WO2024017239A1 - 数据采集方法及装置、通信设备 - Google Patents

数据采集方法及装置、通信设备 Download PDF

Info

Publication number
WO2024017239A1
WO2024017239A1 PCT/CN2023/107887 CN2023107887W WO2024017239A1 WO 2024017239 A1 WO2024017239 A1 WO 2024017239A1 CN 2023107887 W CN2023107887 W CN 2023107887W WO 2024017239 A1 WO2024017239 A1 WO 2024017239A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
information
auxiliary
measurement
data collection
Prior art date
Application number
PCT/CN2023/107887
Other languages
English (en)
French (fr)
Inventor
周通
吴昊
施源
宋二浩
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024017239A1 publication Critical patent/WO2024017239A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a data collection method and device, and communication equipment.
  • communication transceivers such as base stations and terminals
  • communication transceivers are configured with multiple analog beams.
  • the channel quality measured in different transmitting and receiving simulated beams changes. How to quickly and accurately find the transceiver beam group with the highest channel quality from all possible transceiver simulation beam combinations is the key to affecting transmission quality.
  • the terminal After introducing the Artificial Intelligence (AI) neural network model, the terminal can effectively predict the transceiver simulation beam with the highest channel quality based on historical channel quality information, and report it to the network side.
  • AI Artificial Intelligence
  • the deployed AI model is trained based on simulation data, there is a risk that it may not be able to adapt to the community environment.
  • Embodiments of the present application provide a data collection method, device, and communication equipment to enable AI-based beam prediction.
  • the first aspect provides a data collection method, including:
  • the first communication device sends first information to the second communication device, the first information indicates first auxiliary information and/or capability information of the first communication device, and the first auxiliary information is used to indicate auxiliary requirements for data collection,
  • the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • the first communication device receives second information sent by the second communication device, where the second information is used to indicate the beam configuration of the second communication device;
  • the first communication device obtains data samples based on the second information.
  • a data collection device including:
  • the first sending module is configured to send first information to the second communication device, where the first information indicates the first auxiliary information and/or the capability information of the first communication device, and the first auxiliary information is used to indicate the method of data collection. Auxiliary requirements, the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • a first receiving module configured to receive second information sent by the second communication device, where the second information is used to indicate the beam configuration of the second communication device;
  • a processing module configured to obtain data samples based on the second information.
  • the third aspect provides a data collection method, including:
  • the second communication device receives the first information sent by the first communication device.
  • the first information indicates the first auxiliary information and/or the capability information of the first communication device.
  • the first auxiliary information is used to indicate the auxiliary requirements for data collection.
  • the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • the second communication device sends second information to the first communication device, where the second information is used to indicate the beam configuration of the second communication device.
  • a data collection device including:
  • the second receiving module is used to receive the first information sent by the first communication device.
  • the first information indicates the first auxiliary information and/or the capability information of the first communication device.
  • the first auxiliary information is used to indicate data collection.
  • the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • the second sending module is configured to send second information to the first communication device, where the second information is used to indicate the beam configuration of the second communication device.
  • a first communication device in a fifth aspect, includes a processor and a memory.
  • the memory stores a program or instructions executable on the processor.
  • the program or instructions are processed by the processor.
  • the processor When the processor is executed, the steps of the method described in the first aspect are implemented.
  • a first communication device including a processor and a communication interface, wherein the communication interface is used to send first information to a second communication device, where the first information indicates first auxiliary information and/or Or the capability information of the first communication device, the first auxiliary information is used to indicate the auxiliary requirements for data collection, the capability information of the first communication device is used to indicate the data collection capability of the first communication device; receiving the second Second information sent by the communication device, the second information is used to indicate the beam configuration of the second communication device; the processor is used to obtain data samples based on the second information.
  • a second communication device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions executable on the processor. The programs or instructions are processed by the processor. When the processor is executed, the steps of the method as described in the third aspect are implemented.
  • a second communication device including a processor and a communication interface, wherein the communication interface is used to receive first information sent by the first communication device, where the first information indicates first auxiliary information and /or capability information of the first communication device, the first auxiliary information is used to indicate the auxiliary requirements for data collection, the capability information of the first communication device is used to indicate the data collection capability of the first communication device; to the third communication device A communication device sends second information, where the second information is used to indicate the beam configuration of the second communication device.
  • a ninth aspect provides a communication system, including: a first communication device and a second communication device.
  • the first communication device can be used to perform the steps of the data collection method as described in the first aspect.
  • the second communication device The device may be used to perform the steps of the data collection method as described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. mentioned in the third aspect Method steps.
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the first communication device can instruct the second communication device to configure the desired beam through the first information, and learn whether the second communication device is configured to the desired beam through the second information, and then determine whether the second communication device can be configured as the desired beam.
  • Multiple measurement results are combined together as a beam prediction training sample, inference sample, or performance monitoring sample. It is enabled that the terminal is configured as the desired beam, and the network side predicts the best transmit beam based on historical transmit beam information, or the network side is configured as the desired beam, and the terminal side predicts the best receive beam based on historical receive beam information.
  • the training samples are online. Collect, or inference samples are collected online, or performance monitoring samples are collected online, thereby enabling AI-based beam prediction.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic flow chart of the first communication device side data collection method according to the embodiment of the present application.
  • Figures 3a and 3b are schematic diagrams of data collection by a terminal according to a specific embodiment of the present application.
  • Figure 4, Figure 5, Figure 6 and Figure 7 are schematic diagrams of determining samples according to the first cycle and the second cycle according to the embodiment of the present application;
  • FIG. 8a and Figure 8b are schematic diagrams of data collection by the base station according to the embodiment of the present application.
  • Figure 9 is a schematic flow chart of the second communication device side data collection method according to the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually a category, and the number of objects is not limited.
  • the first object can be one, or Can be multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a first communication device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet device
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • Vehicle user equipment VUE
  • pedestrian terminal pedestrian terminal
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the first communication device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a Wireless access network unit.
  • Access network equipment can include base stations, Wireless Local Area Network (WLAN) access points or Wireless Fidelity (WiFi) nodes, etc.
  • the base station can be called Node B, Evolved Node B (Evolved Node B).
  • the base station is not limited to specific technical terms. It needs to be explained that , in the embodiment of this application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • an effective method is to collect community data in real time, and then perform offline or online model training based on the data collected from the existing network.
  • one method is to predict the best transceiver beam pair based on historical beam pair information.
  • the other method is to configure the terminal as the first auxiliary beam, and the network side predicts the best based on historical transmit beam information.
  • the transmit beam, or the network side is configured as the first auxiliary beam, and the terminal side predicts the best receiving beam based on historical receiving beam information.
  • the current protocol does not currently support configuring the desired beam (spatial filter) between multiple measurement reports.
  • This application proposes a method of requesting the transmitter or receiver to configure a desired spatial filter to enable AI-based beam prediction.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to send signals can be called a transmission beam (transmission beam, Tx beam), a spatial domain transmission filter (spatial domain transmission filter) or a spatial transmission parameter (spatial transmission parameter);
  • the beam used to receive signals can be called a It is the reception beam (reception beam, Rx beam), which can be called the spatial domain receive filter (spatial domain receive filter) or spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beam forming technology or other technologies.
  • the beamforming technology can be digital beamforming technology, analog beamforming technology, or hybrid digital/analog beamforming technology.
  • Beams generally correspond to resources. For example, when performing beam measurement, the network device measures different beams through different resources. The terminal device feeds back the measured resource quality, and the network device knows the quality of the corresponding beam. During data transmission, beam information is also indicated by its corresponding resources. For example, the network device uses the transmission configuration indication (TCI) resource in the downlink control information (DCI) to indicate the physical downlink shared channel (PDSCH) beam information of the terminal device.
  • TCI transmission configuration indication
  • DCI downlink control information
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam may include one or more antenna ports for transmitting data channels, control channels, detection signals, etc.
  • One or more antenna ports forming a beam can also be viewed as a set of antenna ports.
  • each beam of the network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the beam forming technology may be beamforming or other technical means. Beamforming technology can achieve higher antenna array gain by pointing it in a specific direction in space. Beamforming technology can be specifically digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. Analog beamforming can be achieved using phase shifters. A radio frequency chain (RF chain) adjusts the phase through a phase shifter to control changes in the direction of the analog beam. Therefore, a radio frequency link can only emit one analog beam at the same time.
  • RF chain radio frequency chain
  • RF links may also be called RF channels. That is, one radio frequency channel can only emit one beam at the same time.
  • the beam corresponding to the resource can be uniquely identified through the index of the resource.
  • the resource may be an uplink signal resource or a downlink signal resource.
  • Uplink signals include but are not limited to: sounding reference signal (SRS) and demodulation reference signal (demodulation reference signal, DMRS).
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell specific reference signal (CSRS), user equipment (User Equipment, UE) specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (demodulation reference signal, DMRS) and synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block).
  • CSI-RS channel state information reference signal
  • CSRS cell specific reference signal
  • UE User Equipment
  • US-RS user equipment specific reference signal
  • demodulation reference signal demodulation reference signal
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • SS/PBCH block can be referred to as synchronization signal block (SSB).
  • RRC radio resource control
  • a resource is a data structure, including the relevant parameters of its corresponding uplink/downlink signal, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, and the transmission time and period of the uplink/downlink signal. , the number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the uplink/downlink signal resource.
  • the index of the resource can also be called the identifier of the resource, and this embodiment of the present application does not impose any limitation on this.
  • Network equipment can generate beams in different directions.
  • the specific direction of beams used to communicate with terminal devices is determined through beam management.
  • Beam management mainly includes the following steps:
  • Step 1 The network device configures beam resources.
  • the network device configuring beam resources includes: the network device generates measurement configuration information (ie, beam measurement configuration information), and sends the measurement configuration information to the terminal device.
  • measurement configuration information ie, beam measurement configuration information
  • Measurement configuration information mainly includes two parts: resource configuration information and reporting configuration information.
  • Resource configuration information refers to information related to measurement resources. Resource configuration information can be configured in the protocol through a three-level structure (resource configuration (resource Config)-resource set (resource set)-resource (resource)).
  • Reporting configuration information refers to information related to measurement result reporting. Report configuration information can be configured in the protocol through Report Config.
  • the network device can send measurement configuration information to the terminal through radio resource control (RRC) signaling.
  • RRC radio resource control
  • Step 2 The terminal equipment measures the beam communication quality.
  • the network device sends downlink signals (ie, beams) on the resource element (Resource Element, RE) corresponding to the resource configured in the resource configuration information.
  • the terminal device receives the downlink signal on the resource element corresponding to the resource configured in the resource configuration information, and configures it according to the measurement
  • the downlink signal is measured using the configuration information to obtain the quality of the downlink signal, that is, the communication quality of the beam.
  • Step 3 The terminal device selects the best beam and the terminal device reports the best beam to the network device.
  • the terminal device sends a beam measurement report to the network device indicating the optimal beam.
  • the beam measurement report may include the index and quality of one or more resources, etc.
  • the beam measurement report can be carried in the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • Beam management resources refer to resources used for beam management, which can also be embodied as resources used for calculating and measuring beam quality.
  • Beam quality includes layer 1reference signal received reference power (layer 1reference signal received power, L1-RSRP), layer 1reference signal received reference signal quality (layer 1reference signal received quality, L1-RSRQ), etc.
  • beam management resources may include synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • Beam indication information is used to indicate the beam used for transmission, including transmitting beams and/or receiving beams. Including beam number, beam management resource number, uplink signal resource number, downlink signal resource number, absolute index of the beam, relative index of the beam, logical index of the beam, index of the antenna port corresponding to the beam, index of the antenna port group corresponding to the beam, The index of the downlink signal corresponding to the beam, the time index of the downlink synchronization signal block corresponding to the beam, the beam pair link (BPL) information, the transmit parameter corresponding to the beam (Tx parameter), and the receive parameter (Rx parameter) corresponding to the beam , the transmit weight corresponding to the beam, the weight matrix corresponding to the beam, the weight vector corresponding to the beam, the receive weight corresponding to the beam, the index of the transmit weight corresponding to the beam, the index of the weight matrix corresponding to the beam, the index of the weight vector corresponding to the beam, beam At least one of the index of the corresponding reception weight, the reception codebook corresponding to the
  • the downlink signal includes a synchronization signal, Broadcast channel, broadcast signal demodulation signal, channel state information reference signal (CSI-RS), cell specific reference signal (cell specific reference signal, CSRS), UE specific reference signal (user equipment specific reference signal, US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, or downlink phase noise tracking signal.
  • the uplink signal includes any one of the uplink random access sequence, uplink sounding reference signal, uplink control channel demodulation reference signal, uplink data channel demodulation reference signal, and uplink phase noise tracking signal.
  • the network device may also allocate QCL identifiers to beams that have a quasi-co-location (QCL) relationship among the beams associated with the frequency resource group.
  • QCL quasi-co-location
  • the beam can also be called an air domain transmission filter
  • the transmit beam can also be called an air domain transmit filter
  • the receive beam can also be called an air domain receive filter.
  • the beam indication information can also be embodied as a transmission configuration index (TCI).
  • TCI can include a variety of parameters, such as cell number, bandwidth part number, reference signal identifier, synchronization signal block identifier, QCL type, etc.
  • This application does not limit the metrics used to measure beam quality.
  • Metrics for measuring beam quality include, but are not limited to:
  • RSRP Reference signal received power
  • Reference signal received strength indicator received signal strength indicator, RSSI
  • SINR Signal to interference and noise ratio
  • Signal quality indicator channel quality indicator, CQI
  • the quasi-homologous relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics.
  • the same or similar communication configuration can be used.
  • Large-scale characteristics may include: delay spread, average delay, Doppler spread, Doppler frequency shift, average gain, reception parameters, terminal equipment receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • Airspace quasi-colocation can be considered a type of QCL.
  • the spatial domain From the perspective of the transmitter, if two antenna ports are quasi-colocated in the air domain, it means that the corresponding beam directions of the two antenna ports are consistent in space. From the receiving end, if the two antenna ports are quasi-co-located in the air domain, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the quasi-colocation assumption refers to assuming whether there is a QCL relationship between two ports.
  • the configuration and indication of quasi-colocation assumptions can be used to assist the receiving end in signal reception and demodulation.
  • the receiving end can confirm that port A and port B have a QCL relationship, that is, the large-scale parameters of the signal measured on port A can be used for signal measurement and demodulation on port B.
  • Simultaneous reception includes the receiving end (such as a terminal device) receiving multiple signals on one receiving parameter, and also includes receiving multiple signals on multiple receiving parameters that can be used simultaneously.
  • Wireless communication signals need to be received and sent by antennas.
  • Multiple antenna elements can be integrated on a panel, which can be called an antenna panel.
  • the antenna panel can also be expressed as an antenna array (antenna array) or antenna subarray (antenna subarray).
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can have one or more crystal oscillators (oscillators) controlled.
  • the terminal device may include multiple antenna panels, and each antenna panel may include one or more beams.
  • Network equipment may also include multiple antenna panels, each antenna panel including one or more beams.
  • the antenna elements are driven by the radio frequency link.
  • An RF link can drive one or more antenna elements.
  • An antenna panel can be driven by one RF link or by multiple RF links. In this application, the antenna panel can also be replaced by a radio frequency link, or multiple radio frequency links driving one antenna panel, or one or more radio frequency links controlled by a crystal oscillator.
  • RF links may also be called RF channels.
  • radio frequency channels may include receive channels and/or transmit channels.
  • An RF link or RF channel may also be called a receiver branch.
  • the embodiment of this application provides a data collection method, as shown in Figure 2, including:
  • Step 101 The first communication device sends first information to the second communication device.
  • the first information indicates the first auxiliary information and/or the capability information of the first communication device.
  • the first auxiliary information is used to indicate the method of data collection.
  • the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • Step 102 The first communication device receives the second information sent by the second communication device, where the second information is used to indicate the beam configuration of the second communication device;
  • Step 103 The first communication device obtains a data sample based on the second information.
  • the first auxiliary information includes requirement information indicating the period of the beam measuring a single sample, and the first auxiliary beam,
  • the first auxiliary information also includes at least one of the following: the number of total measurement cycles of a single beam measurement sample; the number of beam measurement samples. in,
  • the total number of measurement cycles for a single beam measurement sample refers to the number of measurement cycles for a sample in the time dimension.
  • the measurement configuration of a measurement cycle includes multiple reference resources, corresponding to which multiple beams can be measured. For example, if the measurement cycle interval is 40ms, and the measurement configuration of one measurement cycle is configured with 8 reference signals, then the number of measurement cycles within 160ms is 4, and each measurement cycle can measure 8 beams;
  • the requirement for the period of a single beam measurement sample represents the requirement for the second communication device to be configured as the first auxiliary beam in the reference signal resource dimension and/or the time dimension, and the requirement for the period of the beam measurement single sample
  • the requirements include the number of beam measurement cycles, and at least one of the following:
  • the second communication device is configured with a first number of first reference signal resources, the first reference signal resources being reference signal resources for the second communication device using a first auxiliary beam;
  • the first auxiliary beam is the beam of the second communication device requested by the first communication device, including at least one of the following:
  • a second auxiliary beam is configured, and the second auxiliary beam enables the first communication device to signal The beam of the second communication device with the highest channel quality
  • the beam of the second communication device is configured as a preset one.
  • the above information indicates that in the reference resource dimension and/or the time dimension, the number or proportion of resources of the second communication device configured as the first auxiliary beam.
  • the first auxiliary beam is the second communication device requested by the first communication device. beam.
  • the data collected by the first communication device can be used for single-side beam prediction, beam inference, or beam performance evaluation. Otherwise, if the second communication device is not configured as the first auxiliary beam, the data collected by the first communication device is directly used for training or inference of the AI model, and the effect of unilateral prediction cannot be achieved.
  • the first communication device may be a network side device or a terminal
  • the second communication device may be a terminal or a network side device.
  • the first communication device may instruct the second communication device to configure the first auxiliary beam through the first information, and learn whether the second communication device is configured as the first auxiliary beam through the second information, and then determine whether multiple measurement results can be combined. Together they serve as a beam prediction training sample, inference sample, or performance monitoring sample.
  • the terminal is configured as the first auxiliary beam, and the network side predicts the best transmit beam based on historical transmit beam information, or the network side is configured as the first auxiliary beam, and the terminal side predicts the best receive beam based on historical receive beam information.
  • the first auxiliary beam is a preset beam or a network side transmitting beam or a terminal receiving beam that enables the strongest received signal quality.
  • the capability information of the first communication device includes at least one of the following:
  • the second communication device can use the beam according to its own goals, There is no need to assist with the first communication device.
  • the first communication device has relatively strong capabilities and can support AI reasoning, training, and performance monitoring in scenarios where the second communication device does not assist. If the instruction requires the second communication device to use the first auxiliary beam in conjunction with the first auxiliary beam, in this case the first communication device is unable to collect data required for AI inference, training, and performance monitoring without the assistance of the second communication device;
  • Types of first auxiliary beams that can support data collection The more types of first auxiliary beams that can be supported, the stronger the capability of the first device;
  • the minimum number of measurement cycles of the first auxiliary beam that can support data collection The smaller the number of cycles, the lower the need for assistance from the second communication device and the stronger the capability of the first communication device;
  • the third number of minimum reference signal resources of the first auxiliary beam that can support data collection indicates the capability of the first communication device and also indicates the cooperation degree of the second communication device. The smaller the number, the lower the need for assistance from the second communication device and the stronger the capability of the first communication device;
  • the minimum proportion of the third number that can support data collection to the second number indicates the capability of the first communication device and also indicates the cooperation degree of the second communication device. The smaller the minimum ratio, the lower the need for assistance from the second communication device and the stronger the capability of the first communication device.
  • the second information includes at least one of the following:
  • the second communication device configures the type of the first auxiliary beam for this measurement
  • the prediction capability index of the second auxiliary beam is the prediction capability index of the second auxiliary beam.
  • the first communication device learns whether the second communication device is configured as the first auxiliary beam through the second information, and can then determine whether multiple measurement results can be combined together as a beam prediction training sample, inference sample, or performance monitoring sample.
  • the terminal is configured as the first auxiliary beam, and the network side predicts the best transmit beam based on historical transmit beam information, or the network side is configured as the first auxiliary beam, and the terminal side predicts the best receive beam based on historical receive beam information. Samples are collected online, or inference samples are collected online, or performance monitoring samples are collected online, thereby enabling AI-based beam prediction.
  • the first auxiliary beam is a preset beam or a network side transmitting beam or a terminal receiving beam that enables the strongest received signal quality.
  • the period of the beam measurement single sample includes a first period and a second period
  • the first communication device obtaining the data sample based on the second information includes:
  • the first communication device measures the beam as the input of the beam measurement sample in the first period; and measures the beam as the label of the beam measurement sample in the second period.
  • the first communication device is a terminal (UE)
  • the second communication device is a network side device (including a base station)
  • the second information includes measurement configuration information. After the measurement configuration information is obtained, beam measurement can be performed based on the measurement configuration information.
  • this embodiment includes the following steps:
  • Step 2 The base station finds a suitable transmit beam, such as the best transmit beam reported by the latest UE, or obtains the best transmit beam through prediction, and fixes the transmit beam to the preset beam;
  • Step 3 The base station sends measurement configuration information to the UE, including:
  • NZP-CSI-RS-ResourceSet One or more non-zero power channel state information reference signal resource sets (NZP-CSI-RS-ResourceSet), including repetition ON/off, that is, whether to repeat;
  • the first auxiliary beam type that can support data collection is a certain preset beam
  • Step 4 The UE performs beam quality measurement based on the measurement configuration, that is, performs data collection, and then generates samples based on the second information.
  • the base station indicates through the second information whether the base station is configured as the first auxiliary beam in this measurement configuration, that is, a desired preset beam, which can help the UE determine whether multiple measurement results can be combined in Together as a beam prediction inference sample.
  • the base station configures the transmit beam as the first auxiliary beam, online collection of inference samples for the UE to predict the best receive beam based on historical receive beam information is enabled.
  • the method further includes:
  • the first communication device performs beam measurement on the configured reference signal
  • the current beam measurement is determined according to whether the current measurement configuration of the second communication device in the second information is the same as the historical measurement configuration, or whether the current measurement configuration of the second communication device uses the second auxiliary beam. Whether the results and historical beam measurement results form a beam measurement sample.
  • this beam measurement belongs to either the first cycle or the second cycle.
  • this embodiment includes the following steps:
  • the base station which includes: the first period
  • Step 2 The base station finds a suitable transmitting beam, such as the best transmitting beam reported by the UE most recently, or obtains the best transmitting beam through prediction;
  • Step 3 The base station sends measurement configuration information to the UE, including:
  • NZP-CSI-RS-ResourceSet One or more non-zero power channel state information reference signal resource sets (NZP-CSI-RS-ResourceSet), including repetition ON/off, that is, whether to repeat;
  • the first auxiliary beam type that can support data collection is the second auxiliary beam
  • Step 4 The UE performs beam quality measurement based on the measurement configuration, that is, data collection. Based on the second letter information generation sample.
  • the base station indicates through the second information whether the base station is configured as the second auxiliary beam in this measurement configuration, that is, the terminal receives the beam with the highest quality, which can help the UE determine whether multiple measurement results can be combined in Together they serve as a beam prediction training sample or performance monitoring sample. It is enabled that when the network configures the transmit beam to be the second auxiliary beam, the UE predicts the online collection of training samples of the best receive beam based on historical receive beam information, or the online collection of performance monitoring samples.
  • the method further includes:
  • the first communication device performs beam measurement on the configured reference signal
  • the current beam measurement is determined according to whether the current measurement configuration of the second communication device in the second information is the same as the historical measurement configuration, or whether the current measurement configuration of the second communication device uses the second auxiliary beam. Whether the results and historical beam measurement results form a beam measurement sample.
  • this beam measurement belongs to either the first cycle or the second cycle.
  • the number of measurement cycles of the first period in the first information is 2, and within a measurement resource configuration, the second communication device configures the number of reference signal resources of the first auxiliary beam to be 2. ;
  • the number of measurement cycles in the second cycle is 1.
  • the number of reference signal resources configured by the second communication device as the first auxiliary beam is 8;
  • the UE receives the second information measured in 3 cycles, and the One piece of second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2, and the second piece of second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2.
  • the third second information indicates that the second communication device configures the number of reference signal resources as the first auxiliary beam to be 8.
  • the beam information measured in the first two cycles can be used as input, and the beam information measured in the last cycle can be used as a label, and combined into a training or performance monitoring sample that predicts the future cycle based on the two historical cycles.
  • the number of measurement cycles in the first period in the first information is 2, and within a measurement resource configuration, the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2; The number of measurement cycles in the second cycle is 2.
  • the number of reference signal resources configured by the second communication device as the first auxiliary beam is 8; the UE receives the second information measured in 4 cycles,
  • the first second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2
  • the second second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2.
  • the third piece of second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 8, and the fourth piece of second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 8.
  • the number is 8.
  • the beam information measured in the first 2 cycles can be used as input, and the beam information measured in the last 2 cycles can be used as labels to combine into a training or performance monitoring sample based on the historical 2 cycles to predict the next 2 cycles.
  • the number of measurement cycles in the first period in the first information is 2, and within a measurement resource configuration, the number of reference signal resources configured by the second communication device as the first auxiliary beam is 8; Second cycle test The number of measurement cycles is 1.
  • the number of reference signal resources configured by the second communication device as the first auxiliary beam is 8; the UE receives the second information of 3 cycles of measurement, and the first second information
  • the number of reference signal resources indicating that the second communication device is configured as the first auxiliary beam is 8, and the number of cycles in which the second communication device is configured as the first auxiliary beam in the future is 1;
  • the second second information indicates that the second communication device is configured as The number of reference signal resources of the first auxiliary beam is 8, and the number of cycles in which the second communication device is configured as the first auxiliary beam in the future is 0;
  • the third second information indicates that the second communication device is configured as the reference signal of the first auxiliary beam.
  • the number of resources is 8.
  • the beam information measured in the first two cycles can be used as input, and the beam information measured in the last cycle can be used as a label, and combined into a training or performance monitoring sample that predicts the future cycle based on the two historical cycles.
  • the number of measurement cycles in the first period in the first information is 3, and within a measurement resource configuration, the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2;
  • the number of measurement cycles in the second cycle is 0;
  • the UE receives the second information measured in 3 cycles, and the first second information indicates that the number of reference signal resources configured by the second communication device as the first auxiliary beam is 2,
  • the number of cycles for the second communication device to be configured as the first auxiliary beam in the future is 2;
  • the second second information indicates that the number of reference signal resources for the second communication device to be configured as the first auxiliary beam is 2, and the number of cycles for the second communication device to be configured as the first auxiliary beam in the future is
  • the number of cycles of the first auxiliary beam is 1;
  • the third second information indicates that the number of reference signal resources for the second communication device to be configured as the first auxiliary beam is 2, and the number of cycles for the second communication device to be configured as the first auxiliary beam in the future is 0. Therefore, the beam information
  • the first communication device is a network side device
  • the second communication device is a terminal
  • the first information also includes measurement configuration information
  • the second information includes beam measurement results and the second Beam configuration of communication equipment.
  • the terminal After receiving the measurement configuration information from the network side device, the terminal can perform beam measurement according to the measurement configuration information, and feedback to the network side device whether to respond to the measurement configuration information.
  • this embodiment includes the following steps:
  • Step 1 The base station sends measurement configuration information (including first information) to the UE, including
  • One or more NZP-CSI-RS-ResourceSets used to instruct the UE to use the reference signal resource configuration of the first auxiliary beam in this measurement configuration, including repetition off, that is, no repetition;
  • the first auxiliary beam type is a certain preset beam
  • Step 2 The UE determines that the receiving beam is the first auxiliary beam, performs beam measurement, and reports the beam measurement results, including:
  • the first auxiliary beam type is a certain preset beam
  • Step 3 The base station generates a sample based on the second information.
  • the terminal can use the second information to indicate whether the received beams among multiple measurement reports are consistent, which can help the base station determine whether the results of multiple measurement reports can be combined together as a beam prediction training sample or inference.
  • Samples, or performance monitoring samples It is enabled that when the terminal is configured as the first auxiliary beam, the base station predicts the best transmission beam based on historical transmission beam information to collect online training samples, or online collection of inference samples, or online collection of performance monitoring samples.
  • this embodiment includes the following steps:
  • Step 1 The base station sends measurement configuration information (including first information) to the UE, including
  • One or more NZP-CSI-RS-ResourceSets used to instruct the UE to use the reference signal resource configuration of the first auxiliary beam in this measurement configuration, including repetition off, that is, no repetition;
  • the first auxiliary beam type is the second auxiliary beam
  • Step 2 The UE determines the receiving beam, performs beam measurement, and reports the beam measurement results, including:
  • the first auxiliary beam type is the second auxiliary beam
  • Step 3 The base station generates a sample based on the second information.
  • the terminal can indicate through the second information whether multiple measurement reports use the second auxiliary beam, thereby helping the base station determine whether the results of multiple measurement reports can be combined together as a beam prediction training sample. Or inference samples, or performance monitoring samples.
  • the network is enabled to collect online training samples, inference samples, or performance monitoring samples to predict the best transmit beam based on historical transmit beam information.
  • the number of cycles is equivalent to the number of cycles, the number of cycles, or the number of cycles.
  • the embodiment of this application also provides a data collection method, as shown in Figure 9, including:
  • Step 201 The second communication device receives the first information sent by the first communication device.
  • the first information indicates the first auxiliary information and/or the capability information of the first communication device.
  • the first auxiliary information is used to indicate data collection.
  • the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • Step 202 The second communication device sends second information to the first communication device, where the second information is used to indicate the beam configuration of the second communication device.
  • the first auxiliary information includes requirement information indicating a period for beam measurement of a single sample, and first auxiliary beam,
  • the requirement for the period of a single beam measurement sample represents the requirement for the second communication device to be configured as the first auxiliary beam in the reference signal resource dimension and/or the time dimension, and the requirement for the period of the beam measurement single sample
  • the requirements include the number of beam measurement cycles, and at least one of the following:
  • the second communication device is configured with a first number of first reference signal resources, the first reference signal resources being reference signal resources for the second communication device using a first auxiliary beam;
  • the first auxiliary beam is the beam of the second communication device requested by the first communication device, including at least one of the following:
  • the second auxiliary beam being the beam of the second communication device that enables the first communication device to have the highest channel quality
  • the beam of the second communication device is configured as a preset one.
  • the capability information of the first communication device includes at least one of the following:
  • the third number is a minimum proportion of the second number that can support data collection.
  • the second information includes at least one of the following:
  • the second communication device configures the type of the first auxiliary beam for this measurement
  • the prediction capability index of the second auxiliary beam is the prediction capability index of the second auxiliary beam.
  • the first communication device is a terminal
  • the second communication device is a network side device
  • the second information includes measurement configuration information
  • the first communication device is a network side device
  • the second communication device is a terminal
  • the first information also includes measurement configuration information
  • the second information includes beam measurement results and the second Beam configuration of communication equipment.
  • the second communication device sending the second information in response to the first information to the first communication device includes:
  • the second communication device determines a beam of the second communication device based on the first information
  • the second communication device performs beam measurement on the configured reference signal
  • the second communication device determines second information, the second information indicates whether the second communication device adopts the same beam as the historical measurement configuration, or indicates whether the second communication device uses such that the first communication device
  • the beam with the highest channel quality the second information also includes beam quality information.
  • the method further includes:
  • the current measurement configuration of the second communication device and the historical measurement configuration in the second information use the same beam, or whether the current measurement configuration of the second communication device uses the second auxiliary beam, determine the current beam. Whether the measurement results and historical beam measurement results form a beam measurement sample.
  • the execution subject may be a data collection device.
  • the data collection device executing the data collection method is used as an example to illustrate the data collection device provided by the embodiment of the present application.
  • An embodiment of the present application provides a data collection device, applied to a first communication device, including:
  • the first sending module is configured to send first information to the second communication device, where the first information indicates the first auxiliary information and/or the capability information of the first communication device, and the first auxiliary information is used to indicate the method of data collection. Auxiliary requirements, the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • a first receiving module configured to receive second information sent by the second communication device, where the second information is used to indicate the beam configuration of the second communication device;
  • a processing module configured to obtain data samples based on the second information.
  • the first auxiliary information includes requirement information indicating the period of the beam measuring a single sample, and the first auxiliary beam,
  • the first auxiliary information also includes at least one of the following:
  • the total number of measurement cycles for a single beam measurement sample that is, the number of measurement cycles for a sample in the time dimension.
  • the measurement configuration of a measurement cycle can be divided into multiple reference resources, corresponding to which multiple beams can be measured. For example, if the measurement cycle interval is 40ms, and 8 reference signals are configured for one measurement cycle, the number of measurement cycles within 160ms is 4, and each measurement cycle can measure 8 beams;
  • the requirement for the period of a single beam measurement sample represents the requirement for the second communication device to be configured as the first auxiliary beam in the reference signal resource dimension and/or the time dimension, and the requirement for the period of the beam measurement single sample
  • the requirements include the number of beam measurement cycles, and at least one of the following:
  • the second communication device is configured with a first number of first reference signal resources, and the first reference signal resource is The second communication device uses the reference signal resources of the first auxiliary beam;
  • the first auxiliary beam is the beam of the second communication device requested by the first communication device, including at least one of the following:
  • the second auxiliary beam being the beam of the second communication device that enables the first communication device to have the highest channel quality
  • the beam of the second communication device is configured as a preset one.
  • the above information indicates that in the reference resource dimension and/or the time dimension, the number or proportion of resources of the second communication device configured as the first auxiliary beam.
  • the first auxiliary beam is the second communication device requested by the first communication device. beam.
  • the data collected by the first communication device can be used for single-side beam prediction, beam inference, or beam performance evaluation. Otherwise, if the second communication device is not configured as the first auxiliary beam, the data collected by the first communication device is directly used for training or inference of the AI model, and the effect of unilateral prediction cannot be achieved.
  • the first communication device may be a network side device or a terminal
  • the second communication device may be a terminal or a network side device.
  • the first communication device can instruct the second communication device to configure the first auxiliary beam through the first information, and learn whether the second communication device is configured as the first auxiliary beam through the second information, and then determine whether multiple measurement results can be combined. Together they serve as a beam prediction training sample, inference sample, or performance monitoring sample.
  • the terminal is configured as the first auxiliary beam, and the network side predicts the best transmit beam based on historical transmit beam information, or the network side is configured as the first auxiliary beam, and the terminal side predicts the best receive beam based on historical receive beam information.
  • the first auxiliary beam is a preset beam or a network side transmitting beam or a terminal receiving beam that enables the strongest received signal quality.
  • the capability information of the first communication device includes at least one of the following:
  • the second communication device can use the beam according to its own goals, There is no need to assist with the first communication device.
  • the first communication device has relatively strong capabilities and can support AI reasoning, training, and performance monitoring in scenarios where the second communication device does not assist. If the instruction requires the second communication device to use the first auxiliary beam in conjunction with the first auxiliary beam, in this case the first communication device is unable to collect data required for AI inference, training, and performance monitoring without the assistance of the second communication device;
  • Types of first auxiliary beams that can support data collection The more types of first auxiliary beams that can be supported, the stronger the capability of the first device;
  • the minimum number of measurement cycles of the first auxiliary beam that can support data collection The smaller the number of cycles, the lower the need for assistance from the second communication device and the stronger the capability of the first communication device;
  • the third number of minimum reference signal resources of the first auxiliary beam that can support data collection indicates the capability of the first communication device and also indicates the cooperation degree of the second communication device. The smaller the number, the lower the need for assistance from the second communication device and the stronger the capability of the first communication device;
  • the minimum proportion of the third number that can support data collection to the second number indicates the capability of the first communication device and also indicates the cooperation degree of the second communication device. The smaller the minimum ratio, the lower the need for assistance from the second communication device and the stronger the capability of the first communication device.
  • the second information includes at least one of the following:
  • the second communication device configures the type of the first auxiliary beam for this measurement
  • the prediction capability index of the second auxiliary beam is the prediction capability index of the second auxiliary beam.
  • the first communication device learns whether the second communication device is configured as the first auxiliary beam through the second information, and can then determine whether multiple measurement results can be combined together as a beam prediction training sample, inference sample, or performance monitoring sample.
  • the terminal is configured as the first auxiliary beam, and the network side predicts the best transmit beam based on historical transmit beam information, or the network side is configured as the first auxiliary beam, and the terminal side predicts the best receive beam based on historical receive beam information. Samples are collected online, or inference samples are collected online, or performance monitoring samples are collected online, thereby enabling AI-based beam prediction.
  • the first auxiliary beam is a preset beam or a network side transmitting beam or a terminal receiving beam that enables the strongest received signal quality.
  • the first communication device is a terminal
  • the second communication device is a network side device
  • the second information includes measurement configuration information
  • the period of the beam measurement single sample includes a first period and a second period
  • the processing module is configured to measure the beam in the first period as the input of the beam measurement sample; in the second period
  • the measurement beam serves as a label for the beam measurement sample.
  • the processing module is configured to perform beam measurement on the configured reference signal; according to whether the current measurement configuration of the second communication device in the second information is the same as the historical measurement configuration, or whether the second measurement configuration is the same. Whether the current measurement configuration of the second communication device uses the second auxiliary beam, determine whether the current beam measurement result and the historical beam measurement result form a beam measurement sample.
  • the processing module is configured to determine whether the current beam measurement belongs to one of the first cycle or the second cycle based on the first number of the current beam measurement.
  • the first communication device is a network side device
  • the second communication device is a terminal
  • the third communication device is a terminal.
  • One piece of information further includes measurement configuration information
  • the second information includes beam measurement results and the beam configuration of the second communication device.
  • the processing module is configured to use the same beam according to whether the current measurement configuration of the second communication device and the historical measurement configuration in the second information, or whether the current measurement configuration of the second communication device uses The second auxiliary beam determines whether the current beam measurement results and the historical beam measurement results form a beam measurement sample.
  • An embodiment of the present application provides a data collection device applied to a second communication device, including:
  • the second receiving module is used to receive the first information sent by the first communication device.
  • the first information indicates the first auxiliary information and/or the capability information of the first communication device.
  • the first auxiliary information is used to indicate data collection.
  • the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • the second sending module is configured to send second information to the first communication device, where the second information is used to indicate the beam configuration of the second communication device.
  • the first auxiliary information includes requirement information indicating the period of the beam measuring a single sample, and the first auxiliary beam,
  • the requirement for the period of a single beam measurement sample represents the requirement for the second communication device to be configured as the first auxiliary beam in the reference signal resource dimension and/or the time dimension, and the requirement for the period of the beam measurement single sample
  • the requirements include the number of beam measurement cycles, and at least one of the following:
  • the second communication device is configured with a first number of first reference signal resources, the first reference signal resources being reference signal resources for the second communication device using a first auxiliary beam;
  • the first auxiliary beam is the beam of the second communication device requested by the first communication device, including at least one of the following:
  • the second auxiliary beam being the beam of the second communication device that enables the first communication device to have the highest channel quality
  • the beam of the second communication device is configured as a preset one.
  • the capability information of the first communication device includes at least one of the following:
  • the third number is a minimum proportion of the second number that can support data collection.
  • the second information includes at least one of the following:
  • the second communication device configures the type of the first auxiliary beam for this measurement
  • the prediction capability index of the second auxiliary beam is the prediction capability index of the second auxiliary beam.
  • the first communication device is a terminal
  • the second communication device is a network side device
  • the second information includes measurement configuration information
  • the first communication device is a network side device
  • the second communication device is a terminal
  • the first information also includes measurement configuration information
  • the second information includes beam measurement results and the second Beam configuration of communication equipment.
  • the second sending module is configured to determine the beam of the second communication device according to the first information; perform beam measurement on the configured reference signal; determine second information, and the second information indicates that the Whether the second communication device uses the same beam as the historical measurement configuration, or indicates whether the second communication device uses a beam that makes the first communication device have the highest channel quality, and the second information also includes beam quality information.
  • the second sending module is configured to use the same beam according to whether the current measurement configuration of the second communication device and the historical measurement configuration in the second information, or whether the current measurement configuration of the second communication device uses the same beam. Check whether the second auxiliary beam is used in the measurement configuration, and determine whether the current beam measurement results and the historical beam measurement results form a beam measurement sample.
  • the data collection device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the data collection device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 2 to 9, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 600, which includes a processor 601 and a memory 602.
  • the memory 602 stores programs or instructions that can be run on the processor 601, for example.
  • the communication device 600 is the first communication device, when the program or instruction is executed by the processor 601, each step of the above-mentioned data collection method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a second communication device, when the program or instruction is executed by the processor 601, each step of the above-mentioned data collection method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a first communication device.
  • the first communication device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are processed by the processor.
  • the processor when executed, implements the steps of the data acquisition method as described above.
  • An embodiment of the present application also provides a first communication device, including a processor and a communication interface, wherein the communication interface is used to send first information to the second communication device, where the first information indicates the first auxiliary information and /or capability information of the first communication device, the first auxiliary information is used to indicate the auxiliary requirements for data collection, the capability information of the first communication device is used to indicate the data collection capability of the first communication device; receiving the first communication device Second information sent by the second communication device, the second information is used to indicate the beam configuration of the second communication device; the processor is used to obtain data samples based on the second information.
  • An embodiment of the present application also provides a second communication device.
  • the second communication device includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are processed by the processor.
  • the processor when executed, implements the steps of the method as described in the third aspect.
  • Embodiments of the present application also provide a second communication device, including a processor and a communication interface, wherein the communication interface is used to receive first information sent by the first communication device, where the first information indicates first auxiliary information. And/or the capability information of the first communication device, the first auxiliary information is used to indicate the auxiliary requirements for data collection, the capability information of the first communication device is used to indicate the data collection capability of the first communication device; to the The first communication device sends second information, the second information being used to indicate the beam configuration of the second communication device.
  • the first communication device may be a network side device or a terminal
  • the second communication device may be a terminal or a network side device.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, etc. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 710 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processing unit 7041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072. One less. Touch panel 7071, also called touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 701 after receiving downlink data from the network side device, can transmit it to the processor 710 for processing; in addition, the radio frequency unit 701 can send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 709 may include volatile memory or non-volatile memory, or memory 709 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above-mentioned modem processor may not be integrated into the processor 710.
  • the first communication device is a terminal
  • the processor 710 is configured to send first information to the second communication device, where the first information indicates the first auxiliary information and/or the capability information of the first communication device, and the The first auxiliary information is used to indicate the auxiliary requirements for data collection, and the capability information of the first communication device is used to indicate the data collection capability of the first communication device; upon receiving the second information sent by the second communication device, the first communication device The second information is used to indicate the beam configuration of the second communication device; data samples are obtained based on the second information.
  • the first auxiliary information includes requirement information indicating the period of the beam measuring a single sample, and the first auxiliary beam,
  • the first auxiliary information also includes at least one of the following:
  • the requirement of the period of the beam measurement single sample indicates that the second communication device is in the reference signal resource dimension. And/or the requirement of being configured as the first auxiliary beam in the time dimension, the requirement of the period of the beam measuring a single sample includes the number of beam measurement cycles, and at least one of the following:
  • the second communication device is configured with a first number of first reference signal resources, the first reference signal resources being reference signal resources for the second communication device using a first auxiliary beam;
  • the first auxiliary beam is the beam of the second communication device requested by the first communication device, including at least one of the following:
  • the second auxiliary beam being the beam of the second communication device that enables the first communication device to have the highest channel quality
  • the beam of the second communication device is configured as a preset one.
  • the capability information of the first communication device includes at least one of the following:
  • the third number is a minimum proportion of the second number that can support data collection.
  • the second information includes at least one of the following:
  • the second communication device configures the type of the first auxiliary beam for this measurement
  • the second information includes measurement configuration information.
  • the period of the beam measurement single sample includes a first period and a second period
  • the processor 710 is configured to measure the beam in the first period as the input of the beam measurement sample; measure in the second period Beam serves as a label for the beam measurement sample.
  • the processor 710 is configured to perform beam measurement on the configured reference signal; according to whether the current measurement configuration of the second communication device in the second information is the same as the historical measurement configuration, or whether the second measurement configuration is the same. Whether the current measurement configuration of the communication equipment uses the second auxiliary beam, determine whether the current beam measurement results are consistent with the historical beam measurement results. Form a beam measurement sample.
  • the processor 710 is configured to determine whether the current beam measurement belongs to one of the first cycle or the second cycle based on the first number of the current beam measurement.
  • the second communication device is a terminal
  • the processor 710 is configured to receive the first information sent by the first communication device, where the first information indicates the first auxiliary information and/or the capability information of the first communication device, so
  • the first auxiliary information is used to indicate auxiliary requirements for data collection, and the capability information of the first communication device is used to indicate the data collection capability of the first communication device;
  • the second information is sent to the first communication device, and the second information is sent to the first communication device.
  • the second information is used to indicate the beam configuration of the second communication device.
  • the first auxiliary information includes requirement information indicating the period of the beam measuring a single sample, and the first auxiliary beam,
  • the first auxiliary information also includes at least one of the following:
  • the requirement for the period of a single beam measurement sample represents the requirement for the second communication device to be configured as the first auxiliary beam in the reference signal resource dimension and/or the time dimension, and the requirement for the period of the beam measurement single sample
  • the requirements include the number of beam measurement cycles, and at least one of the following:
  • the second communication device is configured with a first number of first reference signal resources, the first reference signal resources being reference signal resources for the second communication device using a first auxiliary beam;
  • the first auxiliary beam is the beam of the second communication device requested by the first communication device, including at least one of the following:
  • the second auxiliary beam being the beam of the second communication device that enables the first communication device to have the highest channel quality
  • the beam of the second communication device is configured as a preset one.
  • the capability information of the first communication device includes at least one of the following:
  • the third number is a minimum proportion of the second number that can support data collection.
  • the second information includes at least one of the following:
  • the second communication device configures the type of the first auxiliary beam for this measurement
  • the first information further includes measurement configuration information
  • the second information includes beam measurement results and the beam configuration of the second communication device.
  • the processor 710 is configured to determine the beam of the second communication device according to the first information; perform beam measurement on the configured reference signal; determine second information, the second information indicating the second Whether the communication device adopts the same beam as the historical measurement configuration, or indicates whether the second communication device uses the beam that makes the first communication device have the highest channel quality, and the second information also includes beam quality information.
  • the processor 710 is configured to use the same beam according to whether the current measurement configuration of the second communication device and the historical measurement configuration in the second information, or whether the current measurement configuration of the second communication device uses the same beam. Use the second auxiliary beam to determine whether the current beam measurement result and the historical beam measurement result form a beam measurement sample.
  • embodiments of the present application further provide a network-side device, including a processor and a communication interface.
  • a network-side device including a processor and a communication interface.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in this embodiment of the present invention also includes: instructions or programs stored in the memory 85 and executable on the processor 84.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the data as described above. Collection methods and achieve the same technical effect. To avoid duplication, they will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by the processor, each process of the above-mentioned data collection method embodiment is implemented, and the same can be achieved. skills To avoid repetition, we will not go into details here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above data collection method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above data collection method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • An embodiment of the present application also provides a communication system, including: a first communication device and a second communication device.
  • the first communication device can be used to perform the steps of the data collection method as described above.
  • the second communication device can be used To perform the steps of the data collection method as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据采集方法及装置、通信设备,属于通信技术领域,本申请实施例的数据采集方法,包括:第一通信设备向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;所述第一通信设备接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;所述第一通信设备基于所述第二信息获取数据样本。

Description

数据采集方法及装置、通信设备
相关申请的交叉引用
本申请主张在2022年07月22日在中国提交的中国专利申请No.202210872114.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种数据采集方法及装置、通信设备。
背景技术
在毫米波无线通信中,通信收发端(如基站和终端)都配置了多个模拟波束。对于同一个终端,在不同的发送和接收模拟波束测量到信道质量是变化的。如何快速并准确地从所有可能的收发模拟波束组合中找到信道质量最高的收发波束组,是影响传输质量的关键。在引入人工智能(Artificial Intelligence,AI)神经网络模型后,终端可以基于历史的信道质量信息,有效地预测信道质量最高的收发模拟波束,并上报给网络侧。
如果部署的AI模型是基于仿真数据训练得到的,则存在可能无法适配小区环境的风险。
发明内容
本申请实施例提供一种数据采集方法及装置、通信设备,使能基于AI的波束预测。
第一方面,提供了一种数据采集方法,包括:
第一通信设备向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
所述第一通信设备接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;
所述第一通信设备基于所述第二信息获取数据样本。
第二方面,提供了一种数据采集装置,包括:
第一发送模块,用于向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
第一接收模块,用于接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;
处理模块,用于基于所述第二信息获取数据样本。
第三方面,提供了一种数据采集方法,包括:
第二通信设备接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
所述第二通信设备向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
第四方面,提供了一种数据采集装置,包括:
第二接收模块,用于接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
第二发送模块,用于向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
第五方面,提供了一种第一通信设备,该第一通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第一通信设备,包括处理器及通信接口,其中,所述通信接口用于向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;所述处理器用于基于所述第二信息获取数据样本。
第七方面,提供了一种第二通信设备,该第二通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种第二通信设备,包括处理器及通信接口,其中,所述通信接口用于接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
第九方面,提供了一种通信系统,包括:第一通信设备及第二通信设备,所述第一通信设备可用于执行如第一方面所述的数据采集方法的步骤,所述第二通信设备可用于执行如第三方面所述的数据采集方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的 方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的数据采集方法,或实现如第三方面所述的数据采集方法的步骤。
在本申请实施例中,第一通信设备可以通过第一信息指示第二通信设备配置为期望的波束,并通过第二信息获知第二通信设备是否配置为期望的波束,进而可以判断是否可以将多个测量结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了终端配置为期望的波束,网络侧基于历史的发送波束信息预测最佳发送波束,或者网络侧配置为期望的波束,终端侧基于历史的接收波束信息预测最佳接收波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集,进而使能基于AI的波束预测。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例第一通信设备侧数据采集方法的流程示意图;
图3a和图3b是本申请具体实施例终端进行数据采集的示意图;
图4、图5、图6和图7是本申请实施例根据第一周期和第二周期确定样本的示意图;
图8a和图8b是本申请实施例基站进行数据采集的示意图;
图9是本申请实施例第二通信设备侧数据采集方法的流程示意图;
图10是本申请实施例通信设备的结构示意图;
图11是本申请实施例终端的结构示意图;
图12是本申请实施例网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也 可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和第一通信设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。第一通信设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为了提升AI模型的预测性能,一种有效的方法是实时采集小区的数据,再基于现网采集的数据做离线或在线的模型训练。
在基于AI的波束预测中,一种方法是基于历史波束对信息,预测最佳的收发波束对,另一种方法是终端配置为第一辅助波束,网络侧基于历史的发送波束信息预测最佳发送波束,或者网络侧配置为第一辅助波束,终端侧基于历史的接收波束信息预测最佳接收波束。针对后者,目前协议暂不支持在多个测量上报之间配置期望的波束(空域滤波器)。
本申请提出了请求发射端或接收端配置为期望空域滤波器的方法,以使能基于AI的波束预测。
为了便于理解本申请实施例,下文先介绍一些相关概念。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indication,TCI)资源,来指示终端设备物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在波束测量中,网络设备的每一个波束对应一个资源,因此可以资源的索引来唯一标识该资源对应的波束。
形成波束的技术可以是波束成型技术(beamforming)或者其他技术手段。波束成型技术可以通过在空间上朝向特定的方向来实现更高的天线阵列增益。波束成型技术可以具体为数字波束成型技术,模拟波束成型技术,混合数字/模拟波束成型技术。模拟波束成型可以通过移相器实现。一个射频链路(radio frequency chain,RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个射频链路在同一时刻只能打出一个模拟波束。
射频链路也可以称为射频通道。即一个射频通道在同一时刻只能打出一个波束。
2、波束资源
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。
资源可以是上行信号资源,也可以是下行信号资源。
上行信号包括但不限于:探测参考信号(sounding reference signal,SRS)与解调参考信号(demodulation reference signal,DMRS)。
下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CSRS)、用户设备(User Equipment,UE)专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源可以通过无线资源控制(radio resource control,RRC)信令配置。
在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。
每一个上行/下行信号的资源具有唯一的索引,以标识该上行/下行信号的资源。
可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
3、波束管理
网络设备可以生成不同方向的波束,具体采用什么方向的波束与终端设备进行通信,通过波束管理来确定。
波束管理主要包括如下步骤:
步骤一,网络设备配置波束资源。
作为示例,网络设备配置波束资源包括:网络设备生成测量配置信息(即波束测量配置信息),并向终端设备发送测量配置信息。
测量配置信息主要包括两部分:资源配置信息和上报配置信息。
资源配置信息是指测量资源相关的信息。资源配置信息在协议里可以通过三级结构(资源配置(resource Config)-资源集(resource Set)-资源(resource))进行配置。
上报配置信息是指测量结果上报相关的信息。上报配置信息在协议里可以通过上报配置(Report Config)进行配置。
网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端发送测量配置信息。
步骤二,终端设备测量波束通信质量。
网络设备在资源配置信息所配置的资源对应的资源粒(Resource Element,RE)上发送下行信号(即波束)。
终端设备在资源配置信息所配置的资源对应的资源粒上接收下行信号,并根据测量配 置信息对下行信号进行测量,获得下行信号的质量,即波束的通信质量。
步骤三,终端设备选择最佳的波束以及终端设备向网络设备上报最佳波束。
作为示例,终端设备向网络设备发送波束测量报告,用于指示最佳波束。波束测量报告可以包括一个或多个资源的索引与质量等。
波束测量报告可以承载在物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道中(physical uplink shared channel,PUSCH)。
4、波束管理资源
波束管理资源指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量包括层一接收参考信号功率(layer 1reference signal received power,L1-RSRP),层一接收参考信号质量(layer 1reference signal received quality,L1-RSRQ)等。具体的,波束管理资源可以包括同步信号,广播信道,下行信道测量参考信号,跟踪信号,下行控制信道解调参考信号,下行共享信道解调参考信号,上行探测参考信号,上行随机接入信号等。
5、波束指示信息
波束指示信息用于指示传输所使用的波束,包括发送波束和/或接收波束。包括波束编号、波束管理资源编号,上行信号资源号,下行信号资源号、波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引中的至少一种,下行信号包括同步信号、广播信道、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CSRS)、UE专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号,下行数据信道解调参考信号,下行相位噪声跟踪信号中任意一种。上行信号包括上行随机接入序列,上行探测参考信号,上行控制信道解调参考信号,上行数据信道解调参考信号,上行相位噪声跟踪信号中任意一种。可选的,网络设备还可以为频率资源组关联的波束中具有准同位(quasi-co-location,QCL)关系的波束分配QCL标示符。波束也可以称为空域传输滤波器,发射波束也可以称为空域发射滤波器,接收波束也可以称为空域接收滤波器。波束指示信息还可以体现为传输配置编号(transmission configuration index,TCI),TCI中可以包括多种参数,例如,小区编号,带宽部分编号,参考信号标识,同步信号块标识,QCL类型等。
6、波束质量
本申请不限制衡量波束质量的度量指标。
衡量波束质量的度量指标包括但不限于:
参考信号接收功率(reference signal received power,RSRP);
参考信号接收质量(reference signal received quality,RSRQ);
参考信号接收强度指示(received signal strength indicator,RSSI);
信号干扰噪声比(signal to interference and noise ratio,SINR);
块误码率(block error rate,BLER);
信号质量指示(channel quality indicator,CQI)。
7、准同位(quasi-co-location,QCL)
准同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。
8、空域准同位(spatial QCL)
空域准同位可以认为是QCL的一种类型。对于空域(spatial)有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
9、准同位假设(QCL assumption)
准同位假设是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
10、同时接收
同时接收包括,接收端(例如终端设备)在一个接收参数上接收到多个信号,也包括在多个可同时使用的接收参数上收到多个信号。
11、天线面板(panel)
无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个面板(panel)上,这个面板可以称为天线面板。天线面板又可表示为天线阵列(antenna array)或者天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以有一个或多个晶振(oscillator)控制。
在本申请实施例中,终端设备可以包括多个天线面板,每个天线面板包括一个或者多个波束。网络设备也可以包括多个天线面板,每个天线面板包括一个或者多个波束。
天线单元由射频链路驱动。一个射频链路可以驱动一个或多个天线单元。一个天线面板可以由一个射频链路驱动,也可以由多个射频链路驱动。在本申请中,天线面板也可以替换为射频链路,或者驱动一个天线面板的多个射频链路,或者由一个晶振控制的一个或多个射频链路。
射频链路也可以称为射频通道。
例如,射频通道可以包括接收通道和/或发送通道。
射频链路或射频通道,也可以称为接收机支路(receiver branch)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的数据采集方法进行详细地说明。
本申请实施例提供一种数据采集方法,如图2所示,包括:
步骤101:第一通信设备向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
步骤102:所述第一通信设备接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;
步骤103:所述第一通信设备基于所述第二信息获取数据样本。
一些实施例中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
第一辅助信息还包括以下至少一项:波束测量单样本的总的测量周期的数目;波束测量样本的数目。其中,
波束测量单样本的总的测量周期的数目指的是一个样本在时间维度上的测量周期数。一次测量周期的测量配置包括多个参考资源,对应可以测量多个波束。例如,测量周期间隔是40ms,一次测量周期的测量配置配置了8个参考信号,则160ms内测量周期数目为4,每个测量周期可以测量8个波束;
其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
总的参考信号资源的第二数目;
所述第一数目占所述第二数目的比例;
所述第一辅助波束的类型指示;
其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信 道质量最高的第二通信设备的波束;
在波束测量周期内,配置为预设的第二通信设备的波束。
通过上述信息指示了在参考资源维度和/或时间维度上,第二通信设备配置为第一辅助波束的资源个数或比例,所述第一辅助波束是第一通信设备请求的第二通信设备的波束。当第二通信设备按照这个需求进行配置后,第一通信设备采集到的数据,才能用于单侧的波束预测,波束推理,或者波束性能评估。否则,如果第二通信设备不配置为第一辅助波束,则第一通信设备采集到的数据,直接用于AI模型的训练或推理,无法达到单侧预测的效果。
本实施例中,第一通信设备可以是网络侧设备或终端,第二通信设备可以是终端或网络侧设备。第一通信设备可以通过第一信息指示第二通信设备配置为第一辅助波束,并通过第二信息获知第二通信设备是否配置为第一辅助波束,进而可以判断是否可以将多个测量结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了终端配置为第一辅助波束,网络侧基于历史的发送波束信息预测最佳发送波束,或者网络侧配置为第一辅助波束,终端侧基于历史的接收波束信息预测最佳接收波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集,进而使能基于AI的波束预测。第一辅助波束为某预设定波束或使得接收信号质量最强的网络侧发送波束或终端接收波束。
一些实施例中,所述第一通信设备的能力信息包括以下至少一项:
是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集,如果指示表明不需要第二通信设备使用第一辅助波束,则第二通信设备可以按照自己的目标使用波束,不用辅助配合第一通信设备。这种情况下,第一通信设备的能力比较强大,可以支持第二通信设备不辅助配合场景下的AI推理、训练、性能监视。如果指示需要第二通信设备配合使用第一辅助波束,这种情况下第一通信设备的能力无法在第二通信设备不辅助的情况下,进行AI推理、训练、性能监视所需的数据采集;
可支持数据采集的第一辅助波束的类型,可支持的第一辅助波束的类型越多则表示第一设备的能力越强;
可支持数据采集的第一辅助波束的最小测量周期数,周期数越小,则表示需要第二通信设备辅助的程度越低,第一通信设备的能力越强;
可支持数据采集的第一辅助波束的最少参考信号资源的第三数目,指示了第一通信设备的能力,也指示了第二通信设备的配合程度。个数越小,则表示需要第二通信设备辅助的程度越低,第一通信设备的能力越强;
可支持数据采集的所述第三数目占所述第二数目的最小比例,指示了第一通信设备的能力,也指示了第二通信设备的配合程度。最小比例越小,则表示需要第二通信设备辅助的程度越低,第一通信设备的能力越强。
一些实施例中,所述第二信息包括以下至少一项:
所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
所述第二通信设备未来与本次测量配置使用相同波束的周期数;
所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
所述第二通信设备未来使用所述第二辅助波束的周期数;
所述第二通信设备未来使用所述第一辅助波束的周期数;
所述第二通信设备本次测量配置所述第一辅助波束的类型;
所述第二辅助波束的预测能力指标。
这样第一通信设备通过第二信息获知第二通信设备是否配置为第一辅助波束,进而可以判断是否可以将多个测量结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了终端配置为第一辅助波束,网络侧基于历史的发送波束信息预测最佳发送波束,或者网络侧配置为第一辅助波束,终端侧基于历史的接收波束信息预测最佳接收波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集,进而使能基于AI的波束预测。第一辅助波束为某预设定波束或使得接收信号质量最强的网络侧发送波束或终端接收波束。
一些实施例中,所述波束测量单样本的周期包括第一周期和第二周期,所述第一通信设备基于所述第二信息获取数据样本包括:
所述第一通信设备在所述第一周期测量波束作为波束测量样本的输入;在所述第二周期上测量波束作为波束测量样本的标签。
一些实施例中,所述第一通信设备为终端(UE),所述第二通信设备为网络侧设备(包括基站),所述第二信息包括测量配置信息,终端在接收到网络侧设备的测量配置信息后,可以根据测量配置信息进行波束测量。
一具体实施例中,如图3a所示,本实施例包括以下步骤:
步骤1:UE向基站发送接收端模型推理数据收集请求(即第一信息),其中包括:一个样本需要的第一周期数K1,对应输入中历史时间间隔个数、第二周期数K2配置为空;此时,波束测量单样本的总的测量周期的数目N=K1;K1周期内,基站配置为第一辅助波束的最小资源数(即波束测量样本的输入周期内每个时间间隔可测量波束的最小个数);第一辅助波束类型为某预设波束;以及总样本个数。
步骤2:基站找到一个合适的发送波束,例如最近一次UE上报的最佳的发送波束,或者通过预测得到最佳发送波束,并将发送波束固定为该预设波束;
步骤3:基站向UE发送测量配置信息,包括:
一个或多个非零功率信道状态信息参考信号资源集(NZP-CSI-RS-ResourceSet),其中包括repetition ON/off,即是否重复;
本次测量配置与上一次测量配置使用相同波束(空域发送滤波器)的指示;
未来与本次测量配置使用相同波束的次数;
可支持数据采集的第一辅助波束类型为某预设波束;
基站侧最佳发送波束的预测误差;
步骤4:UE基于测量配置进行波束质量测量,即进行数据采集,再基于所述第二信息生成样本。
本实施例中,基站通过所述第二信息指示本次测量配置中基站是否配置为第一辅助波束,即期望的某预设的波束,从而可以帮助UE判断是否可以将多个测量结果组合在一起作为一个波束预测推理样本。使能了在基站配置发送波束为第一辅助波束时,UE基于历史的接收波束信息预测最佳接收波束的推理样本在线收集。
一些实施例中,所述第一通信设备接收所述第二通信设备的第二信息之后,所述方法还包括:
所述第一通信设备对配置的参考信号进行波束测量;
根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
根据本次波束测量的所述第一数目,判断本次波束测量属于第一周期或第二周期二者之一。
另一具体实施例中,如图3b所示,本实施例包括以下步骤:
步骤1:UE向基站发送接收端模型训练或模型性能监视数据收集请求(即第一信息),其中包括:第一周期数K1,K1对应输入中历史时间间隔个数;第二周期数K2,K2对应标签中波束预测时间间隔个数;此时,一个样本需要的周期指的是波束测量单样本的总的测量周期的数目,即N=K1+K2;K1周期内,基站配置为第一辅助波束的最小资源数(即波束测量样本的输入周期内每个时间间隔可测量波束的最小个数);K2周期内,基站配置为第一辅助波束的最小资源数(即波束测量样本的标签周期内每个时间间隔可测量波束的最小个数);第一辅助波束类型为第二辅助波束;以及总样本个数。
步骤2:基站找到一个合适的发送波束,例如最近一次UE上报的最佳的发送波束,或者通过预测得到最佳发送波束;
步骤3:基站向UE发送测量配置信息,包括:
一个或多个非零功率信道状态信息参考信号资源集(NZP-CSI-RS-ResourceSet),其中包括repetition ON/off,即是否重复;
本次测量配置,基站是否配置为最佳发送波束;
未来,基站配置为最佳发送波束的次数;
可支持数据采集的第一辅助波束类型为第二辅助波束;
基站侧最佳发送波束的预测误差;
步骤4:UE基于测量配置进行波束质量测量,即进行数据采集。再基于所述第二信 息生成样本。
本实施例中,基站通过所述第二信息指示本次测量配置中基站是否配置为第二辅助波束,即使得终端接收质量最高的波束,从而可以帮助UE判断是否可以将多个测量结果组合在一起作为一个波束预测训练样本、或性能监测样本。使能了在网络配置发送波束为第二辅助波束时,UE基于历史的接收波束信息预测最佳接收波束的训练样本在线收集,或性能监视样本在线收集。
一些实施例中,所述第一通信设备接收所述第二通信设备的第二信息之后,所述方法还包括:
所述第一通信设备对配置的参考信号进行波束测量;
根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
根据本次波束测量的所述第一数目,判断本次波束测量属于第一周期或第二周期二者之一。
一具体示例中,如图4所示,第一信息中第一周期的测量周期数为2,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为2;第二周期的测量周期数为1,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为8;UE收到3个周期测量的第二信息,第1个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,第2个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,第3个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为8。
因此,可以将前2个周期测量的波束信息作为输入,把最后一个周期测量的波束信息作为标签,组合为一个基于历史2个周期,预测未来1个周期的训练或性能监视样本。
另一具体示例中,如图5所示,第一信息中第一周期的测量周期数为2,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为2;第二周期的测量周期数为2,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为8;UE收到4个周期测量的第二信息,第1个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,第2个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,第3个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为8,第4个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为8。
因此,可以将前2个周期测量的波束信息作为输入,把最后2个周期测量的波束信息作为标签,组合为一个基于历史2个周期,预测未来2个周期的训练或性能监视样本。
又一具体示例中,如图6所示,第一信息中第一周期的测量周期数为2,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为8;第二周期的测 量周期数为1,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为8;UE收到3个周期测量的第二信息,第1个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为8,未来第二通信设备配置为第一辅助波束的周期数为1;第2个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为8,未来第二通信设备配置为第一辅助波束的周期数为0;第3个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为8。
因此,可以将前2个周期测量的波束信息作为输入,把最后1个周期测量的波束信息作为标签,组合为一个基于历史2个周期,预测未来1个周期的训练或性能监视样本。
再一具体示例中,如图7所示,第一信息中第一周期的测量周期数为3,在一个测量资源配置内,第二通信设备配置为第一辅助波束的参考信号资源个数为2;第二周期的测量周期数为0;UE收到3个周期测量的第二信息,第1个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,未来第二通信设备配置为第一辅助波束的周期数为2;第2个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,未来第二通信设备配置为第一辅助波束的周期数为1;第3个第二信息指示第二通信设备配置为第一辅助波束的参考信号资源个数为2,未来第二通信设备配置为第一辅助波束的周期数为0。因此,可以将3个周期测量的波束信息作为输入,组合为一个基于历史3个周期,预测未来一个或若干个周期的推理样本的输入部分。
一些实施例中,所述第一通信设备为网络侧设备,所述第二通信设备为终端,所述第一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。终端在接收到网络侧设备的测量配置信息后,可以根据测量配置信息进行波束测量,并向网络侧设备反馈是否响应所述测量配置信息。
又一具体实施例中,如图8a所示,本实施例包括以下步骤:
步骤1:基站向UE发送测量配置信息(包含第一信息),包括
一个或多个NZP-CSI-RS-ResourceSet,用于指示UE在本次测量配置使用第一辅助波束的参考信号资源配置,其中包括repetition off,即不重复;
第一辅助波束类型为某预设波束;
UE本次测量配置与上一次测量配置是否使用相同波束(空域接收滤波器)的指示;
UE在未来与本次测量配置使用相同波束的周期数;
测量上报的RSRP个数。
步骤2:UE确定接收波束为第一辅助波束,进行波束测量,并上报波束测量结果,包括:
波束ID和RSRP;
UE本次测量配置与上一次测量配置是否使用相同波束的指示;
UE在未来与本次测量配置使用相同接收波束的周期数;
第一辅助波束类型为某预设波束;
UE侧最佳接收波束的预测误差;
步骤3:基站基于第二信息生成样本。
本实施例中,终端可以通过所述第二信息指示多个测量报告之间接收波束是否一致,从而可以帮助基站判断是否可以将多个测量报告结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了在终端配置为第一辅助波束时,基站基于历史的发送波束信息预测最佳发送波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集。
再一具体实施例中,如图8b所示,本实施例包括以下步骤:
步骤1:基站向UE发送测量配置信息(包含第一信息),包括
一个或多个NZP-CSI-RS-ResourceSet,用于指示UE在本次测量配置使用第一辅助波束的参考信号资源配置,其中包括repetition off,即不重复;
第一辅助波束类型为第二辅助波束;
UE在本次测量配置为第二辅助波束的指示;
UE在未来配置为第二辅助波束的周期数;
测量上报的RSRP个数。
步骤2:UE确定接收波束,进行波束测量,并上报波束测量结果,包括:
波束ID和RSRP;
UE本次测量配置是否使用第二辅助波束的指示;
UE在未来配置为第二辅助波束的周期数;
第一辅助波束类型为第二辅助波束;
UE侧最佳接收波束的预测误差;
步骤3:基站基于第二信息生成样本。
本实施例中,终端可以通过所述第二信息指示多个测量报告是否都使用了第二辅助波束,从而可以帮助基站判断是否可以将多个测量报告结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了在终端配置为第二辅助波束时,网络基于历史的发送波束信息预测最佳发送波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集。
本申请的上述实施例中,周期数即相当于周期的次数、周期的个数或周期的数目。
本申请实施例还提供了一种数据采集方法,如图9所示,包括:
步骤201:第二通信设备接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
步骤202:所述第二通信设备向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
一些实施例中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及 第一辅助波束,
还包括以下至少一项:
波束测量单样本的总的测量周期的数目;
波束测量样本的数目;
其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
总的参考信号资源的第二数目;
所述第一数目占所述第二数目的比例;
所述第一辅助波束的类型指示;
其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
在波束测量周期内,配置为预设的第二通信设备的波束。
一些实施例中,所述第一通信设备的能力信息包括以下至少一项:
是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集;
可支持数据采集的第一辅助波束的类型;
可支持数据采集的第一辅助波束的最小测量周期数;
可支持数据采集的第一辅助波束的最少参考信号资源的第三数目;
可支持数据采集的所述第三数目占所述第二数目的最小比例。
一些实施例中,所述第二信息包括以下至少一项:
所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
所述第二通信设备未来与本次测量配置使用相同波束的周期数;
所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
所述第二通信设备未来使用所述第二辅助波束的周期数;
所述第二通信设备未来使用所述第一辅助波束的周期数;
所述第二通信设备本次测量配置所述第一辅助波束的类型;
所述第二辅助波束的预测能力指标。
一些实施例中,所述第一通信设备为终端,所述第二通信设备为网络侧设备,所述第二信息包括测量配置信息。
一些实施例中,所述第一通信设备为网络侧设备,所述第二通信设备为终端,所述第一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。
一些实施例中,所述第二通信设备向所述第一通信设备发送响应于所述第一信息的第二信息包括:
所述第二通信设备根据所述第一信息确定所述第二通信设备的波束;
所述第二通信设备对配置的参考信号进行波束测量;
所述第二通信设备确定第二信息,所述第二信息指示所述第二通信设备是否与历史测量配置采用相同的波束,或指示所述第二通信设备是否使用使得所述第一通信设备信道质量最高的波束,所述第二信息还包括波束质量信息。
一些实施例中,所述方法还包括:
根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同波束,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
本申请实施例提供的数据采集方法,执行主体可以为数据采集装置。本申请实施例中以数据采集装置执行数据采集方法为例,说明本申请实施例提供的数据采集装置。
本申请实施例提供一种数据采集装置,应用于第一通信设备,包括:
第一发送模块,用于向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
第一接收模块,用于接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;
处理模块,用于基于所述第二信息获取数据样本。
一些实施例中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
第一辅助信息还包括以下至少一项:
波束测量单样本的总的测量周期的数目,即一个样本在时间维度上的测量周期数。一次测量周期的测量配置内,可以分为多个参考资源,对应可以测量多个波束。例如,测量周期间隔是40ms,一次测量周期的测量配置了8个参考信号,则160ms内测量周期数目为4,每个测量周期可以测量8个波束;
波束测量样本的数目;
其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为 所述第二通信设备使用第一辅助波束的参考信号资源;
总的参考信号资源的第二数目;
所述第一数目占所述第二数目的比例;
所述第一辅助波束的类型指示;
其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
在波束测量周期内,配置为预设的第二通信设备的波束。
通过上述信息指示了在参考资源维度和/或时间维度上,第二通信设备配置为第一辅助波束的资源个数或比例,所述第一辅助波束是第一通信设备请求的第二通信设备的波束。当第二通信设备按照这个需求进行配置后,第一通信设备采集到的数据,才能用于单侧的波束预测,波束推理,或者波束性能评估。否则,如果第二通信设备不配置为第一辅助波束,则第一通信设备采集到的数据,直接用于AI模型的训练或推理,无法达到单侧预测的效果。
本实施例中,第一通信设备可以是网络侧设备或终端,第二通信设备可以是终端或网络侧设备。第一通信设备可以通过第一信息指示第二通信设备配置为第一辅助波束,并通过第二信息获知第二通信设备是否配置为第一辅助波束,进而可以判断是否可以将多个测量结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了终端配置为第一辅助波束,网络侧基于历史的发送波束信息预测最佳发送波束,或者网络侧配置为第一辅助波束,终端侧基于历史的接收波束信息预测最佳接收波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集,进而使能基于AI的波束预测。第一辅助波束为某预设定波束或使得接收信号质量最强的网络侧发送波束或终端接收波束。
一些实施例中,所述第一通信设备的能力信息包括以下至少一项:
是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集,如果指示表明不需要第二通信设备使用第一辅助波束,则第二通信设备可以按照自己的目标使用波束,不用辅助配合第一通信设备。这种情况下,第一通信设备的能力比较强大,可以支持第二通信设备不辅助配合场景下的AI推理、训练、性能监视。如果指示需要第二通信设备配合使用第一辅助波束,这种情况下第一通信设备的能力无法在第二通信设备不辅助的情况下,进行AI推理、训练、性能监视所需的数据采集;
可支持数据采集的第一辅助波束的类型,可支持的第一辅助波束的类型越多则表示第一设备的能力越强;
可支持数据采集的第一辅助波束的最小测量周期数,周期数越小,则表示需要第二通信设备辅助的程度越低,第一通信设备的能力越强;
可支持数据采集的第一辅助波束的最少参考信号资源的第三数目,指示了第一通信设备的能力,也指示了第二通信设备的配合程度。个数越小,则表示需要第二通信设备辅助的程度越低,第一通信设备的能力越强;
可支持数据采集的所述第三数目占所述第二数目的最小比例,指示了第一通信设备的能力,也指示了第二通信设备的配合程度。最小比例越小,则表示需要第二通信设备辅助的程度越低,第一通信设备的能力越强。
一些实施例中,所述第二信息包括以下至少一项:
所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
所述第二通信设备未来与本次测量配置使用相同波束的周期数;
所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
所述第二通信设备未来使用所述第二辅助波束的周期数;
所述第二通信设备未来使用所述第一辅助波束的周期数;
所述第二通信设备本次测量配置所述第一辅助波束的类型;
所述第二辅助波束的预测能力指标。
这样第一通信设备通过第二信息获知第二通信设备是否配置为第一辅助波束,进而可以判断是否可以将多个测量结果组合在一起作为一个波束预测训练样本、或推理样本、或性能监测样本。使能了终端配置为第一辅助波束,网络侧基于历史的发送波束信息预测最佳发送波束,或者网络侧配置为第一辅助波束,终端侧基于历史的接收波束信息预测最佳接收波束的训练样本在线收集,或推理样本在线收集,或性能监视样本在线收集,进而使能基于AI的波束预测。第一辅助波束为某预设定波束或使得接收信号质量最强的网络侧发送波束或终端接收波束。
一些实施例中,所述第一通信设备为终端,所述第二通信设备为网络侧设备,所述第二信息包括测量配置信息。
一些实施例中,所述波束测量单样本的周期包括第一周期和第二周期,所述处理模块用于在所述第一周期测量波束作为波束测量样本的输入;在所述第二周期上测量波束作为波束测量样本的标签。
一些实施例中,所述处理模块用于对配置的参考信号进行波束测量;根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
一些实施例中,所述处理模块用于根据本次波束测量的所述第一数目,判断本次波束测量属于第一周期或第二周期二者之一。
一些实施例中,所述第一通信设备为网络侧设备,所述第二通信设备为终端,所述第 一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。
一些实施例中,处理模块用于根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同波束,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
本申请实施例提供一种数据采集装置,应用于第二通信设备,包括:
第二接收模块,用于接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
第二发送模块,用于向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
一些实施例中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
还包括以下至少一项:
波束测量单样本的总的测量周期的数目;
波束测量样本的数目;
其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
总的参考信号资源的第二数目;
所述第一数目占所述第二数目的比例;
所述第一辅助波束的类型指示;
其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
在波束测量周期内,配置为预设的第二通信设备的波束。
一些实施例中,所述第一通信设备的能力信息包括以下至少一项:
是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集;
可支持数据采集的第一辅助波束的类型;
可支持数据采集的第一辅助波束的最小测量周期数;
可支持数据采集的第一辅助波束的最少参考信号资源的第三数目;
可支持数据采集的所述第三数目占所述第二数目的最小比例。
一些实施例中,所述第二信息包括以下至少一项:
所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
所述第二通信设备未来与本次测量配置使用相同波束的周期数;
所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
所述第二通信设备未来使用所述第二辅助波束的周期数;
所述第二通信设备未来使用所述第一辅助波束的周期数;
所述第二通信设备本次测量配置所述第一辅助波束的类型;
所述第二辅助波束的预测能力指标。
一些实施例中,所述第一通信设备为终端,所述第二通信设备为网络侧设备,所述第二信息包括测量配置信息。
一些实施例中,所述第一通信设备为网络侧设备,所述第二通信设备为终端,所述第一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。
一些实施例中,所述第二发送模块用于根据所述第一信息确定所述第二通信设备的波束;对配置的参考信号进行波束测量;确定第二信息,所述第二信息指示所述第二通信设备是否与历史测量配置采用相同的波束,或指示所述第二通信设备是否使用使得所述第一通信设备信道质量最高的波束,所述第二信息还包括波束质量信息。
一些实施例中,所述第二发送模块用于根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同波束,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
本申请实施例中的数据采集装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的数据采集装置能够实现图2至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为第一通信设备时,该程序或指令被处理器601执行时实现上述数据采集方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为第二通信设备时,该程序或指令被处理器601执行时实现上述数据采集方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种第一通信设备,该第一通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如上所述的数据采集方法的步骤。
本申请实施例还提供了一种第一通信设备,包括处理器及通信接口,其中,所述通信接口用于向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;所述处理器用于基于所述第二信息获取数据样本。
本申请实施例还提供了一种第二通信设备,该第二通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
本申请实施例还提供了一种第二通信设备,包括处理器及通信接口,其中,所述通信接口用于接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
上述第一通信设备可以为网络侧设备或终端,所述第二通信设备可以为终端或网络侧设备。
当第一通信设备或第二通信设备为终端时,本申请实施例还提供一种终端,包括处理器和通信接口,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理单元7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至 少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选的,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
一些实施例中,第一通信设备为终端,处理器710用于向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;基于所述第二信息获取数据样本。
一些实施例中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
所述第一辅助信息还包括以下至少一项:
波束测量单样本的总的测量周期的数目;
波束测量样本的数目;
其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度 和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
总的参考信号资源的第二数目;
所述第一数目占所述第二数目的比例;
所述第一辅助波束的类型指示;
其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
在波束测量周期内,配置为预设的第二通信设备的波束。
一些实施例中,所述第一通信设备的能力信息包括以下至少一项:
是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集;
可支持数据采集的第一辅助波束的类型;
可支持数据采集的第一辅助波束的最小测量周期数;
可支持数据采集的第一辅助波束的最少参考信号资源的第三数目;
可支持数据采集的所述第三数目占所述第二数目的最小比例。
一些实施例中,所述第二信息包括以下至少一项:
所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
所述第二通信设备未来与本次测量配置使用相同波束的周期数;
所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
所述第二通信设备未来使用所述第二辅助波束的周期数;
所述第二通信设备未来使用所述第一辅助波束的周期数;
所述第二通信设备本次测量配置所述第一辅助波束的类型;
第二辅助波束的预测能力指标。
一些实施例中,所述第二信息包括测量配置信息。
一些实施例中,所述波束测量单样本的周期包括第一周期和第二周期,处理器710用于在所述第一周期测量波束作为波束测量样本的输入;在所述第二周期上测量波束作为波束测量样本的标签。
一些实施例中,处理器710用于对配置的参考信号进行波束测量;根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否 组成一波束测量样本。
一些实施例中,处理器710用于根据本次波束测量的所述第一数目,判断本次波束测量属于第一周期或第二周期二者之一。
一些实施例中,第二通信设备为终端,处理器710用于接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
一些实施例中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
所述第一辅助信息还包括以下至少一项:
波束测量单样本的总的测量周期的数目;
波束测量样本的数目;
其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
总的参考信号资源的第二数目;
所述第一数目占所述第二数目的比例;
其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
在波束测量周期内,配置为预设的第二通信设备的波束。
一些实施例中,所述第一通信设备的能力信息包括以下至少一项:
是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集;
可支持数据采集的第一辅助波束的类型;
可支持数据采集的第一辅助波束的最小测量周期数;
可支持数据采集的第一辅助波束的最少参考信号资源的第三数目;
可支持数据采集的所述第三数目占所述第二数目的最小比例。
一些实施例中,所述第二信息包括以下至少一项:
所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
所述第二通信设备未来与本次测量配置使用相同波束的周期数;
所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
所述第二通信设备未来使用所述第二辅助波束的周期数;
所述第二通信设备未来使用所述第一辅助波束的周期数;
所述第二通信设备本次测量配置所述第一辅助波束的类型;
第二辅助波束的预测能力指标。
一些实施例中,所述第一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。
一些实施例中,处理器710用于根据所述第一信息确定所述第二通信设备的波束;对配置的参考信号进行波束测量;确定第二信息,所述第二信息指示所述第二通信设备是否与历史测量配置采用相同的波束,或指示所述第二通信设备是否使用使得所述第一通信设备信道质量最高的波束,所述第二信息还包括波束质量信息。
一些实施例中,处理器710用于根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同波束,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
当第一通信设备或第二通信设备为网络侧设备时,本申请实施例还提供一种网络侧设备,包括处理器和通信接口。上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备800还包括:存储在存储器85上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行如上所述的数据采集方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述数据采集方法实施例的各个过程,且能达到相同的技 术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述数据采集方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述数据采集方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一通信设备及第二通信设备,所述第一通信设备可用于执行如上所述的数据采集方法的步骤,所述第二通信设备可用于执行如上所述的数据采集方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (22)

  1. 一种数据采集方法,包括:
    第一通信设备向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
    所述第一通信设备接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;
    所述第一通信设备基于所述第二信息获取数据样本。
  2. 根据权利要求1所述的数据采集方法,其中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
    所述第一辅助信息还包括以下至少一项:
    波束测量单样本的总的测量周期的数目;
    波束测量样本的数目;
    其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
    所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
    总的参考信号资源的第二数目;
    所述第一数目占所述第二数目的比例;
    所述第一辅助波束的类型指示;
    其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
    在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
    在波束测量周期内,配置为预设的第二通信设备的波束。
  3. 根据权利要求2所述的数据采集方法,其中,所述第一通信设备的能力信息包括以下至少一项:
    是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集;
    可支持数据采集的第一辅助波束的类型;
    可支持数据采集的第一辅助波束的最小测量周期数;
    可支持数据采集的第一辅助波束的最少参考信号资源的第三数目;
    可支持数据采集的所述第三数目占所述第二数目的最小比例。
  4. 根据权利要求2所述的数据采集方法,其中,所述第二信息包括以下至少一项:
    所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
    所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
    所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
    所述第二通信设备未来与本次测量配置使用相同波束的周期数;
    所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
    所述第二通信设备未来使用所述第二辅助波束的周期数;
    所述第二通信设备未来使用所述第一辅助波束的周期数;
    所述第二通信设备本次测量配置所述第一辅助波束的类型;
    所述第二辅助波束的预测能力指标。
  5. 根据权利要求2所述的数据采集方法,其中,所述第一通信设备为终端,所述第二通信设备为网络侧设备,所述第二信息包括测量配置信息。
  6. 根据权利要求2或5所述的数据采集方法,其中,所述波束测量单样本的周期包括第一周期和第二周期,所述第一通信设备基于所述第二信息获取数据样本包括:
    所述第一通信设备在所述第一周期测量波束作为波束测量样本的输入;在所述第二周期上测量波束作为波束测量样本的标签。
  7. 根据权利要求6所述的数据采集方法,其中,所述第一通信设备接收所述第二通信设备的第二信息之后,所述方法还包括:
    所述第一通信设备对配置的参考信号进行波束测量;
    根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
  8. 根据权利要求7所述的数据采集方法,所述方法还包括:
    根据本次波束测量的所述第一数目,判断本次波束测量属于第一周期或第二周期二者之一。
  9. 根据权利要求1所述的数据采集方法,其中,所述第一通信设备为网络侧设备,所述第二通信设备为终端,所述第一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。
  10. 根据权利要求9所述的数据采集方法,所述方法还包括:
    根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同波束,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
  11. 一种数据采集方法,包括:
    第二通信设备接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
    所述第二通信设备向所述第一通信设备发送第二信息,所述第二信息用于指示第二通 信设备的波束配置。
  12. 根据权利要求11所述的数据采集方法,其中,所述第一辅助信息包括指示波束测量单样本的周期的需求信息,以及第一辅助波束,
    所述第一辅助信息还包括以下至少一项:
    波束测量单样本的总的测量周期的数目;
    波束测量样本的数目;
    其中,所述波束测量单样本的周期的需求表征所述第二通信设备在参考信号资源维度和/或时间维度上被配置为所述第一辅助波束的需求,所述波束测量单样本的周期的需求包括波束测量周期数,以及以下至少一项:
    所述第二通信设备被配置为第一参考信号资源的第一数目,所述第一参考信号资源为所述第二通信设备使用第一辅助波束的参考信号资源;
    总的参考信号资源的第二数目;
    所述第一数目占所述第二数目的比例;
    所述第一辅助波束的类型指示;
    其中,所述第一辅助波束是第一通信设备请求的第二通信设备的波束,包括以下至少一项:
    在波束测量周期内,配置为第二辅助波束,所述第二辅助波束是使得第一通信设备信道质量最高的第二通信设备的波束;
    在波束测量周期内,配置为预设的第二通信设备的波束。
  13. 根据权利要求12所述的数据采集方法,其中,所述第一通信设备的能力信息包括以下至少一项:
    是否支持在所述第二通信设备不使用第一辅助波束的情况下进行数据采集;
    可支持数据采集的第一辅助波束的类型;
    可支持数据采集的第一辅助波束的最小测量周期数;
    可支持数据采集的第一辅助波束的最少参考信号资源的第三数目;
    可支持数据采集的所述第三数目占所述第二数目的最小比例。
  14. 根据权利要求12所述的数据采集方法,其中,所述第二信息包括以下至少一项:
    所述第二通信设备本次测量配置与历史测量配置使用相同波束的指示;
    所述第二通信设备与本次测量配置使用相同波束的历史测量配置的标识;
    所述第二通信设备本次测量配置与上一次测量配置使用相同波束的指示;
    所述第二通信设备未来与本次测量配置使用相同波束的周期数;
    所述第二通信设备本次测量配置使用所述第二辅助波束的指示;
    所述第二通信设备未来使用所述第二辅助波束的周期数;
    所述第二通信设备未来使用所述第一辅助波束的周期数;
    所述第二通信设备本次测量配置所述第一辅助波束的类型;
    所述第二辅助波束的预测能力指标。
  15. 根据权利要求12所述的数据采集方法,其中,所述第一通信设备为终端,所述第二通信设备为网络侧设备,所述第二信息包括测量配置信息。
  16. 根据权利要求11所述的数据采集方法,其中,所述第一通信设备为网络侧设备,所述第二通信设备为终端,所述第一信息还包括测量配置信息,所述第二信息包括波束测量结果和所述第二通信设备的波束配置。
  17. 根据权利要求16所述的数据采集方法,其中,所述第二通信设备向所述第一通信设备发送响应于所述第一信息的第二信息包括:
    所述第二通信设备根据所述第一信息确定所述第二通信设备的波束;
    所述第二通信设备对配置的参考信号进行波束测量;
    所述第二通信设备确定第二信息,所述第二信息指示所述第二通信设备是否与历史测量配置采用相同的波束,或指示所述第二通信设备是否使用使得所述第一通信设备信道质量最高的波束,所述第二信息还包括波束质量信息。
  18. 根据权利要求16所述的数据采集方法,所述方法还包括:
    根据所述第二信息中所述第二通信设备的本次测量配置与历史测量配置是否使用相同波束,或所述第二通信设备的本次测量配置是否使用第二辅助波束,判断本次波束测量结果与历史波束测量结果是否组成一波束测量样本。
  19. 一种数据采集装置,包括:
    第一发送模块,用于向第二通信设备发送第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
    第一接收模块,用于接收所述第二通信设备发送的第二信息,所述第二信息用于指示第二通信设备的波束配置;
    处理模块,用于基于所述第二信息获取数据样本。
  20. 一种数据采集装置,包括:
    第二接收模块,用于接收第一通信设备发送的第一信息,所述第一信息指示第一辅助信息和/或第一通信设备的能力信息,所述第一辅助信息用于指示数据采集的辅助需求,所述第一通信设备的能力信息用于指示第一通信设备的数据采集能力;
    第二发送模块,用于向所述第一通信设备发送第二信息,所述第二信息用于指示第二通信设备的波束配置。
  21. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的数据采集方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至18任一项所述的数据采集方法的步骤。
PCT/CN2023/107887 2022-07-22 2023-07-18 数据采集方法及装置、通信设备 WO2024017239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210872114.XA CN117499973A (zh) 2022-07-22 2022-07-22 数据采集方法及装置、通信设备
CN202210872114.X 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024017239A1 true WO2024017239A1 (zh) 2024-01-25

Family

ID=89617061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107887 WO2024017239A1 (zh) 2022-07-22 2023-07-18 数据采集方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN117499973A (zh)
WO (1) WO2024017239A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154610A1 (en) * 2020-01-30 2021-08-05 Idac Holdings, Inc. Method of network-assisted beamformed energy harvesting signaling and corresponding apparatus
CN113676929A (zh) * 2020-05-14 2021-11-19 华为技术有限公司 候选波束测量方法、终端、网络设备、芯片系统及介质
US20220039124A1 (en) * 2018-09-28 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Beamforming Assistance
US20220110004A1 (en) * 2020-10-06 2022-04-07 Qualcomm Incorporated Data-aided beam management
CN114423019A (zh) * 2020-10-09 2022-04-29 诺基亚通信公司 监测波束

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039124A1 (en) * 2018-09-28 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Beamforming Assistance
WO2021154610A1 (en) * 2020-01-30 2021-08-05 Idac Holdings, Inc. Method of network-assisted beamformed energy harvesting signaling and corresponding apparatus
CN113676929A (zh) * 2020-05-14 2021-11-19 华为技术有限公司 候选波束测量方法、终端、网络设备、芯片系统及介质
US20220110004A1 (en) * 2020-10-06 2022-04-07 Qualcomm Incorporated Data-aided beam management
CN114423019A (zh) * 2020-10-09 2022-04-29 诺基亚通信公司 监测波束

Also Published As

Publication number Publication date
CN117499973A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US11979211B2 (en) Managing multiple antenna panels for user equipment within wireless networks
WO2022068867A1 (zh) 波束处理方法、装置及相关设备
WO2023071931A1 (zh) 感知信号的处理方法、装置及通信设备
CN114337953A (zh) 上行信道参数的确定和配置方法及装置
CN114982139A (zh) 小区自由大规模mimo的预编码跟踪
US11171707B2 (en) Indicating beams for wireless communication
WO2023066288A1 (zh) 模型请求方法、模型请求处理方法及相关设备
WO2024017239A1 (zh) 数据采集方法及装置、通信设备
WO2023088387A1 (zh) 信道预测方法、装置、ue及系统
WO2024041420A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024067281A1 (zh) Ai模型的处理方法、装置及通信设备
WO2023143361A1 (zh) 能力信息上报方法、装置及终端
WO2024041421A1 (zh) 测量反馈处理方法、装置、终端及网络侧设备
WO2024104070A1 (zh) 波束报告的发送方法、接收方法、装置及通信设备
WO2024093861A1 (zh) 传输处理方法、装置及相关设备
WO2024093713A1 (zh) 资源配置方法、装置、通信设备及可读存储介质
WO2024027536A1 (zh) 感知处理方法、装置、终端及网络侧设备
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备
US20240171353A1 (en) Parameter Determination Method, Device, and Non-Transitory Readable Storage Medium
WO2024046202A1 (zh) 发送方法、用户设备、网络侧设备及可读存储介质
WO2023274249A1 (zh) 空间关系指示方法和设备
WO2023179649A1 (zh) 人工智能模型的输入处理方法、装置及设备
WO2024082276A1 (en) Antenna location configurations for predictive beam management
CN117674918A (zh) 波束训练方法及设备
CN115843054A (zh) 参数选择方法、参数配置方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842302

Country of ref document: EP

Kind code of ref document: A1