WO2023207536A1 - 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机 - Google Patents

应用于涡旋压缩机的静涡旋盘以及涡旋压缩机 Download PDF

Info

Publication number
WO2023207536A1
WO2023207536A1 PCT/CN2023/086304 CN2023086304W WO2023207536A1 WO 2023207536 A1 WO2023207536 A1 WO 2023207536A1 CN 2023086304 W CN2023086304 W CN 2023086304W WO 2023207536 A1 WO2023207536 A1 WO 2023207536A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
groove
oil supply
fixed scroll
supply groove
Prior art date
Application number
PCT/CN2023/086304
Other languages
English (en)
French (fr)
Inventor
程军明
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to EP23762130.5A priority Critical patent/EP4290077A4/en
Publication of WO2023207536A1 publication Critical patent/WO2023207536A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present application relates to the field of compressors, and in particular to a fixed scroll used in a scroll compressor and a scroll compressor having the fixed scroll used in a scroll compressor.
  • the existing scroll compressor includes a fixed scroll, an orbiting scroll and a crankshaft.
  • the orbiting scroll is installed on the crankshaft.
  • the orbiting scroll is assembled with the stationary scroll and is movable relative to the stationary scroll.
  • the crankshaft makes eccentric motion and the movable scroll makes revolution motion, thereby realizing the suction, compression and exhaust processes of the compressor.
  • the fixed scroll and the movable scroll are assembled, the fixed scroll and the movable scroll are in contact.
  • the movable scroll rotates, it only relies on the movable scroll to passively lubricate the fixed scroll and the movable scroll with oil.
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • one purpose of this application is to propose a fixed scroll applied to a scroll compressor, which can fully lubricate the contact surface between the movable scroll and the fixed scroll by providing a closed-loop oil supply groove. Reduce the wear between the movable scroll and the fixed scroll, achieve all-round sealing between the working fluid flow groove and the back pressure chamber, avoid increasing the power of the scroll compressor, and improve the energy efficiency and performance of the scroll compressor.
  • Another object of the present application is to provide a scroll compressor.
  • the fixed scroll used in a scroll compressor includes: a scroll body defining a working medium flow groove with one end open; and scroll teeth, which are arranged on the A vortex chamber is formed in the working fluid flow tank; a closed-loop oil supply tank is provided on the rotary disk body and is arranged around the open end of the working fluid flow tank, and the oil supply tank is adapted to be connected with the The oil outlet holes of the orbiting scroll of the scroll compressor are connected.
  • the lubricating oil can fully lubricate the contact surface between the movable scroll and the fixed scroll, reducing the friction between the movable scroll and the fixed scroll.
  • the closed-ring oil supply tank realizes all-round sealing between the working fluid flow tank and the back pressure chamber, preventing the back pressure from leaking into the working fluid flow tank through the gap between the contact end surfaces of the movable scroll and the fixed scroll, thereby preventing The working fluid is compressed repeatedly to avoid the increase in the power of the scroll compressor, improve the energy efficiency of the scroll compressor, and also improve the performance of the scroll compressor.
  • the inner wall of the oil supply groove is spaced apart from the working fluid flow groove in the radial direction of the fixed scroll.
  • the distance between the inner wall of the oil supply tank and the working fluid flow tank is A, which satisfies the relationship: 1 mm ⁇ A.
  • the open end of the oil supply groove is adapted to be covered by the orbiting scroll.
  • the width dimension of the oil supply groove is B, which satisfies the relationship: 1.2mm ⁇ B ⁇ 2mm.
  • the depth dimension of the oil supply groove is C, which satisfies the relationship: 0.5mm ⁇ C ⁇ 1.8mm.
  • the inner wall of the oil supply groove has a groove that is recessed toward the interior of the scroll body, and the groove is adapted to connect with the The oil outlet is connected.
  • the groove is configured as an arcuate groove.
  • the oil supply groove has a recessed section recessed toward a radially inner side of the rotating disk body, and the recessed section is adjacent to the groove.
  • the recessed section is configured as an arc section.
  • the scroll compressor according to the present application includes the above-mentioned fixed scroll applied to the scroll compressor.
  • Figure 1 is a schematic diagram of a fixed scroll according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of an orbiting scroll according to an embodiment of the present application.
  • Figure 3 is a schematic assembly diagram of the orbiting scroll and the fixed scroll according to the embodiment of the present application.
  • Figure 4 is a cross-sectional view of a scroll compressor according to an embodiment of the present application.
  • Figure 5 is an enlarged view of D in Figure 4.
  • the fixed scroll 100 according to the embodiment of the present application is described below with reference to FIGS. 1 to 5 .
  • the fixed scroll 100 can be applied to the scroll compressor 300 , but the application is not limited thereto.
  • the fixed scroll 100 can also be applied to the scroll compressor 300 .
  • this application takes the application of the fixed scroll 100 to the scroll compressor 300 as an example for description.
  • the fixed scroll 100 includes: a scroll body 10 , scroll teeth 12 and a closed-loop oil supply groove 13 .
  • the rotating disc body 10 defines a working medium flow groove 11 with one end open.
  • the scroll teeth 12 are disposed in the working medium flow groove 11 to form a vortex cavity.
  • the scroll teeth 12 can separate the working medium flow groove 11 into a working medium entry chamber 111 and a working medium compression chamber 112.
  • the working medium entry chamber 111 and the working medium compression chamber 112 constitute a vortex chamber.
  • the rotating disk body 10 has a working medium inlet and a working medium outlet 14.
  • the vortex chamber is connected with the working medium inlet and the working medium.
  • the scroll teeth 12 are arranged in a scroll-type plate-like structure. By disposing the scroll teeth 12 in the working fluid flow groove 11 , the scroll teeth 12 divide the working fluid flow groove 11 into There is an arc-shaped working fluid entry chamber 111 and a scroll-shaped working fluid compression chamber 112 .
  • the working medium inlet chamber 111 and the working medium compression chamber 112 are working medium circulation channels. The working fluid flows into the working fluid entry chamber 111 through the working fluid inlet. The working fluid in the working fluid entry chamber 111 flows into the working fluid compression chamber 112 along the working fluid entry chamber 111. Finally, the working fluid flows out from the working fluid outlet 14.
  • the closed-ring oil supply groove 13 is provided on the scroll body 10 , and the oil supply groove 13 is provided around the open end of the working fluid flow groove 11 .
  • the oil supply groove 13 is suitable for connecting with the oil outlet hole 20 of the orbiting scroll 200 of the scroll compressor 300 Through the cooperation between the oil supply groove 13 and the oil outlet hole 20, the lubricating oil flows from the oil outlet hole 20 into the oil supply groove 13 to achieve sufficient lubrication between the contact surfaces of the counter scroll 200 and the fixed scroll 100.
  • the oil supply groove 13 in a closed-loop structure, after the lubricating oil flows into the oil supply groove 13 from the oil outlet hole 20, the lubricating oil is simultaneously supplied in two directions along the oil supply groove 13, ensuring that the movable scroll 200 and the static scroll are The contact areas between the scrolls 100 are provided with sufficient lubricating oil to avoid dry friction between the contact end surfaces of the movable scroll 200 and the fixed scroll 100 due to insufficient oil supply.
  • the oil supply tank 13 as a closed-loop structure, after the lubricating oil flows into the oil supply tank 13 from the oil outlet hole 20, when the oil supply tank 13 is filled with lubricating oil, there is a certain pressure in the oil supply tank 13, and the orbiting scroll 200 An oil film is easily formed between the contact surface with the static scroll 100, and the oil film separates the working medium flow groove 11 and the back pressure chamber 21, thereby achieving all-round sealing between the working medium flow groove 11 and the back pressure chamber 21, preventing The back pressure leaks into the working fluid flow groove 11 through the gap between the contact end surfaces of the movable scroll 200 and the fixed scroll 100, preventing the working fluid from being repeatedly compressed and causing an increase in the power of the scroll compressor 300, thereby improving the scroll compressor 300.
  • the energy efficiency is improved to achieve the purpose of improving the performance of the scroll compressor 300.
  • the closed-loop oil supply groove 13 realizes the bidirectional supply of lubricating oil to ensure that the lubricating oil is supplied between the movable scroll 200 and the fixed scroll 100 in the circumferential direction. There is lubricating oil in the entire area.
  • the lubricating oil in the oil supply tank 13 separates the working medium compression chamber 112 and the back pressure chamber 21, thereby achieving an all-round seal between the working medium compression chamber 112 and the back pressure chamber 21 to avoid back pressure.
  • the gap between the contact end surfaces of the movable scroll 200 and the fixed scroll 100 leakage into the working medium compression chamber 112 is prevented, which prevents the working medium from being repeatedly compressed and causing an increase in the power of the scroll compressor 300, thereby improving the performance of the scroll compressor 300. Purpose.
  • the inner wall 133 of the oil supply groove 13 is spaced apart from the working fluid flow groove 11 in the radial direction of the fixed scroll 100 .
  • the oil supply groove 13 extends in the circumferential direction of the fixed scroll 100 .
  • the oil supply groove 13 is a closed-ring groove body provided around the open end of the working fluid flow groove 11 .
  • the distance between the inner wall 133 of the oil supply tank 13 and the working fluid flow tank 11 is A, which satisfies the relationship: 1 mm ⁇ A. It should be noted that, in the radial direction of the fixed scroll 100, the inner wall 133 of the oil supply groove 13 is spaced apart from the working medium flow groove 11, and there is a gap between the inner wall 133 of the oil supply groove 13 and the working medium flow groove 11. The separation distance is greater than or equal to 1 mm.
  • the distance between the inner side wall 133 of the oil supply tank 13 and the working fluid flow tank 11 is made greater than or equal to 1 mm, it is possible to ensure that there is sufficient distance between the inner side wall 133 of the oil supply tank 13 and the working fluid flow tank 11 distance, so that there is sufficient lubricating oil between the contact surfaces of the orbiting scroll 200 and the fixed scroll 100, which can better ensure the sealing between the working medium flow groove 11 and the back pressure chamber 21.
  • the distance between the inner wall 133 of the oil supply groove 13 and the working fluid flow groove 11 may vary.
  • the spacing distance between the flow grooves 11 may also be constant.
  • the spacing distance between the inner wall 133 of the oil supply groove 13 and the working fluid flow groove 11 in each area is determined by The actual situation depends on the specific selection, but the minimum distance between the inner wall 133 of the oil supply tank 13 and the working fluid flow tank 11 is 1 mm.
  • the open end of the oil supply groove 13 is adapted to be covered by the passive scroll 200 .
  • the scroll compressor 300 is placed in the direction shown in FIG. 4 , after the orbiting scroll 200 and the fixed scroll 100 are assembled together, the orbiting scroll 200 is located below the fixed scroll 100 , and the orbiting scroll 200 The scroll teeth extend into the working medium flow groove 11.
  • the oil supply groove 13 is arranged on the lower surface of the rotating disk body 10. The lower end of the oil supply groove 13 is open and disposed. In the radial direction of the fixed scroll 100, the oil supply groove 13 The outer wall 134 is located inside the orbiting scroll 200, and the orbiting scroll 200 covers the open end of the oil supply groove 13.
  • the orbiting scroll 200 can cover the open end of the oil supply groove 13 in real time to avoid
  • the oil supply tank 13 is connected with the back pressure chamber 21. After the lubricating oil flows into the oil supply tank 13 from the oil outlet hole 20, the lubricating oil in the oil supply tank 13 is prevented from leaking, ensuring that there is enough lubricating oil in the oil supply tank 13 to lubricate the static scroll 100. and the contact surface between the orbiting scroll 200.
  • the distance between the outer side wall 134 of the oil supply groove 13 and the outer edge of the orbiting scroll 200 is greater than or equal to 1 mm.
  • This arrangement can ensure that the The outer wall 134 of the oil supply groove 13 is located inside the orbiting scroll 200 in the radial direction.
  • the lubricating oil in the oil supply groove 13 can separate the oil supply groove 13 and the back pressure chamber 21, effectively preventing the lubricating oil in the oil supply groove 13 from leaking. .
  • the lubricating oil in the oil supply tank 13 can flow the working fluid.
  • the groove 11 is spaced apart from the back pressure chamber 21, thereby achieving an all-round sealing between the working medium flow groove 11 and the back pressure chamber 21, and preventing the back pressure from passing through the gap between the end faces of the movable scroll 200 and the fixed scroll 100.
  • the leakage in the working medium flow tank 11 prevents the working medium from being compressed repeatedly, thereby achieving the effect of reducing the power of the scroll compressor 300 and improving the working performance of the scroll compressor 300.
  • the width dimension of the oil supply groove 13 is B, which satisfies the relationship: 1.2mm ⁇ B ⁇ 2mm.
  • the width dimension of the oil supply groove 13 is B, for example: B is 1.2mm, 1.5mm, 2mm and other values. It should be noted that the greater the width dimension of the oil supply groove 13 , the greater the amount of lubricating oil in the oil supply tank 13, the larger the contact area between the lubricating oil and the orbiting scroll 200 and the fixed scroll 100, thereby expanding the lubricated range of the oil supply tank 13 and improving the lubrication effect of the oil supply tank 13.
  • the width dimension of the oil supply groove 13 to B, the amount of lubricating oil in the oil supply groove 13 can be made appropriate.
  • the flow tank 11 is spaced apart from the back pressure chamber 21, thereby achieving all-round sealing between the pressure medium flow tank 11 and the back pressure chamber 21. It should be noted that the width of the oil supply groove 13 is set according to the actual usage requirements of the scroll compressor 300 .
  • the depth dimension of the oil supply tank 13 is C, which satisfies the relationship: 0.5mm ⁇ C ⁇ 1.8mm, for example: C is 0.5mm, 1.5mm, 1.8mm and other values. .
  • the oil supply groove 13 is recessed toward the inside of the rotor body 10, and the oil supply groove 13 is open close to the end of the orbiting scroll 200, thereby forming an oil supply groove 13 with a depth dimension C.
  • the depth dimension of the oil supply tank 13 to C, an appropriate amount of lubricating oil in the oil supply tank 13 can be ensured.
  • the working fluid is The flow tank 11 is spaced apart from the back pressure chamber 21, thereby achieving all-round sealing between the pressure medium flow tank 11 and the back pressure chamber 21. It should be noted that the depth dimension of the oil supply groove 13 is set according to the actual usage requirements of the scroll compressor 300 .
  • the inner wall 133 of the oil supply groove 13 has a groove 131 that is recessed toward the inside of the scroll body 10 ,
  • the groove 131 is adapted to communicate with the oil outlet hole 20 .
  • the oil supply groove 13 is located above the oil outlet hole 20.
  • the oil supply groove 13 is located above the oil outlet hole 20.
  • the lubricating oil flows into the oil supply groove 13 through the oil outlet hole 20.
  • the oil outlet hole 20 can be connected with the groove 131, and the lubricating oil can flow into the groove 131 through the oil outlet hole 20, thereby realizing the oil supply effect of the groove 131 to the oil supply groove 13.
  • This arrangement can increase the number of the oil outlet hole 20 and the oil supply groove 13.
  • connection time of the oil outlet hole 20 and the oil supply groove 13 is extended to achieve the technical effect of extending the connection time between the oil outlet hole 20 and the oil supply groove 13, thereby ensuring sufficient oil supply in the oil supply groove 13, and further improving the lubrication effect between the movable scroll 200 and the fixed scroll 100. It can also be The sealing effect between the orbiting scroll 200 and the fixed scroll 100 is improved.
  • the groove 131 is configured as an arc-shaped groove. Further, the groove 131 is configured as a semi-circular arc-shaped groove recessed toward the inner side of the rotary disk body 10 , through which the lubricating oil is discharged. After the hole 20 flows into the semi-circular arc groove, the lubricating oil is evenly distributed into the oil supply grooves 13 on both sides through the arc surface of the arc groove, so that the oil supply groove 13 can supply oil evenly in both directions at the same time, ensuring the moving vortex.
  • Oil is supplied to the entire area between the orbiting scroll 200 and the fixed scroll 100, and at the same time, all-round sealing between the working fluid flow groove 11 and the back pressure chamber 21 is achieved, preventing the back pressure from passing through the orbiting scroll 200 and the static scroll.
  • the gap between the end faces of the rotating disk 100 leaks into the working medium flow groove 11, thereby improving the performance of the scroll compressor 300.
  • the groove 131 as an arc-shaped groove, the communication time between the oil outlet hole 20 and the oil supply groove 13 can be further increased, thereby further ensuring that the oil supply groove 13 is fully supplied with oil, and further improving the stability between the movable scroll 200 and the fixed scroll.
  • the lubrication effect is between 100 and 100%.
  • the oil supply groove 13 has a recessed section 132 that is recessed toward the radially inner side of the rotating disk body 10 , and the recessed section 132 is arranged adjacent to the groove 131 .
  • a recessed section 132 is provided on at least one side of the groove 131. That is to say, the recessed section 132 can be provided only on one side of the groove 131, or it can also be provided on one side of the recess 131. Recessed sections 132 are provided on both sides of the groove 131.
  • the recessed section 132 By arranging the recessed section 132 recessed toward the radially inner side of the rotary disk body 10, the recessed section 132 is adjacent to the groove 131, thereby ensuring that the connection between the groove 131 and the oil supply groove 13 can be ensured.
  • the formed interface is not sharp, which is beneficial to the flow of lubricating oil from the groove 131 to the oil supply groove 13, making the lubricating oil flow more smoothly in the oil supply groove 13, and also avoiding the formation of sharp corners at the connection between the groove 131 and the oil supply groove 13. Causing wear problems.
  • the recessed section 132 is configured as an arc section.
  • This arrangement enables the groove 131 to communicate with the oil supply groove 13 through the arc section, effectively ensuring that the groove 131 and the oil supply groove 13 are connected.
  • the interface formed at the connection point is not sharp, which is more conducive to the flow of lubricating oil from the groove 131 to the oil supply groove 13, making the lubricating oil flow in the oil supply groove 13 smoother, and further preventing the groove 131 from being connected to the oil supply groove 13. Sharp corners are formed causing wear problems.
  • the scroll compressor 300 includes the fixed scroll 100 of the above embodiment, and realizes the orbiting scroll by providing a closed-loop oil supply groove 13.
  • the lubrication effect of the entire area between the orbiting scroll 200 and the fixed scroll 100 is thereby avoided, thereby preventing dry friction on the contact end surfaces of the orbiting scroll 200 and the stationary scroll 100, and reducing the friction between the orbiting scroll 200 and the stationary scroll 100. Friction improves the working performance of the scroll compressor 300.
  • the closed-loop oil supply groove 13 realizes the bidirectional supply of lubricating oil to ensure that the lubricating oil is supplied between the movable scroll 200 and the fixed scroll 100 in the circumferential direction.
  • the lubricating oil in the oil supply tank 13 separates the working medium compression chamber 112 and the back pressure chamber 21, thereby achieving an all-round seal between the working medium compression chamber 112 and the back pressure chamber 21 to avoid back pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种应用于涡旋压缩机(300)的静涡旋盘(100)以及涡旋压缩机(300),静涡旋盘(100)包括:旋盘本体(10),旋盘本体(10)限定出一端敞开的工质流动槽(11);涡旋齿(12),涡旋齿(12)设于工质流动槽(11)内以形成涡旋腔(15);闭环形的供油槽(13),供油槽(13)设于旋盘本体(10)且围绕工质流动槽(11)的敞开端设置,供油槽(13)适于与涡旋压缩机(300)的动涡旋盘(200)的出油孔(20)连通。

Description

应用于涡旋压缩机的静涡旋盘以及涡旋压缩机 技术领域
本申请涉及压缩机领域,尤其是涉及一种应用于涡旋压缩机的静涡旋盘以及具有该应用于涡旋压缩机的静涡旋盘的涡旋压缩机。
背景技术
相关技术中,现有涡旋压缩机包括静涡旋盘、动涡旋盘和曲轴,动涡旋盘安装于曲轴,动涡旋盘与静涡旋盘配合装配且相对静涡旋盘可运动,涡旋压缩机工作时,曲轴做偏心运动,动涡旋盘做公转运动,从而实现压缩机吸气、压缩和排气过程。其中,静涡旋盘和动涡旋盘装配后,静涡旋盘和动涡旋盘接触,动涡旋盘转动时仅仅依靠动涡旋盘运转被动带油润滑静涡旋盘和动涡旋盘间接触面,但是静涡旋盘和动涡旋盘间润滑油较少,静涡旋盘和动涡旋盘间不能形成油膜,极易导致静涡旋盘和动涡旋盘的接触面磨损严重,影响静涡旋盘和动涡旋盘使用寿命,并且,静涡旋盘和动涡旋盘之间未可靠密封,压缩机背压腔内的压力与吸气压力存在较大压差,背压可通过动涡旋盘和静涡旋盘之间的间隙向工质流动槽泄漏,导致工质被反复压缩,造成涡旋压缩机功率增大,使涡旋压缩机的能效下降。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种应用于涡旋压缩机的静涡旋盘,通过设置闭环形的供油槽,能够充分润滑动涡旋盘和静涡旋盘之间的接触面,降低动涡旋盘和静涡旋盘之间的磨损,实现工质流动槽与背压腔之间的全方位密封,避免涡旋压缩机功率增大,提升涡旋压缩机的能效以及性能。
本申请的另一目的在于提出一种涡旋压缩机。
根据本申请的应用于涡旋压缩机的静涡旋盘,包括:旋盘本体,所述旋盘本体限定出一端敞开的工质流动槽;涡旋齿,所述涡旋齿设于所述工质流动槽内以形成涡旋腔;闭环形的供油槽,所述供油槽设于所述旋盘本体且围绕所述工质流动槽的敞开端设置,所述供油槽适于与所述涡旋压缩机的动涡旋盘的出油孔连通。
根据本申请的应用于涡旋压缩机的静涡旋盘,通过设置闭环形的供油槽,润滑油能够充分润滑动静盘之间的接触面,降低动涡旋盘和静涡旋盘之间的磨损,闭环形的供油槽实现工质流动槽与背压腔之间的全方位密封,避免背压通过动涡旋盘和静涡旋盘接触端面的间隙向工质流动槽中泄漏,进而避免工质被反复压缩,避免涡旋压缩机功率增大,提升涡旋压缩机的能效,也提升了涡旋压缩机性能。
在本申请的一些实施例中,在所述静涡旋盘的径向方向上,所述供油槽的内侧壁与所述工质流动槽间隔开。
在本申请的一些示例中,所述供油槽的内侧壁与所述工质流动槽之间的间隔距离为A,满足关系式:1mm≤A。
在本申请的一些示例中,所述供油槽的敞开端适于被所述动涡旋盘遮盖。
在本申请的一些示例中,所述供油槽的宽度尺寸为B,满足关系式:1.2mm≤B≤2mm。
在本申请的一些示例中,所述供油槽的深度尺寸为C,满足关系式:0.5mm≤C≤1.8mm。
在本申请的一些示例中,在所述静涡旋盘的径向方向上,所述供油槽的内侧壁具有朝向所述旋盘本体内凹陷的凹槽,所述凹槽适于与所述出油孔连通。
在本申请的一些示例中,所述凹槽构造为弧型槽。
在本申请的一些示例中,所述供油槽具有朝向所述旋盘本体的径向内侧凹陷的凹陷段,所述凹陷段与所述凹槽邻接。
在本申请的一些示例中,所述凹陷段构造为弧型段。
根据本申请的涡旋压缩机,包括上述的应用于涡旋压缩机的静涡旋盘。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的静涡旋盘示意图;
图2是根据本申请实施例的动涡旋盘示意图;
图3是根据本申请实施例的动涡旋盘和静涡旋盘装配示意图;
图4是根据本申请实施例的涡旋压缩机的剖视图;
图5是图4中D处放大图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图5描述根据本申请实施例的静涡旋盘100,静涡旋盘100可以应用于涡旋压缩机300,但本申请不限于此,静涡旋盘100也可以应用于其他需要设置静涡旋盘100的设备上,本申请以静涡旋盘100应用于涡旋压缩机300上为例进行说明。
如图1-图5所示,根据本申请实施例的静涡旋盘100包括:旋盘本体10、涡旋齿12和闭环形的供油槽13。旋盘本体10限定出一端敞开的工质流动槽11,涡旋齿12设于工质流动槽11内形成涡旋腔,涡旋齿12可以将工质流动槽11分隔为工质进入腔111和工质压缩腔112,工质进入腔111和工质压缩腔112构成涡旋腔,进一步地,旋盘本体10具有工质进口和工质出口14,涡旋腔与工质进口和工质出口14均连通,工质进入腔111连通工质进口和工质压缩腔112,工质出口14与工质压缩腔112连通。进一步地,如图1所示,涡旋齿12设置为涡旋型的板状结构,通过将涡旋齿12设置在工质流动槽11内,涡旋齿12将工质流动槽11分隔为弧型的工质进入腔111和涡旋型的工质压缩腔112。工质进入腔111和工质压缩腔112为工质流通通道。工质通过工质进口流入工质进入腔111,工质进入腔111内的工质沿着工质进入腔111流入工质压缩腔112,最终工质从工质出口14流出。
闭环形的供油槽13设置于旋盘本体10,且供油槽13围绕工质流动槽11的敞开端设置,供油槽13适于与涡旋压缩机300的动涡旋盘200的出油孔20连通,通过供油槽13与出油孔20之间配合,润滑油从出油孔20流入供油槽13,实现对动涡旋盘200和静涡旋盘100接触面之间的充分润滑。
具体地,如图1、图4和图5所示,在涡旋压缩机300运转过程中,涡旋压缩机300的曲轴301转动,在压力差耦合作用下,涡旋压缩机300的油池302中的润滑油通过曲轴301的供油通道303被输送至动涡旋盘200的出油孔20,动涡旋盘200相对静涡旋盘100运动使出油孔20与供油槽13连通时,润滑油从出油孔20流入供油槽13内,使润滑油输送至动涡旋盘200和静涡旋盘100之间,为动涡旋盘200和静涡旋盘100的接触端面提供充足润滑,进而减小动涡旋盘200和静涡旋盘100接触端面之间的摩擦力,保证动涡旋盘200和静涡旋盘100之间的正常运行,降低动涡旋盘200和静涡旋盘100之间的磨损,延长动涡旋盘200和静涡旋盘100使用寿命。
并且,通过将供油槽13设置为闭环形结构,润滑油从出油孔20流入供油槽13内后,润滑油沿着供油槽13朝向两个方向同时供油,确保动涡旋盘200和静涡旋盘100之间接触的区域均具有充足的润滑油,进而避免因供油不充分导致动涡旋盘200和静涡旋盘100接触端面之间产生干摩擦。同时,通过将供油槽13设置为闭环形结构,润滑油从出油孔20流入供油槽13内后,当供油槽13内充满润滑油时,供油槽13中具有一定压力,动涡旋盘200和静涡旋盘100的接触面之间容易形成油膜,油膜将工质流动槽11与背压腔21隔开,从而实现工质流动槽11与背压腔21之间全方位的密封,避免背压通过动涡旋盘200和静涡旋盘100间接触端面的间隙向工质流动槽11中泄漏,防止工质被反复压缩导致涡旋压缩机300功率增大,提升涡旋压缩机300的能效,达到提升涡旋压缩机300性能的目的。
由此,通过设置闭环形的供油槽13,实现动涡旋盘200和静涡旋盘100之间全区域的润滑效果,进而避免动涡旋盘200和静涡旋盘100接触端面发生干摩擦,降低动涡旋盘200和静涡旋盘100之间的摩擦力,提高了涡旋压缩机300的工作性能。并且,润滑油通过出油孔20流入供油槽13内后,闭环形的供油槽13实现润滑油的双方向供油,保证在周向方向上动涡旋盘200和静涡旋盘100之间的全区域具有润滑油,供油槽13内的润滑油将工质压缩腔112与背压腔21隔开,从而实现工质压缩腔112与背压腔21之间全方位的密封,避免背压通过动涡旋盘200和静涡旋盘100接触端面的间隙向工质压缩腔112中泄漏,防止工质反复被压缩导致涡旋压缩机300功率增大,达到提升涡旋压缩机300性能的目的。
在本申请的一些实施例中,如图1所示,在静涡旋盘100的径向方向上,供油槽13的内侧壁133与工质流动槽11间隔开。其中,如图1所示,供油槽13在静涡旋盘100的周向上延伸设置,供油槽13为围绕工质流动槽11的敞开端设置的闭环形槽体,在静涡旋盘100的径向方向上,通过使供油槽13的内侧壁133与工质流动槽11间隔开,使得供油槽13的内侧壁133与工质流动槽11之间存在一定距离,润滑油从出油孔20流入供油槽13内后,保证实现工质流动槽11与背压腔21之间全方位的密封,进一步避免背压通过动涡旋盘200和静涡旋盘100间接触端面的间隙向工质流动槽11中泄漏,进一步防止工质被反复压缩导致涡旋压缩机300功率增大,进一步提升涡旋压缩机300的能效,进一步提升涡旋压缩机300性能。
在本申请的一些实施例中,如图1所示,供油槽13的内侧壁133与工质流动槽11之间的间隔距离为A,满足关系式:1mm≤A。需要说明的是,在静涡旋盘100的径向方向上,供油槽13的内侧壁133与工质流动槽11间隔开设置,供油槽13的内侧壁133与工质流动槽11之间的间隔距离大于等于1mm,其中,供油槽13的内侧壁133与工质流动槽11之间的间隔距离越大,润滑油从出油孔20流入供油槽13内后,工质流动槽11和背压腔21之间密封性越好,反之,供油槽13的内侧壁133与工质流动槽11之间的间隔距离越小,导致动涡旋盘200和静涡旋盘100间润滑油量减少,动涡旋盘200和静涡旋盘100间密封性越差。在本申请中,通过使供油槽13的内侧壁133与工质流动槽11之间的间隔距离大于等于1mm,能够保证供油槽13的内侧壁133与工质流动槽11之间具有足够的间隔距离,使动涡旋盘200和静涡旋盘100的接触面间具有充足润滑油,可以更好地保证工质流动槽11和背压腔21之间密封性。需要说明的是,在静涡旋盘100的周向方向上,供油槽13的内侧壁133与工质流动槽11之间的间隔距离可以是变化的,供油槽13的内侧壁133与工质流动槽11之间的间隔距离也可以是不变的,在静涡旋盘100的周向方向上,每个区域处供油槽13的内侧壁133与工质流动槽11之间的间隔距离根据实际情况具体选择,但是供油槽13的内侧壁133与工质流动槽11之间的间隔距离最小值为1mm。
更进一步,通过设置使供油槽13的内侧壁133与工质流动槽11之间存在一定距离,从而避免动涡旋盘200和静涡旋盘100接触面间因润滑油泄露导致干摩擦,使得动涡旋盘200和静涡旋盘100接触面产生磨损,进而延长了静涡旋盘100和动涡旋盘200的使用寿命。
在本申请的一些实施例中,如图1所示,供油槽13的敞开端适于被动涡旋盘200遮盖。进一步,当涡旋压缩机300以图4中方向放置时,动涡旋盘200和静涡旋盘100装配在一起后,动涡旋盘200位于静涡旋盘100下方,动涡旋盘200的涡旋齿伸入工质流动槽11内,供油槽13设置在旋盘本体10的下表面,供油槽13的下端敞开设置,在静涡旋盘100的径向方向上,供油槽13的外侧壁134位于动涡旋盘200内侧,动涡旋盘200遮盖供油槽13的敞开端,动涡旋盘200运转过程中,动涡旋盘200可以实时0遮盖供油槽13的敞开端,避免供油槽13与背压腔21连通,润滑油从出油孔20流入供油槽13内后,避免供油槽13内的润滑油漏出,保证供油槽13内具有足够的润滑油润滑静涡旋盘100和动涡旋盘200之间的接触面。
进一步地,在静涡旋盘100的径向方向上,供油槽13的外侧壁134与动涡旋盘200的外边缘之间的间隔距离大于等于1mm,这样设置能够保证在静涡旋盘100的径向方向上供油槽13的外侧壁134位于动涡旋盘200内侧,供油槽13内的润滑油能够将供油槽13和背压腔21间隔开,有效防止供油槽13内的润滑油泄漏。其中,供油槽13的外侧壁134与背压腔21之间的间隔距离越大,供油槽13与背压腔21之间的密封性越好,反之,供油槽13的外侧壁134与背压腔21之间的间隔距离越小,供油槽13与背压腔21之间的密封性越差。通过设置供油槽13的外侧壁134与动涡旋盘200的外边缘之间的间隔距离大于等于1mm,确保动涡旋盘200运转过程中供油槽13不与背压腔21连通,从而避免动涡旋盘200和静涡旋盘100接触面因润滑油泄露导致干摩擦情况发生,降低动涡旋盘200和静涡旋盘100接触面间磨损,进一步延长了静涡旋盘100和动涡旋盘200的使用寿命。
并且,通过使供油槽13的内侧壁133与工质流动槽11之间存在一定间隔距离,且供油槽13的敞开端被动涡旋盘200遮盖,供油槽13内的润滑油可以将工质流动槽11与背压腔21间隔开,实现工质流动槽11与背压腔21之间全方位的密封,避免了背压通过动涡旋盘200和静涡旋盘100端面之间的间隙向工质流动槽11中泄漏,防止工质被反复压缩,达到降低涡旋压缩机300功率效果,提升了涡旋压缩机300工作性能。
在本申请的一些实施例中,如图1所示,供油槽13的宽度尺寸为B,满足关系式:1.2mm≤B≤2mm。其中,在静涡旋盘100的径向方向上,供油槽13的宽度尺寸为B,例如:B为1.2mm、1.5mm、2mm等数值,需要说明的是,供油槽13的宽度尺寸越大,供油槽13内润滑油量越多,润滑油与动涡旋盘200、静涡旋盘100的接触面积越大,从而扩大供油槽13所润滑的范围,提高了供油槽13的润滑效果,反之,供油槽13的宽度尺寸越小,供油槽13内润滑油量越少,润滑油与动涡旋盘200、静涡旋盘100的接触面积越小,从而缩小润滑范围,降低了供油槽13的润滑效果。本申请中,通过将供油槽13的宽度尺寸设置为B,能够使供油槽13内润滑油量适宜,在保证充分润滑动涡旋盘200和静涡旋盘100基础上,也保证将工质流动槽11与背压腔21间隔开,进而实现压工质流动槽11与背压腔21之间全方位的密封。需要说明的是,供油槽13的宽度尺寸根据涡旋压缩机300的实际使用需求所设定。
在本申请的一些实施例中,如图1所示,供油槽13的深度尺寸为C,满足关系式:0.5mm≤C≤1.8mm,例如:C为0.5mm、1.5mm、1.8mm等数值。其中,在旋盘本体10的轴向方向上,供油槽13朝向旋盘本体10内凹陷,供油槽13靠近动涡旋盘200的端部敞开设置,进而形成深度尺寸为C的供油槽13。需要说明的是,供油槽13的深度越大,供油槽13所能容纳润滑油的量越大,可以为动涡旋盘200与静涡旋盘100接触端面之间提供充足润滑油,反之,供油槽13的深度越小,供油槽13所能容纳润滑油的量越小,进而不能为动涡旋盘200与静涡旋盘100接触端面之间提供充足的润滑油,可能导致动涡旋盘200与静涡旋盘100接触面之间发生干摩擦,产生局部异常磨损。本申请中,通过将供油槽13的深度尺寸设置为C,能够保证供油槽13内润滑油量适宜,在保证充分润滑动涡旋盘200和静涡旋盘100基础上,也保证将工质流动槽11与背压腔21间隔开,进而实现压工质流动槽11与背压腔21之间全方位的密封。需要说明的是,供油槽13的深度尺寸根据涡旋压缩机300的实际使用需求所设定。
在本申请的一些实施例中,如图1和图2所示,在静涡旋盘100的径向方向上,供油槽13的内侧壁133具有朝向旋盘本体10内凹陷的凹槽131,凹槽131适于与出油孔20连通。其中,动涡旋盘200和静涡旋盘100完成装配时,供油槽13位于出油孔20的上方,动涡旋盘200运转过程中,当动涡旋盘200运转至出油孔20与供油槽13连通时,润滑油通过出油孔20流入供油槽13内,通过在供油槽13的内侧壁133设置朝向旋盘本体10内凹陷的凹槽131,动涡旋盘200运转过程中,出油孔20可以与凹槽131连通,润滑油可以通过出油孔20流入凹槽131内,实现凹槽131向供油槽13内供油效果,如此设置能够增加出油孔20与供油槽13的连通时间,实现延长出油孔20与供油槽13连通时间的技术效果,进而保证供油槽13供油充分,进一步提高动涡旋盘200与静涡旋盘100之间的润滑效果,也可以提升动涡旋盘200与静涡旋盘100之间的密封效果。
在本申请的一些实施例中,如图1所示,凹槽131构造为弧型槽,进一步,凹槽131设置为朝向旋盘本体10内凹陷的半圆弧型槽,润滑油通过出油孔20流入半圆弧型槽内后,通过弧型槽的弧型面将润滑油均匀的分流到两侧的供油槽13内,实现供油槽13两个方向同时均匀地供油,确保动涡旋盘200和静涡旋盘100之间全区域的供油,同时,实现工质流动槽11与背压腔21之间全方位的密封,避免了背压通过动涡旋盘200与静涡旋盘100端面之间的间隙向工质流动槽11内泄漏,提升涡旋压缩机300性能。并且,通过将凹槽131构造为弧型槽,能够进一步增加出油孔20与供油槽13的连通时间,进而进一步保证供油槽13供油充分,进一步提高动涡旋盘200与静涡旋盘100之间的润滑效果。
在本申请的一些实施例中,如图1所示,供油槽13具有朝向旋盘本体10的径向内侧凹陷的凹陷段132,凹陷段132与凹槽131邻接布置。进一步地,在旋盘本体10的周向方向上,凹槽131的至少一侧设有凹陷段132,也就是说,可以只在凹槽131的一侧设置有凹陷段132,还可以在凹槽131的两侧均设置有凹陷段132,通过设置朝向旋盘本体10的径向内侧凹陷的凹陷段132,使凹陷段132与凹槽131邻接,能够保证凹槽131与供油槽13相连处形成的接口不为尖角,有利于润滑油从凹槽131流入供油槽13,可以使润滑油在供油槽13流动更加顺畅,并且,也可以避免凹槽131与供油槽13相连处形成尖角导致磨损问题。
在本申请的一些实施例中,如图1所示,凹陷段132构造为弧型段,如此设置能够使凹槽131通过弧型段与供油槽13连通,有效保证凹槽131与供油槽13相连处形成的接口不为尖角,更加有利于润滑油从凹槽131流入供油槽13,可以使润滑油在供油槽13流动更加顺畅,并且,也可以进一步避免凹槽131与供油槽13相连处形成尖角导致磨损问题。
如图1-图5所示,根据本申请实施例的涡旋压缩机300,涡旋压缩机300包括上述实施例的静涡旋盘100,通过设置闭环形的供油槽13,实现动涡旋盘200和静涡旋盘100之间全区域的润滑效果,进而避免动涡旋盘200和静涡旋盘100接触端面发生干摩擦,降低动涡旋盘200和静涡旋盘100之间的摩擦力,提高了涡旋压缩机300的工作性能。并且,润滑油通过出油孔20流入供油槽13内后,闭环形的供油槽13实现润滑油的双方向供油,保证在周向方向上动涡旋盘200和静涡旋盘100之间的全区域具有润滑油,供油槽13内的润滑油将工质压缩腔112与背压腔21隔开,从而实现工质压缩腔112与背压腔21之间全方位的密封,避免背压通过动涡旋盘200和静涡旋盘100接触端面的间隙向工质压缩腔112中泄漏,防止工质反复被压缩导致涡旋压缩机300功率增大,达到提升涡旋压缩机300性能的目的。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种应用于涡旋压缩机的静涡旋盘,其中,包括:
    旋盘本体,所述旋盘本体限定出一端敞开的工质流动槽;
    涡旋齿,所述涡旋齿设于所述工质流动槽内以形成涡旋腔;
    闭环形的供油槽,所述供油槽设于所述旋盘本体且围绕所述工质流动槽的敞开端设置,所述供油槽适于与所述涡旋压缩机的动涡旋盘的出油孔连通。
  2. 根据权利要求1所述的应用于涡旋压缩机的静涡旋盘,其中,在所述静涡旋盘的径向方向上,所述供油槽的内侧壁与所述工质流动槽间隔开。
  3. 根据权利要求2所述的应用于涡旋压缩机的静涡旋盘,其中,所述供油槽的内侧壁与所述工质流动槽之间的间隔距离为A,满足关系式:1mm≤A。
  4. 根据权利要求1-3中任一项所述的应用于涡旋压缩机的静涡旋盘,其中,所述供油槽的敞开端适于被所述动涡旋盘遮盖。
  5. 根据权利要求1-4中任一项所述的应用于涡旋压缩机的静涡旋盘,其中,所述供油槽的宽度尺寸为B,满足关系式:1.2mm≤B≤2mm。
  6. 根据权利要求1-5中任一项所述的应用于涡旋压缩机的静涡旋盘,其中,所述供油槽的深度尺寸为C,满足关系式:0.5mm≤C≤1.8mm。
  7. 根据权利要求1-6中任一项所述的应用于涡旋压缩机的静涡旋盘,其中,在所述静涡旋盘的径向方向上,所述供油槽的内侧壁具有朝向所述旋盘本体内凹陷的凹槽,所述凹槽适于与所述出油孔连通。
  8. 根据权利要求7所述的应用于涡旋压缩机的静涡旋盘,其中,所述凹槽构造为弧型槽。
  9. 根据权利要求7或8所述的应用于涡旋压缩机的静涡旋盘,其中,所述供油槽具有朝向所述旋盘本体的径向内侧凹陷的凹陷段,所述凹陷段与所述凹槽邻接。
  10. 根据权利要求9所述的应用于涡旋压缩机的静涡旋盘,其中,所述凹陷段构造为弧型段。
  11. 一种涡旋压缩机,其中,包括根据权利要求1-10中任一项所述的应用于涡旋压缩机的静涡旋盘。
PCT/CN2023/086304 2022-04-28 2023-04-04 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机 WO2023207536A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23762130.5A EP4290077A4 (en) 2022-04-28 2023-04-04 FIXED VOLUTE APPLIED TO A SCROLL COMPRESSOR, AND SCROLL COMPRESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210471516.9A CN114738273A (zh) 2022-04-28 2022-04-28 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机
CN202210471516.9 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207536A1 true WO2023207536A1 (zh) 2023-11-02

Family

ID=82286290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086304 WO2023207536A1 (zh) 2022-04-28 2023-04-04 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机

Country Status (3)

Country Link
EP (1) EP4290077A4 (zh)
CN (1) CN114738273A (zh)
WO (1) WO2023207536A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738273A (zh) * 2022-04-28 2022-07-12 广东美芝制冷设备有限公司 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966186A (zh) * 2019-12-26 2020-04-07 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机及具有其的空调器
CN113494459A (zh) * 2021-08-27 2021-10-12 广东美的环境科技有限公司 压缩组件及涡旋压缩机
CN113775523A (zh) * 2021-10-14 2021-12-10 广东美的环境科技有限公司 涡旋压缩机及具有其的制冷设备
CN113864185A (zh) * 2021-10-28 2021-12-31 广东美的环境科技有限公司 涡旋压缩机
CN114738273A (zh) * 2022-04-28 2022-07-12 广东美芝制冷设备有限公司 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3731433B2 (ja) * 1999-11-22 2006-01-05 ダイキン工業株式会社 スクロール型圧縮機
JP2003328963A (ja) * 2002-05-16 2003-11-19 Daikin Ind Ltd スクロール型圧縮機
JP5660151B2 (ja) * 2013-03-18 2015-01-28 ダイキン工業株式会社 スクロール圧縮機
US10519954B2 (en) * 2017-05-24 2019-12-31 Emerson Climate Technologies, Inc. Compressor with oil management system
JP6755428B1 (ja) * 2020-06-08 2020-09-16 日立ジョンソンコントロールズ空調株式会社 スクロール圧縮機、及び冷凍サイクル装置
CN113446215A (zh) * 2021-08-13 2021-09-28 上海松芝酷能汽车技术有限公司 一种涡盘组件及涡旋式压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966186A (zh) * 2019-12-26 2020-04-07 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机及具有其的空调器
CN113494459A (zh) * 2021-08-27 2021-10-12 广东美的环境科技有限公司 压缩组件及涡旋压缩机
CN113775523A (zh) * 2021-10-14 2021-12-10 广东美的环境科技有限公司 涡旋压缩机及具有其的制冷设备
CN113864185A (zh) * 2021-10-28 2021-12-31 广东美的环境科技有限公司 涡旋压缩机
CN114738273A (zh) * 2022-04-28 2022-07-12 广东美芝制冷设备有限公司 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290077A4 *

Also Published As

Publication number Publication date
EP4290077A4 (en) 2024-08-21
EP4290077A1 (en) 2023-12-13
CN114738273A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2023207536A1 (zh) 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机
US3852003A (en) Pressure-sealed compressor
JP5577297B2 (ja) スクロール式流体機械
JPH07109981A (ja) スクロール式流体機械
CN113446215A (zh) 一种涡盘组件及涡旋式压缩机
JP5178612B2 (ja) スクリュー圧縮機
CN114060274A (zh) 泵体结构、压缩机和空调器
CN213205965U (zh) 涡旋压缩机、制冷设备及汽车
WO2023202674A1 (zh) 应用于涡旋压缩机的静涡旋盘以及涡旋压缩机
JP4835360B2 (ja) スクロール型圧縮機
JP6707021B2 (ja) スクリュー圧縮機
KR100378933B1 (ko) 스크류 기계
KR20080084220A (ko) 회전압축기
CN210565070U (zh) 涡旋压缩机的压缩机构和涡旋压缩机
US5727934A (en) Scroll type fluid machine having a thin plate for each scroll
JP2024507622A (ja) ロータ・アセンブリ、圧縮機及びエア・コンディショナ
JP4530875B2 (ja) ベーンポンプ
JP7049473B2 (ja) スクリュー圧縮機
CN215521261U (zh) 旋转式压缩机
EP1236902A2 (en) Shaft seal structure of vacuum pumps
KR100830943B1 (ko) 스크롤 압축기의 급유구조
WO2023221677A1 (zh) 压缩组件和静涡盘、涡旋压缩机
KR100480125B1 (ko) 밀폐형 압축기의 흡입가스 안내장치
US5417555A (en) Rotary vane machine having end seal plates
CN217002273U (zh) 一种具有密封结构的螺杆压缩机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023762130

Country of ref document: EP

Effective date: 20230907

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762130

Country of ref document: EP

Kind code of ref document: A1