WO2023207164A1 - 一种机器人作业控制方法及装置 - Google Patents

一种机器人作业控制方法及装置 Download PDF

Info

Publication number
WO2023207164A1
WO2023207164A1 PCT/CN2022/141311 CN2022141311W WO2023207164A1 WO 2023207164 A1 WO2023207164 A1 WO 2023207164A1 CN 2022141311 W CN2022141311 W CN 2022141311W WO 2023207164 A1 WO2023207164 A1 WO 2023207164A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
control
robot
current
contact force
Prior art date
Application number
PCT/CN2022/141311
Other languages
English (en)
French (fr)
Inventor
万文洁
Original Assignee
珠海格力智能装备有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力智能装备有限公司, 珠海格力电器股份有限公司 filed Critical 珠海格力智能装备有限公司
Publication of WO2023207164A1 publication Critical patent/WO2023207164A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to the technical field of robot operation control, and in particular to a robot operation control method and device.
  • the requirements for robots are getting higher and higher, and they are expected to complete more complex tasks, such as grinding, precision assembly, human-machine collaboration, etc. Therefore, the ability of industrial robots to interact with the environment is more important.
  • the robot In the actual operation process of the robot, the robot is often required to have impedance performance to detect whether the robot's working state has the flexibility to adapt to the environment.
  • the robot also needs to have force tracking performance. To improve the robot's operating accuracy.
  • the current robot control method has limitations. It cannot always have strong adaptability to the forces of the external environment, that is, impedance performance, and it cannot always apply the required force to the external environment, that is, force tracking performance, which affects the robot and the environment. interactive capabilities.
  • embodiments of the present disclosure provide a robot operation control method and device to overcome the problem in the related art that the existing robot operation control method is difficult to simultaneously ensure that the robot has both impedance performance and force tracking performance, causing the robot to interact with the environment.
  • the problem of weak interaction ability is difficult to simultaneously ensure that the robot has both impedance performance and force tracking performance, causing the robot to interact with the environment.
  • an embodiment of the present disclosure provides a robot operation control method, including:
  • the target operation task includes: the target movement position of the target robot and the target contact force between the target robot and the environment;
  • determining the current control mode of the target robot based on current control requirements includes:
  • the current control mode is determined to be position control.
  • determining the control target from the target movement position and the target contact force according to the current control mode includes:
  • the target contact force is determined as the control target
  • the target movement position is determined as the control target.
  • the operation control of the target robot based on the control target and the current contact force includes:
  • a preset position control model is used to perform operation control on the target robot.
  • the operation control of the target robot based on the control target and the current contact force includes:
  • a preset position control model is used to perform operation control on the target robot.
  • the current control requirements are obtained as follows:
  • the current control requirements are determined based on the current work stage.
  • the method further includes:
  • an embodiment of the present disclosure provides a robot operation control device, including:
  • the first processing module is configured to obtain the target operation task of the target robot, the current contact force between the target robot and the environment, and the current control requirements.
  • the target operation task includes: the target movement position of the target robot and its target with the environment. contact force;
  • the second processing module is configured to determine the current control mode of the target robot based on the current control requirements
  • a third processing module configured to determine a control target from the target movement position and the target contact force according to the current control mode
  • a fourth processing module is configured to perform job control on the target robot based on the control target and the current contact force.
  • an electronic device including:
  • a memory and a processor The memory and the processor are communicatively connected to each other.
  • Computer instructions are stored in the memory.
  • the processor executes the computer instructions to execute the first aspect and any of the possible options thereof. Choose the robot operation control method described in the embodiment.
  • embodiments of the present disclosure provide a computer-readable storage medium that stores computer instructions configured to cause the computer to execute the first aspect, or any one thereof.
  • the robot operation control method and device obtained by the embodiments of the present disclosure obtain the target operation task of the target robot, the current contact force between the target robot and the environment, and the current control requirements.
  • the target operation task includes: the target movement position of the target robot and its relationship with the environment. target contact force; determine the current control method of the target robot based on the current control requirements; determine the control target from the target movement position and target contact force according to the current control method; perform operation control on the target robot based on the control target and the current contact force.
  • the flexibly adjusted target moving position and target contact force are used as the control targets of the target robot, so that the target moving position can be used to achieve compliant control of the robot, and the target contact force can be used to achieve the robot's compliance.
  • Force tracking control improves the robot's operating accuracy, thereby improving the robot's flexible interaction ability with the environment, which can meet the actual work needs of the robot and improve the user experience.
  • Figure 1 is a flow chart of a robot operation control method according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the control principle of robot operation control according to an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a robot operation control device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary; it can also be an internal connection between two components; it can be a wireless connection or a wired connection connect.
  • the requirements for robots are getting higher and higher, and they are expected to complete more complex tasks, such as grinding, precision assembly, human-machine collaboration, etc. Therefore, the ability of industrial robots to interact with the environment is more important.
  • the robot In the actual operation process of the robot, the robot is often required to have impedance performance to detect whether the robot's working state has the flexibility to adapt to the environment.
  • the robot also needs to have force tracking performance. To improve the robot's operating accuracy.
  • Direct force control can realize the force tracking characteristics of the robot and directly control the contact force between the robot and the environment, including explicit force control and force/position hybrid control.
  • direct force control requires detailed task description and a large amount of task planning, which is not suitable for free motion.
  • the transformation from free motion to constrained motion requires switching of control modes.
  • Indirect force control can realize the impedance characteristics of the robot to adapt to the uncertainty of the external environment.
  • Indirect force control includes stiffness control, damping control and impedance control. Impedance control is based on damping control and stiffness control. Compliance control is achieved by adjusting the dynamic relationship between the user-set robot end position deviation and force.
  • the dynamic relationship is the target impedance.
  • the design of the target impedance model is the core of impedance control, and it is also the difficulty of impedance control.
  • Impedance control has the advantages of less mission planning, less real-time calculation, and strong robustness to system uncertainties and disturbances.
  • impedance control does not have precise force tracking capabilities and is not suitable for tasks in robots and environments that require precise force control. In practical applications, direct force control and indirect force control are independent and incompatible, and have limitations.
  • the robot operation control method specifically includes the following steps:
  • Step S101 Obtain the target task of the target robot, the current contact force between the target robot and the environment, and the current control requirements.
  • the target operation task includes: the target moving position of the target robot and its target contact force with the environment.
  • the current contact force between the target robot and the environment can be collected through the force sensor installed at the end of the robot.
  • the target movement position is the position extracted from the pre-planned working path of the target robot
  • the target contact force is the preset force exerted by the target robot on the external environment when performing the task, such as during precision assembly.
  • the contact force between the robot and the assembly device needs to be strictly controlled to avoid damage to the device.
  • Step S102 Determine the current control mode of the target robot based on the current control requirements.
  • control requirements correspond to different control methods of the robot to achieve flexible control of the robot and ensure that it meets the operation requirements at different stages of the operation task.
  • Step S103 Determine the control target from the target movement position and target contact force according to the current control method.
  • the target contact force is determined as the control target; when the current control mode is position control, the target movement position is determined as the control target.
  • Step S104 Perform job control on the target robot based on the control target and the current contact force.
  • the robot operation control method monitors the control requirements of the target robot in real time and uses the flexibly adjusted target movement position and target contact force as the control targets of the target robot, thereby being able to utilize the target movement position It realizes the compliant control of the robot, and can use the target contact force to realize the force tracking control of the robot, improve the robot's operation accuracy, and then improve the flexible interaction ability of the robot and the environment, which can meet the actual working needs of the robot and improve the user experience.
  • step S102 specifically includes the following steps:
  • Step S201 Determine whether the current control requirement includes a force tracking requirement.
  • the current control mode is determined to be force tracking control.
  • the current control mode is determined to be position control.
  • the robot when the robot moves to the device to be assembled, since it does not come into contact with the device, force tracking control is not required at this time, and only the moving position of the robot needs to be controlled.
  • the robot grabs the device to be assembled and performs assembly operations, it is necessary to strictly control the force exerted by the end of the robot hand on the device to be assembled. It cannot apply too much force to damage the device, but it also needs to grasp the device to be assembled to perform assembly operations. Therefore, the control requirements of the robot during actual operation correspond to the current operation stage of the robot.
  • the actual control requirements can be determined based on the working characteristics of the operation stage by obtaining the current operation stage of the robot. This improves the adaptive capability of robot control and improves the robot's automated and intelligent control.
  • step S104 specifically includes the following steps:
  • Step S301 Based on the current contact force, use the preset stiffness control model to calculate the position deviation of the target robot.
  • the position deviation of the robot from the planned trajectory is only determined by the product of the contact force and the reciprocal of the set stiffness coefficient matrix K.
  • the embodiment of the present disclosure uses linear stiffness control. However, if impedance control is used, the control system is prone to oscillation and instability.
  • impedance control achieves the purpose of compliance control by adjusting the dynamic relationship between the robot end position deviation and force set by the user.
  • This dynamic relationship is the impedance model:
  • X d represents the planned trajectory value
  • X c represents the given value of the robot controller
  • M represents the inertia matrix
  • B represents the damping matrix
  • K represents the stiffness matrix
  • F represents the actual current contact force between the robot and the environment.
  • X d X c
  • the controller corrects the planned trajectory value through the product of the contact force and the reciprocal of the impedance model, thereby controlling the actual position value of the robot, so that the robot has a certain degree of compliance and stiffness.
  • Step S302 Based on the deviation between the current contact force and the target contact force, use the preset force tracking control model to calculate the current target position.
  • the preset force tracking control model is a control model including integral control, such as: force error integral control.
  • integral control such as: force error integral control.
  • control models and transfer functions please refer to the relevant descriptions of related technologies, and will not be described again here.
  • the entire control system is stable and has no steady-state error, and the robot can achieve the tracking performance of the desired force in planes, curved surfaces, and constrained environments with reduced stiffness.
  • Step S303 Determine the position control target of the target robot based on the current target position and position deviation.
  • Step S304 Based on the position control target, use the preset position control model to perform operation control on the target robot.
  • the preset position control model that is, robot position control
  • the position controller inputs the position control quantity
  • the end of the robot acts on the contact force of the external environment, and the above process is repeated to achieve force tracking control.
  • the control principle and specific control process of the position control model please refer to the relevant descriptions in the related technologies, and will not be described again here.
  • the robot operation control method provided by the embodiments of the present disclosure realizes the tracking control of the robot's force through the integral control of the force error, and realizes the adaptability of the robot to the external environment through the correction of the desired trajectory through force feedback.
  • step S104 specifically includes the following steps:
  • Step S401 Based on the current contact force, use the preset stiffness control model to calculate the position deviation of the target robot.
  • step S301 For specific content, please refer to the relevant description of the above step S301, which will not be described again here.
  • Step S402 Determine the position control target of the target robot based on the target movement position and position deviation.
  • Step S403 Based on the position control target, use the preset position control model to perform operation control on the target robot.
  • the switch when the force control characteristic is not required, the switch is switched to 1, that is, the robot only moves on the desired trajectory and has the flexibility to adapt to the environment; when the force control characteristic is required, the switch is switched to 2 , the robot can also perform force tracking control while maintaining flexibility.
  • the robot operation control method provided by the embodiment of the present disclosure uses robot force tracking stiffness control based on position control. This method realizes direct control of force through integral control of force closed loop and indirect control of force through stiffness control.
  • the entire control system structure Simple and has the following advantages:
  • the control system is stable and has no steady-state error, and can achieve the robot's tracking performance of the desired force in planes, curved surfaces, and constrained environments with reduced stiffness.
  • the control system enables the robot to have impedance properties, so that the robot has impedance characteristics whether it is moving in free space or under force tracking control in a constrained environment, ensuring the flexibility and safety of the robot, and has a simple structure and practicality powerful.
  • the control system combines the advantages of direct force control and indirect force control. The combination of the two can make the robot more interactive with the outside world.
  • the robot operation control method provided by the embodiment of the present disclosure further includes the following steps:
  • Step S105 Determine whether the current control requirements have changed
  • step S102 when the current control demand changes, return to step S102.
  • the robot's operation control method is re-adjusted to allow the robot to have both resistance performance and force tracking performance, further improving the robot's ability to interact with the environment. If the current control requirements do not change, continue to control the robot to perform the job task in the current control mode.
  • the robot operation control method monitors the control requirements of the target robot in real time and uses the flexibly adjusted target movement position and target contact force as the control targets of the target robot, thereby being able to utilize the target movement position It realizes the compliant control of the robot, and can use the target contact force to realize the force tracking control of the robot, improve the robot's operation accuracy, and then improve the flexible interaction ability of the robot and the environment, which can meet the actual working needs of the robot and improve the user experience.
  • An embodiment of the present disclosure also provides a robot operation control device.
  • the robot operation control device includes:
  • the first processing module 101 is configured to obtain the target operation task of the target robot, the current contact force between the target robot and the environment, and the current control requirements.
  • the target operation task includes: the target movement position of the target robot and the target contact force between the target robot and the environment.
  • the second processing module 102 is configured to determine the current control mode of the target robot based on the current control requirements. For details, please refer to the relevant description of step S102 in the above method embodiment, which will not be described again here.
  • the third processing module 103 is configured to determine the control target from the target movement position and the target contact force according to the current control mode. For details, please refer to the relevant description of step S103 in the above method embodiment, which will not be described again here.
  • the fourth processing module 104 is configured to perform operation control on the target robot based on the control target and the current contact force. For details, please refer to the relevant description of step S104 in the above method embodiment, which will not be described again here.
  • the robot operation control device provided by the embodiment of the present disclosure is configured to execute the robot operation control method provided by the above embodiment. Its implementation method is the same as the principle. For details, please refer to the relevant description of the above method embodiment and will not be described again.
  • the robot operation control device monitors the control requirements of the target robot in real time and uses the flexibly adjusted target movement position and target contact force as the control targets of the target robot, thereby being able to
  • the target moving position is used to realize the compliant control of the robot, and the target contact force can be used to realize the force tracking control of the robot, thereby improving the robot's operating accuracy, thereby improving the robot's flexible interaction ability with the environment, meeting the actual work needs of the robot, and improving user experience. Use experience.
  • Figure 4 shows an electronic device according to an embodiment of the present disclosure.
  • the electronic device includes: a processor 901 and a memory 902.
  • the processor 901 and the memory 902 can be connected through a bus or other means.
  • connection via bus is taken as an example.
  • the processor 901 may be a central processing unit (Central Processing Unit, CPU).
  • the processor 901 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), field programmable gate arrays (Field-Programmable Gate Array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components and other chips, or combinations of the above types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Other programmable logic devices discrete gate or transistor logic devices, discrete hardware components and other chips, or combinations of the above types of chips.
  • the memory 902 can be configured to store non-transitory software programs, non-transitory computer executable programs and modules, such as program instructions/modules corresponding to the methods in the above method embodiments.
  • the processor 901 executes various functional applications and data processing of the processor by running non-transient software programs, instructions and modules stored in the memory 902, that is, implementing the method in the above method embodiment.
  • the memory 902 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created by the processor 901 and the like.
  • memory 902 may include high-speed random access memory and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 902 optionally includes memory located remotely relative to the processor 901, and these remote memories may be connected to the processor 901 through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • One or more modules are stored in the memory 902, and when executed by the processor 901, perform the methods in the above method embodiments.
  • the storage media can be magnetic disks, optical disks, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (Flash Memory), hard disk (Hard Disk Drive). , abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium can also include a combination of the above types of memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本公开提供了一种机器人作业控制方法及装置,该方法包括:获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求;基于当前控制需求确定目标机器人的当前控制方式;按照当前控制方式从目标移动位置及目标接触力中确定控制目标;基于控制目标与当前接触力对目标机器人进行作业控制。从而通过实时监控目标机器人的控制需求,以灵活调整的目标移动位置及目标接触力作为目标机器人的控制目标,从而既能够利用目标移动位置实现机器人的柔顺控制,又能够利用目标接触力实现机器人的力跟踪控制,提升机器人的作业精度,进而提高了机器人与环境的灵活交互能力,能够满足机器人的实际工作需求,提高用户使用体验。

Description

一种机器人作业控制方法及装置
本公开要求于2022年04月25日提交中国专利局、申请号为202210447371.9、发明名称为“一种机器人作业控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及机器人作业控制技术领域,具体涉及一种机器人作业控制方法及装置。
背景技术
随着机器人技术的发展,对机器人的要求越来越高,希望其可以完成更多复杂的任务,如打磨、精密装配、人机协作等,因此工业机器人与环境交互的能力就比较重要。在机器人实际作业过程中往往既需要机器人具有阻抗性能以检测机器人的工作状态是否具有适应环境的柔顺性,同时在作业过程中当机器人末端与环境发生接触时,还需要机器人具备力的跟踪性能,以提升机器人的作业精度。
然而,当前的机器人控制方法存在局限性,无法时刻对外界环境的作用力具有很强的适应能力即阻抗性能,并且能够随时对外界环境施加所需要的力即力的跟踪性能,影响机器人与环境的交互能力。
发明内容
有鉴于此,本公开实施例提供了一种机器人作业控制方法及装置以克服相关技术中由于现有的机器人作业控制方法难以同时保证机器人既具有阻抗性能和力的跟踪性能,造成机器人与环境进行交互能力弱的问题。
根据第一方面,本公开实施例提供了一种机器人作业控制方法,包括:
获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求,所述目标作业任务包括:所述目标机器人的目标移动位置及其与环境的目标接触力;
基于当前控制需求确定所述目标机器人的当前控制方式;
按照当前控制方式从所述目标移动位置及所述目标接触力中确定控制目标;
基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制。
在一些实施方式中,所述基于当前控制需求确定所述目标机器人的当前控制方式,包括:
判断所述当前控制需求是否包含力跟踪需求;
在所述当前控制需求包含力跟踪需求时,确定所述当前控制方式为力跟踪控制;
在所述当前控制需求不包含力跟踪控制时,确定所述当前控制方式为位置控制。
在一些实施方式中,所述按照当前控制方式从所述目标移动位置及所述目标接触力中确定控制目标,包括:
在所述当前控制方式为力跟踪控制时,将所述目标接触力确定为所述控制目标;
在所述当前控制方式为位置控制时,将所述目标移动位置确定为所述控制目标。
在一些实施方式中,在所述控制目标为目标接触力时,所述基于所述控制 目标与所述当前接触力对所述目标机器人进行作业控制,包括:
基于所述当前接触力,利用预设刚度控制模型计算所述目标机器人的位置偏差;
基于所述当前接触力与所述目标接触力的偏差,利用预设力跟踪控制模型计算当前目标位置;
基于所述当前目标位置与所述位置偏差,确定所述目标机器人的位置控制目标;
基于所述位置控制目标,利用预设位置控制模型对所述目标机器人进行作业控制。
在一些实施方式中,在所述控制目标为目标移动位置时,所述基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制,包括:
基于所述当前接触力,利用预设刚度控制模型计算所述目标机器人的位置偏差;
基于所述目标移动位置与所述位置偏差,确定所述目标机器人的位置控制目标;
基于所述位置控制目标,利用预设位置控制模型对所述目标机器人进行作业控制。
在一些实施方式中,所述当前控制需求通过如下方式得到:
获取所述目标机器人的当前作业阶段;
基于所述当前作业阶段确定所述当前控制需求。
在一些实施方式中,所述方法还包括:
判断所述当前控制需求是否发生变化;
在所述当前控制需求发生变化时,返回所述基于当前控制需求确定所述目标机器人的当前控制方式的步骤。
根据第二方面,本公开实施例提供了一种机器人作业控制装置,包括:
第一处理模块,被设置为获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求,所述目标作业任务包括:所述目标机器人的目标移动位置及其与环境的目标接触力;
第二处理模块,被设置为基于当前控制需求确定所述目标机器人的当前控制方式;
第三处理模块,被设置为按照当前控制方式从所述目标移动位置及所述目标接触力中确定控制目标;
第四处理模块,被设置为基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制。
根据第三方面,本公开实施例提供了一种电子设备,包括:
存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行第一方面及其任意一种可选实施方式中所述的机器人作业控制方法。
根据第四方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令被设置为使所述计算机执行第一方面,或者其任意一种可选实施方式中所述的机器人作业控制方法。
本公开技术方案,具有如下优点:
本公开实施例提供的机器人作业控制方法及装置,通过获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求,目标作业任务包括:目标机器人的目标移动位置及其与环境的目标接触力;基于当前控制需求确定目标机器人的当前控制方式;按照当前控制方式从目标移动位置及目标接触力中确定控制目标;基于控制目标与当前接触力对目标机器人进行作业控制。从而通过实时监控目标机器人的控制需求,以灵活调整的目标移动位置及目标接触力作为目标机器人的控制目标,从而既能够利用目标移动位置实现机器人的柔顺控制,又能够利用目标接触力实现机器人的力跟踪控制,提升机器人的作业精度,进而提高了机器人与环境的灵活交互能力,能够满足机器人的实际工作需求,提高用户使用体验。
附图说明
为了更清楚地说明本公开具体实施方式或相关技术中的技术方案,下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的一种机器人作业控制方法的流程图;
图2为本公开实施例的机器人作业控制的控制原理示意图;
图3为本公开实施例的一种机器人作业控制装置的结构示意图;
图4为本公开实施例的电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中 的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
随着机器人技术的发展,对机器人的要求越来越高,希望其可以完成更多复杂的任务,如打磨、精密装配、人机协作等,因此工业机器人与环境交互的能力就比较重要。在机器人实际作业过程中往往既需要机器人具有阻抗性能以检测机器人的工作状态是否具有适应环境的柔顺性,同时在作业过程中当机器人末端与环境发生接触时,还需要机器人具备力的跟踪性能,以提升机器人的作业精度。
目前机器人与环境交互的方式主要分为两大类,直接力控制和间接力控制。直接力控制,可实现机器人的力跟踪特性,直接控制机器人与环境的接触力, 包括显式力控制和力/位混合控制。但直接力控制需要详尽的任务描述,任务规划量大,不适用于自由运动,从自由运动到约束运动的转化需要控制模式的切换。间接力控制,可实现机器人的阻抗特性,以适应外界环境的不确定性。间接力控制,包括刚度控制、阻尼控制和阻抗控制,阻抗控制是基于阻尼控制和刚度控制的,通过调节用户设定的机器人末端位置偏差和力的动态关系来实现柔顺控制,动态关系即目标阻抗,目标阻抗模型的设计是阻抗控制的核心,也是阻抗控制的困难之处。阻抗控制具有任务规划量、实时计算量较少、对系统的不确定性和扰动具有较强的鲁棒性等优点。但阻抗控制不具备精确的力跟踪能力,不适用于机器人和环境需要精确力控制的任务。在实际应用中,直接力控制和间接力控制二者独立且不相容,并具有局限性。
基于上述问题,本公开实施例提供了一种机器人作业控制方法,如图1所示,该机器人作业控制方法具体包括如下步骤:
步骤S101:获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求。
其中,目标作业任务包括:目标机器人的目标移动位置及其与环境的目标接触力。目标机器人与环境的当前接触力可通过机器人末端设置的力传感器采集得到。
具体地,目标移动位置为从目标机器人事先规划好的作业路径上提取的位置,目标接触力为事先设定的目标机器人在执行作业任务时其对外界环境施加的力,如在精密装配时,需要严格控制机器人与装配器件的接触力,以避免对器件造成损伤等。
步骤S102:基于当前控制需求确定目标机器人的当前控制方式。
具体地,不同控制需求对应机器人不同的控制方式,以实现对机器人的灵 活控制,能够保障其满足在作业任务不同阶段的作业要求。
步骤S103:按照当前控制方式从目标移动位置及目标接触力中确定控制目标。
其中,在当前控制方式为力跟踪控制时,将目标接触力确定为控制目标;在当前控制方式为位置控制时,将目标移动位置确定为控制目标。
步骤S104:基于控制目标与当前接触力对目标机器人进行作业控制。
从而通过灵活选择力跟踪控制和位置控制对机器人进行作业控制,能够让同时具有阻抗性能和力的跟踪性能,满足机器人实际作业需求。
通过执行上述步骤,本公开实施例提供的机器人作业控制方法,通过实时监控目标机器人的控制需求,以灵活调整的目标移动位置及目标接触力作为目标机器人的控制目标,从而既能够利用目标移动位置实现机器人的柔顺控制,又能够利用目标接触力实现机器人的力跟踪控制,提升机器人的作业精度,进而提高了机器人与环境的灵活交互能力,能够满足机器人的实际工作需求,提高用户使用体验。
具体地,在一实施例中,上述的步骤S102具体包括如下步骤:
步骤S201:判断当前控制需求是否包含力跟踪需求。
具体地,在当前控制需求包含力跟踪需求时,确定当前控制方式为力跟踪控制。在当前控制需求不包含力跟踪控制时,确定当前控制方式为位置控制。
其中,当前控制需求通过如下方式得到:
获取目标机器人的当前作业阶段;基于当前作业阶段确定当前控制需求。
示例性地,以机器人进行精密装配作业为例,在机器人向待装配器件移动 过程中由于其未与器件接触,此时不需要进行力跟踪控制,只需要对其进行移动位置的控制即可,而当机器人抓取待装配器件进行装配作业时,则需要严格控制机械手末端施加到待装配器件的力,既不能施加力过大损坏器件,又需要抓紧待装配器件进行装配作业。因此,机器人在实际作业过程中的控制需求是与机器人当前的作业阶段一一对应的,可以通过获取机器人的当前作业阶段,根据该作业阶段的工作特性来确定实际的控制需求。从而提高了机器人控制的自适应能力,提高了机器人的自动化、智能化控制。
具体地,在一实施例中,在控制目标为目标接触力时,上述的步骤S104具体包括如下步骤:
步骤S301:基于当前接触力,利用预设刚度控制模型计算目标机器人的位置偏差。
具体地,当机器人末端接触到外界环境时,机器人与规划轨迹的位置偏差仅由接触力和设定的刚度系数矩阵K倒数的乘积决定。刚度系数越大时,柔顺性越小,刚度系数越小时,柔顺性越大。为了实现机器人的柔顺性,本公开实施例采用线性的刚度控制,而如果采用阻抗控制,控制系统容易震荡不稳定。
其中,阻抗控制通过调节由用户设定的机器人末端位置偏差和力的动态关系来实现柔顺控制的目的,该动态关系就是阻抗模型:
Figure PCTCN2022141311-appb-000001
其中,X d表示规划的轨迹值;X c表示机器人控制器的给定值;M表示惯性矩阵;B表示阻尼矩阵;K表示刚度矩阵;F表示机器人实际与环境的当前接触力。当机器人在自由空间上运动的时候X d=X c,机器人按照规划的轨迹运行。当机器人在约束环境上运动时,会产生一定的接触力,控制器通过接触力和阻抗模型倒数的乘积修正规划的轨迹值,从而控制机器人实际的位置值,使机器 人具有一定柔顺性,在刚度控制中,阻抗模型中的M=0、B=0。关于预设刚度控制模型的具体刚度系数矩阵的设置方式及其控制原理等均可参见相关技术的相关内容,在此不再进行赘述。
步骤S302:基于当前接触力与目标接触力的偏差,利用预设力跟踪控制模型计算当前目标位置。
其中,该预设力跟踪控制模型为包含积分控制的控制模型,如:力误差积分控制,具体控制模型及传递函数可参照相关技术的相关描述,在此不再进行赘述。从而控制整个控制系统稳定且无稳态误差,能够实现机器人在平面、曲面、刚度下降的约束环境下对期望力的跟踪性能。
步骤S303:基于当前目标位置与位置偏差,确定目标机器人的位置控制目标。
步骤S304:基于位置控制目标,利用预设位置控制模型对目标机器人进行作业控制。
具体地,如图2所示,预设位置控制模型即机器人位置控制为相关技术,即通过位置控制器输入位置控制量X c目对机器人进行位置调整,得到机器人的实际位置X,然后重新采集机器人末端作用于外部环境的接触力,重复上述过程以实现力跟踪控制。关于位置控制模型的控制原理及具体控制过程可参见相关技术中的相关描述,在此不再进行赘述。
本公开实施例提供的机器人作业控制方法,通过力误差的积分控制实现了机器人对力的跟踪控制,通过力反馈的修正期望轨迹实现了机器人对外界环境的适应性。
具体地,在一实施例中,在控制目标为目标移动位置时,上述的步骤S104具体包括如下步骤:
步骤S401:基于当前接触力,利用预设刚度控制模型计算目标机器人的位置偏差。
具体内容参见上述步骤S301的相关描述,在此不再进行赘述。
步骤S402:基于目标移动位置与位置偏差,确定目标机器人的位置控制目标。
步骤S403:基于位置控制目标,利用预设位置控制模型对目标机器人进行作业控制。
具体地,如图2所示,当不需要力控制特性时,开关切换到1,即机器人只是在期望轨迹上运动,并具有适应环境的柔顺性;当需要力控制特性是,开关切换到2,机器人在保有柔顺性的同时,也能够进行力的跟踪控制。
本公开实施例所提供的机器人作业控制方法,通过基于位置控制的机器人力跟踪刚度控制,该方法通过力闭环的积分控制实现力的直接控制,通过刚度控制实现力的间接控制,整个控制系统结构简单,并具有以下优点:
(1)控制系统稳定且无稳态误差,能够实现机器人在平面、曲面、刚度下降的约束环境下对期望力的跟踪性能。
(2)控制系统使机器人能够具有阻抗性,使机器人无论在自由空间移动,还是在于约束环境下的力跟踪控制,都具有阻抗特性,保证机器人的柔顺性和安全性,并且结构简单,实用性强。
(3)控制系统融合直接力控制和间接力控制的优点,两者的结合可以让机器人与外界的交互性更好。
具体地,在一实施例中,本公开实施例提供的机器人作业控制方法还包括如下步骤:
步骤S105:判断当前控制需求是否发生变化;
具体地,在当前控制需求发生变化时,返回步骤S102。以重新对机器人的作业控制方式进行调整,以能够让机器人同时具有阻抗性能和力的跟踪性能,进一步提升机器人与环境的交互能力。如果当前控制需求没有发生变化,则继续以当前的控制模式控制机器人执行作业任务。
通过执行上述步骤,本公开实施例提供的机器人作业控制方法,通过实时监控目标机器人的控制需求,以灵活调整的目标移动位置及目标接触力作为目标机器人的控制目标,从而既能够利用目标移动位置实现机器人的柔顺控制,又能够利用目标接触力实现机器人的力跟踪控制,提升机器人的作业精度,进而提高了机器人与环境的灵活交互能力,能够满足机器人的实际工作需求,提高用户使用体验。
本公开实施例还提供了一种机器人作业控制装置,如图3所示,该机器人作业控制装置包括:
第一处理模块101,被设置为获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求,目标作业任务包括:目标机器人的目标移动位置及其与环境的目标接触力。详细内容参见上述方法实施例中步骤S101的相关描述,在此不再进行赘述。
第二处理模块102,被设置为基于当前控制需求确定目标机器人的当前控制方式。详细内容参见上述方法实施例中步骤S102的相关描述,在此不再进行赘述。
第三处理模块103,被设置为按照当前控制方式从目标移动位置及目标接触力中确定控制目标。详细内容参见上述方法实施例中步骤S103的相关描述,在此不再进行赘述。
第四处理模块104,被设置为基于控制目标与当前接触力对目标机器人进行作业控制。详细内容参见上述方法实施例中步骤S104的相关描述,在此不再进行赘述。
本公开实施例提供的机器人作业控制装置,被设置为执行上述实施例提供的机器人作业控制方法,其实现方式与原理相同,详细内容参见上述方法实施例的相关描述,不再赘述。
通过上述各个组成部分的协同合作,本公开实施例提供的机器人作业控制装置,通过实时监控目标机器人的控制需求,以灵活调整的目标移动位置及目标接触力作为目标机器人的控制目标,从而既能够利用目标移动位置实现机器人的柔顺控制,又能够利用目标接触力实现机器人的力跟踪控制,提升机器人的作业精度,进而提高了机器人与环境的灵活交互能力,能够满足机器人的实际工作需求,提高用户使用体验。
图4示出了本公开实施例的一种电子设备,如图4所示,该电子设备包括:处理器901和存储器902,其中,处理器901和存储器902可以通过总线或者其他方式连接,图4中以通过总线连接为例。
处理器901可以为中央处理器(Central Processing Unit,CPU)。处理器901还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器902作为一种非暂态计算机可读存储介质,可被设置为存储非暂态软件程序、非暂态计算机可执行程序以及模块,如上述方法实施例中的方法所对应的程序指令/模块。处理器901通过运行存储在存储器902中的非暂态软件 程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器902可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器901所创建的数据等。此外,存储器902可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器902可选包括相对于处理器901远程设置的存储器,这些远程存储器可以通过网络连接至处理器901。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器902中,当被处理器901执行时,执行上述方法实施例中的方法。
上述电子设备具体细节可以对应参阅上述方法实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,实现的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本公开的实施例,但是本领域技术人员可以在不脱离本公开的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种机器人作业控制方法,包括:
    获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求,所述目标作业任务包括:所述目标机器人的目标移动位置及其与环境的目标接触力;
    基于当前控制需求确定所述目标机器人的当前控制方式;
    按照当前控制方式从所述目标移动位置及所述目标接触力中确定控制目标;
    基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制。
  2. 根据权利要求1所述的方法,其中,所述基于当前控制需求确定所述目标机器人的当前控制方式,包括:
    判断所述当前控制需求是否包含力跟踪需求;
    在所述当前控制需求包含力跟踪需求时,确定所述当前控制方式为力跟踪控制;
    在所述当前控制需求不包含力跟踪控制时,确定所述当前控制方式为位置控制。
  3. 根据权利要求2所述的方法,其中,所述按照当前控制方式从所述目标移动位置及所述目标接触力中确定控制目标,包括:
    在所述当前控制方式为力跟踪控制时,将所述目标接触力确定为所述控制目标;
    在所述当前控制方式为位置控制时,将所述目标移动位置确定为所述控制 目标。
  4. 根据权利要求3所述的方法,其中,在所述控制目标为目标接触力时,所述基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制,包括:
    基于所述当前接触力,利用预设刚度控制模型计算所述目标机器人的位置偏差;
    基于所述当前接触力与所述目标接触力的偏差,利用预设力跟踪控制模型计算当前目标位置;
    基于所述当前目标位置与所述位置偏差,确定所述目标机器人的位置控制目标;
    基于所述位置控制目标,利用预设位置控制模型对所述目标机器人进行作业控制。
  5. 根据权利要求3所述的方法,其中,在所述控制目标为目标移动位置时,所述基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制,包括:
    基于所述当前接触力,利用预设刚度控制模型计算所述目标机器人的位置偏差;
    基于所述目标移动位置与所述位置偏差,确定所述目标机器人的位置控制目标;
    基于所述位置控制目标,利用预设位置控制模型对所述目标机器人进行作业控制。
  6. 根据权利要求1所述的方法,其中,所述当前控制需求通过如下方式得到:
    获取所述目标机器人的当前作业阶段;
    基于所述当前作业阶段确定所述当前控制需求。
  7. 根据权利要求1所述的方法,其中,还包括:
    判断所述当前控制需求是否发生变化;
    在所述当前控制需求发生变化时,返回所述基于当前控制需求确定所述目标机器人的当前控制方式的步骤。
  8. 一种机器人作业控制装置,包括:
    第一处理模块,被设置为获取目标机器人的目标作业任务、目标机器人与环境的当前接触力及当前控制需求,所述目标作业任务包括:所述目标机器人的目标移动位置及其与环境的目标接触力;
    第二处理模块,被设置为基于当前控制需求确定所述目标机器人的当前控制方式;
    第三处理模块,被设置为按照当前控制方式从所述目标移动位置及所述目标接触力中确定控制目标;
    第四处理模块,被设置为基于所述控制目标与所述当前接触力对所述目标机器人进行作业控制。
  9. 一种电子设备,包括:
    存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如权 利要求1-7任一项所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令被设置为使所述计算机执行如权利要求1-7任一项所述的方法。
PCT/CN2022/141311 2022-04-25 2022-12-23 一种机器人作业控制方法及装置 WO2023207164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210447371.9 2022-04-25
CN202210447371.9A CN114800505B (zh) 2022-04-25 2022-04-25 一种机器人作业控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023207164A1 true WO2023207164A1 (zh) 2023-11-02

Family

ID=82507105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141311 WO2023207164A1 (zh) 2022-04-25 2022-12-23 一种机器人作业控制方法及装置

Country Status (2)

Country Link
CN (1) CN114800505B (zh)
WO (1) WO2023207164A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114800505B (zh) * 2022-04-25 2024-02-20 珠海格力智能装备有限公司 一种机器人作业控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626168A (zh) * 2014-12-16 2015-05-20 苏州大学 基于智能算法的机器人力位柔顺控制方法
CN106272416A (zh) * 2016-08-29 2017-01-04 上海交通大学 基于力觉和视觉的机器人细长轴精密装配系统及方法
CN113110051A (zh) * 2021-04-14 2021-07-13 南开大学 考虑误差约束的打磨机器人力/位混合控制方法及系统
US20210370507A1 (en) * 2020-05-29 2021-12-02 Mitsubishi Electric Research Laboratories, Inc. Apparatus and Method for Planning Contact-Interaction Trajectories
CN114131617A (zh) * 2021-12-30 2022-03-04 华中科技大学 一种工业机器人的智能柔顺控制方法和装置
CN114800505A (zh) * 2022-04-25 2022-07-29 珠海格力智能装备有限公司 一种机器人作业控制方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290490B2 (ja) * 2019-07-10 2023-06-13 トヨタ自動車株式会社 パワーアシスト装置
CN111216130B (zh) * 2020-01-10 2021-04-20 电子科技大学 一种基于变化阻抗控制的不确定机器人自适应控制方法
CN111624941A (zh) * 2020-06-15 2020-09-04 吉林大学 一种面向未知环境的六自由度机器人力控方法
CN112658808B (zh) * 2020-11-11 2022-07-29 哈尔滨工业大学(深圳) 力位耦合柔顺打磨控制方法和柔顺打磨控制系统
CN112666831A (zh) * 2020-12-24 2021-04-16 华中科技大学 一种机器人磨抛加工接触力的主动控制方法
CN114043480A (zh) * 2021-11-25 2022-02-15 上海智能制造功能平台有限公司 一种基于模糊控制的自适应阻抗控制算法
CN114290147B (zh) * 2021-12-13 2022-11-15 上海工程技术大学 基于双工业机器人协作的汽车轮毂打磨系统及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626168A (zh) * 2014-12-16 2015-05-20 苏州大学 基于智能算法的机器人力位柔顺控制方法
CN106272416A (zh) * 2016-08-29 2017-01-04 上海交通大学 基于力觉和视觉的机器人细长轴精密装配系统及方法
US20210370507A1 (en) * 2020-05-29 2021-12-02 Mitsubishi Electric Research Laboratories, Inc. Apparatus and Method for Planning Contact-Interaction Trajectories
CN113110051A (zh) * 2021-04-14 2021-07-13 南开大学 考虑误差约束的打磨机器人力/位混合控制方法及系统
CN114131617A (zh) * 2021-12-30 2022-03-04 华中科技大学 一种工业机器人的智能柔顺控制方法和装置
CN114800505A (zh) * 2022-04-25 2022-07-29 珠海格力智能装备有限公司 一种机器人作业控制方法及装置

Also Published As

Publication number Publication date
CN114800505A (zh) 2022-07-29
CN114800505B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2018086226A1 (zh) 机械臂的控制方法和装置
CN111553239B (zh) 一种机器人关节视觉伺服控制方法、终端设备及存储介质
WO2023207164A1 (zh) 一种机器人作业控制方法及装置
WO2019116891A1 (ja) ロボットシステム及びロボット制御方法
Faulwasser et al. Predictive path-following control: Concept and implementation for an industrial robot
JP2022501717A (ja) プラントを制御する制御システム及び方法、並びに記憶媒体
US11904473B2 (en) Transformation mode switching for a real-time robotic control system
JP5011507B2 (ja) ロボット教示システム及びロボット教示方法
US20230286148A1 (en) Robot control parameter interpolation
CN106774178B (zh) 一种自动化控制系统及方法、机械设备
WO2024041577A1 (zh) 机器人控制方法、装置、设备和机器人
CN111670093B (zh) 机器人的运动控制方法、控制系统和存储装置
CN107520838B (zh) 机械手臂及其控制方法和装置
Mamdouh et al. Development of a teleoperation system with a new workspace spanning technique
CN109483541B (zh) 一种基于分解速度规划算法的移动物体抓取方法
Nuño Ortega et al. Haptic guidance with force feedback to assist teleoperation systems via high speed networks
US20210347037A1 (en) Control system and control method
JP2012196715A (ja) ロボットの制御方法およびロボットの制御装置
KR101334356B1 (ko) 로봇 제어 장치
JP2023505631A (ja) ロボット制御システム用の構成可能性フレームワーク
US11511419B2 (en) Task planning for measurement variances
US20230182298A1 (en) Placement planning
Su et al. YARC—A universal kinematic controller for serial robots based on PMAC and MoveIt!
CN116619394B (zh) 工业机器人仿真方法、装置、设备及存储介质
Zhang Design and Implementation of Multimedia Network Intelligent Control Robot Based on Software Definition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939973

Country of ref document: EP

Kind code of ref document: A1