the switches associated with each antenna of the BSC equipment are shown in Table 1.
  • the switching frequency corresponding to the switch associated with the first antenna is f c0
  • the switching frequency corresponding to the switch associated with the second antenna is f 0
  • the frequency difference is ⁇ f c0
  • the beam pointing can be obtained as ⁇ c0
  • the switching frequency corresponding to the switch associated with the first antenna is f c1
  • the switch associated with the second antenna The corresponding switching frequency is f 1 , so the frequency difference is ⁇ f c1 , and the beam direction can be obtained as ⁇ c1 .
  • the switching frequency corresponding to the switch (connected load impedance) associated with the first antenna can be equal, that is, f c0 is equal to f c1 .
  • f c0 and f c1 can be 0, which means that the first antenna is not connected to the load impedance.
  • ⁇ f c0 is equal to f 0
  • ⁇ f c1 is equal to f 1 .
  • the switching frequencies corresponding to the switches (connected load impedances) associated with the first antenna may also be unequal, that is, f c0 is not equal to f c1 .
  • DCI can also be used to indicate the switch associated with the antenna of the BSC device. corresponding switching frequency.
  • the measurement parameters used to transmit signals mainly include: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Received Signal Strength Indicator (RSSI), and channel status.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • CSI Channel State Information
  • the reference signal strength received by the BSC receiving end in the first cycle is RSRP 1
  • the reference signal strength received in the second cycle is RSRP 0
  • the BSC receiving end determines the information bits sent by the BSC device based on the reference signal strength of the received signal. Since the fixed receiving beam of the BSC receiving end is the incoming wave direction of ⁇ c0 , if RSRP 0 > RSRP 1 , the information bits sent in the first period are 1, and the information bits sent in the second period are 0.
  • the first frequency offset and the second frequency offset are the same or different.
  • this embodiment provides an implementation of a virtual array.
  • the frequency offset of the first antenna and the second antenna when modulating different information bits can be consistent or inconsistent: 1) Inconsistent situation: If the BSC device sends bits 0000110, then the first 4 consecutive 0 bits are sent When , a virtual array of 5 array elements with equal spacing can be formed. However, when the transmitted bit changes from 0 to 1, the frequency offset changes, and the corresponding array element spacing changes. At this time, the virtual array is re-created to form a virtual non-uniform array;
  • a virtual array is implemented by transmitting different information bits based on the switching frequency and frequency offset, thereby achieving the purpose of enhancing coverage.
  • Figure 10 is the second schematic flow chart of the backscatter communication device provided by the embodiment of the present application. As shown in Figure 10, the method provided by this embodiment includes:
  • Step 201 The first device receives a reference signal based on the target beam direction;
  • the reference signal is a backscatter communication BSC device based on the switching frequency of the switch associated with each of the multiple antennas of the BSC device in different information bit transmission periods, and different The information bits are transmitted by the frequency offset between adjacent antennas among the multiple antennas corresponding to them;
  • Step 202 The first device decodes the target information bits sent by the BSC device based on the strength of the reference signal.
  • the first device sends first indication information to the BSC device, where the first indication information is used to indicate the switching frequency of the switch associated with each of the antennas in the transmission period of different information bits.
  • the target information bits include first information bits and second information bits
  • the switching of the switch associated with the i-th antenna The frequency is the first frequency, and the switching frequency of the switch associated with the i+1th antenna is the second frequency; the frequency offset between the i antenna and the i+1th antenna corresponding to the first information bit is the first frequency offset; the value range of i is [1, M-1], M is the number of antennas;
  • the switching frequency of the switch associated with the i-th antenna is the third frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the fourth frequency
  • the switching frequency of the switch associated with the i-th antenna is the fourth frequency
  • the frequency offset between the i-th antenna and the i+1-th antenna corresponding to the two information bits is the second frequency offset.
  • the first frequency and the third frequency are different; and/or,
  • the second frequency is different from the fourth frequency.
  • the first frequency and the third frequency are zero; or,
  • the second frequency and the fourth frequency are zero.
  • the target information bits are transmitted using beams corresponding to each of the antennas formed based on a frequency-controlled array; or,
  • the target information bits are transmitted using beams corresponding to each of the antennas formed based on a virtual array or a frequency controlled array.
  • the execution subject may be a backscatter communication device.
  • a backscatter communication device performing a backscatter communication method is used as an example to illustrate the backscatter communication device provided by the embodiment of the present application.
  • FIG. 11 is one of the structural schematic diagrams of the backscatter communication device provided by the embodiment of the present application. As shown in Figure 11, the backscattering communication device provided by this embodiment includes:
  • the sending module 210 is configured to use the switching frequency of the switch associated with each of the multiple antennas of the BSC device in the transmission period of different information bits, and the switching frequency of the adjacent antennas in the multiple antennas corresponding to different information bits. frequency offset between, transmit the target information bits.
  • the target information bits include first information bits and second information bits
  • the switching frequency of the switch associated with the i-th antenna is the first frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the second frequency
  • the switching frequency of the switch associated with the i-th antenna is the second frequency
  • the frequency offset between the i antenna and the i+1th antenna corresponding to one information bit is the first frequency offset
  • the value range of i is [1, M-1], and M is the number of antennas;
  • the switching frequency of the switch associated with the i-th antenna is the third frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the fourth frequency
  • the switching frequency of the switch associated with the i-th antenna is the fourth frequency
  • the frequency offset between the i-th antenna and the i+1-th antenna corresponding to the two information bits is the second frequency offset.
  • the first frequency and the third frequency are different; and/or,
  • the second frequency is different from the fourth frequency.
  • the first frequency and the third frequency are zero; or,
  • the second frequency and the fourth frequency are zero.
  • the first frequency offset is used to control the direction of the first beam
  • the second frequency offset is used to control the direction of the second beam
  • the direction of the first beam is different from the direction of the second beam.
  • the sending module 210 is specifically used to:
  • a virtual array is used to form beams corresponding to each of the antennas in the transmission period of different information bits, and Using beams corresponding to each of the antennas to transmit the target information bits;
  • a virtual array or a frequency controlled array is used to form each of the antennas in the transmission period of different information bits.
  • the device also includes:
  • the receiving module is configured to receive first indication information sent by the first device, where the first indication information is used to indicate the switching frequency of the switch associated with each of the antennas in the transmission period of different information bits.
  • the device also includes:
  • the processing module 220 is configured to determine, based on the switching frequency indicated by the first indication information and the target information bits, the switching frequency of the switch associated with each antenna in the transmission period of different information bits, and the corresponding frequency offset.
  • the device of this embodiment can be used to execute the method of any of the foregoing BSC device side method embodiments. Its specific implementation process and technical effects are the same as those in the BSC device side method embodiments. For details, please refer to BSC device side method implementation. The detailed introduction in the example will not be repeated here.
  • FIG. 12 is the second structural schematic diagram of the backscattering communication device provided by the embodiment of the present application. As shown in Figure 12, the backscatter communication device provided by this embodiment includes:
  • the receiving module 310 is configured to receive a reference signal based on the target beam direction; the reference signal is the switching frequency of the switch associated with each of the multiple antennas of the BSC device based on the backscatter communication BSC device in the transmission cycle of different information bits. , and the frequency offset between adjacent antennas among the multiple antennas corresponding to different information bits is transmitted;
  • the processing module 320 is configured to decode the target information bits sent by the BSC device based on the strength of the reference signal.
  • a sending module configured to send first indication information to the BSC device, where the first indication information is used to indicate the switching frequency of the switch associated with each of the antennas in the transmission period of different information bits.
  • the target information bits include first information bits and second information bits
  • the switching frequency of the switch associated with the i-th antenna is the first frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the second frequency
  • the switching frequency of the switch associated with the i-th antenna is the second frequency
  • the frequency offset between the corresponding i antenna and the i+1th antenna is the first frequency offset
  • the value range of i is [1, M-1], and M is the number of antennas;
  • the switching frequency of the switch associated with the i-th antenna is the third frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the fourth frequency
  • the switching frequency of the switch associated with the i-th antenna is the fourth frequency
  • the frequency offset between the i-th antenna and the i+1-th antenna corresponding to the two information bits is the second frequency offset.
  • the first frequency and the third frequency are different; and/or,
  • the second frequency is different from the fourth frequency.
  • the target information bits are transmitted using beams corresponding to each of the antennas formed based on a frequency-controlled array; or,
  • the target information bits are transmitted using beams corresponding to each of the antennas formed based on a virtual array or a frequency controlled array.
  • the first frequency and the third frequency are zero; or,
  • the second frequency and the fourth frequency are zero.
  • the device of this embodiment can be used to execute the method of any one of the foregoing first device-side method embodiments. Its specific implementation process and technical effects are the same as those in the first device-side method embodiment. For details, see First Device The detailed introduction of the side method embodiment will not be described again here.
  • the backscattering communication device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the backscattering communication device provided by the embodiment of the present application can implement each process implemented by the method embodiments of Figure N to Figure N+x, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1300, which includes a processor 1301 and a memory 1302.
  • the memory 1302 stores programs or instructions that can be run on the processor 1301, such as , when the communication device 1300 is a BSC device, when the program or instruction is executed by the processor 1301, each step of the above backscatter communication method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network-side device, when the program or instruction is executed by the processor 1301, the steps of the above backscatter communication method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • Embodiments of the present application also provide a BSC device, including a processor and a communication interface.
  • the communication interface is used to switch the switches associated with each of the multiple antennas of the BSC device in different information bit transmission periods, and the frequency offset between adjacent antennas among the plurality of antennas corresponding to different information bits, and the target information bits are sent.
  • This terminal embodiment corresponds to the above-mentioned BSC device side method embodiment, and the above-mentioned method implementation
  • Each implementation process and implementation method of the example can be applied to this BSC device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a first device, including a processor and a communication interface.
  • the communication interface is used to receive a reference signal based on the target beam direction; the reference signal is a backscattering communication BSC device based on multiple roots of the BSC device.
  • the switching frequency of the switch associated with each antenna in the antenna in the transmission period of different information bits, and the frequency offset between adjacent antennas in the multiple antennas corresponding to different information bits; the processor is configured to transmit based on the reference
  • the strength of the signal is used to decode the target information bits sent by the BSC device.
  • This first device embodiment corresponds to the above-mentioned first device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first device embodiment, and can achieve the same technical effect.
  • the first device may be a network side device.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , a baseband device 73 , a processor 75 and a memory 75 .
  • the antenna 71 is connected to the radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71 and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72.
  • the radio frequency device 72 processes the received information and then sends it out through the antenna 71.
  • the above frequency band processing device may be located in the baseband device 73 , and the method performed by the network side device in the above embodiment may be implemented in the baseband device 73 .
  • the baseband device 73 includes a baseband processor 75 and a memory 75 .
  • the baseband device 73 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG.
  • the program performs the network device operations shown in the above method embodiment.
  • the network side device of the baseband device 73 may also include a network interface 76 for exchanging information with the radio frequency device 72.
  • the interface is, for example, a common public radio interface (CPRI).
  • the network side device 700 in this embodiment of the present invention also includes: instructions or programs stored in the memory 75 and executable on the processor 75.
  • the processor 75 calls the instructions or programs in the memory 75 to execute the various operations shown in Figure 12. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • the first device may be a terminal.
  • FIG. 15 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: radio frequency unit 1001, network module 1002, audio output unit 1003, input unit 1004, sensor 1005, display unit 1006, user input unit 1007, interface unit 1008, memory 1009, processor 1010, etc. at least some parts of it.
  • the terminal 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 15 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and microphone 10042, the graphics processor 10041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and at least one of other input devices 10072 . Touch panel 10071, also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage program or instruction area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, image playback function, etc.), etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • non-volatile memory can also include non-volatile memory, where the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), programmable read-only memory (Programmable ROM, PROM), Erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable programmable read-only memory
  • EPROM electrically erasable programmable read-only memory
  • flash memory electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 1009 in embodiments of the present application includes, but is not limited to, these and any other suitable type of memory such as at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes operating systems, user interfaces, application programs or instructions, etc. In operation, the modem processor mainly processes wireless communication signals, such as the baseband processor. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • the radio frequency unit 1001 is used to receive a reference signal based on the target beam direction; the reference signal is based on the switching of different information bits by the switches associated with each of the multiple antennas of the backscatter communication BSC device.
  • the switching frequency of the transmission cycle, and the frequency offset between adjacent antennas in the multiple antennas corresponding to different information bits are transmitted;
  • the processor 1010 is configured to decode the target information bits sent by the BSC device based on the strength of the reference signal.
  • the radio frequency unit 1001 is also configured to send first indication information to the BSC device, where the first indication information is used to indicate the switching frequency of the switch associated with each of the antennas in the transmission period of different information bits.
  • the target information bits include first information bits and second information bits
  • the switching frequency of the switch associated with the i-th antenna is the first frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the second frequency
  • the switching frequency of the switch associated with the i-th antenna is the second frequency
  • the frequency offset between the i antenna and the i+1th antenna corresponding to one information bit is the first frequency offset
  • the value range of i is [1, M-1], and M is the number of antennas;
  • the switching frequency of the switch associated with the i-th antenna is the third frequency
  • the switching frequency of the switch associated with the i+1-th antenna is the fourth frequency
  • the switching frequency of the switch associated with the i-th antenna is the fourth frequency
  • the frequency offset between the i-th antenna and the i+1-th antenna corresponding to the two information bits is the second frequency offset.
  • the first frequency and the third frequency are different; and/or,
  • the second frequency is different from the fourth frequency.
  • the target information bits are transmitted using beams corresponding to each of the antennas formed based on a frequency-controlled array; or,
  • the target information bits are transmitted using beams corresponding to each of the antennas formed based on a virtual array or a frequency controlled array.
  • the first frequency and the third frequency are zero; or,
  • the second frequency and the fourth frequency are zero.
  • the BSC device is based on the switching frequency of the switch associated with each of the multiple antennas of the BSC device in the transmission cycle of different information bits, and the frequency offset between adjacent antennas in the multiple antennas corresponding to different information bits. , sending target information bits, controlling the beam direction through frequency, thereby enhancing coverage, and does not require more impedance, and the hardware complexity and power consumption are low.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above backscatter communication method embodiment is implemented, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above-mentioned backscatter communication.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above backscatter communication method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a communication system, including: a BSC device and a first device.
  • the BSC device can be used to perform the steps of the backscattering communication method as described above.
  • the first device can be used to perform the steps of the backscattering communication method as described above. The steps of the backscatter communication method described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种反向散射通信方法及设备,属于通信技术领域,本申请实施例的反向散射通信方法包括:反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送所述目标信息比特。

Description

反向散射通信方法及设备
相关申请的交叉引用
本申请要求于2022年4月27日提交的申请号为202210459554.2,发明名称为“反向散射通信方法及设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种反向散射通信方法及设备。
背景技术
反向散射通信(Backscatter Communication,BSC)是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己的信息。由于无线信道中存在各种干扰,需将数字基带信号调制成适合于无线信道传输的已调信号,以应对干扰引起的信号波形失真和衰落,达到降低误码率和检测难度的目的。考虑到无源终端的成本和能耗,BSC信号通常以ASK、PSK或FSK等方式进行调制,其通信距离大多在10米以下,远远达不到蜂窝化百米覆盖范围的目标。
BSC设备可以通过多天线配置增强覆盖,具体的技术包括空时编码、预编码,这些技术都是通过切换不同的负载阻抗改变BSC信号的幅值或相位,对阻抗数量有一定的要求,增加了硬件复杂度和功耗。因此,如何在负载阻抗尽量少的情况下增强BSC覆盖是本领域技术人员亟需解决的技术问题。
发明内容
本申请实施例提供一种反向散射通信方法及设备,能够解决如何在负载阻抗尽量少的情况下增强BSC覆盖的问题。
第一方面,提供了一种反向散射通信方法,包括:
反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送目标信息比特。
第二方面,提供了一种反向散射通信方法,包括:
第一设备基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC 设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;
所述第一设备基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
第三方面,提供了一种反向散射通信装置,包括:
发送模块,用于基于反向散射通信BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送目标信息比特。
第四方面,提供了一种反向散射通信装置,包括:
接收模块,用于基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;
处理模块,用于基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
第五方面,提供了一种BSC设备,该BSC设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种BSC设备,包括处理器及通信接口,其中,所述通信接口用于基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送所述目标信息比特。
第七方面,提供了一种第一设备,该第一设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种第一设备,包括处理器及通信接口,其中,所述通信接口用于基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;所述处理器用于基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
第九方面,提供了一种通信系统,包括:BSC设备及第一设备,所述BSC设备可用于执行如第一方面所述的反向散射通信方法的步骤,所述第一设备可用于执行如第二方面所述的反向散射通信方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的反向散射通信方法的步骤。
在本申请实施例中,反向散射通信BSC设备基于BSC设备的多根天线中各根天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的多根天线中相邻天线之间的频偏,发送目标信息比特,通过频率控制波束方向,从而增强覆盖,而且不需要较多阻抗,硬件复杂度和功耗较低。
附图说明
图1是本申请实施例可应用的无线通信系统的结构图;
图2是本申请实施例提供的应用场景架构示意图之一;
图3是本申请实施例提供的应用场景架构示意图之二;
图4是本申请实施例提供的BSC设备的结构示意图;
图5是本申请实施例提供的频控阵示意图;
图6是本申请实施例提供的虚拟阵列原理示意图;
图7是本申请实施例提供的反向散射通信方法的流程示意图之一;
图8是本申请实施例提供的BSC设备的频控原理示意图之一;
图9是本申请实施例提供的BSC设备的频控原理示意图之二;
图10是本申请实施例提供的反向散射通信方法的流程示意图之二;
图11是本申请实施例提供的反向散射通信装置的结构示意图之一;
图12是本申请实施例提供的反向散射通信装置的结构示意图之二;
图13是本申请实施例提供的通信设备的结构示意图;
图14是本申请实施例的网络侧设备的结构示意图;
图15是本申请实施例提供的终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本 申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基 站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
在一实施例中,图1中终端还可以为BSC设备。
反向散射通信BSC技术介绍:
图2和图3给出了反向散射通信常见的两种架构。其中,图2表示单基地BSC架构,该架构表示下行链路的信号发射端和上行链路的信号接收端都属于同一设备,图2中用BSC接收端(Receiver)表示这一设备;图3表示双基地BSC架构,该架构表示下行链路的信号发射端与上行链路的信号接收端属于不同设备,图3中用BSC Receiver和BSC发送端(Transmitter)表示这两种不同设备。
在单基地架构中,BSC Receiver既是射频源,也为BSC设备下行数据发送端以及BSC设备的上行数据接收端,BSC Receiver直接与BSC设备通信。这种部署架构对网络侧设备和BSC设备的接收灵敏度要求很高,架构部署简单,但有效通信距离短。其中,所述BSC设备为将信息调制在其他设备发送的载波上进行传输的设备。
在双基地架构中,BSC Transmitter是射频源,为BSC设备下行数据发送端,而BSC设备的上行数据接收端为BSC Receiver。该架构的下行覆盖性能受限于BSC设备的硬件能力及BSC Receiver解调BSC信号的能力。该架构存在多种变形,此处仅列举其中一种情况。
上述单基地架构和双基地架构中,BSC设备是一个将待发送信息通过BSC方式调制到信号源载波上的设备。
BSC系统包含以下部分:BSC发射机(也可称为BSC终端)、BSC接收机。BSC设备作为BSC发射机的其中一种形式,也称为Tag,其结构如图4所示。BSC系统利用环境中的射频信号,例如来自蜂窝、电视广播和无线保真WiFi信号,Tag收集其能量,并将要发送的信息加载到环境中的信号发送给接收机(本申请以接收机为基站为例),以实现无源Tag与接收机之间的通信。Tag作为BSC系统中的无源器件,主要由射频能量收集器、开关、调制模块和信息解码器几个重要部分组成。Tag接收到环境中的射频源信号,并从中获取能量,存储在能量收集器中,为Tag本身的信号处理和信号发射等硬件模块提供能源。随后,将接收的环境中的信号进行调制,并通过发射天线发射,传输给接收机。
具体而言,为了将存储在存储器中的信息比特发送给接收机,Tag通过控制切换负载阻抗来改变反向散射信号的幅度及相位,以实现对接收到的环境中载波的调制,最终接收机可接收并解码反向散射信号。
定义反射系数为Γ,Tag的每根天线阻抗均为ZA,第i个负载阻抗为Zi。可得:

其中,θA和θi分别表示天线和第i个负载阻抗的相位。假设Tag共有M根天线(M≥2)和N个负载阻抗,其中每根天线的天线阻抗均相等,则第i个负载阻抗Zi对应的反射系数Γi的定义如下:


从式(4)和式(5)可看出,反射系数的幅值和相位与负载阻抗的选取有很大的关系,进一步可看出,负载阻抗的幅值和相位影响了反射系数的幅值和相位。
此外,BSC设备可以通过控制开关的切换频率实现FSK调制,开关的切换频率是通过MCU生成的方波信号或振荡器等硬件设备控制的。
频控阵原理介绍:
相控阵的优势之一是可以自由地实现波束扫描。通常相控阵的每个阵元发射的是同一信号,通过在每个阵元的输出端接入移相器控制波束方向,调整移相器的相移量便可实现波束的空域扫描。然而,相控阵存在以下问题:在每一扫描快拍内,波束指向在距离向是恒定的,也就是说波束指向与距离是无关的。另外,相控阵的信号频率也是不变的。频控阵与相控阵一样发射相参信号,只不过频控阵在每根天线的激励电流中附加很小的频偏(频偏远远小于其载频)控制辐射信号的发射。频控阵可以看成是相控阵的一种扩展,而相控阵是频控阵的一种特例。
如图5所述,频控阵在相邻阵元上对发射信号附加了一个远小于载频的频偏Δf。
假设第一个阵元的辐射频率为f0,而第m个阵元的辐射信号频率为:Δf与f0的关系
fm=f0+m·Δf,m=0,l,...,M-1      (6)
其中,M为阵元数。以1维线性均匀阵列频控阵雷达为例,假设期望波束的指向角为θ和指向距离为r,则其均匀加权的发射波束辐射图可以近似推导为:
其中,d为阵元间距,c为光速,相位因子Φ0为:
由式(7)可见,频控阵具有以下特点:(1)频控阵的频偏是另外附加的,而不是阵列本身发射正交多频信号:频控阵发射信号是与相控阵一样的相参信号,只是经过附加的频偏控制后辐射出去的信号频率不同。因此,频控阵仍然属于相控阵范畴。(2)频控阵的阵列指向将受所加载的频偏Δf影响。(3)当频偏Δf固定时,波束指向随指向距离的变化而变化,即波束指向具有距离相关性;当指向距离r固定时,波束指向随频偏变化而变化,即波束指向具有频偏相关性;当频偏Δf=0时,频控阵退化为相控阵。
频控阵的最主要特点是其阵列因子具有距离依赖性,因此其方向图具有独特的“S”形,这是由Δf(ct-r+df0sinθ/Δf+d sinθ)/c引起的。该因子在θ=0和θ=∏/2之间的距离差为(c/Δf)(d/λ0)+d,其中λ0为信号波长,这表明主瓣函数的增益与d/λ0和Δf的函数。
频控阵的另一个主要特点是阵列因子具有周期性,其阵列方向图的峰值将出现在:
上式表明,当一个参数固定时,非固定参数可有多组解;当其中两个参数固定时,第3个参数将有唯一解。
空间重采样的原理介绍:
空间重采样虚拟扩展是转换接收到的信号,从而在不同频率下的信号就可以得到接收信号相同的信号子空间。图6中给出不同频率分量的不同延迟,用两个实际阵元来对阵列进行虚拟扩展。其中,第一个阵元位置不变,第二个阵元每次向右频移Δd的距离。其中Δd=(Δf/f0)d,f0表示中心频率,Δf表示两个相邻子带之间的频偏。
因此,可通过改变频偏实现虚拟阵列的扩展。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的反向散射通信方法进行详细地说明。
图7是本申请实施例提供的反向散射通信方法的流程示意图之一。如图7、图8所示,本实施例提供的方法,包括:
步骤101、反向散射通信BSC设备基于BSC设备的多根天线中各天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的多根天线中相邻天线之间的频偏,发送目标信息比特。
具体地,BSC设备根据需要发送的目标信息比特在不同发送周期确定开关的切换频率,进一步确定不同信息比特对应的频偏,实现对信息比特的调制和不同波束指向的控制。
目标信息比特例如为比特0或比特1。
发送周期为时间周期,时间单位例如包括:符号、时隙、帧、纳秒ns、微秒us、毫秒ms、秒s等。
例如,BSC设备实现频控的原理图如图8所示,控制不同天线关联的开关的切换频率是等差递增或递减,相邻天线之间的频偏是相等的,Δf=fi-fi-1=fi+1-fi,而不同的频偏可以用于表示不同的信息比特。
本实施例的方法,反向散射通信BSC设备基于BSC设备的多根天线中各根天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的多根天线中相邻天线之间的频偏,发送目标信息比特,通过频率控制波束方向,从而增强覆盖,而且不需要较多阻抗,硬件复杂度和功耗较低。
在一实施例中,目标信息比特包括第一信息比特和第二信息比特;
在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;第一信息比特对应的i根天线和第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;第二信息比特对应的第i根天线和第i+1根天线之间的频偏为第二频偏。
具体地,第t周期发送BSC设备的第一信息比特,BSC设备根据第一信息比特,确定第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率,产生第一频偏,该第一频偏携带第一信息比特的信息;
第q周期发送BSC设备的第二信息比特,BSC设备根据第二信息比特,确定第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率,产生第二频偏,该第二频偏携带第二信息比特的信息。
BSC设备基于待发送的目标信息比特,在每个发送周期内,发送第一信息比特或第二信息比特。
可选地,第一频率与第三频率不相同;和/或,
第二频率与第四频率不相同。
可选的,所述第一频率和所述第三频率为零;或,
所述第二频率和所述第四频率为零。
示例性地,BSC设备配置M根天线与N个负载阻抗,M与N可以相等,也可以不相等。不同频偏的产生方式包括:
对于第一信息比特,第i根天线(i∈[1,M])对应a频率,第i+1根天线对应b频率,第i天线和第i+1天线之间的频差产生的第一频偏(a-b);
对于第二信息比特,第i根天线对应c频率,第i+1根天线对应d频率,第i根天线和第i+1天线之间的频差产生的第二频偏(c-d);
可选地,a频率可以等于或不等于c频率,即发送不同信息比特时第i根天线对应的频率可以保持不变或发生改变,还可以不产生频率以降低功耗。
可选地,b频率可以等于或不等于d频率,即发送不同信息比特时第i+1根天线对应的频率可以保持不变或发生改变,还可以不产生频率以降低功耗。
a频率和c频率、b频率和d频率不能满足全部相等,但可以全部不相等,即在a频率和c频率相同的情况下,b频率和d频率不相同;或,在b频率和d频率不相同的情况下,a频率和c频率不相同。
上述实施方式中,通过频率控制波束方向,相比预编码技术,使用的负载阻抗较少、功耗较低,有效降低系统复杂度;相比空时编码方案,能够灵活控制波束指向,增强覆盖,而且通过测量发送信号可实现低复杂度译码。
可选地,第一频偏用于控制第一波束的方向,第二频偏用于控制第二波束的方向,第一波束的方向和第二波束的方向不同。
具体地,不同频偏可用于控制不同的波束指向。不同方向的第一波束和第二波束,对应不同的信息比特。
可选地,步骤101可以通过如下方式实现:
在第一频偏和第二频偏相同的情况下,BSC设备基于切换频率和频偏,利用虚拟阵列的方式在不同信息比特的发送周期形成各根天线对应的波束,并利用各根天线对应的波束发送目标信息比特;
在第一频偏和第二频偏不相同的情况下,BSC设备基于切换频率和频偏,利用虚拟阵列或频控阵的方式在不同信息比特的发送周期形成各天线对应的波束,并利用各天线对应的波束发送目标信息比特。
具体地,BSC基于天线关联的开关的切换频率和相邻天线之间的频偏,基于待发送的目标信息比特形成对应方向的波束,并利用该波束发送该目标信息比特。可选地,形成波束的方式可以采用虚拟阵列或频控阵的方式,在第一频偏和第二频偏相同的情况下,只能采用虚拟阵列的方式,在第一频偏和第二频偏不相同的情况下,可以采用虚拟阵列或频控阵的方式。
可选地,该方法还包括:
BSC设备接收第一设备发送的第一指示信息,第一指示信息用于指示各天线关联的开关在不同信息比特的发送周期的切换频率。
具体地,第一设备可以为网络侧设备,例如接入网设备,第一指示信息用于指示各根天线关联的开关在不同信息比特的发送周期的切换频率
可选地,BSC设备基于第一指示信息指示的切换频率,以及目标信息比特,确定各根天线关联的开关在不同信息比特的发送周期的切换频率,以及对应的频偏。
具体地,网络侧设备可以指示BSC设备各根天线关联的开关在不同信息比特的发送周期的切换频率,BSC设备基于待发送的目标信息比特,确定当前的目标信息比特对应的切换频率,以及对应的频偏。
可选地,BSC设备中天线-开关-阻抗可以是一一对应关系,也可以是一根天线对应多个射频开关。其中,射频开关可以是PIN二极管、场效应晶体管开关、射频微机电系统(RF MEMS)开关、单刀双掷开关、开关芯片或其他射频开关。
示例性地,如图9所示,本实施例中给出了不同频偏对应的频控阵的实现方式。
假设BSC设备有两根发射天线(第一天线和第二天线),阻抗均为ZA,分别对应两个负载阻抗Z1和Z2。开关的切换频率通过微控制器MCU控制,也可以通过BSC设备的振荡器进一步控制。BSC设备各根天线关联的开关对应的切换频率如表1所示。
表1
BSC设备发送比特0时,第一天线关联的开关对应的切换频率为fc0,第二天线关联的开关对应的切换频率为f0,因此频差为Δfc0。根据前述公式(7),假设波束的指向距离不变,可得到波束指向为θc0;BSC设备发送比特1时,第一天线关联的开关对应的切换频率为fc1,第二天线关联的开关对应的切换频率为f1,因此频差为Δfc1,可得到波束指向为θc1。上述通过切换频率控制波束方向,达到了覆盖增强的目的,而且由于通过切换不同的负载阻抗改变反向散射信号的幅值或相位实现控制波束的方案中对负载阻抗的数量有要求,因此本申请实施例的方案可有效降低负载阻抗的数量。
BSC设备无论是发送比特0还是比特1,第一天线关联的开关(连接的负载阻抗)对应的切换频率可以相等,即fc0等于fc1。其中,fc0和fc1可以为0,表示第一天线与负载阻抗不连接,此时Δfc0等于f0,Δfc1等于f1。此外,第一天线关联的开关(连接的负载阻抗)对应的切换频率也可以不相等,即fc0不等于fc1。其中,Δfc0为 fc0和f0之差;Δfc1为fc1和f1之差。BSC设备的第一天线发不同信息比特时选择相同的频率或不同频率或频率为0,主要受限于BSC设备的硬件能力及通信质量需求,例如还可以通过DCI指示BSC设备的天线关联的开关对应的切换频率。
假设BSC设备发送的比特序列为1001...,不同信息比特的发送周期对应的频偏为θc1、θc0、θc0、θc1,BSC接收端固定的接收波束为θc0的来波方向。用于发射信号的测量参数主要包括:参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、接收信号强度(Received Signal Strength Indicator,RSSI)、信道状态信息(Channel State Information,CSI)或其他测量参数。以RSRP为例,BSC接收端在第一周期内接收到的参考信号强度为RSRP1,在第二周期内接收到的参考信号强度为RSRP0。BSC接收端根据接收信号的参考信号强度判断BSC设备发送的信息比特。由于BSC接收端固定的接收波束为θc0的来波方向,若RSRP0>RSRP1,则第一周期内发送的信息比特为1,第二周期内发送的信息比特为0。
可选地,第一频偏和第二频偏相同或不相同。
示例性地,本实施例中给出了虚拟阵列的实现方式。
如表1所示,第一天线和第二天线调制不同信息比特时的频偏可以一致,也可以不一致:1)不一致的情况:假如BSC设备的发送比特0000110,则发送前4个连0比特时,可构成5阵元间距相等的虚拟阵列。但是,当发送比特从0变到1时,频偏发生变化,对应阵元间距发生变化,此时重新虚拟阵列,可构成虚拟非均匀阵列;
2)一致的情况:假如BSC设备的发送比特依旧为0000110,由于发0和发1的频偏保持一致,因此可以实现8阵元等间距的虚拟阵列。
上述实施方式中,通过基于切换频率和频偏发送不同信息比特,实现了虚拟阵列,从而达到了增强覆盖地目的。
图10是本申请实施例提供的反向散射通信装置的流程示意图之二。如图10所示,本实施例提供的方法,包括:
步骤201、第一设备基于目标波束方向接收参考信号;参考信号为反向散射通信BSC设备基于BSC设备的多根天线中各根天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的多根天线中相邻天线之间的频偏发送的;
步骤202、第一设备基于参考信号的强度,对BSC设备发送的目标信息比特进行解码。
可选地,所述第一设备向所述BSC设备发送第一指示信息,所述第一指示信息用于指示各所述天线关联的开关在不同信息比特的发送周期的切换频率。
可选地,所述目标信息比特包括第一信息比特和第二信息比特;
在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换 频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;所述第一信息比特对应的所述i根天线和所述第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;所述第二信息比特对应的所述第i根天线和所述第i+1根天线之间的频偏为第二频偏。
可选地,所述第一频率与所述第三频率不相同;和/或,
所述第二频率与所述第四频率不相同。
可选地,所述第一频率和所述第三频率为零;或,
所述第二频率和所述第四频率为零。
可选地,在所述第一频偏和所述第二频偏相同的情况下,所述目标信息比特为利用基于频控阵的方式形成的各所述天线对应的波束发送的;或,
在所述第一频偏和所述第二频偏不相同的情况下,所述目标信息比特为利用基于虚拟阵列或频控阵的方式形成的各所述天线对应的波束发送的。
本实施例的方法,其具体实现过程与技术效果与BSC设备侧方法实施例中相同,具体可以参见BSC设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例提供的反向散射通信方法,执行主体可以为反向散射通信装置。本申请实施例中以反向散射通信装置执行反向散射通信方法为例,说明本申请实施例提供的反向散射通信装置。
图11是本申请实施例提供的反向散射通信装置的结构示意图之一。如图11所示,本实施例提供的反向散射通信装置,包括:
发送模块210,用于基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送所述目标信息比特。
可选地,所述目标信息比特包括第一信息比特和第二信息比特;
在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;所述第一信息比特对应的所述i根天线和所述第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;所述第二信息比特对应的所述第i根天线和所述第i+1根天线之间的频偏为第二频偏。
可选地,所述第一频率与所述第三频率不相同;和/或,
所述第二频率与所述第四频率不相同。
可选地,
所述第一频率和所述第三频率为零;或,
所述第二频率和所述第四频率为零。
可选地,所述第一频偏用于控制第一波束的方向,所述第二频偏用于控制第二波束的方向,所述第一波束的方向和所述第二波束的方向不同。
可选地,发送模块210具体用于:
在所述第一频偏和所述第二频偏相同的情况下,基于所述切换频率和频偏,利用虚拟阵列的方式在不同信息比特的发送周期形成各所述天线对应的波束,并利用各所述天线对应的波束发送所述目标信息比特;
在所述第一频偏和所述第二频偏不相同的情况下,基于所述切换频率和频偏,利用虚拟阵列或频控阵的方式在不同信息比特的发送周期形成各所述天线对应的波束,并利用各所述天线对应的波束发送所述目标信息比特。
可选地,所述装置还包括:
接收模块,用于接收第一设备发送的第一指示信息,所述第一指示信息用于指示各所述天线关联的开关在不同信息比特的发送周期的切换频率。
可选地,所述装置还包括:
处理模块220,用于基于所述第一指示信息指示的切换频率,以及所述目标信息比特,确定各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及对应的频偏。
本实施例的装置,可以用于执行前述BSC设备侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与BSC设备侧方法实施例中相同,具体可以参见BSC设备侧方法实施例中的详细介绍,此处不再赘述。
图12是本申请实施例提供的反向散射通信装置的结构示意图之二。如图12所示,本实施例提供的反向散射通信装置,包括:
接收模块310,用于基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC设备基于BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;
处理模块320,用于基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
可选地,还包括:
发送模块,用于向所述BSC设备发送第一指示信息,所述第一指示信息用于指示各所述天线关联的开关在不同信息比特的发送周期的切换频率。
可选地,所述目标信息比特包括第一信息比特和第二信息比特;
在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;所述第一信息比 特对应的所述i根天线和所述第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;所述第二信息比特对应的所述第i根天线和所述第i+1根天线之间的频偏为第二频偏。
可选地,所述第一频率与所述第三频率不相同;和/或,
所述第二频率与所述第四频率不相同。
可选地,在所述第一频偏和所述第二频偏相同的情况下,所述目标信息比特为利用基于频控阵的方式形成的各所述天线对应的波束发送的;或,
在所述第一频偏和所述第二频偏不相同的情况下,所述目标信息比特为利用基于虚拟阵列或频控阵的方式形成的各所述天线对应的波束发送的。
可选地,所述第一频率和所述第三频率为零;或,
所述第二频率和所述第四频率为零。
本实施例的装置,可以用于执行前述第一设备侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与第一设备侧方法实施例中相同,具体可以参见第一设备侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例中的反向散射通信装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的反向散射通信装置能够实现图N至图N+x的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为BSC设备时,该程序或指令被处理器1301执行时实现上述反向散射通信方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述反向散射通信方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种BSC设备,包括处理器和通信接口,通信接口用于基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送所述目标信息比特。该终端实施例与上述BSC设备侧方法实施例对应,上述方法实施 例的各个实施过程和实现方式均可适用于该BSC设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种第一设备,包括处理器和通信接口,通信接口用于基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;处理器用于基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一设备实施例中,且能达到相同的技术效果。
可选地,第一设备可以为网络侧设备,如图14所示,该网络侧设备700包括:天线71、射频装置72、基带装置73、处理器75和存储器75。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括基带处理器75和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器75,通过总线接口与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置73网络侧设备还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备700还包括:存储在存储器75上并可在处理器75上运行的指令或程序,处理器75调用存储器75中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
可选地,第一设备可以为终端,具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图15中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元 (Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其它输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其它输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将接收来自网络侧设备的下行数据接收后,可以传输给处理器1010进行处理;另外,射频单元1001可以将上行的数据发送给向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器例如至少一个磁盘存储器件、闪存器件、或其它非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序或指令等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于基于目标波束方向接收参考信号;所述参考信号为基于反向散射通信BSC设备的多根天线中各所述天线关联的开关在不同信息比特的 发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;
处理器1010,用于基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
可选地,射频单元1001,还用于向所述BSC设备发送第一指示信息,所述第一指示信息用于指示各所述天线关联的开关在不同信息比特的发送周期的切换频率。
可选地,所述目标信息比特包括第一信息比特和第二信息比特;
在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;所述第一信息比特对应的所述i根天线和所述第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;所述第二信息比特对应的所述第i根天线和所述第i+1根天线之间的频偏为第二频偏。
可选地,所述第一频率与所述第三频率不相同;和/或,
所述第二频率与所述第四频率不相同。
可选地,在所述第一频偏和所述第二频偏相同的情况下,所述目标信息比特为利用基于频控阵的方式形成的各所述天线对应的波束发送的;或,
在所述第一频偏和所述第二频偏不相同的情况下,所述目标信息比特为利用基于虚拟阵列或频控阵的方式形成的各所述天线对应的波束发送的。
可选地,所述第一频率和所述第三频率为零;或,
所述第二频率和所述第四频率为零。
上述实施方式中,BSC设备基于BSC设备的多根天线中各根天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的多根天线中相邻天线之间的频偏,发送目标信息比特,通过频率控制波束方向,从而增强覆盖,而且不需要较多阻抗,硬件复杂度和功耗较低。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述反向散射通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述反向散射通信 方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述反向散射通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:BSC设备及第一设备,所述BSC设备可用于执行如上所述的反向散射通信方法的步骤,所述第一设备可用于执行如上所述的反向散射通信方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (20)

  1. 一种反向散射通信方法,包括:
    反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送目标信息比特。
  2. 根据权利要求1所述的方法,其中,所述目标信息比特包括第一信息比特和第二信息比特;
    在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;所述第一信息比特对应的所述i根天线和所述第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
    在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;所述第二信息比特对应的所述第i根天线和所述第i+1根天线之间的频偏为第二频偏。
  3. 根据权利要求2所述的方法,其中,
    所述第一频率与所述第三频率不相同;和/或,
    所述第二频率与所述第四频率不相同。
  4. 根据权利要求2或3所述的方法,其中,
    所述第一频率和所述第三频率为零;或,
    所述第二频率和所述第四频率为零。
  5. 根据权利要求2或3所述的方法,其中,
    所述第一频偏用于控制第一波束的方向,所述第二频偏用于控制第二波束的方向,所述第一波束的方向和所述第二波束的方向不同。
  6. 根据权利要求2或3所述的方法,其中,所述发送所述目标信息比特,包括:
    在所述第一频偏和所述第二频偏相同的情况下,所述BSC设备基于所述切换频率和频偏,利用虚拟阵列的方式在不同信息比特的发送周期形成各所述天线对应的波束,并利用各所述天线对应的波束发送所述目标信息比特;
    在所述第一频偏和所述第二频偏不相同的情况下,所述BSC设备基于所述切换频率和频偏,利用虚拟阵列或频控阵的方式在不同信息比特的发送周期形成各所述天线对应的波束,并利用各所述天线对应的波束发送所述目标信息比特。
  7. 根据权利要求1-3任一项所述的方法,其中,所述方法还包括:
    所述BSC设备接收第一设备发送的第一指示信息,所述第一指示信息用于指示各所述天线关联的开关在不同信息比特的发送周期的切换频率。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述BSC设备基于所述第一指示信息指示的切换频率,以及所述目标信息比特,确定各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及对应的频偏。
  9. 一种反向散射通信方法,包括:
    第一设备基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;
    所述第一设备基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
  10. 根据权利要求9所述的反向散射通信方法,其中,所述方法还包括:
    所述第一设备向所述BSC设备发送第一指示信息,所述第一指示信息用于指示各所述天线关联的开关在不同信息比特的发送周期的切换频率。
  11. 根据权利要求9或10所述的反向散射通信方法,其中,所述目标信息比特包括第一信息比特和第二信息比特;
    在发送的目标信息比特为第一信息比特的情况下,第i根天线关联的开关的切换频率为第一频率,第i+1根天线关联的开关的切换频率为第二频率;所述第一信息比特对应的所述i根天线和所述第i+1根天线之间的频偏为第一频偏;i的取值范围为[1,M-1],M为天线个数;
    在发送的目标信息比特为第二信息比特的情况下,第i根天线关联的开关的切换频率为第三频率,第i+1根天线关联的开关的切换频率为第四频率;所述第二信息比特对应的所述第i根天线和所述第i+1根天线之间的频偏为第二频偏。
  12. 根据权利要求11所述的方法,其中,
    所述第一频率与所述第三频率不相同;和/或,
    所述第二频率与所述第四频率不相同。
  13. 根据权利要求11或12所述的方法,其中,
    在所述第一频偏和所述第二频偏相同的情况下,所述目标信息比特为利用基于频控阵的方式形成的各所述天线对应的波束发送的;或,
    在所述第一频偏和所述第二频偏不相同的情况下,所述目标信息比特为利用基于虚拟阵列或频控阵的方式形成的各所述天线对应的波束发送的。
  14. 根据权利要求11或12所述的方法,其中,
    所述第一频率和所述第三频率为零;或,
    所述第二频率和所述第四频率为零。
  15. 一种反向散射通信装置,包括:
    发送模块,用于基于反向散射通信BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏,发送目标信息比特。
  16. 一种反向散射通信装置,包括:
    接收模块,用于基于目标波束方向接收参考信号;所述参考信号为反向散射通信BSC设备基于所述BSC设备的多根天线中各所述天线关联的开关在不同信息比特的发送周期的切换频率,以及不同信息比特对应的所述多根天线中相邻天线之间的频偏发送的;
    处理模块,用于基于所述参考信号的强度,对BSC设备发送的目标信息比特进行解码。
  17. 一种BSC设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8任一项所述的反向散射通信方法的步骤。
  18. 一种第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求9至14任一项所述的反向散射通信方法的步骤。
  19. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至8任一项所述的反向散射通信方法,或者实现如权利要求9至14任一项所述的反向散射通信方法的步骤。
  20. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至8任一项所述的反向散射通信方法,或者实现如权利要求9至14任一项所述的反向散射通信方法的步骤。
PCT/CN2023/090558 2022-04-27 2023-04-25 反向散射通信方法及设备 WO2023207964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210459554.2 2022-04-27
CN202210459554.2A CN117014026A (zh) 2022-04-27 2022-04-27 反向散射通信方法及设备

Publications (1)

Publication Number Publication Date
WO2023207964A1 true WO2023207964A1 (zh) 2023-11-02

Family

ID=88517731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090558 WO2023207964A1 (zh) 2022-04-27 2023-04-25 反向散射通信方法及设备

Country Status (2)

Country Link
CN (1) CN117014026A (zh)
WO (1) WO2023207964A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525648B1 (en) * 2008-06-25 2013-09-03 Ezero Technologies Llc Backscatter passive wireless controller with IMD frequency coding
US20180331865A1 (en) * 2017-05-15 2018-11-15 Wiliot, LTD. Techniques for generating modulated backscattered sensory data
CN109756251A (zh) * 2019-01-22 2019-05-14 电子科技大学 基于频控阵射频源的环境反向散射通信系统及其通信方法
CN114337905A (zh) * 2021-11-23 2022-04-12 北京理工大学 利用FCS特性进行Wi-Fi反向散射隐蔽通信方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525648B1 (en) * 2008-06-25 2013-09-03 Ezero Technologies Llc Backscatter passive wireless controller with IMD frequency coding
US20180331865A1 (en) * 2017-05-15 2018-11-15 Wiliot, LTD. Techniques for generating modulated backscattered sensory data
CN109756251A (zh) * 2019-01-22 2019-05-14 电子科技大学 基于频控阵射频源的环境反向散射通信系统及其通信方法
CN114337905A (zh) * 2021-11-23 2022-04-12 北京理工大学 利用FCS特性进行Wi-Fi反向散射隐蔽通信方法及系统

Also Published As

Publication number Publication date
CN117014026A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
EP4191896A1 (en) Beam training method and apparatus, and terminal device and network device
EP4156723A1 (en) Terminal information acquisition method, terminal, and network side device
US20230209122A1 (en) Modulation method and apparatus, communications device, and readable storage medium
CN101814938A (zh) 通信设备、通信方法和通信系统
US20240137989A1 (en) Transmission processing method, terminal and network side device
TW200948138A (en) Mechanism to avoid interference and improve channel efficiency in mmWave WPANs
CN112312460A (zh) 测量上报的方法与装置
WO2018149346A1 (zh) 确定和用于确定doa的方法以及接入网设备和终端
WO2023207964A1 (zh) 反向散射通信方法及设备
JP2024504065A (ja) レーダー通信統合化信号の送信方法、受信方法及び機器
CN116156354A (zh) 感知信号传输处理方法、装置及相关设备
CN116156605A (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
Meng et al. 12.2 improving the range of WiFi backscatter via a passive retro-reflective single-side-band-modulating MIMO array and non-absorbing termination
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2024027538A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2024017190A1 (zh) 感知信号的路径确定方法、装置、通信设备、系统及存储介质
WO2023198152A1 (zh) 感知测量方法、装置及相关设备
WO2023231846A1 (zh) 感知方式切换处理方法、装置、通信设备及可读存储介质
WO2023143562A1 (zh) 来波方向估计方法、终端及网络侧设备
CN115021783B (zh) 一种基于irs辅助蜂窝系统的快速波束搜索方法
WO2023088376A1 (zh) 上行传输方法、装置、终端及bsc接收设备
WO2024093776A1 (zh) 级联链路中的信号测量处理方法、装置及相关设备
WO2023217173A1 (zh) 无线辅助设备的波束控制方法、装置及网络侧设备
WO2024051619A1 (zh) 切换处理方法、装置及设备
JP6960435B2 (ja) 通信システム、無線子機及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795396

Country of ref document: EP

Kind code of ref document: A1