WO2023207406A1 - 电机、压缩机、制冷设备和车辆 - Google Patents

电机、压缩机、制冷设备和车辆 Download PDF

Info

Publication number
WO2023207406A1
WO2023207406A1 PCT/CN2023/082025 CN2023082025W WO2023207406A1 WO 2023207406 A1 WO2023207406 A1 WO 2023207406A1 CN 2023082025 W CN2023082025 W CN 2023082025W WO 2023207406 A1 WO2023207406 A1 WO 2023207406A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator core
side wall
motor
slot
Prior art date
Application number
PCT/CN2023/082025
Other languages
English (en)
French (fr)
Inventor
赵东亮
孙国伟
Original Assignee
安徽威灵汽车部件有限公司
广东威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽威灵汽车部件有限公司, 广东威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Publication of WO2023207406A1 publication Critical patent/WO2023207406A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • Embodiments of the present application relate to the field of motor technology, specifically, to a motor, a compressor, a refrigeration equipment and a vehicle.
  • the height of the insulating frame of the motor is too high, which is not conducive to the miniaturization of the motor; the height of the end of the insulating end plate is too low, and the copper wire cannot be effectively fixed.
  • the problem of tooling touching the copper wire occurs, resulting in risks to the reliability of the motor.
  • the copper wires in the motor cannot be effectively fixed and the motor is too large.
  • the embodiments of the present application aim to solve at least one of the technical problems existing in the prior art.
  • a first aspect of this application provides a motor.
  • a second aspect of this application provides a compressor.
  • the third aspect of this application provides a refrigeration equipment.
  • a fourth aspect of this application provides a vehicle.
  • a motor including: a stator core; a first insulating frame, which is provided at one end of the stator core, and the first insulating frame includes a first side wall, The second side wall and the wire slot between the first side wall and the second side wall; the winding, the winding is wound on the wire slot and the stator core; wherein, along the axial direction of the stator core, the first side The height of the wall is less than or equal to 2 times the height of the second side wall.
  • the motor provided by this application includes a stator core, a first insulating frame and windings.
  • a first insulating frame is provided at one axial end of the stator core, and the first insulating frame is used to fix the stator core and windings.
  • the first insulating frame includes a first side wall, a second side wall and a wire groove.
  • the first side wall is located on the outer wall of the first insulating frame away from the center of the stator core
  • the second side wall is located on the inner wall of the first insulating frame close to the center of the stator core
  • the wire groove is located on the first side wall and the second side. between the two side walls.
  • the winding is arranged on the wire duct and the stator core.
  • the height of the first side wall is less than or equal to twice the height of the second side wall.
  • the height of the first side wall refers to the axial direction of the stator core.
  • the coverage of the second side wall refers to the distance between the end of the second side wall and the bottom wall of the wire duct along the axis of the stator core. distance.
  • the stator core includes a plurality of first stator teeth and a first stator slot located between two adjacent first stator teeth; along the axial direction perpendicular to the stator core The stator core is sectioned in the direction. In the obtained section, the extension line of the bottom wall of the first stator slot intersects with the extension line of the two side walls of the first stator slot at two points.
  • the distance between the two points is The first distance; the extension lines of the slot shoulders on both sides of the notch of the first stator slot respectively intersect with the extension lines of the two side walls of the first stator slot at two points, and the distance between the two points is the second distance; along the axial direction of the stator core, the value range of the height of the second side wall is: less than or equal to 0.6 times the sum of the first distance and the second distance, greater than or equal to the sum of the first distance and the second distance 0.4 times.
  • the stator core has a plurality of circumferentially arranged first stator teeth, two adjacent first stator teeth are surrounded by a first stator slot, and the winding is wound around the first stator slot through the first stator slot. on the stator teeth.
  • stator core is sectioned in a direction perpendicular to the axis of the stator core.
  • the extension line and both sides of the bottom wall of the first stator slot are The extension lines of the side walls intersect respectively, and the connection between the two intersection points is the first distance;
  • the first stator slot includes a slot, which is opposite to the bottom wall, and both sides of the slot are The groove shoulder, the extension lines of the groove shoulders on both sides intersect with the extension lines of the side walls on both sides respectively, and the distance between the two intersection points is the second distance.
  • the value range of the height of the second side wall is limited to be less than or equal to 0.6 times the sum of the first distance and the second distance, and greater than or equal to 0.4 times the sum of the first distance and the second distance.
  • This application limits the height of the second side wall in the first insulating frame through the size parameters of the first stator slot, thereby achieving a reasonable limit on the height of the side wall passing through the wire slot, thereby meeting the requirements for effective fixing of the winding.
  • the height of the first insulating frame can also be set reasonably to maximize the need for miniaturization of the motor. Further, by reasonably limiting the height of the second side wall, the height of the second side wall is then used to limit the height of the first side wall, so as to limit the height of the entire first insulating frame, thereby achieving The motor design is rationalized.
  • the height of the first side wall is greater than or equal to 1.5 times the height of the second side wall.
  • the lower limit of the height of the first side wall is further limited to ensure that the height of the first side wall can satisfy the fixing effect of the single winding.
  • the height of the first side wall is greater than or equal to 1.5 times the height of the second side wall.
  • the motor further includes: a second insulating frame, which is disposed at the other end of the stator core.
  • the second insulating frame is close to the inner wall of the center side of the stator core. The height is equal to the height of the second side wall.
  • the motor further includes a second insulating frame, which is arranged opposite to the first insulating frame and is respectively arranged at opposite ends of the stator core in the axial direction.
  • the second insulating frame includes a wire trough and inner and outer walls located on both sides of the wire trough.
  • the inner wall is the side wall of the second insulating frame close to the center of the stator core; the outer wall is the side wall of the second insulating frame close to the center of the stator core.
  • the side wall on one side of the outer peripheral wall of the stator core.
  • the height of the inner wall of the second insulating frame refers to the distance from the end surface of the inner wall away from the stator core to the bottom wall of the wire slot along the axial direction of the stator core.
  • the stator core includes a plurality of punching sheets stacked along the axial direction of the stator core; the plurality of punching sheets include: a plurality of first punching sheets, and the plurality of first punching sheets are stacked to form the stator.
  • the first punching piece includes the first stator slot; the second punching piece is stacked on both ends of the main body section along the axial direction of the stator core; wherein, the first punching piece The structure is different from that of the second punch.
  • the stator core includes at least two kinds of punching pieces.
  • the middle part of the stator core is the main body section, which is formed by continuously stacking a plurality of first punching pieces.
  • the first punching piece includes circumferentially distributed A plurality of first stator teeth; the two end portions of the stator core are formed by stacking a plurality of second punching sheets, that is, the second punching sheets are stacked on both ends of the main body section.
  • the structure of the first punched piece is different from the structure of the second punched piece.
  • the second punching piece includes a second stator slot, the first punching piece and the second punching piece are sectioned in a direction perpendicular to the axial direction of the stator core, and the cross-sectional area of the second stator slot is is larger than the cross-sectional area of the first stator slot.
  • the second punching piece includes a plurality of second stator teeth distributed along the circumferential direction, and two adjacent second stator teeth are surrounded to form a second stator slot.
  • the cross-sectional area of the second stator slot is larger than the cross-sectional area of the first stator slot.
  • the bottom of the first insulating frame sinks It enters the second stator slot and abuts against the first punching piece.
  • the bottom also sinks into the second stator slot and abuts against the first punching piece, thereby increasing the axial size of the motor. got reduced.
  • the winding circumference of the winding is shortened, the length of the copper wire of the winding is further saved, and the material is saved.
  • the bottom wall of the wire duct is provided with a plurality of limiting grooves; the plurality of limiting grooves are evenly distributed along the direction from the first side wall to the second side wall.
  • the bottom wall of the wire groove in the first insulating frame has a plurality of limiting slots for limiting the windings, and the limiting slots are evenly distributed in the direction from the first side wall to the second side wall.
  • the distribution of the winding cables can be effectively improved, the motor slot full rate can be further improved, and the motor can be further miniaturized.
  • the first insulating frame further includes: a lead trough, which is provided on the first side wall, the lead trough is connected with the wire passing trough, and the lead trough is used to lead out the wires of the motor.
  • the first insulating frame also has a lead trough opened on the first side wall, which connects the lead trough and the wire passing trough, so that the wires of the motor are led out through the lead trough.
  • the stator core includes a plurality of core blocks, and the plurality of core blocks are sequentially connected along the circumferential direction of the stator core;
  • the core blocks include: a yoke portion and stator teeth connected to the yoke portion , multiple yokes corresponding to multiple core blocks are connected to form a stator core.
  • the stator core is configured to include a plurality of core blocks connected sequentially along the circumferential direction, and each core block includes a yoke portion and stator teeth connected to the yoke portion, while two adjacent ones
  • the core blocks can be connected by yokes, so that a plurality of core blocks surround the stator core.
  • the stator core includes a stator hole, and the ratio of the diameter of the stator hole to the outer diameter of the stator core satisfies less than or equal to 0.65 and greater than or equal to 0.60.
  • the stator core also includes a stator hole formed by the ends of a plurality of stator teeth.
  • the ratio of the diameter of the stator hole to the outer diameter of the stator core is limited, and the stator hole is defined.
  • the diameter and the outer diameter of the stator core satisfy the following relationship: the ratio is less than or equal to 0.65 and greater than or equal to 0.60.
  • the stator core is sectioned in a direction perpendicular to the axis of the stator core, and the cross-section line of the bottom wall of the first stator slot includes: a straight line and an arc.
  • the stator core is sectioned along the axis direction perpendicular to the stator core, that is, within the cross-sectional shape of the first punching piece, the bottom wall surface of the first stator slot includes an arc segment and a straight segment.
  • the motor further includes a second insulating bobbin disposed at the other end of the stator core; wherein the number of turns of the winding wound on the first insulating bobbin is equal to the number of turns of the winding wound on the second insulating bobbin. The number of winding turns is the same.
  • the motor further includes a second insulating frame, which is arranged opposite the first insulating frame at both axial ends of the stator core.
  • a compressor including the motor provided by any technical solution of the first aspect. Therefore, the compressor provided by the technical solution of the present application has the motor provided by any technical solution of the first aspect. All beneficial effects are not listed here.
  • a refrigeration equipment including a motor or a compressor provided by any of the above technical solutions.
  • the refrigeration equipment provided by this application includes the motor or compressor provided by any of the above technical solutions, and therefore has all the technical effects thereof, which will not be described again here.
  • a vehicle including the motor or compressor provided by any of the above technical solutions.
  • the vehicle provided by this application includes the motor or compressor provided by any of the above technical solutions, and therefore has all the technical effects thereof, which will not be described again here.
  • the motors, compressors, refrigeration equipment and vehicles provided by this application can rationalize the motor design on the one hand, so that the undesirable situation of being unable to effectively fix the windings due to the low height of the first insulating frame will not occur. On the other hand, they can Minimize the height of the first insulating frame, thereby effectively reducing the size of the motor and conducive to miniaturization of the motor.
  • Figure 1 shows a schematic diagram of the partial structure of a motor according to an embodiment of the present application
  • Figure 2 shows a top view of the partial structure of the motor of the embodiment shown in Figure 1;
  • Figure 3 shows a cross-sectional view along the A-A direction in the embodiment shown in Figure 2;
  • FIG 4 shows a schematic structural diagram of the stator core of the embodiment shown in Figure 1;
  • Figure 5 shows a structural top view of the stator core of the embodiment shown in Figure 4;
  • Figure 6 shows a schematic structural diagram of the first punched sheet according to the embodiment shown in Figure 4;
  • Figure 7 shows a schematic structural diagram of the first insulating frame of the embodiment shown in Figure 1;
  • Figure 8 shows a structural top view of the first insulating frame in the embodiment shown in Figure 7;
  • Figure 9 shows a cross-sectional view along the B-B direction of the embodiment shown in Figure 8.
  • Figure 10 shows a schematic structural diagram of the second insulating frame of the embodiment shown in Figure 1;
  • Figure 11 shows a structural top view of the second insulating frame shown in Figure 10;
  • Fig. 12 shows a cross-sectional view along the C-C direction in the embodiment shown in Fig. 11.
  • stator core 100 first punched piece, 1002 first stator tooth, 1004 first stator slot, 1006 stator hole, 200 second punched piece, 2002 second stator tooth, 2004 second stator slot, 20 first insulating frame, 202 first side wall, 204 second side wall, 206 wire trough, 30 second insulating frame, 302 inner wall, 304 outer wall, 306 bottom plate, 40 winding.
  • the motor 1 and the compressor, the refrigeration equipment and the vehicle provided according to some embodiments of the present application are described below with reference to FIGS. 1 to 12 .
  • a motor 1 including: a stator core 10 , a first insulating frame 20 and a winding 40 .
  • the first insulating frame 20 is disposed at one end of the stator core 10 .
  • the first insulating frame 20 includes a first side wall 202 , a second side wall 204 and is located between the first side wall 202 and the second side wall 204 .
  • the wire passage 206; the winding 40 is wound around the wire passage 206 and the stator core 10; wherein, along the axial direction of the stator core 10, the height of the first side wall 202 is less than or equal to the height of the second side wall 204 2 times.
  • the motor 1 provided by this application includes a stator core 10 , a first insulating frame 20 and windings 40 .
  • a first insulating frame 20 is provided at one axial end of the stator core 10 .
  • the first insulating frame 20 is used to fix the stator core 10 and the winding 40 .
  • the first insulating frame 10 includes a first side wall 202 , a second side wall 204 and a wire groove 206 .
  • the first side wall 202 is located on the outer wall of the first insulating frame 20 away from the center of the stator core 10
  • the second side wall 204 is located on the inner wall of the first insulating frame 20 close to the center of the stator core 10 , passing through the wire slot 206 Located between the first side wall 202 and the second side wall 204.
  • the winding 40 is wound around the wire slot 206 and the stator core 10 .
  • the height of the first side wall 202 is less than or equal to twice the height of the second side wall 204 .
  • the height of the first side wall 202 refers to the height along the axis of the stator core 10 direction, the distance between the end of the first side wall 202 and the bottom wall of the wire slot 206, the coverage of the second side wall 204 refers to the end of the second side wall 204 along the axis of the stator core 10 to the bottom wall of the wire trough 206.
  • the height of the first side wall 202 By setting the height of the first side wall 202 to be less than or equal to twice the height of the second side wall 204, on the one hand, the fixation of the winding 40 in the single winding slot is ensured, and on the other hand, by defining the first side wall
  • the height of 202 further enables the height of the first insulating frame 20 to achieve the purpose of reducing the overall height of the insulating frame on the premise of ensuring the limitation of the winding 40, thereby reducing the overall height of the motor 1 in the axial direction, thereby enabling It is beneficial to the miniaturization design of the motor 1.
  • This application limits the heights of the first side wall 202 and the second side wall 204 in the first insulating frame 20 , setting the height of the first side wall 202 to be less than or equal to twice the height of the second side wall 204 , on the one hand, the design of the motor 1 can be rationalized, so that the undesirable situation of not being able to effectively fix the winding 40 due to the low height of the first insulating frame 20 will not occur, and on the other hand, the height of the first insulating frame 20 can be reduced to the maximum extent. , thereby effectively reducing the size of the motor 1 and conducive to the miniaturization of the motor 1.
  • the stator core 10 includes a plurality of first stator teeth 1002 and two adjacent first stator teeth 1002 between the first stator slots 1004.
  • the stator core 10 has a plurality of circumferentially arranged first stator teeth 1002. Two adjacent first stator teeth 1002 are surrounded by a first stator slot 1004. The winding 40 passes through the first stator teeth 1002. The sub-slots 1004 are arranged around the stator teeth.
  • the stator core 10 is sectioned in a direction perpendicular to the axial direction of the stator core 10 .
  • the bottom wall of the first stator slot 1004 The extension lines respectively intersect with the extension lines of the two side walls of the first stator slot 1004 at two points, and the distance between the two points is the first distance; the slot shoulders located on both sides of the slot of the first stator slot 1004
  • the extension lines respectively intersect with the extension lines of the two side walls of the first stator slot 1004 at two points, and the distance between the two points is the second distance; along the axial direction of the stator core 10, the height of the second side wall 204
  • the value range is: less than or equal to 0.6 times the sum of the first distance and the second distance, and greater than or equal to 0.4 times the sum of the first distance and the second distance.
  • the stator core 10 is sectioned in a direction perpendicular to the axis of the stator core 10 .
  • the bottom wall of the first stator slot 1004 is The extension line and the extension line of the side walls on both sides intersect respectively, and the connection between the two intersection points is the first distance;
  • the first stator slot 1004 includes a slot, which is opposite to the bottom wall, and the two sides of the slot are The slot shoulders of the first stator slot 1004, the extension lines of the slot shoulders on both sides intersect with the extension lines of the side walls on both sides respectively, and the distance between the two intersection points is the second distance.
  • the value range of the height of the second side wall 204 is limited to be less than or equal to 0.6 times the sum of the first distance and the second distance, and greater than or equal to 0.4 times the sum of the first distance and the second distance.
  • This application limits the height of the second side wall 204 in the first insulating frame 20 through the size parameters of the first stator slot 1004, thereby achieving a reasonable limit on the height of the side wall of the wire slot 206, thereby satisfying the requirements for the winding.
  • the height of the first insulating frame 20 can also be reasonably set, so that it can meet the miniaturization demand of the motor 1 to the maximum extent.
  • the height of the second side wall 204 is then used to limit the height of the first side wall 202, so as to realize the height adjustment of the entire first insulating frame 20. limit, thereby rationalizing the design of the motor 1, which not only satisfies the limiting effect on the winding 40, but also minimizes the height of the first insulating frame 20, thereby effectively reducing the volume of the motor 1 and conducive to the miniaturization of the motor 1.
  • the number of the first stator teeth 1002 is generally a multiple of 3, and can be 6, 9, 12 or 18, etc. In actual applications, it can be selected according to the specific needs of the motor 1, which is not listed here. Example.
  • the outer peripheral wall of the stator core 10 is substantially cylindrical, which facilitates the installation of the stator core 10 and facilitates the production and processing of the stator core 10 .
  • the height of the first side wall 202 is greater than or equal to 1.5 times the height of the second side wall 204 .
  • the lower limit of the height of the first side wall 202 is further limited to ensure that the height of the first side wall 202 can satisfy the fixing effect of the single winding 40 .
  • the height of the first side wall 202 is greater than or equal to 1.5 times the height of the second side wall 204 .
  • the height of the entire first insulating frame 20 is limited, thereby rationalizing the design of the motor 1 , that is, satisfying the requirement for the winding 40
  • the limiting function can also ensure the miniaturization demand of motor 1.
  • the stator core 10 is sectioned in a direction perpendicular to the axis of the stator core 10 .
  • the bottom wall extension line of the first stator slot 1004 is respectively connected with the first stator slot 1004 .
  • the extension lines of the two side walls of the stator slot 1004 intersect at two points, and the distance between the two points is the first distance H1; the extension lines of the slot shoulders on both sides of the slot opening of the first stator slot 1004 are respectively connected with the first distance H1.
  • the extension lines of the two side walls of the stator slot 1004 intersect at two points, and the distance between the two points is the second distance H2; and along the axial direction of the stator core 10, the height of the first side wall 202 is the first side wall
  • the distance from the end surface of 202 away from the stator core 10 to the bottom of the wire groove 206 is H4, and the height of the second side wall 204 is the axial direction from the end surface of the second side wall 204 away from the stator core 10 to the bottom of the wire groove 206
  • the distance is H3.
  • H1, H2, H3 and H4 satisfy the following relationship: 0.40 ⁇ (H1+H2) ⁇ H3 ⁇ 0.60 ⁇ (H1+H2), 1.5 ⁇ H3 ⁇ H4 ⁇ 2.0 ⁇ H3.
  • the present application can rationalize the design of the motor 1, and will not cause failure due to the height of the first insulating frame 20 being too low.
  • the occurrence of defects in the effective fixation of copper wires can be minimized, and the height of the first insulating frame 20 can be minimized, effectively reducing the volume of the motor 1, which is conducive to the miniaturization of the motor 1.
  • the motor 1 further includes: a second insulating frame 30 .
  • the second insulating frame 30 is disposed at the other end of the stator core 10.
  • the height of the inner wall 302 of the second insulating frame 30 close to the center side of the stator core 10 is equal to the height of the second insulating frame 30.
  • the side walls 204 are of equal height.
  • the motor 1 further includes a second insulating frame 30 .
  • the second insulating frame 30 is arranged opposite to the first insulating frame 20 , and is respectively arranged at opposite ends of the stator core 10 in the axial direction.
  • the second insulating frame 30 includes a wire groove 206 and an inner wall 302 and an outer wall 304 located on both sides of the wire groove 206.
  • the inner wall 302 is the side wall of the second insulating frame 30 close to the center of the stator core 10;
  • the outer wall 304 is a side wall of the second insulating frame 30 close to the outer peripheral wall of the stator core 10 .
  • the height of the inner wall 302 of the second insulating frame 30 refers to the distance from the end surface of the inner wall 302 away from the stator core 10 to the bottom wall of the wire slot 206 along the axial direction of the stator core 10 .
  • the height of the inner side wall 302 of the second insulating frame 30 is set to be equal to the height of the second side wall 204 of the first insulating frame 20 .
  • the heights of the insulating frames at both axial ends of the stator core 10 are set. into the optimal height range, thereby rationalizing the design of the motor 1. It will not cause the inability to effectively fix the copper wires due to the low height of the insulating frame, and can also minimize the height of the insulating end plate, effectively reducing the motor 1
  • the volume is conducive to the miniaturization of the motor 1.
  • the second insulating frame 30 includes an outer wall 304 , a bottom plate 306 , and an inner wall 302 .
  • the height H5 of the inner wall 302 of the second insulating frame 30 is the axial dimension of the inner wall 302 away from the end surface of the stator core 10 and the bottom plate 306 . Then the height H5 of the inner wall 302 is the same as the first side wall of the first insulating frame 20 .
  • the height of the two side walls 204 is the same.
  • material can be saved to the maximum extent, which is conducive to the miniaturization of the motor 1. .
  • stator core 10 includes a plurality of layers stacked along the axial direction of the stator core 10 . A punched film.
  • the plurality of punched sheets include: a plurality of first punched sheets 100 and a plurality of second punched sheets 200, wherein the structures of the first punched sheets 100 and the structures of the second punched sheets 200 are different.
  • first punching pieces 100 are stacked to form the main body section of the stator core 10.
  • the first punching piece 100 includes a first stator slot 1004; the second punching piece 200 is along the axial direction of the stator core 10, and the second punching piece 200 is formed in the stator core 10.
  • the punched sheets 200 are stacked on both ends of the main body section.
  • the stator core 10 is composed of a plurality of punched sheets stacked continuously along the axial direction.
  • the stator core 10 includes at least two kinds of punched sheets.
  • the middle part of the stator core 10 is a main body section, which is formed by continuously stacking a plurality of first punching pieces 100.
  • the first punching piece 100 includes a plurality of first stator teeth 1002 distributed along the circumferential direction.
  • the two end portions of the stator core 10 are formed by stacking a plurality of second punching sheets 200, that is, the second punching sheets 200 are stacked on both ends of the main body section.
  • the structure of the first punched piece 100 is different from the structure of the second punched piece 200 .
  • the overall performance of the motor 1 is ensured by the first punching piece 100.
  • the second punching piece 200 is connected to the first punching piece 200.
  • the first insulating frame 20 and the second insulating frame 30 are installed and matched to further reduce the axial size of the motor 1 in the axial direction of the stator core 10, which is beneficial to the miniaturization design of the motor 1.
  • first punching pieces 100 constitute the main body section of the stator core 10.
  • the number of the second punching pieces 200 located at both ends of the main body section can be one or more.
  • the number is exemplarily set and can be set according to the specific requirements. Set the parameters of motor 1, which will not be described again here.
  • the second punching piece 200 includes a second stator slot 2004.
  • the first punching piece 100 and the second punching piece 200 are sectioned in a direction perpendicular to the axis of the stator core 10 , and the cross-sectional area of the second stator slot 2004 is larger than the first stator slot. 1004 cross-sectional area.
  • the second punching piece 200 includes a plurality of second stator teeth 2002 distributed along the circumferential direction. Two adjacent second stator teeth 2002 surround and form a second stator slot 2004 . In the axial direction, the cross-sectional area of the second stator slot 2004 is larger than the cross-sectional area of the first stator slot 1004 .
  • the area of the second stator slot 2004 of the second punching piece 200 By setting the area of the second stator slot 2004 of the second punching piece 200 to be larger than the area of the first stator slot 1004 of the first punching piece 100, so that the second punching piece 200 is stacked on the first punching piece 100, The peripheral portion of the first punching piece 100 located at the first stator slot 1004 protrudes from the slot wall of the second stator slot 2004 of the second punching piece 200, thereby forming a step for connecting the first insulating frame 20 and the second insulating frame.
  • the bottom of the first insulating frame 20 sinks into the second stator slot 2004 and contacts the first punch 100.
  • the bottom also sinks into the second stator.
  • the groove 2004 is in contact with the first punching piece 100 , thereby reducing the axial size of the motor 1 . Further, by partially sinking the first insulating frame 20 and the second insulating frame 30 into the second stator slot 2004, the winding circumference of the winding 40 is shortened, and the length of the copper wire of the winding 40 is further saved. Materials are saved.
  • the second stator teeth 2002 include a tooth root and a tooth shoe connected to one end of the tooth root, and the other end of the tooth root is connected to the yoke portion of the second punch 200 .
  • the tooth shoe includes a first tooth shoe and a second tooth shoe.
  • the lengths of the first tooth shoe and the second tooth shoe are different. Specifically, the length of the first tooth shoe is shorter than that of the second tooth shoe. Boot length.
  • the tooth shoes corresponding to the first stator teeth 1002 of the first punch 100 include third tooth shoes and fourth tooth shoes. The lengths of the third tooth shoes and the fourth tooth shoes are equal, and the length of the second tooth shoes is equal to that of the third tooth shoes.
  • the length of the tooth shoe and the fourth tooth shoe are equal. That is to say, the length of the slot of the second stator slot 2004 is greater than the length of the slot of the first stator slot 1004, by arranging the first tooth shoes and the second tooth shoes on both sides of the slot of the second stator slot 2004 to be different.
  • the symmetrical structure can utilize the reluctance torque of the motor 1 to further increase the output torque.
  • a limiting slot (not shown in the figure) is provided on the bottom wall of the wire trough 206 .
  • the number of limiting grooves is multiple; the plurality of limiting grooves are evenly distributed along the direction from the first side wall 202 to the second side wall 204 .
  • the bottom wall of the wire groove 206 in the first insulating frame 20 has a plurality of limiting grooves for limiting the winding 40, and the upper limit is in the direction from the first side wall 202 to the second side wall 204.
  • the slots are evenly distributed.
  • the second insulating frame 30 and the first insulating frame 20 correspond to each other. Therefore, if a limiting slot is provided on the wire groove 206 of the first insulating frame 20, then the second insulating frame 30 also has a limiting slot. , wherein the limiting grooves are evenly distributed along the bottom plate 306 between the inner wall 302 and the outer wall 304 .
  • the first insulating frame 20 further includes: a lead trough, which is provided on the first side wall 202 .
  • the lead trough is connected with the wire passing trough 206 , and the lead trough is used to lead out the wires of the motor 1 .
  • the first insulating frame 20 also has a lead slot opened in the first side wall 202, which connects the lead slot with the wire passage 206, so that the wires of the motor 1 are led out through the lead slot, and pass through the first insulation.
  • a lead slot is provided on the frame 20 to facilitate the lead-out of wires.
  • the lead wire opening of the motor 1 is close to the lead slot. Therefore, the first insulating frame 20 is close to the lead wire side of the motor 1, and the opposite second insulating frame 30 is away from the lead wire side of the motor 1.
  • the number of winding turns of the winding 40 around the first insulating bobbin 20 is the same as the number of winding turns of the winding 40 around the second insulating bobbin 30 .
  • the normal operation of the motor 1 is further ensured.
  • stator core 10 includes a plurality of core blocks.
  • multiple core blocks are connected in sequence along the circumferential direction of the stator core 10; the core blocks include: a yoke portion and stator teeth connected to the yoke portion, and multiple yoke portions corresponding to the multiple core blocks are connected. , to form the stator core 10.
  • the stator core 10 is configured to include a plurality of core blocks connected in sequence along the circumferential direction, and each core block includes a yoke portion and stator teeth connected to the yoke portion, while two adjacent ones The core blocks can be connected through yokes, so that the stator core 10 is surrounded by a plurality of core blocks.
  • the stator core 10 is configured to include a plurality of core blocks connected sequentially along the circumferential direction, and each core block includes a yoke, at least one stator tooth and two connecting parts, and the two connecting parts are respectively Located at both circumferential ends of the yoke.
  • one of the two connecting parts is a groove structure
  • the other of the two connecting parts is a convex structure that matches the groove structure.
  • the groove structure and the convex structure realize two adjacent ones. Connection of core blocks. This facilitates production and improves production efficiency.
  • the stator core 10 includes the features defined in any of the above embodiments, and further, the stator core 10 includes a stator hole 1006 .
  • the ratio of the diameter of the stator hole 1006 to the outer diameter of the stator core 10 satisfies less than or equal to 0.65 and greater than or equal to 0.60.
  • the stator core 10 further includes a stator hole 1006 formed by a plurality of stator teeth, and the stator hole 1006 is used to install the rotor of the motor 1 .
  • the ratio of the diameter of the stator hole 1006 to the outer diameter of the stator core 10 is limited, and the diameter of the stator hole 1006 and the outer diameter of the stator core 10 satisfy the following relationship: the ratio is less than or equal to 0.65 , and is greater than or equal to 0.60.
  • the diameter of the stator hole 1006 is ⁇ 1, and the outer diameter of the punched piece is ⁇ 2, which satisfies the following relationship: 0.60 ⁇ 1/ ⁇ 2 ⁇ 0.65.
  • stator core 10 is sectioned in a direction perpendicular to the axial direction of the stator core 10 , and the cross-section line of the bottom wall of the first stator slot 1004 includes: a straight line and an arc.
  • the stator core 10 is sectioned along the axis direction perpendicular to the stator core 10 , that is, within the cross-sectional shape of the first punching piece 100 , the bottom wall surface of the first stator slot 1004 includes an arc segment and a straight segment.
  • the volume of the stator slot can be increased, so that when the winding 40 is wound around the stator core 10, there is enough accommodation space to ensure that the winding 40's orderly winding improves the slot full rate of motor 1 to ensure the reliability of motor 1 operation.
  • the present application proposes a motor 1.
  • the motor 1 can be miniaturized. Improve motor 1 reliability.
  • the motor 1 provided by this application includes a stator core 10, a first insulating frame 20, a second insulating frame 30, and a winding 40.
  • the stator core 10 is formed by a plurality of punched pieces along the It is composed of continuous stacking in the axial direction.
  • the stator core 10 includes at least two kinds of punching pieces; the plurality of punching pieces include: a plurality of first punching pieces 100 and a plurality of second punching pieces 200, wherein the structure of the first punching piece 100 is different from that of the second punching piece 200.
  • the structure is not the same.
  • a plurality of first punching sheets 100 are stacked to form the main body section of the stator core 10.
  • the second punching sheets 200 are along the axial direction of the stator core 10 and are stacked at both ends of the main body section.
  • first insulating bobbin 20 and the second insulating bobbin 30 are respectively placed at both ends of the stator core 10 in the axial direction, and the windings 40 are wound around the insulating bobbin and the stator core 10 .
  • the first insulating bobbin 20 is located on the motor 1 Lead wire side.
  • the first punching piece 100 has a plurality of first stator teeth 1002 distributed at intervals on the inner side, and a first stator slot 1004 is defined between two adjacent first stator teeth 1002 .
  • stator core 10 is sectioned in a direction perpendicular to the axis of the stator core 10 .
  • the extension line of the bottom wall of the first stator slot 1004 The extension lines of the two side walls of the first stator slot 1004 intersect at two points respectively, and the distance between the two points is the first distance H1; the extension lines of the slot shoulders on both sides of the slot of the first stator slot 1004 Intersect with the extension lines of the two side walls of the first stator slot 1004 at two points, and the distance between the two points is the second distance H2; and along the axial axis direction of the stator core 10, the first side wall 202 The height is the axial distance from the end surface of the first side wall 202 away from the stator core 10 to the bottom of the wire groove 206, which is H4.
  • the height of the second side wall 204 is the distance from the end surface of the second side wall 204 away from the stator core 10 to
  • the axial distance between the groove bottoms of the wire groove 206 is H3.
  • H1, H2, H3 and H4 satisfy the following relationship: 0.40 ⁇ (H1+H2) ⁇ H3 ⁇ 0.60 ⁇ (H1+H2), 1.5 ⁇ H3 ⁇ H4 ⁇ 2.0 ⁇ H3.
  • the bottom part of the first stator slot 1004 of the first punching piece 100 is composed of a combination of straight lines and arcs, which is beneficial to improving parameters such as the slot fullness rate of the motor 1, thereby improving the energy efficiency of the motor 1.
  • the diameter of the stator hole 1006 is ⁇ 1
  • the outer diameter of the punched piece is ⁇ 2, which satisfies the following relationship: 0.60 ⁇ 1/ ⁇ 2 ⁇ 0.65, which can effectively improve the copper consumption and iron loss of the motor 1 loss distribution, reduce the loss of motor 1, and further reduce the size of motor 1.
  • the stator core 10 adopts a block structure. That is, the stator core 10 includes multiple core blocks. Since the stator core 10 adopts a block structure, it can effectively improve the slot area utilization of the motor 1, increase the power density of the motor 1, and further realize the miniaturization of the motor 1.
  • the second insulating frame 30 includes an outer wall 304, a bottom plate 306, and an inner wall 302.
  • the axial dimension of the inner wall 302 of the second insulating frame 30 away from the end surface of the stator core 10 and the bottom plate 306 is H5.
  • the height H5 of the inner wall 302 is the same as the first side wall 202 of the first insulating frame 20 away from the end surface of the stator core 10.
  • the number of turns of the winding 40 of the motor 1 wound around the first insulating bobbin 20 is the same as the number of turns wound around the second insulating bobbin 30.
  • the wire passage grooves 206 in the first insulating bobbin 20 and the bottom plate 306 in the second insulating bobbin 30 both have limiting grooves for limiting the winding 40; Limiting slots are provided with the bottom plate 306 in the second insulating frame 30, which can effectively improve the wiring distribution of the winding 40, further improve the slot full rate of the motor 1, and further realize the miniaturization of the motor 1.
  • first stator teeth 1002 in the first punching piece 100 is 12.
  • the motor 1 provided in this application can rationalize the design of the motor 1 by limiting the height of the first side wall 202 and the height of the second side wall 204 on the first insulating frame 20, and will not cause problems due to the low height of the insulating frame.
  • the disadvantage of not being able to effectively fix the copper wires occurs, and the height of the insulating frame can be minimized, effectively reducing the size of the motor 1, which is conducive to the miniaturization of the motor 1.
  • the purpose of this application is to propose a permanent magnet synchronous motor 1 that can achieve miniaturization and improve the reliability of the motor 1 by reasonably matching the size of the stator punching piece and the axial height size of the insulating end plate.
  • a second aspect of the application provides a compressor having the motor 1 provided in any embodiment of the first aspect.
  • the compressor provided by this application includes the motor 1 of any of the above embodiments.
  • the motor 1 provided by this application includes a stator core 10 , a first insulating frame 20 and a winding 40 .
  • the first insulating frame 20 is located parallel to one end of the stator core 10 in the axial direction.
  • the first insulating frame 20 is used to fix the stator core 10 and the winding 40 .
  • the first insulating frame 20 is connected to the stator core 10 .
  • the first insulating frame 20 is composed of a first side wall 202 , a second side wall 204 and a wire groove 206 .
  • the first side wall 202 is located on the outer wall 304 of the first insulating frame 20 away from the center of the stator core 10
  • the second side wall 204 is located on the inner wall 302 of the first insulating frame 20 close to the center of the stator core 10 .
  • Slot 206 is located between first side wall 202 and second side wall 204 .
  • the winding 40 is wound around the wire slot 206 and the stator core 10 .
  • the height of the first side wall 202 is less than or equal to twice the height of the second side wall 204 , and the height of the first side wall 202 refers to the height along the stator core 10 In the axial direction, the distance between the end of the first side wall 202 and the bottom wall of the wire groove 206, the coverage of the second side wall 204 refers to the axis of the stator core 10, the coverage of the second side wall 204 The distance from the end to the bottom wall of the wire trough 206.
  • the height of the first side wall 202 is less than or equal to twice the height of the second side wall 204, on the one hand, the fixation of the winding 40 in the single winding slot is ensured, and on the other hand, by defining the first side
  • the height of the wall 202 further enables the height of the first insulating frame 20 to achieve the purpose of reducing the overall height of the insulating frame while ensuring the limitation of the winding 40, thereby reducing the overall height of the motor 1 in the axial direction, and thereby reducing the overall height of the motor 1 in the axial direction. It can be beneficial to the miniaturization design of the motor 1.
  • stator core 10 has a plurality of circumferentially arranged first stator teeth 1002. Two adjacent first stator teeth 1002 surround a first stator slot 1004 forming a fan-shaped structure. The winding 40 passes through the first stator teeth 1002. The sub-slots 1004 are arranged around the stator teeth.
  • stator core 10 is sectioned in a direction perpendicular to the axial direction of the stator core 10.
  • the bottom wall of the first stator slot 1004 is The extension line and the extension line of the side walls on both sides intersect respectively, and the connection between the two intersection points is the first distance;
  • the first stator slot 1004 includes a slot, which is opposite to the bottom wall, and the two sides of the slot are The slot shoulders of the first stator slot 1004, the extension lines of the slot shoulders on both sides intersect with the extension lines of the side walls on both sides respectively, and the distance between the two intersection points is the second distance.
  • the extension line of the bottom wall of the first stator slot 1004 in the stator punching plate at the axial middle position of the stator core 10 intersects with the extension line of the first stator teeth 1002 on both sides at two points respectively.
  • the distance between them is the first distance; the distance between the two points where the extension lines of the slot shoulders on both sides of the first stator slot 1004 intersect with the extension lines of the first stator teeth 1002 on both sides is the second distance.
  • the value range of the height of the second side wall 204 is limited to be less than or equal to 0.6 times the sum of the first distance and the second distance, and greater than or equal to the first distance. 0.4 times the sum of the second distances.
  • This application limits the height of the second side wall 204 in the first insulating frame 20 through the size parameters of the first stator slot 1004, thereby achieving a reasonable limit on the height of the side wall of the wire slot 206, thereby satisfying the requirements for the winding.
  • the height of the first insulating frame 20 can also be reasonably set, so that it can meet the miniaturization demand of the motor 1 to the maximum extent.
  • the height of the second side wall 204 is then used to limit the height of the first side wall 202, so as to realize the height adjustment of the entire first insulating frame 20. limit, thereby rationalizing the design of the motor 1, which not only satisfies the limiting effect on the winding 40, but also minimizes the height of the first insulating frame 20, thereby effectively reducing the volume of the motor 1 and conducive to the miniaturization of the motor 1.
  • the compressor provided by this application includes the motor 1 of any of the above embodiments, thereby rationally utilizing the internal space of the compressor and further improving the applicability of the compressor.
  • the third aspect embodiment of the present application also provides a refrigeration equipment, including the motor 1 or the compressor of any of the above embodiments.
  • the refrigeration equipment provided by this application includes the motor 1 or the compressor of any of the above embodiments, and therefore has all the technical effects thereof, which will not be described again here.
  • the fourth aspect embodiment of the present application also provides a vehicle, including the motor 1 or the compressor of any of the above embodiments.
  • the vehicle provided by this application includes the motor 1 or the compressor of any of the above embodiments, and therefore has all the technical effects thereof, which will not be described again here.
  • the vehicle includes an electric vehicle, and the use of the motor or compressor provided by the present application can better adapt to the space design of the vehicle.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be Directly connected, or indirectly connected through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be Directly connected, or indirectly connected through an intermediary.

Abstract

本申请的实施例提供了一种电机、压缩机、制冷设备和车辆。其中,电机包括:定子铁芯;第一绝缘骨架,设置于定子铁芯的一端,第一绝缘骨架包括第一侧壁、第二侧壁和位于第一侧壁和第二侧壁之间的过线槽;绕组,绕组绕设于过线槽和定子铁芯上;其中,沿定子铁芯的轴向,第一侧壁的高度小于或等于第二侧壁的高度的2倍。本申请通过对第一绝缘骨架中的第一侧壁和第二侧壁的高度进行限定,设定为第一侧壁的高度小于或等于第二侧壁的高度的2倍,进而可以使得电机设计合理化,从而不会因为第一绝缘骨架高度过低,导致不能有效固定绕组的不良情况发生,又可以最大限度的降低第一绝缘骨架高度,从而有效地降低电机体积,有利于电机小型化。

Description

电机、压缩机、制冷设备和车辆
本申请要求于2022年04月28日提交到中国国家知识产权局、申请号为“202210457959.2”、申请名称为“电机、压缩机、制冷设备和车辆” 的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及电机技术领域,具体而言,涉及一种电机、一种压缩机、一种制冷设备和一种车辆。
背景技术
相关技术中,电机的绝缘骨架的高度过高,不利于电机小型化;绝缘端板端部高度过低,不能有效固定铜线,生产过程中发生工装碰铜线问题,导致电机可靠性风险。
技术问题
电机中的铜线无法有效固定以及电机体积过大。
技术解决方案
本申请的实施例旨在至少解决现有技术中存在的技术问题之一。
为此,本申请第一方面提供了一种电机。
本申请第二方面提供了一种压缩机。
本申请第三方面提供了一种制冷设备。
本申请第四方面提供了一种车辆。
有鉴于此,根据本申请的实施例的第一方面,提供了一种电机,包括:定子铁芯;第一绝缘骨架,设置于定子铁芯的一端,第一绝缘骨架包括第一侧壁、第二侧壁和位于第一侧壁和第二侧壁之间的过线槽;绕组,绕组绕设于过线槽和定子铁芯上;其中,沿定子铁芯的轴向,第一侧壁的高度小于或等于第二侧壁的高度的2倍。
本申请提供的电机包括定子铁芯、第一绝缘骨架和绕组。沿定子铁芯的轴线,第一绝缘骨架设置于定子铁芯的轴向一端,第一绝缘骨架用于固定定子铁芯和绕组。第一绝缘骨架包括第一侧壁、第二侧壁和过线槽。第一侧壁位于第一绝缘骨架远离定子铁芯的圆心侧的外侧壁,第二侧壁位于第一绝缘骨架靠近定子铁芯的圆心侧的内侧壁,过线槽位于第一侧壁和第二侧壁之间。绕组绕设在过线槽和定子铁芯上。其中,限定了沿定子铁芯的轴向,第一侧壁的高度小于或等于第二侧壁的高度的2倍,第一侧壁的高度指的是沿定子铁芯的轴向,第一侧壁的端部至过线槽的底壁之间的距离,第二侧壁的盖度指的是沿定子铁芯的轴线,第二侧壁的端部至过线槽的底壁之间的距离。
另外,根据本申请提供的上述技术方案中的电机,还可以具有如下附加技术特征:
在一种可能的技术方案中,定子铁芯包括多个第一定子齿和位于相邻两个第一定子齿之间的第一定子槽;沿垂直于定子铁芯的轴向的方向对定子铁芯进行截面,在得到的截面内,第一定子槽的底壁延长线分别与第一定子槽的两侧壁的延长线相交于两点,两点之间的距离为第一距离;位于第一定子槽的槽口的两侧的槽肩的延长线分别与第一定子槽的两侧壁的延长线相交于两点,两点之间的距离为第二距离;沿定子铁芯的轴向,第二侧壁的高度的取值范围为:小于或等于第一距离与第二距离之和的0.6倍,大于或等于第一距离与第二距离之和的0.4倍。
在该技术方案中,定子铁芯具有多个周向排列的第一定子齿,相邻两个第一定子齿围设形成第一定子槽,绕组通过第一定子槽绕设于定子齿上。
进一步的,沿垂直于定子铁芯的轴线的方向对定子铁芯进行截面,在得到的截面内,第一定子槽的截面形状中,第一定子槽的底壁的延长线和两侧的侧壁的延长线分别相交,两个交点之间的连线为第一距离;第一定子槽包括槽口,槽口与底壁相对,槽口的两侧为第一定子槽的槽肩,两侧的槽肩的延长线分别与两侧的侧壁的延长线相交,两个交点之间的距离为第二距离。
进一步地,将第二侧壁的高度的取值范围限定为小于或等于第一距离与第二距离之和的0.6倍,大于或等于第一距离与第二距离之和的0.4倍。本申请通过第一定子槽的尺寸参数对第一绝缘骨架中的第二侧壁的高度进行限定,进而实现对过线槽的侧壁的高度的合理限定,进而满足对绕组的有效固定之外,还能够对第一绝缘骨架的高度进行合理的设置,使其能够最大化的满足电机的小型化需求。进一步地,通过对第二侧壁的高度作出合理限定高度后,再利用第二侧壁的高度对第一侧壁的高度进行限定,以实现对整个第一绝缘骨架的高度进行限定,进而实现了电机设计的合理化。
在一种可能的技术方案中,沿定子铁芯的轴向,第一侧壁的高度大于或等于第二侧壁的高度的1.5倍。
在该技术方案中,对第一侧壁的高度的下限值进行了进一步地限定,进而以保证第一侧壁的高度能够满足独绕组的固定作用。示例性地,第一侧壁的高度大于或等于第二侧壁的高度的1.5倍。
在一种可能的技术方案中,电机还包括:第二绝缘骨架,设置于定子铁芯的另一端,沿定子铁芯的轴向,第二绝缘骨架靠近定子铁芯的圆心侧的内侧壁的高度与第二侧壁的高度相等。
在该技术方案中,电机还包括第二绝缘骨架,第二绝缘骨架与第一绝缘骨架相对设置,分别设置于定子铁芯的轴向上的相对两端。第二绝缘骨架包括过线槽和位于过线槽两侧的内侧壁和外侧壁,内侧壁为第二绝缘骨架靠近定子铁芯的圆心的一侧的侧壁;外侧壁为第二绝缘骨架靠近定子铁芯的外周壁的一侧的侧壁。第二绝缘骨架的内侧壁的高度指的是沿定子铁芯的轴向,内侧壁远离定子铁芯的端面至过线槽的底壁的距离。
在一种可能的技术方案中,定子铁芯包括沿定子铁芯轴向叠设的多个冲片;多个冲片包括:多个第一冲片,多个第一冲片叠设出定子铁芯的主体段,第一冲片包括第一定子槽;第二冲片,沿定子铁芯的轴向,第二冲片叠设于主体段的两端;其中,第一冲片的结构与第二冲片的结构不相同。
在该技术方案中,多个冲片沿着轴向连续层叠构成定子铁芯。其中,定子铁芯包括至少两种冲片,沿定子铁芯的轴向,定子铁芯中间部分为主体段,由多个第一冲片连续堆叠形成,第一冲片包括沿周向分布的多个第一定子齿;定子铁芯的两端部分由多个第二冲片叠加在一起形成,也即第二冲片叠设于主体段的两端。其中,第一冲片的结构与第二冲片的结构不同。
在一种可能的技术方案中,第二冲片包括第二定子槽,沿垂直于定子铁芯的轴向的方向对第一冲片和第二冲片进行截面,第二定子槽的截面面积大于第一定子槽的截面面积。
在该技术方案中,第二冲片包括沿周向分布的多个第二定子齿,两个相邻的第二定子齿围设形成第二定子槽,在沿垂直于定子铁芯的轴向的方向上,第二定子槽的截面面积要大于第一定子槽的截面面积。通过在第二冲片的第二定子槽的面积设置成大于第一冲片的第一定子槽的面积,使得第二冲片叠设于第一冲片上后,第一冲片位于第一定子槽的周侧部分凸出于第二冲片的第二定子槽的槽壁,进而形成的台阶,在进行第一绝缘骨架和第二绝缘骨架的安装是,第一绝缘骨架的底部沉入到第二定子槽内,抵接与第一冲片上,同样第二绝缘骨架安装时,底部也沉入到第二定子槽内,抵接与第一冲片上,进而使得电机的轴向尺寸得到了缩减。进一步地,通过第一绝缘骨架和第二绝缘骨架均有部分沉入至第二定子槽内,进而缩短了绕组的绕设周长,进一步地节省了绕组的铜线长度,节省了材料。
在一种可能的技术方案中,过线槽的底壁开设有限位槽,限位槽的数量为多个;多个限位槽沿第一侧壁至第二侧壁方向均匀分布。
在该技术方案中,第一绝缘骨架中的过线槽的底壁有对绕组进行限位的多个限位槽,并且限位槽均匀的分布在第一侧壁至第二侧壁的方向上,通过在第一绝缘骨架中的过线槽的底壁设置限位槽,可以有效改善绕组排线分布,实现电机槽满率进一步提升,进一步实现电机的小型化。
在一种可能的技术方案中,第一绝缘骨架还包括:引线槽,设置于第一侧壁上,引线槽与过线槽相连通,引线槽用于引出电机的导线。
在该技术方案中,第一绝缘骨架中还具有在第一侧壁开设的引线槽,将引线槽与过线槽相连通,进而使得电机的导线通过引线槽引出。
在一种可能的技术方案中,定子铁芯包括多个铁芯块,多个铁芯块沿定子铁芯的周向依次连接;铁芯块包括:轭部和与轭部相连接的定子齿,多个铁芯块对应的多个轭部相连接,以形成定子铁芯。
在该技术方案中,将定子铁芯设置为包括沿周向依次相连的多个铁芯块,且每个铁芯块包括轭部以及与轭部相连接的定子齿,同时相邻的两个铁芯块可以通过轭部连接,从而使得多个铁芯块围设出定子铁芯。
在一种可能的技术方案中,定子铁芯包括定子孔,定子孔的直径与定子铁芯的外圆直径的比值满足小于或等于0.65,且大于或等于0.60。
在该技术方案中,定子铁芯还包括由多个定子齿的端部围设形成的定子孔,对定子孔的直径与定子铁芯的外圆直径的比值进行了限定,限定了定子孔的直径与定子铁芯的外圆直径满足以下关系:其比值小于或等于0.65,且大于或等于0.60。
在一种可能的技术方案中,沿垂直于定子铁芯的轴线的方向对定子铁芯进行截面,第一定子槽的底壁的截面线包括:直线和弧线。
在该技术方案中,沿垂直于定子铁芯的轴线方向对定子铁芯进行截面,即第一冲片的截面形状内,第一定子槽的底壁面包括圆弧段和直线段。通过将第一定子槽的底壁的截面线设置成直线和弧线,进而可以提升定子槽的体积,进而使得绕组缠绕于定子铁芯时,有足够的容纳空间,以保证绕组的有序缠绕,提升电机的槽满率,以保证电机运行的可靠性。
在一种可能的技术方案中,电机还包括第二绝缘骨架,设置于定子铁芯的另一端;其中,绕组绕设于第一绝缘骨架的绕线匝数与绕组绕设于第二绝缘骨架的绕线匝数相同。
在该技术方案中,电机还包括第二绝缘骨架,第二绝缘骨架与第一绝缘骨架相对设置在定子铁芯的轴向两端。通过使得电机绕组缠绕第一绝缘骨架的绕线匝数与缠绕第二绝缘骨架的绕线匝数相同,进一步的保证了电机的正常运行。
根据本申请的第二个方面,提出了一种压缩机,包括第一方面任一技术方案提供的电机,因此,本申请的技术方案提供的压缩机具有第一方面任一技术方案提供的电机的全部有益效果,在此不一一列举。
根据本申请的第三个方面,提出了一种制冷设备,包括上述任一技术方案提供的电机或压缩机。
本申请提供的制冷设备因包括上述任一技术方案提供的电机或压缩机,因此具有其的全部技术效果,在此不再赘述。
根据本申请的第四个方面,提出了一种车辆,包括上述任一技术方案提供的电机或压缩机。
本申请提供的车辆因包括上述任一技术方案提供的电机或压缩机,因此具有其的全部技术效果,在此不再赘述。
有益效果
本申请所提供的电机、压缩机、制冷设备和车辆,一方面可以使得电机设计合理化,从而不会因为第一绝缘骨架高度过低,导致不能有效固定绕组的不良情况发生,另一方面又可以最大限度的降低第一绝缘骨架高度,从而有效地降低电机体积,有利于电机小型化。
根据本申请的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请一个实施例的电机部分结构的示意图;
图2示出了图1所示实施例的电机部分结构的俯视图;
图3示出了图2所示实施例中沿A-A向的剖视图;
图4示出了图1所示实施例的定子铁芯的结构示意图;
图5示出了图4所示实施例的定子铁芯的结构俯视图;
图6示出了图4所示实施例的第一冲片的结构示意图;
图7示出了图1所示实施例的第一绝缘骨架的结构示意图;
图8示出了图7所示实施例中的第一绝缘骨架的结构俯视图;
图9示出了图8所示实施例沿B-B向的剖视图;
图10示出了图1所示实施例的第二绝缘骨架的结构示意图;
图11示出了图10所示的第二绝缘骨架的结构俯视图;
图12示出了图11所示实施例中沿 C-C向的剖视图。
其中,图1至图12中附图标记与部件名称之间的对应关系为:
1电机,10定子铁芯,100第一冲片,1002第一定子齿,1004第一定子槽,1006定子孔,200第二冲片,2002第二定子齿,2004第二定子槽,20第一绝缘骨架,202第一侧壁,204第二侧壁,206过线槽,30第二绝缘骨架,302内侧壁,304外侧壁,306底板,40绕组。
本发明的实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图12来描述根据本申请的一些实施例提供的电机1和压缩机、制冷设备和车辆。
根据本申请的一个实施例,如图1至图12所示,提出了一种电机1,包括:定子铁芯10、第一绝缘骨架20和绕组40。
示例性地,第一绝缘骨架20设置于定子铁芯10的一端,第一绝缘骨架20包括第一侧壁202、第二侧壁204和位于第一侧壁202和第二侧壁204之间的过线槽206;绕组40绕设于过线槽206和定子铁芯10上;其中,沿定子铁芯10的轴向,第一侧壁202的高度小于或等于第二侧壁204的高度的2倍。
本申请提供的电机1包括定子铁芯10、第一绝缘骨架20和绕组40。沿定子铁芯10的轴线,第一绝缘骨架20设置于定子铁芯10的轴向一端,第一绝缘骨架20用于固定定子铁芯10和绕组40。第一绝缘骨架10包括第一侧壁202、第二侧壁204和过线槽206。第一侧壁202位于第一绝缘骨架20远离定子铁芯10的圆心侧的外侧壁,第二侧壁204位于第一绝缘骨架20靠近定子铁芯10的圆心侧的内侧壁,过线槽206位于第一侧壁202和第二侧壁204之间。绕组40绕设在过线槽206和定子铁芯10上。
进一步地,沿定子铁芯10的轴向,第一侧壁202的高度小于或等于第二侧壁204的高度的2倍,第一侧壁202的高度指的是沿定子铁芯10的轴向,第一侧壁202的端部至过线槽206的底壁之间的距离,第二侧壁204的盖度指的是沿定子铁芯10的轴线,第二侧壁204的端部至过线槽206的底壁之间的距离。通过将第一侧壁202的高度设置成小于或等于第二侧壁204的高度的2倍,进而一方面保证了独绕线槽内的绕组40的固定,一方面,通过限定第一侧壁202的高度进而使得第一绝缘骨架20的高度在保证对绕组40的限定的前提下,能够达到减小绝缘骨架整体高度的目的,进而减小了电机1轴向上的整体的高度,进而能够有利于电机1的小型化设计。
本申请通过对第一绝缘骨架20中的第一侧壁202和第二侧壁204的高度进行限定,设定为第一侧壁202的高度小于或等于第二侧壁204的高度的2倍,进而一方面可以使得电机1设计合理化,从而不会因为第一绝缘骨架20高度过低,导致不能有效固定绕组40的不良情况发生,另一方面又可以最大限度的降低第一绝缘骨架20高度,从而有效地降低电机1体积,有利于电机1小型化。
根据本申请的一个实施例,在上述实施例的基础上,进一步地,如图6所示,定子铁芯10包括多个第一定子齿1002和位于相邻两个第一定子齿1002之间的第一定子槽1004。
在该实施例中,定子铁芯10具有多个周向排列的第一定子齿1002,相邻两个第一定子齿1002围设形成第一定子槽1004,绕组40通过第一定子槽1004绕设于定子齿上。
进一步地,如图7、图8和图9所示,沿垂直于定子铁芯10的轴向的方向对定子铁芯10进行截面,在得到的截面内,第一定子槽1004的底壁延长线分别与第一定子槽1004的两侧壁的延长线相交于两点,两点之间的距离为第一距离;位于第一定子槽1004的槽口的两侧的槽肩的延长线分别与第一定子槽1004的两侧壁的延长线相交于两点,两点之间的距离为第二距离;沿定子铁芯10的轴向,第二侧壁204的高度的取值范围为:小于或等于第一距离与第二距离之和的0.6倍,大于或等于第一距离与第二距离之和的0.4倍。
示例性地,沿垂直于定子铁芯10的轴线的方向对定子铁芯10进行截面,在得到的截面内,第一定子槽1004的截面形状中,第一定子槽1004的底壁的延长线和两侧的侧壁的延长线分别相交,两个交点之间的连线为第一距离;第一定子槽1004包括槽口,槽口与底壁相对,槽口的两侧为第一定子槽1004的槽肩,两侧的槽肩的延长线分别与两侧的侧壁的延长线相交,两个交点之间的距离为第二距离。
进一步地,将第二侧壁204的高度的取值范围限定为小于或等于第一距离与第二距离之和的0.6倍,大于或等于第一距离与第二距离之和的0.4倍。本申请通过第一定子槽1004的尺寸参数对第一绝缘骨架20中的第二侧壁204的高度进行限定,进而实现对过线槽206的侧壁的高度的合理限定,进而满足对绕组40的有效固定之外,还能够对第一绝缘骨架20的高度进行合理的设置,使其能够最大化的满足电机1的小型化需求。进一步地,通过对第二侧壁204的高度作出合理限定高度后,再利用第二侧壁204的高度对第一侧壁202的高度进行限定,以实现对整个第一绝缘骨架20的高度进行限定,进而实现了电机1设计的合理化,即满足对绕组40的限位作用,又能够最大限度地降低第一绝缘骨架20的高度,从而有效降低电机1体积,有利于电机1小型化。
示例性地,第一定子齿1002数量一般为3的倍数,可以为6个、9个、12个或18个等,在实际应用时可根据电机1具体需求来选择,在此不一一举例。
示例性地,定子铁芯10的外周壁大致呈圆柱形,一方面便于定子铁芯10的安装,另一方面便于定子铁芯10的生产加工。
进一步地,沿定子铁芯10的轴向,第一侧壁202的高度大于或等于第二侧壁204的高度的1.5倍。
示例性地,对第一侧壁202的高度的下限值进行了进一步地限定,进而以保证第一侧壁202的高度能够满足独绕组40的固定作用。示例性地,第一侧壁202的高度大于或等于第二侧壁204的高度的1.5倍。通过限定第一绝缘骨架20第一侧壁202和第二侧壁204的高度关系,以实现对整个第一绝缘骨架20的高度进行限定,进而实现了电机1设计的合理化,即满足对绕组40的限位作用,又能够保证电机1小型化需求。
示例性地,如图6所示,沿垂直于定子铁芯10的轴线的方向对定子铁芯10进行截面,在得到的截面内,第一定子槽1004的底壁延长线分别与第一定子槽1004的两侧壁的延长线相交于两点,两点之间的距离为第一距离H1;第一定子槽1004的槽口的两侧的槽肩的延长线分别与第一定子槽1004的两侧壁的延长线相交于两点,两点之间的距离为第二距离H2;以及沿定子铁芯10的轴线方向,第一侧壁202的高度为第一侧壁202远离定子铁芯10端面至过线槽206的槽底的距离为H4,第二侧壁204的高度为第二侧壁204远离定子铁芯10端面至过线槽206的槽底的轴向距离为H3。其中,H1,H2,H3,H4满足以下关系式:0.40×(H1+H2)≤H3≤0.60×(H1+H2),1.5×H3≤H4≤2.0×H3。
本申请通过对第一绝缘骨架20的第一侧壁202的高度和第二侧壁204的高度进行限定,可以使电机1设计合理化,既不会因为第一绝缘骨架20高度过低,导致不能有效固定铜线的不良情况发生,又可以最大限度降低第一绝缘骨架20高度,有效降低电机1体积,有利于电机1小型化。
根据本申请的一个实施例,如图1至图3所示,在上述任一实施例的基础上,进一步地,电机1还包括:第二绝缘骨架30。
示例性地,第二绝缘骨架30设置于定子铁芯10的另一端,沿定子铁芯10的轴向,第二绝缘骨架30靠近定子铁芯10的圆心侧的内侧壁302的高度与第二侧壁204的高度相等。
在该实施例中,电机1还包括第二绝缘骨架30,第二绝缘骨架30与第一绝缘骨架20相对设置,分别设置于定子铁芯10的轴向上的相对两端。第二绝缘骨架30包括过线槽206和位于过线槽206两侧的内侧壁302和外侧壁304,内侧壁302为第二绝缘骨架30靠近定子铁芯10的圆心的一侧的侧壁;外侧壁304为第二绝缘骨架30靠近定子铁芯10的外周壁的一侧的侧壁。第二绝缘骨架30的内侧壁302的高度指的是沿定子铁芯10的轴向,内侧壁302远离定子铁芯10的端面至过线槽206的底壁的距离。
进一步地,通过将第二绝缘骨架30的内侧壁302的高度与第一绝缘骨架20中第二侧壁204的高度设置成相等,进而将定子铁芯10轴向两端的绝缘骨架的高度均设置成最佳高度范围内,进而实现了电机1设计合理化,既不会因为绝缘骨架高度过低,导致不能有效固定铜线的不良情况发生,又可以最大限度降低绝缘端板高度,有效降低电机1体积,有利于电机1小型化。
示例性地,如图10、图11和图12所示,第二绝缘骨架30包括外侧壁304、底板306、内侧壁302。其中,第二绝缘骨架30的内侧壁302的高度H5为内侧壁302远离定子铁芯10端面到底板306的轴向尺寸,则内侧壁302的高度H5与第一绝缘骨架20中第一侧壁202远离定子铁芯10端面到过线槽206的槽底的轴向距离H3之间满足以下关系式:H5=H3,即第二绝缘骨架30中内侧壁302的高度与第一绝缘骨架20第二侧壁204的高度相同,本申请通过限定第二绝缘骨架30中内侧壁302的高度与第一绝缘骨架20第二侧壁204的高度相同,可以最大限度的节省材料,利于电机1小型化。
根据本申请的一个实施例,如图4、图5和图6所示,包括上述任一实施例限定的特征,以及进一步地,定子铁芯10包括沿定子铁芯10轴向叠设的多个冲片。
示例性地,多个冲片包括:多个第一冲片100和第二冲片200,其中,第一冲片100的结构与第二冲片200的结构不相同。
进一步地,多个第一冲片100叠设出定子铁芯10的主体段,第一冲片100包括第一定子槽1004;第二冲片200沿定子铁芯10的轴向,第二冲片200叠设于主体段的两端。
在该实施例中,如图4所示,定子铁芯10由多个冲片沿着轴向连续层叠构成。其中,定子铁芯10包括至少两种冲片。沿定子铁芯10的轴向,定子铁芯10中间部分为主体段,由多个第一冲片100连续堆叠形成,第一冲片100包括沿周向分布的多个第一定子齿1002;定子铁芯10的两端部分由多个第二冲片200叠加在一起形成,也即第二冲片200叠设于主体段的两端。其中,第一冲片100的结构与第二冲片200的结构不同。通过采用两种结构的第一冲片100和第二冲片200,通过第一冲片100保证电机1的整体性能,通过在端部设置第二冲片200,使得第二冲片200与第一绝缘骨架20和第二绝缘骨架30进行安装配合,进而进一步地在定子铁芯10的轴向上减小电机1的轴向尺寸,有利于电机1小型化设计。
进一步地,多个第一冲片100构成了定子铁芯10的主体段,位于主体段两端的第二冲片200的数量可以分别为一个或多个,示例性地设置数量,可以根据具体的电机1设置参数进行设定,在此不再赘述。
进一步地,第二冲片200包括第二定子槽2004。
示例性地,如图5所示,沿垂直于定子铁芯10的轴线的方向对第一冲片100和第二冲片200进行截面,第二定子槽2004的截面面积大于第一定子槽1004的截面面积。
示例性地,第二冲片200包括沿周向分布的多个第二定子齿2002,两个相邻的第二定子齿2002围设形成第二定子槽2004,在沿垂直于定子铁芯10的轴向的方向上,第二定子槽2004的截面面积要大于第一定子槽1004的截面面积。通过在第二冲片200的第二定子槽2004的面积设置成大于第一冲片100的第一定子槽1004的面积,使得第二冲片200叠设于第一冲片100上后,第一冲片100位于第一定子槽1004的周侧部分凸出于第二冲片200的第二定子槽2004的槽壁,进而形成的台阶,在进行第一绝缘骨架20和第二绝缘骨架30的安装时,第一绝缘骨架20的底部沉入到第二定子槽2004内,抵接于第一冲片100上,同样第二绝缘骨架30安装时,底部也沉入到第二定子槽2004内,抵接于第一冲片100上,进而使得电机1的轴向尺寸得到了缩减。进一步地,通过第一绝缘骨架20和第二绝缘骨架30均有部分沉入至第二定子槽2004内,进而缩短了绕组40的绕设周长,进一步地节省了绕组40的铜线长度,节省了材料。
进一步地,第二定子齿2002包括齿根和与齿根一端连接的齿靴,齿根的另一端与第二冲片200的轭部相连接。齿靴包括第一齿靴和第二齿靴,沿第二冲片200的周向,第一齿靴和第二齿靴的长度不等,具体为,第一齿靴的长度小于第二齿靴的长度。第一冲片100的第一定子齿1002对应的齿靴包括第三齿靴和第四齿靴,第三齿靴和第四齿靴的长度相等,且第二齿靴的长度与第三齿靴和第四齿靴的长度相等。也即第二定子槽2004的槽口的长度大于第一定子槽1004的槽口的长度,通过将第二定子槽2004的槽口两侧的第一齿靴和第二齿靴设置成不对称结构,进而可以利用电机1的磁阻转矩,进一步提升输出转矩。
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地,过线槽206的底壁开设有限位槽(图中未示出)。
示例性地,限位槽的数量为多个;多个限位槽沿第一侧壁202至第二侧壁204方向均匀分布。
在该实施例中,第一绝缘骨架20中的过线槽206的底壁有对绕组40进行限位的多个限位槽,并且在第一侧壁202至第二侧壁204的方向上限位槽均匀分布,通过在第一绝缘骨架20中的过线槽206的底壁设置限位槽,可以有效改善绕组40排线分布,实现电机1槽满率进一步提升,进一步实现电机1的小型化。
可以理解的是,第二绝缘骨架30与第一绝缘骨架20互相对应,因此,在第一绝缘骨架20的过线槽206上设置有限位槽,那么在第二绝缘骨架30也具有限位槽,其中,限位槽在沿内侧壁302到外侧壁304之间的底板306上均匀分布。
进一步地,第一绝缘骨架20还包括:引线槽,设置于第一侧壁202上,引线槽与过线槽206相连通,引线槽用于引出电机1的导线。
示例性地,第一绝缘骨架20中还具有在第一侧壁202开设的引线槽,将引线槽与过线槽206相连通,进而使得电机1的导线通过引线槽引出,通过在第一绝缘骨架20上开设引线槽,方便导线的引出。
可以理解的是,电机1的引出导线口靠近于引线槽,因此,第一绝缘骨架20靠近电机1的引出线一侧,那么相对的第二绝缘骨架30远离电机1的引出线一侧。
进一步地,绕组40绕设于第一绝缘骨架20的绕线匝数与绕组40绕设于第二绝缘骨架30的绕线匝数相同。
示例性地,通过使得电机1中绕组40缠绕第一绝缘骨架20的绕线匝数与缠绕第二绝缘骨架30的绕线匝数相同,进一步的保证了电机1的正常运行。
根据本申请的一个实施例,包括上述任一实施例限定的特征,以及进一步地,如图1至图4所示,定子铁芯10包括多个铁芯块。
示例性地,多个铁芯块沿定子铁芯10的周向依次连接;铁芯块包括:轭部和与轭部相连接的定子齿,多个铁芯块对应的多个轭部相连接,以形成定子铁芯10。
在该实施例中,将定子铁芯10设置为包括沿周向依次相连的多个铁芯块,且每个铁芯块包括轭部以及与轭部相连接的定子齿,同时相邻的两个铁芯块可以通过轭部连接,从而使得多个铁芯块围设出定子铁芯10。通过将定子铁芯10设置为分块结构,有效提升电机1槽面积利用率,提升电机1功率密度,进一步实现电机1小型化。
示例性地,将定子铁芯10设置为包括沿周向依次相连的多个铁芯块,且每个铁芯块包括轭部、至少一个定子齿和两个连接部,同时两个连接部分别位于轭部的周向两端。
示例性地,两个连接部中的一个为凹槽结构,两个连接部中的另一个为与凹槽结构相配合的凸起结构,通过凹槽结构和凸起结构实现相邻的两个铁芯块的连接。从而方便了生产,提高了生成效率。
根据本申请的一个实施例,如图6所示,包括上述任一实施例限定的特征,以及进一步地,定子铁芯10包括定子孔1006。
示例性地,定子孔1006的直径与定子铁芯10的外圆直径的比值满足小于或等于0.65,且大于或等于0.60。
在该实施例中,定子铁芯10还包括由多个定子齿围设形成定子孔1006,定子孔1006用于安装电机1的转子。进一步地,对定子孔1006的直径与定子铁芯10的外圆直径的比值进行了限定,限定了定子孔1006的直径与定子铁芯10的外圆直径满足以下关系:其比值小于或等于0.65,且大于或等于0.60。
示例性地,沿定子铁芯10的径向,定子孔1006的直径为ϕ1,冲片的外径为ϕ2,满足以下关系式:0.60≤ϕ1/ϕ2≤0.65。通过对定子铁芯10的定子孔1006的直径与定子铁芯10的外圆直径的比列限定,可以有效改善电机1铜耗、铁耗分布,降低电机1损耗,进一步的减小电机1体积。
进一步地,沿垂直于定子铁芯10的轴向的方向对定子铁芯10进行截面,第一定子槽1004的底壁的截面线包括:直线和弧线。
示例性地,沿垂直于定子铁芯10的轴线方向对定子铁芯10进行截面,即第一冲片100的截面形状内,第一定子槽1004的底壁面包括圆弧段和直线段。通过将第一定子槽1004的底壁的截面线设置成直线和弧线,进而可以提升定子槽的体积,进而使得绕组40缠绕于定子铁芯10时,有足够的容纳空间,以保证绕组40的有序缠绕,提升电机1的槽满率,以保证电机1运行的可靠性。
根据本申请的一个实施例,如图1至图12所示,本申请提出一种电机1,通过对定子冲片尺寸、以及绝缘端板轴向高度尺寸合理搭配,能够实现电机1小型化,改善电机1可靠性。
示例性地,如图1和图2所示,本申请提供的电机1包括定子铁芯10、第一绝缘骨架20、第二绝缘骨架30、绕组40,定子铁芯10由多个冲片沿着轴向连续层叠构成。
进一步地,定子铁芯10包括至少两种冲片;多个冲片包括:多个第一冲片100和第二冲片200,其中,第一冲片100的结构与第二冲片200的结构不相同。多个第一冲片100叠设出定子铁芯10的主体段,第二冲片200沿定子铁芯10的轴向,第二冲片200叠设于主体段的两端。
进一步地,第一绝缘骨架20和第二绝缘骨架30分别放置于定子铁芯10沿轴向方向两端,绕组40缠绕在绝缘骨架和定子铁芯10上,第一绝缘骨架20位于电机1的引出线侧。
进一步地,第一冲片100内侧具有间隔分布的多个第一定子齿1002,相邻两个第一定子齿1002之间限定出第一定子槽1004。
进一步地,沿垂直于定子铁芯10的轴线的方向对定子铁芯10进行截面,在得到的截面内,第一定子槽1004的截面形状中,第一定子槽1004的底壁延长线分别与第一定子槽1004的两侧壁的延长线相交于两点,两点之间的距离为第一距离H1;第一定子槽1004的槽口的两侧的槽肩的延长线分别与第一定子槽1004的两侧壁的延长线相交于两点,两点之间的距离为第二距离H2;以及沿定子铁芯10的轴向轴线方向,第一侧壁202的高度为第一侧壁202远离定子铁芯10端面到至过线槽206的槽底的轴向距离为H4,第二侧壁204的高度为第二侧壁204远离定子铁芯10端面到至过线槽206的槽底的轴向距离为H3。其中,H1,H2,H3,H4满足以下关系式:0.40×(H1+H2)≤H3≤0.60×(H1+H2),1.5×H3≤H4≤2.0×H3。
进一步的,第一冲片100的第一定子槽1004的槽底部分由直线与圆弧组合构成,从而有利于提高电机1的槽满率等参数,进而提高电机1能效。
进一步的,沿定子铁芯10的径向,定子孔1006的直径为ϕ1,冲片的外径为ϕ2,满足以下关系式:0.60≤ϕ1/ϕ2≤0.65,可以有效改善电机1铜耗、铁耗分布,降低电机1损耗,进一步的减小电机1体积。
进一步的,定子铁芯10采用分块结构。即定子铁芯10包括多个铁芯块,由于定子铁芯10采用分块结构,可以有效提升电机1槽面积利用率,提升电机1功率密度,进一步实现电机1小型化。
进一步地,第二绝缘骨架30包括外侧壁304、底板306、内侧壁302。第二绝缘骨架30的内侧壁302 远离定子铁芯10端面到底板306的轴向尺寸为H5,则内侧壁302的高度H5与第一绝缘骨架20中第一侧壁202远离定子铁芯10端面到过线槽206的槽底的轴向距离H3之间满足以下关系式: H5=H3。
进一步地,电机1的绕组40缠绕第一绝缘骨架20的匝数与缠绕第二绝缘骨架30的匝数相同,通过使第一绝缘骨架20和第二绝缘骨架30内侧壁302高度相同,可以最大限度的节省材料,利于电机1小型化。
进一步地,第一绝缘骨架20中的过线槽206和第二绝缘骨架30中的底板306均有对绕组40进行限位的限位槽;通过对第一绝缘骨架20中的过线槽206和第二绝缘骨架30中的底板306设置限位槽,可以有效的改善绕组40排线分布,实现电机1槽满率进一步提升,进一步实现电机1小型化。
进一步地,第一冲片100中的第一定子齿1002的数量为12个。
本申请提供的电机1通过对第一绝缘骨架20上第一侧壁202的高度和第二侧壁204的高度进行限定,可以使电机1设计合理化,既不会因为绝缘骨架高度过低,导致不能有效固定铜线的不良情况发生,又可以最大限度降低绝缘骨架高度,有效降低电机1体积,有利于电机1小型化。本申请的目的在于提出一种永磁同步电机1,通过对定子冲片尺寸、以及绝缘端板轴向高度尺寸合理搭配,能够实现电机1小型化,改善电机1可靠性。
本申请的第二方面提供了一种压缩机,具有第一方面任一实施例提供的电机1。
示例性地,本申请提供的压缩机包括上述任一实施例的电机1,本申请提供的电机1包括定子铁芯10、第一绝缘骨架20和绕组40。
进一步地,沿定子铁芯10的轴线,第一绝缘骨架20位于平行于设置于定子铁芯10的轴向一端,第一绝缘骨架20用于固定定子铁芯10和绕组40。且第一绝缘骨架20与定子铁芯10连接。
进一步地,第一绝缘骨架20由包括第一侧壁202、第二侧壁204和过线槽206组成。第一侧壁202位于第一绝缘骨架20远离定子铁芯10的圆心侧的外侧壁304,第二侧壁204位于第一绝缘骨架20靠近定子铁芯10的圆心侧的内侧壁302,过线槽206位于第一侧壁202和第二侧壁204之间。绕组40绕设在过线槽206和定子铁芯10上。
进一步地,限定了沿定子铁芯10的轴向,第一侧壁202的高度小于或等于第二侧壁204的高度的2倍,第一侧壁202的高度指的是沿定子铁芯10的轴向,第一侧壁202的端部至过线槽206的底壁之间的距离,第二侧壁204的盖度指的是沿定子铁芯10的轴线,第二侧壁204的端部至过线槽206的底壁之间的距离。即通过将第一侧壁202的高度设置成小于或等于第二侧壁204的高度的2倍,进而一方面保证了独绕线槽内的绕组40的固定,一方面,通过限定第一侧壁202的高度进而使得第一绝缘骨架20的高度在保证对绕组40的限定的前提下,能够达到减小绝缘骨架整体高度的目的,进而减小了电机1轴向上的整体的高度,进而能够有利于电机1的小型化设计。
进一步地,定子铁芯10具有多个周向排列的第一定子齿1002,相邻两个第一定子齿1002围设形成扇形结构的第一定子槽1004,绕组40通过第一定子槽1004绕设于定子齿上。
进一步的,沿垂直于定子铁芯10的轴向的方向对定子铁芯10进行截面,在得到的截面内,第一定子槽1004的截面形状中,第一定子槽1004的底壁的延长线和两侧的侧壁的延长线分别相交,两个交点之间的连线为第一距离;第一定子槽1004包括槽口,槽口与底壁相对,槽口的两侧为第一定子槽1004的槽肩,两侧的槽肩的延长线分别与两侧的侧壁的延长线相交,两个交点之间的距离为第二距离。
以定子铁芯10内径为轴线,所示定子铁芯10轴向中间位置定子冲片中第一定子槽1004的底壁部分延长线分别与两侧第一定子齿1002延长线相交两点之间的距离为第一距离;第一定子槽1004的两侧的槽肩部分延长线与两侧第一定子齿1002延长线相交两点之间的距离为第二距离。
进一步地,设定沿定子铁芯10的轴向,将第二侧壁204的高度的取值范围限定为小于或等于第一距离与第二距离之和的0.6倍,大于或等于第一距离与第二距离之和的0.4倍。本申请通过第一定子槽1004的尺寸参数对第一绝缘骨架20中的第二侧壁204的高度进行限定,进而实现对过线槽206的侧壁的高度的合理限定,进而满足对绕组40的有效固定之外,还能够对第一绝缘骨架20的高度进行合理的设置,使其能够最大化的满足电机1的小型化需求。
进一步地,通过对第二侧壁204的高度作出合理限定高度后,再利用第二侧壁204的高度对第一侧壁202的高度进行限定,以实现对整个第一绝缘骨架20的高度进行限定,进而实现了电机1设计的合理化,即满足对绕组40的限位作用,又能够最大限度地降低第一绝缘骨架20的高度,从而有效降低电机1体积,有利于电机1小型化。
本申请提供的压缩机包括上述任一实施例的电机1,进而可以对压缩机的内部空间进行合理化利用,进一步地提升压缩机的适用性。
本申请的第三方面实施例还提提出了一种制冷设备,包括上述任一实施例的电机1或压缩机。
本申请提供的制冷设备因包括上述任一实施例的电机1或压缩机,因此具有其的全部技术效果,在此不再赘述。
本申请的第四方面实施例还提提出了一种车辆,包括上述任一实施例的电机1或压缩机。
本申请提供的车辆因包括上述任一实施例的电机1或压缩机,因此具有其的全部技术效果,在此不再赘述。
示例性地,车辆包括电动车辆,通过采用本申请提供的电机或压缩机能够更好地适应于车辆的空间设计。
在本说明书的描述中,术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种电机,其中,包括:
    定子铁芯;
    第一绝缘骨架,设置于所述定子铁芯的一端,所述第一绝缘骨架包括第一侧壁、第二侧壁和位于所述第一侧壁和所述第二侧壁之间的过线槽;
    绕组,所述绕组绕设于所述过线槽和所述定子铁芯上;
    其中,沿所述定子铁芯的轴向,所述第一侧壁的高度小于或等于所述第二侧壁的高度的2倍。
  2. 根据权利要求1所述的电机,其中,
    所述定子铁芯包括多个第一定子齿和位于相邻两个所述第一定子齿之间的第一定子槽;
    沿垂直于所述定子铁芯的轴向的方向对所述定子铁芯进行截面,在得到的截面内,所述第一定子槽的底壁延长线分别与所述第一定子槽的两侧壁的延长线相交于两点,两点之间的距离为第一距离;
    位于所述第一定子槽的槽口的两侧的槽肩的延长线分别与所述第一定子槽的两侧壁的延长线相交于两点,两点之间的距离为第二距离;
    沿所述定子铁芯的轴向,所述第二侧壁的高度的取值范围为:小于或等于所述第一距离与所述第二距离之和的0.6倍,大于或等于所述第一距离与所述第二距离之和的0.4倍。
  3. 根据权利要求1或2所述的电机,其中,
    沿所述定子铁芯的轴向,所述第一侧壁的高度大于或等于所述第二侧壁的高度的1.5倍。
  4. 根据权利要求1或2所述的电机,其中,还包括:
    第二绝缘骨架,设置于所述定子铁芯的另一端,沿所述定子铁芯的轴向,所述第二绝缘骨架靠近所述定子铁芯的圆心侧的内侧壁的高度与所述第二侧壁的高度相等。
  5. 根据权利要求2所述的电机,其中,
    所述定子铁芯包括沿所述定子铁芯轴向叠设的多个冲片;
    所述多个冲片包括:
    多个第一冲片,所述多个第一冲片叠设出所述定子铁芯的主体段,所述第一冲片包括所述第一定子槽;
    第二冲片,沿所述定子铁芯的轴向,所述第二冲片叠设于所述主体段的两端;
    其中,所述第一冲片的结构与所述第二冲片的结构不相同。
  6. 根据权利要求5所述的电机,其中,
    所述第二冲片包括第二定子槽,沿垂直于所述定子铁芯的轴向的方向对所述第一冲片和所述第二冲片进行截面,所述第二定子槽的截面面积大于所述第一定子槽的截面面积。
  7. 根据权利要求1至6中任一项所述的电机,其中,
    所述过线槽的底壁开设有限位槽,所述限位槽的数量为多个;
    多个所述限位槽沿所述第一侧壁至所述第二侧壁方向均匀分布。
  8. 根据权利要求1至6中任一项所述的电机,其中,所述第一绝缘骨架还包括:
    引线槽,设置于所述第一侧壁上,所述引线槽与所述过线槽相连通,所述引线槽用于引出所述电机的导线。
  9. 根据权利要求1至6中任一项所述的电机,其中,
    所述定子铁芯包括多个铁芯块,所述多个铁芯块沿所述定子铁芯的周向依次连接;
    所述铁芯块包括:轭部和与所述轭部相连接的定子齿,所述多个铁芯块对应的多个所述轭部相连接,以形成所述定子铁芯。
  10. 根据权利要求5或6所述的电机,其中,
    沿垂直于所述定子铁芯的轴向的方向对所述定子铁芯进行截面,所述第一定子槽的底壁的截面线包括:直线和弧线。
  11. 根据权利要求1至3中任一项所述的电机,其中,还包括:
    第二绝缘骨架,设置于所述定子铁芯的另一端;
    其中,所述绕组绕设于所述第一绝缘骨架的绕线匝数与所述绕组绕设于所述第二绝缘骨架的绕线匝数相同。
  12. 一种压缩机,其中,包括:
    如权利要求1至11中任一项所述的电机。
  13. 一种制冷设备,其中,包括:
    如权利要求1至11中任一项所述的电机;或
    如权利要求12所述的压缩机。
  14. 一种车辆,其中,包括:
    如权利要求1至11中任一项所述的电机;或
    如权利要求12所述的压缩机。
PCT/CN2023/082025 2022-04-28 2023-03-17 电机、压缩机、制冷设备和车辆 WO2023207406A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210457959.2A CN117013732A (zh) 2022-04-28 2022-04-28 电机、压缩机、制冷设备和车辆
CN202210457959.2 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207406A1 true WO2023207406A1 (zh) 2023-11-02

Family

ID=88517272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082025 WO2023207406A1 (zh) 2022-04-28 2023-03-17 电机、压缩机、制冷设备和车辆

Country Status (2)

Country Link
CN (1) CN117013732A (zh)
WO (1) WO2023207406A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163051A (ja) * 2016-03-10 2017-09-14 株式会社ダイヘン コイルボビン、コイル及びそのコイルを備えた変圧器
CN212258597U (zh) * 2020-09-30 2020-12-29 安徽美芝精密制造有限公司 绝缘骨架、电机和压缩机
CN113300503A (zh) * 2021-05-17 2021-08-24 安徽威灵汽车部件有限公司 定子、电机、压缩机和车辆
CN113300520A (zh) * 2021-05-17 2021-08-24 安徽威灵汽车部件有限公司 绝缘骨架、定子、电机、压缩机和车辆
CN114069928A (zh) * 2021-11-19 2022-02-18 广东美芝制冷设备有限公司 绝缘骨架、定子、电机、压缩机和制冷设备
CN216121982U (zh) * 2021-05-17 2022-03-22 安徽威灵汽车部件有限公司 绝缘骨架、定子、电机、压缩机和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163051A (ja) * 2016-03-10 2017-09-14 株式会社ダイヘン コイルボビン、コイル及びそのコイルを備えた変圧器
CN212258597U (zh) * 2020-09-30 2020-12-29 安徽美芝精密制造有限公司 绝缘骨架、电机和压缩机
CN113300503A (zh) * 2021-05-17 2021-08-24 安徽威灵汽车部件有限公司 定子、电机、压缩机和车辆
CN113300520A (zh) * 2021-05-17 2021-08-24 安徽威灵汽车部件有限公司 绝缘骨架、定子、电机、压缩机和车辆
CN216121982U (zh) * 2021-05-17 2022-03-22 安徽威灵汽车部件有限公司 绝缘骨架、定子、电机、压缩机和车辆
CN114069928A (zh) * 2021-11-19 2022-02-18 广东美芝制冷设备有限公司 绝缘骨架、定子、电机、压缩机和制冷设备

Also Published As

Publication number Publication date
CN117013732A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN1118126C (zh) 交错的铁心叠片制成的直线电动机定子
CN103026591B (zh) 旋转电机的定子以及旋转电机
JPS5914336A (ja) 回転電気機械
CN106208435B (zh) 定子组件和具有其的电机、压缩机以及制冷设备
JP2004064825A (ja) 回転機の電機子コイル
WO2023103638A1 (zh) 定子、电机、压缩机和电器设备
US9819238B2 (en) Rotary electric machine having stator with coil conductors having different cross-sectional width
WO2023087573A1 (zh) 绝缘骨架、定子、电机、压缩机和制冷设备
WO2023207406A1 (zh) 电机、压缩机、制冷设备和车辆
CN214900380U (zh) 一种新型阶梯斜槽的扁铜线油冷电机定子及电机
WO2023097919A1 (zh) 定子、电机、压缩机和制冷设备
WO2023082358A1 (zh) 一种电机结构
CN219227297U (zh) 一种分段绕线式集中绕组定子一体式绝缘胶套
CN107359761B (zh) 单相感应电机和压缩机
CN112994369A (zh) 一种调整电机线圈端部间隙的方法
CN110417154B (zh) 一种轴向磁通永磁同步电机的定子
WO2024012150A1 (zh) 定子组件、电机和伺服系统
WO2023088328A1 (zh) 一种定子组件及电机
CN214900381U (zh) 一种新型阶梯斜槽的扁铜线油冷电机定子铁心块及定子
CN206226247U (zh) 压缩机用单相感应电动机和具有其的压缩机、制冷设备
CN216959486U (zh) 便于绕线均匀的绝缘骨架及其电机
CN218829316U (zh) 一种分段绕线式集中绕组定子绝缘胶套
CN220653054U (zh) 定子组件及电机
CN213425867U (zh) 一种电机定子绕组模块、电机定子铁芯和轴向磁通电机
JP7317143B2 (ja) 鉄心アセンブリ、モータ、圧縮機及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794842

Country of ref document: EP

Kind code of ref document: A1