WO2023169464A1 - 上行传输的方法、终端及网络侧设备 - Google Patents

上行传输的方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023169464A1
WO2023169464A1 PCT/CN2023/080279 CN2023080279W WO2023169464A1 WO 2023169464 A1 WO2023169464 A1 WO 2023169464A1 CN 2023080279 W CN2023080279 W CN 2023080279W WO 2023169464 A1 WO2023169464 A1 WO 2023169464A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
uplink transmission
tac
terminal
transmission time
Prior art date
Application number
PCT/CN2023/080279
Other languages
English (en)
French (fr)
Inventor
孙荣荣
刘昊
孙鹏
宋扬
拉盖施塔玛拉卡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211255663.9A external-priority patent/CN116782303A/zh
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023169464A1 publication Critical patent/WO2023169464A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • This application belongs to the field of communication technology, and specifically relates to an uplink transmission method, terminal and network side equipment.
  • the terminal performs multiple Uplink transmissions generally use the same Timing Advance (TA).
  • TA Timing Advance
  • Embodiments of the present application provide an uplink transmission method, terminal and network-side equipment, which can avoid interference between users and improve uplink transmission performance.
  • a first aspect provides a method for uplink transmission, including: a terminal adjusting the time of target uplink transmission based on the target mode and/or timing advance TA adjustment granularity; wherein the target mode includes at least one of the following: according to the first A target timing advance command TAC adjusts the first target object pair The corresponding target uplink transmission time; adjust the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC, where the downlink time difference is the first downlink transmission time and the second downlink transmission time The difference between the first downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the first target object, and the second downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the second target object. The time of downlink transmission; wherein the first target TAC is associated with the first target object.
  • an uplink transmission method including: the network side device sends a media access control unit MAC CE; wherein the MAC CE at least includes at least one of the following: a first target timing advance command TAC, The first target TAC is associated with the first target object; the identification of the first target object.
  • a device for uplink transmission including: an adjustment module for adjusting the granularity to adjust the time of the target uplink transmission based on the target mode and/or the timing advance TA; wherein the target mode includes at least one of the following Item: adjust the target uplink transmission time corresponding to the first target object according to the first target timing advance command TAC; adjust the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC, the The downlink time difference is the difference between the first downlink transmission time and the second downlink transmission time.
  • the first downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the first target object.
  • the second downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the first target object.
  • the downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the second target object; wherein the first target TAC is associated with the first target object.
  • an uplink transmission device including: a first transmission module, configured to send a media access control unit MAC CE, wherein the MAC CE includes at least one of the following: first target timing Command TAC in advance, the first target TAC is associated with the first target object; and the identification of the first target object.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a sixth aspect provides a terminal, including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the first aspect. step.
  • a network side device has a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor. When the program or instructions are executed by the processor, Implement the steps of the method as described in the second aspect.
  • a network side device including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the second aspect. Method steps.
  • a ninth aspect provides a wireless communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the uplink transmission method as described in the first aspect.
  • the network side device can be used to perform the steps of the uplink transmission method as described in the first aspect. The steps of the uplink transmission method described in the second aspect.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. The steps of a method, or steps of implementing a method as described in the second aspect.
  • a computer program product/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect
  • the terminal adjusts the target uplink transmission time according to the target mode and/or TA adjustment granularity, wherein the target mode includes adjusting the first target object corresponding to the first target TAC.
  • different TAs can be used to adjust the uplink transmission time for different target objects, thereby ensuring that the uplink transmission time adjustment is accurate and efficient, thereby ensuring that the uplink transmission time corresponding to each target object satisfies the orthogonal relationship between users and avoids Brings inter-user interference to achieve the purpose of improving uplink transmission performance;
  • adjusting the target uplink transmission time based on TA adjustment granularity can avoid the problems of high terminal power consumption and large signaling overhead caused by frequent adjustments. , and it can also reduce the complexity of terminal implementation.
  • Figure 1 is a schematic structural diagram of a wireless communication system provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic flowchart of an uplink transmission method provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic flowchart of an uplink transmission method provided by another exemplary embodiment of the present application.
  • Figure 4a is a schematic diagram of target uplink transmission time adjustment based on the same TA process provided by an exemplary embodiment of the present application.
  • Figure 4b is a schematic diagram of periodically adjusting the target uplink transmission time according to an exemplary embodiment of the present application.
  • Figure 4c is a schematic diagram of periodically adjusting the target uplink transmission time provided by another exemplary embodiment of the present application.
  • Figure 4d is a schematic diagram of target uplink transmission time adjustment based on different TA processes provided by another exemplary embodiment of the present application.
  • Figure 4e is a schematic diagram of target uplink transmission time adjustment based on the downlink time difference and the first target TAC provided by an exemplary embodiment of the present application.
  • Figure 4f is a schematic diagram of target uplink transmission time adjustment based on the downlink time difference and the first target TAC provided by another exemplary embodiment of the present application.
  • Figure 5 is a schematic flowchart of an uplink transmission method provided by yet another exemplary embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an uplink transmission device provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an uplink transmission device provided by an exemplary embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network-side device provided by an exemplary embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/” generally indicates that the related objects are in an "or” relationship. It can be understood that the first object mentioned here generally refers to any object that needs to be distinguished by the terms first and second.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node , Transmission Reception Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application This introduction only takes the base station in the NR system as an example, and does not limit the specific type of base station. knot below With reference to the accompanying drawings, the technical solutions provided by the embodiments of the present application are described in detail through some embodiments and their application scenarios.
  • the method 200 may be, but is not limited to, executed by a terminal, and specifically may be executed by hardware and/or software installed in the terminal.
  • the method may include at least the following steps.
  • S210 The terminal adjusts the target uplink transmission time based on the target mode and/or TA adjustment granularity.
  • the target method includes at least one of the following method 1 and method 2.
  • Method 1 Adjust the target uplink transmission time corresponding to the first target object according to the first target timing advance command (Timing Advance Command, TAC).
  • TAC Timing Advance Command
  • Method 2 Adjust the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC.
  • the downlink time difference is the difference between the first downlink transmission time and the second downlink transmission time.
  • the first downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the first target object
  • the second downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the second target object.
  • the first target TAC is associated with the first target object, which can be understood as: the first target TAC is used to notify the terminal to send a corresponding amount of time in advance for uplink transmission, such as Timing Advance (TA).
  • TA Timing Advance
  • the first target TAC is used to notify the terminal of the TA corresponding to the first target object, so that the terminal can adjust the uplink transmission time corresponding to the first target object based on the TA, or, the The terminal adjusts the uplink transmission time corresponding to other target objects except the first target object according to the TA notified by the first target TAC.
  • the first target object may be but is not limited to SRS resources Set, SRS resources, Transmission Configuration Indicator (TCI) status, TCI status pool, antenna group, panel, TRP, resource pool index (CoresetPoolIndex), TAG, TAG index, etc.
  • TCI Transmission Configuration Indicator
  • TCI status pool TCI status pool
  • antenna group antenna group
  • panel TRP
  • resource pool index CoresetPoolIndex
  • TAG TAG index
  • the process for the terminal to adjust the target uplink transmission time based on the target mode may be as follows.
  • the terminal may adjust the uplink transmission time according to the target TAC corresponding to the target object.
  • the target uplink transmission time corresponding to the first target object is adjusted according to the first target TAC. Therefore, different TAs can be used to adjust the uplink transmission time for different target objects, thereby ensuring the accuracy and efficiency of the uplink transmission time adjustment, thereby ensuring that the uplink transmission time corresponding to each target object meets the normal requirements between users. communication relationship to avoid interference between users and achieve the purpose of improving uplink transmission performance.
  • the target object is a TRP, it can also achieve the purpose of improving throughput through multiple TRP transmissions.
  • the terminal may adjust the uplink transmission time of the target uplink transmission corresponding to the first target object associated with it according to the received first target TAC, and for multiple targets Other target objects in the object except the first target object, such as the second target object, can adjust their corresponding uplink transmission time according to the first target TAC and the uplink time difference. Therefore, compared with the aforementioned method 1, This implementation method can realize accurate and efficient adjustment of the uplink transmission time corresponding to multiple target objects when there is only one target TAC, and the terminal implementation is simple.
  • the implementation process can refer to the relevant description when the target method includes method 1 and method 2. To avoid duplication, the details are not repeated here.
  • the adjustment process of the uplink transmission time implemented based on the aforementioned method 1 and/or method 2 in this embodiment uses TAs that are one-to-one associated (or corresponding) with the target object. , that is, different target objects use different TAs to adjust the uplink transmission time. This ensures the accuracy and efficiency of the uplink transmission time adjustment, thereby ensuring that each target object corresponds to The uplink transmission time satisfies the orthogonal relationship between users, so that the difference in uplink transmission time from different users to an object (such as TRP, etc.) does not exceed the cyclic prefix (CP), avoiding interference between users and improving uplink transmission. performance purposes.
  • CP cyclic prefix
  • the aforementioned first target TAC can be obtained in a variety of ways.
  • the terminal can obtain it by receiving a Medium Access Control Control Element (MAC CE), at least one of the MAC CEs.
  • MAC CE Medium Access Control Control Element
  • TAC Timing Advance Command
  • TAC Timing Advance Command
  • the MAC CE may also carry an identifier of the first target object associated with the first target TAC.
  • the first target TAC includes a first TAC and a second TAC
  • the MAC CE may also carry the identifier of the first object associated with the first TAC and the identifier of the second object associated with the second TAC. etc., there is no restriction here.
  • the association between the first target TAC and the first target object can be realized by protocol agreement, high-level configuration, etc.
  • the TA adjustment granularity can be understood as the minimum interval between two TA adjustments by the terminal, which is used to avoid the problems of high terminal power consumption and large signaling overhead caused by frequent adjustments, and can also reduce the terminal implementation. complexity.
  • the TA adjustment granularity may be determined independently by the terminal or determined by the terminal according to the received third Radio Resource Control (RRC) signaling, and the third Three RRC signalings are configured with TA adjustment granularity.
  • RRC Radio Resource Control
  • the terminal can report the TA adjustment granularity to The network side device ensures that the terminal and the network side device have consistent understanding of the TA adjustment granularity.
  • the size of the TA adjustment granularity can be defined according to communication requirements. For example, for different subcarrier spacing (SCS) configurations, adjustment granularities of different lengths can be defined, such as the TA adjustment granularity It can be 0.5 time slots (Slot), 1 time slot, 2 time slots, 3 time slots or 4 time slots, etc.
  • the TA adjustment granularity can also take the frame, subframe, symbol, etc. as the time unit, which is not limited here.
  • the terminal can determine whether to adjust the granularity based on the target mode, TA adjustment, or TA adjustment based on the target mode according to the protocol agreement, high-level configuration, or network side configuration.
  • the granularity realizes the adjustment of the uplink transmission time, which is not limited in this embodiment.
  • the terminal adjusts the target uplink transmission time according to the target mode and/or TA adjustment granularity, wherein the target mode includes adjusting the target uplink corresponding to the first target object according to the first target TAC.
  • the transmission time, and/or adjusts the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC. Therefore, on the one hand, different TAs can be used for different target objects.
  • the adjustment of the uplink transmission time can ensure the accuracy and efficiency of the uplink transmission time adjustment, thereby ensuring that the uplink transmission time corresponding to each target object meets the orthogonal relationship between users, avoiding interference between users, and achieving the purpose of improving the uplink transmission performance.
  • adjusting the target uplink transmission time based on TA adjustment granularity can avoid the problems of high terminal power consumption and large signaling overhead caused by frequent adjustments, and can also reduce the complexity of terminal implementation.
  • this is a schematic flowchart of an uplink transmission method 300 provided by an exemplary embodiment of the present application.
  • the method 300 can be, but is not limited to, executed by a terminal. Specifically, it can be executed by a terminal installed in the terminal. Hardware and/or software execution. In this embodiment, the method may include at least the following steps.
  • S310 The terminal reports the first information.
  • the first information includes at least one of the following (11)-(13).
  • the terminal capability information includes that the terminal supports a TA adjustment mode corresponding to one TA, and/or the terminal supports a TA adjustment mode corresponding to multiple TAs.
  • the TA adjustment mode corresponding to one TA supported by the terminal can be understood as using the same TA to adjust the uplink transmission time for multiple target objects; the TA adjustment mode corresponding to multiple TAs supported by the terminal can be understood as : For multiple target objects, different target objects use different TAs to adjust the uplink transmission time.
  • the downlink time difference is determined by the terminal based on downlink measurements.
  • the aforementioned (12) and (13) are used to assist the network side device in indicating whether to enable the TA adjustment mode of multiple TAs. For example, if the number of TAs recommended by the terminal is 2, then the network side instructs to enable the TA adjustment mode of multiple TAs, and vice versa. For another example, if the downlink time difference is greater than a predetermined value, then the network side instructs to enable the TA adjustment mode of multiple TAs, otherwise it does not enable it, thereby improving the flexibility of the TA adjustment process.
  • S320 The terminal adjusts the target uplink transmission time based on the target mode and/or TA adjustment granularity.
  • the target method includes at least one of the following method 1 and method 2.
  • Method 1 Adjust the target uplink corresponding to the first target object according to the first target TAC. Transmission time.
  • Method 2 Adjust the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC.
  • the downlink time difference is the difference between the first downlink transmission time and the second downlink transmission time.
  • the first downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the first target object
  • the second downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the second target object.
  • the first target TAC is associated with a first target object.
  • the terminal can adjust the granularity according to the TA and periodically adjust the target uplink transmission time. For example, if the TA adjustment granularity is 0.5 slots, then the terminal may adjust the target uplink transmission time every 0.5 slots.
  • the target mode includes the aforementioned mode 1
  • the first target object includes a first object and a second object
  • the first target TAC includes a first TAC associated with the first object and a first TAC associated with the second object.
  • the associated second TAC then the terminal can calculate the first TA based on the first TAC, and calculate the second TA based on the second TAC, and then perform uplink operation on the target corresponding to the first object based on the first TA.
  • the transmission time is adjusted, and the target uplink transmission time corresponding to the second object is adjusted based on the second TA.
  • the terminal adjusts the target uplink transmission time corresponding to the first object based on the first TA, and adjusts the target uplink transmission time corresponding to the second object based on the second TA.
  • the adjustment process may include any of the following (11)-(12).
  • (11) Adjust the target uplink transmission time corresponding to the first object based on the downlink transmission time corresponding to the reference object and the first TA, and adjust the target uplink transmission time based on the downlink transmission time corresponding to the reference object and the second TA.
  • the time of target uplink transmission corresponding to the second object is adjusted, and the reference object is the first object or the second object. It can be understood that during the implementation of (11), the downlink transmission time corresponding to the first object is the same as the downlink transmission time corresponding to the second object, or the difference between the two is less than the first threshold.
  • the size can be realized by protocol agreement or high-level configuration, etc., and is not limited here.
  • multiple objects can share a TA process (Process, that is, the physical layer maintains an uplink transmission time). Frame (UL Frame)), and then maintain multiple TACs through the MAC layer to realize the uplink transmission corresponding to multiple objects.
  • TA process Process, that is, the physical layer maintains an uplink transmission time). Frame (UL Frame)
  • Different TAs are used to adjust the uplink transmission time; alternatively, the target uplink transmission corresponding to multiple objects can also be used separately.
  • Multiple independent TA Processes that is, the physical layer maintains multiple independent UL Frames
  • TACs through the MAC layer to realize the uplink transmission corresponding to multiple objects. Different TAs are used to adjust the uplink transmission time.
  • the first target object includes a first object and a second object.
  • the first The target TAC includes a first TAC associated with the first object and a second TAC associated with the second object as an example. The aforementioned two situations will be introduced.
  • the terminal performs operations respectively based on different time slots (slot1-slot8 as shown in Figure 4a) of the same uplink frame (UL Frame). Adjustment of the transmission time of Physical uplink shared channel (PUSCH) 1 (ie, the target uplink transmission corresponding to the first object) and PUSCH2 (ie, the uplink transmission corresponding to the second object).
  • PUSCH Physical uplink shared channel
  • the process for the terminal to determine the TAC corresponding to the target uplink transmission may include: the terminal receives the TAC corresponding to the first target object. Configuration authorization information of the target uplink transmission; and determining the first target TAC as the TAC corresponding to the target uplink transmission according to the configuration authorization information.
  • the terminal determines the first target object associated with the target uplink transmission according to the configuration authorization information of the target uplink transmission; determines the first target TAC associated with the first target object as the The TAC of the target upstream transmission.
  • the configuration authorization information may include dynamic grant (dynamic grant), configured grant (configured grant), physical uplink control channel (Physical Uplink Control Channel, PUCCH), SRS configuration (configure), etc.
  • the association relationship between the target uplink transmission and the first target object can be configured through any one of the following (21)-(24).
  • the CoresetPoolIndex can be associated through the first RRC configuration period or semi-persistent SRS or physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the target DCI for scheduling the target uplink transmission comes from the target Coreset with an associated CoresetPoolIndex of 0, then the target uplink transmission is associated with the first object; if the target uplink transmission is scheduled The transmitted target DCI comes from the target coreset associated with CoresetPoolIndex equal to 1, then the target uplink transmission is associated with the second object.
  • the terminal detects the target DCI from the target coreset whose CoresetPoolIndex is 0, then K time units of the PDCCH occasion (occasion) of detecting the target DCI All subsequent target uplink transmissions are associated with the first object; if the terminal detects a target DCI from a target coreset with a CoresetPoolIndex of 1, then all target uplink transmissions after K time units of detecting the PDCCH occasion of the target DCI are associated Second object.
  • the target uplink transmission belonging to channel group 1 is associated with the first object
  • the target uplink transmission belonging to channel group 2 is associated with the second object, . . .
  • the target uplink transmission is associated with the first object
  • the beam of the target uplink transmission is beam Y
  • the target uplink transmission is associated with the second object.
  • the beam here can refer to the TCI state, where X can represent the first TCI state and Y can represent the second TCI state.
  • the terminal determines the TAC corresponding to the target uplink transmission (such as the first target TAC). Afterwards, the terminal may periodically adjust the target uplink transmission time corresponding to the first target object.
  • the implementation process will be described below in conjunction with (31) and (32). Wherein, it is assumed that the first target object includes a first object and a second object, and the first target TAC includes a first TAC associated with the first object and a second TAC associated with the second object.
  • a first period timer is defined. Based on this, the terminal starts the first period timer (such as TAT 1) while starting the first TAT. Then, in TAT 1 During the first run, the terminal adjusts the target uplink transmission time corresponding to the first object according to the first TAC. If TAT 1 times out, TAT 1 is restarted, and during the second run of TAT 1, the The terminal adjusts the target uplink transmission time corresponding to the second object according to the second TAC, and repeats this process to adjust the target uplink transmission time corresponding to the first object and the second object respectively.
  • TAT 1 timer
  • the terminal adjusts the target uplink transmission time corresponding to the first object according to the first TAC.
  • the terminal adjusts the time according to the second TAC.
  • the time of the target uplink transmission corresponding to the second object, wherein the second periodic timer and the third periodic timer run alternately, and the first time of the second periodic timer The startup is related to the startup of the first TAT.
  • a second period timer and a third period timer are defined. Based on this, the terminal starts the second period timer (such as TAT2) while starting the first TAT. Then, during the operation of TAT2, the terminal adjusts the target uplink transmission time corresponding to the first object according to the first TAC. If TAT2 times out, starts a third period timer (such as TAT3) and runs in TAT3 During this period, the terminal adjusts the target uplink transmission time corresponding to the second object according to the second TAC, and repeats this to realize the adjustment of the uplink transmission time corresponding to the first object and the second object respectively.
  • the timing length of the second periodic timer and the timing length of the third periodic timer may be the same or different.
  • the first TAT is initiated when the terminal receives the MAC CE and the MAC CE includes the first TAC and the second TAC, or the first TAT is initiated when the terminal receives the MAC CE. It is started when the first TAC or the second TAC is received, or the first TAT is a restarted TAT, etc.
  • the first object and the second object correspond to the same first TAT, that is, the terminal adjusts the target uplink transmission time corresponding to the first object and the second object based on the same TA process.
  • the terminal performs PUSCH1 respectively based on different UL Frames (that is, the first object corresponds to The adjustment of the transmission time of the target uplink transmission) and PUSCH2 (that is, the uplink transmission corresponding to the second object).
  • the terminal may perform the following (41)-(42) any of them.
  • All uplink transmissions may include but are not limited to Hybrid Automatic Repeat Request (HARQ) transmissions, SRS, PUCCH, Configuration Grant (CG), Semi-Persistent Scheduling (SPS), Semi-Persistent Channel State Information (SP-CSI), etc.
  • HARQ Hybrid Automatic Repeat Request
  • SRS SRS
  • PUCCH Configuration Grant
  • CG Configuration Grant
  • SPS Semi-Persistent Scheduling
  • SP-CSI Semi-Persistent Channel State Information
  • the terminal may release all uplinks sent to the first object and the second object. transmission.
  • is a positive integer, such as 1, 2, 3....
  • the terminal may also receive second RRC signaling before receiving the MAC CE; wherein the second RRC signaling may include the following (51)-(52) At least one item.
  • the configuration information of the target TAG includes multiple sets of TA configuration related information associated with different target objects.
  • the target TAG can be applied to carrier aggregation scenarios to adjust the problem of different transmission delays caused by the introduction of multiple carriers, or to adjust the primary cell (Primary Cell, Pcell) and secondary cell (Secondary cell) due to different carriers.
  • Primary Cell Primary Cell
  • secondary cell Secondary cell
  • each set of TA configuration-related information may include at least multiple TATs, and information about objects (such as first objects and second objects) associated with each TAT.
  • the configuration information of the target Scell includes configuration information of multiple target TAGs corresponding to different target TAGs.
  • the terminal may determine the TAC or TA based on the aforementioned configuration information of the target TAG and/or the configuration information of the target secondary cell, which is not limited in this embodiment.
  • the terminal can adjust the first target according to the first target TAC using the downlink transmission time of the first target object as a reference (or benchmark) as shown in Figure 4e
  • the target uplink transmission time corresponding to the object, and the second target object is adjusted according to the first target TAC and the downlink time difference (the difference between the downlink transmission time corresponding to the first target object and the downlink transmission time corresponding to the second target object)
  • the terminal can also use the downlink transmission time of the second target object as a reference, adjust the target uplink transmission time corresponding to the first target object according to the first target TAC, and adjust the target uplink transmission time corresponding to the first target TAC according to the first target TAC and Downlink time difference (the downlink transmission time corresponding to the first target object and the The difference between the downlink transmission times corresponding to the two target objects) is used to adjust the target uplink transmission time corresponding to the second target object.
  • the adjusted target uplink transmission time can be as follows: Equation (2) shown.
  • is the adjusted target uplink transmission time corresponding to the first target object, is the target uplink transmission time corresponding to the first target object before adjustment, T A is the TA indicated by the first target TAC, and ⁇ represents the subcarrier spacing.
  • is a positive integer, such as 1 ,2,3....
  • the adjusted target uplink transmission time may be as shown in equation (3).
  • is the subcarrier interval, this In the embodiment, ⁇ is a positive integer, such as 1, 2, 3...
  • the first target TAC included in the MAC CE is determined based on the downlink frame of the first target object. That is to say, the TAC carried by the MAC CE is the first target TAC corresponding to the first target object.
  • the terminal uses the received MAC CE to replace the saved MAC CE, even if it carries a different coresetPoolindex.
  • the terminal considering that within the effective time of the first target TAC, the terminal needs to adjust the target uplink transmission time, therefore, in order to improve communication performance, during the first target TAC Within the validity period of the TAC, the terminal performs at least one of the following (61)-(63).
  • the second signal includes at least one of SRS, PUCCH, and CG. item. That is, the SRS, PUCCH, and CG generated within the TAC validity time of a first target object are all sent to the first target object.
  • the beam uses the common (common) beam corresponding to the first target object.
  • the public beam here is the currently effective TCI state.
  • the terminal delays the effective time of the first target TAC. time, so that the time interval between the effective time of the first target TAC and the effective time of the previous effective TAC is greater than or equal to the TA adjustment granularity, and is executed based on the delayed effective time of the first target TAC
  • independent TA adjustment can be used for the uplink transmission of two objects to ensure This ensures that the arrival times of uplink transmissions of different users on each object are the same or within one CP. This effectively reduces interference between users and improves the performance of uplink transmission.
  • FIG. 5 it is a schematic flowchart of an uplink transmission method 500 provided by an exemplary embodiment of the present application.
  • the method 500 can be, but is not limited to, executed by a network side device. Specifically, it can be executed by software installed in the network side device. Or/and hardware execution, the method 500 includes at least the following steps.
  • the network side device sends MAC CE.
  • the MAC CE includes at least one of the following: a first target timing advance command TAC, the first target TAC is associated with a first target object; and an identifier of the first target object.
  • the method further includes: sending configuration authorization information for target uplink transmission corresponding to the first target object; wherein the configuration authorization information is used by the terminal to determine the TAC corresponding to the target uplink transmission.
  • the method further includes: sending second RRC signaling; wherein the second RRC signaling includes at least one of the following: configuration information of the target timing advance group TAG, and the configuration information of the target TAG It includes multiple sets of TA configuration related information associated with different target objects; configuration information of the target secondary cell Scell, where the configuration information of the target Scell includes configuration information of multiple target TAGs corresponding to different target TAGs.
  • the optional method further includes: receiving at least one of the following reported by the terminal: terminal capability information, where the terminal capability information includes the TA adjustment mode corresponding to one TA supported by the terminal, and/or the The terminal supports TA adjustment modes corresponding to multiple TAs; the number of TAs recommended by the terminal is determined by the terminal based on downlink measurements; the downlink time difference is determined by the terminal based on downlink measurements.
  • the present method embodiment 500 has the same or corresponding technical features as the aforementioned method embodiments 200-300. Therefore, the implementation process of the method embodiment 500 can refer to the relevant descriptions in the method embodiments 200-300, and achieves the same or corresponding technical features. The corresponding technical features will not be repeated here to avoid repetition.
  • the execution subject may be an uplink transmission device.
  • the method of performing uplink transmission by the uplink transmission device is taken as an example to illustrate the uplink transmission device provided by the embodiment of the present application.
  • FIG. 6 it is a schematic structural diagram of an uplink transmission device 600 provided by an exemplary embodiment of the present application.
  • the device 600 includes: an adjustment module 610 for the terminal to adjust the granularity based on the target mode and/or timing advance TA. Adjusting the time of target uplink transmission; wherein the target method includes at least one of the following: adjusting the time of target uplink transmission corresponding to the first target object according to the first target timing advance command TAC; adjusting the time of target uplink transmission corresponding to the first target object according to the downlink time difference and the first
  • the target TAC adjusts the target uplink transmission time corresponding to the second target object.
  • the downlink time difference is the difference between the first downlink transmission time and the second downlink transmission time.
  • the first downlink transmission time is the time received by the terminal.
  • the time of downlink transmission corresponding to the first target object, the second downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the second target object; wherein, the first target TAC and the first Target object association.
  • the device 600 further includes a determining module for determining the target mode.
  • the device 600 further includes a second transmission module for receiving a media access control unit MAC CE; the MAC CE includes at least any of the following: the first target TAC; the first The identification of the target object.
  • the adjustment module 610 adjusts the target uplink transmission time corresponding to the first target object according to the first target TAC, including: when the first target object includes a first object and a second object , when the first target TAC includes a first TAC associated with the first object and a second TAC associated with the second object, the terminal calculates the first TA based on the first TAC, and Calculate a second TA based on the second TAC; pair the The target uplink transmission time corresponding to the first object is adjusted, and the target uplink transmission time corresponding to the second object is adjusted based on the second TA.
  • the adjustment module 610 adjusts the time of the target uplink transmission corresponding to the first object based on the first TA, and adjusts the time of the target uplink transmission corresponding to the second object based on the second TA.
  • the step of adjusting the time includes any of the following: adjusting the target uplink transmission time corresponding to the first object based on the downlink transmission time corresponding to the reference object and the first TA, and adjusting the time of the target uplink transmission corresponding to the reference object based on the downlink transmission time corresponding to the reference object.
  • the time and the second TA adjust the time of the target uplink transmission corresponding to the second object, the reference object is the first object or the second object; downlink transmission based on the first object
  • the time and the first TA adjust the target uplink transmission time corresponding to the first object, and adjust the target uplink transmission time corresponding to the second object based on the downlink transmission time of the second object and the second TA.
  • the transmission time is adjusted.
  • the second transmission module is also configured to receive configuration authorization information for target uplink transmission corresponding to the first target object; the adjustment module 610 is also configured to determine the first target based on the configuration authorization information.
  • TAC is the TAC corresponding to the target uplink transmission.
  • the adjustment module 610 determines the TAC corresponding to the target uplink transmission based on the configuration authorization information, including: determining all TACs associated with the target uplink transmission based on the configuration authorization information of the target uplink transmission. Determine the first target TAC associated with the first target object as the TAC of the target uplink transmission.
  • the association relationship between the target uplink transmission and the first target object in the adjustment module 610 is configured through any of the following: according to the first radio resource control RRC signaling configuration; according to the resource pool index associated with the target control resource set Coreset. CoresetPoolIndex configuration, which schedules the target
  • the downlink control information DCI labeled for uplink transmission comes from the target Coreset; is determined according to the channel grouping of the target uplink transmission; and is determined according to the beam of the target uplink transmission.
  • RRC configures the SRS resource to associate with the target object, or the SRS resource set to associate with the target object, RRC configures the PUCCH resource to associate with the target object, or the PUCCH resource group to associate with the target object, etc.
  • the association between the target uplink transmission and the first target object is determined in the following manner:
  • the first target object is determined according to a third object associated with the target uplink transmission, and the third object is associated with the first target object; that is to say, the first target object is a third object associated with the target uplink transmission.
  • the first target object associated with the object; the association relationship between the third object and the first target object can be configured through RRC.
  • the first target object is determined based on a target object other than a target object associated with a fourth object.
  • the fourth object is an object associated with a specific event.
  • the first target object is a target object other than a fourth object associated. Outside the target object, the specific event is beam failure.
  • the third object and the fourth object can be represented as SRS resources, SRS resource sets, power control parameter sets, beam failure detection reference signals (Beam Failure Detection Reference Signal, BFD-RS) sets, reference signals (synchronization Synchronization Signaling Block (SSB), Channel State Information Reference Signal (CSI-RS), Phase Reference Signal (Tracking Reference Signal, TRS), BFD-RS, Path Loss Reference Signal, PL-RS), etc.) etc.
  • BFD-RS Beam Failure Detection Reference Signal
  • SSB synchronization Synchronization Signaling Block
  • CSI-RS Channel State Information Reference Signal
  • TRS Phase Reference Signal
  • BFD-RS Path Loss Reference Signal
  • PL-RS Path Loss Reference Signal
  • the power control parameter set is associated with a target object
  • the target object associated with the uplink transmission is the target object associated with the power control parameter set associated with the target uplink transmission.
  • the UE when the UE detects that the beam associated with the fourth object fails, it is considered that the PUCCH resource corresponding to the beam failure is associated with the first target object other than the target object associated with the fourth object.
  • the advantage of this is that when a TRP beam fails, the PUCCH resource associated with the beam failure is considered to be associated with another TRP that has not failed, ensuring the performance of PUCCH transmission and enabling the beam failure information to be reported to the network.
  • the adjustment module 610 adjusts the target uplink transmission time corresponding to the first target object according to the first target TAC, including: periodically adjusting the first target TAC according to the first target TAC.
  • the target uplink transmission time corresponding to the target object is not limited to the first target TAC.
  • the first target object includes a first object and a second object
  • the first target TAC includes a first TAC associated with the first object and a second TAC associated with the second object
  • the step of the adjustment module 610 periodically adjusting the target uplink transmission time corresponding to the first target object according to the first target TAC includes any of the following: During the operation of the first periodic timer, according to the The first TAC adjusts the time of the target uplink transmission corresponding to the first object, restarts the first period timer when the first period timer times out, and during the operation of the first period timer after restarting, The time of uplink transmission corresponding to the second object is adjusted according to the second TAC, and the first start of the first periodic timer is related to the start of the first TAT; during the operation of the second periodic timer, according to the first A TAC adjusts the time of the target uplink transmission corresponding to the first object, and during the operation of the third cycle timer, the time of the target uplink transmission corresponding to the second object is adjusted according to the
  • the adjustment module 610 is also configured to perform any of the following when the second TAT corresponding to the third target object expires: release all uplink transmissions sent to the third target object; release all uplink transmissions sent to the third target object;
  • the first signal of the third target object, the first signal includes at least one of the sounding reference signal SRS, the physical uplink control channel PUCCH, the configuration grant CG, the semi-persistent scheduling SPS, and the semi-persistent channel state information SP-CSI.
  • the third target object is the first object or the second object
  • the second TAT is started by the terminal when receiving the MAC CE, and the first object and the second object correspond to different of the second TAT.
  • the adjustment module 610 is also configured to release the data sent to the first object and the second TAT corresponding to the second object when both the second TAT corresponding to the first object and the second TAT corresponding to the second object have expired. All upstream transmissions of the second object.
  • the second transmission module is also configured to receive second RRC signaling; wherein the second RRC signaling includes at least one of the following: configuration information of the target timing advance group TAG, The configuration information includes multiple sets of TA configuration related information associated with different target objects; configuration information of the target secondary cell Scell, where the configuration information of the target Scell includes configuration information of multiple target TAGs corresponding to different target TAGs.
  • the adjustment module 610 adjusts the target uplink transmission time corresponding to the first target object according to the first target TAC, including: in, is the adjusted target uplink transmission time corresponding to the first target object, is the target uplink transmission time corresponding to the first target object before adjustment, and T A is the TA indicated by the first target TAC.
  • the adjustment module 610 adjusts the downlink time difference according to the first target TAC.
  • the steps of adjusting the target uplink transmission time corresponding to the second target object include: in, is the adjusted target uplink transmission time corresponding to the second target object, is the target uplink transmission time corresponding to the second target object before adjustment, T A is the TA indicated by the first target TAC, and offset is the downlink time difference.
  • the first target TAC included in the MAC CE is determined based on the downlink frame of the first target object.
  • the adjustment module 610 is also configured to replace the saved MAC CE with the received MAC CE.
  • the second transmission module is also configured to report at least one of the following: terminal capability information.
  • the terminal capability information includes that the terminal supports a TA adjustment mode corresponding to one TA, and/or the terminal supports multiple TAs.
  • the adjustment module 610 is also configured to adjust the time of the target uplink transmission based on the TA adjustment granularity, including: the terminal periodically adjusts the time of the target uplink transmission based on the TA adjustment granularity.
  • the TA adjustment granularity is determined according to any of the following methods: independently determined by the terminal; determined according to the received third RRC signaling, in which the TA adjustment granularity is configured.
  • the UE determines the granularity of TA adjustment based on the measured downlink time difference associated with different target objects, and reports it to the network.
  • the UE reports the granular information of TA adjustment to help assist the network. Reduce ineffective upstream scheduling.
  • the interval between uplink transmissions associated with different target objects cannot be smaller than the granularity of the TA adjustment.
  • the terminal does not expect the network to schedule two uplink transmissions associated with different target objects, and the interval between the uplink transmissions is smaller than the granularity of the TA adjustment. If it is smaller than the granularity of the TA adjustment, the terminal will not have time to adjust the TA, which will cause the uplink transmission to fail.
  • the adjustment module 610 is also configured to adjust the time of the target uplink transmission based on the TA adjustment granularity, and further includes: when at least one of the following conditions is met, the terminal selects the uplink transmission associated with the third target for transmission, Target uplink transmissions associated with other target objects are discarded; the conditions include overlap of the different uplink transmission time domain resources; or
  • the time domain interval between different uplink transmissions is smaller than the TA adjustment granularity.
  • the third target object may be indicated by DCI signaling, which has the advantage of dynamically instructing the UE which uplink transmission to select for transmission.
  • DCI signaling which has the advantage of dynamically instructing the UE which uplink transmission to select for transmission.
  • high-priority ones can be indicated for transmission.
  • the transmission priority, etc. can be indicated through the indication field in the DCI.
  • the adjustment module 610 is also configured to delay the adjustment granularity of the first target TAC when the time interval between the effective time of the first target TAC and the effective time of the previous effective TAC is smaller than the TA adjustment granularity. the effective time of the first target TAC, and perform the step of adjusting the time of target uplink transmission based on the target mode and/or TA adjustment granularity based on the delayed effective time of the first target TAC.
  • the apparatus 600 further includes a processing module, which is configured to perform at least one of the following within the validity time of the first target TAC: it is not expected to receive a message other than one associated with the first target TAC.
  • Uplink transmission scheduling information of other objects other than the first target object determine the second signal generated within the effective time of the first target TAC as the pair of the first target object.
  • the second signal includes at least one of SRS, PUCCH, and CG.
  • the device for upstream teaching in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the uplink transmission device 600 provided by the embodiment of the present application can implement each process implemented by the method embodiment of Figures 2 to 3, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the device 700 includes: a first transmission module 710, used to send a media access control unit MAC CE; wherein, The MAC CE at least includes at least one of the following: a first target timing advance command TAC, the first target TAC is associated with a first target object; and an identifier of the first target object.
  • a first transmission module 710 used to send a media access control unit MAC CE
  • the MAC CE at least includes at least one of the following: a first target timing advance command TAC, the first target TAC is associated with a first target object; and an identifier of the first target object.
  • the first transmission module 710 is configured to send configuration authorization information for target uplink transmission corresponding to the first target object; wherein the configuration authorization information is used for the terminal to determine the configuration authorization information corresponding to the target uplink transmission. TAC.
  • the first transmission module 710 is configured to send second RRC signaling; wherein the second RRC signaling includes at least one of the following: configuration information of the target timing advance group TAG, The configuration information includes multiple sets of TA configuration related information associated with different target objects; configuration information of the target secondary cell Scell, where the configuration information of the target Scell includes configuration information of multiple target TAGs corresponding to different target TAGs.
  • the apparatus 700 further includes a first transmission module 710, configured to receive at least one of the following reported by the terminal: terminal capability information, where the terminal capability information includes the TA adjustment mode corresponding to one TA supported by the terminal. , and/or the terminal supports TA adjustment modes corresponding to multiple TAs; the number of TAs recommended by the terminal, the number of TAs is determined by the terminal based on downlink measurements; the downlink time difference is the The terminal determines based on downlink measurements.
  • the uplink transmission device 700 in the embodiment of the present application may be a network-side device, or may be a component of the network-side device, such as an integrated circuit or chip.
  • network-side devices may include but are not limited to the types of network-side devices 12 listed above, which are not specifically limited in the embodiments of this application.
  • the uplink transmission device 700 provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the methods described in method embodiments 200-300. Method steps.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 800 includes but is not limited to: radio frequency unit 801, network module 802, audio output unit 803, input unit 804, sensor 805, display unit 806, user input unit 807, interface unit 808, memory 809, processor 810, etc. at least some parts of it.
  • the terminal 800 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 810 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the graphics processor 8041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and at least one of other input devices 8072 . Touch panel 8071, also known as touch screen.
  • the touch panel 8071 may include two touch detection devices and a touch controller. part.
  • Other input devices 8072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 801 after receiving downlink data from the network side device, the radio frequency unit 801 can transmit it to the processor 810 for processing; in addition, the radio frequency unit 801 can send uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 809 may include volatile memory or non-volatile memory, or memory 809 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 810 may include one or more processing units; optionally, the processor 810 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 810.
  • the processor 810 is configured for the terminal to adjust the granularity of the target uplink transmission time based on the target mode and/or the timing advance amount TA; wherein the target mode includes at least one of the following: TAC adjustment according to the first target timing advance command The target uplink transmission time corresponding to the first target object; adjust the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC, where the downlink time difference is the difference between the first downlink transmission time and the first target TAC. The difference between two downlink transmission times.
  • the first downlink transmission time is the time when the terminal receives the downlink transmission corresponding to the first target object.
  • the second downlink transmission time is the time when the terminal receives the second downlink transmission time.
  • the terminal adjusts the target uplink transmission time according to the target mode and/or TA adjustment granularity, wherein the target mode includes adjusting the target uplink corresponding to the first target object according to the first target TAC.
  • the transmission time, and/or adjusts the target uplink transmission time corresponding to the second target object according to the downlink time difference and the first target TAC. Therefore, on the one hand, different TAs can be used for different target objects.
  • the adjustment of the uplink transmission time can ensure the accuracy and efficiency of the uplink transmission time adjustment, thereby ensuring that the uplink transmission time corresponding to each target object meets the orthogonal relationship between users, avoiding interference between users, and achieving the purpose of improving the uplink transmission performance.
  • adjusting the target uplink transmission time based on TA adjustment granularity can avoid the problems of high terminal power consumption and large signaling overhead caused by frequent adjustments, and can also reduce the complexity of terminal implementation.
  • An embodiment of the present application also provides a network-side device, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in Embodiment 500.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network The side device 900 includes: an antenna 901, a radio frequency device 902, a baseband device 903, a processor 904 and a memory 905.
  • Antenna 901 is connected to radio frequency device 902.
  • the radio frequency device 902 receives information through the antenna 901 and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902.
  • the radio frequency device 902 processes the received information and then sends it out through the antenna 901.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 903, which includes a baseband processor.
  • the baseband device 903 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. 9 .
  • One of the chips is, for example, a baseband processor, which is connected to the memory 905 through a bus interface to call the Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 906, which is, for example, a common public radio interface (CPRI).
  • a network interface 906 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 900 in the embodiment of the present application also includes: instructions or programs stored in the memory 905 and executable on the processor 904.
  • the processor 904 calls the instructions or programs in the memory 905 to execute each of the steps shown in Figure 7. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above uplink transmission method embodiment is implemented, and can achieve The same technical effects are not repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run network-side device programs or instructions to implement the above uplink transmission.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a processor, a memory, and a program or instructions stored on the memory and executable on the processor.
  • the program or instructions are used by the processor.
  • Embodiments of the present application also provide a wireless communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps described in method embodiments 200-300 as described above.
  • the network side device can be used to The steps described in method embodiment 500 are performed as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to make a terminal (can be a mobile phone, computer, server server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of this application.

Abstract

本申请公开了一种上行传输的方法、终端及网络侧设备,属于通信技术领域,本申请实施例的上行传输的方法包括:终端基于目标方式和/或定时提前量TA调整颗粒度调整目标上行传输的时间;其中,目标方式包括以下至少一项:根据第一目标定时提前命令TAC调整第一目标对象对应的目标上行传输的时间;根据下行时间差值以及第一目标TAC调整第二目标对象对应的目标上行传输的时间,下行时间差是第一下行传输时间与第二下行传输时间之间的差值,第一下行传输时间是终端接收到第一目标对象对应的下行传输的时间,第二下行传输时间是终端接收到第二目标对象对应的下行传输的时间;其中,第一目标TAC与第一目标对象关联。

Description

上行传输的方法、终端及网络侧设备
交叉引用
本申请要求在2022年03月09日提交中国专利局、申请号为202210234176.8、发明名称为“上行传输的方法、终端及网络侧设备”,和在2022年10月13日提交中国专利局、申请号为202211255663.9、发明名称为“上行传输的方法、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种上行传输的方法、终端及网络侧设备。
背景技术
在相关技术中,针对多个不同的对象(如波束(beam)、探测参考信号(Sounding Reference Signal,SRS)资源、天线组、发送接收点(Transmitting Receiving Point,TRP)等),终端进行的多个上行传输一般采用相同的时间提前量(Timing Advance,TA),但由于不同对象的位置差异较大等原因,导致部分上行传输之间存在用户间干扰,降低了上行传输的性能。
发明内容
本申请实施例提供一种上行传输的方法、终端及网络侧设备,能够避免用户间干扰,提高上行传输性能。
第一方面,提供了一种上行传输的方法,包括:终端基于目标方式和/或定时提前量TA调整颗粒度调整目标上行传输的时间;其中,所述目标方式包括以下至少一项:根据第一目标定时提前命令TAC调整第一目标对象对 应的目标上行传输的时间;根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间;其中,所述第一目标TAC与所述第一目标对象关联。
第二方面,提供了一种上行传输的方法,包括:网络侧设备发送媒体接入控制控制单元MAC CE;其中,所述MAC CE中至少包括以下至少一项:第一目标定时提前命令TAC,所述第一目标TAC与第一目标对象关联;所述第一目标对象的标识。
第三方面,提供了一种上行传输的装置,包括:调整模块,用于基于目标方式和/或定时提前量TA调整颗粒度调整目标上行传输的时间;其中,所述目标方式包括以下至少一项:根据第一目标定时提前命令TAC调整第一目标对象对应的目标上行传输的时间;根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间;其中,所述第一目标TAC与所述第一目标对象关联。
第四方面,提供了一种上行传输的装置,包括:第一传输模块,用于发送媒体接入控制控制单元MAC CE,其中,所述MAC CE中至少包括以下至少一项:第一目标定时提前命令TAC,所述第一目标TAC与第一目标对象关联;所述第一目标对象的标识。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第七方面,提供了一种网络侧设备,该网络侧设备处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第二方面所述的方法的步骤。
第九方面,提供了一种无线通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的上行传输的方法的步骤,所述网络侧设备可用于执行如第二方面所述的上行传输的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十二方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
在本申请实施例中,终端根据目标方式和/或TA调整颗粒度进行目标上行传输的时间的调整,其中,所述目标方式包括根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间,和/或,根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,由此, 一方面,对于不同的目标对象能够采用不同的TA进行上行传输时间的调整,从而确保上行传输时间调整的精确、高效,进而确保各目标对象对应的上行传输时间满足用户间正交的关系,避免带来用户间干扰,达到提高上行传输性能的目的;另一方面,基于TA调整颗粒度进行目标上行传输的时间的调整,能够避免频繁调整带来的终端功耗高、信令开销大的问题,同时还可以降低终端实现的复杂度。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的结构示意图。
图2是本申请一示例性实施例提供的上行传输的方法的流程示意图。
图3是本申请另一示例性实施例提供的上行传输的方法的流程示意图。
图4a是本申请一示例性实施例提供的基于同一TA进程进行目标上行传输时间调整的示意图。
图4b是本申请一示例性实施例提供的周期性调整目标上行传输时间的示意图。
图4c是本申请另一示例性实施例提供的周期性调整目标上行传输时间的示意图。
图4d是本申请另一示例性实施例提供的基于不同TA进程进行目标上行传输时间调整时的示意图。
图4e是本申请一示例性实施例提供的基于下行时间差和第一目标TAC进行目标上行传输时间调整的示意图。
图4f是本申请另一示例性实施例提供的基于下行时间差和第一目标TAC进行目标上行传输时间调整的示意图。
图5是本申请又一示例性实施例提供的上行传输的方法的流程示意图。
图6是本申请一示例性实施例提供的上行传输的装置的结构示意图。
图7是本申请一示例性实施例提供的上行传输的装置的结构示意图。
图8是本申请一示例性实施例提供的终端的结构示意图。
图9是本申请一示例性实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。可以理解,该处提及的第一对象为泛指任意需要通过术语第一、第二区分的对象。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使 用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。下面结 合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的上行传输的方法200的流程示意图,该方法200可以但不限于由终端执行,具体可由安装于终端中的硬件和/或软件执行。本实施例中,所述方法至少可以包括如下步骤。
S210,所述终端基于目标方式和/或TA调整颗粒度调整目标上行传输的时间。
其中,所述目标方式包括以下方式1、方式2中的至少一项。
方式1:根据所述第一目标定时提前命令(Timing Advance Command,TAC)调整所述第一目标对象对应的目标上行传输的时间。
方式2:根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间。
前述方式1和方式2中,所述第一目标TAC与所述第一目标对象关联,对此可以理解为:所述第一目标TAC是用于通知终端上行传输提前发送相应的时间量,如定时提前量(Timing Advance,TA)。例如,所述第一目标TAC是用于通知所述终端与所述第一目标对象对应的TA,使得所述终端可基于该TA调整所述第一目标对象对应的上行传输时间,或,所述终端根据所述第一目标TAC所通知的TA调整除所述第一目标对象之外的其他目标对象对应的上行传输的时间。
当然,在一种实现方式中,所述第一目标对象可以是但不限于SRS资源 集、SRS资源、传输配置指示(Transmission Configuration Indicator,TCI)状态、TCI状态池、天线分组、面板(panel)、TRP、资源池索引(CoresetPoolIndex),TAG,TAG索引等。
基于此,对于存在多个目标对象的场景,所述终端基于所述目标方式进行目标上行传输时间调整的过程可以如下。
在所述目标方式包括方式1时,所述终端可以根据与目标对象一一对应的目标TAC进行上行传输时间的调整,如前述的根据第一目标TAC调整所述第一目标对象对应的目标上行传输的时间,由此,对于不同的目标对象能够采用不同的TA进行上行传输时间的调整,从而能够确保上行传输时间调整的精确、高效,进而确保各目标对象对应的上行传输时间满足用户间正交的关系,避免带来用户间干扰,达到提高上行传输性能的目的。尤其在目标对象为TRP时,还能达到通过多TRP传输提升吞吐量的目的。
在所述目标方式包括方式1和方式2时,所述终端可以根据接收到的第一目标TAC对与其关联的第一目标对象对应的目标上行传输进行上行传输的时间调整,而对于多个目标对象中除第一目标对象之外的其他目标对象,如第二目标对象,可以根据第一目标TAC和上行时间差实现对其对应的上行传输时间的调整,由此,相比于前述方式1,本实现方式能够在只有一个目标TAC的情况下,实现对多个目标对象对应的上行传输时间的精确、高效调整,且终端实现简单。
可以理解,在所述目标方式仅包括方式2时,其实现过程可参照前述目标方式包括方式1和方式2时的相关描述,为避免重复,在此不再赘述。
值得注意的是,相比于相关技术,本实施例中基于前述的方式1和/或方式2所实现的上行传输时间的调整过程,是采用与目标对象一一关联的(或对应的)TA,即不同的目标对象利用不同的TA进行上行传输时间的调整,由此,能够确保上行传输时间调整的精确、高效,进而确保各目标对象对应 的上行传输时间满足用户间正交的关系,使得不同用户传输到达一个对象(如TRP等)的上行传输时间差不超出循环前缀(Cyclic Prefix,CP),避免带来用户间干扰,达到提高上行传输性能的目的。
可以理解,前述的第一目标TAC的获取方式可以有多种,例如,所述终端可以通过接收媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)的方式获取,该MAC CE中至少包括第一目标定时提前命令(Timing Advance Command,TAC),也可以通过协议约定的方式获取,在此不做限制。
一种实现方式中,所述终端在通过MAC CE获取第一目标TAC时,所述MAC CE中还可携带有与所述第一目标TAC关联的第一目标对象的标识。当然,如果第一目标TAC包括第一TAC和第二TAC,那么,所述MAC CE中还可携带与第一TAC关联的第一对象的标识,以及与第二TAC关联的第二对象的标识等,在此不做限制。
需要注意的是,如果所述MAC CE中仅包括第一目标TAC,那么,与所述第一目标TAC与第一目标对象之间的关联关系可以由协议约定、高层配置等方式实现,在此不做限制。
进一步,所述TA调整颗粒度可以理解为所述终端进行两次TA调整的最小间隔,以用于避免频繁调整带来的终端功耗高、信令开销大的问题,同时还可以降低终端实现的复杂度。
可选的,在本实施例中,所述TA调整颗粒度可以由所述终端自主确定或所述终端根据接收到的第三无线资源控制(Radio Resource Control,RRC)信令确定,所述第三RRC信令中配置有TA调整颗粒度。当然,如果所述TA调整颗粒度是由所述终端自主确定,所述终端可以上报所述TA调整颗粒给 所述网络侧设备,以确保所述终端和所述网络侧设备对所述TA调整颗粒度理解的一致性。
另外,所述TA调整颗粒度的大小可以根据通信需求进行定义,例如,对于不同的子载波间隔(Subcarrier Spacing,SCS)的配置,可以定义不同长度的调整颗粒度,如所述TA调整颗粒度可以为0.5个时隙(Slot)、1个时隙、2个时隙、3个时隙或4个时隙等。当然,除了以时隙作为时间单位之外,所述TA调整颗粒度也可以以帧、子帧、符号等作为时间单位,在此不做限制。
在此情况下,对于前述的目标方式和TA调整颗粒度,所述终端可以根据协议约定、高层配置或网络侧配置等方式,确定是基于目标方式还是基于TA调整颗粒度还是基于目标方式TA调整颗粒度实现上行传输时间的调整,本实施例在此不做限制。
本实施例中,终端根据目标方式和/或TA调整颗粒度进行目标上行传输的时间的调整,其中,所述目标方式包括根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间,和/或,根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,由此,一方面,对于不同的目标对象能够采用不同的TA进行上行传输时间的调整,从而能够确保上行传输时间调整的精确、高效,进而确保各目标对象对应的上行传输时间满足用户间正交的关系,避免带来用户间干扰,达到提高上行传输性能的目的;另一方面,基于TA调整颗粒度进行目标上行传输的时间的调整,能够避免频繁调整带来的终端功耗高、信令开销大的问题,同时还可以降低终端实现的复杂度。
如图3所示,为本申请一示例性实施例提供的上行传输的方法300的流程示意图,该方法300可以但不限于由终端执行,具体可由安装于终端中的 硬件和/或软件执行。本实施例中,所述方法至少可以包括如下步骤。
S310,所述终端上报第一信息。
其中,所述第一信息包括以下(11)-(13)中的至少一项。
(11)终端能力信息,所述终端能力信息包括所述终端支持一个TA对应的TA调整模式,和/或所述终端支持多个TA对应的TA调整模式。本实施例中,所述终端支持一个TA对应的TA调整模式可以理解为对于多个目标对象采用同一个TA进行上行传输时间的调整;所述终端支持多个TA对应的TA调整模式可以理解为:对于多个目标对象,不同的目标对象采用不同的TA进行上行传输时间的调整。
(12)终端推荐的TA个数,所述TA个数是所述终端根据下行测量确定。
(13)所述下行时间差,所述下行时间差是所述终端根据下行测量确定。
其中,前述(12)和(13)用于辅助网络侧设备指示是否使能多个TA的TA调整模式。例如,如果所述终端推荐的TA个数为2,那么,所述网络侧指示使能多个TA的TA调整模式,反之则不使能。又例如,如果所述下行时间差大于预定值,那么,所述网络侧指示使能多个TA的TA调整模式,反之则不使能,由此,能够提高TA调整过程的灵活性。
基于此,可以理解后续的S320的实现是在所述终端支持多个TA的TA调整模式、且是在网络侧设备指示使能多个TA的TA调整模式的情况下实现,具体不再赘述。
S320,所述终端基于目标方式和/或TA调整颗粒度调整目标上行传输的时间。
其中,所述目标方式包括以下方式1、方式2中的至少一项。
方式1:根据所述第一目标TAC调整所述第一目标对象对应的目标上行 传输的时间。
方式2:根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间。
所述第一目标TAC与第一目标对象关联。
可以理解,S310的实现过程除了可以参照前述方法实施例200中的相关描述之外,作为一种可能的实现方式,所述终端可以根据TA调整颗粒度,周期性的调整目标上行传输的时间。例如,如果所述TA调整颗粒度为0.5个slot,那么,所述终端可以每隔0.5个slot进行一次目标上行传输的时间调整。
此外,对于前述所述终端目标方式调整目标上行传输的时间的过程,下面将结合示例1-示例2,对其实现过程做进一步说明,内容如下。
示例1
假设所述目标方式包括前述方式1,所述第一目标对象包括第一对象和第二对象,所述第一目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC,那么,所述终端可根据第一TAC计算第一TA,以及根据所述第二TAC计算第二TA,再基于所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二TA对所述第二对象对应的目标上行传输的时间进行调整。
可选的,所述终端基于所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二TA对所述第二对象对应的目标上行传输的时间进行调整的过程可以包括以下(11)-(12)任一项。
(11)基于参考对象对应的下行传输时间和所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于参考对象对应的下行传输时间和所述第二TA对所述第二对象对应的目标上行传输的时间的进行调整,所述参考对象为所述第一对象或所述第二对象。可以理解,在该(11)的实现过程中,所述第一对象对应的下行传输时间与第二对象对应的下行传输时间相同,或者,二者的差值小于第一阈值,该第一阈值的大小可以由协议约定或高层配置等实现,在此不做限制。
(12)基于所述第一对象的下行传输时间和所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二对象的下行传输时间和所述第二TA对所述第二对象对应的目标上行传输的时间进行调整。可以理解,在该(12)的实现过程中,所述第一对象对应的下行传输时间与第二对象对应的下行传输时间之间的差值大于或等于第二阈值,该第二阈值的大小可以由协议约定或高层配置等实现,在此不做限制。当然,前述的第一阈值与第二阈值可以相同或不同。
当然,在本示例1中,针对多个对象(如第一对象、第二对象)对应的目标上行传输的时间的调整,多个对象可以共用一个TA进程(Process,也即物理层维护一个上行帧(UL Frame)),再通过MAC层维护多个TAC来实现多个对象对应的上行传输分别采用不同的TA来调整上行传输的时间;或者,多个对象对应的目标上行传输也可以分别采用多个独立的TA Process(即物理层维护多个独立的UL Frame),再通过MAC层维护多个TAC来实现多个对象对应的上行传输分别采用不同的TA来调整上行传输的时间。
基于此,下面以所述第一目标对象包括第一对象和第二对象,所述第一 目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC为例,对前述两种情形进行介绍。
情形1
如图4a所示,假设第一对象和第二对象共用一个TA进程,那么,所述终端基于同一上行帧(UL Frame)的不同时隙(如图4a中所示的slot1-slot8)分别进行物理上行共享信道(Physical uplink shared channel,PUSCH)1(即第一对象对应的目标上行传输)和PUSCH2(即第二对象对应的上行传输)的传输时间的调整。
需要注意的是,在此情形中,考虑到第一对象和第二对象共用一个TA进程,所述终端确定目标上行传输对应的TAC的过程可以包括:所述终端接收所述第一目标对象对应的目标上行传输的配置授权信息;以及根据所述配置授权信息确定所述第一目标TAC为所述目标上行传输对应的TAC。例如,所述终端根据所述目标上行传输的配置授权信息,确定与所述目标上行传输关联的所述第一目标对象;将与所述第一目标对象关联的第一目标TAC确定为所述目标上行传输的TAC。本实施例中,所述配置授权信息可以包括动态授权(dynamic grant)、配置授权(configured grant)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、SRS配置(configure)等。
基于此,在一种实现方式中,所述目标上行传输与第一目标对象之间的关联关系可通过以下(21)-(24)中的任一项配置。
(21)根据第一RRC信令配置;例如,可通过第一RRC配置周期或者半持续的SRS、物理上行控制信道(Physical Uplink Control Channel,PUCCH)关联CoresetPoolIndex。
(22)根据目标控制资源集(Control resource set,Coreset)所关联的CoresetPoolIndex配置,其中,调度所述目标上行传输的下行控制信息(Downlink Control Information,DCI)来自所述目标Coreset。
例如,假设第一目标对象包括第一对象和第二对象,调度所述目标上行传输的目标DCI来自关联CoresetPoolIndex为0的目标Coreset,则,所述目标上行传输关联第一对象;如果调度目标上行传输的目标DCI来自关联CoresetPoolIndex为1的目标coreset,则所述目标上行传输关联第二对象。
又例如,假设第一目标对象包括第一对象和第二对象,如果终端检测到来自CoresetPoolIndex为0的目标coreset的目标DCI,则在检测所述目标DCI的PDCCH时机(occasion)的K个时间单位之后的所有目标上行传输都关联第一对象;如果终端检测到来自CoresetPoolIndex为1的目标coreset的目标DCI,则在检测所述目标DCI的PDCCH occasion的K个时间单位之后的所有目标上行传输都关联第二对象。
(23)根据目标上行传输的信道分组确定。例如,属于信道分组1的目标上行传输与第一对象关联,属于信道分组2的目标上行传输与第二对象关联,……。
(24)根据目标上行传输的波束确定。例如,在所述目标上行传输的波束为波束X时,所述目标上行传输与第一对象关联,在所述目标上行传输的波束为波束Y时,所述目标上行传输与第二对象关联。其中,这里得波束可以指TCI状态,其中X可以表示第一个TCI状态,Y可以表示第二个TCI状态。
进一步,所述终端在确定目标上行传输对应的TAC(如第一目标TAC) 之后,所述终端可周期性的调整所述第一目标对象对应的目标上行传输的时间,下面结合(31)和(32)对其实现过程进行说明。其中,假设所述第一目标对象包括第一对象和第二对象,所述第一目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC。
(31)在第一周期定时器运行期间,根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,在所述第一周期定时器超时重启所述第一周期定时器,以及在重启后的所述第一周期定时器运行期间,根据所述第二TAC调整所述第二对象对应的上行传输的时间,所述第一周期定时器的首次启动与第一时间同步计时器(Time Alignment Timer,TAT)的启动相关;由此,通过重复启动所述第一周期定时器,实现对所述第一对象对应的上行传输的时间以及对所述第二对象对应的上行传输的时间的周期性调整。
例如,请结合参阅图4b,本实施例中定义一个第一周期定时器,基于此,所述终端在启动第一TAT的同时启动第一周期定时器(如TAT 1),那么,在TAT 1第一次运行期间,所述终端根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,如果TAT 1超时,则重启TAT 1,并在TAT1第二次运行期间,所述终端根据所述第二TAC调整所述第二对象对应的目标上行传输的时间,如此重复,实现对第一对象和第二对象分别对应的目标上行传输的时间的调整。
(32)在第二周期定时器运行期间,终端根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,在第三周期定时器运行期间,终端根据所述第二TAC调整所述第二对象对应的目标上行传输的时间,其中,所述第二周期定时器和所述第三周期定时器交替运行,所述第二周期定时器的首次 启动与第一TAT的启动相关。
例如,请结合参阅图4c,本实施例中定义一个第二周期定时器和第三周期定时器,基于此,所述终端在启动第一TAT的同时启动第二周期定时器(如TAT2),那么,在TAT2运行期间,所述终端根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,如果TAT2超时,则启动第三周期定时器(如TAT3),并在TAT3运行期间,所述终端根据所述第二TAC调整所述第二对象对应的目标上行传输的时间,如此重复,实现对第一对象和第二对象对应的上行传输的时间的分别调整。其中,所述第二周期定时器的定时长度和所述第三周期定时器的定时长度可以相同,也可以不同。
需要注意的是,所述第一TAT是所述终端在接收到所述MAC CE、且所述MAC CE中包括第一TAC和第二TAC时启动,或所述第一TAT是所述终端在接收到第一TAC或第二TAC时启动,或所述第一TAT是重启的TAT等。所述第一对象和所述第二对象对应同一所述第一TAT,也即所述终端基于同一TA进程进行第一对象和第二对象对应的目标上行传输时间的调整。
情形2
如图4d所示,假设第一对象和第二对象分别对应一个独立的TA进程,如TA进程1、TA进程2,那么,所述终端基于不同的UL Frame分别进行PUSCH1(即第一对象对应的目标上行传输)和PUSCH2(即第二对象对应的上行传输)的传输时间的调整。
基于此,考虑到所述终端在接收到MAC CE时启动TAT(即第二TAT)、且所述第一对象和第二对象分别对应不同的TAT(即所述第一对象与所述第二对象对应不同的所述第二TAT),那么,如果第三目标对象(第一对象或第二对象)对应的第二TAT过期,所述终端可以执行以下(41)-(42)中的 任一项。
(41)释放(或清除)发往所述第三目标对象的全部上行传输,其中,所述全部上行传输可以包括但不限于混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)传输、SRS、PUCCH、配置授权(Configured Grant,CG)、半持续调度(Semi-Persistent Scheduling,SPS)、半持续信道状态信息(Semi-Persistent Channel State Information,SP-CSI)等。
(42)释放发往所述第三目标对象的第一信号,其中,所述第一信号包括SRS、PUCCH、CG、SPS、SP-CSI中的至少一项。
相应的,如果所述第一对象对应的第二TAT以及所述第二对象对应第二TAT均过期,那么,所述终端可释放发往所述第一对象和所述第二对象的全部上行传输。
此外,考虑到第一对象和第二对象分别对应一个独立的TA进程,那么,所述终端在进行目标上行传输的时间调整时,可以引入TA进程标识(process ID)来区分两个TA进程,如i=CoresetPoolIndex或者i=物理层小区标识(Physical Cell Identifier,PCI)。
示例性的,调整后的时间可以如式(1)所示。
其中,为调整后的目标上行传输的时间,为调整前的目标上行传输的时间,TA(i)为通过TAC所指示的TA,i是TA process ID,基于此,如果是对第一对象对应的目标上行传输时间进行调整,那么,i=1,如果是对第二对象对应的目标上行传输时间进行调整,那么,i=2,μ表示子载波间隔,本实施例中,μ为正整数,如1、2、3……。
需要注意,在一种实现方式中,所述终端在接收MAC CE之前,还可以接收第二RRC信令;其中,所述第二RRC信令中可以包括以下(51)-(52)中的至少一项。
(51)目标定时提前组(time advance group,TAG)的配置信息,所述目标TAG的配置信息中包括与不同目标对象关联的多套TA配置相关信息。其中,所述目标TAG可以应用于载波聚合场景,用于调整由于多个载波引入而导致的传输时延不同的问题,或者调整由于不同载波的主小区(Primary Cell,Pcell)和辅小区(Secondary Cell,Scell)的位置差异较大而导致的传输时延不同的问题。本实施例中,每套TA配置相关信息中至少可以包括多个TAT、以及与各TAT关联的对象(如第一对象、第二对象)的信息等。
(52)目标辅小区的配置信息,所述目标Scell的配置信息包括与不同的目标TAG对应的多个目标TAG的配置信息。
那么,所述终端在接收到TAC时,可基于前述的目标TAG的配置信息和/或目标辅小区的配置信息进行TAC或TA的确定,本实施例在此不做限制。
示例2
假设所述目标方式包括前述方式1和方式2,那么,所述终端可以如图4e所示,以第一目标对象的下行传输时间为参考(或基准),根据第一目标TAC调整第一目标对象对应的目标上行传输的时间,以及根据第一目标TAC和下行时间差(第一目标对象对应的下行传输时间与第二目标对象对应的下行传输时间之间的差值)来调整第二目标对象对应的目标上行传输的时间。
或者,所述终端也可以如图4f所示,以第二目标对象的下行传输时间为基准,根据第一目标TAC调整第一目标对象对应的目标上行传输的时间,以及根据第一目标TAC和下行时间差(第一目标对象对应的下行传输时间与第 二目标对象对应的下行传输时间之间的差值)来调整第二目标对象对应的目标上行传输的时间。
可以理解,以图4e为例,所述终端根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的时,调整后的目标上行传输的时间可以如式(2)所示。
其中,为调整后的所述第一目标对象对应的目标上行传输的时间,为调整前的所述第一目标对象对应的目标上行传输的时间,TA为所述第一目标TAC所指示的TA,μ表示子载波间隔,本实施例中,μ为正整数,如1、2、3……。
以及,所述终端根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间时,调整后的目标上行传输的时间可以如式(3)所示。
其中,为调整后所述第二目标对象对应的目标上行传输的时间,为调整前的所述第二目标对象对应的目标上行传输的时间,TA为所述第一目标TAC所指示的TA,offset为所述下行时间差,i=2,μ表示子载波间隔,本实施例中,μ为正整数,如1、2、3……。
需要注意,所述MAC CE中包括的第一目标TAC根据所述第一目标对象的下行帧确定。也就是说所述MAC CE携带的TAC为与所述第一目标对象对应的第一目标TAC。
对于前述的示例2,对于同一目标对象(如第一目标对象),如果MAC  CE中携带coresetPoolindex,所述终端利用接收到的所述MAC CE替换已保存的MAC CE,即使携带了不同的coresetPoolindex。
进一步,对于前述的示例1和示例2,考虑到在所述第一目标TAC的生效时间内,所述终端需要进行目标上行传输时间的调整,因此,为了提高通信性能,在所述第一目标TAC的生效时间内,所述终端执行以下(61)-(63)中的至少一项。
(61)不期望接收到除与所述第一目标TAC关联的第一目标对象之外的其他对象的上行传输调度信息。
(62)将在所述第一目标TAC的生效时间内产生的第二信号确定为所述第一目标对象的对应的目标上行传输,所述第二信号包括SRS、PUCCH、CG中的至少一项。也即,在一个第一目标对象的TAC生效时间内产生的SRS、PUCCH、CG全都发往该第一目标对象。当然,所述终端在进行第二信号发送时,波束(Beam)采用所述第一目标对象对应的公共(common)beam。这里的公共波束为当前生效的TCI状态。
(63)确保两个目标对象调度的两个PUSCH之间的间隔至少为一个slot,由此确保后一个PUSCH不会因为时隙缩短导致性能降低。
此外,在所述第一目标TAC的生效时刻与前一个生效的TAC的生效时刻之间的时间间隔小于所述TA调整颗粒度的情况下,所述终端延后所述第一目标TAC的生效时刻,以使所述第一目标TAC的生效时刻与前一个生效的TAC的生效时刻之间的时间间隔大于或等于TA调整颗粒度,并基于延后的所述第一目标TAC的生效时刻执行所述基于目标方式和/或TA调整颗粒度调整目标上行传输的时间的步骤。换言之,在本申请中,所述终端不期望两个相邻TAC的生效时刻之间的间隔小于TA调整颗粒度。
本实施例中,能够实现两个对象的上行传输采用独立的TA调整,保证 了每个对象上不同用户的上行传输的到达时间相同或者在一个CP内,由此,有效的降低了用户间干扰,提升上行传输的性能。
如图5所示,为本申请一示例性实施例提供的上行传输的方法500的流程示意图,该方法500可以但不限于由网络侧设备执行,具体可由安装于所述网络侧设备中的软件或/和硬件执行,所述方法500至少包括如下步骤。
S510,网络侧设备发送MAC CE。
其中,所述MAC CE中至少包括以下至少一项:第一目标定时提前命令TAC,所述第一目标TAC与第一目标对象关联;所述第一目标对象的标识。
可选的,所述方法还包括:发送所述第一目标对象对应的目标上行传输的配置授权信息;其中,所述配置授权信息用于所述终端确定所述目标上行传输对应的TAC。
可选的,所述方法还包括:发送第二RRC信令;其中,所述第二RRC信令中包括以下至少一项:目标定时提前组TAG的配置信息,所述目标TAG的配置信息中包括与不同目标对象关联的多套TA配置相关信息;目标辅小区Scell的配置信息,所述目标Scell的配置信息包括与不同的目标TAG对应的多个目标TAG的配置信息。
可选的,可选所述方法还包括:接收所述终端上报的以下至少一项:终端能力信息,所述终端能力信息包括所述终端支持一个TA对应的TA调整模式,和/或所述终端支持多个TA对应的TA调整模式;终端推荐的TA个数,所述TA个数是所述终端根据下行测量确定;所述下行时间差,所述下行时间差是所述终端根据下行测量确定。
可以理解,本方法实施例500具有与前述方法实施例200-300相同或相应的技术特征,因此,方法实施例500的实现过程可参照方法实施例200-300中的相关描述,并达到相同或相应的技术特征,为避免重复,在此不再赘述。
本申请实施例提供的上行传输的方法,执行主体可以为上行传输的装置。本申请实施例中以上行传输的装置执行上行传输的方法为例,说明本申请实施例提供的上行传输的装置。
如图6所示,为本申请一示例性实施例提供的上行传输的装置600的结构示意图,该装置600包括:调整模块610,用于终端基于目标方式和/或定时提前量TA调整颗粒度调整目标上行传输的时间;其中,所述目标方式包括以下至少一项:根据第一目标定时提前命令TAC调整第一目标对象对应的目标上行传输的时间;根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间;其中,所述第一目标TAC与所述第一目标对象关联。
可选的,所述装置600还包括确定模块,用于确定所述目标方式。
可选的,所述装置600还包括第二传输模块,用于接收媒体接入控制控制单元MAC CE;所述MAC CE中至少包括以下任一项:所述第一目标TAC;所述第一目标对象的标识。
可选的,所述调整模块610根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的步骤,包括:在所述第一目标对象包括第一对象和第二对象,所述第一目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC的情况下,所述终端根据所述第一TAC计算第一TA,以及根据所述第二TAC计算第二TA;基于所述第一TA对所 述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二TA对所述第二对象对应的目标上行传输的时间进行调整。
可选的,所述调整模块610基于所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二TA对所述第二对象对应的目标上行传输的时间进行调整的步骤,包括以下任一项:基于参考对象对应的下行传输时间和所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于参考对象对应的下行传输时间和所述第二TA对所述第二对象对应的目标上行传输的时间的进行调整,所述参考对象为所述第一对象或所述第二对象;基于所述第一对象的下行传输时间和所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二对象的下行传输时间和所述第二TA对所述第二对象对应的目标上行传输的时间进行调整。
可选的,所述第二传输模块还用于接收所述第一目标对象对应的目标上行传输的配置授权信息;所述调整模块610还用于根据所述配置授权信息确定所述第一目标TAC为所述目标上行传输对应的TAC。
可选的,所述调整模块610根据所述配置授权信息确定所述目标上行传输对应的TAC的步骤,包括:根据所述目标上行传输的配置授权信息,确定与所述目标上行传输关联的所述第一目标对象;将与所述第一目标对象关联的第一目标TAC确定为所述目标上行传输的TAC。
所述调整模块610所述目标上行传输与第一目标对象之间的关联关系通过以下任一项配置:根据第一无线资源控制RRC信令配置;根据目标控制资源集Coreset所关联的资源池索引CoresetPoolIndex配置,其中,调度所述目 标上行传输的下行控制信息DCI来自所述目标Coreset;根据目标上行传输的信道分组确定;根据目标上行传输的波束确定。
示例性的,RRC配置SRS资源关联目标对象,或者SRS资源集关联目标对象,RRC配置PUCCH资源关联目标对象或者PUCCH资源组关联目标对象,等。
可选的,所述目标上行传输与第一目标对象之间的关联关系通过以下方式确定:
所述第一目标对象根据所述目标上行传输关联的第三对象确定,所述第三对象与所述第一目标对象关联;也就是说,所述第一目标对象为目标上行传输的第三对象关联的第一目标对象;其中第三对象与第一目标对象的关联关系可以通过RRC配置。
所述第一目标对象根据除了第四对象关联的目标对象之外的目标对象确定,所述第四对象为特定事件关联的对象,例如所述第一目标对象为除了第四对象关联的目标对象之外的目标对象,特定事件为波束失败。
其中,所述第三对象和所述第四对象可以表示为SRS资源,SRS资源集,功率控制参数集合,波束失败检测参考信号(Beam Failure Detection Reference Signal,BFD-RS)集合,参考信号(同步信号块(Synchronization Signaling Block,SSB),信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),相位参考信号(Tracking Reference ignal,TRS),BFD-RS,路径损耗参考信号(Path Loss Reference Signal,PL-RS)等)等。
示例性的,所述功控参数集合关联目标对象,与上行传输关联的目标对象为目标上行传输关联的功控参数集合关联的目标对象。
示例性的,当UE检测到关联第四对象的beam失败,则认为与beam失败对应的PUCCH资源与除第四对象关联的目标对象之外的第一目标对象关联。这样做的好处是当一个TRP的波束失败,则认为beam失败关联的PUCCH资源关联到另一个没有失败的TRP,确保PUCCH传输的性能,使得beam失败信息能够上报给网络。
可选的,所述调整模块610根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的步骤,包括:根据所述第一目标TAC周期性的调整所述第一目标对象对应的目标上行传输的时间。
可选的,所述第一目标对象包括第一对象和第二对象,所述第一目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC,所述调整模块610根据所述第一目标TAC周期性的调整所述第一目标对象对应的目标上行传输的时间的步骤,包括以下任一项:在第一周期定时器运行期间,根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,在所述第一周期定时器超时重启所述第一周期定时器,以及在重启后的所述第一周期定时器运行期间,根据所述第二TAC调整所述第二对象对应的上行传输的时间,所述第一周期定时器的首次启动与第一TAT的启动相关;在第二周期定时器运行期间,根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,在第三周期定时器运行期间,根据所述第二TAC调整所述第二对象对应的目标上行传输的时间,其中,所述第二周期定时器和所述第三周期定时器交替运行,所述第二周期定时器的首次启动与第一TAT的启动相关;其中,所述第一TAT是所述终端在接收到所述MAC CE、且所述MAC CE中包括第一TAC和第二TAC时启动,所述第一对象和所述第二对象对应同 一所述第一TAT。
可选的,所述调整模块610还用于在第三目标对象对应的第二TAT过期的情况下,执行以下任一项:释放发往所述第三目标对象的全部上行传输;释放发往所述第三目标对象的第一信号,所述第一信号包括探测参考信号SRS、物理上行控制信道PUCCH、配置授权CG、半持续调度SPS、半持续信道状态信息SP-CSI中的至少一项;其中,所述第三目标对象为第一对象或第二对象,所述第二TAT是所述终端在接收到所述MAC CE时启动,所述第一对象与所述第二对象对应不同的所述第二TAT。
可选的,所述调整模块610还用于在所述第一对象对应的第二TAT以及所述第二对象对应第二TAT均过期的情况下,释放发往所述第一对象和所述第二对象的全部上行传输。
可选的,所述第二传输模块还用于接收第二RRC信令;其中,所述第二RRC信令中包括以下至少一项:目标定时提前组TAG的配置信息,所述目标TAG的配置信息中包括与不同目标对象关联的多套TA配置相关信息;目标辅小区Scell的配置信息,所述目标Scell的配置信息包括与不同的目标TAG对应的多个目标TAG的配置信息。
可选的,所述调整模块610根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的步骤,包括:其中,为调整后的所述第一目标对象对应的目标上行传输的时间,为调整前的所述第一目标对象对应的目标上行传输的时间,TA为所述第一目标TAC所指示的TA。
可选的,所述调整模块610根据下行时间差值以及所述第一目标TAC调 整第二目标对象对应的目标上行传输的时间的步骤,包括:其中,为调整后所述第二目标对象对应的目标上行传输的时间,为调整前的所述第二目标对象对应的目标上行传输的时间,TA为所述第一目标TAC所指示的TA,offset为所述下行时间差。
可选的,所述MAC CE中包括的第一目标TAC根据所述第一目标对象的下行帧确定。
可选的,所述调整模块610还用于利用接收到的所述MAC CE替换已保存的MAC CE。
可选的,第二传输模块还用于上报以下至少一项:终端能力信息,所述终端能力信息包括所述终端支持一个TA对应的TA调整模式,和/或所述终端支持多个TA对应的TA调整模式;终端推荐的TA个数,所述TA个数是所述终端根据下行测量确定;所述下行时间差,所述下行时间差是所述终端根据下行测量确定。
可选的,所述调整模块610还用于基于TA调整颗粒度调整目标上行传输的时间的步骤,包括:所述终端基于TA调整颗粒度,周期性调整所述目标上行传输的时间。
可选的,所述TA调整颗粒度根据以下任一方式确定:终端自主确定;根据接收到的第三RRC信令确定,所述第三RRC信令中配置有TA调整颗粒度。
可选的,UE根据测量的关联不同目标对象的下行时间差确定TA调整的颗粒度,并上报给网络。UE上报TA调整的颗粒度信息有助于协助网络 减少无效的上行调度。
可选的,关联不同目标对象的上行传输之间的间隔不能小于所述TA调整的颗粒度。终端不期望网络调度两个关联不同目标对象的上行传输,所述上行传输的间隔小于所述TA调整的颗粒度,如果小于TA调整的颗粒度,终端来不及调整TA会导致上行传输失败。
可选的,所述调整模块610还用于基于TA调整颗粒度调整目标上行传输的时间的步骤,还包括:在满足以下至少一项条件时,终端选择关联第三目标的上行传输进行传输,关联其他目标对象的目标上行传输丢弃;所述条件包括所述不同上行传输时域资源有交叠;或者
所述不同上行传输之间的时域间隔小于所述TA调整颗粒度。
可选的,所述第三目标对象可以由DCI信令指示,这样做的好处是可以动态指示UE选择哪一个上行传输进行传输。比如高优先级的可以指示为传输。具体的,可以通过DCI中的指示域来指示传输优先级等。
可选的,所述调整模块610还用于在所述第一目标TAC的生效时刻与前一个生效的TAC的生效时刻之间的时间间隔小于所述TA调整颗粒度的情况下,延后所述第一目标TAC的生效时刻,以及基于延后的所述第一目标TAC的生效时刻执行所述基于目标方式和/或TA调整颗粒度调整目标上行传输的时间的步骤。
可选的,所述装置600还包括处理模块,在所述第一目标TAC的生效时间内,所述处理模块用于执行以下至少一项:不期望接收到除与所述第一目标TAC关联的第一目标对象之外的其他对象的上行传输调度信息;将在所述第一目标TAC的生效时间内产生的第二信号确定为所述第一目标对象的对 应的目标上行传输,所述第二信号包括SRS、PUCCH、CG中的至少一项。
本申请实施例中的上行传授的装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的上行传输的装置600能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图7所示,为本申请一示例性实施例提供的上行传输的装置700的结构示意图,该装置700包括:第一传输模块710,用于发送媒体接入控制控制单元MAC CE;其中,所述MAC CE中至少包括以下至少一项:第一目标定时提前命令TAC,所述第一目标TAC与第一目标对象关联;所述第一目标对象的标识。
可选的,所述第一传输模块710用于发送所述第一目标对象对应的目标上行传输的配置授权信息;其中,所述配置授权信息用于所述终端确定所述目标上行传输对应的TAC。
可选的,所述第一传输模块710用于发送第二RRC信令;其中,所述第二RRC信令中包括以下至少一项:目标定时提前组TAG的配置信息,所述目标TAG的配置信息中包括与不同目标对象关联的多套TA配置相关信息;目标辅小区Scell的配置信息,所述目标Scell的配置信息包括与不同的目标TAG对应的多个目标TAG的配置信息。
可选的,所述装置700还包括第一传输模块710,用于接收所述终端上报的以下至少一项:终端能力信息,所述终端能力信息包括所述终端支持一个TA对应的TA调整模式,和/或所述终端支持多个TA对应的TA调整模式;终端推荐的TA个数,所述TA个数是所述终端根据下行测量确定;所述下行时间差,所述下行时间差是所述终端根据下行测量确定。
本申请实施例中的上行传输的装置700可以是网络侧设备,也可以是网络侧设备中的部件,例如集成电路或芯片。示例性的,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型,本申请实施例不作具体限定。
本申请实施例提供的上行传输的装置700能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-300中所述的方法的步骤。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理单元(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072中的至少一种。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个 部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801接收来自网络侧设备的下行数据后,可以传输给处理器810进行处理;另外,射频单元801可以向网络侧设备发送上行数据。通常,射频单元801包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括易失性存储器或非易失性存储器,或者,存储器809可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器809包括但不限于这些和任意其它适合类型的存储器。
处理器810可包括一个或多个处理单元;可选的,处理器810集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,处理器810,用于终端基于目标方式和/或定时提前量TA调整颗粒度调整目标上行传输的时间;其中,所述目标方式包括以下至少一项:根据第一目标定时提前命令TAC调整第一目标对象对应的目标上行传输的时间;根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间;其中,所述第一目标TAC与所述第一目标对象关联。
本实施例中,终端根据目标方式和/或TA调整颗粒度进行目标上行传输的时间的调整,其中,所述目标方式包括根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间,和/或,根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,由此,一方面,对于不同的目标对象能够采用不同的TA进行上行传输时间的调整,从而能够确保上行传输时间调整的精确、高效,进而确保各目标对象对应的上行传输时间满足用户间正交的关系,避免带来用户间干扰,达到提高上行传输性能的目的。另一方面,基于TA调整颗粒度进行目标上行传输的时间的调整,能够避免频繁调整带来的终端功耗高、信令开销大的问题,同时还可以降低终端实现的复杂度。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如实施例500中所述的方法的步骤。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络 侧设备900包括:天线901、射频装置902、基带装置903、处理器904和存储器905。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置903中实现,该基带装置903包基带处理器。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器905连接,以调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口906,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备900还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行传输的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述上行传输的方法实施例的各个过程,且能达到相同的技术效果,为 避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述上行传输的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种无线通信系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的方法实施例200-300中所述的步骤,所述网络侧设备可用于执行如上所述的方法实施例500中所述的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服 务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (36)

  1. 一种上行传输的方法,包括:
    终端基于目标方式和/或定时提前量TA调整颗粒度,调整目标上行传输的时间;
    其中,所述目标方式包括以下至少一项:
    根据第一目标定时提前命令TAC,调整第一目标对象对应的目标上行传输的时间;
    根据下行时间差值以及所述第一目标TAC,调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是所述终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是所述终端接收到所述第二目标对象对应的下行传输的时间;
    其中,所述第一目标TAC与所述第一目标对象关联。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    终端接收媒体接入控制控制单元MAC CE;
    所述MAC CE中至少包括以下至少一项:
    所述第一目标TAC;
    所述第一目标对象的标识。
  3. 如权利要求1或2所述的方法,其中,根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的步骤,包括:
    在所述第一目标对象包括第一对象和第二对象,所述第一目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC的情 况下,所述终端根据所述第一TAC计算第一TA,以及根据所述第二TAC计算第二TA;
    基于所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二TA对所述第二对象对应的目标上行传输的时间进行调整。
  4. 如权利要求3所述的方法,其中,基于所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二TA对所述第二对象对应的目标上行传输的时间进行调整的步骤,包括以下任一项:
    基于参考对象对应的下行传输时间和所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于参考对象对应的下行传输时间和所述第二TA对所述第二对象对应的目标上行传输的时间的进行调整,所述参考对象为所述第一对象或所述第二对象;
    基于所述第一对象的下行传输时间和所述第一TA对所述第一对象对应的目标上行传输的时间进行调整,以及基于所述第二对象的下行传输时间和所述第二TA对所述第二对象对应的目标上行传输的时间进行调整。
  5. 如权利要求1-3中任一项所述的方法,其中,所述方法还包括:
    接收所述第一目标对象对应的目标上行传输的配置授权信息;
    根据所述配置授权信息确定所述第一目标TAC为所述第一目标对象对应的目标上行传输的TAC。
  6. 如权利要求5所述的方法,其中,根据所述配置授权信息确定所述第一目标对象对应的目标上行传输的TAC的步骤,包括:
    根据所述目标上行传输的配置授权信息,确定与所述目标上行传输关联的所述第一目标对象;
    将与所述第一目标对象关联的第一目标TAC确定为所述目标上行传输的TAC。
  7. 如权利要求6所述的方法,其中,所述目标上行传输与第一目标对象之间的关联关系通过以下任一项配置:
    根据第一无线资源控制RRC信令配置;
    根据目标控制资源集Coreset所关联的资源池索引配置,其中,调度所述目标上行传输的下行控制信息DCI来自所述目标Coreset;
    根据目标上行传输的信道分组确定;
    根据目标上行传输的波束确定。
  8. 如权利要求6所述的方法,其中,所述目标上行传输与第一目标对象之间的关联关系通过以下任一方式确定:
    所述第一目标对象根据所述目标上行传输关联的第三对象确定,所述第三对象与所述第一目标对象关联;
    所述第一目标对象根据除了第四对象关联的目标对象之外的目标对象确定,所述第四对象为特定事件关联的对象。
  9. 如权利要求1-8中任一项所述的方法,其中,根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的步骤,包括:
    根据所述第一目标TAC周期性的调整所述第一目标对象对应的目标上行传输的时间。
  10. 如权利要求9所述的方法,其中,所述第一目标对象包括第一对象和第二对象,所述第一目标TAC包括与所述第一对象关联的第一TAC以及与所述第二对象关联的第二TAC,根据所述第一目标TAC周期性的调整所述 第一目标对象对应的目标上行传输的时间的步骤,包括以下任一项;
    在第一周期定时器运行期间,根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,在所述第一周期定时器超时重启所述第一周期定时器,以及在重启后的所述第一周期定时器运行期间,根据所述第二TAC调整所述第二对象对应的上行传输的时间,所述第一周期定时器的首次启动与第一TAT的启动相关;
    在第二周期定时器运行期间,根据所述第一TAC调整所述第一对象对应的目标上行传输的时间,在第三周期定时器运行期间,根据所述第二TAC调整所述第二对象对应的目标上行传输的时间,其中,所述第二周期定时器和所述第三周期定时器交替运行,所述第二周期定时器的首次启动与第一TAT的启动相关;
    其中,所述第一对象和所述第二对象对应同一所述第一TAT。
  11. 如权利要求10所述的方法,其中,所述第一TAT是所述终端在接收到所述MAC CE、且所述MAC CE中包括第一TAC和第二TAC时启动。
  12. 如权利要求1-4中任一项所述的方法,其中,所述方法还包括:
    在第三目标对象对应的第二TAT过期的情况下,所述终端执行以下任一项:
    释放发往所述第三目标对象的全部上行传输;
    释放发往所述第三目标对象的第一信号,所述第一信号包括探测参考信号SRS、物理上行控制信道PUCCH、配置授权CG、半持续调度SPS、半持续信道状态信息SP-CSI中的至少一项;
    其中,所述第三目标对象为第一对象或第二对象,所述第二TAT是所述 终端在接收到所述MAC CE时启动,所述第一对象与所述第二对象对应不同的所述第二TAT。
  13. 如权利要求12所述的方法,其中,所述方法还包括:
    在所述第一对象对应的第二TAT以及所述第二对象对应第二TAT均过期的情况下,所述终端释放发往所述第一对象和所述第二对象的全部上行传输。
  14. 如权利要求2-4中任一项所述的方法,其中,终端接收MAC CE的步骤之前,所述方法还包括:
    接收第二RRC信令;
    其中,所述第二RRC信令中包括以下至少一项:
    目标定时提前组TAG的配置信息,所述目标TAG的配置信息中包括与不同目标对象关联的多套TA配置相关信息;
    目标辅小区Scell的配置信息,所述目标Scell的配置信息包括与不同的目标TAG对应的多个目标TAG的配置信息。
  15. 如权利要求1-14中任一项所述的方法,其中,根据所述第一目标TAC调整所述第一目标对象对应的目标上行传输的时间的步骤,包括:
    其中,为调整后的所述第一目标对象对应的目标上行传输的时间,为调整前的所述第一目标对象对应的目标上行传输的时间,TA为所述第一目标TAC所指示的TA。
  16. 如权利要求1所述的方法,其中,根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间的步骤,包括:
    其中,为调整后所述第二目标对象对应的目标上行传输的时间,为调整前的所述第二目标对象对应的目标上行传输的时间,TA为所述第一目标TAC所指示的TA,offset为所述下行时间差。
  17. 如权利要求15或16所述的方法,其中,所述MAC CE中包括的第一目标TAC根据所述第一目标对象的下行帧确定。
  18. 如权利要求1-17中的任一项所述的方法,其中,所述方法还包括:
    所述终端利用接收到的所述MAC CE替换已保存的MAC CE。
  19. 如权利要求2-18中任一项所述的方法,其中,所述方法还包括:
    所述终端上报以下至少一项:
    终端能力信息,所述终端能力信息包括所述终端支持一个TA对应的TA调整模式,和/或所述终端支持多个TA对应的TA调整模式;
    终端推荐的TA个数,所述TA个数是所述终端根据下行测量确定;
    所述下行时间差,所述下行时间差是所述终端根据下行测量确定。
  20. 如权利要求1-19中任一项所述的方法,其中,所述终端基于TA调整颗粒度调整目标上行传输的时间的步骤,包括:
    所述终端基于TA调整颗粒度,周期性调整所述目标上行传输的时间。
  21. 如权利要求1或20所述的方法,其中,所述TA调整颗粒度根据以下任一方式确定:
    终端自主确定;
    根据接收到的第三RRC信令确定,所述第三RRC信令中配置有TA调整颗粒度。
  22. 如权利要求1或20所述的方法,其中,还包括:
    UE上报所述TA调整颗粒度。
  23. 如权利要求1-22中任一项所述的方法,其中,所述关联不同目标对象的目标上行传输的间隔不小于所述TA调整颗粒度。
  24. 如权利要求1-22中任一项所述的方法,其中,还包括:
    所述关联不同目标对象的目标上行传输满足以下至少一项条件时,选择关联第四目标对象的上行传输进行传输,关联其他目标对象的目标上行传输丢弃:
    所述不同上行传输时域资源有交叠;
    所述不同上行传输之间的时域间隔小于所述TA调整颗粒度。
  25. 如权利要求24所述的方法,所述第三目标对象由DCI信令指示。
  26. 如权利要求20或21所述的方法,其中,所述方法还包括:
    在所述第一目标TAC的生效时刻与前一个生效的TAC的生效时刻之间的时间间隔小于所述TA调整颗粒度的情况下,所述终端延后所述第一目标TAC的生效时刻,以及基于延后的所述第一目标TAC的生效时刻执行所述基于目标方式和/或TA调整颗粒度调整目标上行传输的时间的步骤。
  27. 如权利要求1-26中的任一项所述的方法,其中,所述方法还包括:
    在所述第一目标TAC的生效时间内,所述终端执行以下至少一项:
    不期望接收到除与所述第一目标TAC关联的第一目标对象之外的其他对象的上行传输调度信息;
    将在所述第一目标TAC的生效时间内产生的第二信号确定为所述第一目标对象的对应的目标上行传输,所述第二信号包括SRS、PUCCH、CG中 的至少一项。
  28. 一种上行传输的方法,包括:
    网络侧设备发送媒体接入控制控制单元MAC CE;
    其中,所述MAC CE中至少包括以下至少一项:
    第一目标定时提前命令TAC,所述第一目标TAC与第一目标对象关联;
    所述第一目标对象的标识。
  29. 如权利要求28所述的方法,其中,所述方法还包括:
    发送所述第一目标对象对应的目标上行传输的配置授权信息;
    其中,所述配置授权信息用于终端确定所述目标上行传输对应的TAC。
  30. 如权利要求28-29中任一项所述的方法,其中,所述方法还包括:
    发送第二RRC信令;
    其中,所述第二RRC信令中包括以下至少一项:
    目标定时提前组TAG的配置信息,所述目标TAG的配置信息中包括与不同目标对象关联的多套TA配置相关信息;
    目标辅小区Scell的配置信息,所述目标Scell的配置信息包括与不同的目标TAG对应的多个目标TAG的配置信息。
  31. 如权利要求28-30中任一项所述的方法,其中,所述方法还包括:
    接收终端上报的以下至少一项:
    终端能力信息,所述终端能力信息包括所述终端支持一个TA对应的TA调整模式,和/或所述终端支持多个TA对应的TA调整模式;
    终端推荐的TA个数,所述TA个数是所述终端根据下行测量确定;
    所述下行时间差,所述下行时间差是所述终端根据下行测量确定。
  32. 一种上行传输的装置,包括:
    调整模块,用于基于目标方式和/或定时提前量TA调整颗粒度调整目标上行传输的时间;
    其中,所述目标方式包括以下至少一项:
    根据第一目标定时提前命令TAC调整第一目标对象对应的目标上行传输的时间;
    根据下行时间差值以及所述第一目标TAC调整第二目标对象对应的目标上行传输的时间,所述下行时间差是第一下行传输时间与第二下行传输时间之间的差值,所述第一下行传输时间是终端接收到所述第一目标对象对应的下行传输的时间,所述第二下行传输时间是终端接收到所述第二目标对象对应的下行传输的时间;
    其中,所述第一目标TAC与所述第一目标对象关联。
  33. 一种上行传输的装置,包括:
    第一传输模块,用于发送媒体接入控制控制单元MAC CE;
    其中,所述MAC CE中至少包括以下至少一项:
    第一目标定时提前命令TAC,所述第一目标TAC与第一目标对象关联;
    所述第一目标对象的标识。
  34. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至27任一项所述的上行传输的方法的步骤。
  35. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利 要求28至31任一项所述的上行传输的方法的步骤。
  36. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-27任一项所述的上行传输的方法,或者实现如权利要求28至31任一项所述的上行传输的方法的步骤。
PCT/CN2023/080279 2022-03-09 2023-03-08 上行传输的方法、终端及网络侧设备 WO2023169464A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210234176.8 2022-03-09
CN202210234176 2022-03-09
CN202211255663.9A CN116782303A (zh) 2022-03-09 2022-10-13 上行传输的方法、终端及网络侧设备
CN202211255663.9 2022-10-13

Publications (1)

Publication Number Publication Date
WO2023169464A1 true WO2023169464A1 (zh) 2023-09-14

Family

ID=87936047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080279 WO2023169464A1 (zh) 2022-03-09 2023-03-08 上行传输的方法、终端及网络侧设备

Country Status (1)

Country Link
WO (1) WO2023169464A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574983A (zh) * 2017-03-14 2018-09-25 华为技术有限公司 一种上行传输方法及装置
CN111357336A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 特定于波束的定时提前组
CN111492701A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 特定于波束的定时提前命令参数
CN113170405A (zh) * 2018-12-17 2021-07-23 高通股份有限公司 用于上行链路传输的定时提前

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574983A (zh) * 2017-03-14 2018-09-25 华为技术有限公司 一种上行传输方法及装置
CN111357336A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 特定于波束的定时提前组
CN111492701A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 特定于波束的定时提前命令参数
CN113170405A (zh) * 2018-12-17 2021-07-23 高通股份有限公司 用于上行链路传输的定时提前

Similar Documents

Publication Publication Date Title
CN102907060A (zh) 在不连续接收中重调谐间隙以及调度间隙
WO2022122024A1 (zh) 定位测量窗指示方法、终端和网络侧设备
CN113812184B (zh) 非连续接收中的唤醒信令处理
US20230217393A1 (en) Information determining method, information sending method, apparatus, and device
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023169464A1 (zh) 上行传输的方法、终端及网络侧设备
WO2024022247A1 (zh) 定时提前ta的维护方法、装置、设备及介质
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2023179652A1 (zh) 波束失败检测方法、装置、终端和存储介质
WO2023217007A1 (zh) 切换方法、终端及网络侧设备
WO2023198108A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023202513A1 (zh) 冲突处理方法、终端及网络侧设备
WO2023185819A1 (zh) Pdcch监听方法、终端、网络侧设备及介质
WO2023202505A1 (zh) 信道状态信息测量和上报方法、终端及网络侧设备
WO2023185903A1 (zh) 物理层操作的处理方法、装置及终端
CN116782303A (zh) 上行传输的方法、终端及网络侧设备
WO2024012236A1 (zh) 旁链路反馈处理方法、装置、终端及网络侧设备
US20240031091A1 (en) Positioning method, network side device and non-transitory readable storage medium
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备
WO2023116903A1 (zh) Sl信号处理方法、设备及可读存储介质
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
WO2023131240A1 (zh) Gap冲突的处理方法、装置、终端及网络侧设备
WO2023125311A1 (zh) 信道估计方法、装置、终端、网络侧设备及介质
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2023169363A1 (zh) 上行对象发送方法、装置、通信设备、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766041

Country of ref document: EP

Kind code of ref document: A1