WO2023143562A1 - 来波方向估计方法、终端及网络侧设备 - Google Patents

来波方向估计方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023143562A1
WO2023143562A1 PCT/CN2023/073685 CN2023073685W WO2023143562A1 WO 2023143562 A1 WO2023143562 A1 WO 2023143562A1 CN 2023073685 W CN2023073685 W CN 2023073685W WO 2023143562 A1 WO2023143562 A1 WO 2023143562A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
bsc
terminal
signal
network side
Prior art date
Application number
PCT/CN2023/073685
Other languages
English (en)
French (fr)
Inventor
简荣灵
姜大洁
沈晓冬
黄伟
郑凯立
王臣玺
王园园
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023143562A1 publication Critical patent/WO2023143562A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application belongs to the technical field of wireless communication, and in particular relates to a method for estimating the direction of arrival, a terminal and a network side device.
  • BSC Backscatter
  • Figure 1a is a BSC communication architecture in the related art, as shown in Figure 1a, the network side equipment as the BSC receiver (Receiver) is not only the radio frequency source, but also the sender of the downlink data of the BSC terminal and the receiver of the uplink data of the BSC terminal At the receiving end, the network side equipment directly communicates with the BSC terminal.
  • This deployment architecture has high requirements on the receiving sensitivity of base stations and BSC terminals.
  • the BSC terminal changes the amplitude and phase of the backscatter signal by controlling the switching load impedance or using the transmission line to realize the modulation of the received carrier in the environment, so that the BSC can receive and decode the backscatter signal.
  • the BSC terminal can reflect the incoming signal of the network-side device by 180 degrees by configuring a reflective array to form a backscattered signal.
  • the premise of realizing the reflection of the incoming wave signal through the reflective array is that the incoming wave direction can be accurately estimated. Therefore, how to accurately obtain the incoming wave direction is a technical problem that needs to be solved in related technologies.
  • Embodiments of the present application provide a method for estimating a direction of arrival, a terminal, and a network side device, capable of accurately obtaining a direction of arrival.
  • a method for estimating the direction of arrival including: a BSC terminal measures a measurement signal sent by a network side device in multiple measurement ranges; the BSC terminal acquires N according to the measurement results obtained in each of the measurement ranges.
  • a group of sum and difference beams wherein one measurement range corresponds to a group of sum and difference beams, a group of sum and difference beams includes a sum beam and a difference beam, N is the number of measurement ranges, and N is an integer greater than 1
  • the BSC terminal estimates the direction of arrival of the measurement signal according to the target and difference beam group, wherein the target and difference beam group is the best signal energy and/or the best signal quality in the N groups and difference beams A good set of sum and difference beams.
  • an apparatus for estimating direction of arrival including: a first measurement module, configured to measure a measurement signal sent by a network side device in multiple measurement ranges; a first acquisition module, configured to measure The measurement result obtained by the range is to obtain N groups of sum and difference beams, wherein, one of the measurement ranges corresponds to a group of the sum and difference beams, and a group of sum and difference beams includes one sum beam and one difference beam, and N is the number of measurement ranges , and N is an integer greater than 1; the estimation module is used to estimate the direction of arrival of the measurement signal according to the target and difference beam group, wherein the target and difference beam group is the signal in the N group and difference beam The set of sum-difference beams with the best energy and/or best signal quality.
  • a method for obtaining a direction of arrival including: a BSC terminal measures a plurality of measurement signals sent by a network side device; the BSC terminal obtains a measurement parameter of a first signal according to a measurement result, wherein the first A signal is a measurement signal with the best signal energy and/or the best signal quality among the plurality of measurement signals; the BSC terminal acquires a target direction of arrival corresponding to the measurement parameter of the first signal.
  • an apparatus for obtaining direction of arrival including: a second measurement module, configured to measure a plurality of measurement signals sent by network-side equipment; a second acquisition module, configured to obtain the signal of the first signal according to the measurement result A measurement parameter, wherein the first signal is the measurement signal with the best signal energy and/or the best signal quality among the plurality of measurement signals; the third acquisition module is configured to acquire the same signal as the first signal A target incoming wave direction corresponding to a measured parameter of a signal.
  • a method for sending a measurement signal including: a network side device configures a mapping relationship between a measurement parameter and a direction of arrival according to a target parameter, wherein the target parameter includes at least one of the following: The number of BSC terminals that the side device communicates with, the communication distance between the network side device and the BSC terminal; the network side device sends a plurality of measurement signals according to the mapping relationship.
  • a device for sending measurement signals which is characterized by comprising: a configuration module configured to configure a mapping relationship between measurement parameters and directions of arrival according to target parameters, wherein the target parameters include at least one of the following One: the number of BSC terminals communicating with the network-side device, the communication distance between the network-side device and the BSC terminal; a sending module, configured to send multiple measurement signals according to the mapping relationship.
  • a terminal in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following steps are implemented: The steps of the method described in one aspect, or the steps of implementing the method described in the third aspect.
  • the eighth aspect provides a terminal, including a processor and a communication interface, wherein the processor is configured to implement the steps of the method described in the first aspect, or implement the steps of the method described in the third aspect, the The above communication interface is used to communicate with external devices.
  • a network-side device in a ninth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the fifth aspect.
  • a tenth aspect provides a network side device, including a processor and a communication interface, wherein the processor is configured to implement the steps of the method according to the fifth aspect, and the communication interface is configured to communicate with an external device.
  • a system for estimating direction of arrival including: a terminal and a network-side device, the terminal can be used to perform the steps of the method described in the third aspect, and the network-side device can be used to perform the steps of the method described in the third aspect. Carry out the steps of the method as described in the fifth aspect.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method as described in the first aspect are implemented, or The steps of the method described in the third aspect, or implementing the steps of the method described in the fifth aspect.
  • a chip in a thirteenth aspect, there is provided a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect The steps of the method, or the steps to realize the method described in the third aspect, or the steps to realize the method described in the fifth aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method described in the third aspect, or the steps of the method described in the third aspect, or the steps of the method described in the fifth aspect.
  • the BSC terminal uses the direction-of-arrival estimation scheme provided by the embodiment of this application to estimate the direction of arrival, thereby increasing the estimation range of the direction of arrival, improving the estimation accuracy of the direction of arrival, and further improving the estimation accuracy of the direction of arrival .
  • the network-side device can configure the mapping relationship between the measurement parameters of the BSC terminal and the direction-of-arrival, and the BSC terminal can accurately obtain the direction of arrival by measuring multiple measurement signals sent by the network-side device. direction of arrival, and can reduce system power consumption caused by beam alignment.
  • FIG. 1a shows an architecture diagram of a wireless communication system to which the embodiment of the present application is applicable
  • Fig. 1b shows a schematic flow chart of obtaining direction of arrival in the embodiment of the present application
  • FIG. 2 shows a schematic flow chart of a method for estimating the direction of arrival provided by an embodiment of the present application
  • Figure 3a shows a schematic diagram of a load connection method in the embodiment of the present application
  • Fig. 3b shows a schematic diagram of a load connection method in the embodiment of the present application
  • Fig. 3c shows a schematic diagram of a load connection method in the embodiment of the present application.
  • FIG. 4 shows another schematic flowchart of a direction-of-arrival estimation method provided in an embodiment of the present application
  • FIG. 5 shows a schematic diagram of the connection between an antenna and a load impedance in an embodiment of the present application
  • FIG. 6 shows a schematic diagram of reflection of a signal in an embodiment of the present application
  • FIG. 7 shows a schematic diagram of reflection of another signal in the embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a measurement signal acquisition method provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a scenario of sending and receiving a measurement signal in an embodiment of the present application.
  • FIG. 10 shows a schematic flowchart of a method for sending a measurement signal provided in an embodiment of the present application
  • FIG. 11 shows a schematic structural diagram of an apparatus for estimating direction of arrival provided by an embodiment of the present application
  • FIG. 12 shows a schematic structural diagram of a device for obtaining direction of arrival provided by an embodiment of the present application
  • FIG. 13 shows a schematic structural diagram of a measurement signal sending device provided by an embodiment of the present application.
  • FIG. 14 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 shows a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of a hardware structure of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects.
  • the number of objects is not limited, for example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • 6G 6th Generation
  • Fig. 1a shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a BSC terminal 11 and a network side device 12 .
  • the BSC terminal 11 can also be called a BSC terminal device or a BSC user terminal (User Equipment, UE), and the BSC terminal 11 can be a backscattering device, including but not limited to a wearable device (Wearable Device), wherein the wearable Smart devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the wearable Smart devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the BSC terminal modulates the information to be sent onto the signal source carrier through the modulation module of the BSC, and backscatters the modulated data back to the network side equipment.
  • the network side equipment 12 may include access network equipment and/or core network equipment, and the network side equipment 12 may serve as a BSC receiving end (BSC Receiver), which is not only a radio frequency source, but also a downlink data transmitting end of the BSC terminal 11 and the BSC terminal 11 uplink data receiving end, wherein the access network device 12 can also be called wireless access network device, wireless access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • BSC Receiver BSC receiving end
  • the access network device 12 can also be called wireless access network device, wireless access network (Radio Access Network, RAN), radio access network function or radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in this embodiment of the application, only the term in the New Radio (NR) system is used. The base station is introduced as an example, and the specific type of the base station is not limited.
  • NR New Radio
  • the network side device may send one measurement signal to the BSC terminal, or may send multiple measurement signals to the BSC terminal.
  • the BSC terminal may send a measurement signal to the network side device
  • the scene of the signal or the scene where the network side device sends multiple measurement signals uses different schemes to obtain the incoming wave direction and reflect the signal in reverse.
  • the network-side device sends one measurement signal adopt the technical solution described in the following method 200 to estimate the direction of arrival; in the scenario where the network-side device sends multiple measurement signals, use the technical solution described in the following method 800 The technical solution obtains the incoming wave direction.
  • the BSC terminal can determine, according to the indication information sent by the network-side device, whether the network-side device is currently sending one measurement signal or the network-side device is sending multiple measurement signals.
  • the detected number of beam directions of the measurement signal sent by the network side device determines whether the current scenario is a scenario where the network side device sends one measurement signal or a scenario where the network side device sends multiple measurement signals. For example, if within 30ms, the BSC terminal only detects a measurement signal in one beam direction, it is determined as a scenario where the network side device sends a measurement signal; if within 30ms, the BSC terminal detects measurement signals in multiple beam directions, then it is determined A scenario where multiple measurement signals are sent for network-side devices.
  • the solutions for the BSC terminal to acquire the direction of arrival in the two scenarios are described below respectively.
  • FIG. 2 shows a schematic flowchart of a method for estimating direction of arrival provided by an embodiment of the present application, and the method 200 may be executed by a BSC terminal.
  • the method can be executed by software or hardware installed on the BSC terminal.
  • the method may include the following steps.
  • the BSC terminal measures a measurement signal sent by the network side device in multiple measurement ranges.
  • the network-side device sends a measurement signal to the BSC terminal, that is, the network-side device sends a single measurement signal to the BSC UE as a BSC Receiver, and the network-side device may be a base station.
  • the transmission beam expansion angle corresponding to the single measurement signal is controlled by the network side device, and may be a wide beam or a narrow beam.
  • the network-side device configures a set of shaped signals for the beam to measure the beam.
  • the measurement signal can be a sequence, a preamble (Preamble), a reference signal, a synchronization signal block (Synchronization Signal Block, SSB), etc.
  • the network-side device may use a periodic or aperiodic sending manner when sending beams.
  • the network side device can transmit beams in an aperiodic manner, and only transmit beams in a limited number of directions to reduce system overhead and measurement complexity of the BSC UE. In the case of high system load, beams are transmitted periodically.
  • the BSC terminal measures one measurement signal sent by the network side device in multiple measurement ranges.
  • the BSC terminal may measure the measurement signal by using a load impedance connection corresponding to the measurement range, wherein the load impedance connection corresponding to the different measurement ranges Not in exactly the same way. That is, in this possible implementation manner, the BSC terminal implements measurement of the measurement signal in different measurement ranges through a load impedance connection manner.
  • the BSC terminal may measure the measurement signals of different measurement ranges at different times. For example, when the number of antennas of the BSC terminal is small and only one-sided When the board is connected, the BSC terminal can measure the measurement signals of different measurement ranges in a time-division manner.
  • the BSC terminal may also measure the measurement signals of different measurement ranges through different panels of the BSC terminal at the same time. For example, the measurement signal of ⁇ 1 is measured by panel 1 , and the measurement signal of ⁇ 2 is measured by panel 2.
  • Type I is aimed at the case of a single panel and only one range is measured, and simultaneously measures the sum beam and difference beam in the range of ⁇ 1 at time T;
  • Type II measures beams of multiple ranges for the case of a single panel, realizing The method is to measure the sum beam and difference beam in the range of ⁇ 1 at time T 1 , and measure the sum beam and difference beam in the range of ⁇ 2 at time T 2 , and so on;
  • Type III measures beams in multiple ranges for multiple panels, and the implementation method is T
  • panel 1 measures the sum beam and difference beam in the range of ⁇ 1
  • panel 2 simultaneously measures the sum beam and difference beam in the range of ⁇ 2 , and so on.
  • the BSC terminal obtains N groups of sum and difference beams according to the measurement results obtained in each of the measurement ranges, wherein one of the measurement ranges corresponds to a group of the sum and difference beams, and a group of sum and difference beams includes one sum and difference beam and a difference beam, N is the number of measurement ranges, and N is an integer greater than 1.
  • N is defined above as an integer greater than 1, it is not limited thereto. In practical applications, N can also be equal to 1. For example, in the case where the BSC terminal uses the above-mentioned Type I implementation for measurement, N is equal to 1.
  • the BSC terminal measures the measurement signal in N measurement ranges, each measurement range obtains a set of measurement parameters, and a set of sum and difference beams can be obtained through the set of measurement parameters.
  • the measurement parameter as Reference Signal Received Power (RSRP) as an example
  • RSRP Reference Signal Received Power
  • two identical antennas can be used to measure at different times, that is, among the two antennas, one antenna is terminated with resistance at T1 , and the other antenna is terminated with inductance, and RSSI 21 is measured; T At time 2 , it is the opposite, and RSSI 22 is measured; it can also be measured at the same time through 4 antennas, for example, at time T, the first antenna is terminated with resistance, and the second antenna is terminated with inductance, and RSSI 21 is measured.
  • the three antennas are connected to the inductor, and the fourth antenna is connected to the resistor, and the measured RSSI is 22 .
  • the BSC terminal chooses the Type II implementation, since the BSC terminal is only configured with a single panel, it is necessary to measure signals in two ⁇ ranges at different times.
  • the BSC terminal measures the signals of two beams within the range of ⁇ 1 , and obtains the measurement parameters RSRP 11 and RSRP 21 ; then switches the load impedance at time T2 , adjusts the range of the receiving beam to ⁇ 2 , and the BSC terminal at The signals of two beams are measured within the range, and the other two measurement parameters RSRP 12 and RSRP 22 are obtained.
  • the BSC terminal since the BSC terminal is equipped with multiple panels, it can measure signals in two ⁇ ranges at the same time. Multiple sets of sum and difference beams can be constructed simultaneously through different panels, and different sets of sum and difference beams correspond to different measurement ranges. For example, at time T, the BSC terminal uses panel 1 to measure the signals of two beams within the range of ⁇ 1 of the receiving beam, obtains the measurement parameters RSRP 11 and RSRP 21 , and uses panel 2 to measure the signals of two beams within the range of ⁇ 2 of the receiving beam beam signal, Two further measurement parameters RSRP 12 and RSRP 22 are obtained. Wherein, the load impedances connected to the measurement parameters corresponding to the beams and the measurement parameters corresponding to the difference beams are different; the connection modes of the load impedances corresponding to each group of the difference beams are also different.
  • the BSC terminal estimates the direction of arrival of the measurement signal according to the target and difference beam group, wherein the target and difference beam group is the best signal energy and/or signal quality in the N groups and difference beams The best set of sum and difference beams.
  • the BSC terminal determines the final sum difference beam according to the best criterion of signal energy and/or quality in different measurement ranges, and performs AoA estimation of the BSC UE.
  • a direction-of-arrival estimation method based on measurement parameters may be used.
  • the measurement parameter Received Signal Strength Indication (RSSI) is a measurement parameter that is, the received signal strength (RSSI 1 ); the other is the differential beam (RSSI 21 -RSSI 22 ), that is, among the two antennas, one of the two antennas is terminated with a resistor at T1 , and the other is terminated with an inductance, and the RSSI 21 is measured; at T2 , it is the opposite, and the measured RSSI 22 .
  • the specific principle of direction of arrival estimation is described as follows.
  • the signal received by the first antenna is s 1
  • the signal received by the second antenna is s 2 :
  • A represents the signal amplitude
  • represents the phase shift.
  • the sum beam and difference beam can be expressed as:
  • RSSI 1 can be measured and the envelope term in the beam RSSI 21 -RSSI 22 measures the envelope term in the difference beam Compared with the difference beam, we can get:
  • the method may further include the following steps.
  • the BSC UE modulates information bits to be sent.
  • the information bit modulation of the BSC terminal can be realized through the connection between the antenna and the load impedance.
  • the BSC terminal has 2 antennas and 6 load impedances ( ⁇ 1 ⁇ ⁇ 6 ), each antenna is connected to
  • the state (open/closed) of the switch can be controlled by the controller.
  • the BSC UE antenna can realize the modulation function of reflecting signals to the network side equipment by selecting different impedance connection methods.
  • the specific connection methods include but are not limited to:
  • On-off Keying On-off Keying, OOK
  • Binary Phase Shift Keying Binary Phase Shift Keying
  • BPSK Binary Phase Shift Keying
  • the above modulation process can be implemented not only through the load impedance, but also through the combination of the transmission line and the load impedance, which is not limited in this embodiment of the present application.
  • the BSC UE reflects the information ratio to be sent according to the estimated direction of arrival (AoA).
  • the BSC terminal realizes the modulation of the signal through the transmission line and/or load impedance, and also realizes the 180° reflection of the signal through the switching of the transmission line and/or load impedance.
  • switching load impedance as an example, the reflection of the signal is obtained from the connection when the load impedance is not grouped/grouped.
  • Figure 6 The case of no grouping is shown in Figure 6, and the case of grouping is shown in Figure 7.
  • ⁇ 1- ⁇ 3 is the first group
  • ⁇ 4- ⁇ 6 is the second group.
  • the two antennas can only select two load impedances in the corresponding group impedances to connect to them at the same time. That is to say, during the uplink transmission process of the Backscatter, beams in different directions are sent sequentially.
  • the load impedance to be connected to the antenna at time t 1 can be determined.
  • the following formula (6) can be used to determine the reflected signal y n :
  • is the incoming wave direction
  • y 0 is the bit information to be sent
  • j is an imaginary number
  • n is the antenna index.
  • the antenna selects ⁇ 1 and ⁇ 5 at time t 1 .
  • the phase information corresponding to ⁇ 1 and ⁇ 5 is selected.
  • the first beam can be obtained, as shown in beam 1 in Figure 6.
  • a schematic diagram of beam 2 can be generated assuming that ⁇ 2 and ⁇ 6 are selected in FIG. 6 .
  • the network side device receives the reflected signal of the BSC UE.
  • the reflected beam (transmitting beam) of the BSC UE can be fixed, and the network side equipment can change the receiving beam, or use the transmitting beam in the downlink transmission stage as the receiving beam in this stage.
  • the beam used to receive the reflected signal is determined by the network side device.
  • the BSC terminal expands the measurement range of the incoming wave signal by optimizing the multi-antenna transmission process based on the measurement parameter measurement principle and improves the incoming wave signal.
  • the precision of the direction estimate aims at the scenario where the network side equipment sends a single signal.
  • a method for estimating the direction of arrival is provided.
  • the BSC terminal can estimate the direction of arrival in the scenario where the network side device sends a measurement signal.
  • the embodiment of the present application also provides a method for estimating the direction of arrival.
  • the BSC terminal obtains the technical solution of the direction of arrival. The following describes the method for obtaining the direction of arrival provided by the embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a method for obtaining a direction of arrival provided by an embodiment of the present application, and the method 800 may be executed by a BSC terminal.
  • the method can be executed by software or hardware installed on the BSC terminal.
  • the method may include the following steps.
  • the BSC terminal measures multiple measurement signals sent by the network side device.
  • the network side device sends M measurement signals corresponding to M analog beams, and a shaped signal set can be configured for each beam direction for beam measurement.
  • the measurement signals can be sequence, preamble, Reference signal, SSB, etc.
  • M measurement signals are transmitted on different time domain and/or frequency domain resources, so that the network side equipment can adjust the configuration of the phase shifter for each direction to achieve analog beamforming; at the same time, the BSC UE can use N receiving beams
  • the M shaped signals are respectively measured to obtain the measurement parameters corresponding to each signal.
  • the number of N receiving beams of the BSC UE depends on its hardware capability. When N is 1, it means that the BSC UE measures incoming signals through one omnidirectional beam.
  • the network-side device has 3 analog beams, and the BSC UE has 1 beam.
  • Each of the 3 analog beams of the network-side device is configured with a shaped signal, which is sent in a polling manner.
  • the network-side device may use a periodic or aperiodic sending manner when sending beams. For example, when the network-side device knows the general direction of the BSC UE, it can send beams in an aperiodic manner, and only send beams in a limited number of directions to reduce system overhead and BSC UE measurement complexity. When the system load is high, the network-side device transmits beams in a larger angle range through periodic transmission, so that more BSC UEs can receive signals, thereby improving the efficiency of beam measurement.
  • the BSC terminal acquires the measurement parameter of the first signal, where the first signal is the measurement signal with the best signal energy and/or the best signal quality among the plurality of measurement signals.
  • the BSC terminal acquires a target direction of arrival corresponding to the measurement parameter of the first signal.
  • the network side device can configure the mapping relationship between the measurement parameters of the BSC terminal and the direction of arrival (AoA), and the BSC terminal can obtain the AoA of the incoming wave only by measuring the incoming wave signal.
  • the transmitting beam of the network side equipment can be changed during the measurement process, while the BSC UE can keep the receiving beam unchanged for a certain period of time.
  • the expansion angle of the sending beam is controlled by the network side equipment and is transparent to the BSC UE.
  • the BSC UE measures M signals by receiving beams to obtain a first reference signal, and the signal energy and/or quality corresponding to the reference signal is the best among the M reference signals.
  • the BSC terminal may have configured the mapping relationship between the measurement parameters and the direction of arrival, and the BSC terminal can obtain the target direction of arrival through the mapping relationship. Therefore, in a possible In an implementation manner, S814 may include: the BSC terminal acquires the target direction of arrival corresponding to the measurement parameter of the first signal according to the configured mapping relationship between the measurement parameter and the direction of arrival.
  • the network side device can control the element (Control Element, CE)/downlink control information (Downlink Control Information, DCI) through the radio resource control (Radio Resource Control, RRC)/media access control layer (Medium Access Control, MAC) layer (Medium Access Control, MAC), etc. Any one or more ways jointly configure or indicate the mapping relationship.
  • the mapping relationship may be configured by the network side device. Therefore, the method may further include: the BSC terminal receiving the mapping relationship configured or indicated by the network side device. Of course, it is not limited to this, and the mapping relationship may also be agreed by default between the network side device and the BSC terminal.
  • the BSC terminal may not configure the mapping relationship between the measurement parameters and the direction of arrival, and the BSC terminal may report the measurement results to the network side equipment, and the network side equipment queries the mapping relationship, and the first The direction of arrival of the target corresponding to the measured parameter of the signal is indicated to the BSC terminal. Therefore, in another possible implementation manner, the acquisition of the target direction of arrival corresponding to the measurement parameter of the first signal by the BSC terminal may include: the BSC terminal reports the measurement parameter of the first signal, and acquires the The target direction of arrival indicated by the network side device and corresponding to the measurement parameter of the first signal.
  • the BSC terminal can report the measurement parameters of the first signal to the network side equipment, and after receiving the measurement parameters of the first signal, the network side equipment obtains the The target direction of arrival corresponding to the measurement parameter of the first signal, and then send the indication information of the target direction of arrival to the BSC terminal, and the BSC terminal can obtain the target direction of arrival according to the indication information.
  • Table 2 shows a schematic table of mapping between a measurement parameter and AoA in the embodiment of the present application.
  • the AoA estimation accuracy of the BSC UE depends on the number of RSRPs in the mapping table, which is related to the M signals transmitted by the network side equipment.
  • the signal processing capability of the BSC UE also determines the estimation accuracy of AoA. For example, when the load impedance/transmission line number of the BSC UE is small, the ability to achieve phase modulation/amplitude modulation is limited, and it may only reflect a wide beam within the AoA area, and the gain peak point of the wide beam may deviate from the AoA angle.
  • the method may further include: the BSC terminal reports capability information of the BSC terminal, where the capability information is used by the network side device to configure the mapping relationship. That is, the BSC UE reports its capabilities to the network, and when configuring the mapping table, the network considers factors such as the capabilities of the BSC UE to determine the M transmission beams of the network-side equipment.
  • mapping relationship there is a one-to-one mapping relationship between the measurement parameters and the AoA, wherein the measurement parameters corresponding to a direction of arrival include: a value range of the measurement parameters. That is to say, the measurement parameter may be in a range. Therefore, in practical applications, it may occur that multiple measurement parameters correspond to one AoA.
  • the method for the BSC UE to measure multiple measurement signals sent by the network side equipment may notify the BSC UE through high-layer signaling or through dynamic parameter indication of control signaling.
  • the BSC terminal measuring multiple measurement signals sent by the network side equipment may include: when the network side equipment indicates that the directions of the transmission beams of the multiple measurement signals are the same, the The BSC terminal uses different receiving beams to measure the multiple measurement signals. That is to say, in this possible implementation manner, the network side device can indicate to the BSC UE that the transmission beams of the M measurement signals have the same direction, and the BSC UE will measure the signals through different reception beams.
  • the BSC terminal measuring multiple measurement signals sent by the network side equipment may include: when the network side equipment indicates that the directions of the transmission beams of the multiple measurement signals are not completely the same, The BSC terminal uses the same receiving beam to measure the multiple measurement signals. That is to say, in this possible implementation manner, the network side device can indicate to the BSC UE that the transmission beams of its M measurement signals have different directions, and the BSC UE can fix its receiving beams, Determine the strongest signal energy and/or best signal quality.
  • the method may further include the following S816 and S818.
  • the BSC UE modulates information bits to be sent.
  • the BSC UE can achieve information bit modulation through the connection between the antenna and the load impedance.
  • the specific implementation process is consistent with the information bit modulation method described in S216 in method 200.
  • the parameter method 200 can be used. The description in S216 will not be repeated here.
  • the BSC terminal reflects the information bits to be sent according to the acquired direction of arrival of the target.
  • the BSC UE reflects the signal back to the network side device in the direction of the AoA according to the obtained AoA.
  • the BSC UE realizes 180° signal reflection in the AoA direction by adjusting the connection scheme of the load impedance and/or the transmission line connection scheme; the BSC UE can report the energy and/or quality of the measured M measurement signals to the network side equipment, Alternatively, only the optimal beam needs to be selected for reporting.
  • the AoA corresponding to the optimal beam can be stored in the BSC UE and does not need to be reported to the network side device.
  • the implementation process of the BSC UE reflecting the information bits to be transmitted is consistent with the signal reflection method described in S218 of the method 200, and details can be found in the above description of S218, which will not be repeated here.
  • the network side device can receive the reflected signal of the BSC UE.
  • the mapping table between the BSC UE measurement parameters and AoA can be configured, and the BSC UE can obtain the incoming wave AoA only by measuring the incoming wave signal, thereby reducing the System power consumption due to beam alignment.
  • FIG. 10 shows a schematic flowchart of a method for sending measurement signals provided by an embodiment of the present application.
  • the method 1000 is an execution step of the network-side device corresponding to the method 800, and the method 1000 is executed by the network-side device.
  • the method can be executed by software or hardware installed on the network side device.
  • the method may include the following steps.
  • the network side device configures the mapping relationship between the measurement parameters and the incoming wave direction according to the target parameters,
  • the target parameter includes at least one of the following: the number of BSC terminals communicating with the network-side device, and the communication distance between the network-side device and the BSC terminal.
  • the network side device sends multiple measurement signals according to the mapping relationship.
  • the accuracy of AoA estimation obtained by the BSC UE can be determined according to the design rules of the mapping relationship, and the network side device can configure the mapping table according to the number of BSC UEs that need instant communication and/or the communication distance.
  • the estimation accuracy of AoA also depends on the capabilities of the BSC UE, that is, the hardware parameters of the BSC UE determine whether signal reflection at a specific AoA angle can be realized. Therefore, in a possible implementation, the target parameters also include: ability.
  • the network-side device can send M (M is an integer greater than 1) measurement signals based on the above mapping relationship, corresponding to M analog beams, and can configure a shaped signal set for each beam direction for beam measurement. It can be sequence, Preamble, reference signal, SSB, etc.
  • the M measurement signals may be transmitted on different time domain and/or frequency domain resources, so that the network side device can adjust the configuration of the phase shifter for each direction to implement analog beamforming.
  • the network side device may use a periodic or aperiodic sending manner when sending beams. If the network-side device knows the general direction of the BSC UE, it can send beams in an aperiodic manner, and only send beams in a limited number of directions to reduce system overhead and BSC UE measurement complexity. When the system load is high, the network-side device transmits beams in a larger angle range through periodic transmission, so that more BSC UEs can receive signals, thereby improving the efficiency of beam measurement.
  • the method before the network side device sends the plurality of measurement signals, the method further includes: the network side device configures or indicates the mapping relationship to the BSC terminal. Therefore, the BSC UE can obtain the incoming wave direction only by measuring the incoming wave signal.
  • the network side device may not configure or indicate the mapping relationship to the BSC terminal, and the BSC terminal may report the measurement parameter of the first signal after measuring the M measurement signals. Therefore, in this possible implementation manner, the network side device sends the multiple After measuring the signal, the method further includes: the network side device receiving the measurement parameter of the first signal reported by the BSC terminal, wherein the first signal is a signal obtained by the BSC terminal by measuring the plurality of measurement signals The measurement signal with the best energy and/or the best signal quality; the network side device obtains the target direction of arrival corresponding to the measurement parameter of the first signal according to the mapping relationship; the network side device sends the The BSC terminal indicates the target incoming wave direction.
  • the hardware requirements for the BSC terminal can be reduced.
  • the method may further include:
  • the network side device indicates to the BSC terminal that the sending beams of the multiple measurement signals have the same direction, and the BSC UE may measure the multiple measurement signals through different receiving beams after receiving the indication; or,
  • the network side device indicates to the BSC terminal that the directions of the transmission beams of the multiple measurement signals are not completely the same, and the BSC UE may fix its receiving beam to measure the multiple measurement signals after receiving the indication.
  • the network side equipment can measure the mapping table of signal measurement parameters and AoA, and the BSC UE can obtain the incoming wave direction only by measuring the incoming wave signal, which reduces the system power consumption caused by beam alignment.
  • the direction of arrival estimation method provided in the embodiment of the present application may be executed by a direction of arrival estimation device.
  • the direction of arrival estimation method performed by the direction of arrival estimation device is taken as an example to illustrate the direction of arrival estimation device provided in the embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a direction-of-arrival estimation device provided by an embodiment of the present application.
  • the device 1100 mainly includes: a first measurement module 1101 , a first acquisition module 1102 and an estimation module 1103 .
  • the first measurement module 1101 is used to measure a measurement signal sent by the network side equipment in multiple measurement ranges; the first acquisition module 1102 is used to obtain the measurement results obtained in each of the measurement ranges.
  • N sets of sum and difference beams wherein one of said measurement ranges corresponds to one set of The sum and difference beams, a group of sum and difference beams include a sum beam and a difference beam, N is the number of measurement ranges, and N is an integer greater than 1;
  • the estimation module 1103 is used to estimate according to the target and difference beam group The direction of arrival of the measurement signal, wherein the target and difference beam group is a group of sum and difference beams with the best signal energy and/or the best signal quality among the N groups of sum and difference beams.
  • the first measurement module 1101 measures a measurement signal sent by the network side device in multiple measurement ranges, including:
  • the BSC terminal For each measurement range, the BSC terminal measures the measurement signal in a load impedance connection mode corresponding to the measurement range, wherein the load impedance connection modes corresponding to different measurement ranges are not completely the same.
  • the first measurement module 1101 measures a measurement signal sent by the network side device in multiple measurement ranges, including:
  • the measurement signals of different measurement ranges are measured through different panels of the BSC terminal at the same time.
  • the apparatus for estimating the direction of arrival in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a BSC terminal, or other devices other than the terminal.
  • the BSC terminal may include but not limited to the types of the BSC terminal 11 listed above.
  • the direction-of-arrival estimation device provided in the embodiment of the present application can implement the various processes implemented by the BSC terminal in the method embodiments in FIGS. 2 to 7 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • Fig. 12 shows a schematic structural diagram of a device for acquiring direction of arrival provided by an embodiment of the present application.
  • the device 1200 mainly includes: a second measurement module 1201, a second acquisition module 1202 and a third acquisition module 1203 .
  • the second measurement module 1201 is used to measure multiple measurement signals sent by the network side equipment; the second acquisition module 1202 is used to obtain the measurement of the first signal according to the measurement results parameter, wherein the first signal is the measurement signal with the best signal energy and/or the best signal quality among the plurality of measurement signals; the third acquisition module 1203 is configured to acquire the measurement parameter of the first signal The corresponding direction of arrival of the target wave.
  • the third obtaining module 1203 obtains the target direction of arrival corresponding to the measurement parameter of the first signal, including:
  • the apparatus further includes: a first receiving module, configured to receive the mapping relationship configured or indicated by the network side device.
  • the apparatus further includes: a reporting module, configured to report capability information of the BSC terminal, where the capability information is used by the network side device to configure the mapping relationship.
  • the second measuring module 1201 measuring multiple measurement signals sent by the network-side device includes: when the network-side device indicates that the directions of the transmission beams of the multiple measurement signals are the same , measuring the multiple measurement signals through different receiving beams; or, when the network side device indicates that the directions of the transmission beams of the multiple measurement signals are not completely the same, using the same receiving beam to measure the multiple measurement signals a measurement signal.
  • the apparatus for obtaining the direction of arrival in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a BSC terminal, or other devices other than the terminal.
  • the BSC terminal may include but not limited to the types of the BSC terminal 11 listed above.
  • the apparatus for obtaining direction of arrival provided in the embodiment of the present application can implement various processes implemented by the BSC terminal in the method embodiments in FIGS. 8 to 10 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 13 shows a schematic structural diagram of a measurement signal sending device provided by an embodiment of the present application.
  • the device 1300 mainly includes: a configuration module 1301 and a sending module 1302 .
  • the configuration module 1301 is configured to configure the mapping relationship between the measurement parameter and the direction of arrival according to the target parameter, wherein the target parameter includes at least one of the following: a BSC terminal communicating with the network side device quantity, the communication distance between the network side equipment and the BSC terminal; the sending module 1302 is configured to send a plurality of measurement signals according to the mapping relationship.
  • the sending module 1302 is further configured to configure or indicate the mapping relationship to the BSC terminal.
  • the apparatus further includes: a second receiving module, configured to receive the measurement parameters of the first signal reported by the BSC terminal, wherein the first signal is the measurement parameter of the multiple measurement parameters obtained by the BSC terminal through measurement.
  • the signal obtained is the measurement signal with the best signal energy and/or the best signal quality;
  • the fourth acquisition module is configured to acquire the target direction of arrival corresponding to the measurement parameter of the first signal according to the mapping relationship;
  • the sending module 1302 is further configured to indicate the target direction of arrival to the BSC terminal.
  • the sending module 1302 is also configured to:
  • the measurement signal sending device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a network side device, and the network side device may be various implementation manners of the foregoing network side device 12, which are not specifically limited in this embodiment of the present application.
  • the measurement signal sending device provided in the embodiment of the present application can implement various processes implemented by the network side equipment in the method embodiments shown in FIG. 8 to FIG. 10 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 1400, including a processor 1401 and a memory 1402.
  • the memory 1402 stores The running program or instruction, for example, when the communication device 1400 is a terminal, the program or instruction is executed by the processor 1401 to implement the steps of the above embodiment of the method for estimating the direction of arrival, or to implement the steps of the embodiment of the method for obtaining the direction of arrival above each step, and can achieve the same technical effect.
  • the communication device 1400 is a network-side device, when the program or instruction is executed by the processor 1401, the steps of the above embodiment of the measurement signal sending method can be implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a BSC terminal, including a processor and a communication interface, the processor is used to implement the various steps of the above embodiment of the direction of arrival estimation method, or implement the various steps of the above embodiment of the method for obtaining the direction of arrival, and the communication interface Used to communicate with external devices.
  • This terminal embodiment corresponds to the above-mentioned BSC terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 15 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1500 includes, but is not limited to: a radio frequency unit 1501, a network module 1502, an audio output unit 1503, an input unit 1504, a sensor 1505, a display unit 1506, a user input unit 1507, an interface unit 1508, a memory 1509, and a processor 1510. At least some parts.
  • the terminal 1500 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1510 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 15 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1504 may include a graphics processing unit (Graphics Processing Unit, GPU) 15041 and a microphone 15042, and the graphics processor 15041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1506 may include a display panel 15061, and the display panel 15061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1507 includes at least one of a touch panel 15071 and other input devices 15072 . Touch panel 15071, also called touch screen.
  • the touch panel 15071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 15072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1501 may transmit the downlink data from the network side device to the processor 1510 for processing after receiving it; in addition, the radio frequency unit 1501 may send uplink data to the network side device.
  • the radio frequency unit 1501 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1509 can be used to store software programs or instructions as well as various data.
  • the memory 1509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 1509 may include volatile memory or nonvolatile memory, or, memory 1509 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 1510 may include one or more processing units; optionally, the processor 1510 integrates an application processor and a modem processor, where the application processor mainly processes The operation of the user interface and application programs, etc., the modem processor mainly processes wireless communication signals, such as the baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 1510 .
  • the processor 1510 is configured to measure a plurality of measurement signals sent by the network side equipment; and obtain the measurement parameters of the first signal according to the measurement results, wherein the first signal has the best signal energy among the plurality of measurement signals And/or the measurement signal with the best signal quality; acquiring a target direction of arrival corresponding to the measurement parameter of the first signal.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to implement the steps of the above embodiment of the measurement signal sending method, and the communication interface is used to communicate with external devices.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1600 includes: an antenna 1601 , a radio frequency device 1602 , a baseband device 1603 , a processor 1604 and a memory 1605 .
  • the antenna 1601 is connected to the radio frequency device 1602 .
  • the radio frequency device 1602 receives information through the antenna 1601, and sends the received information to the baseband device 1603 for processing.
  • the baseband device 1603 processes the information to be sent and sends it to the radio frequency device 1602
  • the radio frequency device 1602 processes the received information and sends it out through the antenna 1601 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 1603, where the baseband device 1603 includes a baseband processor.
  • the baseband device 1603, for example, may include at least one baseband board, on which a plurality of chips are arranged, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may further include a network interface 1606, for example, a common public radio interface (common public radio interface, CPRI).
  • a network interface 1606 for example, a common public radio interface (common public radio interface, CPRI).
  • CPRI common public radio interface
  • the network side device 1600 in this embodiment of the present invention further includes: instructions or programs stored in the memory 1605 and executable on the processor 1604, and the processor 1604 calls the instructions or programs in the memory 1605 to execute the The method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each step of the above embodiment of the direction of arrival estimation method is implemented, or the The various steps of the above embodiment of the method for obtaining the direction of arrival, or the various steps of the above embodiment of the method for transmitting the measurement signal, and can achieve the same technical effect, will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above direction of arrival estimation method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above direction of arrival estimation method
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above method for estimating the direction of arrival
  • the various processes of the embodiment, or the various processes of the above embodiment of the method for obtaining the direction of arrival, or the various processes of the above embodiment of the method for transmitting the measurement signal and can achieve the same technical effect, in order to avoid repetition, no more details are given here. .
  • the embodiment of the present application also provides a direction of arrival estimation system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the method for estimating the direction of arrival as described above, and the network side The device is operable to perform the steps of the method for transmitting a measurement signal as described above.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种来波方向估计方法、终端及网络侧设备,属于无线通信技术领域,本申请实施例的来波方向估计方法,包括:BSC终端在多个测量范围测量网络侧设备发送的一个测量信号,根据各个测量范围得到的测量结果,获取N组和差波束;进一步,从N组和差波束中选择信号能量最好和/或信号质量最好的一组作为目标和差波束,用于估计所述测量信号的来波方向。本申请实施例还提供了一种来波方向获取方法,包括:BSC终端测量网络侧设备发送的多个测量信号;BSC终端根据多个测量信号确定信号能量最好和/或信号质量最好的测量信号作为第一信号;BSC终端根据测量参数与来波方向的映射关系,获取与第一信号的测量参数对应的目标来波方向。

Description

来波方向估计方法、终端及网络侧设备
交叉引用
本发明要求在2022年01月29日提交中国专利局、申请号为202210112347.X、发明名称为“来波方向估计方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于无线通信技术领域,具体涉及一种来波方向估计方法、终端及网络侧设备。
背景技术
反向散射(Backscatter,BSC)作为一种低功耗通信技术,可以使用较低功耗的微型硬件从而解决传统通信中的高能耗问题。
图1a为相关技术中的一种BSC通信架构,如图1a所示,网络侧设备作为BSC接收端(Receiver)既是射频源,也为BSC终端的下行数据的发送端以及BSC终端的上行数据的接收端,网络侧设备直接与BSC终端进行通信。这种部署架构对基站和BSC终端的接收灵敏度要求很高。
在BSC通信中,BSC终端通过控制切换负载阻抗或使用传输线来改变反向散射信号的幅度及相位,以实现对接收到的环境中载波的调制,使得BSC可以接收并解码反向散射信号。在具体应用中,BSC终端可以通过配置反射阵列将网络侧设备的来波信号进行180度反射,形成反向散射信号。然而,通过反射阵列实现来波信号反射的前提是能够准确估计来波方向,因此,如何准确获取来波方向是相关技术中需要解决的技术问题。
发明内容
本申请实施例提供一种来波方向估计方法、终端及网络侧设备,能够准确获取来波方向。
第一方面,提供了一种来波方向估计方法,包括:BSC终端在多个测量范围测量网络侧设备发送的一个测量信号;所述BSC终端根据各个所述测量范围得到的测量结果,获取N组和差波束,其中,一个所述测量范围对应一组所述和差波束,一组和差波束中包括一个和波束和一个差波束,N为测量范围的数量,且N为大于1的整数;所述BSC终端根据目标和差波束组,估计所述测量信号的来波方向,其中,所述目标和差波束组为所述N组和差波束中信号能量最好和/或信号质量最好的一组和差波束。
第二方面,提供了一种来波方向估计装置,包括:第一测量模块,用于在多个测量范围测量网络侧设备发送的一个测量信号;第一获取模块,用于根据各个所述测量范围得到的测量结果,获取N组和差波束,其中,一个所述测量范围对应一组所述和差波束,一组和差波束中包括一个和波束和一个差波束,N为测量范围的数量,且N为大于1的整数;估计模块,用于根据目标和差波束组,估计所述测量信号的来波方向,其中,所述目标和差波束组为所述N组和差波束中信号能量最好和/或信号质量最好的一组和差波束。
第三方面,提供了一种来波方向获取方法,包括:BSC终端测量网络侧设备发送的多个测量信号;所述BSC终端根据测量结果,获取第一信号的测量参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号;所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向。
第四方面,提供了一种来波方向获取装置,包括:第二测量模块,用于测量网络侧设备发送的多个测量信号;第二获取模块,用于根据测量结果,获取第一信号的测量参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号;第三获取模块,用于获取与所述第 一信号的测量参数对应的目标来波方向。
第五方面,提供了一种测量信号的发送方法,包括:网络侧设备根据目标参数,配置测量参数与来波方向的映射关系,其中,所述目标参数包括以下至少之一:与所述网络侧设备通信的BSC终端的数量、所述网络侧设备与BSC终端之间的通信距离;所述网络侧设备根据所述映射关系,发送多个测量信号。
第六方面,提供了一种测量信号的发送装置,其特征在于,包括:配置模块,用于根据目标参数,配置测量参数与来波方向的映射关系,其中,所述目标参数包括以下至少之一:与所述网络侧设备通信的BSC终端的数量、所述网络侧设备与BSC终端之间的通信距离;发送模块,用于根据所述映射关系,发送多个测量信号。
第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,所述通信接口用于与外部设备进行通信。
第九方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第五方面所述的方法的步骤。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于实现如第五方面所述的方法的步骤,所述通信接口用于与外部设备进行通信。
第十一方面,提供了一种来波方向估计系统,包括:终端及网络侧设备,所述终端可用于执行第三方面所述的方法的步骤,所述网络侧设备可用于执 行如第五方面所述的方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤,或者实现如第五方面所述的方法的步骤。
采用本申请实施例提供的来波方向估计方案,BSC终端在多个测量范围测量网络侧设备发送的一个测量信号,根据各个测量范围得到的测量结果,得到多组和差波束,选择其中信号能量最好和/或信号质量最好的一组和差波束进行来波方向估计,从而可以增大来波方向的估计范围,提高来波方向的估计精度,进而可以提高来波方向的估计准确度。采用本申请实施例提供的来波方向获取方案,网络侧设备可以配置BSC终端的测量参数与来波方向的映射关系,BSC终端可以通过测量网络侧设备发送的多个测量信号,即可准确获取来波方向,并且可以降低因波束对齐引起的系统功耗。
发明内容
图1a示出本申请实施例可应用的一种无线通信系统的架构图;
图1b示出本申请实施例中一种来波方向获取的流程示意图;
图2示出本申请实施例提供的来波方向估计方法的一种流程示意图;
图3a示出本申请实施例中一种负载连接方式的示意图;
图3b示出本申请实施例中一种负载连接方式的示意图;
图3c示出本申请实施例中一种负载连接方式的示意图;
图4示出本申请实施例提供的来波方向估计方法的另一种流程示意图;
图5示出本申请实施例中一种天线与负载阻抗的连接实现示意图;
图6示出本申请实施例中一种信号的反射示意图;
图7示出本申请实施例中另一种信号的反射示意图;
图8示出本申请实施例提供的测量信号获取方法的一种流程示意图;
图9示出本申请实施例中一种测量信号的发送和接收的场景示意图;
图10示出本申请实施例提供的测量信号的发送方法的一种流程示意图;
图11示出本申请实施例提供的来波方向估计装置的一种结构示意图;
图12示出本申请实施例提供的来波方向获取装置的一种结构示意图;
图13示出本申请实施例提供的测量信号的发送装置的一种结构示意图;
图14示出本申请实施例提供的一种通信设备的结构示意图;
图15示出本申请实施例提供的一种终端的硬件结构示意图;
图16示出本申请实施例提供的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类, 并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了第6代(6th Generation,6G)通信系统,并且在以下大部分描述中使用6G中术语,但是这些技术也可应用于6G系统应用以外的应用。
图1a示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括BSC终端11和网络侧设备12。其中,BSC终端11也可以称作BSC终端设备或者BSC用户终端(User Equipment,UE),BSC终端11可以为反向散射设备,包括但不限于可穿戴式设备(Wearable Device),其中,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等,BSC终端通过BSC的调制模块将待发送信息调制到信号源载波上,并将已调制数据反向散射回网络侧设备。需要说明的是,在本申请实施例并不限定BSC终端11的具体类型。网络侧设备12可以包括接入网设备和/或核心网设备,网络侧设备12可以作为BSC接收端(BSC Receiver),其既是射频源,也为BSC终端11的下行数据发送端以及BSC终端11的上行数据接收端,其中,接入网设备12也可以称为无线接入网设备、无线接入网 (Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以新空口(New Radio,NR)系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的来波方向估计方案进行详细地说明。
在具体应用中,网络侧设备可能向BSC终端发送一个测量信号,也可能向BSC终端发送多个测量信号,本申请实施例中,如图1b所示,BSC终端可以针对网络侧设备发送一个测量信号的场景或网络侧设备发送多个测量信号场景,采用不同的方案来获取来波方向,以反向反射信号。例如,在网络侧设备发送一个测量信号的场景下,采用下述方法200所描述的技术方案估计来波方向,在网络侧设备发送多个测量信号的场景下,采用下述方法800所描述的技术方案获取来波方向。在具体应用中,BSC终端可以根据网络侧设备发送的指示信息,确定当前为网络侧设备发送一个测量信号的场景还是网络侧设备发送多个测量信号的场景,或者,BSC终端也可以根据一定时间内检测到的网络侧设备发送的测量信号的波束方向的数量,确定当前是网络侧设备发送一个测量信号的场景还是网络侧设备发送多个测量信号的场景。例如,在30ms内,BSC终端只检测到一个波束方向的测量信号,则确定为网络侧设备发送一个测量信号的场景,如果在30ms内,BSC终端检测到多个波束方向的测量信号,则确定为网络侧设备发送多个测量信号的场景。下面分别对这两种场景下BSC终端获取来波方向的方案进行说明。
图2示出本申请实施例提供的来波方向估计方法的一种流程示意图,该方法200可以由BSC终端执行。换言之,所述方法可以由安装在BSC终端上的软件或硬件来执行。如图2所示,该方法可以包括以下步骤。
S210,BSC终端在多个测量范围测量网络侧设备发送的一个测量信号。
在该实施例中,网络侧设备向BSC终端发送一个测量信号,即网络侧设备作为BSC Receiver向BSC UE发送单测量信号,该网络侧设备可以为基站。该单测量信号对应的发送波束扩展角度由网络侧设备控制,可以是宽波束、窄波束。网络侧设备为波束配置一个赋形的信号集合用于波束的测量,该测量信号可以为序列、前导码(Preamble)、参考信号、同步信号块(Synchronization Signal Block,SSB)等。网络侧设备在发送波束时可以采用周期或非周期发送方式。例如,网络侧设备在已知BSC UE大致方向的情况下,可以通过非周期方式发送波束,只在有限的几个方向上发送波束,以降低系统开销及BSC UE的测量复杂度。在系统负荷较高的情况下,通过周期性发送方式发送波束。
在基于测量参数构造和差波束的方法进行来波方向(AoA)估计时,只在一个测量范围内(例如,在θ内)进行测量可有效估计AoA,但在超过估计范围(-θ/2,θ/2)时,测量参数的值会变得很小,不利于和差波束的构造。因此,在本申请实施例中,BSC终端在多个测量范围测量网络侧设备发送的一个测量信号。
在一个可能的实现方式中,在S210中,对于各个测量范围,BSC终端可以采用与该测量范围对应的负载阻抗连接方式测量所述测量信号,其中,不同的所述测量范围对应的负载阻抗连接方式不完全相同。即在该可能的实现方式中,BSC终端通过负载阻抗连接方式实现不同测量范围内测量所述测量信号。
在一个可能的实现方式中,在S210中,BSC终端可以在不同时刻测量不同测量范围的所述测量信号。例如,当BSC终端的天线数量较少仅为单面 板时,BSC终端可以采用时分的方式测量不同测量范围的所述测量信号。
在另一个可能的实现方式中,在S210中,BSC终端也可以在同一时刻通过所述BSC终端的不同面板测量不同测量范围的所述测量信号。例如,通过面板1测量θ1的所述测量信号,通过面板2测量θ2的所述测量信号。
在具体应用中,可以按照BSC终端的面板数量和需要的测量范围划分了不同的实现类型。其中,如表1所示,Type I针对单面板且仅测一个范围的情况,在T时刻同时测θ1范围的和波束和差波束;Type II针对单面板情况测多个范围的波束,实现方式为T1时刻测θ1范围的和波束和差波束,T2时刻测θ2范围的和波束和差波束,以此类推;Type III针对多面板测多个范围的波束,实现方式为T时刻面板1测θ1范围的和波束和差波束,面板2同时测θ2范围的和波束和差波束,以此类推。
表1.和差波束测量类型划分
S212,所述BSC终端根据各个所述测量范围得到的测量结果,获取N组和差波束,其中,一个所述测量范围对应一组所述和差波束,一组和差波束中包括一个和波束和一个差波束,N为测量范围的数量,且N为大于1的整数。
需要说明的是,虽然上述限定N为大于1的整数,但并不限于此,在实际应用中,N也可以等于1,例如,BSC终端采用上述Type I的实现方式进行测量的情况下,N等于1。
在本申请实施例中,BSC终端在N个测量范围对所述测量信号进行测量,每个测量范围得到一组测量参数,通过该组测量参数,可以得到一组和差波束。
例如,以测量参数为参考信号接收功率(Reference Signal Received Power,RSRP)为例,若BSC终端选择Type I的实现方式,需测3个RSRP。如图3a至3c所示,测量得到的测量参数可以为两根天线端接同类型负载后同相相加测得的RSRP1即和波束,也可以为另外两根天线端接不同类型负载后测量得到的RSRP21和RSRP22,其中,差波束RSRP2=RSRP21-RSRP22。测RSRP21和RSRP22时,可通过两根相同的天线在不同时刻测量,即两根天线中,T1时刻一根天线端接电阻,另一根天线端接电感,测得RSSI21;T2时刻则相反,测得RSSI22;也可通过4根天线在相同时刻同时测量,例如,在T时刻,第一根天线端接电阻,第二根天线端接电感,测得RSSI21,第三根天线接电感,第四根天线端接电阻,测得RSSI22
若BSC终端选择Type II的实现方式,由于BSC终端仅配置单面板,因此需在不同的时刻测两个θ范围的信号。在T1时刻,BSC终端在θ1范围内测2个波束的信号,得到测量参数RSRP11和RSRP21;然后在T2时刻切换负载阻抗,将接收波束的范围调整到θ2,BSC终端在范围内测2个波束的信号,得到另外的2个测量参数RSRP12和RSRP22
若BSC终端选择Type III的实现方式,由于BSC终端配置有多面板,因此可以在同一时刻测两个θ范围的信号。即可通过不同的面板同时构造多组和差波束,不同组的和差波束对应不同的测量范围。例如,在T时刻,BSC终端通过面板1在接收波束的θ1范围内测2个波束的信号,得到测量参数RSRP11和RSRP21,并通过面板2在接收波束的θ2围内测2个波束的信号, 得到另外的2个测量参数RSRP12和RSRP22。其中,和波束对应的测量参数与差波束对应的测量参数所连接的负载阻抗不同;每组和差波束对应的负载阻抗连接方式也不同。
S214,所述BSC终端根据目标和差波束组,估计所述测量信号的来波方向,其中,所述目标和差波束组为所述N组和差波束中信号能量最好和/或信号质量最好的一组和差波束。
在本申请实施例中,BSC终端根据不同测量范围的信号能量和/或质量最好的准则确定最终和差波束,并进行BSC UE的AoA估计。
在本申请实施例中,可以采用基于测量参数的来波方向估计方法。例如,以测量参数接收信号强度指示(Received Signal Strength Indication,RSSI)为例,考虑两个波束,其中一个为和波束,即两根天线端接电阻后同相相加测得接收信号强度(RSSI1);另一个为差波束(RSSI21-RSSI22),即两根天线中,T1时刻一根端接电阻,另一根端接电感,测得RSSI21;T2时刻则相反,测得RSSI22。则来波方向估计的具体原理描述如下。
假设第1根天线接收的信号为s1,第2根天线接收的信号为s2
s1=Asin(wt)              (1)
s2=Asin(wt+φ)            (2)
其中,A表示信号幅值,Φ表示相移。和波束和差波束可分别表示为:

其中,RSSI1可测得和波束中的包络项RSSI21-RSSI22可测得差波束中的包络项和差波束相比可得:
在本申请实施例的一个可能的实现方式中,如图4所示,在S214之后,该方法还可以包括以下步骤。
S216,BSC UE调制待发送信息比特。
BSC终端实现信息比特调制可以通过天线与负载阻抗的连接实现的,例如,在图5中,假设BSC终端有2根天线和6个负载阻抗(Γ1~Γ6),则每根天线所接开关的状态(开启/闭合)可由控制器控制。
BSC UE天线通过选择不同的阻抗连接方式,可以实现向网络侧设备反射信号的调制功能,具体的连接方式包括但不限于:
1)随机确定每根天线连接某个阻抗,发“0”代表不连接的全吸收状态,发“1”时随机从6个Γ1~Γ6选择1个。该连接方式具有很大的随机性,且基站有可能收到功率很微弱的导频信号,影响后续的通信,但该方式能节约功耗并降低时延;
2)通过遍历的方式:若考虑1根天线与1个负载阻抗连接,则发“0”代表不连接的全吸收状态,发“1”时,可遍历Γ1~Γ6,取接收功率最大的负载阻抗连接;若考虑2根天线与2个不同的负载阻抗连接,则第一时刻选择Γ1和Γ2与两根天线连接,第二时刻选择Γ3和Γ4与两根天线连接,以此类推。
以下给出两种用于反射信号的不同调制方式:
(1)若考虑通-断键控(On-off Keying,OOK)或二相相移键控(Binary Phase Shift Keying,BPSK)传输导频序列,仅需一根天线和2个负载阻抗完成传输。其中,考虑OOK时,需设置2个负载阻抗的相位与天线阻抗相位相等,发“0”时为连接的全吸收状态,发“1”时为不连接状态;考虑BPSK时,需设置2个负载阻抗的相位相差90°,发“0”时为连接状态且相位为360°,发“1”时为不连接状态且相位为0°。
(2)若考虑4幅移键控调制(4 Amplitude Shift Keying,4ASK)传输导 频序列,需2根天线和4个负载阻抗完成传输,且需设置其中2个负载阻抗的相位与天线阻抗相位相等,两根天线与负载阻抗的连接状态为连接/不连接,可实现BSC UE发“00”(都不连接)、“10”或“01”(其中一根天线连接)和“11”(都连接);
上述调制过程除了通过负载阻抗实现,也可通过传输线与负载阻抗联合的方式实现,具体本申请实施例中不作限定。
S218,BSC UE根据对估计的所述来波方向(AoA),反射所述待发送信息比。
BSC终端通过传输线和/或负载阻抗实现信号的调制,同时也可通过传输线和/或负载阻抗的切换实现信号的180°反射。以切换负载阻抗为例,信号的反射是从负载阻抗不分组/分组的情况下连接所得,不分组的情况如图6所示,分组情况如图7所示。接下来,以分组情况介绍预编码矩阵的生成原理:为了在两个不同时刻产生2个不同方向的波束(波束1与波束2,T=2),将6个负载阻抗分为2组,每组3个阻抗,即可生成维度为3×2的码本。从图7可以看出,Γ1~Γ3为第1组,Γ4~Γ6为第2组,两根天线在同一时间只能选择对应分组阻抗中的两个负载阻抗与其相连。也就是说,波束在Backscatter上行传输过程中,按顺序依次发送不同方向的波束。
根据反射阵列的反射阵原理,根据估计所得的AoA,可以确定天线在t1时刻需要连接的负载阻抗。例如,可以采用下面公式(6)确定反射信号yn
yn=y0e-jπnsinθ          (6)
其中,θ为来波方向,y0为待发送比特信息,j为虚数,n为天线索引。
假设选择Γ1和Γ5能满足反射信号以AoA方向发射,当天线在t1时刻选择了Γ1和Γ5之后,Γ1和Γ5对应的相位信息被选取。选择Γ1和Γ5之后,激励电流的相位变化,基于线阵的阵列响应矢量,可得到第1个波束,如图6中的波束1所示。类似地,图6中给出了假设选择Γ2和Γ6之后,能够产生波束2的示意图。
之后,网络侧设备接收BSC UE的反射信号。其中,在该过程中,可以固定BSC UE的反射波束(发送波束),网络侧设备可以变化接收波束,也可以用下行传输阶段的发送波束作为该阶段的接收波束。用于接收反射信号的波束由网络侧设备决定。
通过本申请实施例提供的技术方案,针对网络侧设备发送单信号场景,基于测量参数测量原理构造和差波束,BSC终端通过优化多天线传输流程扩大了来波信号的测量范围,提高了来波方向估计的精度。
上述实施例中,提供了一种来波方向估计方法,通过该方法,BSC终端可以在网络侧设备发送一个测量信号的场景下,估计来波方向,另外,本申请实施例还提供了一种在网络侧设备发送多个测量信号的场景下,BSC终端获取来波方向的技术方案,以下对本申请实施例提供的来波方向获取方法进行描述。
图8示出了本申请实施例提供的来波方向获取方法的一种流程示意图,该方法800可以由BSC终端执行。换言之,所述方法可以由安装在BSC终端上的软件或硬件来执行。如图8所示,该方法可以包括以下步骤。
S810,BSC终端测量网络侧设备发送的多个测量信号。
在本申请实施例中,网络侧设备发送M个测量信号,对应M个模拟波束,可以为每个波束方向配置一个赋形的信号集合用于波束的测量,该测量信号可以为序列、Preamble、参考信号、SSB等。
其中,M个测量信号在不同时域和/或频域资源上传输,以便网络侧设备能够针对每个方向调整移相器的配置来实现模拟波束成形;同时,BSC UE可以通过N个接收波束分别对M个赋形信号进行测量,得到每个信号对应的测量参数。其中,BSC UE的N个接收波束的数量取决于其硬件能力,N为1时,代表BSC UE通过一个全向波束测量来波信号。如图9所示,网络侧设备有3个模拟波束,而BSC UE有1个波束,网络侧设备的3个模拟波束各配置一个赋形信号,通过轮询的方式发送。
网络侧设备在发送波束时可以采用周期或非周期发送方式。例如,网络侧设备已知BSC UE大致方向的情况下,可以通过非周期方式发送波束,只在有限的几个方向上发送波束,以降低系统开销及BSC UE的测量复杂度。在系统负荷较高的情况下,网络侧设备通过周期性发送方式在更大角度范围内发送波束,可以让更多的BSC UE接收到信号,从而提升波束测量效率。
S812,所述BSC终端根据测量结果,获取第一信号的测量参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号。
S814,所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向。
在本申请实施例中,网络侧设备可以配置BSC终端的测量参数与来波方向(AoA)的映射关系,BSC终端只需要测量来波信号,便可以获得来波的AoA。
在本申请实施例中,网络侧设备的发送波束在测量过程是可以变化的,而BSC UE则可以在一定时间内保持接收波束不变。发送波束的扩展角度由网络侧设备进行控制,并且对于BSC UE是透明的。BSC UE通过接收波束测量M个信号,得到第一参考信号,该参考信号对应的信号能量和/或质量是M个参考信号里最好的。
在本申请实施例中,在一种可能的情况下,BSC终端可能已配置测量参数与来波方向的映射关系,BSC终端可以通过该映射关系,获取目标来波方向,因此,在一个可能的实现方式中,S814可以包括:BSC终端根据已配置的测量参数与来波方向的映射关系,获取与所述第一信号的测量参数对应的目标来波方向。例如,网络侧设备可以通过无线资源控制(Radio Resource Control,RRC)/媒体接入控制层(Medium Access Control,MAC)控制单元(Control Element,CE)/下行控制信息(Downlink Control Information,DCI)等任意一种或多种方式联合配置或指示所述映射关系。
在上述可能的实现方式中,所述映射关系可以是网络侧设备配置的,因此,该方法还可以包括:BSC终端接收所述网络侧设备配置或指示的所述映射关系。当然,并不限于此,该映射关系也可以为网络侧设备与BSC终端默认约定的。
在另一种可能的情况下,BSC终端可能未配置测量参数与来波方向的映射关系,BSC终端可以将测量结果上报给网络侧设备,由网络侧设备查询所述映射关系,将与第一信号的测量参数对应的目标来波方向指示给BSC终端。因此,在另一个可能的实现方式中,所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向可以包括:所述BSC终端上报所述第一信号的测量参数,获取所述网络侧设备指示的与所述第一信号的测量参数对应的目标来波方向。也就是说,在该可能的实现方式中,BSC终端可以向网络侧设备上报第一信号的测量参数,网络侧设备在接收到第一信号的测量参数之后,根据配置的所述映射关系,获取与第一信号的测量参数对应的所述目标来波方向,然后向所述BSC终端发送所述目标来波方向的指示信息,BSC终端根据该指示信息,可以获取到所述目标来波方向。
表2示出了本申请实施例中的一种测量参数与AoA的映射示意表。如表2所示,BSC UE的AoA估计精度取决于映射表中RSRP的数量,其数量与网络侧设备发射的M个信号相关。此外,BSC UE的信号处理能力也决定了AoA的估计精度。例如,BSC UE的负载阻抗/传输线数量较少时,能实现调相/调幅的能力有限,可能只在AoA的区域范围内反射一个宽波束,宽波束的增益峰值点有可能偏离AoA角度。因此,在一个可能的实现方式中,该方法还可以包括:BSC终端上报所述BSC终端的能力信息,其中,所述能力信息用于所述网络侧设备配置所述映射关系。即BSC UE将其能力上报给网络,网络在配置映射表时,综合考虑BSC UE能力等因素,确定网络侧设备的M个发射波束。
表2.测量参数与AoA的映射示意表
在一个可能的实现方式中,所述映射关系中测量参数与AoA一一对映关系,其中与一个来波方向对应的测量参数包括:测量参数的取值范围。也就是说,测量参数可能是一个范围,因此,在实际应用中,可能出现多个测量参数对应一个AoA情况。
在本申请实施例中,BSC UE测量网络侧设备发送的多个测量信号的方法可通过高层信令通知BSC UE或通过控制信令的动态参数指示。例如,在一个可能的实现方式中,BSC终端测量网络侧设备发送的多个测量信号,可以包括:在所述网络侧设备指示所述多个测量信号的发送波束的方向相同的情况下,所述BSC终端采用不同的接收波束测量所述多个测量信号。也说是说,在该可能的实现方式中,网络侧设备可以向BSC UE指示其M个测量信号的发送波束具有相同方向,BSC UE将通过不同的接收波束测量信号。
在另一个可能的实现方式中,BSC终端测量网络侧设备发送的多个测量信号,可以包括:在所述网络侧设备指示所述多个测量信号的发送波束的方向不完全相同的情况下,所述BSC终端采用相同的接收波束测量所述多个测量信号。也说是说,在该可能的实现方式中,网络侧设备可以向BSC UE指示其M个测量信号的发送波束具有不同方向,BSC UE可固定其接收波束, 确定最强的信号能量和/或最好的信号质量。
在一个可能的实现方式中,在S814之后,该方法还可以包括以下S816和S818。
S816,BSC UE调制待发送信息比特。
在本申请实施例中,BSC UE实现信息比特调制可以通过天线与负载阻抗的连接实现的,具体实现过程与方法200中的S216中所描述的信息比特调制方法一致,具体可以参数方法200中的S216中的描述,在此不再赘述。
S818,BSC终端根据对获取的所述目标来波方向,反射所述待发送信息比特。
在本申请实施例中,BSC UE根据得到的AoA将信号以AoA的方向反射回网络侧设备。BSC UE通过调整负载阻抗的连接方案和/或传输线连接方案将信号以AoA方向实现180°的信号反射;BSC UE可以将所测的M个测量信号的能量和/或质量上报给网络侧设备,或者也可以只需要选取其中最优的波束进行上报。而最优波束对应的AoA可以存储在BSC UE中,不需要上报给网络侧设备。BSC UE反射所述待发送信息比特的实现过程与方法200中的S218中所描述的信号反射方法一致,具体可以参见上述关于S218的描述,在此不再赘述。
在S818之后,网络侧设备可以接收BSC UE的反射信号。
通过本申请实施例提供的技术方案,针对网络侧设备发送多信号场景,可以配置BSC UE测量参数与AoA的映射表,BSC UE只需测量来波信号便可获得来波AoA,从而降低了因波束对齐引起的系统功耗。
图10示出本申请实施例提供的测量信号的发送方法的一种流程示意图,该方法1000是与方法800对应的网络侧设备的执行步骤,该方法1000由网络侧设备执行。换言之,所述方法可以由安装在网络侧设备上的软件或硬件来执行。如图10所示,该方法可以包括以下步骤。
S1010,网络侧设备根据目标参数,配置测量参数与来波方向的映射关系, 其中,所述目标参数包括以下至少之一:与所述网络侧设备通信的BSC终端的数量、所述网络侧设备与BSC终端之间的通信距离。
S1012,网络侧设备根据所述映射关系,发送多个测量信号。
在本申请实施例中,根据映射关系的设计规则可以确定BSC UE获取AoA估计的精度,网络侧设备可以根据需要即时通信的BSC UE数量和/或通信距离配置映射表。
另外,AoA的估计精度也取决于BSC UE的能力,即BSC UE硬件参数决定能否实现特定AoA角度的信号反射,因此,在一个可能的实现方式中,所述目标参数还包括:BSC终端的能力。
网络侧设备可以基于上述映射关系,发送M(M为大于1的整数)个测量信号,对应M个模拟波束,可以为每个波束方向配置一个赋形的信号集合用于波束的测量,该信号可以为序列、Preamble、参考信号、SSB等。
其中,M个测量信号可以在不同时域和/或频域资源上传输,以便网络侧设备能够针对每个方向调整移相器的配置来实现模拟波束成形。
在本申请实施例中,网络侧设备在发送波束时可以采用周期或非周期发送方式。若网络侧设备已知BSC UE大致方向的情况下,可以通过非周期方式发送波束,只在有限的几个方向上发送波束,以降低系统开销及BSC UE的测量复杂度。在系统负荷较高的情况下,网络侧设备通过周期性发送方式在更大角度范围内发送波束,可以让更多的BSC UE接收到信号,从而提升波束测量效率。
在本申请实施例的一个可能的实现方式中,在所述网络侧设备发送所述多个测量信号之前,所述方法还包括:所述网络侧设备向BSC终端配置或指示所述映射关系。从而使得BSC UE只需测量来波信号便可获得来波方向。
在另一个可能的实现方式中,网络侧设备也可以不向BSC终端配置或指示所述映射关系,BSC终端可以在测量M个测量信号之后,上报第一信号的测量参数。因此,在该可能的实现方式中,在所述网络侧设备发送所述多个 测量信号之后,所述方法还包括:所述网络侧设备接收BSC终端上报的第一信号的测量参数,其中,所述第一信号为所述BSC终端通过测量所述多个测量信号得到的信号能量最好和/或信号质量最好的测量信号;所述网络侧设备根据所述映射关系,获取与所述第一信号的测量参数对应的目标来波方向;所述网络侧设备向所述BSC终端指示所述目标来波方向。通过该可能的实现方式,可以降低对BSC终端的硬件要求。
为了使得BSC终端可以确定测量多个测量信号的方式,在一个可能的实现方式中,该方法还可以包括:
网络侧设备向所述BSC终端指示所述多个测量信号的发送波束的方向相同,BSC UE在接收到该指示后,可以通过不同的接收波束测量所述多个测量信号;或者,
网络侧设备向所述BSC终端指示所述多个测量信号的发送波束的方向不完全相同,BSC UE在接收到该指示后,可以固定其接收波束测量所述多个测量信号。
通过本申请实施例提供的技术方案,网络侧设备可以信号测量参数与AoA的映射表,BSC UE只需测量来波信号便可获得来波方向,降低了因波束对齐引起的系统功耗。
本申请实施例提供的来波方向估计方法,执行主体可以为来波方向估计装置。本申请实施例中以来波方向估计装置执行来波方向估计方法为例,说明本申请实施例提供的来波方向估计装置。
图11示出本申请实施例提供的来波方向估计装置的一种结构示意图,如图11所示,该装置1100主要包括:第一测量模块1101、第一获取模块1102和估计模块1103。
在本申请实施例中,第一测量模块1101,用于在多个测量范围测量网络侧设备发送的一个测量信号;第一获取模块1102,用于根据各个所述测量范围得到的测量结果,获取N组和差波束,其中,一个所述测量范围对应一组 所述和差波束,一组和差波束中包括一个和波束和一个差波束,N为测量范围的数量,且N为大于1的整数;估计模块1103,用于根据目标和差波束组,估计所述测量信号的来波方向,其中,所述目标和差波束组为所述N组和差波束中信号能量最好和/或信号质量最好的一组和差波束。
在一个可能的实现方式中,所述第一测量模块1101在多个测量范围测量网络侧设备发送的一个测量信号,包括:
对于各个测量范围,所述BSC终端采用与该测量范围对应的负载阻抗连接方式测量所述测量信号,其中,不同的所述测量范围对应的负载阻抗连接方式不完全相同。
在一个可能的实现方式中,所述第一测量模块1101在多个测量范围测量网络侧设备发送的一个测量信号,包括:
在不同时刻测量不同测量范围的所述测量信号;或者,
在同一时刻通过所述BSC终端的不同面板测量不同测量范围的所述测量信号。
本申请实施例中的来波方向估计装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是BSC终端,也可以为除终端之外的其他设备。示例性的,BSC终端可以包括但不限于上述所列举的BSC终端11的类型。
本申请实施例提供的来波方向估计装置能够实现图2至图7的方法实施例中BSC终端实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图12示出本申请实施例提供的来波方向获取装置的一种结构示意图,如图12所示,该装置1200主要包括:第二测量模块1201、第二获取模块1202和第三获取模块1203。
在本申请实施例中,第二测量模块1201,用于测量网络侧设备发送的多个测量信号;第二获取模块1202,用于根据测量结果,获取第一信号的测量 参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号;第三获取模块1203,用于获取与所述第一信号的测量参数对应的目标来波方向。
在一个可能的实现方式中,所述第三获取模块1203获取与所述第一信号的测量参数对应的目标来波方向,包括:
根据已配置的测量参数与来波方向的映射关系,获取与所述第一信号的测量参数对应的目标来波方向;或者,
上报所述第一信号的测量参数,获取所述网络侧设备指示的与所述第一信号的测量参数对应的目标来波方向。
在一个可能的实现方式中,所述装置还包括:第一接收模块,用于接收所述网络侧设备配置或指示的所述映射关系。
在一个可能的实现方式中,所述装置还包括:上报模块,用于上报所述BSC终端的能力信息,其中,所述能力信息用于所述网络侧设备配置所述映射关系。
在一个可能的实现方式中,所述第二测量模块1201测量网络侧设备发送的多个测量信号,包括:在所述网络侧设备指示所述多个测量信号的发送波束的方向相同的情况下,通过不同的接收波束测量所述多个测量信号;或者,在所述网络侧设备指示所述多个测量信号的发送波束的方向不完全相同的情况下,采用相同的接收波束测量所述多个测量信号。
本申请实施例中的来波方向获取装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是BSC终端,也可以为除终端之外的其他设备。示例性的,BSC终端可以包括但不限于上述所列举的BSC终端11的类型。
本申请实施例提供的来波方向获取装置能够实现图8至图10的方法实施例中BSC终端实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图13示出本申请实施例提供的测量信号的发送装置的一种结构示意图,如图13所示,该装置1300主要包括:配置模块1301和发送模块1302。
在本申请实施例中,配置模块1301,用于根据目标参数,配置测量参数与来波方向的映射关系,其中,所述目标参数包括以下至少之一:与所述网络侧设备通信的BSC终端的数量、所述网络侧设备与BSC终端之间的通信距离;发送模块1302,用于根据所述映射关系,发送多个测量信号。
在一个可能的实现方式中,所述发送模块1302还用于向BSC终端配置或指示所述映射关系。
在一个可能的实现方式中,所述装置还包括:第二接收模块,接收BSC终端上报的第一信号的测量参数,其中,所述第一信号为所述BSC终端通过测量所述多个测量信号得到的信号能量最好和/或信号质量最好的测量信号;第四获取模块,用于根据所述映射关系,获取与所述第一信号的测量参数对应的目标来波方向;所述发送模块1302还用于向所述BSC终端指示所述目标来波方向。
在一个可能的实现方式中,所述发送模块1302还用于:
向所述BSC终端指示所述多个测量信号的发送波束的方向相同;或者,
向所述BSC终端指示所述多个测量信号的发送波束的方向不完全相同。
本申请实施例中的测量信号的发送装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是网络侧设备,该网络侧设备可以为上述网络侧设备12的各种实现方式,本申请实施例不作具体限定。
本申请实施例提供的测量信号的发送装置能够实现图8至图10的方法实施例中网络侧设备实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上 运行的程序或指令,例如,该通信设备1400为终端时,该程序或指令被处理器1401执行时实现上述来波方向估计方法实施例的各个步骤,或者实现上述来波方向获取方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1400为网络侧设备时,该程序或指令被处理器1401执行时实现上述测量信号的发送方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种BSC终端,包括处理器和通信接口,处理器用于实现上述来波方向估计方法实施例的各个步骤,或者实现上述来波方向获取方法实施例的各个步骤,通信接口用于与外部设备进行通信。该终端实施例与上述BSC终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。
该终端1500包括但不限于:射频单元1501、网络模块1502、音频输出单元1503、输入单元1504、传感器1505、显示单元1506、用户输入单元1507、接口单元1508、存储器1509以及处理器1510等中的至少部分部件。
本领域技术人员可以理解,终端1500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图15中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1504可以包括图形处理单元(Graphics Processing Unit,GPU)15041和麦克风15042,图形处理器15041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1506可包括显示面板15061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板15061。用户输入单元1507包括触控面板15071以及其他输入设备15072中的至少一种。 触控面板15071,也称为触摸屏。触控面板15071可包括触摸检测装置和触摸控制器两个部分。其他输入设备15072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1501接收来自网络侧设备的下行数据后,可以传输给处理器1510进行处理;另外,射频单元1501可以向网络侧设备发送上行数据。通常,射频单元1501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1509可用于存储软件程序或指令以及各种数据。存储器1509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1509可以包括易失性存储器或非易失性存储器,或者,存储器1509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1509包括但不限于这些和任意其它适合类型的存储器。
处理器1510可包括一个或多个处理单元;可选的,处理器1510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用 户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1510中。
其中,处理器1510,用于测量网络侧设备发送的多个测量信号;根据测量结果,获取第一信号的测量参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号;获取与所述第一信号的测量参数对应的目标来波方向。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于实现上述测量信号的发送方法实施例的各个步骤,通信接口用于与外部设备进行通信。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图16所示,该网络侧设备1600包括:天线1601、射频装置1602、基带装置1603、处理器1604和存储器1605。天线1601与射频装置1602连接。在上行方向上,射频装置1602通过天线1601接收信息,将接收的信息发送给基带装置1603进行处理。在下行方向上,基带装置1603对要发送的信息进行处理,并发送给射频装置1602,射频装置1602对收到的信息进行处理后经过天线1601发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1603中实现,该基带装置1603包括基带处理器。
基带装置1603例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图16所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1605连接,以调用存储器1605中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1606,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1600还包括:存储在存储器1605上并可在处理器1604上运行的指令或程序,处理器1604调用存储器1605中的指令或程序执行图13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述来波方向估计方法实施例的各个步骤,或者实现上述来波方向获取方法实施例的各个步骤,或者实现上述测量信号的发送方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述来波方向估计方法实施例的各个过程,或者实现上述来波方向获取方法实施例的各个过程,或者实现上述测量信号的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述来波方向估计方法实施例的各个过程,或者实现上述来波方向获取方法实施例的各个过程,或者实现上述测量信号的发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种来波方向估计系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的来波方向估计方法的步骤,所述网络侧 设备可用于执行如上所述的测量信号的发送方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种来波方向估计方法,包括:
    反射散射BSC终端在多个测量范围测量网络侧设备发送的一个测量信号;
    所述BSC终端根据各个所述测量范围得到的测量结果,获取N组和差波束,其中,一个所述测量范围对应一组所述和差波束,一组和差波束中包括一个和波束和一个差波束,N为测量范围的数量,且N为大于1的整数;
    所述BSC终端根据目标和差波束组,估计所述测量信号的来波方向,其中,所述目标和差波束组为所述N组和差波束中信号能量最好和/或信号质量最好的一组和差波束。
  2. 根据权利要求1所述的方法,其中,所述BSC终端在多个测量范围测量网络侧设备发送的一个测量信号,包括:
    对于各个测量范围,所述BSC终端采用与该测量范围对应的负载阻抗连接方式测量所述测量信号,其中,不同的所述测量范围对应的负载阻抗连接方式不完全相同。
  3. 根据权利要求1或2所述的方法,其中,所述BSC终端在多个测量范围测量网络侧设备发送的一个测量信号,包括:
    所述BSC终端在不同时刻测量不同测量范围的所述测量信号;或者,
    所述BSC终端在同一时刻通过所述BSC终端的不同面板测量不同测量范围的所述测量信号。
  4. 根据权利要求1至3任一项所述的方法,其中,在所述BSC终端根据目标组和波束和差波束,估计所述测量信号的来波方向之后,所述方法还 包括:
    所述BSC UE调制待发送信息比特;
    所述BSC UE根据对估计的所述来波方向,反射所述待发送信息比特。
  5. 一种来波方向获取方法,包括:
    BSC终端测量网络侧设备发送的多个测量信号;
    所述BSC终端根据测量结果,获取第一信号的测量参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号;
    所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向。
  6. 根据权利要求5所述的方法,其中,所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向,包括:
    所述BSC终端根据已配置的测量参数与来波方向的映射关系,获取与所述第一信号的测量参数对应的目标来波方向;或者,
    所述BSC终端上报所述第一信号的测量参数,获取所述网络侧设备指示的与所述第一信号的测量参数对应的目标来波方向。
  7. 根据权利要求6所述的方法,其中,在所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向之前,所述方法还包括:
    所述BSC终端接收所述网络侧设备配置或指示的所述映射关系。
  8. 根据权利要求7所述的方法,其中,在所述BSC终端接收所述网络侧设备配置或指示的所述映射关系之前,所述方法还包括:
    所述BSC终端上报所述BSC终端的能力信息,其中,所述能力信息用于所述网络侧设备配置所述映射关系。
  9. 根据权利要求6所述的方法,其中,所述映射关系中与一个来波方向对应的测量参数包括:测量参数的取值范围。
  10. 根据权利要求5至9任一项所述的方法,其中,所述BSC终端测量网络侧设备发送的多个测量信号,包括:
    在所述网络侧设备指示所述多个测量信号的发送波束的方向相同的情况下,所述BSC终端采用不同的接收波束测量所述多个测量信号;或者,
    在所述网络侧设备指示所述多个测量信号的发送波束的方向不完全相同的情况下,所述BSC终端采用相同的接收波束测量所述多个测量信号。
  11. 根据权利要求5至9任一项所述的方法,其中,在所述BSC终端获取与所述第一信号的测量参数对应的目标来波方向之后,所述方法还包括:
    所述BSC UE调制待发送信息比特;
    所述BSC UE根据获取的所述目标来波方向,反射所述待发送信息比特。
  12. 一种测量信号的发送方法,包括:
    网络侧设备根据目标参数,配置测量参数与来波方向的映射关系,其中,所述目标参数包括以下至少之一:与所述网络侧设备通信的BSC终端的数量、所述网络侧设备与BSC终端之间的通信距离;
    所述网络侧设备根据所述映射关系,发送多个测量信号。
  13. 根据权利要求12所述的方法,其中,所述目标参数还包括:BSC终端的能力。
  14. 根据权利要求12或13所述的方法,其中,在所述网络侧设备发送所述多个测量信号之前,所述方法还包括:
    所述网络侧设备向BSC终端配置或指示所述映射关系。
  15. 根据权利要求12或13所述的方法,其中,在所述网络侧设备发送所述多个测量信号之后,所述方法还包括:
    所述网络侧设备接收BSC终端上报的第一信号的测量参数,其中,所述 第一信号为所述BSC终端通过测量所述多个测量信号得到的信号能量最好和/或信号质量最好的测量信号;
    所述网络侧设备根据所述映射关系,获取与所述第一信号的测量参数对应的目标来波方向;
    所述网络侧设备向所述BSC终端指示所述目标来波方向。
  16. 根据权利要求12至15任一项所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述BSC终端指示所述多个测量信号的发送波束的方向相同;或者,
    所述网络侧设备向所述BSC终端指示所述多个测量信号的发送波束的方向不完全相同。
  17. 一种来波方向估计装置,包括:
    第一测量模块,用于在多个测量范围测量网络侧设备发送的一个测量信号;
    第一获取模块,用于根据各个所述测量范围得到的测量结果,获取N组和差波束,其中,一个所述测量范围对应一组所述和差波束,一组和差波束中包括一个和波束和一个差波束,N为测量范围的数量,且N为大于1的整数;
    估计模块,用于根据目标和差波束组,估计所述测量信号的来波方向,其中,所述目标和差波束组为所述N组和差波束中信号能量最好和/或信号质量最好的一组和差波束。
  18. 根据权利要求17所述的装置,其中,所述第一测量模块在多个测量范围测量网络侧设备发送的一个测量信号,包括:
    对于各个测量范围,所述BSC终端采用与该测量范围对应的负载阻抗连 接方式测量所述测量信号,其中,不同的所述测量范围对应的负载阻抗连接方式不完全相同。
  19. 根据权利要求17或18所述的装置,其中,所述第一测量模块在多个测量范围测量网络侧设备发送的一个测量信号,包括:
    在不同时刻测量不同测量范围的所述测量信号;或者,
    在同一时刻通过所述BSC终端的不同面板测量不同测量范围的所述测量信号。
  20. 一种来波方向获取装置,包括:
    第二测量模块,用于测量网络侧设备发送的多个测量信号;
    第二获取模块,用于根据测量结果,获取第一信号的测量参数,其中,所述第一信号为所述多个测量信号中信号能量最好和/或信号质量最好的测量信号;
    第三获取模块,用于获取与所述第一信号的测量参数对应的目标来波方向。
  21. 根据权利要求20所述的装置,其中,所述第三获取模块获取与所述第一信号的测量参数对应的目标来波方向,包括:
    根据已配置的测量参数与来波方向的映射关系,获取与所述第一信号的测量参数对应的目标来波方向;或者,
    上报所述第一信号的测量参数,获取所述网络侧设备指示的与所述第一信号的测量参数对应的目标来波方向。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    第一接收模块,用于接收所述网络侧设备配置或指示的所述映射关系。
  23. 根据权利要求22所述的装置,其中,所述装置还包括:
    上报模块,用于上报所述BSC终端的能力信息,其中,所述能力信息用于所述网络侧设备配置所述映射关系。
  24. 根据权利要求20至23任一项所述的装置,其中,所述第二测量模块测量网络侧设备发送的多个测量信号,包括:
    在所述网络侧设备指示所述多个测量信号的发送波束的方向相同的情况下,通过不同的接收波束测量所述多个测量信号;或者,
    在所述网络侧设备指示所述多个测量信号的发送波束的方向不完全相同的情况下,采用相同的接收波束测量所述多个测量信号。
  25. 一种测量信号的发送装置,包括:
    配置模块,用于根据目标参数,配置测量参数与来波方向的映射关系,其中,所述目标参数包括以下至少之一:与所述网络侧设备通信的BSC终端的数量、所述网络侧设备与BSC终端之间的通信距离;
    发送模块,用于根据所述映射关系,发送多个测量信号。
  26. 根据权利要求25所述的装置,其中,所述发送模块还用于向BSC终端配置或指示所述映射关系。
  27. 根据权利要求25或26所述的装置,其中,所述装置还包括:
    第二接收模块,接收BSC终端上报的第一信号的测量参数,其中,所述第一信号为所述BSC终端通过测量所述多个测量信号得到的信号能量最好和/或信号质量最好的测量信号;
    第四获取模块,用于根据所述映射关系,获取与所述第一信号的测量参数对应的目标来波方向;
    所述发送模块,还用于向所述BSC终端指示所述目标来波方向。
  28. 根据权利要求25至27任一项所述的装置,其中,所述发送模块还 用于:
    向所述BSC终端指示所述多个测量信号的发送波束的方向相同;或者,
    向所述BSC终端指示所述多个测量信号的发送波束的方向不完全相同。
  29. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至4任一项所述的来波方向估计方法的步骤,或者实现如权利要求5至11任一项所述的来波方向获取方法的步骤。
  30. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12至16任一项所述的测量信号的发送的步骤。
  31. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至4任一项所述的来波方向估计方法的步骤,或者实现如权利要求5至11任一项所述的来波方向获取方法的步骤,或者实现如权利要求12至16任一项所述的测量信号的发送的步骤。
PCT/CN2023/073685 2022-01-29 2023-01-29 来波方向估计方法、终端及网络侧设备 WO2023143562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210112347.XA CN116582877A (zh) 2022-01-29 2022-01-29 来波方向估计方法、终端及网络侧设备
CN202210112347.X 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023143562A1 true WO2023143562A1 (zh) 2023-08-03

Family

ID=87470719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073685 WO2023143562A1 (zh) 2022-01-29 2023-01-29 来波方向估计方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116582877A (zh)
WO (1) WO2023143562A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129244A1 (ja) * 2015-02-12 2016-08-18 株式会社デンソー 到来方向推定装置
CN109120305A (zh) * 2018-07-04 2019-01-01 广州杰赛科技股份有限公司 一种宽带波束的数字跟踪方法、系统和设备
CN110031793A (zh) * 2019-04-09 2019-07-19 中国电子科技集团公司第三十六研究所 一种干涉仪测向方法、装置和系统
CN110266616A (zh) * 2019-05-28 2019-09-20 上海交通大学 一种基于和差波束测角法的信道估计方法
CN113253196A (zh) * 2021-06-01 2021-08-13 中国电子科技集团公司第三十六研究所 一种多信号测向方法、装置和电子设备
CN113659340A (zh) * 2021-08-04 2021-11-16 上海移远通信技术股份有限公司 毫米波天线方向控制方法、装置、终端设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129244A1 (ja) * 2015-02-12 2016-08-18 株式会社デンソー 到来方向推定装置
CN109120305A (zh) * 2018-07-04 2019-01-01 广州杰赛科技股份有限公司 一种宽带波束的数字跟踪方法、系统和设备
CN110031793A (zh) * 2019-04-09 2019-07-19 中国电子科技集团公司第三十六研究所 一种干涉仪测向方法、装置和系统
CN110266616A (zh) * 2019-05-28 2019-09-20 上海交通大学 一种基于和差波束测角法的信道估计方法
CN113253196A (zh) * 2021-06-01 2021-08-13 中国电子科技集团公司第三十六研究所 一种多信号测向方法、装置和电子设备
CN113659340A (zh) * 2021-08-04 2021-11-16 上海移远通信技术股份有限公司 毫米波天线方向控制方法、装置、终端设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Considerations on downlink-only positioning method in NR", 3GPP TSG-RAN WG2 MEETING #107BIS, R2-1903037, 3 October 2019 (2019-10-03), XP051791058 *

Also Published As

Publication number Publication date
CN116582877A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US11895054B2 (en) Information transmission method, apparatus, and device
CN111866936B (zh) 辅小区激活方法和装置
KR101825852B1 (ko) 무선 통신 빔포밍 장치, 시스템 및 방법
EP4228097A1 (en) Operating mode indication method, apparatus, and device
US11855928B2 (en) Reference signal management method, apparatus, and system
CN109474400A (zh) 一种通信方法、网络设备及终端设备
WO2021179184A1 (zh) 一种确定上行传输参数的方法及终端设备
WO2020248825A1 (zh) 确定天线面板状态的方法和装置
WO2022052879A1 (zh) 调制方法及装置、通信设备和可读存储介质
US20220174719A1 (en) Antenna panel status indication method and apparatus
KR20210082237A (ko) 안테나 패널 결정 방법, 사용자 단말 및 컴퓨터 판독가능한 저장 매체
CN112019313B (zh) 确定小区激活时延的方法和装置
JP2017530594A (ja) ワイヤレス多元接続方式間の動的な切換え
KR20230074558A (ko) 빔 처리 방법, 장치 및 관련 장비
JP2024517892A (ja) インテリジェントサーフェス機器のビーム制御方法、装置及び電子機器
WO2020143654A1 (zh) 信号测量方法和通信装置
CN111869123B (zh) 用于高效波束管理的通信设备
WO2023143562A1 (zh) 来波方向估计方法、终端及网络侧设备
US20210336679A1 (en) Apparatuses and methods for rsrp measurements for a wireless device with variable output power per antenna arrangement
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
WO2023088376A1 (zh) 上行传输方法、装置、终端及bsc接收设备
WO2024093861A1 (zh) 传输处理方法、装置及相关设备
WO2024093772A1 (zh) 波束处理方法、装置、通信设备及可读存储介质
WO2023040933A1 (zh) 波束信息的确定方法、终端及网络侧设备
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746439

Country of ref document: EP

Kind code of ref document: A1