WO2023207843A1 - 解调参考信号dmrs捆绑的传输方法、装置和终端 - Google Patents

解调参考信号dmrs捆绑的传输方法、装置和终端 Download PDF

Info

Publication number
WO2023207843A1
WO2023207843A1 PCT/CN2023/090058 CN2023090058W WO2023207843A1 WO 2023207843 A1 WO2023207843 A1 WO 2023207843A1 CN 2023090058 W CN2023090058 W CN 2023090058W WO 2023207843 A1 WO2023207843 A1 WO 2023207843A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
target
tdw
time
event
Prior art date
Application number
PCT/CN2023/090058
Other languages
English (en)
French (fr)
Inventor
王勇
蔡建生
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023207843A1 publication Critical patent/WO2023207843A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a transmission method, device and terminal for Demodulation Reference Signal (DMRS) bundling.
  • DMRS Demodulation Reference Signal
  • timing relationships and frequencies may change or shift, for example: when timing ( timing) relationship enhancement and uplink (Up Link, UL) time-frequency compensation function.
  • the timing is based on different validity durations (validity durations).
  • the relationship and frequency may change or shift, and the user equipment (User Equipment, UE) may not be able to maintain phase continuity and power consistency.
  • changes in the timing relationship may even cause the time domain window (Time Domain Window, TDW) to be divided Overlap or confusion affects the performance of joint channel estimation at the receiving end.
  • TDW Time Domain Window
  • Embodiments of the present application provide a transmission method, device and terminal for demodulation reference signal DMRS bundling, which can divide TDW according to events that may cause at least one of the timing relationship, frequency and power of uplink transmission to change or shift, so that The terminal maintains phase continuity and power consistency of uplink transmission within an actual TDW, which can improve the performance of joint channel estimation.
  • a transmission method for demodulation reference signal DMRS bundling which method includes:
  • the terminal performs the target operation based on the first event when performing target uplink transmission, where the target uplink transmission is uplink transmission based on demodulation reference signal DMRS bundling and within the target nominal time domain window TDW;
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and the auxiliary information do not change;
  • the target operation includes at least one of the following:
  • a transmission device for demodulation reference signal DMRS bundling which is applied to a terminal.
  • the device includes:
  • An execution module configured to perform a target operation based on the first event when performing target uplink transmission, which is an uplink transmission based on demodulation reference signal DMRS bundling and within the target nominal time domain window TDW;
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and the auxiliary information do not change;
  • the target operation includes at least one of the following:
  • a terminal in a third aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to perform a target operation based on a first event when the communication interface performs a target uplink transmission, and the target uplink transmission It is the uplink transmission based on the demodulation reference signal DMRS bundling and within the target nominal time domain window TDW;
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and the auxiliary information do not change;
  • the target operation includes at least one of the following:
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip in a sixth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect. Steps of DMRS bundled transmission method.
  • the terminal performs the target operation based on the first event when performing target uplink transmission.
  • the target uplink transmission is an uplink bundled based on the demodulation reference signal DMRS and within the target nominal time domain window TDW. Transmission; wherein the first event includes at least one of the following: updating auxiliary information, the auxiliary information including the ephemeris of the terminal's serving satellite; applying the initial time of the auxiliary information indicated by the network side device; in The initial time of the ephemeris is applied to the ephemeris; the timing offset K_offset indicated by the network side device is applied; the new public timing is applied to advance TA; the terminal-specific TA is pre-compensated or validated; the target uplink
  • the polarization type of the receiving end of the transmission changes; the polarization type of the sending end of the target uplink transmission changes; the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and The auxiliary information does not change; the target
  • the terminal when the terminal performs the target uplink transmission of DMRS bundling, when the first event that changes the transmission parameters associated with the target uplink transmission occurs, the terminal can end the current actual TDW in the target nominal TDW, and/ Or, start a new actual TDW within the target nominal TDW, or end the target uplink transmission, so that the target uplink transmission of DMRS bundling performed by the terminal can maintain power consistency within an actual TDW based on the re-divided TDW. and phase continuity, thereby improving the receiver's joint performance based on the target uplink transmission of the DMRS bundle. Channel estimation performance.
  • Figure 1 is a schematic structural diagram of a wireless communication system to which embodiments of the present application can be applied;
  • Figure 2 is a flow chart of a DMRS bundling transmission method provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of the NTN network architecture
  • Figure 4 is a schematic structural diagram of a DMRS bundling transmission device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • MID Mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • PUE wearable devices
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • Terminal side devices, wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wrists Belts, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) Access Point (AP) or a Wireless Fidelity (Wireless Fidelity, WiFi) node, etc.
  • the base station may be called a Node B (Node B).
  • NB Evolved Node B
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • BSS Base Transceiver Station
  • BSS Basic Service Set
  • BSS Extension Service set
  • HNB home Node B
  • HNB home evolved Node B
  • TRP Transmitting Receiving Point
  • the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific name of the base station is not limited. type.
  • the embodiment of the present application provides a DMRS bundling transmission method.
  • the execution subject can be a terminal.
  • the terminal can be various types of terminals 11 listed in Figure 1, or other than the ones shown in Figure 1. Terminals other than the terminal types listed in the embodiment are not specifically limited here.
  • the DMRS bundling transmission method may include the following steps:
  • Step 201 The terminal performs the target operation based on the first event when performing target uplink transmission, which is uplink transmission based on demodulation reference signal DMRS bundling and within the target nominal time domain window TDW.
  • the target operation includes at least one of the following:
  • the DMRS bundling feature is introduced.
  • the terminal is required to maintain the phase continuity and power consistency of uplink transmission in an actual TDW in uplink transmission.
  • the receiving end can perform joint channel estimation based on DMRS bundling within an actual TDW.
  • the nominal TDW can start from the first time slot of the uplink transmission, and according to the size of the nominal TDW configured by the network, within the duration of the uplink transmission, it can be continuously divided into one or more nominalTDW.
  • some semi-static events or dynamic events will destroy the phase continuity or power consistency of uplink transmission, thereby dividing a nominal TDW into one or multiple actual TDWs.
  • dynamic events include events indicated by downlink control information (Downlink Control Information, DCI) or media access control layer control unit (Medium Access Control Control Element, MAC CE).
  • DCI Downlink Control Information
  • MAC CE Media Access Control Element
  • Semi-static events are generally events configured by high-level parameters (such as Radio Resource Control (RRC) parameters) or agreed by protocols.
  • RRC Radio Resource Control
  • DCI Downlink Control Channel
  • the above-mentioned first event can change the transmission parameters associated with the target uplink transmission.
  • the communication system applied in the embodiment of the present application can introduce functions such as timing relationship enhancement and UL time-frequency compensation.
  • transmission parameters such as the timing relationship, frequency, transmit power, and receive power associated with the target uplink transmission may change or deviate.
  • the duration of the uplink transmission of DMRS bundling enabled by the terminal spans at least two validity durations, it may occur that the terminal cannot maintain phase continuity and power consistency, and changes in timing relationships may even cause TDW division Overlap or confusion affects the performance of joint channel estimation at the receiving end, resulting in limited coverage capabilities.
  • the above-mentioned communication system that introduces functions such as timing relationship enhancement and UL time-frequency compensation can be NTN.
  • timing relationship enhancement and UL time-frequency compensation may also be introduced in other communication systems.
  • the application scenarios of the DMRS bundling transmission method provided by this application are not specifically limited here, and for convenience of explanation, the NTN scenario is used as an example in the embodiment of this application to conduct the DMRS bundling transmission method provided by this embodiment. for example.
  • NTN application scenarios in 5G networks include 8 enhanced mobile broadband (Enhance Mobile Broadband, eMBB) scenarios and 2 large-scale machine categories Communication (massive Machine Type Communication, mMTC) scenario.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine Type Communication
  • 3GPP Rel-17NTN can include: NTN terminals (3GPP terminals (UE) or non-3GPP terminals (i.e. satellite terminals)), NTN terminals with transparent transmission capabilities Satellite (satellite) or aerial platform (such as: Unmanned Aircraft Systems (UAS) platform (platform)) and gateway station (Gateway), in which the NTN terminal and the satellite or aerial platform are connected through a service link (Service Link) connection, the satellite or aerial platform is connected to the gateway station through a feeder link, and the gateway station connects the network elements of the NTN access network and the ground core network (Date Network).
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two validity durations, wherein the common TA and the auxiliary information do not change within the same validity duration.
  • the above-mentioned auxiliary information (such as the position information of the terminal and the ephemeris of the serving satellite) can include Doppler on the calculation of timing advance (Timing Advance, TA) related parameters and pre-compensation service link (service link) Parameters such as frequency offset, etc., when the network side device indicates new auxiliary information, the terminal will change the phase of the uplink transmission, timing advance TA, etc. when applying or taking effect the auxiliary information table, thus Breaking the power consistency or phase continuity of uplink transmission.
  • Timing Advance Timing Advance
  • service link service link
  • the TDW can be re-divided so that the uplink transmission of the terminal within an actual TDW Ability to maintain power consistency or phase continuity.
  • auxiliary information may also include other information besides the ephemeris of the serving satellite.
  • the auxiliary information may also include the location information of the terminal. This may also cause the situation where the location of the terminal changes. Changes in the transmission delay between the terminal and the receiving end of the target uplink transmission will reduce the joint channel estimation performance of the receiving end. At this time, when the transmission delay between the terminal and the receiving end of the target uplink transmission changes, re-dividing TDW can improve the joint channel estimation performance of the receiver within the actual TDW.
  • the network side device when instructing the auxiliary information to update, can also indicate the initial time when the updated auxiliary information takes effect (which can also be called: starting time, starting time or epoch time), That is, the starting time of applying the auxiliary information indicated by the network side device.
  • the TDW can be divided based on the initial time, so that the time before the initial time is located in a different distribution from the initial time and the time distribution after the initial time. TDW, making the division of TDW more accurate.
  • the terminal can obtain the epoch time indicated by the network side device in the following ways:
  • the epoch time is the starting time of a downlink (Down Link, DL) subframe.
  • the DL subframe can be passed through the system frame number (SFN) and subframe number are obtained;
  • the epoch time can be transmitted through the system information window (SI) of the NTN-specific System Information Block (NTN-specific System Information Block, NTN-specific SIB).
  • SI system information window
  • NTN-specific System Information Block NTN-specific SIB
  • the epoch time is the starting time of a DL subframe, which is indicated by the system frame number (SFN) and subframe number.
  • SFN system frame number
  • Option three applying the ephemeris at the initial time of the ephemeris, is similar to the above option two. The difference is that the content applied in option three is the ephemeris, and the content applied in option two is the ephemeris. The initial time of the ephemeris, both can make the division of TDW more accurate.
  • the terminal may use the K_offset for uplink transmission.
  • timing offset (K_offset) is introduced in the following process in R17NTN to enhance the timing relationship:
  • DCI schedules the transmission timing of the Physical Uplink Shared Channel (PUSCH) (including the CSI carried by PUSCH);
  • PUSCH Physical Uplink Shared Channel
  • Random Access Response (RAR) authorization schedules the transmission timing of PUSCH
  • HARQ-ACK Hybrid automatic repeat request acknowledgement
  • PUCCH Physical Uplink Control Channel
  • CSI Channel State Information
  • SRS Sounding Reference Signal
  • the timing relationship of the uplink transmission may be changed.
  • the TDW can be re-divided when the K_offset is updated. , so that the uplink transmission of the terminal within an actual TDW can maintain power consistency or phase continuity.
  • the updated K_offset indicated by the network side device when the updated K_offset indicated by the network side device is received, the current actual TDW will be ended based on this event.
  • the terminal application applies or take effect (take effect) will also be performed.
  • the updated K_offset is treated as an event, and the TDW is divided based on the event.
  • the specific process of the terminal applying K_offset indicated by the network side device may include:
  • the terminal uses the cell-specific K_offset (cell specific K_offset), and the network side device indicates the cell specific K_offset through system messages;
  • the network side device can indicate and update the terminal-specific K_offset (UE specific K_offset) through MAC CE, where MAC CE can carry a differential UE specific K_offset value.
  • a complete UE specific K_offset value is equal to the cell specific K_offset minus the differential UE specific K_offset;
  • the terminal can continue to use the cell specific K_offset in the system message for the enhancement of all the above timing relationships.
  • the cell specific K_offset value range is 0 ⁇ 1023ms
  • the UE specific K_offset value range is 0 ⁇ 63ms.
  • Common TA can be used Due to the uplink time and frequency synchronization in the NTN scenario, when the Common TA changes, the phase and frequency of the terminal's uplink transmission may change. At this time, the new Common TA is applied as a first event and based on This division of TDW enables the uplink transmission of the terminal within an actual TDW to maintain power consistency or phase continuity.
  • N TA, UE-specific is the TA that the terminal independently estimates and pre-compensates
  • N TA,common is the public TA controlled and instructed by the network
  • N TA,offset is a fixed timing offset, which depends on the frequency band and LTE/NR coexistence and is specified by the network configuration or protocol;
  • pre-compensating or validating the terminal-specific TA can be calculated by the terminal based on some auxiliary information. For example, the terminal calculates N TA based on its own UE position and the ephemeris of the serving satellite, UE- specific , and update T TA based on the calculated N TA, UE-specific . In this way, based on the update of the auxiliary information, N TA,UE-specific can be changed, thereby updating T TA .
  • ephemeris, initial time, K_offset, and public timing advance TA can also be expressed as ephemeris, initial time, K_offset, and public timing advance TA to take effect, and pre-compensate or take effect that is unique to the terminal TA can also be expressed as a TA unique to the application terminal, which is not specifically limited here.
  • the polarization type of the receiving end of the target uplink transmission changes, which may be that the polarization type of the satellite changes.
  • the satellite may support circular polarization (left-hand or right-hand circular polarization) or linear polarization antenna type to send and receive signals.
  • circular polarization left-hand or right-hand circular polarization
  • linear polarization antenna type to send and receive signals.
  • the transmitting end in the NTN scenario needs to maintain the continuity of transmit power and phase, and changes in polarization type will destroy the power consistency of uplink transmission.
  • the polarization type of the sending end of the target uplink transmission changes, which may be that the polarization type of the terminal changes.
  • terminals in related technologies mainly support linear polarization antenna types, future terminals may also support linear polarization or circular polarization.
  • the transmitting end and the receiving end change the polarization type of the receiving end or the transmitting end during multiple transmission signal transmissions
  • the power of the target uplink transmission will change or the phase continuity cannot be maintained, which will also lead to
  • the uplink transmission of the terminal within an actual TDW can be achieved.
  • the target uplink transmission spans at least two valid durations, wherein the common TA and the auxiliary information do not change within the same valid duration.
  • the target uplink transmission spans at least two valid durations as the third
  • different actual TDWs can be divided into different effective durations, or the target uplink transmission can be limited to an effective duration, thereby ensuring that the target uplink transmission within the effective duration can maintain consistent power. sexual or phase continuity.
  • the above N TA, common related parameters and the ephemeris of the serving satellite use the same validity duration.
  • the size of the validity duration can be broadcast by the system message and indicated by 4 bits.
  • the optional values of the validity duration are ⁇ 5,10, 15,20,25,30,35,40,45,50,55,60,120,180,240,900 (for geostationary orbit satellites (Geostationary Orbit, GEO)) ⁇ , the unit is seconds.
  • the terminal may assume that N TA, common related parameters and the ephemeris of the serving satellite are valid and there are no updates.
  • the terminal may consider that uplink desynchronization has occurred and thus terminate the uplink transmission.
  • an effective duration can be determined through the above initial time and the size of the effective duration.
  • the above-mentioned validity duration can start from the epoch time of the auxiliary information (such as the ephemeris of the serving satellite).
  • the network side device in addition to triggering the division of TDW based on the first event by defining the first event consistent with option nine above, the network side device can be configured by agreeing on the following content in the protocol: Prioritize configuring or scheduling the target uplink transmission according to the terminal’s expectations:
  • the terminal does not expect to enable the target uplink transmission for a duration greater than an effective duration; and/or,
  • the terminal is not expected to be scheduled or configured to enable DMRS bundled uplink transmission within a valid duration; and/or,
  • the terminal does not expect to change the receive polarization type and/or the transmit polarization type within the time window in which the DMRS bundled uplink transmission is located.
  • the network side device may preferentially configure the duration of the target uplink transmission to be within a valid duration
  • the network side device can give priority to not scheduling or configuring the terminal to enable DMRS bundled uplink transmission within a valid duration
  • the network side device may give priority to the time window corresponding to the terminal execution of the DMRS bundled uplink transmission.
  • the polarization type of the base station and/or the polarization type of the terminal is not changed.
  • the terminal when the first event is a semi-static event, when the terminal performs target uplink transmission, the terminal performs a target operation based on the first event, including:
  • the terminal ends the current actual TDW in the target nominal TDW based on the first event, and starts a new actual TDW in the target nominal TDW; or,
  • the terminal ends the current actual TDW in the target nominal TDW based on the first event.
  • the terminal may support opening a new actual TDW based on a semi-static event by default, or if it is judged based on the terminal capability that the terminal does not support opening a new TDW, the terminal may end the current session in the target nominal TDW based on the first event.
  • the actual TDW and after this, the terminal will no longer open a new actual TDW within the current target nominal TDW, that is, there is only one actual TDW within a target nominal TDW.
  • the terminal when the first event is a dynamic event, when the terminal performs target uplink transmission, the terminal performs a target operation based on the first event, including:
  • the terminal When the terminal supports opening a new TDW based on dynamic events, the terminal ends the current actual TDW in the target nominal TDW based on the first event, and opens a new actual TDW in the target nominal TDW. TDW; or,
  • the terminal does not support starting a new TDW based on dynamic events, the terminal ends the current actual TDW in the target nominal TDW based on the first event.
  • whether the terminal supports opening a new TDW based on dynamic events is used to determine whether the terminal closes the current actual TDW based on the first event and opens a new actual TDW, or whether it closes the current actual TDW based on the first event and opens a new actual TDW based on the first event.
  • Actual TDW is no longer enabled within a nominal TDW.
  • the occurrence time of the first event is the target time
  • the start time of the new actual TDW is the first moment after the first event, such as the first physical symbol or available symbol
  • the end time of the current actual TDW is the last moment before the target time, for example: the last physical symbol or available symbol, where the current actual TDW can be understood as the last actual TDW before the first event.
  • the terminal ends the current actual TDW at the last moment before the target time when the first event occurs. If the terminal supports starting a new actual TDW, it can also start a new actual TDW after the first event. In this way, Taking the time when the first event occurs as a node, between the starting time of a nominal TDW and the last moment before the first event occurs, the transmission parameters of the target uplink transmission are not affected by the first event.
  • the transmission parameters of the target uplink transmission within the starting time of the nominal TDW before and after the first event will change based on the occurrence of the first event, thereby dividing the TDW before the first event and after the first event, so that the TDW after the first event can be divided
  • the target uplink transmission within a practical TDW maintains power consistency and phase continuity.
  • the DMRS bundling transmission method also includes:
  • the terminal receives first indication information from a network side device, wherein the first indication information indicates an initial time of the updated ephemeris, and the target time includes an initial time of the updated ephemeris. time.
  • the network side device can deliver the updated ephemeris to the terminal and indicate the initial time when the updated ephemeris takes effect. In this way, The terminal may apply the updated ephemeris at this initial time.
  • the network side device can also directly indicate that the terminal's serving satellite's ephemeris is updated, and indicate the initial time when the updated ephemeris takes effect, so as to The terminal is caused to follow the instruction to determine that the first event has occurred.
  • the network side device may indicate that there is an update to the ephemeris of the serving satellite and indicate a new initial time (epoch time), and regard this behavior as destroying the phase. Continuity and power consistency events.
  • the network indicates that there is an update to the ephemeris of the serving satellite and indicates the new epoch time.
  • the terminal has the ability to restart TDW, it will restart an actual TDW at epoch time; if the terminal does not have the ability to restart TDW, it will restart the last TDW before epoch time. time as the end time of actual TDW.
  • the DMRS bundling transmission method also includes:
  • the terminal receives second indication information from the network side device, wherein the second indication information indicates a cell-specific K_offset;
  • the terminal receives third indication information from the network side device, wherein the third indication information indicates terminal-specific K_offset differential information
  • the terminal determines the terminal-specific K_offset based on differential information of the cell-specific K_offset and the terminal-specific K_offset;
  • the terminal applies the terminal-specific K_offset, wherein the target time includes an application time of the terminal-specific K_offset.
  • the second indication information may be carried in the system message of the network side device, and the above-mentioned second indication information may be carried in the MAC CE.
  • the application/validation of the K_offset indicated by the MAC CE and/or its update is considered an event that disrupts phase continuity and power consistency.
  • the terminal indicates a cell specific K_offset by the network side device during the initial access phase, and during the subsequent transmission process, the network further indicates a differential UE specific K_offset value through the MAC CE, then the terminal uses the cell specific K_offset
  • the complete UE specific K_offset can be obtained by the value and the differential UE specific K_offset value, and it is assumed that the terminal will apply the complete UE specific K_offset at time t1. In this way, if time t1 is within a nominal TDW with DMRS bundling transmission enabled, the terminal ends the current actual TDW at the last time before time t1.
  • the terminal will not restart a new actual TDW from time t1 to the end of the current nominal TDW. ;
  • the terminal will restart a new actual TDW after time t1 until the next time phase continuity or power consistency is destroyed. event or the end moment of the current nominal TDW.
  • the DMRS bundling transmission method also includes:
  • the terminal obtains new public TA related parameters
  • the terminal applies the target public TA corresponding to the new public TA related parameter, wherein the target time includes the application time of the target public TA.
  • the common TA related parameter may be at least one of the parameters used to determine the basis for determining the new common TA.
  • the new public TA related parameters include at least one of the following:
  • the first common TA, the first TACommonDrift and the first TACommonDriftVariation, and at least one of the first common TA, the first TACommonDrift and the first TACommonDriftVariation is a parameter before update.
  • the network side device may directly deliver a new common TA, or the terminal may determine the new public TA based on at least one of common TA, common timing advance drift TA Common Drift, and common timing advance drift change rate TA Common Drift Variation.
  • the new common TA is calculated, in which the common TA used to calculate the new common TA, the common timing advance drift TA Common Drift, and the common timing advance drift change rate TA Common Drift Variation can be the old parameters (the same as those used to determine the current).
  • the parameters of the common TA used by the actual TDW are the same), or they may be new parameters (different from the parameters of the common TA used to determine the current actual TDW).
  • time t2 is within a nominal TDW that enables DMRS bundling transmission, it can be used at the last time before time t2. End the current actual TDW, and if the terminal supports restarting a new actual TDW, you can also restart a new actual TDW after time t2.
  • the application time of the target public TA is a time preconfigured by the network side device, or a time agreed upon by the protocol, or a time indicated by the network side device, or the initial time of the auxiliary information, or the starting time of the valid duration. .
  • the terminal can re-partition the TDW based on semi-static events. For example: Assume that the target public TA is applied/effective at time t2, and time t2 is within a nominal TDW with DMRS bundling transmission enabled. If time t2 is a semi-static configuration or protocol stipulation, the terminal will restart a new one after time t2. actual TDW until the next occurrence of the first event or the end of the current nominal TDW.
  • the terminal can re-partition the TDW based on dynamic events. For example: Assume that the target public TA is applied/effective at time t2, and time t2 is within a nominal TDW with DMRS bundling transmission enabled. If time t2 is a network dynamic indication, then:
  • the terminal will restart a new actual TDW after time t2 until the next event or the end of the current nominal TDW.
  • the terminal when the application time of the target public TA is the initial time of the auxiliary information, the terminal can use the same initial time as the initial time of the auxiliary information indicated by the application network side device in the above embodiment. To repartition TDW the same way as partitioning TDW. That is, when updating the auxiliary information, the current actual TDW is ended.
  • the terminal when the application time of the target public TA is the starting time of the effective duration, the terminal performs the target operation based on the first event when performing the target uplink transmission, include:
  • the terminal stops the target uplink transmission based on the application time of the target public TA being the starting time of the effective duration.
  • the terminal may re-partition the TDW in the same manner as the terminal re-partitions the TDW based on the event that the target uplink transmission spans at least two valid durations in the above embodiment. That is, each validity duration corresponds to a different actual TDW.
  • the DMRS bundling transmission method also includes:
  • the terminal updates a terminal-specific TA according to first information, wherein the first information includes at least one of the following: location information of the terminal and an ephemeris of a serving satellite of the terminal;
  • the terminal sends the updated terminal-specific TA to the network side device, where the target time includes the effective time of the updated terminal-specific TA.
  • the effective time of the terminal-specific TA may also be called the time of pre-compensating the UE-specific TA.
  • UE-specific TA pre-compensation/validation of UE-specific TA is regarded as an event that disrupts phase continuity and power consistency.
  • the terminal can calculate the UE-specific TA value based on its own position and or the ephemeris of the serving satellite. Combined with the TA command, common TA related parameters, timing offset and other information indicated by the network, the complete TA can be obtained. At this time, the validation of the terminal-specific TA may be to use the complete TA to perform target uplink transmission.
  • the effective time of the updated terminal-specific TA is the time when the terminal sends the updated terminal-specific TA to the network side device, or the updated terminal-specific TA as agreed in the protocol.
  • the time when the unique TA takes effect, or the time when the updated terminal-specific TA takes effect when the instruction carried in the fourth instruction information sent by the terminal to the network side device is indicated.
  • the time at which the UE specific TA pre-compensation/validation of the UE specific TA can be configured by semi-static RRC, or dynamically configured by MAC-CE/DCI.
  • the terminal can report the UE specific TA value.
  • the terminal applies/validates the UE specific TA value at time t3.
  • This time t3 may be the time to report the UE specific TA value. time, or an effective time indicated in the reported information, or an effective time specified by the protocol (such as similar MAC CE effective time).
  • time t3 is within a nominal TDW with DMRS bundling transmission enabled, and time t3 is the time when the UE specific TA value is reported or a valid time specified by the protocol, then the terminal will restart a new actual TDW after time t3 until the next time. Once the first event occurs or the end of the current nominal TDW.
  • time t3 is within a nominal TDW that enables DMRS bundling transmission, and time t3 is an effective time indicated in the information reported by the terminal, then:
  • the terminal will restart a new actual TDW after time t3 until the next occurrence of the first event or the current nominal TDW. Finish.
  • the DMRS bundling transmission method also includes:
  • the terminal receives fifth indication information from the network side device, wherein the fifth indication information indicates that the polarization type of the receiving end or transmitting end of the target uplink transmission has changed, wherein the target time includes the changed The effective time of the polarization type of the receiving end or transmitting end.
  • the above-mentioned fifth instruction information is received from the network side device, but the network side device dynamically configures and schedules the polarization type of DMRS bundling transmission as a dynamic event.
  • the fifth indication information is carried in downlink control information DCI for scheduled uplink transmission from the network side device.
  • changes in polarization type or polarization itself can be configured in the scheduling DCI to specify the polarization that the terminal needs to use or the polarization that the base station uses.
  • the polarization configuration in uplink DCI can specify the polarization type that the terminal should use to send the uplink transmission.
  • the multiple uplink repetition transmissions are sent using the specified polarization type.
  • the DCI scheduled for uplink transmission can be reused to indicate the new polarization type of the receiving end and/or the transmitting end.
  • joint channel estimation can also be supported through the following methods:
  • Method 1 Consider the change of the polarization type of the receiving end or the transmitting end as an event that destroys the power consistency, and when the event occurs, re-divide the TDW based on the time when the event occurs, so that the polarization types of the receiving end and the transmitting end are within Does not change within an actual TDW.
  • the network side device indicates the polarization type of the serving satellite and indicates the effective time of the polarization type.
  • the above-mentioned network side equipment indicates the polarization type of the serving satellite and indicates the effective time of the polarization type as a semi-static event.
  • Method 2 Agree in the agreement that the terminal does not expect to change the polarization type in any TDW of the DMRS bundle. For example: the base station is not expected to change the polarization type and/or the terminal is not expected to change the polarization type.
  • the terminal performs the target operation based on the first event when performing target uplink transmission.
  • the target uplink transmission is an uplink bundled based on the demodulation reference signal DMRS and within the target nominal time domain window TDW. Transmission; wherein the first event is used to change the transmission parameters associated with the target uplink transmission; the target operation includes at least one of the following: ending the current actual TDW within the target nominal TDW; Start a new actual TDW within the TDW, or end the target uplink transmission.
  • the terminal when the terminal performs the target uplink transmission of DMRS bundling, when the first event that changes the transmission parameters associated with the target uplink transmission occurs, the terminal can end the current actual TDW in the target nominal TDW, and/ Or, start a new actual TDW within the target nominal TDW, or end the target uplink transmission, so that the target uplink transmission of DMRS bundling performed by the terminal can maintain power consistency within an actual TDW based on the re-divided TDW. and phase continuity, thereby improving the performance of the receiving end in joint channel estimation based on the target uplink transmission of the DMRS bundle.
  • the execution subject may be a DMRS bundling transmission device.
  • a DMRS bundling transmission device performing a DMRS bundling transmission method is used as an example to illustrate the DMRS bundling transmission device provided by the embodiment of the present application.
  • a DMRS bundling transmission device provided by an embodiment of the present application can be a device in a terminal. As shown in Figure 4, the DMRS bundling transmission device 400 can include the following modules:
  • Execution module 401 configured to perform a target operation based on the first event when performing target uplink transmission, which is an uplink transmission based on demodulation reference signal DMRS bundling and within the target nominal time domain window TDW;
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and the auxiliary information do not change;
  • the target operation includes at least one of the following:
  • the first event is used to change transmission parameters associated with the target uplink transmission, where the transmission parameters include at least one of the following: timing relationship, frequency, transmit power and receive power.
  • the event type of the first event includes at least one of a semi-static event and a dynamic event.
  • execution module 401 is specifically used to:
  • the terminal does not support starting a new TDW, the current actual TDW in the target nominal TDW is ended based on the first event.
  • execution module 401 is specifically used to:
  • the terminal supports opening a new TDW based on dynamic events, end the current actual TDW in the target nominal TDW based on the first event, and open a new actual TDW in the target nominal TDW; or ,
  • the terminal does not support starting a new TDW based on dynamic events, the current actual TDW in the target nominal TDW is ended based on the first event.
  • the occurrence time of the first event is the target time
  • the start time of the new actual TDW is the first moment after the first event
  • the end time of the current actual TDW is the The last moment before the target moment.
  • the DMRS bundled transmission device 400 also includes:
  • the first receiving module is configured to receive first indication information from the network side device, wherein the first indication information indicates the initial time of the updated ephemeris, and the target time includes the updated ephemeris. The initial time of the calendar.
  • the DMRS bundled transmission device 400 also includes:
  • the second receiving module is configured to receive second indication information from the network side device, wherein the second indication information indicates the cell-specific K_offset;
  • a third receiving module configured to receive third indication information from the network side device, wherein the third indication information indicates terminal-specific K_offset differential information;
  • a determination module configured to determine the terminal-specific K_offset based on the differential information of the cell-specific K_offset and the terminal-specific K_offset;
  • the first application module is configured to apply the terminal-specific K_offset, wherein the target time includes the application time of the terminal-specific K_offset.
  • the DMRS bundled transmission device 400 also includes:
  • the second application module is configured to apply the target public TA corresponding to the new public TA related parameters, where the target time includes the application time of the target public TA.
  • the new public TA related parameters include at least one of the following:
  • the first common TA, the first TACommonDrift and the first TACommonDriftVariation, and at least one of the first common TA, the first TACommonDrift and the first TACommonDriftVariation is a parameter before update.
  • the application time of the target public TA is the time preconfigured by the network side device, or the time agreed upon by the protocol, or the time indicated by the network side device, or the initial time of the auxiliary information, or the starting time of the valid duration. .
  • module 401 is executed, specifically for:
  • the target uplink transmission is stopped.
  • the DMRS bundled transmission device 400 also includes:
  • An update module configured to update the terminal-specific TA according to first information, wherein the first information includes at least one of the following: location information of the terminal, ephemeris of the terminal's serving satellite;
  • a sending module configured to send the updated terminal-specific TA to the network side device, wherein the target time includes an effective time of the updated terminal-specific TA.
  • the effective time of the updated terminal-specific TA is the time when the sending module sends the updated terminal-specific TA to the network side device, or the updated terminal-specific TA as agreed in the protocol.
  • the time when the terminal-specific TA takes effect, or the time when the updated terminal-specific TA takes effect when the instruction carried in the fourth instruction information sent by the sending module to the network side device is indicated.
  • the DMRS bundled transmission device 400 also includes:
  • a receiving module configured to receive fifth indication information from the network side device, wherein the fifth indication information indicates that the polarization type of the receiving end or transmitting end of the target uplink transmission has changed, and the target time includes a change. The moment after which the polarization type of the receiving end or transmitting end takes effect.
  • the fifth indication information is carried in the downlink control information DCI for scheduled uplink transmission from the network side device.
  • the terminal does not expect to enable the target uplink transmission for a duration greater than a valid duration; and/or,
  • the terminal is not expected to be scheduled or configured to enable DMRS bundled uplink transmission within a valid duration; and/or,
  • the terminal does not expect to change the receive polarization type and/or the transmit polarization type within the time window in which the DMRS bundled uplink transmission is located.
  • the DMRS bundled transmission device 400 in the embodiment of the present application may be an electronic device, for example, having an operating system.
  • Electronic equipment can also be components in electronic equipment, such as integrated circuits or chips.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the DMRS bundling transmission device 400 provided by the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 500, which includes a processor 501 and a memory 502.
  • the memory 502 stores programs or instructions that can be run on the processor 501, for example.
  • the communication device 500 is a terminal
  • the program or instruction is executed by the processor 501
  • each step of the above DMRS bundling transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the processor is configured to perform a target operation based on the first event when the communication interface performs target uplink transmission, and the target uplink transmission is based on a demodulation reference signal.
  • DMRS bundled uplink transmission within the target nominal time domain window TDW;
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and the auxiliary information do not change;
  • the target operation includes at least one of the following:
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, etc. At least some parts.
  • the terminal 600 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 610 through a power management system, thereby managing charging, Discharge, and power consumption management functions.
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 604 may include a graphics processing unit (Graphics Processing Unit, GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and at least one of other input devices 6072 .
  • Touch panel 6071 also called touch screen.
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 6072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 601 after receiving downlink data from the network side device, can transmit it to the processor 610 for processing; in addition, the radio frequency unit 601 can send uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 609 may be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 609 may include volatile memory or non-volatile memory, or memory 609 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 610 may include one or more processing units; optionally, the processor 610 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 610.
  • the processor 610 is configured to perform the target operation based on the first event when controlling the radio frequency unit 601 to perform target uplink transmission.
  • the target uplink transmission is bundled based on the demodulation reference signal DMRS and is within the target nominal time domain window. Uplink transmission within TDW;
  • the first event includes at least one of the following:
  • auxiliary information including the ephemeris of the terminal's serving satellite
  • the polarization type of the receiving end of the target uplink transmission changes
  • the polarization type of the sending end of the target uplink transmission changes
  • the target uplink transmission spans at least two valid durations, and within the same valid duration, the common TA and the auxiliary information do not change;
  • the target operation includes at least one of the following:
  • the transmission parameter is used to change the transmission parameter associated with the target uplink transmission, and the transmission parameter includes at least one of the following: at least one of timing relationship, frequency, transmit power and receive power.
  • the event type of the first event includes at least one of a semi-static event and a dynamic event.
  • the target operation performed by the processor 610 based on the first event includes:
  • the terminal does not support starting a new TDW, the current actual TDW in the target nominal TDW is ended based on the first event.
  • the target operation performed by the processor 610 based on the first event includes:
  • the terminal supports opening a new TDW based on dynamic events, end the current actual TDW in the target nominal TDW based on the first event, and open a new actual TDW in the target nominal TDW; or ,
  • the terminal does not support starting a new TDW based on dynamic events, the current actual TDW in the target nominal TDW is ended based on the first event.
  • the occurrence time of the first event is the target time
  • the start time of the new actual TDW is the first time after the first event
  • the end time of the current actual TDW is the The last moment before the target moment.
  • the radio frequency unit 601 is also configured to receive first indication information from the network side device, wherein the first indication information indicates the initial time of the updated ephemeris, and the target time includes the updated The ephemeris of initial time.
  • the radio frequency unit 601 is also configured to receive second indication information from the network side device, and receive third indication information from the network side device, wherein the second indication information indicates the cell-specific K_offset, and the The third indication information indicates the terminal-specific K_offset differential information;
  • the processor 610 is further configured to determine the terminal-specific K_offset based on the differential information of the cell-specific K_offset and the terminal-specific K_offset, and apply the terminal-specific K_offset, wherein the target time includes the Describes the application time of terminal-specific K_offset.
  • the radio frequency unit 601 is also used to obtain new public TA related parameters
  • the processor 610 is also configured to apply the target public TA corresponding to the new public TA related parameter, where the target time includes the application time of the target public TA.
  • the new public TA related parameters include at least one of the following:
  • the first common TA, the first TACommonDrift and the first TACommonDriftVariation, and at least one of the first common TA, the first TACommonDrift and the first TACommonDriftVariation is a parameter before update.
  • the application time of the target public TA is a time preconfigured by the network side device, or a time agreed upon by the protocol, or a time indicated by the network side device, or the initial time of the auxiliary information, or the starting time of the valid duration. .
  • the target operation based on the first event performed by the processor 610 includes:
  • the target uplink transmission is stopped.
  • the processor 610 is also configured to update the terminal-specific TA according to the first information, wherein the first information includes at least one of the following: location information of the terminal, ephemeris of the terminal's serving satellite surface;
  • the radio frequency unit 601 is also configured to send the updated terminal-specific TA to the network side device, where the target time includes the updated effective time of the terminal-specific TA.
  • the effective time of the updated terminal-specific TA is the time when the terminal sends the updated terminal-specific TA to the network side device, or the updated terminal-specific TA as agreed in the protocol.
  • the time when the unique TA takes effect, or the time when the updated terminal-specific TA takes effect when the instruction carried in the fourth instruction information sent by the terminal to the network side device is indicated.
  • the radio frequency unit 601 is also configured to receive fifth indication information from the network side device, wherein the fifth indication information indicates that the polarization type of the receiving end or the transmitting end of the target uplink transmission has changed, wherein, The target time includes the effective time of the changed polarization type of the receiving end or the transmitting end.
  • the fifth indication information is carried in downlink control information DCI for scheduled uplink transmission from the network side device.
  • the terminal does not expect to enable the target uplink transmission for a duration greater than an effective duration
  • the terminal is not expected to be scheduled or configured to enable DMRS bundled uplink transmission within a valid duration; and/or,
  • the terminal does not expect to change the receive polarization type and/or the transmit polarization type within the time window in which the DMRS bundled uplink transmission is located.
  • the terminal 600 provided by the embodiment of the present application can perform each process performed by each module in the DMRS bundling transmission device 400 as shown in Figure 4, and can achieve the same beneficial effects. To avoid duplication, details will not be described here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the method embodiment shown in Figure 2 is implemented, and can To achieve the same technical effect, to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method shown in Figure 2.
  • Each process in the example can achieve the same technical effect. To avoid repetition, we will not repeat it here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the method shown in Figure 2
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种解调参考信号DMRS捆绑的传输方法、装置和终端,属于通信技术领域,本申请实施例的DMRS捆绑的传输方法包括:终端在执行目标上行传输的情况下,基于第一事件执行目标操作,目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;其中,第一事件包括以下至少一项:更新辅助信息;应用网络侧设备指示的辅助信息的初始时间;在星历表的初始时间应用星历表;应用网络侧设备指示定时偏移量K_offset;应用新的公共定时提前TA;预补偿或生效终端特有的TA;极化类型发生改变;目标上行传输跨越至少两个有效持续时间;目标操作包括:结束目标名义TDW内的当前的实际TDW,和/或在目标名义TDW内开启新的实际TDW或者结束目标上行传输。

Description

解调参考信号DMRS捆绑的传输方法、装置和终端
相关申请的交叉引用
本申请主张在2022年04月29日在中国提交的中国专利申请No.202210473980.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种解调参考信号(Demodulation Reference Signal,DMRS)捆绑的传输方法、装置和终端。
背景技术
在版本17(Release 17,R17)非地面网络(Non-Terrestrial Networks,NTN)中,不同有效持续时间(validity duration)内,时序关系和频率可能发生变化或偏移,例如:在引入了时序(timing)关系增强和上行链路(Up Link,UL)时频补偿的功能时。
在相关技术中,在使能解调参考信号(Demodulation Reference Signal,DMRS)绑定(bundling)的上行传输持续时间跨越多个validity duration的情况下,基于不同有效持续时间(validity duration)内,时序关系和频率可能发生变化或偏移,用户设备(User Equipment,UE)可能无法维持相位连续性和功率一致性,此外,时序关系的变化甚至可能造成时域窗口(Time Domain Window,TDW)划分的重叠或混乱,影响接收端联合信道估计的性能。
发明内容
本申请实施例提供一种解调参考信号DMRS捆绑的传输方法、装置和终端,能够根据可能引起上行传输的时序关系、频率和功率中至少一项发生变化或偏移的事件来划分TDW,使得终端在一个实际的TDW内,维持上行传输的相位连续性和功率一致性,能够提升联合信道估计的性能。
第一方面,提供了一种解调参考信号DMRS捆绑的传输方法,该方法包括:
终端在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
其中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共定时提前TA;
预补偿或生效所述终端特有的TA;
所述目标上行传输的接收端的极化类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
第二方面,提供了一种解调参考信号DMRS捆绑的传输装置,应用于终端,所述装置包括:
执行模块,用于在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
其中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共定时提前TA;
预补偿或生效所述终端特有的TA;
所述目标上行传输的接收端的极化类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于在所述通信接口执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
其中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共定时提前TA;
预补偿或生效所述终端特有的TA;
所述目标上行传输的接收端的极化类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的DMRS捆绑的传输方法的步骤。
在本申请实施例中,终端在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;其中,所述第一事件包括以下至少一项:更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;应用网络侧设备指示的所述辅助信息的初始时间;在所述星历表的初始时间应用所述星历表;应用网络侧设备指示的定时偏移量K_offset;应用新的公共定时提前TA;预补偿或生效所述终端特有的TA;所述目标上行传输的接收端的极化类型发生改变;所述目标上行传输的发送端的极化类型发生改变;所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;所述目标操作包括以下至少一项:结束所述目标名义TDW内的当前的实际TDW;在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。这样,在终端进行DMRS捆绑的目标上行传输的过程中,能够在发生改变所述目标上行传输关联的传输参数的第一事件时,通过结束所述目标名义TDW内的当前的实际TDW,和/或,在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输,以基于重新划分的TDW使终端执行的DMRS捆绑的目标上行传输能够在一个实际的TDW内维持功率一致性和相位连续性,进而能够提升接收端基于该DMRS捆绑的目标上行传输进行联合 信道估计的性能。
附图说明
图1是本申请实施例能够应用的一种无线通信系统的结构示意图;
图2是本申请实施例提供的一种DMRS捆绑的传输方法的流程图;
图3是NTN网络架构的示意图;
图4是本申请实施例提供的一种DMRS捆绑的传输装置的结构示意图;
图5是本申请实施例提供的一种通信设备的结构示意图;
图6是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、 移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点(Access Point,AP)或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B(Node B,NB)、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点(home Node B,HNB)、家用演进型B节点(home evolved Node B)、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的DMRS捆绑的传输方法、DMRS捆绑的传输装置和终端等进行详细地说明。
请参阅图2,本申请实施例提供的一种DMRS捆绑的传输方法,其执行主体可以是终端,该终端可以是如图1中列举的各种类型的终端11,或者是除了如图1所示实施例中列举的终端类型之外的其他终端,在此不作具体限定。如图2所示,该DMRS捆绑的传输方法可以包括以下步骤:
步骤201、终端在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输。
其中,所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
在相关技术中,在R17覆盖增强中,引入了DMRS bundling的特性,通过使能DMRS bundling,要求终端在上行传输中的一个实际(actual)TDW中保持上行传输的相位连续性和功率一致性,这样,接收端在一个actual TDW内可以基于DMRS bundling进行联合信道估计。
其中,名义(nominal)TDW可以从上行传输的第一个时隙开始,根据网络配置的nominal TDW的大小,在上行传输的持续时间(duration)内,连续地划分为一个或多个 nominal TDW。
在实施中,在一个nominal TDW内,一些半静态事件(semi-static events)或动态事件(dynamic events)会破坏上行传输的相位连续性或功率一致性,从而据此将一个nominal TDW分割为一个或多个actual TDW。
其中,动态事件包括通过下行控制信息(Downlink Control Information,DCI)或媒体接入控制层控制单元(Medium Access Control Control Element,MAC CE)指示的事件。半静态事件一般为高层参数(如:无线资源控制(Radio Resource Control,RRC)参数)配置的或协议约定的事件。
此外,还有一些事件,其相关参数是通过高层参数配置,但是使能或不使能是在DCI中去指示的(如:跳频事件),对于这种可以提前已知的事件,虽然是通过DCI使能的,但是还是可以认为是半静态事件。
需要说明的是,上述第一事件可以改变所述目标上行传输关联的传输参数,具体的,本申请实施例所应用的通信系统可以引入了时序(timing)关系增强、UL时频补偿等功能,使得不同validity duration(有效持续时间)内,目标上行传输关联的时序关系、频率、发送功率和接收功率等传输参数可能发生变化或偏移。此时,若终端使能的DMRS bundling的上行传输的持续时间跨越了至少两个validity duration,就可能存在则终端无法维持相位连续性和功率一致性,且时序关系的变化甚至可能造成TDW划分的重叠或混乱,影响接收端联合信道估计的性能,导致覆盖能力受限。
上述引入了时序(timing)关系增强、UL时频补偿等功能的通信系统可以是NTN,当然,随着技术的发展,在其他通信系统中也可能引入时序(timing)关系增强、UL时频补偿等功能,在此不对本申请提供的DMRS捆绑的传输方法的应用场景作具体限定,且为了便于说明,本申请实施例中以NTN场景为例,对本申请实施例提供的DMRS捆绑的传输方法进行举例说明。
具体的,按照第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的定义,5G网络中的NTN应用场景包括8个增强型移动宽带(Enhance Mobile Broadband,eMBB)场景和2个大规模机器类通信(massive Machine Type Communication,mMTC)场景。借助卫星的广域覆盖能力,可以使运营商在地面网络基础设施不发达地区提供5G商用服务,实现5G业务连续性,尤其是在应急通信、海事通信、航空通信及铁路沿线通信等场景中发挥作用。
例如:如图3所示的基于透传的典型场景中,3GPP Rel-17NTN可以包括:NTN终端(3GPP终端(UE)或非3GPP终端(即卫星终端))、具有透传(Transparent)能力的卫星(satellite)或空中平台(如:无人机系统(Unmanned Aircraft Systems,UAS)平台(platform))和信关站(Gateway),其中,NTN终端和卫星或空中平台之间通过服务链路(Service Link)连接,卫星或空中平台与信关站之间通过馈电链路(Feeder Link)连接,信关站连接NTN接入网与地面核心网(数据网络(Date Network))的网元。
本申请实施例中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共(Common)定时提前TA;
预补偿或生效所述终端特有的(UE Specific)的TA;
所述目标上行传输的接收端的极化(polarization)类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间(validity duration),其中,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变。
选项一,上述辅助信息(如终端的位置信息和服务卫星的星历表)可以包括用于计算定时提前(Timing Advance,TA)相关参数、预补偿服务链路(service link)上的多普勒频偏等参数等,在网络侧设备指示新的辅助信息的情况下,终端在应用(apply)或生效(take effect)该辅助信息表时,会改变上行传输的相位、定时提前TA等,从而打破了上行传输的功率一致性或相位连续性。这样,通过将更新辅助信息作为第一事件,可以在因辅助信息更新而造成上行传输的功率一致性或相位连续性被破坏时,重新划分TDW,以使一个实际TDW内所述终端的上行传输能够维持功率一致性或相位连续性。
当然,上述辅助信息还可以包括除了服务卫星的星历表之外的其他信息,例如:辅助信息还可以包括所述终端的位置信息,这也,在终端的位置发生改变的情况下,能造成终端与目标上行传输的接收端之间的传输时延变化,会降低该接收端的联合信道估计性能,此时,通过在终端与目标上行传输的接收端之间的传输时延变化时,重新划分TDW,能够提升接收端在实际TDW内的联合信道估计性能。
选项二,在实施中,网络侧设备在指示辅助信息更新时,还可以指示该更新后的辅助信息生效的初始时间(其又可以称之为:起始时间、起始时刻或epoch time),即应用网络侧设备指示的所述辅助信息的起始时间。这样,通过将应用网络侧设备指示的所述辅助信息的初始时间作为一个第一事件,能够基于该初始时间来划分TDW,使得在初始时间之前的时间与初始时间及其后的时间分布位于不同的TDW,使得TDW的划分更加精确。
例如:终端可以通过以下方式获取网络侧设备指示的epoch time:
当网络侧设备通过系统消息显式指示epoch time时,epoch time为一个下行链路(Down Link,DL)子帧的起始时刻,该DL子帧可通过系统帧号(System frame number,SFN)和子帧号得到;
当来自网络侧设备的系统消息未显式指示epoch time时,epoch time可通过传输NTN特有的系统信息块(NTN-specific System Information Block,NTN-specific SIB)的系统消息窗(System Information window,SI window)的结束时刻隐式地确定;
当通过专用信令(dedicated signaling)指示epoch time时,epoch time为一个DL子帧的起始时刻,该DL子帧通过系统帧号(SFN)和子帧号指示得到。
选项三,在所述星历表的初始时间应用所述星历表,与上述选项二相似,不同之处在于,选项三中应用的内容是星历表,选项二中应用的内容是该星历表的初始时间,两者皆可以使TDW的划分更加精确。
选项四,应用网络侧设备指示的定时偏移量K_offset。其中,应用网络侧设备指示的定时偏移量K_offset,可以是终端使用该K_offset进行上行传输。
在实施中,在R17NTN中在以下过程引入定时偏移量(K_offset)来增强时序关系:
DCI调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输时序(包括PUSCH承载的CSI);
随机接入响应(Random Access Response,RAR)授权调度PUSCH的传输时序;
物理上行控制信道(Physical Uplink Control Channel,PUCCH)承载的混合自动重传请求应答(Hybrid automatic repeat request acknowledgemen,HARQ-ACK)的传输时序;
信道状态信息(Channel State Information,CSI)参考资源时序;
非周期探测参考信号(Sounding Reference Signal,SRS)的传输时序;
PUCCH承载的HARQ-ACK与消息B(MsgB)的时序关系。
这样,在使用新的K_offset进行上行传输时,可能会改变上行传输的时序关系,本实施方式中,通过将网络侧设备指示新的K_offset作为一个第一事件,能够在K_offset更新时,重新划分TDW,以使一个实际TDW内所述终端的上行传输能够维持功率一致性或相位连续性。
需要说明的是,相关技术中在接收到网络侧设备指示更新的K_offset时,会基于该事件来结束当前的实际TDW,而本申请实施例中,还将终端应用(apply)或生效(take effect)该更新的K_offset作为一个事件,并基于该事件来划分TDW。
例如:终端应用网络侧设备指示的K_offset的具体过程可以包括:
终端在初始接入阶段,使用小区特有的K_offset(cell specific K_offset),网络侧设备通过系统消息指示该cell specific K_offset;
在初始接入阶段后,网络侧设备可以通过MAC CE进行终端特有的K_offset(UE specific K_offset)的指示和更新,其中,MAC CE可以携带一个差分的UE specific K_offset值。一个完整的UE specific K_offset值等于cell specific K_offset减去差分的UE specific K_offset;
或者,在初始接入阶段后,若没有K_offset的指示和更新,则终端可以继续使用系统消息中的cell specific K_offset用于上述所有时序关系的增强。
其中,cell specific K_offset取值范围为0~1023ms,UE specific K_offset取值范围为0~63ms。
选项五,应用新的公共定时提前TA(Common TA),在实施中,Common TA可以用 于NTN场景下的上行链路时间和频率同步,在Common TA发生改变时,终端进行上行传输的相位和频率可能发生变化,此时,通过将应用新的Common TA作为一个第一事件,并据此划分TDW,能够使一个实际TDW内所述终端的上行传输能够维持功率一致性或相位连续性。
在实施中,NTN场景下,终端应用的定时提前(Timing Advance,TA)可以通过以下公式确定:
TTA=(NTA+NTA,UE-specific+NTA,common+NTA,offset)×Tc
其中,NTA由msg2或msgB中的TA命令域(Command field)或MAC CE中的TA command指示和更新;对于物理随机接入信道(Physical Random Access Channel,PRACH),NTA=0;
NTA,UE-specific为终端自主估计并预补偿的TA;
NTA,common为网络控制并指示的公共TA;
NTA,offset为一个固定的定时偏移量,取决于频带和LTE/NR共存(coexistence),由网络配置或协议规定;
Tc为基本时间单位,Tc=1/(Δfmax·Nf),其中,Δfmax=480·103Hz,且Nf=4096。
选项六中,预补偿或生效所述终端特有的TA,可以是终端基于一些辅助信息计算得到的,如终端根据自身所处的UE位置和服务卫星的星历表来计算得到NTA,UE-specific,并基于计算得到的NTA,UE-specific来更新TTA。这样,基于辅助信息的更新,可以改变NTA,UE-specific,从而更新TTA
需要说明的是,上述应用星历表、初始时间、K_offset、公共定时提前TA,也可以表示为星历表、初始时间、K_offset、公共定时提前TA生效,且预补偿或生效所述终端特有的TA,也可以表示为应用所述终端特有的TA,在此不作具体限定。
选项七,所述目标上行传输的接收端的极化类型发生改变,可以是卫星的极化类型发生改变。
在NTN场景下,卫星有可能支持圆极化(左旋或者右旋圆极化)或者线极化天线类型收发信号。为了支持多次传输信号在接收端能做联合信道估计,NTN场景下的发送端需要保持发送功率和相位的连续性,而极化类型的改变会破坏上行传输的功率一致性。
选项八,所述目标上行传输的发送端的极化类型发生改变,可以是终端的极化类型发生改变。虽然,相关技术中终端主要支持线极化天线类型,但是未来的终端也有可能支持线极化或者圆极化。
本实施方式中,针对发送端和接收端在多次传输信号发送期间改变接收端或者发送端的极化类型时,目标上行传输的功率将会发生改变或相位连续性无法保持,从而也会导致在改变前后无法进行联合信道估计的问题,通过将发送端或接收端的极化类型发生改变作为一个第一事件,并基于该第一事件来划分TDW,能够使一个实际TDW内所述终端的上行传输能够维持功率一致性。
选项九,所述目标上行传输跨越至少两个有效持续时间,其中,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变。本实施方式中,基于在两个不同有效持续时间之间,公共定时提前TA和辅助信息(如服务卫星的星历表)可能发生改变,通过将目标上行传输跨越至少两个有效持续时间作为第一事件,可以将划分的不同实际TDW位于互不相同的一个有效持续时间内,或者将目标上行传输限制在一个有效持续时间内,从而确保该一个有效持续时间内的目标上行传输能够维持功率一致性或相位连续性。
例如:上述NTA,common相关参数和服务卫星的星历表使用同一个validity duration,该validity duration的大小可以由系统消息广播,通过4比特指示,validity duration的可选值为{5,10,15,20,25,30,35,40,45,50,55,60,120,180,240,900(针对对地静止轨道卫星(Geostationary Orbit,GEO))},其单位为秒。
在一个有效持续时间内,终端可以假设NTA,common相关参数和服务卫星的星历表是有效的,不存在更新。
若在一个有效持续时间内,NTA,common相关参数和服务卫星的星历表是不可用的,则终端可以认为发生了上行失步,从而中止上行传输。
在实施中,通过上述初始时间,以及有效持续时间的大小,即可确定一个有效持续时间。例如:上述有效持续时间可以始于辅助信息(如服务卫星的星历表)的epoch time。
可选地,本申请实施例中,除了通过定义以上选项一致选项九的第一事件,来基于第一事件触发TDW的划分之外,可以通过在协议中约定以下内容的方式来使网络侧设备优先按照终端的期望对目标上行传输进行配置或调度:
所述终端不期望使能所述目标上行传输的持续时间大于一个有效持续时间;和/或,
在公共TA的相关参数或服务卫星的星历表不可用的情况下,所述终端不期望在一个有效持续时间内被调度或者被配置使能DMRS捆绑的上行传输;和/或,
所述终端不期望在DMRS捆绑的上行传输所在的时间窗内改变接收极化类型和/或发送极化类型。
例如:在所述终端不期望使能所述目标上行传输的持续时间大于一个有效持续时间的情况下,网络侧设备可以优先将目标上行传输的持续时间配置在一个有效持续时间内;
在公共TA的相关参数或服务卫星的星历表不可用的情况下,所述终端不期望在一个有效持续时间内被调度或者被配置使能DMRS捆绑的上行传输的情况下,若公共TA的相关参数或服务卫星的星历表不可用,则网络侧设备可以优先在一个有效持续时间内不调度或配置终端使能DMRS捆绑的上行传输;
在所述终端不期望在DMRS捆绑的上行传输所在的时间窗内改变接收极化类型和/或发送极化类型的情况下,网络侧设备可以优先在终端执行DMRS捆绑的上行传输对应的时间窗内,不改变基站的极化类型和/或终端的极化类型。
作为一种可能的实施方式,在所述第一事件为半静态事件的情况下,所述终端在执行目标上行传输的情况下,基于第一事件执行目标操作,包括:
所述终端基于第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
在所述终端不支持开启新的TDW的情况下,所述终端基于第一事件结束所述目标名义TDW内的当前的实际TDW。
本实施方式中,终端可以默认支持基于半静态事件开启新的实际TDW,或者基于终端能力判断终端不支持开启新的TDW的情况下,使终端基于第一事件结束所述目标名义TDW内的当前的实际TDW,且在此至后,终端在当前的目标名义TDW内不再开启新的实际TDW,即一个目标名义TDW内只有一个实际TDW。
作为另一种可能的实施方式,在所述第一事件为动态事件的情况下,所述终端在执行目标上行传输的情况下,基于第一事件执行目标操作,包括:
在所述终端支持基于动态事件开启新的TDW的情况下,所述终端基于所述第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
在所述终端不支持基于动态事件开启新的TDW的情况下,所述终端基于所述第一事件结束所述目标名义TDW内的当前的实际TDW。
本实施方式中,根据终端是否支持基于动态事件开启新的TDW,来判断终端是基于第一事件关闭当前的实际TDW并开启新的实际TDW,还是基于第一事件关闭当前的实际TDW并在同一个名义TDW内不再开启实际TDW。
可选地,所述第一事件的发生时间为目标时刻,所述新的实际TDW的开启时间为所述第一事件后的第一个时刻,例如:第一个物理符号或可用符号,所述当前的实际TDW的结束时间为所述目标时刻之前的最后一个时刻,例如:最后一个物理符号或可用符号,其中,当前的实际TDW可以理解为所述第一事件之前的最后一个实际TDW。
本实施方式中,终端在发生第一事件的目标时刻之前的最后一个时刻结束当前的实际TDW,若终端支持开启新的实际TDW,则还可以在第一事件后开启新的实际TDW,这样,以发生第一事件的时间为节点,其中,一个名义TDW的起始时间至发生第一事件前的最后一个时刻之间,目标上行传输的传输参数不受第一事件的影响,但是,在发生第一事件前后该名义TDW的起始时间内的目标上行传输的传输参数会基于发生第一事件而改变,从而将发生第一事件前和发生第一事件后的TDW进行划分,能够使划分后的一个实际TDW内的目标上行传输维持功率一致性和相位连续性。
作为一种可选的实施方式,本申请实施例提供的DMRS捆绑的传输方法还包括:
所述终端接收来自网络侧设备的第一指示信息,其中,所述第一指示信息指示更新后的所述星历表的初始时间,所述目标时刻包括更新后的所述星历表的初始时间。
在实施中,在终端的服务卫星的星历表有更新的情况下,网络侧设备可以向终端下发更新后的星历表,并指示该更新后的星历表生效的初始时间,这样,终端可以在该初始时间应用更新后的星历表。
当然,在终端的服务卫星的星历表有更新的情况下,网络侧设备也可以直接指示终端的服务卫星的星历表存在更新,并指示该更新后的星历表生效的初始时间,以使终端按照该指示来确定发生了第一事件。
在一些实施例中,在使能DMRS bundling的上行传输过程中,网络侧设备可以指示服务卫星的星历表存在更新,并指示新的初始时间(epoch time),并将此行为视为破坏相位连续性和功率一致性的事件。
比如,在使能DMRS bundling的上行传输过程中,网络指示服务卫星的星历表存在更新,并指示新的epoch time。在当前DMRS bundling传输的nominal TDW内,若终端具备重启(restart)TDW的能力时,则在epoch time重新开始一个actual TDW;若终端不具备restart TDW的能力,则将在epoch time之前的最后一个时刻作为actual TDW的结束时刻。
作为一种可选的实施方式,本申请实施例提供的DMRS捆绑的传输方法还包括:
所述终端接收来自网络侧设备的第二指示信息,其中,所述第二指示信息指示小区特有的K_offset;
所述终端接收来自网络侧设备的第三指示信息,其中,所述第三指示信息指示终端特有的K_offset的差分信息;
所述终端基于所述小区特有的K_offset和所述终端特有的K_offset的差分信息,确定所述终端特有的K_offset;
所述终端应用所述终端特有的K_offset,其中,所述目标时刻包括所述终端特有的K_offset的应用时刻。
在实施中,第二指示信息可以携带于网络侧设备的系统消息,上述第二指示信息可以携带于MAC CE。
在一些实施例中,将MAC CE指示的K_offset和或其更新的应用/生效,视为破坏相位连续性和功率一致性的事件。
例如:若终端在初始接入阶段,由网络侧设备指示了一个cell specific K_offset,在后续的传输过程中,网络通过MAC CE进一步地指示了一个差分的UE specific K_offset值,则终端利用cell specific K_offset值和差分的UE specific K_offset值可以得到完整的UE specific K_offset,并假设终端会在t1时刻应用所述完整的UE specific K_offset。这样,若t1时刻处于使能DMRS bundling传输的一个nominal TDW内,则在t1时刻前的最后一个时刻,终端结束当前的actual TDW。
具体的,若终端不具备因动态事件破坏相位连续性或功率一致性后重启一个新的actual TDW的能力,则终端从t1时刻直至当前nominal TDW的结束时刻,都均不会重启新的actual TDW;
若终端具备因动态事件破坏相位连续性或功率一致性后重启一个新的actual TDW的能力,则在t1时刻后终端会重启一个新的actual TDW,直至下一次发生破坏相位连续性或功率一致性的事件或当前nominal TDW的结束时刻。
作为一种可选的实施方式,本申请实施例提供的DMRS捆绑的传输方法还包括:
所述终端获取新的公共TA相关参数;
所述终端应用所述新的公共TA相关参数对应的目标公共TA,其中,所述目标时刻包括所述目标公共TA的应用时刻。
在实施中,公共TA相关参数可以是用于确定确定新的公共TA所依据的参数中的至少一项。可选地,所述新的公共TA相关参数,包括以下至少一项:
新的公共TA;
新的公共定时提前漂移TACommonDrift;
新的公共定时提前漂移变化率TACommonDriftVariation;
第一公共TA、第一TACommonDrift和第一TACommonDriftVariation,且所述第一公共TA、所述第一TACommonDrift和所述第一TACommonDriftVariation中的至少一项为更新前的参数。
本实施方式中,可以是网络侧设备直接下发新的公共TA,或者,是终端根据common TA、公共定时提前漂移TA Common Drift、公共定时提前漂移变化率TA Common Drift Variation中的至少一项来计算得到新的common TA,其中,用于计算新的common TA的common TA、公共定时提前漂移TA Common Drift、公共定时提前漂移变化率TA Common Drift Variation分别可以是旧的参数(与用于确定当前的实际TDW使用的common TA的参数相同),也可能是新的参数(与用于确定当前的实际TDW使用的common TA的参数不同)。
本实施方式中,终端在确定目标公共TA之后,假设在t2时刻应用/生效该目标公共TA,若t2时刻处于使能DMRS bundling传输的一个nominal TDW内,则可以在t2时刻前的最后一个时刻结束当前的actual TDW,且在终端支持重启一个新的actual TDW的情况下,还可以在t2时刻后重启一个新的actual TDW。
可选地,所述目标公共TA的应用时刻为网络侧设备预先配置的时刻,或者协议约定的时刻,或者网络侧设备指示的时刻,或者辅助信息的初始时间,或者有效持续时间的起始时刻。
在一种可能的实施方式中,在所述目标公共TA的应用时刻为网络侧设备预先配置的时刻或者协议约定的时刻的情况下,终端可以基于半静态事件来重新划分TDW。例如:假设在t2时刻应用/生效该目标公共TA,且t2时刻处于使能DMRS bundling传输的一个nominal TDW内,若t2时刻为半静态配置或协议规定,则在t2时刻后终端会重启一个新的actual TDW,直至下一次发生第一事件或当前nominal TDW结束。
在一种可能的实施方式中,在所述目标公共TA的应用时刻为网络侧设备指示的时刻的情况下,终端可以基于动态态事件来重新划分TDW。例如:假设在t2时刻应用/生效该目标公共TA,且t2时刻处于使能DMRS bundling传输的一个nominal TDW内,若t2时刻为网络动态指示,则:
若终端不具备因动态事件破坏相位连续性或功率一致性后重启一个新的actual TDW的能力时,从t2时刻直至当前nominal TDW结束,均不会重启一个新的actual TDW;
若终端具备因动态事件破坏相位连续性或功率一致性后重启一个新的actual TDW的能力时,在t2时刻后终端会重启一个新的actual TDW,直至下一个事件或当前nominal TDW的结束时刻。
在一种可能的实施方式中,在所述目标公共TA的应用时刻为辅助信息的初始时间的情况下,终端可以采用与上述实施例中基于应用网络侧设备指示的所述辅助信息的初始时间来重新划分TDW相同的方式划分TDW。即在更新辅助信息时,结束当前的实际TDW。
在一种可能的实施方式中,在所述目标公共TA的应用时刻为有效持续时间的起始时刻的情况下,所述终端在执行目标上行传输的情况下,基于第一事件执行目标操作,包括:
所述终端基于所述目标公共TA的应用时刻为有效持续时间的起始时刻,停止所述目标上行传输。
本实施方式中,终端可以采用与上述实施例中终端基于所述目标上行传输跨越至少两个有效持续时间的事件来重新划分TDW相同的方式划分TDW。即在每一个validity duration对应不同的实际TDW。
作为一种可选的实施方式,本申请实施例提供的DMRS捆绑的传输方法还包括:
所述终端根据第一信息更新终端特有的TA,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的服务卫星的星历表;
所述终端向网络侧设备发送更新后的所述终端特有的TA,其中,所述目标时刻包括更新后的所述终端特有的TA的生效时刻。
其中,所述终端特有的TA的生效时刻也可以称之为预补偿UE specific TA的时刻。
在一些实施例中,将UE specific TA预补偿(pre-compensation)/生效UE specific TA,视为破坏相位连续性和功率一致性的事件。
例如:终端基于自身位置和或服务卫星的星历表,可以计算得到UE specific TA值,再结合网络指示的TA command、common TA相关参数、定时偏移量等信息,可以得到完整的TA。此时,所述终端特有的TA的生效,可以是使用该完整的TA进行目标上行传输。
可选地,更新后的所述终端特有的TA的生效时刻为所述终端向所述网络侧设备发送更新后的所述终端特有的TA的时刻,或者,协议约定的更新后的所述终端特有的TA生效的时刻,或者,所述终端向网络侧设备发送的第四指示信息中携带的指示更新后的所述终端特有的TA生效的时刻。
在实施中,UE specific TA pre-compensation/生效UE specific TA的时刻(假设是t3)可以是semi-static RRC配置的,或者是MAC-CE/DCI动态配置的。此外,为了保证终端和网络侧设备应用相同的完整TA,终端可以上报UE specific TA值,此时,终端在t3时刻应用/生效所述UE specific TA值,该t3时刻可能是上报UE specific TA值的时刻,或上报信息中指示的一个生效时刻,或协议规定的一个生效时刻(如类似MAC CE生效时刻)。
若t3时刻处于使能DMRS bundling传输的一个nominal TDW内,且t3时刻为上报UE specific TA值的时刻或协议规定的一个生效时刻,则在t3时刻后终端会重启一个新的actual TDW,直至下一次发生第一事件或当前nominal TDW的结束。
若t3时刻处于使能DMRS bundling传输的一个nominal TDW内,且t3时刻为终端上报的信息中指示的一个生效时刻,则:
若终端不具备因动态事件破坏相位连续性或功率一致性后重启一个新的actual TDW的能力时,从t3时刻直至当前nominal TDW的结束时刻,均不会重启一个新的actual TDW;
若终端具备因动态事件破坏相位连续性或功率一致性后重启一个新的actual TDW的能力时,在t3时刻后终端会重启一个新的actual TDW,直至下一次发生第一事件或当前nominal TDW的结束。
作为一种可选的实施方式,本申请实施例提供的DMRS捆绑的传输方法还包括:
所述终端接收来自网络侧设备的第五指示信息,其中,所述第五指示信息指示所述目标上行传输的接收端或发送端的极化类型发生改变,其中,所述目标时刻包括改变后的所述接收端或发送端的极化类型的生效时刻。
在实施中,上述收来自网络侧设备的第五指示信息,可是网络侧设备动态配置调度DMRS bundling传输的极化类型,其作为一种动态事件。
可选地,在所述目标上行传输为调度传输的情况下,所述第五指示信息携带于来自网络侧设备的用于调度上行传输的下行控制信息DCI中。
例如:polarization类型的改变或者polarization本身可以配置在调度DCI里,以指定终端需要使用的polarization或者基站使用的polarization。
再例如:对于上行传输,uplink DCI里的polarization配置可以指定终端发送该上行传输应使用的极化类型。作为一种可能的实现方式:针对一个DCI调度上行传输的多次repetition,该多次上行repetition传输的发送都是用该指定的极化类型。
这样,可以复用调度上行传输的DCI来指示接收端和/或发送端的新的极化类型。
值得提出的是,除了上述动态指示目标上行传输的接收端或发送端的极化类型的方式之外,还可以通过以下方式来支持联合信道估计:
方式一:将接收端或者发送端的Polarization类型的改变,认为是破坏功率一致性的事件,并在发生该事件时,基于发生该事件的时间来重新划分TDW,使得接收端和发送端的Polarization类型在一个实际TDW内不改变。
例如:在使能DMRS bundling的上行传输过程中,网络侧设备指示服务卫星的极化类型,并指示该极化类型的生效时间。此时,上述网络侧设备指示服务卫星的极化类型,并指示该极化类型的生效时间可以作为一个半静态事件,这样,在当前DMRS bundling传输的nominal TDW内,若终端具备restart TDW的能力时,在该极化类型的生效时间重新开始一个actual TDW;若终端不具备restart TDW的能力,则将该极化类型的生效时间之前的最后一个时刻作为当前的actual TDW的结束时刻。
方式二:在协议中约定终端不期望在DMRS bundling的任一TDW内改变polarization类型。例如:不期望基站改变polarization类型和/或不期望终端改变polarization类型。
这样,在发送端和接收端在多次传输信号的发送期间,可以通过不改变收端或者发送端的极化类型,来维持功率一致性。
在本申请实施例中,终端在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;其中,所述第一事件用于改变所述目标上行传输关联的传输参数;所述目标操作包括以下至少一项:结束所述目标名义TDW内的当前的实际TDW;在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。这样,在终端进行DMRS捆绑的目标上行传输的过程中,能够在发生改变所述目标上行传输关联的传输参数的第一事件时,通过结束所述目标名义TDW内的当前的实际TDW,和/或,在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输,以基于重新划分的TDW使终端执行的DMRS捆绑的目标上行传输能够在一个实际的TDW内维持功率一致性和相位连续性,进而能够提升接收端基于该DMRS捆绑的目标上行传输进行联合信道估计的性能。
本申请实施例提供的DMRS捆绑的传输方法,执行主体可以为DMRS捆绑的传输装置。本申请实施例中以DMRS捆绑的传输装置执行DMRS捆绑的传输方法为例,说明本申请实施例提供的DMRS捆绑的传输装置。
请参阅图4,本申请实施例提供的一种DMRS捆绑的传输装置,可以是终端内的装置,如图4所示,该DMRS捆绑的传输装置400可以包括以下模块:
执行模块401,用于在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
其中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共定时提前TA;
预补偿或生效所述终端特有的TA;
所述目标上行传输的接收端的极化类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
可选的,所述第一事件用于改变所述目标上行传输关联的传输参数,所述传输参数包括以下至少一项:时序关系、频率、发送功率和接收功率中的至少一项。
可选的,所述第一事件的事件类型包括半静态事件、动态事件中的至少一项。
可选的,在所述第一事件为半静态事件的情况下,执行模块401,具体用于:
基于第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
在所述终端不支持开启新的TDW的情况下,基于第一事件结束所述目标名义TDW内的当前的实际TDW。
可选的,在所述第一事件为动态事件的情况下,执行模块401,具体用于:
在所述终端支持基于动态事件开启新的TDW的情况下,基于所述第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
在所述终端不支持基于动态事件开启新的TDW的情况下,基于所述第一事件结束所述目标名义TDW内的当前的实际TDW。
可选的,所述第一事件的发生时间为目标时刻,所述新的实际TDW的开启时间为所述第一事件后的第一个时刻,所述当前的实际TDW的结束时间为所述目标时刻之前的最后一个时刻。
可选的,DMRS捆绑的传输装置400,还包括:
第一接收模块,用于接收来自网络侧设备的第一指示信息,其中,所述第一指示信息指示更新后的所述星历表的初始时间,所述目标时刻包括更新后的所述星历表的初始时间。
可选的,DMRS捆绑的传输装置400,还包括:
第二接收模块,用于接收来自网络侧设备的第二指示信息,其中,所述第二指示信息指示小区特有的K_offset;
第三接收模块,用于接收来自网络侧设备的第三指示信息,其中,所述第三指示信息指示终端特有的K_offset的差分信息;
确定模块,用于基于所述小区特有的K_offset和所述终端特有的K_offset的差分信息,确定所述终端特有的K_offset;
第一应用模块,用于应用所述终端特有的K_offset,其中,所述目标时刻包括所述终端特有的K_offset的应用时刻。
可选的,DMRS捆绑的传输装置400,还包括:
获取模块,用于获取新的公共TA相关参数;
第二应用模块,用于应用所述新的公共TA相关参数对应的目标公共TA,其中,所述目标时刻包括所述目标公共TA的应用时刻。
可选的,所述新的公共TA相关参数,包括以下至少一项:
新的公共TA;
新的公共定时提前漂移TACommonDrift;
新的公共定时提前漂移变化率TACommonDriftVariation;
第一公共TA、第一TACommonDrift和第一TACommonDriftVariation,且所述第一公共TA、所述第一TACommonDrift和所述第一TACommonDriftVariation中的至少一项为更新前的参数。
可选的,所述目标公共TA的应用时刻为网络侧设备预先配置的时刻,或者协议约定的时刻,或者网络侧设备指示的时刻,或者辅助信息的初始时间,或者有效持续时间的起始时刻。
可选的,在所述目标公共TA的应用时刻为有效持续时间的起始时刻的情况下,执行模块401,具体用于:
基于所述目标公共TA的应用时刻为有效持续时间的起始时刻,停止所述目标上行传输。
可选的,DMRS捆绑的传输装置400,还包括:
更新模块,用于根据第一信息更新终端特有的TA,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的服务卫星的星历表;
发送模块,用于向网络侧设备发送更新后的所述终端特有的TA,其中,所述目标时刻包括更新后的所述终端特有的TA的生效时刻。
可选的,更新后的所述终端特有的TA的生效时刻为所述发送模块向所述网络侧设备发送更新后的所述终端特有的TA的时刻,或者,协议约定的更新后的所述终端特有的TA生效的时刻,或者,所述发送模块向网络侧设备发送的第四指示信息中携带的指示更新后的所述终端特有的TA生效的时刻。
可选的,DMRS捆绑的传输装置400,还包括:
接收模块,用于接收来自网络侧设备的第五指示信息,其中,所述第五指示信息指示所述目标上行传输的接收端或发送端的极化类型发生改变,其中,所述目标时刻包括改变后的所述接收端或发送端的极化类型的生效时刻。
可选的,在所述目标上行传输为调度传输的情况下,所述第五指示信息携带于来自网络侧设备的用于调度上行传输的下行控制信息DCI中。
可选的,所述终端不期望使能所述目标上行传输的持续时间大于一个有效持续时间;和/或,
在公共TA的相关参数或服务卫星的星历表不可用的情况下,所述终端不期望在一个有效持续时间内被调度或者被配置使能DMRS捆绑的上行传输;和/或,
所述终端不期望在DMRS捆绑的上行传输所在的时间窗内改变接收极化类型和/或发送极化类型。
本申请实施例中的DMRS捆绑的传输装置400可以是电子设备,例如具有操作系统 的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的DMRS捆绑的传输装置400能够实现图2所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图5所示,本申请实施例还提供一种通信设备500,包括处理器501和存储器502,存储器502上存储有可在所述处理器501上运行的程序或指令,例如,该通信设备500为终端时,该程序或指令被处理器501执行时实现上述DMRS捆绑的传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于在通信接口执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
其中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共定时提前TA;
预补偿或生效所述终端特有的TA;
所述目标上行传输的接收端的极化类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图6为实现本申请实施例的一种终端的硬件结构示意图。
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、 放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理单元(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072中的至少一种。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601接收来自网络侧设备的下行数据后,可以传输给处理器610进行处理;另外,射频单元601可以向网络侧设备发送上行数据。通常,射频单元601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括易失性存储器或非易失性存储器,或者,存储器609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器609包括但不限于这些和任意其它适合类型的存储器。
处理器610可包括一个或多个处理单元;可选的,处理器610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于在控制射频单元601执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
其中,所述第一事件包括以下至少一项:
更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
应用网络侧设备指示的所述辅助信息的初始时间;
在所述星历表的初始时间应用所述星历表;
应用网络侧设备指示的定时偏移量K_offset;
应用新的公共定时提前TA;
预补偿或生效所述终端特有的TA;
所述目标上行传输的接收端的极化类型发生改变;
所述目标上行传输的发送端的极化类型发生改变;
所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
用于改变所述目标上行传输关联的传输参数;
所述目标操作包括以下至少一项:
结束所述目标名义TDW内的当前的实际TDW;
在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
可选地,述传输参数用于改变所述目标上行传输关联的传输参数,所述传输参数包括以下至少一项:时序关系、频率、发送功率和接收功率中的至少一项。
可选地,所述第一事件的事件类型包括半静态事件、动态事件中的至少一项。
可选地,在所述第一事件为半静态事件的情况下,处理器610执行的所述基于第一事件执行目标操作,包括:
基于第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
在所述终端不支持开启新的TDW的情况下,基于第一事件结束所述目标名义TDW内的当前的实际TDW。
可选地,在所述第一事件为动态事件的情况下,处理器610执行的所述基于第一事件执行目标操作,包括:
在所述终端支持基于动态事件开启新的TDW的情况下,基于所述第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
在所述终端不支持基于动态事件开启新的TDW的情况下,基于所述第一事件结束所述目标名义TDW内的当前的实际TDW。
可选地,所述第一事件的发生时间为目标时刻,所述新的实际TDW的开启时间为所述第一事件后的第一个时刻,所述当前的实际TDW的结束时间为所述目标时刻之前的最后一个时刻。
可选地,射频单元601,还用于接收来自网络侧设备的第一指示信息,其中,所述第一指示信息指示更新后的所述星历表的初始时间,所述目标时刻包括更新后的所述星历表 的初始时间。
可选地,射频单元601,还用于接收来自网络侧设备的第二指示信息,以及接收来自网络侧设备的第三指示信息,其中,所述第二指示信息指示小区特有的K_offset,所述第三指示信息指示终端特有的K_offset的差分信息;
处理器610,还用于基于所述小区特有的K_offset和所述终端特有的K_offset的差分信息,确定所述终端特有的K_offset,以及应用所述终端特有的K_offset,其中,所述目标时刻包括所述终端特有的K_offset的应用时刻。
可选地,射频单元601,还用于获取新的公共TA相关参数;
处理器610,还用于应用所述新的公共TA相关参数对应的目标公共TA,其中,所述目标时刻包括所述目标公共TA的应用时刻。
可选地,所述新的公共TA相关参数,包括以下至少一项:
新的公共TA;
新的公共定时提前漂移TACommonDrift;
新的公共定时提前漂移变化率TACommonDriftVariation;
第一公共TA、第一TACommonDrift和第一TACommonDriftVariation,且所述第一公共TA、所述第一TACommonDrift和所述第一TACommonDriftVariation中的至少一项为更新前的参数。
可选地,所述目标公共TA的应用时刻为网络侧设备预先配置的时刻,或者协议约定的时刻,或者网络侧设备指示的时刻,或者辅助信息的初始时间,或者有效持续时间的起始时刻。
可选地,在所述目标公共TA的应用时刻为有效持续时间的起始时刻的情况下,处理器610执行的所述基于第一事件执行目标操作,包括:
基于所述目标公共TA的应用时刻为有效持续时间的起始时刻,停止所述目标上行传输。
可选地,处理器610,还用于根据第一信息更新终端特有的TA,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的服务卫星的星历表;
射频单元601,还用于向网络侧设备发送更新后的所述终端特有的TA,其中,所述目标时刻包括更新后的所述终端特有的TA的生效时刻。
可选地,更新后的所述终端特有的TA的生效时刻为所述终端向所述网络侧设备发送更新后的所述终端特有的TA的时刻,或者,协议约定的更新后的所述终端特有的TA生效的时刻,或者,所述终端向网络侧设备发送的第四指示信息中携带的指示更新后的所述终端特有的TA生效的时刻。
可选地,射频单元601,还用于接收来自网络侧设备的第五指示信息,其中,所述第五指示信息指示所述目标上行传输的接收端或发送端的极化类型发生改变,其中,所述目标时刻包括改变后的所述接收端或发送端的极化类型的生效时刻。
可选地,在所述目标上行传输为调度传输的情况下,所述第五指示信息携带于来自网络侧设备的用于调度上行传输的下行控制信息DCI中。
可选地,所述终端不期望使能所述目标上行传输的持续时间大于一个有效持续时间;和/或,
在公共TA的相关参数或服务卫星的星历表不可用的情况下,所述终端不期望在一个有效持续时间内被调度或者被配置使能DMRS捆绑的上行传输;和/或,
所述终端不期望在DMRS捆绑的上行传输所在的时间窗内改变接收极化类型和/或发送极化类型。
本申请实施例提供的终端600,能够执行如图4所示DMRS捆绑的传输装置400中的各模块执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图2所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图2所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如图2所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者 是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (36)

  1. 一种解调参考信号DMRS捆绑的传输方法,包括:
    终端在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
    其中,所述第一事件包括以下至少一项:
    更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
    应用网络侧设备指示的所述辅助信息的初始时间;
    在所述星历表的初始时间应用所述星历表;
    应用网络侧设备指示的定时偏移量K_offset;
    应用新的公共定时提前TA;
    预补偿或生效所述终端特有的TA;
    所述目标上行传输的接收端的极化类型发生改变;
    所述目标上行传输的发送端的极化类型发生改变;
    所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
    所述目标操作包括以下至少一项:
    结束所述目标名义TDW内的当前的实际TDW;
    在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
  2. 根据权利要求1所述的方法,其中,所述第一事件用于改变所述目标上行传输关联的传输参数,所述传输参数包括以下至少一项:时序关系、频率、发送功率和接收功率中的至少一项。
  3. 根据权利要求1所述的方法,其中,所述第一事件的事件类型包括半静态事件、动态事件中的至少一项。
  4. 根据权利要求3所述的方法,其中,在所述第一事件为半静态事件的情况下,所述终端在执行目标上行传输的情况下,基于第一事件执行目标操作,包括:
    所述终端基于第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
    在所述终端不支持开启新的TDW的情况下,所述终端基于第一事件结束所述目标名义TDW内的当前的实际TDW。
  5. 根据权利要求3所述的方法,其中,在所述第一事件为动态事件的情况下,所述终端在执行目标上行传输的情况下,基于第一事件执行目标操作,包括:
    在所述终端支持基于动态事件开启新的TDW的情况下,所述终端基于所述第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际 TDW;或者,
    在所述终端不支持基于动态事件开启新的TDW的情况下,所述终端基于所述第一事件结束所述目标名义TDW内的当前的实际TDW。
  6. 根据权利要求4或5所述的方法,其中,所述第一事件的发生时间为目标时刻,所述新的实际TDW的开启时间为所述第一事件后的第一个时刻,所述当前的实际TDW的结束时间为所述目标时刻之前的最后一个时刻。
  7. 根据权利要求6所述的方法,所述方法还包括:
    所述终端接收来自网络侧设备的第一指示信息,其中,所述第一指示信息指示更新后的所述星历表的初始时间,所述目标时刻包括更新后的所述星历表的初始时间。
  8. 根据权利要求6所述的方法,所述方法还包括:
    所述终端接收来自网络侧设备的第二指示信息,其中,所述第二指示信息指示小区特有的K_offset;
    所述终端接收来自网络侧设备的第三指示信息,其中,所述第三指示信息指示终端特有的K_offset的差分信息;
    所述终端基于所述小区特有的K_offset和所述终端特有的K_offset的差分信息,确定所述终端特有的K_offset;
    所述终端应用所述终端特有的K_offset,其中,所述目标时刻包括所述终端特有的K_offset的应用时刻。
  9. 根据权利要求6所述的方法,所述方法还包括:
    所述终端获取新的公共TA相关参数;
    所述终端应用所述新的公共TA相关参数对应的目标公共TA,其中,所述目标时刻包括所述目标公共TA的应用时刻。
  10. 根据权利要求9所述的方法,其中,所述新的公共TA相关参数,包括以下至少一项:
    新的公共TA;
    新的公共定时提前漂移TACommonDrift;
    新的公共定时提前漂移变化率TACommonDriftVariation;
    第一公共TA、第一TACommonDrift和第一TACommonDriftVariation,且所述第一公共TA、所述第一TACommonDrift和所述第一TACommonDriftVariation中的至少一项为更新前的参数。
  11. 根据权利要求9所述的方法,其中,所述目标公共TA的应用时刻为网络侧设备预先配置的时刻,或者协议约定的时刻,或者网络侧设备指示的时刻,或者辅助信息的初始时间,或者有效持续时间的起始时刻。
  12. 根据权利要求11所述的方法,其中,在所述目标公共TA的应用时刻为有效持续时间的起始时刻的情况下,所述终端在执行目标上行传输的情况下,基于第一事件执行目 标操作,包括:
    所述终端基于所述目标公共TA的应用时刻为有效持续时间的起始时刻,停止所述目标上行传输。
  13. 根据权利要求6所述的方法,所述方法还包括:
    所述终端根据第一信息更新终端特有的TA,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的服务卫星的星历表;
    所述终端向网络侧设备发送更新后的所述终端特有的TA,其中,所述目标时刻包括更新后的所述终端特有的TA的生效时刻。
  14. 根据权利要求13所述的方法,其中,更新后的所述终端特有的TA的生效时刻为所述终端向所述网络侧设备发送更新后的所述终端特有的TA的时刻,或者,协议约定的更新后的所述终端特有的TA生效的时刻,或者,所述终端向网络侧设备发送的第四指示信息中携带的指示更新后的所述终端特有的TA生效的时刻。
  15. 根据权利要求6所述的方法,所述方法还包括:
    所述终端接收来自网络侧设备的第五指示信息,其中,所述第五指示信息指示所述目标上行传输的接收端或发送端的极化类型发生改变,其中,所述目标时刻包括改变后的所述接收端或发送端的极化类型的生效时刻。
  16. 根据权利要求15所述的方法,其中,在所述目标上行传输为调度传输的情况下,所述第五指示信息携带于来自网络侧设备的用于调度上行传输的下行控制信息DCI中。
  17. 根据权利要求1所述的方法,其中,所述终端不期望使能所述目标上行传输的持续时间大于一个有效持续时间;和/或,
    在公共TA的相关参数或服务卫星的星历表不可用的情况下,所述终端不期望在一个有效持续时间内被调度或者被配置使能DMRS捆绑的上行传输;和/或,
    所述终端不期望在DMRS捆绑的上行传输所在的时间窗内改变接收极化类型和/或发送极化类型。
  18. 一种解调参考信号DMRS捆绑的传输装置,应用于终端,所述装置包括:
    执行模块,用于在执行目标上行传输的情况下,基于第一事件执行目标操作,所述目标上行传输为基于解调参考信号DMRS捆绑的且在目标名义时域窗口TDW内的上行传输;
    其中,所述第一事件包括以下至少一项:
    更新辅助信息,所述辅助信息包括所述终端的服务卫星的星历表;
    应用网络侧设备指示的所述辅助信息的初始时间;
    在所述星历表的初始时间应用所述星历表;
    应用网络侧设备指示的定时偏移量K_offset;
    应用新的公共定时提前TA;
    预补偿或生效所述终端特有的TA;
    所述目标上行传输的接收端的极化类型发生改变;
    所述目标上行传输的发送端的极化类型发生改变;
    所述目标上行传输跨越至少两个有效持续时间,在同一个有效持续时间内,所述公共TA和所述辅助信息不发生改变;
    所述目标操作包括以下至少一项:
    结束所述目标名义TDW内的当前的实际TDW;
    在所述目标名义TDW内开启新的实际TDW,或者结束所述目标上行传输。
  19. 根据权利要求18所述的装置,其中,所述第一事件用于改变所述目标上行传输关联的传输参数,所述传输参数包括以下至少一项:时序关系、频率、发送功率和接收功率中的至少一项。
  20. 根据权利要求18所述的装置,其中,所述第一事件的事件类型包括半静态事件、动态事件中的至少一项。
  21. 根据权利要求20所述的装置,其中,在所述第一事件为半静态事件的情况下,所述执行模块,具体用于:
    基于第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
    在所述终端不支持开启新的TDW的情况下,基于第一事件结束所述目标名义TDW内的当前的实际TDW。
  22. 根据权利要求20所述的装置,其中,在所述第一事件为动态事件的情况下,所述执行模块,具体用于:
    在所述终端支持基于动态事件开启新的TDW的情况下,基于所述第一事件结束所述目标名义TDW内的当前的实际TDW,并在所述目标名义TDW内开启新的实际TDW;或者,
    在所述终端不支持基于动态事件开启新的TDW的情况下,基于所述第一事件结束所述目标名义TDW内的当前的实际TDW。
  23. 根据权利要求21或22所述的装置,其中,所述第一事件的发生时间为目标时刻,所述新的实际TDW的开启时间为所述第一事件后的第一个时刻,所述当前的实际TDW的结束时间为所述目标时刻之前的最后一个时刻。
  24. 根据权利要求23所述的装置,还包括:
    第一接收模块,用于接收来自网络侧设备的第一指示信息,其中,所述第一指示信息指示更新后的所述星历表的初始时间,所述目标时刻包括更新后的所述星历表的初始时间。
  25. 根据权利要求23所述的装置,还包括:
    第二接收模块,用于接收来自网络侧设备的第二指示信息,其中,所述第二指示信息指示小区特有的K_offset;
    第三接收模块,用于接收来自网络侧设备的第三指示信息,其中,所述第三指示信息指示终端特有的K_offset的差分信息;
    确定模块,用于基于所述小区特有的K_offset和所述终端特有的K_offset的差分信息,确定所述终端特有的K_offset;
    第一应用模块,用于应用所述终端特有的K_offset,其中,所述目标时刻包括所述终端特有的K_offset的应用时刻。
  26. 根据权利要求23所述的装置,还包括:
    获取模块,用于获取新的公共TA相关参数;
    第二应用模块,用于应用所述新的公共TA相关参数对应的目标公共TA,其中,所述目标时刻包括所述目标公共TA的应用时刻。
  27. 根据权利要求26所述的装置,其中,所述新的公共TA相关参数,包括以下至少一项:
    新的公共TA;
    新的公共定时提前漂移TACommonDrift;
    新的公共定时提前漂移变化率TACommonDriftVariation;
    第一公共TA、第一TACommonDrift和第一TACommonDriftVariation,且所述第一公共TA、所述第一TACommonDrift和所述第一TACommonDriftVariation中的至少一项为更新前的参数。
  28. 根据权利要求26所述的装置,其中,所述目标公共TA的应用时刻为网络侧设备预先配置的时刻,或者协议约定的时刻,或者网络侧设备指示的时刻,或者辅助信息的初始时间,或者有效持续时间的起始时刻。
  29. 根据权利要求28所述的装置,其中,在所述目标公共TA的应用时刻为有效持续时间的起始时刻的情况下,所述执行模块,具体用于:
    基于所述目标公共TA的应用时刻为有效持续时间的起始时刻,停止所述目标上行传输。
  30. 根据权利要求23所述的装置,还包括:
    更新模块,用于根据第一信息更新终端特有的TA,其中,所述第一信息包括以下至少一项:所述终端的位置信息、所述终端的服务卫星的星历表;
    发送模块,用于向网络侧设备发送更新后的所述终端特有的TA,其中,所述目标时刻包括更新后的所述终端特有的TA的生效时刻。
  31. 根据权利要求30所述的装置,其中,更新后的所述终端特有的TA的生效时刻为所述发送模块向所述网络侧设备发送更新后的所述终端特有的TA的时刻,或者,协议约定的更新后的所述终端特有的TA生效的时刻,或者,所述发送模块向网络侧设备发送的第四指示信息中携带的指示更新后的所述终端特有的TA生效的时刻。
  32. 根据权利要求23所述的装置,还包括:
    接收模块,用于接收来自网络侧设备的第五指示信息,其中,所述第五指示信息指示所述目标上行传输的接收端或发送端的极化类型发生改变,其中,所述目标时刻包括改变 后的所述接收端或发送端的极化类型的生效时刻。
  33. 根据权利要求32所述的装置,其中,在所述目标上行传输为调度传输的情况下,所述第五指示信息携带于来自网络侧设备的用于调度上行传输的下行控制信息DCI中。
  34. 根据权利要求18所述的装置,其中,所述终端不期望使能所述目标上行传输的持续时间大于一个有效持续时间;和/或,
    在公共TA的相关参数或服务卫星的星历表不可用的情况下,所述终端不期望在一个有效持续时间内被调度或者被配置使能DMRS捆绑的上行传输;和/或,
    所述终端不期望在DMRS捆绑的上行传输所在的时间窗内改变接收极化类型和/或发送极化类型。
  35. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至17中任一项所述的解调参考信号DMRS捆绑的传输方法的步骤。
  36. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至17中任一项所述的解调参考信号DMRS捆绑的传输方法的步骤。
PCT/CN2023/090058 2022-04-29 2023-04-23 解调参考信号dmrs捆绑的传输方法、装置和终端 WO2023207843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210473980.1 2022-04-29
CN202210473980.1A CN117014964A (zh) 2022-04-29 2022-04-29 解调参考信号dmrs捆绑的传输方法、装置和终端

Publications (1)

Publication Number Publication Date
WO2023207843A1 true WO2023207843A1 (zh) 2023-11-02

Family

ID=88517717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090058 WO2023207843A1 (zh) 2022-04-29 2023-04-23 解调参考信号dmrs捆绑的传输方法、装置和终端

Country Status (2)

Country Link
CN (1) CN117014964A (zh)
WO (1) WO2023207843A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071640A (ja) * 2018-12-17 2019-05-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末、受信方法及び送信方法
CN109891799A (zh) * 2016-09-30 2019-06-14 高通股份有限公司 在新无线电中的解调参考信号管理
CN111357235A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 用于联合地配置解调参考信号的技术
CN111770565A (zh) * 2020-06-23 2020-10-13 中国科学院上海微系统与信息技术研究所 一种非地面网络的定时提前调整方法
CN114008958A (zh) * 2019-06-20 2022-02-01 高通股份有限公司 解调参考信号捆绑

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891799A (zh) * 2016-09-30 2019-06-14 高通股份有限公司 在新无线电中的解调参考信号管理
CN111357235A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 用于联合地配置解调参考信号的技术
JP2019071640A (ja) * 2018-12-17 2019-05-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末、受信方法及び送信方法
CN114008958A (zh) * 2019-06-20 2022-02-01 高通股份有限公司 解调参考信号捆绑
CN111770565A (zh) * 2020-06-23 2020-10-13 中国科学院上海微系统与信息技术研究所 一种非地面网络的定时提前调整方法

Also Published As

Publication number Publication date
CN117014964A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2022122024A1 (zh) 定位测量窗指示方法、终端和网络侧设备
US9094905B2 (en) Method, apparatus and computer program product for triggering the determination of a timing advance for one component carrier based upon another component carrier
CN107371243B (zh) 一种资源确定方法、相关设备及系统
WO2022199544A1 (zh) 上行传输方法、装置及用户设备
US20240129893A1 (en) Positioning measurement method, positioning configuration method, apparatus, and communication device
WO2023116883A1 (zh) Msg1重复传输的时频资源确定方法、装置及终端
US20240188166A1 (en) Data Transmission Method for Small Data Transmission (SDT) and Terminal
US20240031091A1 (en) Positioning method, network side device and non-transitory readable storage medium
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
WO2023207843A1 (zh) 解调参考信号dmrs捆绑的传输方法、装置和终端
WO2023169464A1 (zh) 上行传输的方法、终端及网络侧设备
WO2023198071A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024027747A1 (zh) 数据传输处理方法、装置、终端及网络侧设备
WO2024017127A1 (zh) 通信资源切换方法、装置及设备
WO2024099190A1 (zh) 能力指示方法、装置、终端、网络侧设备及可读存储介质
WO2024022353A1 (zh) 连接建立方法、终端及源网络侧设备
WO2023185819A1 (zh) Pdcch监听方法、终端、网络侧设备及介质
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2023217023A1 (zh) 旁链路定位方法、装置、终端、服务器和无线接入网设备
WO2023179652A1 (zh) 波束失败检测方法、装置、终端和存储介质
WO2024027589A1 (zh) 唤醒信号的同步源的确定方法、终端及网络侧设备
WO2023125304A1 (zh) 通信操作执行方法、装置、终端和存储介质
WO2023197963A1 (zh) 获取有效时间的方法、设备及可读存储介质
WO2024094015A1 (zh) 传输方法、ue及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795276

Country of ref document: EP

Kind code of ref document: A1