WO2023198152A1 - 感知测量方法、装置及相关设备 - Google Patents

感知测量方法、装置及相关设备 Download PDF

Info

Publication number
WO2023198152A1
WO2023198152A1 PCT/CN2023/088081 CN2023088081W WO2023198152A1 WO 2023198152 A1 WO2023198152 A1 WO 2023198152A1 CN 2023088081 W CN2023088081 W CN 2023088081W WO 2023198152 A1 WO2023198152 A1 WO 2023198152A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
measurement
terminal
sensing
perceptual
Prior art date
Application number
PCT/CN2023/088081
Other languages
English (en)
French (fr)
Inventor
杨坤
姜大洁
李健之
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023198152A1 publication Critical patent/WO2023198152A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/012Identifying whether indoors or outdoors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0246Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving frequency difference of arrival or Doppler measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a perceptual measurement method, device and related equipment.
  • Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc.
  • the resolution of perception will be significantly improved compared to centimeter waves, allowing mobile communication systems to provide more refined perception services.
  • multipath signals are used to measure sensing quantities in sensing application scenarios (for example, breathing detection scenarios).
  • sensing application scenarios for example, breathing detection scenarios.
  • multipath signals are very complex and contain a large number of transmission paths.
  • the measurement accuracy of perceptual quantities is greatly interfered by signals from irrelevant transmission paths, resulting in large measurement errors.
  • Embodiments of the present application provide a perceptual measurement method, device and related equipment, which can solve the problem of large measurement errors in perceptual measurement.
  • the first aspect provides a perceptual measurement method, including:
  • the first device receives the first signal and the second signal sent by the second device;
  • the first device performs perceptual measurements based on the first signal and the second signal.
  • the second aspect provides a perceptual measurement method, including:
  • the second device sends the first signal and the second signal to the first device
  • the first signal and the second signal are used by the first device to perform perceptual measurement.
  • a perceptual measurement device in a third aspect, includes the perceptual measurement device, including:
  • a first receiving module configured to receive the first signal and the second signal sent by the second device
  • a measurement module configured to perform perceptual measurement based on the first signal and the second signal.
  • a perceptual measurement device in a fourth aspect, includes the perceptual measurement device, including:
  • a first sending module configured to send the first signal and the second signal to the first device
  • the first signal and the second signal are used by the first device to perform perceptual measurement.
  • a first device in a fifth aspect, includes a processor and a memory.
  • the memory stores a program or instructions executable on the processor. The program or instructions are executed by the processor. When implementing the steps of the method described in the first aspect.
  • a first device including a processor and a communication interface, wherein the communication interface is configured to receive a first signal and a second signal sent by a second device; and the processor is configured to receive a first signal based on the first signal.
  • One signal and the second signal perform perceptual measurements.
  • a second device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions executable on the processor. The programs or instructions are executed by the processor. When implementing the steps of the method described in the second aspect.
  • a second device including a processor and a communication interface, wherein the communication interface is used to send a first signal and a second signal to the first device; wherein the first signal and the The second signal is used by the first device to perform sensory measurements.
  • a ninth aspect provides a perceptual measurement system, including: a first device and a second device.
  • the first device can be used to perform the steps of the perceptual measurement method as described in the first aspect.
  • the second device can be used to The steps of the perceptual measurement method as described in the second aspect are performed.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the The communication interface is coupled to the processor, and the processor is used to run programs or instructions, implement the method described in the first aspect, or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the steps of the perceptual measurement method, or the computer program/program product is executed by at least one processor to implement the steps of the perceptual measurement method as described in the second aspect.
  • the first device receives the first signal and the second signal sent by the second device; the first device performs perceptual measurement based on the first signal and the second signal.
  • perceptual measurement is performed by using the received first signal and second signal, and there is no need to use changes in multipath signals to measure perceptual quantities, which can reduce the interference of irrelevant multipath channels in the multipath environment to perceptual signals. Reduce measurement errors.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is one of the schematic diagrams of a sensing scenario provided by an embodiment of the present application.
  • Figure 3 is a second schematic diagram of a sensing scene provided by an embodiment of the present application.
  • Figure 4 is a third schematic diagram of a sensing scenario provided by an embodiment of the present application.
  • Figure 5 is one of the flow charts of a perceptual measurement method provided by an embodiment of the present application.
  • Figure 6 is the fourth schematic diagram of a sensing scenario provided by an embodiment of the present application.
  • Figure 7 is one of the channel response schematic diagrams of a beam provided by an embodiment of the present application.
  • Figure 8 is a fifth schematic diagram of a sensing scenario provided by an embodiment of the present application.
  • Figure 9 is the second schematic diagram of the channel response of a beam provided by the embodiment of the present application.
  • Figure 10 is the second flow chart of a perceptual measurement method provided by an embodiment of the present application.
  • Figure 11 is one of the structural diagrams of a perceptual measurement device provided by an embodiment of the present application.
  • Figure 12 is the second structural diagram of a perceptual measurement device provided by an embodiment of the present application.
  • Figure 13 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID Mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle user equipment
  • PUE pedestrian terminals
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computers, PC), teller machines or self-service machines and other terminal-side equipment
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. .
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, Wireless Local Area Network (WLAN) access points or WiFi nodes, etc.
  • the base station may be called Node B, Evolved Node B (Evolved NodeB, eNB), access point, base transceiver Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitter Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, it is only referred to as The base station in the NR system is introduced as an example, and the specific type of base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy
  • Sensing capability refers to one or more devices with sensing capabilities that can perceive the orientation, distance, speed and other information of target objects through the sending and receiving of wireless signals, or detect, track, and detect target objects, events or environments, etc. Recognition, imaging, etc.
  • the resolution of perception will be significantly improved compared to centimeter waves, allowing mobile communication systems to provide more refined perception services.
  • Awareness deployment solutions can include the following methods:
  • the sensing node eg, base station
  • the sensing node has the function of spontaneous and self-receiving, such as using different antenna groups to achieve isolation of sending and receiving signals.
  • the sensing node determines the status of the sensing target (such as direction, position, movement and other information) through the echo signal.
  • Single-point centralized sensing requires the sensing node to have good self-interference elimination performance to ensure the accuracy of sensing detection; single-point centralized sensing uses the signal sent by a single node as a reference signal and does not require synchronous cooperation between multiple nodes.
  • Multi-point distributed sensing Sensing signal sending nodes and receiving nodes are located in different locations.
  • the receiving node detects the transmission signal of the sending node for perception, as shown in Figure 3.
  • base station 2 senses the environmental information between base station 1 and base station 2 by receiving the wireless signal from base station 1.
  • Multi-point distributed sensing usually requires comparison of multiple signals to achieve sensing measurement, for example, by comparing the current signal with the historical signal (previous or pre-stored result) to determine the status of the sensing target.
  • Distributed multi-point sensing avoids the interference isolation problem of spontaneous self-collection, but it has higher requirements for time and frequency synchronization between multiple nodes.
  • Interactive sensing Through information interaction between the sensing node and the perceived target object, the subject, time, frequency, format, etc. of electromagnetic wave transmission are agreed upon to complete the sensing process.
  • the perceived target has The signal sending and receiving function performs signal interaction according to the sensing process to complete sensing measurements or report sensing results.
  • the application scenario of sensing can be sensing the movement or breathing rate of the human body indoors.
  • a multi-point distributed awareness deployment is used.
  • the base station sends wireless signals
  • the terminal receives the wireless signals and then determines and senses the user's movement or breathing frequency based on the channel changes of the wireless signals.
  • the expression of the terminal receiving signal is:
  • h 0 represents the wireless channel response corresponding to the direct path between the base station and the terminal and the path caused by scattering or diffraction of ordinary objects in the environment (other than Reconfigurable Intelligent Surface (RIS) devices)
  • h 1 (t ) represents the wireless channel response corresponding to the path generated by the reflection of the RIS device between the base station and the terminal at time t
  • n represents the noise introduced by the wireless environment and the transceiver equipment
  • x represents the signal sent by the base station.
  • the base station periodically sends wireless signals for channel measurement, and based on the change pattern of the channel estimation results, the movement or breathing frequency of the perceived user can be determined.
  • FIG. 5 is a flow chart of a perceptual measurement method provided by an embodiment of the present application. As shown in Figure 5, the perceptual measurement method includes the following steps:
  • Step 101 The first device receives the first signal and the second signal sent by the second device.
  • Step 102 The first device performs perceptual measurement based on the first signal and the second signal.
  • the first signal may be a reference signal.
  • the first signal may be a channel state information reference signal (Channel state information Reference Signal, CSI-RS,) or a sounding reference signal (Sounding Reference Signal, SRS), or a demodulation reference signal. signal (Demodulation Reference Signal, DMRS), or positioning reference signal (Positioning Reference Signal, PRS), or a newly designed dedicated reference signal for sensing services; etc.
  • the second signal may be a reference signal.
  • the second signal may be CSI-RS, or SRS, or DMRS, or PRS, or a newly designed sensing service dedicated reference signal; and so on.
  • the first device is a terminal
  • the second device is a network side device.
  • the network side device receives the first signal and the second signal sent by the terminal, and based on the received first signal and the The second signal is sensed and measured, the measurement result is obtained, and the measurement result is sent to the network side device.
  • the first device is a network side device
  • the second device is a terminal
  • the network side device receives the first signal and the second signal sent by the terminal, and based on the received first signal and the The second signal is sensed and measured to obtain the measurement result.
  • the measurement results may include at least one of the following:
  • the measurement results may include: the delay of the first signal and/or the second signal, the frequency of the first signal and/or the second signal, the phase of the first signal and/or the second signal, At least one of the power of the first signal and/or the second signal, the angle of the first signal and/or the second signal, and the channel correlation between the first signal and the second signal.
  • the first device can obtain the delay of the first signal and the delay of the second signal respectively.
  • the first device can obtain the delay of the first signal and the delay of the second signal based on the delay of the first signal and the delay of the second signal.
  • the delay difference between the second signal and the first signal can be obtained by calculating the delay; or, the first device can obtain the delay of the first signal and the delay of the second signal respectively, and the first device sends
  • the second device calculates the delay difference between the second signal and the first signal based on the delay of the first signal and the delay of the second signal.
  • the delay information may be a delay difference between the second signal and the first signal, a frequency difference between the second signal and the first signal, and a phase difference between the second signal and the first signal. , at least one of the power difference between the second signal and the first signal, the angle difference between the second signal and the first signal, and the channel correlation between the second signal and the first signal.
  • the network side device can select a terminal that meets the third condition, or other network side devices, or other devices to perform multi-point distributed sensing.
  • the terminal that satisfies the third condition, or or other network-side devices, or other devices may have at least one of the following characteristics: fixed position, low moving speed, existence of a line-of-sight (LOS) channel, and the signal quality of the sensing beam reaches a predefined threshold.
  • the network side device may select multiple terminals that meet the third condition to perform sensing measurements on the same sensing target, and report the measurement results of the sensing measurements.
  • signal differences of different transmission paths in multipath channels are used to determine changes in perceived objects in the propagation environment.
  • signal reception by omnidirectional antennas and beamforming affects multipath channel response.
  • using a multi-beam sensing scheme based on beamforming can make the energy of the sensing path higher and make the sensing measurement algorithm simpler.
  • the multi-beam sensing solution using beam forming can improve the directivity of the sensing signal and eliminate irrelevant multipath interference, thereby improving measurement accuracy.
  • the transmitting beam of the first signal and the transmitting beam of the second signal may be the same, or the transmitting beam of the first signal and the transmitting beam of the second signal may be different.
  • the network side device can configure the signal parameters of the first signal and the second signal for the terminal, so that the signal energy is concentrated on the sensing target and the reflected signal energy of the sensing target is improved; and the beam of the first signal can be a reference beam for sensing measurement.
  • the beam of the second signal can be a sensing beam for sensing measurement.
  • the sensing signal with beamforming can reduce the interference of irrelevant multipath channels on the sensing signal in a multipath environment, thereby improving the accuracy of sensing measurement.
  • the distributed multi-beam sensing solution can be used to reconstruct the communication environment, that is, simultaneous localization and mapping (SLAM).
  • SLAM simultaneous localization and mapping
  • the network side device is sensing
  • the contour reconstruction of reflective objects in the communication environment can be achieved based on the angular continuity of the sensing beam and the consistency of the measurement results (Doppler) of the sensing signal.
  • the first device receives the first signal and the second signal sent by the second device; the first device performs perceptual measurement based on the first signal and the second signal.
  • perceptual measurement is performed by using the received first signal and second signal, and there is no need to use changes in multipath signals to measure perceptual quantities, which can reduce the interference of irrelevant multipath channels in the multipath environment to perceptual signals. Reduce measurement errors.
  • the first device performs perceptual measurement based on the first signal and the second signal Afterwards, the method further includes:
  • the measurement results include at least one of the following:
  • the delay difference may be the delay difference between the second signal and the first signal; or it may be the time difference between the second signal and the first signal reaching the first device.
  • the delay difference may be the difference between the delay of the second signal and the delay of the first signal.
  • the delay may be the difference between the point in time when the signal arrives at the first device and the point in time when the signal is sent from the second device.
  • the delay of the first signal may be the delay corresponding to the first path in the first signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the delay of the two signals may be the delay corresponding to the first path in the second signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the frequency difference may be the frequency difference of the second signal relative to the first signal.
  • the frequency difference may be the difference between the frequency of the second signal and the frequency of the first signal.
  • the frequency of the first signal may be the frequency corresponding to the first path in the first signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the frequency of may be the frequency corresponding to the first path in the second signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the phase difference may be the phase difference of the second signal relative to the first signal.
  • the phase difference may be the difference between the phase of the second signal and the phase of the first signal.
  • the phase of the first signal may be the phase corresponding to the first path in the first signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the phase of may be the phase corresponding to the first path in the second signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the power difference may be the power difference of the second signal relative to the first signal.
  • the power difference may be the difference between the power of the second signal and the power of the first signal.
  • the power of the first signal may be the power corresponding to the first path in the first signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the power of may be the power corresponding to the first path in the second signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the angle difference may be the angle difference between the second signal and the first signal.
  • the angle difference may be the difference between the angle of the second signal and the angle of the first signal.
  • the angle of the first signal may be the angle corresponding to the first path in the first signal whose path signal quality exceeds a predefined threshold or the path with the strongest signal quality.
  • the angle of may be the angle corresponding to the first path in the second signal whose path signal quality exceeds a predefined threshold or the path with the strongest path signal quality.
  • the channel correlation may be the channel correlation between the second signal and the first signal.
  • the first device is a terminal
  • the second device is a network side device.
  • the first device sends the measurement result to the second device.
  • the first device sends the measurement result to the second device, so that after completing the perception measurement, the terminal reports the measurement result of the perception measurement to the network side device.
  • the first device is a terminal
  • the second device is a network side device
  • the method further includes:
  • the first device receives first configuration information sent by the second device, where the first configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • Third indication information used to indicate the reporting resource of the reporting information.
  • the time-frequency resources of the first signal and/or the second signal may include the starting transmission time of the first signal and/or the second signal, through the first signal and/or the second signal.
  • the start time of sending the second signal may determine the start time of the sensing service.
  • the first signal may be a reference signal of a reference beam for perceptual measurement
  • the network side device configures parameters of the reference signal of the reference beam for the terminal.
  • the reference signal of the reference beam may be a CSI-RS or a synchronization signal block (Synchronization Signal Block, SSB) or a downlink reference signal such as DMRS or PRS.
  • the network-side device configures the time-frequency resources, transmission cycle and port number of the above-mentioned downlink reference signal for the terminal.
  • the second signal may be a reference signal of a sensing beam for sensing measurement
  • the network side device configures parameters of the reference signal of the sensing beam for the terminal.
  • the reference signal of the reference beam may be a downlink reference signal such as CSI-RS, SSB, DMRS, or PRS.
  • the network-side device configures the time-frequency resources, transmission cycle and port number of the above-mentioned downlink reference signal for the terminal.
  • the network side device can update the sensing beam for the terminal.
  • the network side device configures a new sensing beam port or TCI information and notifies the terminal to update the sensing beam.
  • the first configuration information may include first indication information used to indicate a perceptual measurement method.
  • the network side device indicates the terminal's perception measurement method, which may be single-beam measurement or multi-beam measurement. Explicitly, the network side device instructs the terminal to use multi-beam measurement or single beam measurement; implicitly, the terminal determines the sensing measurement method based on whether the network side device is configured with the reference signal of the sensing beam. When the network side device is configured with the sensing beam reference signal, For reference signals, multi-beam measurement is used. When the network side device is not configured with a reference signal for sensing beams, single-beam measurement is used.
  • the first configuration information may include second indication information used to indicate the type of the measurement result.
  • the network side device indicates the measurement result of the terminal's perception measurement.
  • the measurement result is Doppler deviation, or frequency difference, or delay difference, etc.
  • the measurement result can be Doppler deviation during single-beam measurement, and the measurement result can be frequency difference during multi-beam measurement.
  • the first configuration information may include third indication information used to indicate reporting resources for reporting information.
  • the network-side device configures reporting resources for reporting information.
  • the configuration method of reporting resources for reporting information can follow the method of relevant protocols.
  • the network side device can configure SRS resources for the terminal.
  • Network-side devices can Configure two SRS resources for the terminal, respectively associated with the reference beam and sensing beam of the sensing measurement, or the network side device can specify the reference beam and sensing beam during sensing beam training, or use the default beam, which is the current physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) associated beams serve as reference beams and sensing beams.
  • the network side device can select the receiving beam and sensing measurement method according to the current channel conditions.
  • wireless signals are sent in the form of broadcast (or a single wide beam).
  • broadcast or a single wide beam.
  • multipath propagation conditions will affect the channel estimation results of the received signal, resulting in a decrease in perception accuracy.
  • the broadcast wireless signals will cause the information of multiple targets to be mixed together, which will increase the signal processing complexity of the terminal.
  • the energy utilization efficiency of sensing signals can be improved, and multi-target sensing functions can be supported.
  • the first device is a network side device
  • the second device is a terminal
  • the method further includes:
  • the first device sends second configuration information to the second device, where the second configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • the transmission power of the first signal and/or the second signal is the transmission power of the first signal and/or the second signal.
  • the time-frequency resources of the first signal and/or the second signal may include the starting transmission time of the first signal and/or the second signal, through the first signal and/or the second signal.
  • the start time of sending the second signal may determine the start time of the sensing service.
  • the network side device may configure parameters of the first signal and/or the second signal for the terminal through the second configuration information.
  • the beam indication information of the first signal and/or the second signal may include an SRS resource indicator (SRS resource indicator, SRI).
  • the quality of the sensing signal can be improved. Energy utilization efficiency and the ability to support multi-target sensing functions.
  • the first configuration information or the second configuration information is configured through Radio Resource Control (RRC) signaling, Media access control (Media access control, MAC) Control Element (CE) signaling, downlink At least one item in Downlink Control Information (DCI) signaling is carried.
  • RRC Radio Resource Control
  • CE Control Element
  • DCI Downlink Control Information
  • the first configuration information may be carried through at least one of radio resource control RRC signaling, media access control MAC control element CE signaling, and downlink control information DCI signaling. Instruct the terminal to start or end the sensing measurement process through DCI or MAC CE signaling.
  • the second configuration information may be carried through at least one of radio resource control RRC signaling, media access control MAC control element CE signaling, and downlink control information DCI signaling.
  • the first signal and the second signal are frequency division multiplexed; or
  • the first signal and the second signal are time division multiplexed; or
  • the first signal and the second signal are code division multiplexed.
  • the first signal may be a reference signal of a reference beam for perceptual measurement
  • the second signal may be a reference signal of a perceptual beam for perceptual measurement.
  • the reference signal of the perceptual beam may be coded with the reference signal of the reference beam. Multiplexing by division, time division, or frequency division. When a certain parameter of the first signal or the second signal is defaulted, the configuration parameters of the other signal can be used according to the multiplexing relationship. Taking code division multiplexing as an example, the reference signal of the sensing beam multiplexes the time-frequency resources of the reference signal of the reference beam.
  • the network side device configures code division multiplexing (Code division multiplexing, CDM) parameters for the reference signal of the sensing beam that are different from the reference signal of the reference beam.
  • CDM code division multiplexing
  • the transmission period and time-frequency configuration parameters of the first signal and the second signal may be the same.
  • the transmission cycle can be the same
  • the frequency resource configuration parameters can be the same
  • the time domain resource configuration parameters can be determined based on the offset, which can be a symbol-level or slot-level offset. quantity.
  • the first signal and the second signal are frequency division multiplexing; or the first signal and the second signal are time division multiplexing; or the first signal and the second signal are code division multiplexing. .
  • the multiplexing of signal configuration parameters can be achieved and the configuration complexity can be reduced.
  • the beam of the first signal is a reference beam for perception measurement, and the beam of the first signal satisfies a first condition, and the first condition is a signal between the first device and the second device.
  • the proportion of the signal energy of the transmission path to the total energy of the received signal is higher than the first preset threshold;
  • the beam of the second signal is a sensing beam of sensing measurement, and the beam of the second signal satisfies a second condition.
  • the second condition is that there is a path passing through the sensing area between the first device and the second device.
  • the transmission path, and the proportion of the signal energy of the transmission path passing through the sensing area to the total energy of the received signal is higher than the second preset threshold.
  • the sensing area may be the area where the sensing object is located, or the area to be sensed.
  • the first condition may be that a stable transmission path exists between the first device and the second device, and the proportion of the signal energy of the stable transmission path to the total energy of the received signal is higher than the first condition.
  • the stable transmission path means that the channel response correlation corresponding to the transmission path within the time period is greater than a predefined threshold.
  • the beam of the first signal satisfies the first condition, which may be: when transmitting with the beam of the first signal, the communication between the first device and the second device The proportion of the signal energy of the transmission path to the total energy of the received signal is higher than the first preset threshold.
  • the beam of the second signal satisfies the second condition, which may be: when transmitting with the beam of the second signal, there is an existence between the first device and the second device.
  • the transmission path passes through the sensing area, and the proportion of the signal energy of the transmission path passing through the sensing area to the total energy of the received signal is higher than the second preset threshold value.
  • the method further includes:
  • the target determination method is based on explicit instructions
  • the target determination method is determined according to the configuration sequence in the first configuration information or the second configuration information.
  • the beam of the first signal and the beam of the second signal may be determined sequentially according to the configuration order of the beams in the first configuration information.
  • the beam configured first may be the beam of the first signal, and then the beam configured first may be the beam of the first signal.
  • the configured beam may be a beam of the second signal; or, the first signal and the second signal respectively define different signaling for configuration.
  • the beam of the first signal and the beam of the second signal may be determined according to the order of configuration of the beams in the second configuration information.
  • the beam configured first may be the beam of the first signal
  • the beam configured later may be the beam of the first signal.
  • the configured beam may be a beam of the second signal.
  • the terminal may not need to distinguish between the beam of the first signal and the beam of the second signal, and the network side device will automatically process them. .
  • the method also includes:
  • the first device determines the beam of the first signal as a reference beam for data communication, and the physical channel used for data communication includes at least one of the following:
  • Receive physical downlink control channel Physical downlink control channel, PDCCH
  • PDSCH Receive physical downlink shared channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the above-mentioned PUCCH and PUSCH may include data channels used for reporting measurement results.
  • the second device may also determine the beam of the first signal as a reference beam for data communication.
  • the first device and the second device determine the beam of the first signal as a reference beam for data communication.
  • the method also includes at least one of the following:
  • the first device performs wireless frame synchronization based on the first signal
  • the first device performs frequency synchronization based on the first signal.
  • the first device may be a terminal
  • the first signal may be a reference signal of a reference beam for sensing measurement
  • the terminal performs wireless frame synchronization and/or frequency synchronization using the reference signal of the reference beam.
  • the adjustment time of wireless frame synchronization and frequency synchronization may be before receiving the reference signal of the next reference beam or after receiving the reference signal of the sensing beam for sensing measurement.
  • the method before the first device receives the first signal and the second signal sent by the second device, the method also includes:
  • the first device performs the target operation
  • the target operation includes at least one of the following:
  • the first device receives a third signal sent by the second device, where the third signal is used to determine channel state information that meets the first condition;
  • the first device receives a fourth signal sent by the second device, and the fourth signal is used to determine channel state information that satisfies the second condition.
  • the channel state information that satisfies the first condition may include: the signal strength of the signal that satisfies the first condition, and/or the difference between the signal that satisfies the first condition and the signal that satisfies the second condition.
  • the channel state information that satisfies the second condition may include: the signal strength of the signal that satisfies the second condition, and/or the difference between the signal that satisfies the first condition and the signal that satisfies the second condition. Channel correlation.
  • the network side device can obtain the channel status of the terminal in the cell through the third signal and/or the fourth signal, and determine whether the channel is a direct path line-of-sight, or a LOS channel, or a channel with stable amplitude and phase. .
  • the first device may be a terminal
  • the second device may be a network side device
  • the third signal and/or the fourth signal may be a downlink reference signal
  • the third signal and/or the fourth signal may be a channel
  • the measured reference signal can determine channel state information that satisfies the first condition and/or the second condition through channel measurement.
  • the third signal and/or the fourth signal may be a downlink reference signal configured explicitly by the network side device, for example, CSI-RS, or PRS, or a reference signal dedicated to sensing services.
  • the configuration parameters of the downlink reference signal such as time-frequency resources, period, and random sequence generation parameters, can follow the configuration methods in relevant protocols, and are not limited in this embodiment; or, the channel measurement can be determined according to default rules.
  • the downlink reference signal such as SSB or DMRS.
  • the downlink reference signal may be an SSB.
  • the SSB is the SSB with the largest SS reference signal received power (SS-RSRP) in the SSB set.
  • the SS is a synchronization signal (Synchronisation signal).
  • the SS -RSRP may be the latest SS-RSRP measurement result, or the SS-RSRP result after L1 filtering; or the downlink reference signal may be DMRS, and accordingly, the bandwidth of the terminal receiving PDSCH is greater than the threshold value.
  • the network side device may configure third configuration information for the terminal, instructing the terminal to perform channel measurement and determine whether it is a LOS signal. road.
  • the measurement results of the channel measurement performed by the terminal can be reported periodically, or the reporting can be triggered by the configuration information of the network side device.
  • the terminal reports the measurement result of the channel measurement only when the channel status is a LOS channel.
  • the LOS channel judgment algorithm can be implemented based on terminal hardware.
  • the beam of the third signal may be a reference beam for channel measurement
  • the beam of the fourth signal may be a sensing beam for channel measurement.
  • the terminal may measure the sensing beam and report the measurement result of the sensing beam.
  • the network side device can determine whether the terminal can receive the sensing beam and the correlation between the sensing beam channel and the LOS channel through the sensing beam measurement results reported by the terminal.
  • the network side device can determine the sensing beam for channel measurement.
  • the sensing beam can be selected from a predefined candidate beam set for network deployment.
  • the network deployment can include the actual environment of the cell, the location of objects in the cell, etc.; or it can be performed through beam scanning. Determine; or it can be determined based on perception requirements. For example, perception requirements may include perceiving objects in a certain direction or a certain area.
  • the network side device can configure the parameters of the sensing beam for channel measurement for the terminal, including the time-frequency resources of the sensing beam corresponding to the downlink reference signal, the port number, the random sequence of the reference signal, and the reporting resources required for the measurement results.
  • the downlink reference signal The signal can be CSI-RS, DMRS, or PRS.
  • the terminal receives the downlink reference signal corresponding to the sensing beam and obtains the measurement result of the channel measurement.
  • the measurement result of the channel measurement can be the signal quality of the downlink reference signal corresponding to the sensing beam, and/or the CSI reference signal received power (CSI reference signal received power, CSI-RSRP), and/or CSI reference signal received quality (CSI-RSRQ); or, the measurement result of the channel measurement can be that the signal quality of the downlink reference signal corresponding to the sensing beam is consistent with The difference in signal quality of the downlink reference signal corresponding to the LOS channel measurement, the correlation between the channel of the downlink reference signal corresponding to the sensing beam and the channel of the downlink reference signal corresponding to the LOS channel measurement.
  • the terminal may measure the LOS channel through the third signal and measure the sensing beam through the fourth signal. It can be understood that the measurement of the sensing beam and the measurement of the LOS channel can be performed in parallel.
  • the network side device schedules the terminal to send an uplink signal.
  • the uplink signal can be SRS or DMRS.
  • the network side device determines the terminal based on the uplink signal to determine whether there is a LOS signal, and senses the channel quality between the beam and the terminal.
  • network-side devices respectively send The terminal measures the above two downlink reference signals and feeds back the measurement results of the LOS channel and the measurement results of the sensing beam.
  • the first device may be a network side device
  • the second device may be a terminal
  • the third signal and/or the fourth signal may be an uplink reference signal
  • the third signal and/or the fourth signal may be a channel
  • the measured reference signal can determine channel state information that satisfies the first condition and/or the second condition through channel measurement.
  • the network side device may configure a third signal and/or a fourth signal, such as SRS or DMRS, for the terminal.
  • the terminal may send an uplink reference signal based on the third signal and/or the fourth signal configured by the network side device, and the network side device determines whether the channel from the terminal to the network side device is a LOS channel based on the received uplink reference signal.
  • the third signal and/or the fourth signal may be an uplink reference signal configured by the network side device for terminal display, for example, SRS; or an implicitly configured uplink reference signal, for example, DMRS.
  • the network side device can schedule one or more terminals to send uplink reference signals through configuration information, which indicates the time-frequency resources of the uplink reference signal, the orthogonal sequence of the reference signal, and the uplink beam.
  • the determination of the uplink beam can explicitly indicate that the characteristics of the uplink transmit beam (spatial domain filter) correspond to the receive beam of a certain downlink reference signal (for example, SSB or CSI-RS); or implicitly use the current PUSCH uplink beam.
  • the network side device can schedule the terminal to send PUSCH, and detect DMRS to determine whether the channel from the network side device to the terminal is a LOS channel.
  • the PUSCH can be a fixed payload and a fixed modulation and coding scheme (MCS). Data information.
  • the first device may be a network side device
  • the second device may be a terminal.
  • the network side device may receive a third signal sent by the terminal to determine channel state information that satisfies the first condition, and receive a fourth signal sent by the terminal to determine channel state information that satisfies the second condition.
  • the network side device may receive the third signal and/or the fourth signal sent by multiple terminals, and send the channel state information that satisfies the first condition and/or the channel state information that satisfies the second condition to the corresponding terminal. Confirm as the selected terminal.
  • the network side device schedules terminals within the coverage area to send uplink signals, and selects terminals that meet the conditions based on the reception results of the uplink signals.
  • the terminals that meet the conditions have LOS paths and there are network-side devices to the sensing objects.
  • the path to the terminal and the path reaches a certain signal strength.
  • the process of network side device selecting terminal can be as follows:
  • the network side device determines whether a LOS path exists in the terminal, or determines whether the main path between the network side device and the terminal is stable.
  • the main path refers to the path or paths with the strongest energy in the channel time domain response.
  • the main path The proportion of the energy to the total energy exceeds a predefined threshold. Whether it is stable is defined as whether the main path remains unchanged or whether the energy proportion is stable or the frequency is stable.
  • the third signal and the fourth signal may be uplink signals.
  • the network side device may schedule the terminal to send an uplink signal to determine the channel state information.
  • the third signal and/or the fourth signal may be SRS, DMRS, or a reference signal dedicated to sensing services.
  • the transmitting beam (spatial domain filter) of the third signal and/or the fourth signal may be determined according to default rules.
  • the receiving beam of the SSB with the strongest signal energy is selected as The transmission beam of the uplink signal; or the transmission beam of the third signal and/or the fourth signal can be determined according to the beam training results; or the transmission beam of the third signal and/or the fourth signal can be displayed and indicated by the network side device, for example, using The SRI display indicates the uplink beam; or the network side device can specify an SSB, and the terminal uses the receiving beam of the designated SSB as the transmitting beam of the uplink signal; etc., this embodiment determines the transmitting beam of the third signal and/or the fourth signal
  • the method is not limited.
  • the network side device may schedule the terminal to send an uplink signal to determine whether the wireless path from the network side device to the sensing target to the terminal meets the second condition.
  • the uplink signal may be SRS, DMRS, or a reference signal dedicated to the sensing service.
  • the network side device configures the terminal to perform uplink beam scanning, which includes a reference beam with measurement and a sensing beam.
  • the network side device selects the reference beam and the sensing beam from the scanning beam.
  • the network side device can receive the third signal and the fourth signal, determine the sensing measurement method based on the third signal and the fourth signal, determine the receiving beam of the reference beam and the receiving beam of the sensing beam, and determine the receiving beam of the reference beam. Information about the uplink signal and the uplink signal of the sensing beam.
  • the third signal and/or the fourth signal are also used to determine a perceptual measurement method
  • the transmission beam of the first signal is the same as the transmission beam of the second signal
  • the transmitting beam of the first signal The transmission beam is different from that of the second signal.
  • the reference beams of multiple sensing measurements can be shared and associated with the same reference beam.
  • the beam of the third signal may be a reference beam for channel measurement, and the measurement result of the LOS channel may be obtained through the third signal.
  • the beam of the fourth signal may be a sensing beam for channel measurement, and the channel measurement result of the sensing beam may be obtained through the fourth signal.
  • the network side device may determine to configure the sensing measurement mode for the terminal as single-beam measurement or as multi-beam measurement based on the channel measurement results of the sensing beam and the measurement results of the LOS channel. Different configurations enable the terminal to use different sensing measurement methods. For example, the network side device can determine the sensing measurement method based on the correlation between the channel measurement result of the sensing beam and the measurement result of the LOS channel.
  • the sensing measurement method of single beam measurement is used.
  • the sensing measurement method of multi-beam measurement is used; alternatively, the network side device can determine the strongest path in the channel measurement results of the sensing beam and the strongest path in the measurement results of the LOS channel, or The first path determines the perceptual measurement method based on the difference in channel parameters of the two paths.
  • the channel parameters may include at least one of delay, angle, and Doppler frequency. For example, if the two paths If the time difference of the delay is less than the predefined threshold, the perceptual measurement method of single-beam measurement is used. If the time difference of the delay of the two paths is greater than or equal to the predefined threshold, the perceptual measurement method of multi-beam measurement is used.
  • the perception measurement method is determined through the third signal and/or the fourth signal, so that the perception measurement method can be determined based on the channel state, and the network side device is supported to configure the perception measurement method for the terminal.
  • the first device is a terminal
  • the second device is a network-side device. After the first device performs the target operation, the method further includes:
  • the first device sends the channel status information to the second device
  • the channel state information includes at least one of the following:
  • the signal that satisfies the first condition may be: when the beam of the signal is transmitted In the case of , the proportion of the signal energy of the transmission path between the first device and the second device to the total energy of the received signal is higher than the first preset threshold value.
  • the signal that satisfies the second condition may be: when the signal beam is transmitted, there is a transmission path passing through the sensing area between the first device and the second device, and the sensing area passes through the sensing area. The proportion of signal energy of the transmission path in the area to the total energy of the received signal is higher than the second preset threshold.
  • the first device sends the channel state information to the second device, so that the network side device can determine whether the terminal meets the conditions of being a terminal for sensing measurement based on the channel state information reported by the terminal.
  • the first device is a terminal
  • the second device is a network side device
  • the method further includes at least one of the following: item:
  • the first device performs beam training or codebook feedback so that the beam energy of the first signal is concentrated on the transmission channel that meets the first condition;
  • the first device performs beam training or codebook feedback so that the beam energy of the second signal is concentrated on the transmission channel that meets the second condition.
  • the network side device schedules terminals within the coverage area to send uplink reference signals, and the network side device selects qualified terminals based on the measurement results of the uplink reference signals sent by the terminals.
  • the qualified terminals may be those that meet the first condition. and/or the terminal corresponding to the channel state information that meets the second condition.
  • the network side device configures a beam training or beam forming measurement process for the qualified terminal, and the terminal performs beam training or codebook feedback so that the beam energy of the first signal is concentrated on the transmission channel that meets the first condition; and/or
  • the network side device configures a beam training or beamforming measurement process for the qualified terminal, and the terminal performs beam training or codebook feedback so that the beam energy of the second signal is concentrated on the transmission channel that meets the second condition.
  • the network side device sends a downlink reference signal to a terminal within the coverage area, and the terminal performs channel measurement based on the downlink reference signal sent by the network side device and reports the measurement result of the channel measurement.
  • the network side device selects a qualified terminal according to the measurement results reported by the terminal.
  • the qualified terminal may be a terminal corresponding to channel state information that satisfies the first condition and/or satisfies the second condition.
  • the network-side device configures beam training or beamforming measurement flow for the qualified terminal. In the process, the terminal performs beam training or codebook feedback so that the beam energy of the first signal is concentrated on the transmission channel that meets the first condition;
  • the network side device configures a beam training or beamforming measurement process for the qualified terminal, and the terminal performs beam training or codebook feedback so that the beam energy of the second signal is concentrated on the transmission channel that meets the second condition.
  • the first device performs beam training or codebook feedback so that the beam energy of the first signal is concentrated on the transmission channel that meets the first condition; and/or the first device performs beam training Training or codebook feedback causes the beam energy of the second signal to be concentrated on the transmission channel that meets the second condition.
  • the signal energy can be concentrated on the sensing target through beam training or codebook feedback, and the reflected signal energy of the sensing target can be improved.
  • the first signal and the second signal respectively use different receiving beams
  • the first signal and the second signal are received using broadcast beams
  • the first signal and the second signal use the same receive beam.
  • the first device may be a terminal
  • the second device may be a network side device
  • the first signal may be a reference signal of a reference beam for perception measurement
  • the second signal may be a perception beam for perception measurement. reference signal.
  • the base station can configure the beam training or beam forming process for the terminal to determine the receiving beam (for example, spatial domain receive filter) for the terminal to receive the sensing beam. According to the protocol regulations or terminal hardware capabilities, the following three configuration situations can be included:
  • the first signal and the second signal respectively use different receiving beams. Therefore, beam training is performed on the beam of the first signal and the beam of the second signal respectively to determine the corresponding receiving beam.
  • the first signal and the second signal are received using broadcast beams.
  • the broadcast beam may be used to receive the beam of the first signal and the beam of the second signal.
  • the first signal and the second signal use the same receiving beam.
  • the terminal may receive the downlink reference signal of the beam of the first signal and the beam of the second signal in the beam training process, and determine an identical receive beam.
  • the first signal may be a reference signal of a reference beam for sensing measurement
  • the second signal may be a reference signal of a sensing beam for sensing measurement.
  • Downlink signals implement perceptual measurement.
  • the perceptual measurement method may include the following processes:
  • the network side device selects a terminal in the cell, and the selected terminal is used to perform sensing measurements on the sensing target (such as an object, building or human body in the cell coverage area).
  • the network side device obtains the channel status of the terminal in the cell and determines whether the channel is a line-of-sight, LOS channel or a channel with stable amplitude and phase. It can be understood that the base station schedules one or more terminals to perform corresponding channel state measurement and reporting and subsequent sensing measurement operations according to the reporting capabilities of the terminals.
  • the network side device determines a terminal that meets the conditions based on the obtained channel status of the terminal.
  • the terminal that meets the conditions measures the sensing beam and reports the measurement result of the sensing beam, so that the network side device determines whether the terminal that meets the conditions can receive the signal.
  • the network side device configures the first configuration information for the selected terminal.
  • the terminal receives the first signal and the second signal sent by the network side device according to the first configuration information, the terminal performs perception measurement based on the first signal and the second signal, and feeds back the measurement results of the perception measurement to the network side device.
  • the first signal may be a reference signal of a reference beam for sensing measurement
  • the second signal may be a reference signal of a sensing beam for sensing measurement.
  • the uplink signal implements perceptual measurement.
  • the perceptual measurement method may include the following processes:
  • the network side device schedules terminals within the coverage area to send uplink signals, and selects terminals that meet the conditions based on the reception results of the uplink signals.
  • the terminals that meet the conditions have a LOS path and there is a path from the network side device to the sensor to the terminal. path and the path reaches a certain signal strength.
  • the network side device configures the second configuration information for the selected terminal.
  • the network side device receives the first signal and the second signal sent by the terminal, and the network side device is based on The first signal and the second signal are perceptually measured, and the first signal and the second signal are sent by the terminal based on the second configuration information.
  • the solution of realizing sensing measurement through downlink signals in Embodiment 1 can be combined with the solution of realizing sensing measurement through uplink signals in Embodiment 2, so that the network side device can configure alternately sent uplink signals and downlink signals to realize sensing.
  • perception measurements are performed on the terminal and network side equipment respectively.
  • FIG 10 is a flow chart of a perceptual measurement method provided by an embodiment of the present application. As shown in Figure 10, the perceptual measurement method includes the following steps:
  • Step 201 The second device sends the first signal and the second signal to the first device;
  • the first signal and the second signal are used by the first device to perform perceptual measurement.
  • the first signal and the second signal are used by the first device to perform perceptual measurement to obtain a measurement result of the second signal relative to the first signal;
  • the measurement results include at least one of the following:
  • the first device is a terminal
  • the second device is a network side device
  • the method further includes:
  • the second device receives the measurement result sent by the first device.
  • the first device is a terminal
  • the second device is a network side device
  • the method further includes:
  • the second device sends first configuration information to the first device, where the first configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • Third indication information used to indicate the reporting resource of the reporting information.
  • the first device is a network side device
  • the second device is a terminal
  • the method further includes:
  • the second device receives second configuration information sent by the first device, and the second configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • the transmission power of the first signal and/or the second signal is the transmission power of the first signal and/or the second signal.
  • this embodiment is an implementation of the second device corresponding to the embodiment shown in Figure 5.
  • the relevant description of the embodiment shown in Figure 5 please refer to the relevant description of the embodiment shown in Figure 5 to avoid repeated description. No further details will be given in this embodiment.
  • perceptual measurement is performed by using the received first signal and second signal, and there is no need to use changes in multipath signals to measure perceptual quantities, which can reduce the interference of irrelevant multipath channels in the multipath environment to perceptual signals. Reduce measurement errors.
  • the execution subject may be a perceptual measurement device.
  • a perceptual measurement device performing a perceptual measurement method is used as an example to illustrate the perceptual measurement device provided by the embodiment of the present application.
  • Figure 11 is a structural diagram of a perceptual measurement device provided by an embodiment of the present application.
  • the first device includes the perceptual measurement device.
  • the perceptual measurement device 300 includes:
  • the first receiving module 301 is used to receive the first signal and the second signal sent by the second device;
  • a measurement module 302 is configured to perform perceptual measurement based on the first signal and the second signal.
  • the device also includes:
  • An acquisition module configured to obtain the measurement result of the second signal relative to the first signal
  • the measurement results include at least one of the following:
  • the first device is a terminal
  • the second device is a network side device
  • the device further includes:
  • the first sending module is used to send the measurement result to the second device.
  • the first device is a terminal
  • the second device is a network side device
  • the device further includes:
  • the second receiving module is configured to receive the first configuration information sent by the second device, where the first configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • Third indication information used to indicate the reporting resource of the reporting information.
  • the first device is a network side device
  • the second device is a terminal
  • the device further includes:
  • a second sending module configured to send second configuration information to the second device, where the second configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • the transmission power of the first signal and/or the second signal is the transmission power of the first signal and/or the second signal.
  • the first configuration information or the second configuration information is carried through at least one of radio resource control RRC signaling, media access control MAC control element CE signaling, and downlink control information DCI signaling.
  • the first signal and the second signal are frequency division multiplexed; or
  • the first signal and the second signal are time division multiplexed; or
  • the first signal and the second signal are code division multiplexed.
  • the beam of the first signal is a reference beam for perception measurement, and the beam of the first signal satisfies a first condition, and the first condition is a signal between the first device and the second device.
  • the proportion of the signal energy of the transmission path to the total energy of the received signal is higher than the first preset threshold;
  • the beam of the second signal is a sensing beam of sensing measurement, and the beam of the second signal satisfies a second condition.
  • the second condition is that there is a path passing through the sensing area between the first device and the second device.
  • the transmission path, and the proportion of the signal energy of the transmission path passing through the sensing area to the total energy of the received signal is higher than the second preset threshold.
  • the device also includes:
  • a first determination module configured to determine, from the first signal and the second signal, the signal corresponding to the reference beam of perceptual measurement and the signal corresponding to the perceptual beam of perceptual measurement based on the target determination method;
  • the target determination method is based on explicit instructions
  • the target determination method is determined according to the configuration sequence in the first configuration information or the second configuration information.
  • the device also includes:
  • a second determination module configured to determine the beam of the first signal as a reference beam for data communication, where the physical channel used for data communication includes at least one of the following:
  • the device further includes at least one of the following:
  • a first synchronization module configured to perform wireless frame synchronization based on the first signal
  • the second synchronization module is used for frequency synchronization based on the first signal.
  • the device also includes:
  • Execution module used to perform target operations
  • the target operation includes at least one of the following:
  • the first device receives a third signal sent by the second device, where the third signal is used to determine channel state information that meets the first condition;
  • the first device receives a fourth signal sent by the second device, and the fourth signal is used to determine channel state information that satisfies the second condition.
  • the third signal and/or the fourth signal are also used to determine a perceptual measurement method
  • the transmission beam of the first signal is the same as the transmission beam of the second signal
  • the transmission beam of the first signal is different from the transmission beam of the second signal.
  • the first device is a terminal
  • the second device is a network side device
  • the device further includes:
  • a third sending module configured to send the channel state information to the second device
  • the channel state information includes at least one of the following:
  • the first device is a terminal
  • the second device is a network side device
  • the device further includes at least one of the following:
  • a first processing module configured to perform beam training or codebook feedback so that the beam energy of the first signal is concentrated on the transmission channel that meets the first condition
  • the second processing module is configured to perform beam training or codebook feedback so that the beam energy of the second signal is concentrated on the transmission channel that meets the second condition.
  • the first signal and the second signal respectively use different receiving beams
  • the first signal and the second signal are received using broadcast beams
  • the first signal and the second signal use the same receive beam.
  • Figure 12 is a structural diagram of a perceptual measurement device provided by an embodiment of the present application.
  • the second device includes the perceptual measurement device.
  • the perceptual measurement device 400 includes:
  • the first sending module 401 is used to send the first signal and the second signal to the first device;
  • the first signal and the second signal are used by the first device to perform perceptual measurement.
  • the first signal and the second signal are used by the first device to perform perceptual measurement to obtain a measurement result of the second signal relative to the first signal;
  • the measurement results include at least one of the following:
  • the first device is a terminal
  • the second device is a network side device
  • the device further includes:
  • a receiving module configured to receive the measurement result sent by the first device.
  • the first device is a terminal
  • the second device is a network side device
  • the device further includes:
  • the second sending module is configured to send first configuration information to the first device, where the first configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • Third indication information used to indicate the reporting resource of the reporting information.
  • the first device is a network side device
  • the second device is a terminal
  • the device further includes:
  • a second receiving module configured to receive second configuration information sent by the first device, where the second configuration information includes at least one of the following:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • the transmission power of the first signal and/or the second signal is the transmission power of the first signal and/or the second signal.
  • the perceptual measurement device in the embodiment of the present application performs perceptual measurement through the received first signal and the second signal. It does not need to use changes in multipath signals to measure perceptual quantities, and can reduce irrelevant multipath signals in a multipath environment. It can reduce the interference of path channel on the sensing signal and reduce the measurement error.
  • the perceptual measurement device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the perceptual measurement device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 10 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 500, which includes a processor 501 and a memory 502.
  • the memory 502 stores programs or instructions that can be run on the processor 501, such as , when the communication device 500 is a first device, when the program or instruction is executed by the processor 501, each step of the above embodiment of the perceptual measurement method applied to the first device is implemented, and the same technical effect can be achieved.
  • the communication device 500 is the second device, the program or instruction is processed
  • the processor 501 is executed, each step of the above embodiment of the perceptual measurement method applied to the second device is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal.
  • the terminal may be a first device, including a processor and a communication interface.
  • the communication interface is used to receive the first signal and the second signal sent by the second device.
  • the processor uses for performing perceptual measurement based on the first signal and the second signal; or, the communication interface is used for sending the first signal and the second signal to the first device; wherein the first signal and the second signal are The signal is used by the first device to perform sensory measurements.
  • This terminal embodiment corresponds to the above-mentioned first device-side method embodiment or the above-mentioned second device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effects.
  • FIG. 14 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, etc. At least some parts.
  • the terminal 600 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 610 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 604 may include a graphics processing unit (Graphics Processing Unit, GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and at least one of other input devices 6072 .
  • Touch panel 6 071 also known as touch screen.
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 6072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 601 after the radio frequency unit 601 receives downlink data from the network side device, it can transmit it to the processor 610 for processing; in addition, the radio frequency unit 601 can send data to the network side device. Upstream data.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 609 may be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 609 may include volatile memory or non-volatile memory, or memory 609 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 610 may include one or more processing units; optionally, the processor 610 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 610.
  • the terminal may be the first device:
  • the radio frequency unit 601 is used to: receive the first signal and the second signal sent by the second device;
  • the processor 610 is configured to perform perceptual measurements based on the first signal and the second signal.
  • processor 610 is also used to:
  • the measurement results include at least one of the following:
  • the second device is a network side device, and the radio frequency unit 601 is also used to:
  • the second device is a network side device, and the radio frequency unit 601 is also used to:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • Third indication information used to indicate the reporting resource of the reporting information.
  • the radio frequency unit 601 is also used for:
  • the time-frequency resources of the first signal and/or the second signal are The time-frequency resources of the first signal and/or the second signal.
  • the transmission period of the first signal and/or the second signal is the transmission period of the first signal and/or the second signal
  • the port number of the first signal and/or the second signal is the port number of the first signal and/or the second signal
  • Beam indication information of the first signal and/or the second signal
  • the transmission power of the first signal and/or the second signal is the transmission power of the first signal and/or the second signal.
  • the first configuration information or the second configuration information uses at least one of radio resource control RRC signaling, media access control MAC control unit CE signaling, and downlink control information DCI signaling.
  • Item carries.
  • the first signal and the second signal are frequency division multiplexed; or
  • the first signal and the second signal are time division multiplexed; or
  • the first signal and the second signal are code division multiplexed.
  • the beam of the first signal is a reference beam for perception measurement, and the beam of the first signal satisfies a first condition, and the first condition is a signal between the first device and the second device.
  • the proportion of the signal energy of the transmission path to the total energy of the received signal is higher than the first preset threshold;
  • the beam of the second signal is a sensing beam of sensing measurement, and the beam of the second signal satisfies a second condition.
  • the second condition is that there is a path passing through the sensing area between the first device and the second device.
  • the transmission path, and the proportion of the signal energy of the transmission path passing through the sensing area to the total energy of the received signal is higher than the second preset threshold.
  • processor 610 is also used to:
  • the target determination method is based on explicit instructions
  • the target determination method is determined according to the configuration sequence in the first configuration information or the second configuration information.
  • processor 610 is also used to:
  • the beam of the first signal is determined as the reference beam for data communication, and the physical channel used for data communication includes at least one of the following:
  • processor 610 is also used for at least one of the following:
  • Frequency synchronization is performed based on the first signal.
  • processor 610 is also used to:
  • the target operation includes at least one of the following:
  • the first device receives a third signal sent by the second device, where the third signal is used to determine channel state information that meets the first condition;
  • the first device receives a fourth signal sent by the second device, and the fourth signal is used to determine channel state information that satisfies the second condition.
  • the third signal and/or the fourth signal are also used to determine a perceptual measurement method
  • the transmission beam of the first signal is the same as the transmission beam of the second signal
  • the transmission beam of the first signal is different from the transmission beam of the second signal.
  • the second device is a network side device, and the radio frequency unit 601 is also used to:
  • the channel state information includes at least one of the following:
  • the second device is a network side device
  • the processor 610 is further configured to at least one of the following:
  • the first device performs beam training or codebook feedback so that the beam energy of the first signal is concentrated on the transmission channel that meets the first condition;
  • the first device performs beam training or codebook feedback so that the beam energy of the second signal is concentrated on the transmission channel that meets the second condition.
  • the first signal and the second signal respectively use different receiving beams
  • the first signal and the second signal are received using broadcast beams
  • the first signal and the second signal use the same receive beam.
  • the terminal may be a second device:
  • the radio frequency unit 601 is also used to: send the first signal and the second signal to the first device;
  • the first signal and the second signal are used by the first device to perform perceptual measurement.
  • the first signal and the second signal are used by the first device to perform perceptual measurement to obtain a measurement result of the second signal relative to the first signal;
  • the measurement results include at least one of the following:
  • the perception measurement is performed based on the received first signal and the second signal. There is no need to use changes in the multipath signal to measure the perception quantity, which can reduce the impact of irrelevant multipath channels on the perception signal in a multipath environment. interference and reduce measurement errors.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is configured to: receive a first signal and a second signal sent by a second device; and the processor is configured to based on the first signal. signal and the second signal for perceptual measurement; or, the communication interface is used to: send the first signal and the second signal to the first device; wherein the first signal and the second signal are used for the The first device performs perceptual measurements.
  • This network-side device embodiment corresponds to the above-mentioned first device-side method embodiment or the second device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, And can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 includes: an antenna 701, a radio frequency device 702, a baseband device 703, a processor 704 and a memory 705.
  • the antenna 701 is connected to the radio frequency device 702 .
  • the radio frequency device 702 receives information through the antenna 701 and sends the received information to the baseband device 703 for processing.
  • the baseband device 703 processes the information to be sent and sends it to the radio frequency device 702.
  • the radio frequency device 702 processes the received information and then sends it out through the antenna 701.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 703, which includes a baseband processor.
  • the baseband device 703 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 706, which is, for example, a common public radio interface (CPRI).
  • a network interface 706, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 700 in this embodiment of the present invention also includes: instructions or programs stored in the memory 705 and executable on the processor 704.
  • the processor 704 calls the instructions or programs in the memory 705 to execute Figure 11 or Figure 12
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above embodiments of the perceptual measurement method is implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above embodiments of the perceptual measurement method. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement each of the above-mentioned perceptual measurement methods.
  • the process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a perceptual measurement system, including: a first device and a second device.
  • the first device can be used to perform the steps of the perceptual measurement method on the first device side as described above.
  • the second device It may be used to perform the steps of the perceptual measurement method on the second device side as described above.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the relevant technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc. that can store programs. code medium.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知测量方法、装置及相关设备,属于通信技术领域,本申请实施例的感知测量方法,包括:第一设备接收第二设备发送的第一信号和第二信号;所述第一设备基于所述第一信号和所述第二信号进行感知测量。

Description

感知测量方法、装置及相关设备
相关申请的交叉引用
本申请主张在2022年04月13日在中国提交的中国专利申请No.202210389846.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种感知测量方法、装置及相关设备。
背景技术
未来移动通信系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的通信设备在移动通信网络的部署,感知的分辨率相比厘米波将明显提升,从而使得移动通信系统能够提供更精细的感知服务。
目前,在感知应用场景(例如,呼吸检测场景)中利用多径信号的变化来实现感知量的测量。然而,在实际环境中多径信号非常复杂,包含大量的传输路径,导致感知量的测量精度受到不相关的传输路径的信号干扰较大,从而导致测量误差较大。
发明内容
本申请实施例提供一种感知测量方法、装置及相关设备,能够解决感知测量的测量误差较大的问题。
第一方面,提供了一种感知测量方法,包括:
第一设备接收第二设备发送的第一信号和第二信号;
所述第一设备基于所述第一信号和所述第二信号进行感知测量。
第二方面,提供了一种感知测量方法,包括:
第二设备向第一设备发送第一信号和第二信号;
其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
第三方面,提供了一种感知测量装置,第一设备包括所述感知测量装置,包括:
第一接收模块,用于接收第二设备发送的第一信号和第二信号;
测量模块,用于基于所述第一信号和所述第二信号进行感知测量。
第四方面,提供了一种感知测量装置,第二设备包括所述感知测量装置,包括:
第一发送模块,用于向第一设备发送第一信号和第二信号;
其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
第五方面,提供了一种第一设备,该第一设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第一设备,包括处理器及通信接口,其中,所述通信接口用于接收第二设备发送的第一信号和第二信号;所述处理器用于基于所述第一信号和所述第二信号进行感知测量。
第七方面,提供了一种第二设备,该第二设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种第二设备,包括处理器及通信接口,其中,所述通信接口用于向第一设备发送第一信号和第二信号;其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
第九方面,提供了一种感知测量系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的感知测量方法的步骤,所述第二设备可用于执行如第二方面所述的感知测量方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述 通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的感知测量方法的步骤,或者,所述计算机程序/程序产品被至少一个处理器执行以实现如第二方面所述的感知测量方法的步骤。
在本申请实施例中,第一设备接收第二设备发送的第一信号和第二信号;所述第一设备基于所述第一信号和所述第二信号进行感知测量。这样,通过接收到的第一信号和第二信号进行感知测量,不需要利用多径信号的变化来实现感知量的测量,能够降低多径环境中不相关的多径信道对感知信号的干扰,降低测量误差。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的一种感知场景的示意图之一;
图3是本申请实施例提供的一种感知场景的示意图之二;
图4是本申请实施例提供的一种感知场景的示意图之三;
图5是本申请实施例提供的一种感知测量方法的流程图之一;
图6是本申请实施例提供的一种感知场景的示意图之四;
图7是本申请实施例提供的一种波束的信道响应示意图之一;
图8是本申请实施例提供的一种感知场景的示意图之五;
图9是本申请实施例提供的一种波束的信道响应示意图之二;
图10是本申请实施例提供的一种感知测量方法的流程图之二;
图11是本申请实施例提供的一种感知测量装置的结构图之一;
图12是本申请实施例提供的一种感知测量装置的结构图之二;
图13是本申请实施例提供的一种通信设备的结构图;
图14是本申请实施例提供的一种终端的结构示意图;
图15是本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile  Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(Evolved NodeB,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、 本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面对本申请实施例涉及的通信感知一体化(即通感一体化)进行解释说明:
未来移动通信系统,例如B5G系统或6G系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。未来随着毫米波、太赫兹等具备高频段大带宽能力的通信设备在移动通信网络的部署,感知的分辨率相比厘米波将明显提升,从而使得移动通信系统能够提供更精细的感知服务。
感知部署方案可以包括以下几种方式:
单点集中式感知:如图2所示,感知节点(例如,基站)利用自身发射信号的反射信号(回波)进行感知。感知节点具有自发自收的功能,例如采用不同天线组实现收发信号隔离。感知节点通过回波信号判断感知目标的状态(例如方向,位置,移动等信息)。单点集中式感知要求感知节点具有良好的自干扰消除性能,以保证感知检测的准确度;单点集中式感知以单一节点的发送信号作为参考信号,不需要多节点之间的同步协作。
多点分布式感知:感知信号发送节点和接收节点位于不同位置。接收节点检测发送节点的发射信号进行感知,如图3所示,例如基站2通过接收来自基站1的无线信号感知基站1和基站2之间的环境信息。多点分布式感知通常需要多个信号进行比较来实现感知测量,例如通过当前信号与历史信号(前一次或者预存储结果)对比来判断感知目标的状态。分布式多点感知避免了自发自收的干扰隔离问题,但是对多个节点之间时间和频率同步有较高的要求。
交互感知:感知节点与感知的目标对象之间通过信息交互,对电磁波发送的主体、时间、频率、格式等进行约定,完成感知的过程。感知目标具有 信号收发功能,根据感知流程进行信号交互来完成感知测量或者感知结果上报。
感知的应用场景可以是感知室内人体的移动或者呼吸频率。在这个场景中,使用多点分布式感知部署。基站发送无线信号,终端接收无线信号然后根据无线信号的信道变化情况判断感知用户的移动或者呼吸频率。其中,如图4所示,终端接收信号的表达式为:
y(t0)=[h0+h1(t0)]x+n
y(t1)=[h0+h1(t1)]x+n
其中,h0表示基站与终端之间直射路径和环境中普通物体(可重构智能表面(Reconfigurable Intelligent Surface,RIS)设备以外)的散射或者衍射产生的路径对应的无线信道响应,h1(t)表示t时刻基站与终端之间通过RIS设备反射产生的路径对应的无线信道响应,n表示无线环境和收发设备引入的噪声,x表示基站发送的信号。
基站周期地发送无线信号进行信道测量,根据信道估计结果的变化规律可以判断出感知用户的移动或者呼吸频率。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知测量方法、装置及相关设备进行详细地说明。
参见图5,图5是本申请实施例提供的一种感知测量方法的流程图,如图5所示,感知测量方法包括以下步骤:
步骤101、第一设备接收第二设备发送的第一信号和第二信号。
步骤102、所述第一设备基于所述第一信号和所述第二信号进行感知测量。
其中,第一信号可以为参考信号,例如,第一信号可以为信道状态信息参考信号(Channel state information Reference Signal,CSI-RS,)或者探测参考信号(Sounding Reference Signal,SRS),或者解调参考信号(Demodulation Reference Signal,DMRS),或者定位参考信号(Positioning Reference Signal,PRS),或者新设计的感知业务专用参考信号;等等。第二信号可以为参考信号,例如,第二信号可以为CSI-RS,或者SRS,或者DMRS,或者PRS,或者新设计的感知业务专用参考信号;等等。
一种实施方式中,所述第一设备为终端,所述第二设备为网络侧设备,网络侧设备接收终端发送的第一信号和第二信号,基于接收的所述第一信号和所述第二信号进行感知测量,得到测量结果,向网络侧设备发送测量结果。
一种实施方式中,所述第一设备为网络侧设备,所述第二设备为终端,网络侧设备接收终端发送的第一信号和第二信号,基于接收的所述第一信号和所述第二信号进行感知测量,得到测量结果。
另外,测量结果可以包括如下至少一项:
时延信息;
频率信息;
相位信息;
功率信息;
角度信息;
信道相关性信息。
一种实施方式中,测量结果可以包括:第一信号和/或第二信号的时延,第一信号和/或第二信号的频率,:第一信号和/或第二信号的相位,:第一信号和/或第二信号的功率,:第一信号和/或第二信号的角度,第一信号与第二信号的信道相关性中的至少一项。
需要说明的是,以测量结果包括时延信息为例,可以由第一设备分别获得第一信号的时延和第二信号的时延,第一设备基于第一信号的时延和第二信号的时延计算得到第二信号与第一信号之间的时延差距;或者,可以由第一设备分别获得第一信号的时延和第二信号的时延,第一设备向第二设备发送第一信号的时延和第二信号的时延,第二设备基于第一信号的时延和第二信号的时延计算得到第二信号与第一信号之间的时延差距。
一种实施方式中,时延信息可以为第二信号与第一信号之间的时延差距,第二信号与第一信号之间的频率差,第二信号与第一信号之间的相位差,第二信号与第一信号之间的功率差,第二信号与第一信号之间的角度差,第二信号与第一信号之间的信道相关性中的至少一项。
需要说明的是,网络侧设备可以选择满足第三条件的终端,或者其他网络侧设备,或者其他设备进行多点分布式感知。该满足第三条件的终端,或 者其他网络侧设备,或者其他设备可以具有以下特征中的至少一项:固定位置,移动速度低,存在视距(Line-of-sight,LOS)信道,感知波束的信号质量达到预定义门限。一种实施方式中,网络侧设备可以选择多个满足第三条件的终端对同一个感知目标进行感知测量,并上报感知测量的测量结果。
在相关技术中利用多径信道中不同传输路径的信号差异来判断传播环境中感知物体的变化情况。如图6至图7所示,全向天线和波束赋形的信号接收对多径信道响应产生影响。如图8至图9所示,使用基于波束赋形的多波束感知方案可以使感知路径的能量更高,使得感知测量算法更加简单。使用波束赋形的多波束感知方案能够提升感知信号的指向性,排除不相关的多径干扰,从而提升测量精度。
需要说明的是,第一信号的发送波束和第二信号的发送波束可以相同,或者,第一信号的发送波束和第二信号的发送波束可以不同。网络侧设备可以为终端配置第一信号和第二信号的信号参数,使信号能量集中于感知目标,提升感知目标的反射信号能量;并且,第一信号的波束可以为感知测量的参考波束,第二信号的波束可以为感知测量的感知波束,具有波束赋形的感知信号可以降低多径环境中不相关的多径信道对感知信号的干扰,从而提升感知测量的准确度。
另外,分布式多波束的感知方案可以用于通信环境的重构,即同时定位和映射(Simultaneous localization and mapping,SLAM)。在通信环境中,假设同一个反射物体具有一定的多普勒(Doppler)特性,例如一个建筑物或者一个车辆的震动或者晃动频率是相同的,并且一个物体是连续的,网络侧设备在进行感知波束扫描时,可以根据感知波束的角度连续性以及感知信号的测量结果(Doppler)一致性来实现通信环境中反射物体的轮廓重构。
在本申请实施例中,第一设备接收第二设备发送的第一信号和第二信号;所述第一设备基于所述第一信号和所述第二信号进行感知测量。这样,通过接收到的第一信号和第二信号进行感知测量,不需要利用多径信号的变化来实现感知量的测量,能够降低多径环境中不相关的多径信道对感知信号的干扰,降低测量误差。
可选地,所述第一设备基于所述第一信号和所述第二信号进行感知测量 之后,所述方法还包括:
获得所述第二信号相对于所述第一信号的测量结果;
其中,所述测量结果包括如下至少一项:
时延差距;
频率差;
相位差;
功率差;
角度差;
信道相关性。
其中,时延差距可以为所述第二信号相对于所述第一信号的时延差距;或者,可以为所述第二信号相对于所述第一信号到达所述第一设备的时间差。示例地,时延差距可以为所述第二信号的时延与所述第一信号的时延的差值。时延可以是信号到达第一设备的时间点与信号从第二设备发送的时间点之间的差值。一种实施方式中,所述第一信号的时延可以为所述第一信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的时延,所述第二信号的时延可以为所述第二信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的时延。
另外,频率差可以为所述第二信号相对于所述第一信号的频率差,示例地,频率差可以为所述第二信号的频率与所述第一信号的频率的差值。一种实施方式中,所述第一信号的频率可以为所述第一信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的频率,所述第二信号的频率可以为所述第二信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的频率。
另外,相位差可以为所述第二信号相对于所述第一信号的相位差,示例地,相位差可以为所述第二信号的相位与所述第一信号的相位的差值。一种实施方式中,所述第一信号的相位可以为所述第一信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的相位,所述第二信号的相位可以为所述第二信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的相位。
另外,功率差可以为所述第二信号相对于所述第一信号的功率差,示例地,功率差可以为所述第二信号的功率与所述第一信号的功率的差值。一种实施方式中,所述第一信号的功率可以为所述第一信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的功率,所述第二信号的功率可以为所述第二信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的功率。
另外,角度差可以为所述第二信号相对于所述第一信号的角度差,示例地,角度差可以为所述第二信号的角度与所述第一信号的角度的差值。一种实施方式中,所述第一信号的角度可以为所述第一信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的角度,所述第二信号的角度可以为所述第二信号中路径信号质量超过预定义门限的第一个路径或者路径信号质量最强的路径对应的角度。
另外,信道相关性可以为所述第二信号与所述第一信号的信道相关性。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述获得所述第二信号相对于所述第一信号的测量结果之后,所述方法还包括:
所述第一设备向所述第二设备发送所述测量结果。
该实施方式中,通过第一设备向所述第二设备发送所述测量结果,从而终端在完成感知测量后,向网络侧设备上报感知测量的测量结果。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括:
所述第一设备接收所述第二设备发送的第一配置信息,所述第一配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的波束指示信息;
用于指示感知测量方式的第一指示信息;
用于指示测量结果的类型的第二指示信息;
用于指示上报信息的上报资源的第三指示信息。
其中,所述第一信号和/或所述第二信号的时频资源,可以包括,所述第一信号和/或所述第二信号的起始发送时间,通过所述第一信号和/或所述第二信号的起始发送时间可以确定感知业务的开始时间。
一种实施方式中,第一信号可以为感知测量的参考波束的参考信号,网络侧设备为终端配置参考波束的参考信号的参数。所述参考波束的参考信号可以是CSI-RS或者同步信号块(Synchronization Signal Block,SSB)或者DMRS或者PRS等下行参考信号。网络侧设备为终端配置上述下行参考信号的时频资源、发送周期及端口号。
一种实施方式中,第二信号可以为感知测量的感知波束的参考信号,网络侧设备为终端配置感知波束的参考信号的参数。所述参考波束的参考信号可以是CSI-RS或者SSB或者DMRS或者PRS等下行参考信号。网络侧设备为终端配置上述下行参考信号的时频资源、发送周期及端口号。
需要说明的是,网络侧设备可以为终端更新感知波束。网络侧设备配置新的感知波束端口或者TCI信息,通知终端更新感知波束。
一种实施方式中,第一配置信息可以包括用于指示感知测量方式的第一指示信息。网络侧设备指示终端的感知测量方式,该感知测量方式可以为单波束测量或者多波束测量。显式的,网络侧设备指示终端使用多波束测量或者单波束测量;隐式的,终端根据网络侧设备是否配置了感知波束的参考信号来确定感知测量方式,当网络侧设备配置了感知波束的参考信号,则采用多波束测量,当网络侧设备未配置感知波束的参考信号,则采用单波束测量。
一种实施方式中,第一配置信息可以包括用于指示测量结果的类型的第二指示信息。网络侧设备指示终端的感知测量的测量结果。例如,测量结果为多普勒偏差,或者频率差,或者时延差距等,其中,在单波束测量时为测量结果可以为多普勒偏差,在多波束测量时测量结果可以为频率差。
一种实施方式中,第一配置信息可以包括用于指示上报信息的上报资源的第三指示信息。网络侧设备配置上报信息的上报资源,该上报信息的上报资源的配置方式可以沿用相关协议的方法。
需要说明的是,网络侧设备可以为终端配置SRS资源。网络侧设备可以 为终端配置两个SRS资源,分别关联于感知测量的参考波束和感知波束,或者网络侧设备可以指定感知波束训练时确定参考波束和感知波束,或者使用默认波束即当前物理上行共享信道(Physical Uplink Shared Channel,PUSCH)关联的波束作为参考波束和感知波束。网络侧设备可以根据当前信道情况选择接收波束以及感知测量方式。
在通信感知一体化(即通感一体化)中的多点分布式感知部署场景中,无线信号以广播的形式(或者说单一宽波束)进行发送。在复杂的无线环境中(例如室外,工厂)多径传播情况会影响接收信号的信道估计结果,导致感知精度下降。另一方面,当网络侧设备需要同时感知多个目标时,广播的无线信号会导致多个目标的信息混叠在一起,使得终端的信号处理复杂度提升。本实施例中,通过引入基于波束的感知参数配置,能够提升感知信号的能量利用效率,且能够支持多目标感知功能。
可选地,所述第一设备为网络侧设备,所述第二设备为终端,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括:
所述第一设备向所述第二设备发送第二配置信息,所述第二配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的波束指示信息;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的发送功率。
其中,所述第一信号和/或所述第二信号的时频资源,可以包括,所述第一信号和/或所述第二信号的起始发送时间,通过所述第一信号和/或所述第二信号的起始发送时间可以确定感知业务的开始时间。
另外,网络侧设备可以通过第二配置信息为终端配置所述第一信号和/或所述第二信号的参数。所述第一信号和/或所述第二信号的波束指示信息可以包括SRS资源指示(SRS resource indicator,SRI)。
本实施例中,通过引入基于波束的感知参数配置,能够提升感知信号的 能量利用效率,且能够支持多目标感知功能。
可选地,第一配置信息或者第二配置信息通过无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media access control,MAC)控制单元(Control Element,CE)信令、下行控制信息(Downlink Control Information,DCI)信令中的至少一项承载。
一种实施方式中,第一配置信息可以通过无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、下行控制信息DCI信令中的至少一项承载。通过DCI或者MAC CE信令指示终端开始或者结束感知测量流程。
一种实施方式中,第二配置信息可以通过无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、下行控制信息DCI信令中的至少一项承载。
可选地,所述第一信号和第二信号为频分复用;或者
所述第一信号和第二信号为时分复用;或者
所述第一信号和第二信号为码分复用。
一种实施方式中,第一信号可以为感知测量的参考波束的参考信号,第二信号可以为感知测量的感知波束的参考信号,所述感知波束的参考信号可以与参考波束的参考信号按照码分,时分,或者频分的方式进行复用。当第一信号或第二信号的某个参数缺省时,可以根据复用关系使用另一个信号的配置参数。以码分复用为例,所述感知波束的参考信号复用所述参考波束的参考信号的时频资源。网络侧设备为所述感知波束的参考信号配置与所述参考波束的参考信号不同的码分多路复用(Code division multiplexing,CDM)参数。
另外。当所述第一信号和第二信号为时分复用或码分复用时,第一信号和第二信号的发送周期和时频配置参数可以是相同的。当时分复用时,发送周期可以是相同的,频率资源配置参数可以是相同的,时域资源配置参数可以根据偏移量进行确定,该偏移量可以为符号级或者时隙级的偏移量。
该实施方式中,所述第一信号和第二信号为频分复用;或者所述第一信号和第二信号为时分复用;或者所述第一信号和第二信号为码分复用。这样,能够实现信号的配置参数的复用,降低配置复杂度。
可选地,所述第一信号的波束为感知测量的参考波束,所述第一信号的波束满足第一条件,所述第一条件为所述第一设备和所述第二设备之间的传输路径的信号能量占接收信号总能量的比例高于第一预设门限值;
和/或
所述第二信号的波束为感知测量的感知波束,所述第二信号的波束满足第二条件,所述第二条件为所述第一设备和所述第二设备之间存在经过感知区域的传输路径,且经过所述感知区域的传输路径的信号能量占接收信号总能量的比例高于第二预设门限值。
其中,感知区域可以是感知对象所在的区域,或者是待感知的区域。一种实施方式中,所述第一条件可以为所述第一设备和所述第二设备之间存在稳定传输路径,且所述稳定传输路径的信号能量占接收信号总能量的比例高于第一预设门限值。所述稳定传输路径表示所述传输路径对应的信道响应在时间段内信道响应相关性大于预定义门限。
一种实施方式中,所述第一信号的波束满足第一条件,可以是:在以所述第一信号的波束进行传输的情况下,所述第一设备和所述第二设备之间的传输路径的信号能量占接收信号总能量的比例高于第一预设门限值。
一种实施方式中,所述第二信号的波束满足第二条件,可以是:在以所述第二信号的波束进行传输的情况下,所述第一设备和所述第二设备之间存在经过感知区域的传输路径,且经过所述感知区域的传输路径的信号能量占接收信号总能量的比例高于第二预设门限值。
该实施方式中,通过配置感知测量的参考波束,能够保证终端与网络侧设备之间同步,降低了终端感知测量的复杂度。
可选地,所述第一设备接收第二设备发送的第一信号和第二信号之后,所述方法还包括:
基于目标确定方式从所述第一信号和第二信号中确定感知测量的参考波束对应的信号,及感知测量的感知波束对应的信号;
其中,所述目标确定方式为基于显式指示确定;
或者,所述目标确定方式为根据第一配置信息或者第二配置信息中的配置顺序确定。
一种实施方式中,可以根据第一配置信息中波束的配置先后顺序确定所述第一信号的波束与所述第二信号的波束,例如,先配置的波束可以是第一信号的波束,后配置的波束可以是第二信号的波束;或者,所述第一信号和所述第二信号分别定义不同的信令进行配置。
一种实施方式中,可以根据第二配置信息中波束的配置先后顺序确定所述第一信号的波束与所述第二信号的波束,例如,先配置的波束可以是第一信号的波束,后配置的波束可以是第二信号的波束。
需要说明的是,在所述第一设备为网络侧设备,所述第二设备为终端的情况下,终端可以不需要区分第一信号的波束和第二信号的波束,由网络侧设备自动处理。
可选地,所述方法还包括:
所述第一设备将所述第一信号的波束确定为数据通信的参考波束,所述数据通信所使用的物理信道包括如下至少一项:
接收物理下行控制信道(Physical downlink control channel,PDCCH);
接收物理下行共享信道(Physical downlink shared channel,PDSCH);
发送物理上行控制信道(Physical Uplink Control Channel,PUCCH);
发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
其中,上述PUCCH和PUSCH可以包括用于测量结果上报的数据信道。
一种实施方式中,所述第二设备也可以将所述第一信号的波束确定为数据通信的参考波束。所述第一设备和第二设备将所述第一信号的波束确定为数据通信的参考波束。
可选地,所述方法还包括如下至少一项:
所述第一设备基于所述第一信号进行无线帧同步;
所述第一设备基于所述第一信号进行频率同步。
其中,第一设备可以为终端,第一信号可以为感知测量的参考波束的参考信号,终端以所述参考波束的参考信号进行无线帧同步和/或频率同步。无线帧同步和频率同步的调整时间可以为接收下一次所述参考波束的参考信号之前或者接收感知测量的感知波束的参考信号之后。
可选地,所述第一设备接收第二设备发送的第一信号和第二信号之前, 所述方法还包括:
所述第一设备执行目标操作;
其中,所述目标操作包括如下至少一项:
所述第一设备接收所述第二设备发送的第三信号,所述第三信号用于确定满足所述第一条件的信道状态信息;
所述第一设备接收所述第二设备发送的第四信号,所述第四信号用于确定满足所述第二条件的信道状态信息。
其中,所述满足所述第一条件的信道状态信息,可以包括:满足所述第一条件的信号的信号强度,和/或,满足所述第一条件的信号与满足所述第二条件的信号的信道相关性。所述满足所述第二条件的信道状态信息,可以包括:满足所述第二条件的信号的信号强度,和/或,满足所述第一条件的信号与满足所述第二条件的信号的信道相关性。
需要说明的是,网络侧设备可以通过第三信号和/或第四信号获取小区中终端的信道状态,确定信道是否为直射径line-of-sight,或者LOS信道,或者幅度和相位稳定的信道。
一种实施方式中,第一设备可以为终端,第二设备可以为网络侧设备,第三信号和/或第四信号为下行参考信号,第三信号和/或第四信号可以为用于信道测量的参考信号,通过信道测量可以确定满足第一条件和/或第二条件的信道状态信息。第三信号和/或第四信号可以是由网络侧设备显示配置的下行参考信号,例如,CSI-RS,或者PRS,或者感知业务专用的参考信号。该下行参考信号的配置参数,例如,时频资源,周期,及随机序列的生成参数等可以沿用相关协议中的配置方式,本实施例不进行限定;或者,可以根据默认规则确定该进行信道测量的下行参考信号,例如SSB或者DMRS。示例地,该下行参考信号可以为SSB,所述SSB为SSB集合中SS参考信号接收功率(SS reference signal received power,SS-RSRP)最大的SSB,SS为同步信号(Synchronisation signal),所述SS-RSRP可以是最近一次SS-RSRP测量结果,或者是经过L1滤波后的SS-RSRP结果;或者,所述下行参考信号可以为DMRS,相应地,所述终端接收PDSCH的带宽大于门限值。网络侧设备可以为终端配置第三配置信息,指示所述终端进行信道测量并判断是否为LOS信 道。
需要说明的是,所述终端进行信道测量的测量结果可以周期上报,或者可以通过网络侧设备的配置信息触发上报。可选地,终端在进行信道测量后,仅当信道状态为LOS信道的情况下上报信道测量的测量结果。另外,LOS信道的判断算法可以基于终端硬件实现。
另外,第三信号的波束可以为信道测量的参考波束,第四信号的波束可以为信道测量的感知波束,终端可以测量感知波束,并上报感知波束的测量结果。网络侧设备可以通过终端上报的感知波束的测量结果确定终端是否可以接收到感知波束,以及感知波束的信道与LOS信道的相关性。
另外,网络侧设备可以确定信道测量的感知波束,该感知波束可以从网络部署预定义候选波束集合中选取,该网络部署可以包括小区的实际环境,小区内物体位置等;或者可以通过波束扫描进行确定;或者可以根据感知需求来确定,例如,感知需求可以包括感知某个方向或者某个区域的物体。
另外,网络侧设备可以为终端配置信道测量的感知波束的参数,包括感知波束对应下行参考信号的时频资源,端口号,参考信号的随机序列,以及测量结果所需的上报资源,该下行参考信号可以为CSI-RS,或者DMRS,或者PRS。终端接收感知波束对应的下行参考信号,获得信道测量的测量结果,例如,该信道测量的测量结果可以是感知波束对应的下行参考信号的信号质量,和/或CSI参考信号接收功率(CSI reference signal received power,CSI-RSRP),和/或CSI参考信号接收质量(CSI reference signal received quality,CSI-RSRQ);或者,该信道测量的测量结果可以是,感知波束对应的下行参考信号的信号质量与LOS信道测量对应的下行参考信号的信号质量的差异,感知波束对应的下行参考信号的信道与LOS信道测量对应的下行参考信号的信道的相关性。
另外,终端可以通过第三信号进行LOS信道的测量,通过第四信号进行感知波束的测量。可以理解,感知波束的测量和LOS信道的测量可以并行进行。例如,网络侧设备调度终端发送上行信号,该上行信号可以为SRS或者DMRS,网络侧设备根据上行信号判断终端确定是否存在LOS信号,以及感知波束与终端之间的信道质量。例如,网络侧设备分别发送用于LOS信道测 量的下行参考信号和感知波束的下行参考信号,终端测量上述两个下行参考信号,并且反馈LOS信道的测量结果及感知波束的测量结果。
一种实施方式中,第一设备可以为网络侧设备,第二设备可以为终端,第三信号和/或第四信号为上行参考信号,第三信号和/或第四信号可以为用于信道测量的参考信号,通过信道测量可以确定满足第一条件和/或第二条件的信道状态信息。网络侧设备可以为终端配置第三信号和/或第四信号,例如SRS,或者DMRS。终端可以基于网络侧设备配置的第三信号和/或第四信号发送上行参考信号,网络侧设备基于接收到的上行参考信号判断终端到网络侧设备的信道是否为LOS信道。该第三信号和/或第四信号可以是网络侧设备为终端显示配置的上行参考信号,例如,SRS;或者隐式配置的上行参考信号,例如,DMRS。网络侧设备可以通过配置信息调度一个或者多个终端发送上行参考信号,该配置信息指示该上行参考信号的时频资源、参考信号的正交序列、以及上行波束。
需要说明的是,上行波束的确定可以显示地指示上行发送波束的特征(spatial domain filter)对应于某个下行参考信号(例如,SSB或者CSI-RS)的接收波束;或者隐式地使用当前PUSCH的上行波束。另外,网络侧设备可以调度终端发送PUSCH,检测DMRS判断网络侧设备到终端的信道是否为LOS信道,所述PUSCH可以为一个固定负载(payload)固定调制编码方案(Modulation and coding scheme,MCS)的数据信息。
需要说明的是,第一设备可以为网络侧设备,第二设备可以为终端。网络侧设备可以接收终端发送的第三信号确定满足所述第一条件的信道状态信息,且接收终端发送的第四信号确定满足所述第二条件的信道状态信息。示例地,网络侧设备可以接收多个终端发送的第三信号和/或第四信号,将满足所述第一条件的信道状态信息和/或满足所述第二条件的信道状态信息对应的终端确定为选择的终端。
一种实施方式中,网络侧设备调度覆盖范围内的终端发送上行信号,并且根据上行信号的接收结果选择满足条件的终端,该满足条件的终端为存在LOS路径,且存在网络侧设备到感知物到终端的路径并且该路径达到一定信号强度。网络侧设备选择终端的过程可以如下:
(1)网络侧设备确定终端是否存在LOS路径,或者,确定网络侧设备与终端之间的主要路径是否稳定,主要路径是指信道时域响应中能量最强的一条或者几条路径,主要路径的能量占总能量的比例超过预定义门限,是否稳定的定义为主要路径是否保持不变或者能量占比是否稳定或者频率是否稳定。
其中,第三信号和第四信号可以为上行信号。网络侧设备可以调度终端发送上行信号以确定信道状态信息,第三信号和/或第四信号可以是SRS,或者DMRS,或者感知业务专用的参考信号。第三信号和/或第四信号的发送波束(空域滤波器(spatial domain filter))可以是根据默认规则确定的,例如,根据下行同步信号测量监听结果,选择信号能量最强SSB的接收波束作为上行信号的发送波束;或者第三信号和/或第四信号的发送波束可以根据波束训练结果确定;或者第三信号和/或第四信号的发送波束可以由网络侧设备显示指示,例如,利用SRI显示指示上行波束;或者网络侧设备可以指定SSB,终端使用该指定SSB的接收波束作为上行信号的发送波束;等等,本实施例对第三信号和/或第四信号的发送波束的确定方式不进行限定。
(2)确定网络侧设备到感知目标到终端的无线路径是否满足第二条件。网络侧设备可以调度终端发送上行信号以确定网络侧设备到感知目标到终端的无线路径是否满足第二条件,所述上行信号可以是SRS,或者DMRS,或者感知业务专用的参考信号。
可以理解,上述两个步骤可以同时进行。例如,网络侧设备配置终端进行上行波束扫描,其中包含带测量的参考波束和感知波束。网络侧设备从扫描波束中选择参考波束和感知波束。
需要说明的是,网络侧设备可以接收第三信号和第四信号,基于第三信号和第四信号确定感知测量方式,并确定参考波束的接收波束和感知波束的接收波束,并确定参考波束的上行信号与感知波束的上行信号的信息。
可选地,所述第三信号和/或所述第四信号还用于确定感知测量方式;
其中,在所述感知测量方式为单波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束相同;
在所述感知测量方式为多波束测量的情况下,所述第一信号的发送波束 与所述第二信号的发送波束不同。
其中,在多波束测量的情况下,多个感知测量的参考波束可以共享的关联于同一个参考波束。
一种实施方式中,第三信号的波束可以为信道测量的参考波束,通过第三信号可以获取LOS信道的测量结果。第四信号的波束可以为信道测量的感知波束,通过第四信号可以获取感知波束的信道测量结果。网络侧设备可以根据感知波束的信道测量结果和LOS信道的测量结果,确定为终端配置感知测量方式为单波束测量或者感知测量方式为多波束测量。不同的配置使得终端使用不同的感知测量方式。示例地,网络侧设备可以根据感知波束的信道测量结果与LOS信道的测量结果的相关性确定感知测量方式,在该相关性高于预定义门限值时使用单波束测量的感知测量方式,在该相关性低于预定义门限值时使用多波束测量的感知测量方式;或者,网络侧设备可以确定感知波束的信道测量结果中的最强径与LOS信道的测量结果中的最强径或者首径,根据该两条路径的信道测量的信道参数的差值确定感知测量方式,信道参数可以包括时延、角度、多普勒频率中的至少一项,示例地,若该两条路径的时延的时间差小于预定义门限值,则使用单波束测量的感知测量方式,若该两条路径的时延的时间差大于或等于预定义门限值,则使用多波束测量的感知测量方式。
该实施方式中,通过所述第三信号和/或所述第四信号确定感知测量方式,从而能够基于信道状态确定感知测量方式,支持网络侧设备为终端配置感知测量方式。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述第一设备执行目标操作之后,所述方法还包括:
所述第一设备向所述第二设备发送所述信道状态信息;
其中,所述信道状态信息包括如下至少一项:
满足所述第一条件的信号的信号强度;
满足所述第二条件的信号的信号强度;
满足所述第一条件的信号与满足所述第二条件的信号的信道相关性。
其中,满足所述第一条件的信号,可以是:在以该信号的波束进行传输 的情况下,所述第一设备和所述第二设备之间的传输路径的信号能量占接收信号总能量的比例高于第一预设门限值。满足所述第二条件的信号,可以是:在以该信号的波束进行传输的情况下,所述第一设备和所述第二设备之间存在经过感知区域的传输路径,且经过所述感知区域的传输路径的信号能量占接收信号总能量的比例高于第二预设门限值。
该实施方式中,所述第一设备向所述第二设备发送所述信道状态信息,从而网络侧设备能够根据终端上报的信道状态信息确定终端是否满足作为感知测量的终端的条件。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括如下至少一项:
所述第一设备进行波束训练或码本反馈,使得所述第一信号的波束能量集中于满足所述第一条件的传输信道;
所述第一设备进行波束训练或码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。
一种实施方式中,网络侧设备调度覆盖范围内的终端发送上行参考信号,网络侧设根据终端发送的上行参考信号的测量结果选择符合条件的终端,该符合条件的终端可以为满足第一条件和/或满足第二条件的信道状态信息对应的终端。网络侧设备为该符合条件的终端配置波束训练或者波束赋形测量流程,终端进行波束训练或者码本反馈,使得第一信号的波束能量集中于满足所述第一条件的传输信道;和/或
网络侧设备为该符合条件的终端配置波束训练或者波束赋形测量流程,终端进行波束训练或者码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。
一种实施方式中,网络侧设备向覆盖范围内的终端发送下行参考信号,终端根据网络侧设备发送的下行参考信号进行信道测量,并上报信道测量的测量结果。网络侧设备根据终端上报的测量结果选择符合条件的终端,该符合条件的终端可以为满足第一条件和/或满足第二条件的信道状态信息对应的终端。网络侧设备为该符合条件的终端配置波束训练或者波束赋形测量流 程,终端进行波束训练或者码本反馈,使得第一信号的波束能量集中于满足所述第一条件的传输信道;
和/或
网络侧设备为该符合条件的终端配置波束训练或者波束赋形测量流程,终端进行波束训练或者码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。
该实施方式中,所述第一设备进行波束训练或码本反馈,使得所述第一信号的波束能量集中于满足所述第一条件的传输信道;和/或,所述第一设备进行波束训练或码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。这样,能够通过波束训练或码本反馈使得信号能量集中于感知目标,提升感知目标的反射信号能量。
可选地,所述第一信号和所述第二信号分别使用不同的接收波束;
或者
所述第一信号和所述第二信号使用广播波束接收;
或者
所述第一信号和所述第二信号使用相同的接收波束。
一种实施方式中,所述第一设备可以为终端,所述第二设备可以为网络侧设备,第一信号可以为感知测量的参考波束的参考信号,第二信号可以为感知测量的感知波束的参考信号。基站可以为终端配置波束训练或者波束赋形流程,以确定终端接收感知波束的接收波束(例如,空间域接收过滤器(spatial domain receive filter))。根据协议规定或者终端硬件能力可以包含以下三种配置情况:
(1)所述第一信号和所述第二信号分别使用不同的接收波束。从而对第一信号的波束和第二信号的波束分别进行波束训练确定对应的接收波束。
(2)所述第一信号和所述第二信号使用广播波束接收。对于单天线终端或者射频硬件受限(例如,无法在短时间完成接收波束切换)的终端,可以使用广播波束接收第一信号的波束和第二信号的波束。
(3)所述第一信号和所述第二信号使用相同的接收波束。终端可以在波束训练流程中接收第一信号的波束和第二信号的波束的下行参考信号,确定 一个相同的接收波束。
以下通过两个具体的实施例对本申请实施例的感知测量方法进行说明:
实施例1:
以所述第一设备为终端,所述第二设备为网络侧设备为例,第一信号可以为感知测量的参考波束的参考信号,第二信号可以为感知测量的感知波束的参考信号,通过下行信号实现感知测量,感知测量方法可以包括如下过程:
(1)网络侧设备选择小区中的终端,选择的终端用于对感知目标(如,小区覆盖区域中某个物体,建筑物或人体等)进行感知测量。
网络侧设备获取小区中终端的信道状态,确定信道是否为直射径line-of-sight,LOS信道或者幅度和相位稳定的信道。可以理解,基站根据终端上报的能力来调度一个或者多个终端执行相应的信道状态测量和上报以及后续感知测量操作。
网络侧设备根据获取的终端的信道状态确定满足条件的终端,由该满足条件的终端测量感知波束,并上报感知波束的测量结果,从而网络侧设备确定该所述满足条件的终端是否可以接收到感知波束,以及感知波束的信道与LOS信道的相关性。
(2)网络侧设备为选择的终端配置第一配置信息。
(3)终端根据第一配置信息接收网络侧设备发送的第一信号和第二信号,终端基于所述第一信号和所述第二信号进行感知测量,向网络侧设备反馈感知测量的测量结果。
实施例2:
以所述第一设备为网络侧设备,所述第二设备为终端为例,第一信号可以为感知测量的参考波束的参考信号,第二信号可以为感知测量的感知波束的参考信号,通过上行信号实现感知测量,感知测量方法可以包括如下过程:
(1)网络侧设备调度覆盖范围内的终端发送上行信号,并且根据上行信号的接收结果选择满足条件的终端,该满足条件的终端为存在LOS路径,且存在网络侧设备到感知物到终端的路径并且该路径达到一定信号强度。
(2)网络侧设备为选择的终端配置第二配置信息。
(3)网络侧设备接收终端发送的第一信号和第二信号,网络侧设备基于 所述第一信号和所述第二信号进行感知测量,该第一信号及第二信号为终端基于第二配置信息发送。
需要说明的是,可以将实施例1的通过下行信号实现感知测量的方案与实施例2的通过上行信号实现感知测量的方案结合,实现网络侧设备配置交替发送的上行信号和下行信号来实现感知业务的测量,在终端和网络侧设备上分别进行感知测量。
参见图10,图10是本申请实施例提供的一种感知测量方法的流程图,如图10所示,感知测量方法包括以下步骤:
步骤201、第二设备向第一设备发送第一信号和第二信号;
其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
可选地,所述第一信号和所述第二信号用于所述第一设备进行感知测量获得所述第二信号相对于所述第一信号的测量结果;
其中,所述测量结果包括如下至少一项:
时延差距;
频率差;
相位差;
功率差;
角度差;
信道相关性。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述第二设备向第一设备发送第一信号和第二信号之后,所述方法还包括:
所述第二设备接收所述第一设备发送的所述测量结果。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述第二设备向第一设备发送第一信号和第二信号之前,所述方法还包括:
所述第二设备向所述第一设备发送第一配置信息,所述第一配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的波束指示信息;
用于指示感知测量方式的第一指示信息;
用于指示测量结果的类型的第二指示信息;
用于指示上报信息的上报资源的第三指示信息。
可选地,所述第一设备为网络侧设备,所述第二设备为终端,所述第二设备向第一设备发送第一信号和第二信号之前,所述方法还包括:
所述第二设备接收所述第一设备发送的第二配置信息,所述第二配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的波束指示信息;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的发送功率。
需要说明的是,本实施例作为与图5所示的实施例中对应的第二设备的实施方式,其具体的实施方式可以参见图5所示的实施例的相关说明,以为避免重复说明,本实施例不再赘述。这样,通过接收到的第一信号和第二信号进行感知测量,不需要利用多径信号的变化来实现感知量的测量,能够降低多径环境中不相关的多径信道对感知信号的干扰,降低测量误差。
本申请实施例提供的感知测量方法,执行主体可以为感知测量装置。本申请实施例中以感知测量装置执行感知测量方法为例,说明本申请实施例提供的感知测量的装置。
请参见图11,图11是本申请实施例提供的一种感知测量装置的结构图,第一设备包括所述感知测量装置,如图11所示,感知测量装置300包括:
第一接收模块301,用于接收第二设备发送的第一信号和第二信号;
测量模块302,用于基于所述第一信号和所述第二信号进行感知测量。
可选地,所述装置还包括:
获取模块,用于获得所述第二信号相对于所述第一信号的测量结果;
其中,所述测量结果包括如下至少一项:
时延差距;
频率差;
相位差;
功率差;
角度差;
信道相关性。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述装置还包括:
第一发送模块,用于向所述第二设备发送所述测量结果。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述装置还包括:
第二接收模块,用于接收所述第二设备发送的第一配置信息,所述第一配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的波束指示信息;
用于指示感知测量方式的第一指示信息;
用于指示测量结果的类型的第二指示信息;
用于指示上报信息的上报资源的第三指示信息。
可选地,所述第一设备为网络侧设备,所述第二设备为终端,所述装置还包括:
第二发送模块,用于向所述第二设备发送第二配置信息,所述第二配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的波束指示信息;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的发送功率。
可选地,第一配置信息或者第二配置信息通过无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、下行控制信息DCI信令中的至少一项承载。
可选地,所述第一信号和第二信号为频分复用;或者
所述第一信号和第二信号为时分复用;或者
所述第一信号和第二信号为码分复用。
可选地,所述第一信号的波束为感知测量的参考波束,所述第一信号的波束满足第一条件,所述第一条件为所述第一设备和所述第二设备之间的传输路径的信号能量占接收信号总能量的比例高于第一预设门限值;
和/或
所述第二信号的波束为感知测量的感知波束,所述第二信号的波束满足第二条件,所述第二条件为所述第一设备和所述第二设备之间存在经过感知区域的传输路径,且经过所述感知区域的传输路径的信号能量占接收信号总能量的比例高于第二预设门限值。
可选地,所述装置还包括:
第一确定模块,用于基于目标确定方式从所述第一信号和第二信号中确定感知测量的参考波束对应的信号,及感知测量的感知波束对应的信号;
其中,所述目标确定方式为基于显式指示确定;
或者,所述目标确定方式为根据第一配置信息或者第二配置信息中的配置顺序确定。
可选地,所述装置还包括:
第二确定模块,用于将所述第一信号的波束确定为数据通信的参考波束,所述数据通信所使用的物理信道包括如下至少一项:
接收物理下行控制信道PDCCH;
接收物理下行共享信道PDSCH;
发送物理上行控制信道PUCCH;
发送物理上行共享信道PUSCH。
可选地,所述装置还包括如下至少一项:
第一同步模块,用于基于所述第一信号进行无线帧同步;
第二同步模块,用于基于所述第一信号进行频率同步。
可选地,所述装置还包括:
执行模块,用于执行目标操作;
其中,所述目标操作包括如下至少一项:
所述第一设备接收所述第二设备发送的第三信号,所述第三信号用于确定满足所述第一条件的信道状态信息;
所述第一设备接收所述第二设备发送的第四信号,所述第四信号用于确定满足所述第二条件的信道状态信息。
可选地,所述第三信号和/或所述第四信号还用于确定感知测量方式;
其中,在所述感知测量方式为单波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束相同;
在所述感知测量方式为多波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束不同。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述装置还包括:
第三发送模块,用于向所述第二设备发送所述信道状态信息;
其中,所述信道状态信息包括如下至少一项:
满足所述第一条件的信号的信号强度;
满足所述第二条件的信号的信号强度;
满足所述第一条件的信号与满足所述第二条件的信号的信道相关性。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述装置还包括如下至少一项:
第一处理模块,用于进行波束训练或码本反馈,使得所述第一信号的波束能量集中于满足所述第一条件的传输信道;
第二处理模块,用于进行波束训练或码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。
可选地,所述第一信号和所述第二信号分别使用不同的接收波束;
或者
所述第一信号和所述第二信号使用广播波束接收;
或者
所述第一信号和所述第二信号使用相同的接收波束。
请参见图12,图12是本申请实施例提供的一种感知测量装置的结构图,第二设备包括所述感知测量装置,如图12所示,感知测量装置400包括:
第一发送模块401,用于向第一设备发送第一信号和第二信号;
其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
可选地,所述第一信号和所述第二信号用于所述第一设备进行感知测量获得所述第二信号相对于所述第一信号的测量结果;
其中,所述测量结果包括如下至少一项:
时延差距;
频率差;
相位差;
功率差;
角度差;
信道相关性。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述装置还包括:
接收模块,用于接收所述第一设备发送的所述测量结果。
可选地,所述第一设备为终端,所述第二设备为网络侧设备,所述装置还包括:
第二发送模块,用于向所述第一设备发送第一配置信息,所述第一配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的波束指示信息;
用于指示感知测量方式的第一指示信息;
用于指示测量结果的类型的第二指示信息;
用于指示上报信息的上报资源的第三指示信息。
可选地,所述第一设备为网络侧设备,所述第二设备为终端,所述装置还包括:
第二接收模块,用于接收所述第一设备发送的第二配置信息,所述第二配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的波束指示信息;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的发送功率。
本申请实施例中的感知测量装置,通过接收到的第一信号和第二信号进行感知测量,不需要利用多径信号的变化来实现感知量的测量,能够降低多径环境中不相关的多径信道对感知信号的干扰,降低测量误差。
本申请实施例中的感知测量装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的感知测量装置能够实现图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图13所示,本申请实施例还提供一种通信设备500,包括处理器501和存储器502,存储器502上存储有可在所述处理器501上运行的程序或指令,例如,该通信设备500为第一设备时,该程序或指令被处理器501执行时实现上述应用于第一设备的感知测量方法实施例的各个步骤,且能达到相同的技术效果。该通信设备500为第二设备时,该程序或指令被处 理器501执行时实现上述应用于第二设备的感知测量方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,所述终端可以为第一设备,包括处理器和通信接口,所述通信接口用于接收第二设备发送的第一信号和第二信号,所述处理器用于基于所述第一信号和所述第二信号进行感知测量;或者,所述通信接口用于向第一设备发送第一信号和第二信号;其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。该终端实施例与上述第一设备侧方法实施例或者对应上述第二设备侧方法实施例,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图14为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理单元(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072中的至少一种。触控面板6 071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601接收来自网络侧设备的下行数据后,可以传输给处理器610进行处理;另外,射频单元601可以向网络侧设备发送 上行数据。通常,射频单元601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括易失性存储器或非易失性存储器,或者,存储器609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器609包括但不限于这些和任意其它适合类型的存储器。
处理器610可包括一个或多个处理单元;可选的,处理器610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,所述终端可以为第一设备:
射频单元601用于:接收第二设备发送的第一信号和第二信号;
处理器610用于:基于所述第一信号和所述第二信号进行感知测量。
可选地,处理器610还用于:
获得所述第二信号相对于所述第一信号的测量结果;
其中,所述测量结果包括如下至少一项:
时延差距;
频率差;
相位差;
功率差;
角度差;
信道相关性。
可选地,所述第二设备为网络侧设备,射频单元601还用于:
向所述第二设备发送所述测量结果。
可选地,所述第二设备为网络侧设备,射频单元601还用于:
接收所述第二设备发送的第一配置信息,所述第一配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的波束指示信息;
用于指示感知测量方式的第一指示信息;
用于指示测量结果的类型的第二指示信息;
用于指示上报信息的上报资源的第三指示信息。
可选地,射频单元601还用于:
接收网络侧设备发送的第二配置信息,所述第二配置信息包括如下至少一项:
所述第一信号和/或所述第二信号的时频资源;
所述第一信号和/或所述第二信号的发送周期;
所述第一信号和/或所述第二信号的端口号;
所述第一信号和/或所述第二信号的波束指示信息;
所述第一信号和/或所述第二信号的随机序列的生成参数;
所述第一信号和/或所述第二信号的发送功率。
可选地,第一配置信息或者第二配置信息通过无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、下行控制信息DCI信令中的至少一 项承载。
可选地,所述第一信号和第二信号为频分复用;或者
所述第一信号和第二信号为时分复用;或者
所述第一信号和第二信号为码分复用。
可选地,所述第一信号的波束为感知测量的参考波束,所述第一信号的波束满足第一条件,所述第一条件为所述第一设备和所述第二设备之间的传输路径的信号能量占接收信号总能量的比例高于第一预设门限值;
和/或
所述第二信号的波束为感知测量的感知波束,所述第二信号的波束满足第二条件,所述第二条件为所述第一设备和所述第二设备之间存在经过感知区域的传输路径,且经过所述感知区域的传输路径的信号能量占接收信号总能量的比例高于第二预设门限值。
可选地,处理器610还用于:
基于目标确定方式从所述第一信号和第二信号中确定感知测量的参考波束对应的信号,及感知测量的感知波束对应的信号;
其中,所述目标确定方式为基于显式指示确定;
或者,所述目标确定方式为根据第一配置信息或者第二配置信息中的配置顺序确定。
可选地,处理器610还用于:
将所述第一信号的波束确定为数据通信的参考波束,所述数据通信所使用的物理信道包括如下至少一项:
接收物理下行控制信道PDCCH;
接收物理下行共享信道PDSCH;
发送物理上行控制信道PUCCH;
发送物理上行共享信道PUSCH。
可选地,处理器610还用于如下至少一项:
基于所述第一信号进行无线帧同步;
基于所述第一信号进行频率同步。
可选地,处理器610还用于:
执行目标操作;
其中,所述目标操作包括如下至少一项:
所述第一设备接收所述第二设备发送的第三信号,所述第三信号用于确定满足所述第一条件的信道状态信息;
所述第一设备接收所述第二设备发送的第四信号,所述第四信号用于确定满足所述第二条件的信道状态信息。
可选地,所述第三信号和/或所述第四信号还用于确定感知测量方式;
其中,在所述感知测量方式为单波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束相同;
在所述感知测量方式为多波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束不同。
可选地,所述第二设备为网络侧设备,射频单元601还用于:
向所述第二设备发送所述信道状态信息;
其中,所述信道状态信息包括如下至少一项:
满足所述第一条件的信号的信号强度;
满足所述第二条件的信号的信号强度;
满足所述第一条件的信号与满足所述第二条件的信号的信道相关性。
可选地,所述第二设备为网络侧设备,处理器610还用于如下至少一项:
所述第一设备进行波束训练或码本反馈,使得所述第一信号的波束能量集中于满足所述第一条件的传输信道;
所述第一设备进行波束训练或码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。
可选地,所述第一信号和所述第二信号分别使用不同的接收波束;
或者
所述第一信号和所述第二信号使用广播波束接收;
或者
所述第一信号和所述第二信号使用相同的接收波束。
其中,所述终端可以为第二设备:
射频单元601还用于:向第一设备发送第一信号和第二信号;
其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
可选地,所述第一信号和所述第二信号用于所述第一设备进行感知测量获得所述第二信号相对于所述第一信号的测量结果;
其中,所述测量结果包括如下至少一项:
时延差距;
频率差;
相位差;
功率差;
角度差;
信道相关性。
该实施方式中,通过接收到的第一信号和第二信号进行感知测量,不需要利用多径信号的变化来实现感知量的测量,能够降低多径环境中不相关的多径信道对感知信号的干扰,降低测量误差。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于:接收第二设备发送的第一信号和第二信号;所述处理器用于基于所述第一信号和所述第二信号进行感知测量;或者,所述通信接口用于:向第一设备发送第一信号和第二信号;其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。该网络侧设备实施例与上述第一设备侧的方法实施例或者第二设备侧的方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图15所示,该网络侧设备700包括:天线701、射频装置702、基带装置703、处理器704和存储器705。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收信息,将接收的信息发送给基带装置703进行处理。在下行方向上,基带装置703对要发送的信息进行处理,并发送给射频装置702,射频装置702对收到的信息进行处理后经过天线701发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置703中实现,该基带装置703包括基带处理器。
基带装置703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为基带处理器,通过总线接口与存储器705连接,以调用存储器705中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口706,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备700还包括:存储在存储器705上并可在处理器704上运行的指令或程序,处理器704调用存储器705中的指令或程序执行图11或图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述感知测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述感知测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述感知测量方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种感知测量系统,包括:第一设备及第二设备,所述第一设备可用于执行如上所述第一设备侧的感知测量方法的步骤,所述第二设备可用于执行如上所述第二设备侧的感知测量方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程 序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (25)

  1. 一种感知测量方法,包括:
    第一设备接收第二设备发送的第一信号和第二信号;
    所述第一设备基于所述第一信号和所述第二信号进行感知测量。
  2. 根据权利要求1所述的方法,其中,所述第一设备基于所述第一信号和所述第二信号进行感知测量之后,所述方法还包括:
    获得所述第二信号相对于所述第一信号的测量结果;
    其中,所述测量结果包括如下至少一项:
    时延差距;
    频率差;
    相位差;
    功率差;
    角度差;
    信道相关性。
  3. 根据权利要求2所述的方法,其中,所述第一设备为终端,所述第二设备为网络侧设备,所述获得所述第二信号相对于所述第一信号的测量结果之后,所述方法还包括:
    所述第一设备向所述第二设备发送所述测量结果。
  4. 根据权利要求1所述的方法,其中,所述第一设备为终端,所述第二设备为网络侧设备,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的第一配置信息,所述第一配置信息包括如下至少一项:
    所述第一信号和/或所述第二信号的时频资源;
    所述第一信号和/或所述第二信号的发送周期;
    所述第一信号和/或所述第二信号的端口号;
    所述第一信号和/或所述第二信号的随机序列的生成参数;
    所述第一信号和/或所述第二信号的波束指示信息;
    用于指示感知测量方式的第一指示信息;
    用于指示测量结果的类型的第二指示信息;
    用于指示上报信息的上报资源的第三指示信息。
  5. 根据权利要求1所述的方法,其中,所述第一设备为网络侧设备,所述第二设备为终端,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括:
    所述第一设备向所述第二设备发送第二配置信息,所述第二配置信息包括如下至少一项:
    所述第一信号和/或所述第二信号的时频资源;
    所述第一信号和/或所述第二信号的发送周期;
    所述第一信号和/或所述第二信号的端口号;
    所述第一信号和/或所述第二信号的波束指示信息;
    所述第一信号和/或所述第二信号的随机序列的生成参数;
    所述第一信号和/或所述第二信号的发送功率。
  6. 根据权利要求4或5所述的方法,其中,第一配置信息或者第二配置信息通过无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、下行控制信息DCI信令中的至少一项承载。
  7. 根据权利要求1所述的方法,其中,所述第一信号和第二信号为频分复用;或者
    所述第一信号和第二信号为时分复用;或者
    所述第一信号和第二信号为码分复用。
  8. 根据权利要求1-5中任一项所述的方法,其中,所述第一信号的波束为感知测量的参考波束,所述第一信号的波束满足第一条件,所述第一条件为所述第一设备和所述第二设备之间的传输路径的信号能量占接收信号总能量的比例高于第一预设门限值;
    和/或
    所述第二信号的波束为感知测量的感知波束,所述第二信号的波束满足第二条件,所述第二条件为所述第一设备和所述第二设备之间存在经过感知区域的传输路径,且经过所述感知区域的传输路径的信号能量占接收信号总 能量的比例高于第二预设门限值。
  9. 根据权利要求4或5所述的方法,其中,所述第一设备接收第二设备发送的第一信号和第二信号之后,所述方法还包括:
    基于目标确定方式从所述第一信号和第二信号中确定感知测量的参考波束对应的信号,及感知测量的感知波束对应的信号;
    其中,所述目标确定方式为基于显式指示确定;
    或者,所述目标确定方式为根据第一配置信息或者第二配置信息中的配置顺序确定。
  10. 根据权利要求1-5中任一项所述的方法,其中,所述方法还包括:
    所述第一设备将所述第一信号的波束确定为数据通信的参考波束,所述数据通信所使用的物理信道包括如下至少一项:
    接收物理下行控制信道PDCCH;
    接收物理下行共享信道PDSCH;
    发送物理上行控制信道PUCCH;
    发送物理上行共享信道PUSCH。
  11. 根据权利要求1-5中任一项所述的方法,其中,所述方法还包括如下至少一项:
    所述第一设备基于所述第一信号进行无线帧同步;
    所述第一设备基于所述第一信号进行频率同步。
  12. 根据权利要求8所述的方法,其中,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括:
    所述第一设备执行目标操作;
    其中,所述目标操作包括如下至少一项:
    所述第一设备接收所述第二设备发送的第三信号,所述第三信号用于确定满足所述第一条件的信道状态信息;
    所述第一设备接收所述第二设备发送的第四信号,所述第四信号用于确定满足所述第二条件的信道状态信息。
  13. 根据权利要求12所述的方法,其中,所述第三信号和/或所述第四信号还用于确定感知测量方式;
    其中,在所述感知测量方式为单波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束相同;
    在所述感知测量方式为多波束测量的情况下,所述第一信号的发送波束与所述第二信号的发送波束不同。
  14. 根据权利要求12所述的方法,其中,所述第一设备为终端,所述第二设备为网络侧设备,所述第一设备执行目标操作之后,所述方法还包括:
    所述第一设备向所述第二设备发送所述信道状态信息;
    其中,所述信道状态信息包括如下至少一项:
    满足所述第一条件的信号的信号强度;
    满足所述第二条件的信号的信号强度;
    满足所述第一条件的信号与满足所述第二条件的信号的信道相关性。
  15. 根据权利要求8所述的方法,其中,所述第一设备为终端,所述第二设备为网络侧设备,所述第一设备接收第二设备发送的第一信号和第二信号之前,所述方法还包括如下至少一项:
    所述第一设备进行波束训练或码本反馈,使得所述第一信号的波束能量集中于满足所述第一条件的传输信道;
    所述第一设备进行波束训练或码本反馈,使得所述第二信号的波束能量集中于满足所述第二条件的传输信道。
  16. 根据权利要求1所述的方法,其中,所述第一信号和所述第二信号分别使用不同的接收波束;
    或者
    所述第一信号和所述第二信号使用广播波束接收;
    或者
    所述第一信号和所述第二信号使用相同的接收波束。
  17. 一种感知测量方法,包括:
    第二设备向第一设备发送第一信号和第二信号;
    其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
  18. 根据权利要求17所述的方法,其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量获得所述第二信号相对于所述第一信号的测 量结果;
    其中,所述测量结果包括如下至少一项:
    时延差距;
    频率差;
    相位差;
    功率差;
    角度差;
    信道相关性。
  19. 根据权利要求18所述的方法,其中,所述第一设备为终端,所述第二设备为网络侧设备,所述第二设备向第一设备发送第一信号和第二信号之后,所述方法还包括:
    所述第二设备接收所述第一设备发送的所述测量结果。
  20. 根据权利要求17所述的方法,其中,所述第一设备为终端,所述第二设备为网络侧设备,所述第二设备向第一设备发送第一信号和第二信号之前,所述方法还包括:
    所述第二设备向所述第一设备发送第一配置信息,所述第一配置信息包括如下至少一项:
    所述第一信号和/或所述第二信号的时频资源;
    所述第一信号和/或所述第二信号的发送周期;
    所述第一信号和/或所述第二信号的端口号;
    所述第一信号和/或所述第二信号的随机序列的生成参数;
    所述第一信号和/或所述第二信号的波束指示信息;
    用于指示感知测量方式的第一指示信息;
    用于指示测量结果的类型的第二指示信息;
    用于指示上报信息的上报资源的第三指示信息。
  21. 根据权利要求17所述的方法,其中,所述第一设备为网络侧设备,所述第二设备为终端,所述第二设备向第一设备发送第一信号和第二信号之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的第二配置信息,所述第二配置信 息包括如下至少一项:
    所述第一信号和/或所述第二信号的时频资源;
    所述第一信号和/或所述第二信号的发送周期;
    所述第一信号和/或所述第二信号的端口号;
    所述第一信号和/或所述第二信号的波束指示信息;
    所述第一信号和/或所述第二信号的随机序列的生成参数;
    所述第一信号和/或所述第二信号的发送功率。
  22. 一种感知测量装置,第一设备包括所述感知测量装置,包括:
    第一接收模块,用于接收第二设备发送的第一信号和第二信号;
    测量模块,用于基于所述第一信号和所述第二信号进行感知测量。
  23. 一种感知测量装置,第二设备包括所述感知测量装置,包括:
    第一发送模块,用于向第一设备发送第一信号和第二信号;
    其中,所述第一信号和所述第二信号用于所述第一设备进行感知测量。
  24. 一种第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的感知测量方法的步骤。
  25. 一种第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至21任一项所述的感知测量方法的步骤。
PCT/CN2023/088081 2022-04-13 2023-04-13 感知测量方法、装置及相关设备 WO2023198152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210389846.3A CN116980846A (zh) 2022-04-13 2022-04-13 感知测量方法、装置及相关设备
CN202210389846.3 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023198152A1 true WO2023198152A1 (zh) 2023-10-19

Family

ID=88329033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088081 WO2023198152A1 (zh) 2022-04-13 2023-04-13 感知测量方法、装置及相关设备

Country Status (2)

Country Link
CN (1) CN116980846A (zh)
WO (1) WO2023198152A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511010A (zh) * 2019-01-31 2020-08-07 华为技术有限公司 发送和接收指示的方法和装置
CN113727448A (zh) * 2021-07-23 2021-11-30 中国信息通信研究院 一种边链路感知资源配置方法和设备
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备
US20210373118A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Systems and methods for beam-sweeping for new radio positioning
US20210392516A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Wireless communications-based sensing for location detection across carriers
US20220053289A1 (en) * 2020-08-12 2022-02-17 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511010A (zh) * 2019-01-31 2020-08-07 华为技术有限公司 发送和接收指示的方法和装置
US20210373118A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Systems and methods for beam-sweeping for new radio positioning
US20210392516A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Wireless communications-based sensing for location detection across carriers
US20220053289A1 (en) * 2020-08-12 2022-02-17 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备
CN113727448A (zh) * 2021-07-23 2021-11-30 中国信息通信研究院 一种边链路感知资源配置方法和设备

Also Published As

Publication number Publication date
CN116980846A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
US20200150263A1 (en) Wlan radar
CN112019313B (zh) 确定小区激活时延的方法和装置
US20220149901A1 (en) Communication Method and Communications Apparatus
WO2023071931A1 (zh) 感知信号的处理方法、装置及通信设备
JP2022539974A (ja) ビーム構成方法および装置
CN111869123B (zh) 用于高效波束管理的通信设备
US20230396299A1 (en) Channel information obtaining method and apparatus, and communication device
WO2023116756A1 (zh) 感知测量方法、装置、通信设备及可读存储介质
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
CN116368939A (zh) 一种通信方法及通信装置
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2023198152A1 (zh) 感知测量方法、装置及相关设备
JP2024504065A (ja) レーダー通信統合化信号の送信方法、受信方法及び機器
WO2024017190A1 (zh) 感知信号的路径确定方法、装置、通信设备、系统及存储介质
US20220381876A1 (en) Utilization of wireless communication reference signal measurement resources for co-channel radar operation
WO2024027538A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2024051543A1 (zh) 信息处理方法、装置及通信设备
WO2023104106A1 (zh) 检测及配置参考信号的方法、装置、终端及网络侧设备
WO2023185910A1 (zh) 信息指示方法、接收方法、装置、设备和存储介质
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024012253A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024104162A1 (zh) 通信感知方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787794

Country of ref document: EP

Kind code of ref document: A1