WO2023207514A1 - 波束管理方法、基站、用户装置、存储介质及程序产品 - Google Patents

波束管理方法、基站、用户装置、存储介质及程序产品 Download PDF

Info

Publication number
WO2023207514A1
WO2023207514A1 PCT/CN2023/085594 CN2023085594W WO2023207514A1 WO 2023207514 A1 WO2023207514 A1 WO 2023207514A1 CN 2023085594 W CN2023085594 W CN 2023085594W WO 2023207514 A1 WO2023207514 A1 WO 2023207514A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reference signal
optimal
management method
mode information
Prior art date
Application number
PCT/CN2023/085594
Other languages
English (en)
French (fr)
Inventor
刘文丰
肖华华
鲁照华
郑国增
王瑜新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023207514A1 publication Critical patent/WO2023207514A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communication technology, and in particular, to a beam management method, a base station, a user device, a computer storage medium and a computer program product.
  • the target beam in the related art is selected from a predetermined analog beam codebook, that is, beam scanning is performed on all transmit and receive beam pairs in the codebook to determine the target beam, which is a common beam nowadays. training program.
  • all beams in the codebook need to be scanned to determine the target beam, excessive beam training overhead, measurement power consumption, and processing delays may result in actual application scenarios.
  • Embodiments of the present application provide a beam management method, a base station, a user device, a computer storage medium, and a computer program product, which can reduce beam training overhead, measurement power consumption, and processing delay.
  • inventions of the present application provide a beam management method applied to a transmitting device.
  • the beam management method includes:
  • Receive beam measurement information sent by the receiving device wherein the beam measurement information is obtained by measuring the reference signal resource by the receiving device;
  • Optimal reception mode information is sent to the receiving device according to the optimal beam result, where the optimal reception mode information corresponds to the optimal beam result.
  • embodiments of the present application also provide a beam management method, which is applied to a receiving device.
  • the beam management method includes:
  • the transmission mode information for the reference signal resource measure the reference signal resource to obtain beam measurement information
  • embodiments of the present application further provide a base station, including: at least one processor; at least one memory for storing at least one program; when at least one of the programs is executed by at least one of the processors, the following is implemented: The beam management method described in the first aspect.
  • embodiments of the present application further provide a user device, including: at least one processor; at least one memory for storing at least one program; implemented when at least one of the programs is executed by at least one of the processors The beam management method as described in the second aspect.
  • embodiments of the present application further provide a computer-readable storage medium in which a processor-executable program is stored, and when the processor-executable program is executed by the processor, it is used to implement the aforementioned Beam management methods.
  • embodiments of the present application further provide a computer program product.
  • the computer program or the computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer program from the computer-readable storage medium.
  • a computer program or the computer instructions the processor executes the computer program or the computer instructions, so that the computer device performs the beam management method as described above.
  • the transmitting device in the embodiment of the present application sends multiple target test beams configured with reference signal resources to the receiving device. Since the multiple target test beams are obtained by configuring reference signal resources in at least part of the beam sending directions among all beam sending directions, In other words, it is not necessary to perform beam scanning configuration in all beam transmission directions to obtain the target test beam. Therefore, it is helpful to reduce the beam training overhead and the corresponding measurement power consumption and processing delay, and then receive the reference signal measured by the receiving device.
  • the beam measurement information obtained from the resource is used to assist the transmitting device in predicting to obtain accurate and reliable optimal beam results, and by sending the optimal receiving mode information corresponding to the optimal beam result to the receiving device, the receiving device The scanning process for optimal beam results can be avoided, thereby filling the technical gaps in related methods.
  • Figure 1 is a schematic diagram of an implementation environment for executing a beam management method provided by an embodiment of the present application
  • Figure 2 is a flow chart of a beam management method provided by an embodiment of the present application.
  • Figure 3 is a flow chart for obtaining multiple target test beams in the beam management method provided by an embodiment of the present application
  • Figure 4 is a flow chart of sending optimal reception mode information to a receiving device in a beam management method provided by another embodiment of the present application;
  • Figure 5 is a flow chart of a beam management method provided by another embodiment of the present application.
  • Figure 6 is a flow chart of measuring reference signal resources to obtain beam measurement information in a beam management method provided by an embodiment of the present application
  • Figure 7 is a flow chart for sending optimal parameter information to a transmitting device in a beam management method provided by an embodiment of the present application
  • Figure 8 is a schematic diagram of a base station provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a user device provided by an embodiment of the present application.
  • This application provides a beam management method, a base station, a user device, a computer storage medium, and a computer program product.
  • the beam management method of one embodiment is applied to a transmitting device and includes: configuring reference signal resources in at least part of all beam transmitting directions to obtain multiple target test beams; sending multiple target test beams to the receiving device ; Receive beam measurement information sent by the receiving device, where the beam measurement information is obtained by measuring the reference signal resource by the receiving device; predict the optimal beam result based on the beam measurement information; send the optimal reception to the receiving device based on the optimal beam result Mode information, wherein the optimal reception mode information corresponds to the optimal beam result.
  • the receiving device by sending multiple target test beams configured with reference signal resources to the receiving device, since the multiple target test beams are obtained by configuring reference signal resources in at least part of the beam transmission directions among all beam transmission directions, it is also That is to say, it is not necessary to perform beam scanning configuration in all beam transmission directions to obtain the target test beam. Therefore, it is helpful to reduce the beam training overhead and the corresponding measurement power consumption and processing delay, and then receive the reference signal resources measured by the receiving device.
  • the obtained beam measurement information is used to assist the transmitting device in predicting an accurate and reliable optimal beam result, and by sending the optimal receiving mode information corresponding to the optimal beam result to the receiving device, the receiving device can Avoiding the scanning process for optimal beam results can fill the technical gaps in related methods.
  • Figure 1 is a schematic diagram of an implementation environment for executing a beam management method provided by an embodiment of the present application.
  • the implementation environment includes a base station 110 and a user device 120 , where wireless signals can be sent and received between the base station 110 and the user device 120 .
  • the relative positions of the base station 110 and the user device 120 can be set accordingly in specific application scenarios.
  • the user device 120 can move along the radiation sphere formed by the base station 110 when radiating signals to the outside. That is to say, if There are multiple user devices 120 and different user devices 120 are configured in the above manner, so that wireless signals sent by the base station 110 can be received at different spatial locations. It is worth noting that the spatial locations here can be different geographical conditions.
  • the user device 120 may be called an access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal , wireless communications equipment, user agent or user device.
  • the user device 120 may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (Personal Digital Assistant, PDA), a Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, 5G networks or terminal devices in future 5G or higher networks, etc., are not specifically limited in this embodiment.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the base station 110 at least has functions such as beam management based on preset operating logic or beam management based on operator control.
  • the base station 110 at least has the function of predicting and managing optimal beam results, that is, it can perform beam management based on preset operating logic or based on operator control.
  • Operator control configured in at least a portion of the total beam transmission directions Reference signal resources to obtain multiple target test beams, and send multiple target test beams to the user device 120, so as to receive beam measurement information obtained from the user device 120 by measuring the reference signal resources, and based on the beam measurement information Functions such as predicting the optimal beam result and sending optimal reception mode information corresponding to the optimal beam result to the user device 120.
  • the base station 110 can be a general mobile communication base station or a millimeter wave AAS base station, which is not specifically limited here.
  • the user device 120 at least has the ability to receive multiple target test beams sent by the base station 110 and transmission mode information for the reference signal resources, measure the reference signal resources according to the transmission mode information to obtain beam measurement information, and predict based on the beam measurement information. Functions such as optimal beam results and sending optimal parameter information corresponding to the optimal beam results to the base station 110, wherein multiple target test beams are configured by the base station 110 with reference signal resources in at least part of all beam transmission directions. And get.
  • the signal conditioning device 120 when the receiving device is the base station 110, the signal conditioning device 120 at least has the function of receiving the target reference signal from the base station 110 and using the target codebook to send the target reference signal to the base station 110. For example, it can respond to the operation
  • the human operates the signal conditioning device 120 to receive the target reference signal from the user device 120 and use the target codebook to send the target reference signal to the base station 110, or to receive the target reference signal from the base station 110 and use the target codebook to send the target reference signal to the base station 110.
  • the signal is sent to user device 120.
  • the above functions of the base station 110 and the user device 120 can be applied in different application scenarios, and are not limited here.
  • Figure 2 is a flow chart of a beam management method provided by an embodiment of the present application.
  • the beam management method is applied to a transmitting device, such as the base station 110 in the embodiment shown in Figure 1.
  • the beam management method may include but is not limited to step S110 to step S150.
  • Step S110 Configure reference signal resources in at least part of all beam transmission directions to obtain multiple target test beams.
  • the multiple target test beams are obtained by configuring reference signal resources in at least part of all beam transmission directions. That is to say, it does not necessarily need to be performed in all beam transmission directions.
  • the beam scanning configuration can obtain the target test beam, which is beneficial to reducing the beam training overhead on the transmitter side and the power consumption and processing delay of measuring the target test beam in subsequent steps.
  • the transmitting device can have multiple beam transmitting directions, which are determined by preset operating logic or based on operator control. When the transmitting device has determined all beam transmitting directions, the transmitting device can select In at least part of the beam transmission directions, that is to say, configuration can be performed in two cases of selecting part or all of the beam transmission directions, thereby obtaining multiple target test beams. Subsequent embodiments will respectively focus on these two situations. Each configuration will be described and will not be described again here.
  • multiple target test beams can be different from each other to simulate different beam scanning situations.
  • the specific number of target test beams can be set according to the actual application scenario, and is not limited here.
  • reference signal resources include at least one of the following:
  • Synchronization signal block SSB resource Synchronization signal block SSB resource.
  • the configured reference signal resources may be CSI-RS resources or/and SSB resources.
  • the transmitter beam measurement and the receiving beam scanning are implemented. Since CSI-RS resources and SSB resources are technologies in the art, It is well known to all personnel and will not be described in detail here.
  • step S110 when configuring reference signal resources in some beam transmission directions among all beam transmission directions, may include but is not limited to steps S111 to S112.
  • Step S111 In all beam transmission directions, use any method of uniform sampling, non-uniform sampling or random sampling to obtain the target transmission direction;
  • Step S112 Configure reference signal resources in the target transmission direction to obtain multiple target test beams.
  • the reference signal resources are not configured in all beam transmission directions, it is necessary to determine part of the target transmission directions in all beam transmission directions. That is to say, any one of uniform sampling, non-uniform sampling or random sampling is used. In this way, the target transmission direction can be accurately obtained, and the reference signal resources can be configured in the target transmission direction to obtain multiple target test beams.
  • Step S120 Send multiple target test beams to the receiving device.
  • the transmitting device in this embodiment may be, but is not limited to, the base station 110 in the embodiment shown in Figure 1
  • the receiving device in this embodiment may be, but is not limited to, the user device in the embodiment shown in Figure 1 120;
  • those skilled in the art can choose to set up a corresponding transmitting device or receiving device according to the actual application scenario, which is not limited in this embodiment.
  • the base station is used as the transmitting device and the user device is used as the receiving device.
  • step S110 since the base station has obtained multiple target test beams by configuring reference signal resources in step S110, multiple target test beams can be sent to the user device in step S120, so that the user device can use the received signal in subsequent steps. Beam scanning is performed on the target test beam to achieve measurement of the reference signal resources.
  • beam scanning may refer to a process in which a base station or a user device sequentially uses different simulated beams to cover a spatial area.
  • the base station or user device sequentially transmits beams from the entire codebook or codebook subsets to find good transceiver beam pairs for data and control channels; specifically, during the transmitter beam scanning process, the base station
  • the high-level parameter resource set NZP-CSI-RS-ResourceSet can be configured but is not limited to it.
  • Each resource set contains multiple CSI-RS or/and SSB resources transmitted using different transmit beams.
  • the user equipment can use fixed receive beams to receive and measure CSI.
  • the user device can use the polling method to receive the target test beam sent by the base station, that is, for the base station, the CSI-RS resources used for beam management Or the set is repeatedly transmitted multiple times, and the user device uses different receiving beams to receive, thereby achieving scanning of the receiving beam.
  • the base station configures a high-level parameter resource set NZP-CSI-RS-ResourceSet, and each resource set contains multiple CSI-RS or/and SSB transmitted using the same transmit beam.
  • resources in this case, the user equipment may, but is not limited to, use different receive beams to receive and measure CSI-RS or/and SSB resources to achieve scanning of the receive beams.
  • the base station can use a polling method to transmit target test beams as needed, that is, configure multiple CSI-RS resources or/and SSB resource sets that use different transmission beams to transmit, so as to facilitate scanning of transmission beams.
  • Step S130 Receive the beam measurement information sent by the receiving device.
  • the beam measurement information is obtained by measuring the reference signal resources by the receiving device.
  • the user device can measure the reference signal resource according to the received target test beam to obtain the corresponding beam measurement information, and The beam measurement information is sent to the base station, so that the base station can predict the optimal beam result based on the beam measurement information in subsequent steps, thereby enhancing the accuracy of the base station in predicting the optimal beam result.
  • the beam measurement information includes at least one of the following:
  • the index information of the reference signal resource represents the index information of the reference signal resource selected by the user device to measure, so as to inform the base station of the relevant reference signal resources involved;
  • the parameter information of the target test beam represents the corresponding target selected by the user device.
  • the parameter information of the test beam is used to inform the base station of the parameter information of the relevant target test beam;
  • the reception mode information of the reference signal resource represents the way in which the user equipment receives the measured reference signal resource.
  • the parameter information of the target test beam includes at least one of the following:
  • RSRP Reference Signal Receiving Power
  • CSI Channel State Information
  • parameter information of the target test beam listed above is only a specific example. That is to say, those skilled in the art can set less or more specific content of the parameter information of the target test beam in specific application scenarios. , there is no restriction here.
  • the reception mode information for the reference signal resources includes at least one of the following:
  • the reception mode information of the reference signal resource represents the relevant information of the receiving beam used by the user device, that is, the user device reports its own receiving beam direction, index, pattern and other content to the base station, so that the base station can perform operations based on this Beam prediction;
  • the receiving beam index information represents the index or identification number of the receiving beam used by the user device;
  • the receiving beam absolute direction information can be, but is not limited to, the specific position, coordinates and angle of the receiving beam in space, and the relative direction of the receiving beam.
  • the information represents the angular difference of the receiving beam compared to the preset baseline direction or the angular difference compared to the adjacent receiving beam.
  • the receiving beam pattern information represents the index of the receiving beam or the direction of the receiving beam in the first dimension or the second dimension.
  • the beam management method may also include, but is not limited to, at least one of the following:
  • sampling indication information for the reference signal resource is used to indicate to the receiving device the sampling parameters of the reference signal resource to be measured
  • Second measurement adjustment information is sent to the receiving device, where the second measurement adjustment information is used to indicate to the receiving device not to switch the reference signal resource to be measured.
  • the user equipment when configuring reference signal resources in all beam transmission directions, considering the problem of beam training overhead, the user equipment will not perform scanning measurement on all reference signal resources. Therefore, the user equipment will scan and measure the reference signal by sending it to the user equipment.
  • the indication information of the resource enables the user device to determine the reference signal resource to be measured based on the indication information. That is to say, the sampling indication information is used to prompt the sampling parameters (including but not limited to sampling position, sampling interval, sampling interval) of the reference signal resource to be measured.
  • the reference signal resources to be measured enable the user equipment to determine the reference signal resources to be measured based on the above indication information, and then perform measurements on this part of the reference signal resources.
  • the sampling subset index associated with each reference signal resource can be used to match the set of reference signal resources indicating that the user device needs to perform measurement. That is to say, the reference signal resources with the same sampling subset index can form one reference signal resource.
  • the sampling subset of the reference signal resource is the reference signal resource to be measured by the user equipment.
  • step S130 may include, but is not limited to, step S131.
  • Step S131 may include at least one of the following:
  • Sounding Reference Signal Sounding Reference Signal
  • SRI SRS Resource Indicator
  • the base station may receive the reception mode information for the reference signal resource sent by the user device, so that in subsequent steps, based on the received Prediction of optimal beam results is performed with reference to the reception mode information of signal resources.
  • receiving the channel state information sent by the receiving device and carrying the reception mode information for the reference signal resources belongs to explicit feedback. Through this feedback, the reception mode information for the reference signal resources can be directly sent to the base station.
  • the base station when the beams on the base station side and the user equipment side are not calibrated, the base station can configure a CSI-RS resource set for beam management and repeat the transmission multiple times, and the user equipment can perform the transmission on different CSI-RS resources.
  • the reception beams are polled within the RS resource set period.
  • the timestamp information of the CSI-RS resource set implicitly refers to different reception beams of the UE.
  • the system frame number or subframe number or timeslot index or OFDM symbol index where CRI (CSI-RS Resource Index)/SSBRI (SSB Resource Index) is located is defined as RIT, and the user device will receive the reference signal resource in a
  • the information RMI is bound to the RIT respectively to form CRI-RSRP-RIT or SSBRI-RSRP-RIT, and the corresponding CRI-RSRP-RIT or SSBRI-RSRP-RIT is fed back in a CSI report.
  • the base station when the beams on the base station side and the user equipment side are not calibrated, the base station can configure multiple CSI-RS resource sets for beam management, and the user equipment takes turns for different CSI-RS resource sets. Patrol receiving beams, at this time, the index of the CSI-RS resource set implicitly refers to different receiving beams of the UE. Specifically, the index of multiple resource sets used for beam management is defined as RSI.
  • the UE binds the reception mode RMI to the RSI respectively, and feeds back the corresponding CRI-RSRP-RSI or SSBRI-RSRP in a CSI report. -RSI.
  • the user equipment uses different beams to transmit SRS resources.
  • the user device binds the reception mode RMI and the SRS Resource Indicator SRI (SRS Resource Indicator), indicating that the reception mode RMI adopts the air domain filter used by the SRS indicated by the SRI.
  • SRS Resource Indicator SRS Resource Indicator
  • the user equipment feeds back the corresponding CRI-RSRP-SRI or SSBRI-RSRP-SRI in one CSI report.
  • the user equipment uses different beams to transmit SRS resources.
  • the user equipment binds the reception mode RMI and the SRS resources transmitted using different beams, indicating that the reception mode RMI and the SRS resources use the same air domain filter.
  • the SRS resource that uses the same spatial filter as RMI is defined as SRS0.
  • the user device feeds back the corresponding CRI-RSRP-SRS0 or SSBRI-RSRP-SRS0 in a CSI report.
  • the base station can configure the transmission status indication TCI (Transmission Configuration Indicator) as ⁇ CSI-RS0
  • the UE binds the receiving mode RMI to different CRI0 respectively, and feeds back the corresponding CRI-RSRP-CRI0 or SSBRI-RSRP- in a CSI report. CRI0.
  • Step S140 Predict the optimal beam result based on the beam measurement information.
  • the optimal beam result can be accurately and reliably predicted based on the beam measurement information.
  • prediction is based on the artificial intelligence AI model that has been trained and implanted in the base station. Since the reception mode information of the reference signal resource such as the receiving beam direction and the receiving beam index can assist the AI beam prediction on the base station side, the prediction is based on it. It can enhance the robustness and generalization of AI models.
  • the operator inputs the received beam measurement information into the beam prediction network inside the trained base station, thereby obtaining the optimal beam result output by the beam prediction network, etc.
  • the optimal beam result includes at least one of the following:
  • At least one beam pair adjacent to at least one optimal beam pair At least one beam pair adjacent to at least one optimal beam pair.
  • the optimal beam result can be, but is not limited to, one or more optimal beam pairs.
  • Each optimal beam pair includes an optimal transmit beam and an optimal receive beam, and is selected and set according to the actual application scenario. Not limited.
  • Step S150 Send optimal reception mode information to the receiving device according to the optimal beam result.
  • the optimal reception mode information corresponds to the optimal beam result.
  • the base station sends multiple target test beams configured with reference signal resources to the user equipment.
  • the multiple target test beams are obtained by configuring reference signal resources in at least part of all beam transmission directions, that is, That is to say, it is not necessary to perform beam scanning configuration in all beam transmission directions to obtain the target test beam. Therefore, it is helpful to reduce the beam training overhead and the corresponding measurement power consumption and processing delay, and then receive the reference signal resources measured by the user device.
  • the obtained beam measurement information is used to assist the base station in predicting an accurate and reliable optimal beam result, and by sending the optimal reception mode information corresponding to the optimal beam result to the user device, the receiving device can avoid The scanning process of optimal beam results can thus fill the technical gaps in related methods.
  • Step S150 may include but is not limited to step S151 and step S152.
  • Step S151 Configure the optimal reception mode information to the first downlink signal according to the optimal beam result
  • Step S152 Send the optimal reception mode information to the receiving device through the first downlink signal.
  • the optimal reception mode information is configured to the first downlink signal, so that the optimal reception mode information is sent to the user device through the first downlink signal. That is to say, the user device only needs to receive the first downlink signal.
  • the optimal reception mode information can be obtained from the line signal, which can avoid the disadvantages of transmitting the optimal reception mode information separately.
  • the specific parameters of the first downlink signal can be set according to specific application scenarios, and are not limited here.
  • step S152 when the optimal beam result corresponds to multiple candidate reception mode information, step S152 is further described.
  • Step S152 may include but is not limited to step S1521.
  • Step S1521 includes at least one of the following:
  • the optimal beam result specify one of the multiple candidate reception mode information as the optimal reception mode information through radio resource control signaling, and associate the optimal reception mode information with the first downlink signal;
  • multiple target reception mode information is selected from multiple candidate reception mode information through radio resource control signaling, and one of the multiple target reception mode information is selected as the optimal one through link control layer access unit signaling. obtain the optimal reception mode information and configure the optimal reception mode information to the first downlink signal;
  • a state pool including multiple candidate reception mode information is configured through radio resource control signaling, multiple target reception mode information is obtained in the state pool through link control layer access unit signaling, and the downlink control signaling is used to obtain multiple target reception mode information in the state pool. Select one of the multiple target reception mode information as the optimal reception mode information, and configure the optimal reception mode information to the first downlink signal;
  • the optimal reception mode information is determined among multiple candidate reception mode information according to the optimal beam result, and the optimal reception mode information is configured to the first downlink signal through explicit signaling.
  • the first The downlink signal can be configured with specified optimal reception mode information. That is to say, the user device only needs to receive the first downlink signal to obtain the optimal reception mode information, thereby avoiding the need to separately transmit the optimal reception mode information. Disadvantages.
  • Figure 5 is a flow chart of a beam management method provided by another embodiment of the present application.
  • the beam management method is applied to a receiving device, such as the user device 120 in the embodiment shown in Figure 1.
  • the beam management method may include but is not limited to step S210 to step S240.
  • Step S210 Receive multiple target test beams and transmission mode information for reference signal resources sent by the transmitting device.
  • the multiple target test beams are obtained by the transmitting device configuring reference signal resources in at least part of the beam transmission directions among all beam transmission directions.
  • the receiving device in this embodiment may be, but is not limited to, the user device 120 in the embodiment shown in Figure 1
  • the transmitting device in this embodiment may be, but is not limited to, the base station in the embodiment shown in Figure 1 110;
  • those skilled in the art can choose to set up a corresponding transmitting device or receiving device according to the actual application scenario, which is not limited in this embodiment.
  • the user device is used as the receiving device and the base station is used as the transmitting device.
  • the multiple target test beams are obtained by configuring reference signal resources in at least part of all beam transmission directions. That is to say, it is not necessarily necessary to perform beam transmission in all beam transmission directions.
  • the target test beam can be obtained by scanning the configuration, which is beneficial to reducing the beam training overhead on the base station side and the power consumption and processing delay of measuring the target test beam in subsequent steps.
  • the user device can not only receive multiple target test beams, It can also receive the transmission mode information for the reference signal resources sent by the base station, so that in subsequent steps, the reference signal resources can be measured based on the transmission mode information for the reference signal resources.
  • the transmitting device can have multiple beam transmitting directions, which are determined by preset operating logic or based on operator control. When the transmitting device has determined all beam transmitting directions, the transmitting device can select In at least part of the beam transmission directions, that is to say, configuration can be performed in two cases of selecting part or all of the beam transmission directions, thereby obtaining multiple target test beams.
  • multiple target test beams can be different from each other to simulate different beam scanning situations.
  • the specific number of target test beams can be set according to actual application scenarios, and is not limited here.
  • reference signal resources include at least one of the following:
  • the configured reference signal resources may be CSI-RS resources or/and SSB resources, and by configuring the above resources, transmitter beam measurement and receive beam scanning are implemented.
  • the transmission mode information for the reference signal resources includes at least one of the following:
  • the transmit beam index information for multiple target test beams represents the index information of the transmitted target test beam
  • the transmit beam absolute direction information can be, but is not limited to, spatially for the transmitted target test beam.
  • the specific position, coordinates, angle and other information of the transmit beam relative direction information represents the angle difference of the transmit beam compared to the preset baseline direction or the angle difference compared to the adjacent transmit beam
  • the transmit beam pattern information represents the transmit beam
  • the specific presentation content of the transmission mode information of the reference signal resource can well and accurately represent the transmission mode information of the reference signal resource.
  • An embodiment of the present application further explains "receiving the transmission method information for the reference signal resource sent by the transmitting device" in step S210, which may include but is not limited to step S211.
  • Step S211 Receive the transmission mode information for the reference signal resources sent by the transmitting device through the second downlink signal.
  • the second downlink signal is configured with transmission mode information for the reference signal resource.
  • the transmission mode information for the reference signal resources is configured to the second downlink signal, so that the transmission mode information for the reference signal resources is sent to the user device through the second downlink signal. That is to say, the user device only needs to By receiving the second downlink signal, the transmission mode information of the reference signal resources can be obtained from it, thereby avoiding the disadvantage of separately transmitting the transmission mode information of the reference signal resources.
  • Step S220 Measure the reference signal resources to obtain beam measurement information based on the transmission mode information of the reference signal resources.
  • the reference signal resources can be measured according to the transmission mode information for the reference signal resources in step S220.
  • the beam measurement information is obtained, so that in subsequent steps, the optimal beam result can be predicted based on the transmission mode information and the beam measurement information, so as to enhance the accuracy of the user device in predicting the optimal beam result.
  • Step S220 may include but is not limited to steps S221 to S222.
  • Step S221 According to the transmission mode information of the reference signal resources, use any method of uniform sampling, non-uniform sampling or random selection of the reference signal resources configured by multiple target test beams to obtain the reference signal resources to be measured;
  • Step S222 Measure the reference signal resources to be measured to obtain beam measurement information.
  • any one of uniform sampling, non-uniform sampling or random sampling is used according to the transmission mode information of the reference signal resources, so that the reference signal resources to be measured can be accurately determined through any sampling method, that is to say , to avoid measuring reference signal resources that do not need to be measured in subsequent steps, so that the required beam measurement information can be obtained by measuring the reference signal resources to be measured.
  • step S222 may also include, but is not limited to, step S250 of maintaining the timer.
  • Step S250 When the timer times out, switch the reference signal resource to be measured.
  • the user device can maintain a timer by itself.
  • the user device can switch the reference signal resources to be measured so that the reference signal resources that need to be measured can be measured subsequently; or, The reference signal resource to be measured can be switched according to the received explicit or implicit switching instruction information sent by the base station. Since this part of the switching instruction information has been described in detail in the embodiment on the base station side, please refer to the relevant implementation above. The content of the example is obtained. To avoid redundancy, it will not be described in detail here.
  • Step S230 Predict the optimal beam result based on the beam measurement information.
  • the optimal beam result can be accurately and reliably predicted based on the beam measurement information.
  • prediction is based on the artificial intelligence AI model that has been trained and implanted in the user device. Since the transmission mode information of the reference signal resource such as the transmission beam direction and the transmission beam index can assist the AI beam prediction on the user device side, based on it It is possible to make predictions Enhance the robustness and generalization of AI models. For another example, the operator inputs the measured beam measurement information into the beam prediction network inside the trained user device, thereby obtaining the optimal beam result output by the beam prediction network, etc.
  • the optimal beam result includes at least one of the following:
  • At least one beam pair adjacent to at least one optimal beam pair At least one beam pair adjacent to at least one optimal beam pair.
  • the optimal beam result can be, but is not limited to, one or more optimal beam pairs.
  • Each optimal beam pair includes an optimal transmit beam and an optimal receive beam, and is selected and set according to the actual application scenario. Not limited.
  • Step S240 Send the optimal parameter information to the transmitting device according to the optimal beam result.
  • the optimal parameter information corresponds to the optimal beam result.
  • the user equipment receives multiple target test beams configured with reference signal resources and transmission mode information for the reference signal resources. Since the multiple target test beams are configured with reference signals in at least part of all beam transmission directions, In other words, it is not necessary to perform beam scanning configuration in all beam transmission directions to obtain the target test beam. Therefore, it is beneficial to reduce the beam training overhead and the corresponding measurement power consumption and processing delay, and then based on the
  • the transmission mode information of the reference signal resources is obtained by the user equipment measuring the reference signal resources to obtain the beam measurement information.
  • the beam measurement information is used to assist the user equipment in predicting to obtain accurate and reliable optimal beam results, and by sending the optimal beam results to the base station.
  • the corresponding optimal parameter information enables the base station to avoid the scanning process for the optimal beam result based on the optimal parameter information, thereby filling the technical gaps in related methods.
  • the optimal parameter information includes at least one of the following:
  • the parameter information of the optimal beam result includes at least one of the following:
  • Step S240 may include but is not limited to step S241 and step S242.
  • Step S241 Configure the optimal parameter information to the uplink signal according to the optimal beam result
  • Step S242 Send the optimal parameter information to the transmitting device through the uplink signal.
  • the user device configures the optimal parameter information to the uplink signal so as to send the optimal parameter information to the base station through the uplink signal. That is to say, the base station only needs to receive the uplink signal to obtain the optimal parameter information. , which can avoid the disadvantages of separately transmitting optimal parameter information.
  • the specific parameters of the first downlink signal can be set according to specific application scenarios, and are not limited here.
  • step S242 when the optimal beam result corresponds to multiple candidate parameter information, step S242 is performed.
  • step S242 may include but is not limited to step S2421.
  • Step S2421 may include at least one of the following:
  • the optimal beam result specify one of multiple candidate parameter information as the optimal parameter information through radio resource control signaling, and associate the optimal parameter information with the uplink signal;
  • multiple target parameter information is selected from multiple candidate parameter information through radio resource control signaling, and one of the multiple target parameter information is selected as the optimal parameter information through link control layer access unit signaling. , and configure the optimal parameter information to the uplink signal;
  • a state pool including multiple candidate parameter information is configured through radio resource control signaling, multiple target parameter information is obtained in the state pool through link control layer access unit signaling, and downlink control signaling is used to obtain multiple target parameter information in the state pool. Select one of the multiple target parameter information as the optimal parameter information, and configure the optimal parameter information to the uplink signal;
  • the optimal parameter information is determined among multiple candidate parameter information according to the optimal beam result, and the optimal parameter information is configured to the uplink signal through explicit signaling.
  • the uplink signal can be configured with the specified Optimal parameter information, that is to say, the base station only needs to receive the uplink signal to obtain the optimal parameter information, which can avoid the disadvantage of separately transmitting the optimal parameter information.
  • one embodiment of the present application also discloses a base station 200, including: at least one processor 210; at least one memory 220, used to store at least one program; when at least one program is processed by at least one When the processor 210 is executed, steps S110 to S150 in FIG. 2, steps S113 to S112 in FIG. 3, step S131, steps S151 to S152 or step S1521 in FIG. 4 are implemented in the beam management method in any of the previous embodiments.
  • one embodiment of the present application also discloses a user device 300, including: at least one processor 310; at least one memory 320, used to store at least one program; when at least one program is processed by at least one When the processor 310 is executed, steps S210 to S240, step S211 in FIG. 5, steps S221 to S222, step S250 in FIG. 6, steps S241 to S242 in FIG. 7, or Step S2421.
  • an embodiment of the present application also discloses a computer-readable storage medium in which computer-executable instructions are stored, and the computer-executable instructions are used to execute the beam management method as in any of the previous embodiments.
  • an embodiment of the present application also discloses a computer program product, which includes a computer program or computer instructions.
  • the computer program or computer instructions are stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer program from the computer-readable storage medium.
  • the computer program or computer instructions are obtained, and the processor executes the computer program or computer instructions, so that the computer device performs the beam management method as in any of the previous embodiments.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and may include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束管理方法及其装置、存储介质、程序产品。其中,波束管理方法,应用于发射装置,包括:在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源,得到多个目标测试波束;向接收装置发送多个目标测试波束;接收由接收装置发送的波束测量信息,其中,波束测量信息由接收装置对参考信号资源进行测量得到;根据波束测量信息预测得到最优波束结果;根据最优波束结果向接收装置发送最优接收方式信息,其中,最优接收方式信息与最优波束结果对应。

Description

波束管理方法、基站、用户装置、存储介质及程序产品
相关申请的交叉引用
本申请基于申请号为202210461130.X、申请日为2022年04月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其是一种波束管理方法、基站、用户装置、计算机存储介质及计算机程序产品。
背景技术
目前,相关技术中的目标波束是从预先确定的模拟波束码本中进行选择的,也就是说,对码本中所有发射和接收波束对进行波束扫描以确定目标波束,这是当下常见的波束训练方案。然而,由于需要对码本中所有的波束均进行扫描才能够确定目标波束,因此在实际应用场景中可能会导致过高的波束训练开销、测量功耗和处理延时。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种波束管理方法、基站、用户装置、计算机存储介质及计算机程序产品,能够降低波束训练开销、测量功耗和处理延时。
第一方面,本申请实施例提供了一种波束管理方法,应用于发射装置,所述波束管理方法包括:
在全部波束发送方向中的至少一部分所述波束发送方向上配置参考信号资源,得到多个目标测试波束;
向接收装置发送所述多个目标测试波束;
接收由所述接收装置发送的波束测量信息,其中,所述波束测量信息由所述接收装置对所述参考信号资源进行测量得到;
根据所述波束测量信息预测得到最优波束结果;
根据所述最优波束结果向所述接收装置发送最优接收方式信息,其中,所述最优接收方式信息与所述最优波束结果对应。
第二方面,本申请实施例还提供了一种波束管理方法,应用于接收装置,所述波束管理方法包括:
接收由发射装置发送的多个目标测试波束和对于参考信号资源的发送方式信息,其中,所述多个目标测试波束由所述发射装置在全部波束发送方向中的至少一部分所述波束发送方向上配置所述参考信号资源得到;
根据所述对于参考信号资源的发送方式信息,对所述参考信号资源进行测量得到波束测量信息;
根据所述波束测量信息预测得到最优波束结果;
根据所述最优波束结果向所述发射装置发送最优参数信息,其中,所述最优参数信息与所述最优波束结果对应。
第三方面,本申请实施例还提供了一种基站,包括:至少一个处理器;至少一个存储器,用于存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如第一方面所述的波束管理方法。
第四方面,本申请实施例还提供了一种用户装置,包括:至少一个处理器;至少一个存储器,用于存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如第二方面所述的波束管理方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序被处理器执行时用于实现如前面所述的波束管理方法。
第六方面,本申请实施例还提供了一种计算机程序产品,计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如前面所述的波束管理方法。
本申请实施例的发射装置通过向接收装置发送多个配置参考信号资源的目标测试波束,由于多个目标测试波束为在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到,也就是说,并非一定需要在所有波束发送方向上进行波束扫描配置就能够得到目标测试波束,因此有利于降低波束训练开销以及相应的测量功耗和处理延时,进而接收由接收装置测量参考信号资源而得到的波束测量信息,该波束测量信息用于辅助发射装置进行预测得到准确可靠的最优波束结果,并且通过向接收装置发送与最优波束结果对应的最优接收方式信息,使得接收装置可以避免对于最优波束结果的扫描过程,从而可以弥补相关方法中的技术空白。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请一个实施例提供的用于执行波束管理方法的实施环境的示意图;
图2是本申请一个实施例提供的波束管理方法的流程图;
图3是本申请一个实施例提供的波束管理方法中得到多个目标测试波束的流程图;
图4是本申请另一个实施例提供的波束管理方法中向接收装置发送最优接收方式信息的流程图;
图5是本申请另一个实施例提供的波束管理方法的流程图;
图6是本申请一个实施例提供的波束管理方法中对参考信号资源进行测量得到波束测量信息的流程图;
图7是本申请一个实施例提供的波束管理方法中向发射装置发送最优参数信息的流程图;
图8是本申请一个实施例提供的基站的示意图;
图9是本申请一个实施例提供的用户装置的示意图。
具体实施方式
为了使本申请的目的、技术方法及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种波束管理方法、基站、用户装置、计算机存储介质、计算机程序产品。其中一个实施例的波束管理方法,应用于发射装置,包括:在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源,得到多个目标测试波束;向接收装置发送多个目标测试波束;接收由接收装置发送的波束测量信息,其中,波束测量信息由接收装置对参考信号资源进行测量得到;根据波束测量信息预测得到最优波束结果;根据最优波束结果向接收装置发送最优接收方式信息,其中,最优接收方式信息与最优波束结果对应。在该实施例中,通过向接收装置发送多个配置参考信号资源的目标测试波束,由于多个目标测试波束为在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到,也就是说,并非一定需要在所有波束发送方向上进行波束扫描配置就能够得到目标测试波束,因此有利于降低波束训练开销以及相应的测量功耗和处理延时,进而接收由接收装置测量参考信号资源而得到的波束测量信息,该波束测量信息用于辅助发射装置进行预测得到准确可靠的最优波束结果,并且通过向接收装置发送与最优波束结果对应的最优接收方式信息,使得接收装置可以避免对于最优波束结果的扫描过程,从而可以弥补相关方法中的技术空白。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行波束管理方法的实施环境的示意图。
在图1的示例中,该实施环境包括基站110和用户装置120,其中,基站110和用户装置120之间可以进行无线信号的发送、接收。
需要说明的是,基站110和用户装置120的相对位置可以在具体应用场景中相应设置,例如用户装置120可以沿着基站110在对外辐射信号时所形成的辐射球面进行移动,也就是说,若存在多个用户装置120且不同的用户装置120按照上述方式进行设置,从而可以在不同空间位置接收基站110所发送的无线信号,值得注意的是,此处的空间位置可以为不同的地域条件。
在一可行的实施方式中,用户装置120可以称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。例如,用户装置120可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络或者未来5G以上网络中的终端设备等,本实施例对此并不作具体限定。
基站110至少具有基于预设的运行逻辑进行波束管理或者基于操作人员的控制进行波束管理等功能,例如基站110至少具有预测、管理最优波束结果的功能,即能够基于预设的运行逻辑或者基于操作人员的控制,在全部波束发送方向中的至少一部分波束发送方向上配置 参考信号资源以得到多个目标测试波束,并向用户装置120发送多个目标测试波束,以便于从用户装置120接收到由其对参考信号资源测量而得到的波束测量信息,并基于波束测量信息预测得到最优波束结果以及向用户装置120发送与最优波束结果对应的最优接收方式信息等功能。值得注意的是,基站110可以是一般的移动通信基站,也可以是毫米波AAS基站,此处不作具体限定。
用户装置120至少具有接收由基站110发送的多个目标测试波束和对于参考信号资源的发送方式信息,并根据该发送方式信息对参考信号资源进行测量得到波束测量信息,以及基于波束测量信息预测得到最优波束结果以及向基站110发送与最优波束结果对应的最优参数信息等功能,其中,多个目标测试波束由基站110在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到。
在一可行的实施方式中,当接收装置为基站110,信号调节装置120至少具有接收来自基站110的目标参考信号并使用目标码本向基站110发送目标参考信号的功能,例如,能够响应于操作人员对信号调节装置120的操作,接收来自用户装置120的目标参考信号并且使用目标码本将目标参考信号发送往基站110,或者,接收来自基站110的目标参考信号并且使用目标码本将目标参考信号发送往用户装置120。
需要说明的是,基站110和用户装置120所具有的上述功能,可以应用于不同的应用场景中,此处并未限制。
本领域技术人员可以理解的是,该实施环境可以应用于5G、6G通信网络系统以及后续演进的移动通信网络系统等,本实施例对此并不作具体限定。
本领域技术人员可以理解的是,图1中示出的实施环境并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述实施环境,下面提出本申请的波束管理方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的波束管理方法的流程图,该波束管理方法应用于发射装置,例如图1所示实施例中的基站110。该波束管理方法可以包括但不限于步骤S110至步骤S150。
步骤S110:在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源,得到多个目标测试波束。
本步骤中,对于发射装置而言,多个目标测试波束为在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到,也就是说,并非一定需要在所有波束发送方向上进行波束扫描配置就能够得到目标测试波束,因此有利于降低发射装置侧的波束训练开销以及后续步骤中对于目标测试波束进行测量的功耗、处理延时。
需要说明的是,发射装置的波束发送方向可以为多个,具体由预设的运行逻辑进行确定或者基于操作人员的控制进行确定,当发射装置已经确定好全部波束发送方向,则发射装置可以选择在其中的至少一部分波束发送方向上,也就是说,可以在选择其中一部分或者全部的波束发送方向的这两种情况下进行配置,从而得到多个目标测试波束,后续实施例将分别针对这两种配置情况进行说明,此处不再赘述。
需要说明的是,多个目标测试波束可以为互不相同的,以用于模拟不同的波束扫描情况,具体的目标测试波束的数目可以根据实际应用场景进行设置,此处不作限制。
需要说明的是,参考信号资源包括如下至少之一:
信道状态信息参考信号CSI-RS资源;
同步信号块SSB资源。
也就是说,所配置的参考信号资源可以是CSI-RS资源或/和SSB资源,通过配置上述资源以实现发送端波束测量以及接收波束的扫描,由于CSI-RS资源、SSB资源为本领域技术人员所熟知,在此不作赘述。
如图3所示,本申请的一个实施例,当在全部波束发送方向中的部分波束发送方向上配置参考信号资源时,步骤S110可以包括但不限于步骤S111至S112。
步骤S111:在全部波束发送方向中,采用均匀采样、非均匀采样或随机采样中任意一种方式,得到目标发送方向;
步骤S112:在目标发送方向上配置参考信号资源,得到多个目标测试波束。
本步骤中,由于并未在全部波束发送方向上配置参考信号资源,因此需要在全部波束发送方向中确定部分的目标发送方向,也就是说,采用均匀采样、非均匀采样或随机采样中任意一种方式,以便于准确得到目标发送方向,进而能够在目标发送方向上配置参考信号资源以得到多个目标测试波束。
步骤S120:向接收装置发送多个目标测试波束。
需要说明的是,本实施例中的发射装置可以但不限于为图1所示实施例中的基站110,本实施例中的接收装置可以但不限于为图1所示实施例中的用户装置120;或者,本领域的技术人员可以根据实际应用场景选择设置相应的发射装置或者接收装置,本实施例不做限制。为了更方便地描述本申请的应用场景及原理,以下各相关实施例中以基站为发射装置、用户装置为接收装置进行描述,但不应将其理解为对本申请实施例的限制。
本步骤中,由于在步骤S110中基站已经通过配置参考信号资源得到多个目标测试波束,因此在步骤S120中可以向用户装置发送多个目标测试波束,以便于用户装置在后续步骤中根据所接收的目标测试波束进行波束扫描,从而实现对于参考信号资源的测量。
需要说明的是,波束扫描可以指基站或用户装置依次使用不同的模拟波束覆盖一个空间区域的过程。在波束扫描期间,基站或用户装置顺序地发送来自整个码本或码本子集的波束,以便为数据、控制通道找到良好的收发波束对;具体而言,在发送端波束扫描过程中,基站可以但不限于配置高层参数资源集NZP-CSI-RS-ResourceSet,每个资源集中包含多个采用不同发送波束传输的CSI-RS或/和SSB资源,用户装置可以采用固定接收波束接收和测量CSI-RS或/和SSB资源,以完成发送端波束测量过程;此外,用户装置可以采用轮巡方式以接收由基站发送的目标测试波束,即对于基站而言,用于波束管理的CSI-RS资源或集合重复传输多次,用户装置分别使用不同的接收波束进行接收,从而实现接收波束的扫描。
在另一可行的实施方式中,在接收端波束扫描中,基站配置高层参数资源集NZP-CSI-RS-ResourceSet,每个资源集中包含多个采用相同发送波束传输的CSI-RS或/和SSB资源,在这种情况下,用户装置可以但不限于采用不同接收波束接收和测量CSI-RS或/和SSB资源,以实现接收波束的扫描。此外,基站可以根据需要采用轮巡发送目标测试波束的方式,即配置多个采用不同发送波束传输的CSI-RS资源或/和SSB资源集合,以便于实现发送波束的扫描。
步骤S130:接收由接收装置发送的波束测量信息。
需要说明的是,波束测量信息由接收装置对参考信号资源进行测量得到。
本步骤中,由于步骤S120中已经向用户装置发送了配置有参考信号资源的目标测试波束,因此用户装置能够根据接收到的目标测试波束对参考信号资源进行测量,得到相应的波束测量信息,并将该波束测量信息发送给基站,以便于基站在后续步骤中根据该波束测量信息预测得到最优波束结果,以增强基站预测最优波束结果的准确性。
需要说明的是,波束测量信息包括如下至少之一:
参考信号资源的索引信息;
目标测试波束的参数信息;
对于参考信号资源的接收方式信息。
需要说明的是,参考信号资源的索引信息表征用户装置所选择测量的参考信号资源的索引信息,以告知基站所涉及的相关参考信号资源;目标测试波束的参数信息表征用户装置所选择的相应目标测试波束的参数信息,以告知基站所涉及的相关目标测试波束的参数信息;对于参考信号资源的接收方式信息表征用户装置接收所测量的参考信号资源的方式。
在一可行的实施方式中,当波束测量信息包括目标测试波束的参数信息时,目标测试波束的参数信息包括如下至少之一:
参考信号接收功率(Reference Signal Receiving Power,RSRP);
参考信号接收质量(Reference Signal Receiving Quality,RSRQ);
参考信号资源的接收信号;
信噪比(Signal to Noise Ratio);
信干噪比(Signal to Interference plus Noise Ratio);
信道状态信息(Channel State Information,CSI)。
需要说明的是,上述罗列的目标测试波束的参数信息仅为具体示例说明,也就是说,本领域技术人员可以在具体应用场景下设置更少或更多的目标测试波束的参数信息的具体内容,此处并未限制。
在一可行的实施方式中,当波束测量信息包括对于参考信号资源的接收方式信息时,对于参考信号资源的接收方式信息包括如下至少之一:
对于多个目标测试波束的接收波束索引信息;
对于多个目标测试波束的接收波束绝对方向信息;
对于多个目标测试波束的接收波束相对方向信息;
对于多个目标测试波束的接收波束图样信息。
需要说明的是,对于参考信号资源的接收方式信息表征用户装置所使用的接收波束的相关信息,也即用户装置把自身的接收波束方向、索引、图样等内容上报给基站,方便基站基于此进行波束预测;接收波束索引信息表示用户装置所使用的接收波束的索引或标识号;接收波束绝对方向信息可以但不限于为接收波束在空间上的具体位置、坐标和角度等信息,接收波束相对方向信息表示接收波束相比于预设的基线方向的角度差值或相比于相邻接收波束的角度差值,接收波束图样信息表示接收波束的索引或接收波束的方向在第一维度或第二维度的分布情况,也就是说,通过上述给出的各个对于参考信号资源的接收方式信息的具体呈现内容,可以良好、准确地表征对于参考信号资源的接收方式信息。
可以理解地是,若在全部波束发送方向上配置参考信号资源,本申请一个实施例的波束管理方法还可以但不限于包括如下至少之一:
向接收装置发送对于参考信号资源的采样指示信息,其中,对于参考信号资源的采样指示信息,用于向接收装置指示待测量的参考信号资源的采样参数;
为每个参考信号资源关联对应的采样子集索引,将具有相同的资源索引的参考信号资源指定为待测量的参考信号资源,并向接收装置发送待测量的参考信号资源的索引信息;
向接收装置发送第一测量调整信息,其中,第一测量调整信息用于向接收装置指示切换待测量的参考信号资源;
向接收装置发送第二测量调整信息,其中,第二测量调整信息用于向接收装置指示不切换待测量的参考信号资源。
需要说明的是,当在全部波束发送方向上配置参考信号资源时,考虑到波束训练开销的问题,用户装置不会对所有的参考信号资源进行扫描测量,因此通过向用户装置发送扫描测量参考信号资源的指示信息,使得用户装置根据该指示信息确定待测量的参考信号资源,也就是说,通过采样指示信息提示待测量的参考信号资源的采样参数(包括但不限于采样位置、采样间隔、采样图样等),或者,通过待测量的参考信号资源所在的采样子集索引的信息,或者,通过第一测量调整信息指示切换待测量的参考信号资源,或者,通过第二测量调整信息指示不切换待测量的参考信号资源,使得用户装置能够基于上述指示信息确定待测量的参考信号资源,然后再针对该部分参考信号资源进行测量。其中,各个参考信号资源关联对应的采样子集索引可以用于配合指示需要用户装置进行测量的参考信号资源的集合,也就是说,相同的采样子集索引的参考信号资源可以组成一个参考信号资源的采样子集,该参考信号资源的采样子集即为用户装置待测量的参考信号资源。
本申请的一个实施例,对步骤S130进行进一步的说明,当波束测量信息包括对于参考信号资源的接收方式信息时,步骤S130可以但不限于包括步骤S131,步骤S131包括如下至少之一:
接收由接收装置发送的携带有对于参考信号资源的接收方式信息的CSI;
接收由接收装置发送的携带有参考信号资源的时间戳信息的CSI,其中,参考信号资源的时间戳信息与对于参考信号资源的接收方式信息对应;
接收由接收装置发送的携带有参考信号资源的索引信息的CSI,其中,参考信号资源的索引信息与对于参考信号资源的接收方式信息对应;
接收由接收装置发送的携带有参考信号资源所在资源集的索引信息的CSI,其中,参考信号资源所在资源集的索引信息与对于参考信号资源的接收方式信息对应;
接收由接收装置发送的携带有对于参考信号资源的传输状态指示信息的CSI,其中,对于参考信号资源的传输状态指示信息与对于参考信号资源的接收方式信息对应;
接收由接收装置发送的携带有与参考信号资源准共站址的其余源信号的CSI,其中,与参考信号资源准共站址的其余源信号与对于参考信号资源的接收方式信息对应;
接收由接收装置发送的携带有探测参考信号(Sounding Reference Signal,SRS)资源的CSI,其中,探测参考信号资源与对于参考信号资源的接收方式信息对应;
接收由接收装置发送的携带有探测参考信号资源指示SRI(SRS Resource Indicator)信息的CSI,其中,探测参考信号资源指示信息与对于参考信号资源的接收方式信息对应。
本步骤中,当波束测量信息包括对于参考信号资源的接收方式信息时,基站可以接收由用户装置发送的对于参考信号资源的接收方式信息,以便于在后续步骤中基于接收到的对于 参考信号资源的接收方式信息进行最优波束结果的预测。
需要说明的是,接收由接收装置发送的携带有对于参考信号资源的接收方式信息的信道状态信息属于显式反馈,通过这种反馈可以直接地将对于参考信号资源的接收方式信息发送给基站。
在一可行的实施方式中,当基站侧和用户装置侧的波束都没有校准时,基站可以配置一个用于波束管理的CSI-RS资源集并重复传输多次,用户装置则在不同的CSI-RS资源集周期内轮巡接收波束,此时,CSI-RS资源集的时间戳信息即隐式指代了UE的不同接收波束。具体而言,将CRI(CSI-RS Resource Index)/SSBRI(SSB Resource Index)所在系统帧号或子帧号或时隙索引或OFDM符号索引定义为RIT,用户装置将对于参考信号资源的接收方式信息RMI分别和RIT进行绑定,形成CRI-RSRP-RIT或SSBRI-RSRP-RIT,并在一次CSI上报中反馈对应的CRI-RSRP-RIT或SSBRI-RSRP-RIT。
在另一可行的实施方式中,当基站侧和用户装置侧的波束都没有校准时,基站可以配置多个用于波束管理的CSI-RS资源集,用户装置针对不同的CSI-RS资源集轮巡接收波束,此时,CSI-RS资源集的索引即隐式指代了UE的不同接收波束。具体而言,将用于波束管理的多个资源集合的索引定义为RSI,UE将接收方式RMI分别和RSI进行绑定,并在一次CSI上报中反馈对应的CRI-RSRP-RSI或SSBRI-RSRP-RSI。
在另一可行的实施方式中,在上行方向上,用户装置分别采用不同的波束来发送SRS资源。用户装置将接收方式RMI和SRS资源指示SRI(SRS Resource Indicator)进行绑定,表征该接收方式RMI采用了SRI指示的SRS所使用的空域滤波器。具体而言,为实现接收方式RMI的上报,用户装置在一次CSI上报中反馈对应的CRI-RSRP-SRI或SSBRI-RSRP-SRI。
在另一可行的实施方式中,在上行方向上,用户装置分别采用不同的波束来发送SRS资源。用户装置将接收方式RMI和采用不同波束发送的SRS资源进行绑定,表征该接收方式RMI和SRS资源采用了相同的空域滤波器。具体而言,定义和RMI采用了相同空域滤波器的SRS资源为SRS0,为实现接收方式RMI的上报,用户装置在一次CSI上报中反馈对应的CRI-RSRP-SRS0或SSBRI-RSRP-SRS0。
在另一可行的实施方式中,基站可以将传输状态指示TCI(Transmission Configuration Indicator)配置为{CSI-RS0|QCL类型D},其中,CSI-RS0表示QCL源信号,QCL类型D间接指示了UE的接收波束。因此,将指示不同接收波束的QCL类型D源信号定义为CRI0,UE将接收方式RMI分别和不同的CRI0进行绑定,并在一次CSI上报中反馈对应的CRI-RSRP-CRI0或SSBRI-RSRP-CRI0。
步骤S140:根据波束测量信息预测得到最优波束结果。
本步骤中,由于步骤130中已经接收到由用户装置发送的波束测量信息,因此可以根据波束测量信息准确可靠地预测得到最优波束结果。
需要说明的是,预测最优波束结果的方式可以为多种,不作限定。例如,基于基站内已经训练好并植入的人工智能AI模型进行预测,由于接收波束方向、接收波束索引等对于参考信号资源的接收方式信息可以辅助基站侧的AI波束预测,因此基于其进行预测可以增强AI模型的鲁棒性和泛化性。又如,操作人员将接收到的波束测量信息输入到训练好的基站内部的波束预测网络中,从而得到由波束预测网络输出的最优波束结果等。
需要说明的是,最优波束结果包括如下至少之一:
至少一个最优波束对;
与至少一个最优波束对相邻的至少一个波束对。
也就是说,最优波束结果可以但不限于为一个或多个最优波束对,每个最优波束对包括一个最优发送波束和一个最优接收波束,具体根据实际应用场景进行选择设置,并未限定。
步骤S150:根据最优波束结果向接收装置发送最优接收方式信息。
需要说明的是,最优接收方式信息与最优波束结果对应。
本步骤中,基站通过向用户装置发送多个配置参考信号资源的目标测试波束,由于多个目标测试波束为在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到,也就是说,并非一定需要在所有波束发送方向上进行波束扫描配置就能够得到目标测试波束,因此有利于降低波束训练开销以及相应的测量功耗和处理延时,进而接收由用户装置测量参考信号资源而得到的波束测量信息,该波束测量信息用于辅助基站进行预测得到准确可靠的最优波束结果,并且通过向用户装置发送与最优波束结果对应的最优接收方式信息,使得接收装置可以避免对于最优波束结果的扫描过程,从而可以弥补相关方法中的技术空白。
如图4所示,本申请的一个实施例,对步骤S150进行进一步的说明,步骤S150可以包括但不限于步骤S151和步骤S152。
步骤S151:根据最优波束结果将最优接收方式信息配置给第一下行信号;
步骤S152:通过第一下行信号向接收装置发送最优接收方式信息。
本步骤中,通过将最优接收方式信息配置给第一下行信号,以便于通过第一下行信号向用户装置发送最优接收方式信息,也就是说,用户装置只需通过接收第一下行信号即可从中获知最优接收方式信息,可以避免单独传输最优接收方式信息的弊端。
需要说明的是,第一下行信号的具体参数可以根据具体应用场景进行设置,此处不作限定。
本申请的一个实施例,当最优波束结果对应有多个候选接收方式信息时,对步骤S152进行进一步的说明,步骤S152可以包括但不限于步骤S1521,步骤S1521包括如下至少之一:
根据最优波束结果,通过无线资源控制信令在多个候选接收方式信息中指定一个作为最优接收方式信息,并将最优接收方式信息与第一下行信号关联;
根据最优波束结果,通过无线资源控制信令在多个候选接收方式信息中选择多个目标接收方式信息,通过链路控制层接入单元信令在多个目标接收方式信息中选择一个作为最优接收方式信息,并将最优接收方式信息配置给第一下行信号;
根据最优波束结果,通过无线资源控制信令配置包括多个候选接收方式信息的状态池,通过链路控制层接入单元信令在状态池中获取多个目标接收方式信息,通过下行控制信令在多个目标接收方式信息中选择一个作为最优接收方式信息,并将最优接收方式信息配置给第一下行信号;
根据最优波束结果在多个候选接收方式信息中确定最优接收方式信息,通过显式信令将最优接收方式信息配置给第一下行信号。
需要说明的是,通过从多个候选接收方式信息中指定一个作为最优接收方式信息,并将该最优接收方式信息与第一下行信号进行显式或隐示地关联,从而使得第一下行信号能够配置有所指定的最优接收方式信息,也就是说,用户装置只需通过接收第一下行信号即可从中获知最优接收方式信息,可以避免单独传输最优接收方式信息的弊端。
如图5所示,图5是本申请另一个实施例提供的波束管理方法的流程图,该波束管理方法应用于接收装置,例如图1所示实施例中的用户装置120。该波束管理方法可以包括但不限于步骤S210至步骤S240。
步骤S210:接收由发射装置发送的多个目标测试波束和对于参考信号资源的发送方式信息。
需要说明的是,多个目标测试波束由发射装置在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源得到。
需要说明的是,本实施例中的接收装置可以但不限于为图1所示实施例中的用户装置120,本实施例中的发射装置可以但不限于为图1所示实施例中的基站110;或者,本领域的技术人员可以根据实际应用场景选择设置相应的发射装置或者接收装置,本实施例不做限制。为了更方便地描述本申请的应用场景及原理,以下各相关实施例中以用户装置为接收装置、基站为发射装置进行描述,但不应将其理解为对本申请实施例的限制。
本步骤中,对于基站而言,多个目标测试波束为在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到,也就是说,并非一定需要在所有波束发送方向上进行波束扫描配置就能够得到目标测试波束,因此有利于降低基站一侧的波束训练开销以及后续步骤中对于目标测试波束进行测量的功耗、处理延时,而用户装置不仅能够接收多个目标测试波束,还能够接收由基站发送的对于参考信号资源的发送方式信息,以便于在后续步骤中根据对于参考信号资源的发送方式信息对参考信号资源进行测量。
需要说明的是,发射装置的波束发送方向可以为多个,具体由预设的运行逻辑进行确定或者基于操作人员的控制进行确定,当发射装置已经确定好全部波束发送方向,则发射装置可以选择在其中的至少一部分波束发送方向上,也就是说,可以在选择其中一部分或者全部的波束发送方向的这两种情况下进行配置,从而得到多个目标测试波束。
需要说明的是,多个目标测试波束可以为互不相同的以用于模拟不同的波束扫描情况,具体的目标测试波束的数目可以根据实际应用场景进行设置,此处不作限制。
需要说明的是,参考信号资源包括如下至少之一:
CSI-RS资源;
SSB资源。
也就是说,所配置的参考信号资源可以是CSI-RS资源或/和SSB资源,通过配置上述资源以实现发送端波束测量以及接收波束的扫描。
在一可行的实施方式中,对于参考信号资源的发送方式信息包括如下至少之一:
对于多个目标测试波束的发送波束索引信息;
对于多个目标测试波束的发送波束绝对方向信息;
对于多个目标测试波束的发送波束相对方向信息;
对于多个目标测试波束的发送波束图样信息。
需要说明的是,对于基站而言,对于多个目标测试波束的发送波束索引信息表征所发送的目标测试波束的索引信息,发送波束绝对方向信息可以但不限于为发送的目标测试波束在空间上的具体位置、坐标、角度等信息,发送波束相对方向信息表示发送波束相比于预设的基线方向的角度差值或相比于相邻发送波束的角度差值,发送波束图样信息表示发送波束的索引或发送波束的方向在第一维度或第二维度的分布情况,也就是说,通过上述给出的各个 对于参考信号资源的发送方式信息的具体呈现内容,可以良好、准确地表征对于参考信号资源的发送方式信息。
本申请的一个实施例,对步骤S210中的“接收由发射装置发送的对于参考信号资源的发送方式信息”进行进一步的说明,可以包括但不限于步骤S211。
步骤S211,接收由发射装置通过第二下行信号发送的对于参考信号资源的发送方式信息。
需要说明的是,第二下行信号配置有对于参考信号资源的发送方式信息。
本步骤中,通过将对于参考信号资源的发送方式信息配置给第二下行信号,以便于通过第二下行信号向用户装置发送对于参考信号资源的发送方式信息,也就是说,用户装置只需通过接收第二下行信号即可从中获知对于参考信号资源的发送方式信息,可以避免单独传输对于参考信号资源的发送方式信息的弊端。
步骤S220:根据对于参考信号资源的发送方式信息,对参考信号资源进行测量得到波束测量信息。
本步骤中,由于在步骤S210中用户装置已经得到多个目标测试波束和对于参考信号资源的发送方式信息,因此在步骤S220中可以根据对于参考信号资源的发送方式信息,对参考信号资源进行测量而得到波束测量信息,以便于在后续步骤中根据该发送方式信息和波束测量信息预测得到最优波束结果,以增强用户装置预测最优波束结果的准确性。
如图6所示,本申请的一个实施例,对步骤S220进行进一步的说明,步骤S220可以包括但不限于步骤S221至S222。
步骤S221:根据对于参考信号资源的发送方式信息,采用对多个目标测试波束配置的参考信号资源进行均匀采样、非均匀采样或随机选择中任意一种方式,得到待测量的参考信号资源;
步骤S222:对待测量的参考信号资源进行测量得到波束测量信息。
本步骤中,根据对于参考信号资源的发送方式信息采用均匀采样、非均匀采样或随机采样中任意一种方式,以便于通过任意一种采样方式准确地确定待测量的参考信号资源,也就是说,避免在后续步骤中针对不需要进行测量的参考信号资源进行测量,从而能够对待测量的参考信号资源进行测量得到所需求的波束测量信息。
本申请的一个实施例,步骤S222之前还可以包括但不限于维护定时器的步骤S250。
步骤S250:当定时器超时,切换待测量的参考信号资源。
本步骤中,用户装置可以自行维护一个定时器,当定时器出现超时的情况,用户装置可以切换待测量的参考信号资源,以便于后续能够对需要进行测量的参考信号资源进行测量;或者,也可以根据接收的由基站发送的显式或隐示的切换指示信息进行切换待测量的参考信号资源,由于该部分切换指示信息在基站一侧的实施例中已经详细说明,可参照上文相关实施例内容进行获知,为免冗余,此处不作赘述。
步骤S230:根据波束测量信息预测得到最优波束结果。
本步骤中,由于步骤220中已经对参考信号资源进行测量得到波束测量信息,因此可以根据波束测量信息准确可靠地预测得到最优波束结果。
需要说明的是,预测最优波束结果的方式可以为多种,不作限定。例如,基于用户装置内已经训练好并植入的人工智能AI模型进行预测,由于发送波束方向、发送波束索引等对于参考信号资源的发送方式信息可以辅助用户装置侧的AI波束预测,因此基于其进行预测可以 增强AI模型的鲁棒性和泛化性。又如,操作人员将测量得到的波束测量信息输入到训练好的用户装置内部的波束预测网络中,从而得到由波束预测网络输出的最优波束结果等。
需要说明的是,最优波束结果包括如下至少之一:
至少一个最优波束对;
与至少一个最优波束对相邻的至少一个波束对。
也就是说,最优波束结果可以但不限于为一个或多个最优波束对,每个最优波束对包括一个最优发送波束和一个最优接收波束,具体根据实际应用场景进行选择设置,并未限定。
步骤S240:根据最优波束结果向发射装置发送最优参数信息。
需要说明的是,最优参数信息与最优波束结果对应。
本步骤中,用户装置通过接收多个配置参考信号资源的目标测试波束和对于参考信号资源的发送方式信息,由于多个目标测试波束为在全部波束发送方向中的至少一部分波束发送方向上配置参考信号资源而得到,也就是说,并非一定需要在所有波束发送方向上进行波束扫描配置就能够得到目标测试波束,因此有利于降低波束训练开销以及相应的测量功耗和处理延时,进而基于对于参考信号资源的发送方式信息由用户装置测量参考信号资源而得到波束测量信息,该波束测量信息用于辅助用户装置进行预测得到准确可靠的最优波束结果,并且通过向基站发送与最优波束结果对应的最优参数信息,使得基站根据最优参数信息可以避免对于最优波束结果的扫描过程,从而可以弥补相关方法中的技术空白。
需要说明的是,最优参数信息包括如下至少之一:
最优波束结果对应的目标信号资源的索引信息;
最优波束结果的参数信息;
对于目标信号资源的发送方式信息。
当最优参数信息包括最优波束结果的参数信息时,最优波束结果的参数信息包括如下至少之一:
参考信号接收功率;
参考信号接收质量;
参考信号资源的接收信号;
信噪比;
信干噪比;
信道状态信息。
如图7所示,本申请的一个实施例,对步骤S240进行进一步的说明,步骤S240可以包括但不限于步骤S241和步骤S242。
步骤S241:根据最优波束结果将最优参数信息配置给上行信号;
步骤S242:通过上行信号向发射装置发送最优参数信息。
本步骤中,用户装置通过将最优参数信息配置给上行信号,以便于通过上行信号向基站发送最优参数信息,也就是说,基站只需通过接收该上行信号即可从中获知最优参数信息,可以避免单独传输最优参数信息的弊端。
需要说明的是,第一下行信号的具体参数可以根据具体应用场景进行设置,此处不作限定。
本申请的一个实施例,当最优波束结果对应有多个候选参数信息时,对步骤S242进行进 一步的说明,步骤S242可以包括但不限于步骤S2421,步骤S2421包括如下至少之一:
根据最优波束结果,通过无线资源控制信令在多个候选参数信息中指定一个作为最优参数信息,并将最优参数信息与上行信号关联;
根据最优波束结果,通过无线资源控制信令在多个候选参数信息中选择多个目标参数信息,通过链路控制层接入单元信令在多个目标参数信息中选择一个作为最优参数信息,并将最优参数信息配置给上行信号;
根据最优波束结果,通过无线资源控制信令配置包括多个候选参数信息的状态池,通过链路控制层接入单元信令在状态池中获取多个目标参数信息,通过下行控制信令在多个目标参数信息中选择一个作为最优参数信息,并将最优参数信息配置给上行信号;
根据最优波束结果在多个候选参数信息中确定最优参数信息,通过显式信令将最优参数信息配置给上行信号。
需要说明的是,通过从多个候选参数信息中指定一个作为最优参数信息,并将该最优参数信息与上行信号进行显式或隐示地关联,从而使得上行信号能够配置有所指定的最优参数信息,也就是说,基站只需通过接收该上行信号即可从中获知最优参数信息,可以避免单独传输最优参数信息的弊端。
另外,如图8所示,本申请的一个实施例还公开了一种基站200,包括:至少一个处理器210;至少一个存储器220,用于存储至少一个程序;当至少一个程序被至少一个处理器210执行时实现如前面任意实施例中的波束管理方法的图2中的步骤S110至S150、图3中的步骤S113至S112、步骤S131、图4中的步骤S151至S152或步骤S1521。
另外,如图9所示,本申请的一个实施例还公开了一种用户装置300,包括:至少一个处理器310;至少一个存储器320,用于存储至少一个程序;当至少一个程序被至少一个处理器310执行时实现如前面任意实施例中的波束管理方法的图5中的步骤S210至S240、步骤S211、图6中的步骤S221至S222、步骤S250、图7中的步骤S241至S242或步骤S2421。
另外,本申请的一个实施例还公开了一种计算机可读存储介质,其中存储有计算机可执行指令,计算机可执行指令用于执行如前面任意实施例中的波束管理方法。
此外,本申请的一个实施例还公开了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行如前面任意实施例中的波束管理方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员 公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的若干实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (26)

  1. 一种波束管理方法,应用于发射装置,所述波束管理方法包括:
    在全部波束发送方向中的至少一部分所述波束发送方向上配置参考信号资源,得到多个目标测试波束;
    向接收装置发送所述多个目标测试波束;
    接收由所述接收装置发送的波束测量信息,其中,所述波束测量信息由所述接收装置对所述参考信号资源进行测量得到;
    根据所述波束测量信息预测得到最优波束结果;
    根据所述最优波束结果向所述接收装置发送最优接收方式信息,其中,所述最优接收方式信息与所述最优波束结果对应。
  2. 根据权利要求1所述的波束管理方法,其中,所述参考信号资源包括如下至少之一:
    信道状态信息参考信号资源;
    同步信号块资源。
  3. 根据权利要求1所述的波束管理方法,其中,所述波束测量信息包括如下至少之一:
    所述参考信号资源的索引信息;
    所述目标测试波束的参数信息;
    对于所述参考信号资源的接收方式信息。
  4. 根据权利要求3所述的波束管理方法,其中,当所述波束测量信息包括所述目标测试波束的参数信息时,所述目标测试波束的参数信息包括如下至少之一:
    参考信号接收功率;
    参考信号接收质量;
    所述参考信号资源的接收信号;
    信噪比;
    信干噪比;
    信道状态信息。
  5. 根据权利要求3所述的波束管理方法,其中,当所述波束测量信息包括对于所述参考信号资源的接收方式信息时,所述对于所述参考信号资源的接收方式信息包括如下至少之一:
    对于所述多个目标测试波束的接收波束索引信息;
    对于所述多个目标测试波束的接收波束绝对方向信息;
    对于所述多个目标测试波束的接收波束相对方向信息;
    对于所述多个目标测试波束的接收波束图样信息。
  6. 根据权利要求1所述的波束管理方法,其中,所述最优波束结果包括如下至少之一:
    至少一个最优波束对;
    与至少一个最优波束对相邻的至少一个波束对。
  7. 根据权利要求1或6所述的波束管理方法,其中,所述根据所述最优波束结果向所述接收装置发送最优接收方式信息,包括:
    根据所述最优波束结果将所述最优接收方式信息配置给第一下行信号;
    通过所述第一下行信号向所述接收装置发送所述最优接收方式信息。
  8. 根据权利要求7所述的波束管理方法,其中,所述最优波束结果对应有多个候选接收方式信息;
    所述根据所述最优波束结果将所述最优接收方式信息配置给第一下行信号,包括如下至少之一:
    根据所述最优波束结果,通过无线资源控制信令在多个所述候选接收方式信息中指定一个作为所述最优接收方式信息,并将所述最优接收方式信息与第一下行信号关联;
    根据所述最优波束结果,通过无线资源控制信令在多个所述候选接收方式信息中选择多个目标接收方式信息,通过链路控制层接入单元信令在多个所述目标接收方式信息中选择一个作为所述最优接收方式信息,并将所述最优接收方式信息配置给第一下行信号;
    根据所述最优波束结果,通过无线资源控制信令配置包括多个所述候选接收方式信息的状态池,通过链路控制层接入单元信令在所述状态池中获取多个目标接收方式信息,通过下行控制信令在多个所述目标接收方式信息中选择一个作为所述最优接收方式信息,并将所述最优接收方式信息配置给第一下行信号;
    根据所述最优波束结果在多个所述候选接收方式信息中确定所述最优接收方式信息,通过显式信令将所述最优接收方式信息配置给第一下行信号。
  9. 根据权利要求1所述的波束管理方法,其中,当所述波束测量信息包括对于所述参考信号资源的接收方式信息时,所述接收由所述接收装置发送的波束测量信息,包括如下至少之一:
    接收由所述接收装置发送的携带有所述对于所述参考信号资源的接收方式信息的信道状态信息;
    接收由所述接收装置发送的携带有所述参考信号资源的时间戳信息的信道状态信息,其中,所述参考信号资源的时间戳信息与所述对于所述参考信号资源的接收方式信息对应;
    接收由所述接收装置发送的携带有所述参考信号资源的索引信息的信道状态信息,其中,所述参考信号资源的索引信息与所述对于所述参考信号资源的接收方式信息对应;
    接收由所述接收装置发送的携带有所述参考信号资源所在资源集的索引信息的信道状态信息,其中,所述参考信号资源所在资源集的索引信息与所述对于所述参考信号资源的接收方式信息对应;
    接收由所述接收装置发送的携带有对于所述参考信号资源的传输状态指示信息的信道状态信息,其中,所述对于所述参考信号资源的传输状态指示信息与所述对于所述参考信号资源的接收方式信息对应;
    接收由所述接收装置发送的携带有与所述参考信号资源准共站址的其余源信号的信道状态信息,其中,所述与所述参考信号资源准共站址的其余源信号与所述对于所述参考信号资源的接收方式信息对应;
    接收由所述接收装置发送的携带有探测参考信号资源的信道状态信息,其中,所述探测参考信号资源与所述对于所述参考信号资源的接收方式信息对应;
    接收由所述接收装置发送的携带有探测参考信号资源指示信息的信道状态信息,其中,所述探测参考信号资源指示信息与所述对于所述参考信号资源的接收方式信息对应。
  10. 根据权利要求1所述的波束管理方法,其中,当在全部所述波束发送方向中的部分所述波束发送方向上配置所述参考信号资源时,所述在全部波束发送方向中的至少一部分所述 波束发送方向上配置参考信号资源,得到多个目标测试波束,包括:
    在全部波束发送方向中,采用均匀采样、非均匀采样或随机采样中任意一种方式,得到目标发送方向;
    在所述目标发送方向上配置参考信号资源,得到多个目标测试波束。
  11. 根据权利要求1所述的波束管理方法,其中,当在全部所述波束发送方向上配置所述参考信号资源时,所述波束管理方法还包括如下至少之一:
    向所述接收装置发送对于所述参考信号资源的采样指示信息,其中,所述对于所述参考信号资源的采样指示信息,用于向所述接收装置指示待测量的所述参考信号资源的采样参数;
    为每个所述参考信号资源关联对应的采样子集索引,将具有相同的所述采样子集索引的所述参考信号资源指定为待测量的所述参考信号资源,并向所述接收装置发送待测量的所述参考信号资源的索引信息;
    向所述接收装置发送第一测量调整信息,其中,所述第一测量调整信息用于向所述接收装置指示切换待测量的所述参考信号资源;
    向所述接收装置发送第二测量调整信息,其中,所述第二测量调整信息用于向所述接收装置指示不切换待测量的所述参考信号资源。
  12. 一种波束管理方法,应用于接收装置,所述波束管理方法包括:
    接收由发射装置发送的多个目标测试波束和对于参考信号资源的发送方式信息,其中,所述多个目标测试波束由所述发射装置在全部波束发送方向中的至少一部分所述波束发送方向上配置所述参考信号资源得到;
    根据所述对于参考信号资源的发送方式信息,对所述参考信号资源进行测量得到波束测量信息;
    根据所述波束测量信息预测得到最优波束结果;
    根据所述最优波束结果向所述发射装置发送最优参数信息,其中,所述最优参数信息与所述最优波束结果对应。
  13. 根据权利要求12所述的波束管理方法,其中,所述参考信号资源包括如下至少之一:
    信道状态信息参考信号资源;
    同步信号块资源。
  14. 根据权利要求12所述的波束管理方法,其中,所述对于参考信号资源的发送方式信息包括如下至少之一:
    对于所述多个目标测试波束的发送波束索引信息;
    对于所述多个目标测试波束的发送波束绝对方向信息;
    对于所述多个目标测试波束的发送波束相对方向信息;
    对于所述多个目标测试波束的发送波束图样信息。
  15. 根据权利要求12所述的波束管理方法,其中,所述最优波束结果包括如下至少之一:
    至少一个最优波束对;
    与至少一个最优波束对相邻的至少一个波束对。
  16. 根据权利要求12所述的波束管理方法,其中,所述最优参数信息包括如下至少之一:
    所述最优波束结果对应的目标信号资源的索引信息;
    所述最优波束结果的参数信息;
    对于所述目标信号资源的发送方式信息。
  17. 根据权利要求16所述的波束管理方法,其中,当所述最优参数信息包括所述最优波束结果的参数信息时,所述最优波束结果的参数信息包括如下至少之一:
    参考信号接收功率;
    参考信号接收质量;
    所述参考信号资源的接收信号;
    信噪比;
    信干噪比;
    信道状态信息。
  18. 根据权利要求12或16所述的波束管理方法,其中,所述根据所述最优波束结果向所述发射装置发送最优参数信息,包括:
    根据所述最优波束结果将所述最优参数信息配置给上行信号;
    通过所述上行信号向所述发射装置发送所述最优参数信息。
  19. 根据权利要求18所述的波束管理方法,其中,所述最优波束结果对应有多个候选参数信息;
    所述根据所述最优波束结果将所述最优参数信息配置给上行信号,包括如下至少之一:
    根据所述最优波束结果,通过无线资源控制信令在多个所述候选参数信息中指定一个作为所述最优参数信息,并将所述最优参数信息与上行信号关联;
    根据所述最优波束结果,通过无线资源控制信令在多个所述候选参数信息中选择多个目标参数信息,通过链路控制层接入单元信令在多个所述目标参数信息中选择一个作为所述最优参数信息,并将所述最优参数信息配置给上行信号;
    根据所述最优波束结果,通过无线资源控制信令配置包括多个所述候选参数信息的状态池,通过链路控制层接入单元信令在所述状态池中获取多个目标参数信息,通过下行控制信令在多个所述目标参数信息中选择一个作为所述最优参数信息,并将所述最优参数信息配置给上行信号;
    根据所述最优波束结果在多个所述候选参数信息中确定所述最优参数信息,通过显式信令将所述最优参数信息配置给上行信号。
  20. 根据权利要求12所述的波束管理方法,其中,所述接收由发射装置发送的对于参考信号资源的发送方式信息,包括:
    接收由发射装置通过第二下行信号发送的所述对于参考信号资源的发送方式信息,其中,所述第二下行信号配置有所述对于参考信号资源的发送方式信息。
  21. 根据权利要求12所述的波束管理方法,其中,所述根据所述对于参考信号资源的发送方式信息,对所述参考信号资源进行测量得到波束测量信息,包括:
    根据所述对于参考信号资源的发送方式信息,采用对所述多个目标测试波束配置的所述参考信号资源进行均匀采样、非均匀采样或随机选择中任意一种方式,得到待测量的所述参考信号资源;
    对待测量的所述参考信号资源进行测量得到波束测量信息。
  22. 根据权利要求21所述的波束管理方法,其中,所述对待测量的所述参考信号资源进行测量得到波束测量信息之前,所述波束管理方法还包括维护定时器的步骤:
    当所述定时器超时,切换待测量的所述参考信号资源。
  23. 一种基站,包括:
    至少一个处理器;
    至少一个存储器,用于存储至少一个程序;
    当至少一个所述程序被至少一个所述处理器执行时实现如权利要求1至11任意一项所述的波束管理方法。
  24. 一种用户装置,包括:
    至少一个处理器;
    至少一个存储器,用于存储至少一个程序;
    当至少一个所述程序被至少一个所述处理器执行时实现如权利要求12至22任意一项所述的波束管理方法。
  25. 一种计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序被处理器执行时用于实现如权利要求1至22任意一项所述的波束管理方法。
  26. 一种计算机程序产品,包括计算机程序或计算机指令,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如权利要求1至22任意一项所述的波束管理方法。
PCT/CN2023/085594 2022-04-28 2023-03-31 波束管理方法、基站、用户装置、存储介质及程序产品 WO2023207514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210461130.XA CN117041998A (zh) 2022-04-28 2022-04-28 波束管理方法、基站、用户装置、存储介质及程序产品
CN202210461130.X 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207514A1 true WO2023207514A1 (zh) 2023-11-02

Family

ID=88517378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085594 WO2023207514A1 (zh) 2022-04-28 2023-03-31 波束管理方法、基站、用户装置、存储介质及程序产品

Country Status (2)

Country Link
CN (1) CN117041998A (zh)
WO (1) WO2023207514A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988916A (zh) * 2017-08-11 2018-12-11 电信科学技术研究院有限公司 一种波束训练方法及装置、通信系统
CN111954147A (zh) * 2019-04-30 2020-11-17 大唐移动通信设备有限公司 信号传输、信号测量上报、定位方法及装置
CN111954228A (zh) * 2019-05-16 2020-11-17 北京三星通信技术研究有限公司 波束管理方法、装置、电子设备及计算机可读存储介质
US20210195605A1 (en) * 2019-12-19 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Beam management
CN113890580A (zh) * 2021-09-17 2022-01-04 浙江大学 面向非对称毫米波大规模mimo的多用户上下行波束对准方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988916A (zh) * 2017-08-11 2018-12-11 电信科学技术研究院有限公司 一种波束训练方法及装置、通信系统
CN111954147A (zh) * 2019-04-30 2020-11-17 大唐移动通信设备有限公司 信号传输、信号测量上报、定位方法及装置
CN111954228A (zh) * 2019-05-16 2020-11-17 北京三星通信技术研究有限公司 波束管理方法、装置、电子设备及计算机可读存储介质
US20210195605A1 (en) * 2019-12-19 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Beam management
CN113890580A (zh) * 2021-09-17 2022-01-04 浙江大学 面向非对称毫米波大规模mimo的多用户上下行波束对准方法

Also Published As

Publication number Publication date
CN117041998A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US20190199412A1 (en) Beam change
US11979211B2 (en) Managing multiple antenna panels for user equipment within wireless networks
JP2022541463A (ja) 測位方法及び通信機器
US11152996B2 (en) Refinement beam index beam identifier association
WO2017148364A1 (zh) 信道状态信息参考信号发送方法及基站
US11212056B2 (en) Data transmission method and apparatus
CN113271671A (zh) 波束管理方法及相关装置
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
CN116530030A (zh) 在不同波束上进行通信的装置和方法
CN113767230A (zh) 上行链路定位期间的接收器波束选择
US9467878B2 (en) Wireless access point apparatus and method for testing throughput
WO2023207514A1 (zh) 波束管理方法、基站、用户装置、存储介质及程序产品
CN110149189B (zh) 一种信息传输方法和装置
WO2024032429A1 (zh) 波束测量方法、用户装置、基站、存储介质及程序产品
US12034502B2 (en) Method and apparatus used for communicating a beam change indication based on an actual beam index value and logical beam index value validation
JPWO2018030540A1 (ja) ユーザ端末、基地局装置及び無線通信方法
WO2024017239A1 (zh) 数据采集方法及装置、通信设备
WO2023160609A1 (en) Methods and devices for transmitting measurement feedback in wi-fi sensing
US11309980B2 (en) System for synthesizing signal of user equipment and method thereof
WO2024065187A1 (zh) 通信方法、通信装置、介质及程序产品
US20240057022A1 (en) Machine learning model validation for ue positioning based on reference device information for wireless networks
WO2023010398A1 (en) Systems and methods for indicating uplink information
EP4371328A1 (en) Sidelink signal sensing of passively reflected signal to predict decrease in radio network performance of a user node-network node radio link
CN118266242A (zh) 一种模型性能监测方法、装置、设备及存储介质
US20120064927A1 (en) BASE STATION AND USER EQUIPMENT FOR PERFORMING CoMP TRANSMISSION AND METHOD THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794949

Country of ref document: EP

Kind code of ref document: A1