WO2023207049A1 - 一种低压大电流无线充电系统及其协同控制方法 - Google Patents

一种低压大电流无线充电系统及其协同控制方法 Download PDF

Info

Publication number
WO2023207049A1
WO2023207049A1 PCT/CN2022/133231 CN2022133231W WO2023207049A1 WO 2023207049 A1 WO2023207049 A1 WO 2023207049A1 CN 2022133231 W CN2022133231 W CN 2022133231W WO 2023207049 A1 WO2023207049 A1 WO 2023207049A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
voltage
battery pack
control
Prior art date
Application number
PCT/CN2022/133231
Other languages
English (en)
French (fr)
Inventor
陶成轩
王丽芳
李芳�
张玉旺
Original Assignee
中国科学院电工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院电工研究所 filed Critical 中国科学院电工研究所
Publication of WO2023207049A1 publication Critical patent/WO2023207049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer

Definitions

  • the present invention relates to the technical field of wireless charging, and in particular to a low-voltage and high-current wireless charging system and a collaborative control method thereof.
  • wireless charging technology has received widespread attention and research due to its advantages such as convenience, safety, and natural electrical isolation. It is very suitable for special occasions such as relative displacement between the power supply and the electrical equipment, inconvenience or inability to directly connect, and sealing requirements.
  • Applications At present, a large amount of research results and engineering experience have been obtained in high-voltage systems of hundreds or even thousands of volts such as electric vehicles and rail transit. With the continued in-depth research on wireless charging technology, its application areas have expanded to low-voltage applications such as underwater applications, automatic guided vehicles, and drones.
  • the first problem is that the equivalent load resistance of the low-voltage wireless charging system is very small, usually less than 1 ohm or even smaller. It deviates far from the optimal load resistance value of the system, which results in the inherent transmission efficiency of the system coupling mechanism being very low. Low.
  • Another problem is that the large current in the power loop causes huge conduction losses in MOSFETs, diodes, inductors, capacitors and other components, which will lead to reduced system reliability and efficiency.
  • the purpose of the present invention is to provide a low-voltage, high-current wireless charging system and its collaborative control method to achieve constant power and maximum efficiency tracking control through primary and secondary collaborative control, improve system efficiency and reduce conduction losses of system components.
  • the present invention provides the following solutions:
  • the low-voltage and high-current wireless charging system includes: a quasi-Z source inverter circuit, a resonance compensation circuit, a primary coil, a secondary coil, a current doubling synchronous rectifier circuit, a load battery pack, a first a control module, a second control module, a first wireless communication circuit and a second wireless communication circuit;
  • the input terminal of the quasi-Z source inverter circuit inputs DC power from the power supply terminal.
  • the output terminal of the quasi-Z source inverter circuit is connected to the input terminal of the primary circuit of the resonant compensation circuit.
  • the primary coil is connected to the output terminal of the primary circuit of the resonant compensation circuit.
  • Connection; the input terminal of the secondary circuit of the resonance compensation circuit is connected to the secondary coil, the output terminal of the secondary circuit of the resonance compensation circuit is connected to the input terminal of the current doubling synchronous rectification circuit, and the output terminal of the current doubling synchronous rectification circuit is connected to the load battery. group connection;
  • the quasi-Z source inverter circuit is used to convert direct current into high-frequency alternating current, and transmit the high-frequency alternating current to the primary circuit of the resonant compensation circuit;
  • the resonant compensation circuit is used to convert the high-frequency alternating current of the primary circuit It is coupled to the secondary circuit through the primary coil and the secondary coil in turn, and is simultaneously compensated and transmitted to the current doubling synchronous rectification circuit;
  • the current doubling synchronous rectification circuit is used to convert the compensated high-frequency alternating current into direct current at the load end and then provide Load battery pack charging;
  • the first control module is connected to the quasi-Z source inverter circuit and the first wireless communication circuit respectively; the second control module is connected to the current doubling synchronous rectification circuit, the load battery pack and the second wireless communication circuit respectively; the first wireless communication circuit is connected to the second wireless communication circuit.
  • wireless communication circuit wireless connection;
  • the second control module is used to obtain the voltage and current of the load battery pack, and transmit them to the first control module through the second wireless communication circuit and the first wireless communication circuit in sequence;
  • the first control module is used to obtain the input of the quasi-Z source inverter circuit
  • the DC voltage input to the terminal is input, and the through duty cycle of the quasi-Z source inverter circuit is adjusted according to the DC voltage, the voltage and current of the load battery pack, so that the load battery pack is charged at a constant power;
  • the first control module is also used to transmit the DC voltage and the pass-through duty cycle to the second control module through the first wireless communication circuit and the second wireless communication circuit in sequence; the second control module is also used to load the battery pack according to the The voltage and current, the DC voltage and the through duty cycle adjust the synchronous rectification duty cycle, so that the equivalent load resistance of the current doubling synchronous rectification circuit tracks the optimal load of the system in real time, ensuring that the system always works at the maximum efficiency point.
  • the quasi-Z source inverter circuit includes: diode Dz , inductor Lz1 , inductor Lz2 , capacitor Cz1 , capacitor Cz2 and a full-bridge inverter circuit;
  • One end of the inductor L z1 is connected to the positive electrode of the power supply terminal, and the other end of the inductor L z1 is connected to the anode of the diode D z and one end of the capacitor C z1 respectively; the cathode of the diode D z is connected to one end of the capacitor C z2 and one end of the inductor L z2 respectively. connection; the other end of the capacitor C z2 is respectively connected to the negative pole of the power supply terminal and the first input end of the full-bridge inverter circuit; the other end of the inductor L z2 is respectively connected to the other end of the capacitor C z1 and the second input of the full-bridge inverter circuit. terminals are connected; the two output terminals of the full-bridge inverter circuit are respectively connected to both ends of the primary circuit of the resonance compensation circuit; the control terminal of the full-bridge inverter circuit is connected to the first control module.
  • the current doubling synchronous rectification circuit includes: metal oxide semi-field effect transistor S r1 , metal oxide semi-field effect transistor S r2 , metal oxide semi-field effect transistor S r3 , metal oxide semi-field effect transistor S r4 , inductor L r1 and inductor L r2 ;
  • the drain of the MOSFET S r1 is connected to one end of the secondary circuit of the resonant compensation circuit, and the source of the MOSFET S r1 is connected to the drain of the MOSFET S r3 and the inductor L respectively.
  • One end of r1 is connected; the source of the MOSFET S r3 is connected to the source of the MOSFET S r4 ; the other end of the inductor L r1 is connected to one end of the inductor L r2 ;
  • the other end of the inductor L r2 is connected to the drain of the metal oxide semiconductor field effect transistor S r4 and the source of the metal oxide semiconductor field effect transistor S r2 respectively; the drain of the metal oxide semiconductor field effect transistor S r2 is connected to the secondary electrode of the resonance compensation circuit . Connect the other end of the side circuit;
  • the gate of the MOSFET S r1 , the gate of the MOSFET S r2 , the gate of the MOSFET S r3 , and the gate of the MOSFET S r4 are all connected to the gate of the MOSFET S r4 .
  • Two control modules are connected.
  • the resonant compensation circuit includes: primary side compensation inductor L f , primary side compensation capacitor C f , primary side compensation capacitor C p and secondary side compensation capacitor C s ;
  • One end of the primary side compensation inductor L f is connected to the first output end of the full-bridge inverter circuit, and the other end of the primary side compensation inductor L f is connected to one end of the primary side compensation capacitor C f and one end of the primary side compensation capacitor C p respectively. ;
  • One end of the primary coil is connected to the other end of the primary compensation capacitor C f , and the other end of the primary coil is connected to the other end of the primary compensation capacitor C p ;
  • One end of the secondary coil is connected to one end of the secondary compensation capacitor C s and the drain of the metal oxide half field effect transistor S r1 respectively; the other end of the secondary coil is connected to one end of the secondary compensation capacitor C s and the metal oxide half field effect transistor S r1 respectively.
  • the drain of effect transistor S r2 is connected.
  • the first control module includes: a first sampling circuit, a first control circuit and a first driving circuit;
  • the input terminal of the first sampling circuit is connected to the input terminal of the quasi-Z source inverter circuit, and the output terminal of the first sampling circuit is connected to the first input terminal of the first control circuit; the first sampling circuit is used to collect the quasi-Z source.
  • the second input terminal and the first output terminal of the first control circuit are both connected to the first wireless communication circuit.
  • the second output terminal of the first control circuit is connected to the control terminal of the first driving circuit.
  • the driving terminal of the first driving circuit is connected to the first wireless communication circuit.
  • the control terminal of the quasi-Z source inverter circuit is connected; the first control circuit is used to obtain the through duty cycle adjustment value of the quasi-Z source inverter circuit according to the DC voltage, the voltage and current of the load battery pack, and pass the first A driving circuit adjusts the pass-through duty cycle of the quasi-Z source inverter circuit to the pass-through duty cycle adjustment value.
  • the second control module includes: a second sampling circuit, a second control circuit and a second driving circuit;
  • the input end of the second sampling circuit is connected to the load battery pack, and the output end of the second sampling circuit is connected to the first input end of the second control circuit; the second sampling circuit is used to collect the voltage and current of the load battery pack, and transmitting the voltage and current of the load battery pack to the second control circuit;
  • the second input terminal and the first output terminal of the second control circuit are both connected to the second wireless communication circuit.
  • the second output terminal of the second control circuit is connected to the control terminal of the second driving circuit.
  • the driving terminal of the second driving circuit is connected to the second wireless communication circuit.
  • the control end of the current-doubling synchronous rectification circuit is connected; the second control circuit is used to obtain the voltage and current of the load battery pack, and adjust the synchronous rectification ratio according to the voltage and current of the load battery pack, the DC voltage and the through duty cycle.
  • the empty ratio enables the equivalent load resistance of the current-doubling synchronous rectifier circuit to track the optimal load of the system in real time, ensuring that the system always works at the maximum efficiency point.
  • the wireless charging system also includes: a third sampling circuit and a comparison circuit;
  • the input terminal of the third sampling circuit is connected to the input terminal of the current doubling synchronous rectification circuit, the output terminal of the third sampling circuit is connected to the input terminal of the comparison circuit, and the output terminal of the comparison circuit is connected to the third input terminal of the second control circuit;
  • the third sampling circuit is used to collect the input voltage of the current doubling synchronous rectification circuit; the comparison circuit is used to generate a control timing signal according to the input voltage of the current doubling synchronous rectification circuit, and transmit the control timing signal to the second control circuit.
  • the quasi-Z source inverter circuit includes two operating modes: pass-through and non-pass-through;
  • the current doubling synchronous rectification circuit includes a positive half-cycle synchronous rectification mode and a freewheeling operating mode, and a negative half-cycle synchronous rectification mode and a freewheeling operating mode.
  • a collaborative control method for a low-voltage, high-current wireless charging system applies the aforementioned low-voltage, high-current wireless charging system.
  • the collaborative control method includes:
  • the current resistance of the load battery pack is calculated based on the initial pass-through duty cycle, the voltage and current of the current load battery pack, and the current DC voltage at the input end of the quasi-Z source inverter circuit. and the current mutual inductance of the primary and secondary coils;
  • the current optimal duty cycle of the current doubling synchronous rectification circuit calculates the current optimal duty cycle of the current doubling synchronous rectification circuit, and control the synchronous rectification duty cycle of the current doubling synchronous rectification circuit to be equal to the current optimal duty cycle , so that the equivalent load resistance of the current doubling synchronous rectifier circuit is equal to the optimal load of the current system;
  • the present invention discloses the following technical effects:
  • the invention discloses a low-voltage and high-current wireless charging system and a cooperative control method thereof.
  • the first control module and the second control module are connected and perform two-way interaction of primary and secondary side data and information through wireless means.
  • the first control module controls the quasi-Z source inverter.
  • the through duty cycle of the variable circuit enables constant power charging of the load battery pack.
  • the second control module controls the synchronous rectification duty cycle so that the equivalent load resistance of the current doubling synchronous rectification circuit tracks the optimal load of the system in real time, ensuring that the system always Working at the maximum efficiency point, constant power and maximum efficiency tracking control are achieved through primary and secondary side collaborative control, which improves system efficiency and reduces conduction losses of system components.
  • Figure 1 is a structural diagram of a low-voltage, high-current wireless charging system provided by the present invention
  • Figure 2 is an equivalent circuit diagram of the working state of the quasi-Z source inverter circuit provided by the present invention
  • Figure 2(a) is the equivalent circuit in the through state
  • Figure 2(b) is the equivalent circuit in the non-through state
  • Figure 3 is a circuit diagram of different working modes of the current doubling synchronous rectification circuit provided by the present invention
  • Figure 3(a) is an equivalent circuit of the synchronous rectification working state in the positive half cycle
  • Figure 3(b) is the freewheeling work of the positive half cycle.
  • State equivalent circuit Figure 3(c) is the equivalent circuit of the synchronous rectification operating state in the negative half cycle
  • Figure 3(d) is the equivalent circuit of the freewheeling operating state of the negative half cycle;
  • Figure 4 is a waveform diagram of different working modes of the current doubling synchronous rectification circuit provided by the present invention.
  • Figure 5 is a trend chart of the current gain GI and load equivalent resistance gain GR of the current doubling synchronous rectification circuit provided by the present invention as a function of Ds;
  • Figure 6 is a flow chart of the collaborative control mechanism of the quasi-Z source inverter circuit and the current-doubling synchronous rectifier circuit provided by the present invention.
  • the purpose of the present invention is to provide a low-voltage, high-current wireless charging system and its collaborative control method to achieve constant power and maximum efficiency tracking control through primary and secondary collaborative control, improve system efficiency and reduce conduction losses of system components.
  • Embodiments of the present invention provide a low-voltage and high-current wireless charging system.
  • the low-voltage and high-current wireless charging system includes: a quasi-Z source inverter circuit, a resonance compensation circuit, a primary coil, a secondary coil, and current doubling synchronization.
  • Rectifier circuit load battery pack, first control module, second control module, first wireless communication circuit and second wireless communication circuit.
  • the input terminal of the quasi-Z source inverter circuit inputs DC power from the power supply terminal.
  • the output terminal of the quasi-Z source inverter circuit is connected to the input terminal of the primary circuit of the resonant compensation circuit.
  • the primary coil is connected to the output terminal of the primary circuit of the resonant compensation circuit. Connection; the input terminal of the secondary circuit of the resonance compensation circuit is connected to the secondary coil, the output terminal of the secondary circuit of the resonance compensation circuit is connected to the input terminal of the current doubling synchronous rectification circuit, and the output terminal of the current doubling synchronous rectification circuit is connected to the load battery.
  • the quasi-Z source inverter circuit is used to convert direct current into high-frequency alternating current, and transmit the high-frequency alternating current to the primary side circuit of the resonant compensation circuit;
  • the resonant compensation circuit is used to pass the high-frequency alternating current of the primary side circuit through the original circuit in turn.
  • the side coil and the secondary coil are coupled to the secondary circuit, and are simultaneously compensated and transmitted to the current doubling synchronous rectification circuit;
  • the current doubling synchronous rectification circuit is used to convert the compensated high-frequency alternating current into direct current at the load end to charge the load battery pack.
  • the first control module is connected to the quasi-Z source inverter circuit and the first wireless communication circuit respectively; the second control module is connected to the current doubling synchronous rectification circuit, the load battery pack and the second wireless communication circuit respectively; the first wireless communication circuit is connected to the second wireless communication circuit. Two wireless communication circuits are connected wirelessly.
  • the second control module is used to obtain the voltage and current of the load battery pack, and transmit them to the first control module through the second wireless communication circuit and the first wireless communication circuit in sequence; the first control module is used to obtain the input of the quasi-Z source inverter circuit
  • the direct current voltage input from the terminal is adjusted according to the direct current voltage, the voltage and current of the load battery pack, and the pass-through duty cycle of the quasi-Z source inverter circuit is adjusted to enable constant power charging of the load battery pack.
  • the first control module is also used to transmit the DC voltage and the pass-through duty cycle to the second control module through the first wireless communication circuit and the second wireless communication circuit in sequence; the second control module is also used to transmit the DC voltage and the pass-through duty cycle to the second control module according to the voltage and current of the load battery pack.
  • DC voltage and pass-through duty cycle adjust the synchronous rectification duty cycle, so that the equivalent load resistance of the current-doubling synchronous rectification circuit tracks the optimal load of the system in real time, ensuring that the system always works at the maximum efficiency point.
  • the first control circuit (control circuit 1 in Figure 1) and the second control circuit (control circuit 2 in Figure 1) are connected and perform two-way interaction of primary and secondary side data and information through wireless means.
  • the control circuit 1 performs calculation processing on the signals fed back by the sampling circuit 1 and the wireless communication circuit 1, and controls the Z-source inverter circuit through the driving circuit 1.
  • the control circuit 2 performs operation on the signals fed back by the sampling circuit 2 and the wireless communication circuit 2. In the operation processing, the current doubling synchronous rectification circuit is controlled through the driving circuit 2 based on the control timing signals generated by the sampling circuit 3 and the comparison circuit.
  • Low voltage is a voltage with a ground voltage of 1000V or less.
  • High voltage refers to the power transmission and transformation voltage above 1000 volts or the distribution power voltage above 380 volts.
  • Low-voltage electricity refers to the AC voltage of distribution lines below 1000V or the DC voltage below 1500V.
  • High-voltage electricity refers to the electrical connection line with an AC voltage of more than 1000V or a DC voltage of more than 1500V in the distribution line.
  • the primary side of the low-voltage and high-current wireless charging system of the present invention adopts a quasi-Z source inverter circuit, which replaces the traditional primary-side DC/DC conversion circuit and inverter circuit.
  • the secondary side uses a current-doubling synchronous rectification circuit to replace the traditional diode rectification circuit and secondary-side DC/DC conversion circuit.
  • the duty cycle of the current-doubling synchronous rectification circuit the equivalent load resistance can be adjusted in a wide range and the optimal load of the system can be tracked in real time. , so that the system always works at the maximum efficiency point.
  • the system realizes constant power and maximum efficiency tracking control through primary and secondary side collaborative control.
  • the invention has the advantages of small system power loop loss, high transmission efficiency, small input and output ripples, etc., and is very suitable for low-voltage and high-current applications.
  • the quasi-Z source inverter circuit includes: diode Dz , inductor Lz1 , inductor Lz2 , capacitor Cz1 , capacitor Cz2 and a full-bridge inverter circuit.
  • One end of the inductor L z1 is connected to the positive electrode of the power supply terminal, and the other end of the inductor L z1 is connected to the anode of the diode D z and one end of the capacitor C z1 respectively; the cathode of the diode D z is connected to one end of the capacitor C z2 and one end of the inductor L z2 respectively.
  • the other end of the capacitor C z2 is respectively connected to the negative pole of the power supply terminal and the first input end of the full-bridge inverter circuit; the other end of the inductor L z2 is respectively connected to the other end of the capacitor C z1 and the second input of the full-bridge inverter circuit. terminals are connected; the two output terminals of the full-bridge inverter circuit are respectively connected to both ends of the primary circuit of the resonance compensation circuit; the control terminal of the full-bridge inverter circuit is connected to the first control module.
  • the full-bridge inverter circuit includes a metal oxide semiconductor field effect transistor S z1 , a metal oxide semiconductor field effect transistor S z2 , a metal oxide semiconductor field effect transistor S z3 and a metal oxide semiconductor field effect transistor S z4 .
  • the quasi-Z source inverter circuit includes two operating modes: pass-through and non-pass-through.
  • Figure 2 is an equivalent circuit diagram of the primary side quasi-Z source inverter circuit in the working state of the present invention, where Figure 2(a) is the equivalent circuit in the through state, and Figure 2(b) is the equivalent circuit in the non-through state.
  • the DC bus voltage V z of the inverter is expressed as:
  • the root mean square value of the output voltage V inv of the inverter circuit is expressed as:
  • the present invention can increase the DC bus voltage V z of the inverter circuit by adjusting the pass-through duty cycle D p of the quasi-Z source inverter circuit, thereby adjusting the output voltage of the inverter circuit.
  • the current doubling synchronous rectification circuit includes: metal oxide semiconductor field effect transistor S r1 , metal oxide semiconductor field effect transistor S r2 , metal oxide semiconductor field effect transistor S r3 , metal oxide semiconductor field effect transistor S r4 , and an inductor.
  • L r1 and inductor L r2 The drain of the MOSFET S r1 is connected to one end of the secondary circuit of the resonant compensation circuit, and the source of the MOSFET S r1 is connected to the drain of the MOSFET S r3 and the inductor L respectively.
  • One end of r1 is connected; the source of the MOSFET S r3 is connected to the source of the MOSFET S r4 ; the other end of the inductor L r1 is connected to one end of the inductor L r2 .
  • the other end of the inductor L r2 is connected to the drain of the metal oxide semiconductor field effect transistor S r4 and the source of the metal oxide semiconductor field effect transistor S r2 respectively; the drain of the metal oxide semiconductor field effect transistor S r2 is connected to the secondary electrode of the resonance compensation circuit . Connect the other end of the side circuit.
  • the gate of the MOSFET S r1 , the gate of the MOSFET S r2 , the gate of the MOSFET S r3 , and the gate of the MOSFET S r4 are all connected to the gate of the MOSFET S r4 .
  • Two control modules are connected.
  • the current-doubling synchronous rectification circuit includes a positive half-cycle synchronous rectification mode and a freewheeling operating mode, and a negative half-cycle synchronous rectification mode and a freewheeling operating mode. In all operating modes of the current-doubling synchronous rectification circuit, when the MOSFET anti-parallel diode needs to be turned on, the MOSFET is driven to reverse conduction instead of the diode conduction to reduce conduction losses.
  • Figure 3 is an equivalent circuit diagram of the secondary current doubling synchronous rectification circuit in the working state of the present invention, where Figure 3 (a) and (b) are the equivalent circuits of the positive half-cycle synchronous rectification and freewheeling working states respectively. Figure 3 ( c) and (d) are the equivalent circuits of synchronous rectification and freewheeling operation in the negative half cycle respectively.
  • FIG 4 is a waveform diagram of different operating modes of the secondary side current doubling synchronous rectifier circuit of the present invention.
  • the working process of the current doubling synchronous rectifier circuit in the positive half cycle (V rec > 0) of the input voltage V rec For example, the control pulse V GS-Sr1 drives S r1 to conduct in the forward direction, and the control pulses V GS-Sr2 and V GS-Sr4 drive S r2 and S r4 to conduct in the reverse direction.
  • the current doubling synchronous rectification circuit works in synchronous rectification mode, as shown in Figure 3(a).
  • the current-doubling synchronous rectification circuit charges the battery with the current I r1 through S r1 , S r2 and S r4 .
  • the inductor L r2 charges the battery with the current I r2 through S r4 .
  • the inductor L r1 will also be charged by the current I r1 .
  • r1 is charged, and the input current I rec of the current-doubling synchronous rectifier circuit is I r1 .
  • the control pulses V GS-Sr1 and V GS-Sr2 are used to turn off S r1 and S r2
  • the control pulses V GS-Sr3 and V GS-Sr4 are used to drive S r3 and S r4 to conduct in the reverse direction.
  • the current doubling synchronous rectification circuit works.
  • freewheel mode as shown in Figure 3(b).
  • the two inductors L r1 and L r2 charge the battery through S r3 and S r4 respectively. Since there is no current path, the input current I rec of the current doubler synchronous rectification circuit is 0.
  • the negative half cycle (V rec ⁇ 0) of the input voltage V rec of the current-doubling synchronous rectifier circuit also includes two operating states of synchronous rectification and freewheeling as shown in Figure 3 (c) and (d).
  • the output current I o of the current doubling synchronous rectification circuit proposed by the present invention is formed by superimposing two inductor currents I r1 and I r2 , and can be expressed as:
  • the equivalent input resistance R rec of the current doubler synchronous rectifier circuit can be expressed as:
  • the optimal duty cycle D s of the current-doubling synchronous rectification circuit is -opt is:
  • the current gain G I of the current doubling synchronous rectification circuit is defined as the ratio of I o to I rec
  • the load equivalent resistance gain G R is the ratio of R rec to R o Ratio, both are functions of D s .
  • Figure 5 is a trend chart of the current gain G I and load equivalent resistance gain G R of the secondary side current doubling synchronous rectification circuit according to the present invention changing with D s . As shown in Figure 5, G I and G can be greatly changed by adjusting D s . G R , thus solving the problem that the load equivalent resistance deviates from the optimal load of the system.
  • GI and GR are 4.89 and 23.94 respectively.
  • the current-doubling synchronous rectification circuit with this advantage is very suitable for wireless charging systems with large current output. It can not only limit the current in the coil and resonance compensation circuit, but also increase the output current, thereby reducing system losses. More importantly, D s can greatly change the equivalent input impedance of the current-doubling synchronous rectification circuit, allowing it to follow the optimal load of the system within a wide range, thereby optimizing the transmission efficiency of the wireless charging system.
  • the resonant compensation circuit includes: primary compensation inductor L f , primary compensation capacitor C f , primary compensation capacitor C p , primary coil L p , secondary coil L s and secondary compensation capacitor C s .
  • One end of the primary side compensation inductor L f is connected to the first output end of the full-bridge inverter circuit, and the other end of the primary side compensation inductor L f is connected to one end of the primary side compensation capacitor C f and one end of the primary side compensation capacitor C p respectively.
  • One end of the primary coil L p is connected to the other end of the primary compensation capacitor C f
  • the other end of the primary coil L p is connected to the other end of the primary compensation capacitor C p .
  • One end of the secondary coil L s is connected to one end of the secondary compensation capacitor C s and the drain of the metal oxide semiconductor field effect transistor S r1 respectively; the other end of the secondary coil L s is connected to one end of the secondary compensation capacitor C s and The drain of metal oxide semiconductor field effect transistor S r2 is connected.
  • the first control module includes: a first sampling circuit, a first control circuit and a first driving circuit.
  • the input terminal of the first sampling circuit is connected to the input terminal of the quasi-Z source inverter circuit, and the output terminal of the first sampling circuit is connected to the first input terminal of the first control circuit; the first sampling circuit is used to collect the quasi-Z source.
  • the DC voltage input from the input end of the inverter circuit is transmitted to the first control circuit.
  • the second input terminal and the first output terminal of the first control circuit are both connected to the first wireless communication circuit.
  • the second output terminal of the first control circuit is connected to the control terminal of the first driving circuit.
  • the driving terminal of the first driving circuit is connected to the first wireless communication circuit.
  • the control terminal of the quasi-Z source inverter circuit is connected; the first control circuit is used to obtain the through duty cycle adjustment value of the quasi-Z source inverter circuit according to the DC voltage, the voltage and current of the load battery pack, and pass the first A driving circuit adjusts the pass-through duty cycle of the quasi-Z source inverter circuit to the pass-through duty cycle adjustment value.
  • the second control module includes: a second sampling circuit, a second control circuit and a second driving circuit.
  • the input end of the second sampling circuit is connected to the load battery pack, and the output end of the second sampling circuit is connected to the first input end of the second control circuit; the second sampling circuit is used to collect the voltage and current of the load battery pack, and The voltage and current of the load battery pack are transmitted to the second control circuit.
  • the second input terminal and the first output terminal of the second control circuit are both connected to the second wireless communication circuit.
  • the second output terminal of the second control circuit is connected to the control terminal of the second driving circuit.
  • the driving terminal of the second driving circuit is connected to the second wireless communication circuit.
  • the control end of the current-doubling synchronous rectification circuit is connected; the second control circuit is used to obtain the voltage and current of the load battery pack, and adjust the synchronous rectification ratio according to the voltage and current of the load battery pack, the DC voltage and the through duty cycle.
  • the empty ratio enables the equivalent load resistance of the current-doubling synchronous rectifier circuit to track the optimal load of the system in real time, ensuring that the system always works at the maximum efficiency point.
  • the low-voltage high-current wireless charging system also includes: a third sampling circuit and a comparison circuit.
  • the input terminal of the third sampling circuit is connected to the input terminal of the current doubling synchronous rectifier circuit, the output terminal of the third sampling circuit is connected to the input terminal of the comparison circuit, and the output terminal of the comparison circuit is connected to the third input terminal of the second control circuit.
  • the third sampling circuit is used to collect the input voltage of the current doubling synchronous rectification circuit; the comparison circuit is used to generate a control timing signal according to the input voltage of the current doubling synchronous rectification circuit, and transmit the control timing signal to the second control circuit.
  • the invention discloses a low-voltage and high-current wireless charging system.
  • the primary side of the system adopts a quasi-Z source inverter circuit, which replaces the traditional primary-side DC/DC conversion circuit and inverter circuit and improves the DC performance of the inverter circuit.
  • the input voltage reduces the current of the power loop, reduces the heat generated by the system, and improves the system efficiency.
  • the secondary side of the system uses a current-doubling synchronous rectification circuit to replace the traditional diode rectification circuit and secondary-side DC/DC conversion circuit.
  • the equivalent load resistance can be adjusted in a wide range and the system can be tracked in real time.
  • the optimal load enables the system to always work at the maximum efficiency point.
  • the system realizes constant power and maximum efficiency tracking control through primary and secondary side collaborative control.
  • the invention has the advantages of small system power loop loss, high transmission efficiency, small input and output ripples, etc., and is very suitable for low-voltage and high-current applications.
  • the present invention proposes a low-voltage and high-current wireless charging system that adopts a quasi-Z source inverter circuit on the primary side and a current-doubling synchronous rectifier circuit on the secondary side.
  • This system can greatly adjust the equivalent load resistance of the wireless charging system and achieve system stability.
  • Maximum efficiency tracking control can simultaneously increase the system inverter input voltage and reduce the power loop current, thereby reducing the conduction loss of system components.
  • Embodiments of the present invention provide a collaborative control method for a low-voltage, high-current wireless charging system. As shown in Figure 6, the collaborative control method applies the low-voltage, high-current wireless charging system of Embodiment 1.
  • the collaborative control method includes:
  • Step 1 Preset the initial pass-through duty cycle and the initial synchronous rectification duty cycle that put the low-voltage high-current wireless charging system in the charging state.
  • Step 2 Obtain the voltage and current of the current load battery pack and the current DC voltage at the input end of the quasi-Z source inverter circuit.
  • Step 3 If the voltage of the current load battery pack is less than the cut-off voltage, calculate the load battery pack according to the initial pass-through duty cycle, the voltage and current of the current load battery pack, and the DC voltage at the input end of the current quasi-Z source inverter circuit. The current resistance and the current mutual inductance of the primary and secondary coils.
  • the current mutual inductance M of the primary and secondary coils is expressed as:
  • Step 4 Calculate the current optimal duty cycle of the current doubling synchronous rectification circuit based on the current resistance of the load battery pack and the current mutual inductance of the primary and secondary coils, and control the synchronous rectification duty cycle of the current doubling synchronous rectification circuit to be equal to the current optimal
  • the duty cycle is set so that the equivalent load resistance of the current doubling synchronous rectifier circuit is equal to the optimal load of the current system.
  • the calculation process of the current optimal duty cycle of the current doubling synchronous rectification circuit is:
  • Step 5 Detect R o and M in real time during the charging process. Once changes occur, adjust the synchronous rectification duty cycle according to the current optimal load and the current resistance of the load battery pack to obtain the equivalent of the current doubling synchronous rectification circuit.
  • the load resistance is equal to the current synchronous rectification duty cycle at the current optimal load of the system.
  • Step 6 Calculate the output power based on the current voltage and current of the load battery pack and the current DC voltage at the input end of the quasi-Z source inverter circuit.
  • the output power P o is expressed as:
  • Step 7 Perform PI control based on the output power, the current voltage and current of the load battery pack, and the current mutual inductance of the primary and secondary coils, and adjust the pass-through duty cycle to charge the load battery pack at a constant power.
  • Step 8 If the voltage of the currently loaded battery pack is greater than or equal to the cut-off voltage, the entire charging process is completed.
  • control circuits of the primary and secondary sides work independently.
  • the present invention completes maximum efficiency tracking control and constant power charging through the collaborative work of a quasi-Z source inverter circuit and a current-doubling synchronous rectifier circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种低压大电流无线充电系统及其协同控制方法,属于无线充电技术领域,第一控制模块和第二控制模块连接并通过无线方式进行原副边数据和信息双向交互,第一控制模块控制准Z源逆变电路的直通占空比,使对负载电池组进行恒功率充电,第二控制模块控制同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点,通过原副边协同控制实现恒功率和最大效率跟踪控制,提高了系统效率并减小了系统元件的导通损耗。

Description

一种低压大电流无线充电系统及其协同控制方法
本申请要求于2022年4月28日提交中国专利局、申请号为202210470193.1、发明名称为“一种低压大电流无线充电系统及其协同控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线充电技术领域,特别是涉及一种低压大电流无线充电系统及其协同控制方法。
背景技术
近年来,无线充电技术以其方便、安全、自然电气隔离等优点受到广泛关注和研究,其非常适合电源和用电设备之间存在相对位移、不方便或者不能直接连接、具有密闭要求等特殊场合的应用。目前,在电动汽车、轨道交通等数百甚至数千伏的高压系统中已经取得了大量的研究成果和工程经验。随着对无线充电技术的持续深入研究,其应用领域已拓展到水下应用、自动导引车、无人机等低压应用场合。
在上述这些低压应用场合中,为了确保无线充电系统的充电速度需要保持相当的充电功率,而这些系统的电压水平相对较低,从而导致系统功率回路产生较大的电流。因此,与公知的无线充电系统相比,应用于低压场合中的无线充电系统存在以下两个问题。
第一个问题是,低压无线充电系统的等效负载电阻很小,通常低于1欧姆,甚至更小,其偏离系统最佳负载电阻值很远,这就导致系统耦合机构的固有传输效率很低。另一个问题是,功率回路的大电流使得MOSFET、二极管、电感器、电容器和其他元件产生巨大的导通损耗,这会导致系统的可靠性和效率降低。
发明内容
本发明的目的是提供一种低压大电流无线充电系统及其协同控制方法,以通过原副边协同控制实现恒功率和最大效率跟踪控制,提高系统效率并减小系统元件的导通损耗。
为实现上述目的,本发明提供了如下方案:
一种低压大电流无线充电系统,所述低压大电流无线充电系统包括: 准Z源逆变电路、谐振补偿电路、原边线圈、副边线圈、倍流同步整流电路、负载电池组、第一控制模块、第二控制模块、第一无线通信电路和第二无线通信电路;
准Z源逆变电路的输入端输入电源端的直流电,准Z源逆变电路的输出端与谐振补偿电路的原边电路的输入端连接,原边线圈与谐振补偿电路的原边电路的输出端连接;谐振补偿电路的副边电路的输入端与副边线圈连接,谐振补偿电路的副边电路的输出端与倍流同步整流电路的输入端连接,倍流同步整流电路的输出端与负载电池组连接;
所述准Z源逆变电路用于将直流电转换为高频交流电,并将所述高频交流电传输至谐振补偿电路的原边电路;所述谐振补偿电路用于将原边电路的高频交流电依次通过原边线圈和副边线圈耦合至副边电路,并同时补偿后传输至倍流同步整流电路;所述倍流同步整流电路用于将补偿后的高频交流电转换为负载端的直流电后给负载电池组充电;
第一控制模块分别与准Z源逆变电路和第一无线通信电路连接;第二控制模块分别与倍流同步整流电路、负载电池组和第二无线通信电路连接;第一无线通信电路与第二无线通信电路无线连接;
第二控制模块用于获取负载电池组的电压和电流,并依次通过第二无线通信电路、第一无线通信电路传输至第一控制模块;第一控制模块用于获取准Z源逆变电路输入端输入的直流电电压,并根据所述直流电电压、负载电池组的电压和电流调节准Z源逆变电路的直通占空比,使对负载电池组进行恒功率充电;
第一控制模块还用于将所述直流电电压和直通占空比依次通过第一无线通信电路、第二无线通信电路传输至第二控制模块;所述第二控制模块还用于根据负载电池组的电压和电流、所述直流电电压和直通占空比调节同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点。
可选的,所述准Z源逆变电路包括:二极管D z、电感L z1、电感L z2、电容C z1、电容C z2和全桥逆变电路;
电感L z1的一端与电源端的正极连接,电感L z1的另一端分别与二极 管D z的阳极和电容C z1的一端连接;二极管D z的阴极分别与电容C z2的一端和电感L z2的一端连接;电容C z2的另一端分别与电源端的负极和全桥逆变电路的第一输入端连接;电感L z2的另一端分别与电容C z1的另一端和全桥逆变电路的第二输入端连接;全桥逆变电路的两个输出端分别与谐振补偿电路的原边电路的两端连接;全桥逆变电路的控制端与第一控制模块连接。
可选的,所述倍流同步整流电路包括:金氧半场效晶体管S r1、金氧半场效晶体管S r2、金氧半场效晶体管S r3、金氧半场效晶体管S r4、电感L r1和电感L r2
金氧半场效晶体管S r1的漏极与谐振补偿电路的副边电路的一端连接,金氧半场效晶体管S r1的源极分别与金氧半场效晶体管S r3的漏极和电感L r1的一端连接;金氧半场效晶体管S r3的源极与金氧半场效晶体管S r4的源极连接;电感L r1的另一端与电感L r2的一端连接;
电感L r2的另一端分别与金氧半场效晶体管S r4的漏极和金氧半场效晶体管S r2的源极连接;金氧半场效晶体管S r2的漏极与谐振补偿电路的副边电路的另一端连接;
金氧半场效晶体管S r1的栅极、金氧半场效晶体管S r2的栅极、金氧半场效晶体管S r3的栅极、金氧半场效晶体管S r4的栅极均与第二控制模块连接。
可选的,所述谐振补偿电路包括:原边补偿电感L f、原边补偿电容C f、原边补偿电容C p和副边补偿电容C s
原边补偿电感L f的一端与全桥逆变电路的第一输出端连接,原边补偿电感L f的另一端分别与原边补偿电容C f的一端、原边补偿电容C p的一端连接;原边线圈的一端与原边补偿电容C f的另一端连接,原边线圈的另一端与原边补偿电容C p的另一端连接;
副边线圈的一端分别与副边补偿电容C s的一端和金氧半场效晶体管S r1的漏极连接;副边线圈的另一端分别与副边补偿电容C s的一端和金氧半场效晶体管S r2的漏极连接。
可选的,所述第一控制模块包括:第一采样电路、第一控制电路和第 一驱动电路;
第一采样电路的输入端与准Z源逆变电路的输入端连接,第一采样电路的输出端与第一控制电路的第一输入端连接;所述第一采样电路用于采集准Z源逆变电路输入端输入的直流电电压,并将直流电电压传输至第一控制电路;
第一控制电路的第二输入端和第一输出端均与第一无线通信电路连接,第一控制电路的第二输出端与第一驱动电路的控制端连接,第一驱动电路的驱动端与准Z源逆变电路的控制端连接;所述第一控制电路用于根据所述直流电电压、负载电池组的电压和电流获得准Z源逆变电路的直通占空比调节值,并通过第一驱动电路将准Z源逆变电路的直通占空比调节至直通占空比调节值。
可选的,所述第二控制模块包括:第二采样电路、第二控制电路和第二驱动电路;
第二采样电路的输入端与负载电池组连接,第二采样电路的输出端与第二控制电路的第一输入端连接;所述第二采样电路用于采集负载电池组的电压和电流,并将负载电池组的电压和电流传输至第二控制电路;
第二控制电路的第二输入端和第一输出端均与第二无线通信电路连接,第二控制电路的第二输出端与第二驱动电路的控制端连接,第二驱动电路的驱动端与倍流同步整流电路的控制端连接;所述第二控制电路用于获取负载电池组的电压和电流,并根据负载电池组的电压和电流、所述直流电电压和直通占空比调节同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点。
可选的,所述无线充电系统还包括:第三采样电路和比较电路;
第三采样电路的输入端与倍流同步整流电路的输入端连接,第三采样电路的输出端与比较电路的输入端连接,比较电路的输出端与第二控制电路的第三输入端连接;
所述第三采样电路用于采集倍流同步整流电路的输入电压;所述比较电路用于根据倍流同步整流电路的输入电压产生控制时序信号,并将所述控制时序信号传输至第二控制电路。
可选的,所述准Z源逆变电路包含直通和非直通两种工作模态;
所述倍流同步整流电路包含正半周期的同步整流模态和续流工作模态,以及负半周期的同步整流模态和续流工作模态。
一种低压大电流无线充电系统的协同控制方法,所述协同控制方法应用前述的低压大电流无线充电系统,所述协同控制方法包括:
预设使低压大电流无线充电系统处于充电状态的初始直通占空比和初始同步整流占空比;
获取当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压;
若所述当前负载电池组的电压小于截止电压,则根据初始直通占空比、当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压,分别计算负载电池组的当前电阻和原副边线圈的当前互感;
根据负载电池组的当前电阻和原副边线圈的当前互感,计算倍流同步整流电路的当前最优占空比,并控制倍流同步整流电路的同步整流占空比等于当前最优占空比,以使倍流同步整流电路的等效负载电阻等于当前系统最优负载;
根据当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压,计算输出功率;
根据输出功率、当前负载电池组的电压和电流以及原副边线圈的当前互感进行PI控制,调节直通占空比,以对负载电池组进行恒功率充电;
若所述当前负载电池组的电压大于或等于截止电压,则整个充电过程完成。
可选的,根据负载电池组的当前电阻和原副边线圈的当前互感,计算倍流同步整流电路的当前最优占空比,具体包括:
根据所述原副边线圈的当前互感,利用公式
Figure PCTCN2022133231-appb-000001
计算当前系统最优负载R opt;其中,ω为系统谐振角频率,R p、R s和R Lf分别为原边线圈L p、副边线圈L s和原边补偿 电感L f的内阻,M为原副边线圈的当前互感;
根据当前系统最优负载R opt,利用公式
Figure PCTCN2022133231-appb-000002
计算当前最优占空比D s-opt;其中,R o为负载电池组的等效电阻。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明公开一种低压大电流无线充电系统及其协同控制方法,第一控制模块和第二控制模块连接并通过无线方式进行原副边数据和信息双向交互,第一控制模块控制准Z源逆变电路的直通占空比,使对负载电池组进行恒功率充电,第二控制模块控制同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点,通过原副边协同控制实现恒功率和最大效率跟踪控制,提高了系统效率并减小了系统元件的导通损耗。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的低压大电流无线充电系统的结构图;
图2为本发明提供的准Z源逆变电路的工作状态等效电路图;图2(a)为直通状态等效电路,图2(b)为非直通状态等效电路;
图3为本发明提供的倍流同步整流电路的不同工作模态电路图;图3(a)为正半周期的同步整流工作状态等效电路,图3(b)为正半周期的续流工作状态等效电路,图3(c)为负半周期的同步整流工作状态等效电路,图3(d)为负半周期的续流工作状态等效电路;
图4为本发明提供的倍流同步整流电路不同工作模态的波形图;
图5为本发明提供的倍流同步整流电路电流增益GI和负载等效电阻增益GR随Ds变化趋势图;
图6为本发明提供的准Z源逆变电路和倍流同步整流电路的协同控制机制流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种低压大电流无线充电系统及其协同控制方法,以通过原副边协同控制实现恒功率和最大效率跟踪控制,提高系统效率并减小系统元件的导通损耗。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
本发明实施例提供一种低压大电流无线充电系统,如图1所示,低压大电流无线充电系统包括:准Z源逆变电路、谐振补偿电路、原边线圈、副边线圈、倍流同步整流电路、负载电池组、第一控制模块、第二控制模块、第一无线通信电路和第二无线通信电路。
准Z源逆变电路的输入端输入电源端的直流电,准Z源逆变电路的输出端与谐振补偿电路的原边电路的输入端连接,原边线圈与谐振补偿电路的原边电路的输出端连接;谐振补偿电路的副边电路的输入端与副边线圈连接,谐振补偿电路的副边电路的输出端与倍流同步整流电路的输入端连接,倍流同步整流电路的输出端与负载电池组连接;准Z源逆变电路用于将直流电转换为高频交流电,并将高频交流电传输至谐振补偿电路的原边电路;谐振补偿电路用于将原边电路的高频交流电依次通过原边线圈和副边线圈耦合至副边电路,并同时补偿后传输至倍流同步整流电路;倍流同步整流电路用于将补偿后的高频交流电转换为负载端的直流电后给负载电池组充电。
第一控制模块分别与准Z源逆变电路和第一无线通信电路连接;第二控制模块分别与倍流同步整流电路、负载电池组和第二无线通信电路连接;第一无线通信电路与第二无线通信电路无线连接。第二控制模块用于 获取负载电池组的电压和电流,并依次通过第二无线通信电路、第一无线通信电路传输至第一控制模块;第一控制模块用于获取准Z源逆变电路输入端输入的直流电电压,并根据直流电电压、负载电池组的电压和电流调节准Z源逆变电路的直通占空比,使对负载电池组进行恒功率充电。第一控制模块还用于将直流电电压和直通占空比依次通过第一无线通信电路、第二无线通信电路传输至第二控制模块;第二控制模块还用于根据负载电池组的电压和电流、直流电电压和直通占空比调节同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点。
第一控制电路(图1中的控制电路1)和第二控制电路(图1中的控制电路2)连接并通过无线方式进行原副边数据和信息双向交互。控制电路1对采样电路1和无线通信电路1反馈的信号进行运算处理,并通过驱动电路1对准Z源逆变电路进行控制,控制电路2对采样电路2和无线通信电路2反馈的信号进行运算处理,基于采样电路3和比较电路产生的控制时序信号通过驱动电路2对倍流同步整流电路进行控制。
低压为对地电压在1000V及以下的电压。高压是指1000伏以上的电力输变电电压或380伏以上的配用电电压。低压电是指配电线路交流电压在1000V以下或直流电压在1500V以下。高压电是指配电线路交流电压在1000V以上或直流电压在1500V以上的电接户线。
本发明的低压大电流无线充电系统的原边采用准Z源逆变电路,取代了传统的原边DC/DC变换电路和逆变电路,通过调节其占空比能够提高逆变电路的直流输入电压,降低了功率回路的电流,减小了系统发热量,提高了系统效率。副边采用倍流同步整流电路取代传统二极管整流电路和副边DC/DC变换电路,通过调节倍流同步整流电路的占空比,可以大范围地调节等效负载电阻并实时跟踪系统最优负载,使系统始终工作在最大效率点。所述系统通过原副边协同控制实现恒功率和最大效率跟踪控制。本发明具有系统功率回路损耗小、传输效率高、输入输出纹波小等优点,非常适合于低压大电流应用场合。
示例性的,所述准Z源逆变电路包括:二极管D z、电感L z1、电感 L z2、电容C z1、电容C z2和全桥逆变电路。电感L z1的一端与电源端的正极连接,电感L z1的另一端分别与二极管D z的阳极和电容C z1的一端连接;二极管D z的阴极分别与电容C z2的一端和电感L z2的一端连接;电容C z2的另一端分别与电源端的负极和全桥逆变电路的第一输入端连接;电感L z2的另一端分别与电容C z1的另一端和全桥逆变电路的第二输入端连接;全桥逆变电路的两个输出端分别与谐振补偿电路的原边电路的两端连接;全桥逆变电路的控制端与第一控制模块连接。
参照图1,全桥逆变电路包括金氧半场效晶体管S z1、金氧半场效晶体管S z2、金氧半场效晶体管S z3和金氧半场效晶体管S z4
准Z源逆变电路包含直通和非直通两种工作模态。
图2是本发明所述原边准Z源逆变电路的工作状态等效电路图,其中图2(a)是直通状态等效电路,图2(b)是非直通状态等效电路。通过对电感L z1和L z2的伏秒平衡分析,逆变器的直流母线电压V z表示为:
Figure PCTCN2022133231-appb-000003
逆变电路的输出电压均方根值V inv表示为:
Figure PCTCN2022133231-appb-000004
本发明可以通过调节准Z源逆变电路的直通占空比D p,提高逆变电路的直流母线电压V z,进而调节逆变电路的输出电压。
示例性的,所述倍流同步整流电路包括:金氧半场效晶体管S r1、金氧半场效晶体管S r2、金氧半场效晶体管S r3、金氧半场效晶体管S r4、电感L r1和电感L r2。金氧半场效晶体管S r1的漏极与谐振补偿电路的副边电路的一端连接,金氧半场效晶体管S r1的源极分别与金氧半场效晶体管S r3的漏极和电感L r1的一端连接;金氧半场效晶体管S r3的源极与金氧半场效晶体管S r4的源极连接;电感L r1的另一端与电感L r2的一端连接。电感L r2的另一端分别与金氧半场效晶体管S r4的漏极和金氧半场效晶体管S r2的源极连接;金氧半场效晶体管S r2的漏极与谐振补偿电路的副边电路的 另一端连接。金氧半场效晶体管S r1的栅极、金氧半场效晶体管S r2的栅极、金氧半场效晶体管S r3的栅极、金氧半场效晶体管S r4的栅极均与第二控制模块连接。
倍流同步整流电路包含正半周期的同步整流模态和续流工作模态,以及负半周期的同步整流模态和续流工作模态。倍流同步整流电路所有工作模态中,当MOSFET反并联二极管需要导通时,均通过驱动MOSFET反向导通取代二极管导通,以减小导通损耗。
图3是本发明所述副边倍流同步整流电路的工作状态等效电路图,其中图3(a)和(b)分别是正半周期的同步整流和续流工作状态等效电路,图3(c)和(d)分别是负半周期的同步整流和续流工作状态等效电路。
图4是本发明所述副边倍流同步整流电路不同工作模态的波形图,如图4所示,以倍流同步整流电路输入电压V rec的正半周期(V rec>0)工作过程为例,通过控制脉冲V GS-Sr1驱动S r1正向导通,通过控制脉冲V GS-Sr2、V GS-Sr4驱动S r2、S r4反向导通,此时倍流同步整流电路工作在同步整流模式,如图3(a)所示。在同步整流模式下,倍流同步整流电路通过S r1、S r2和S r4以电流I r1给电池充电,电感L r2通过S r4以电流I r2为电池充电,电感L r1也会被电流I r1充电,倍流同步整流电路的输入电流I rec为I r1。通过控制脉冲V GS-Sr1、V GS-Sr2关断S r1、S r2,通过控制脉冲V GS-Sr3和V GS-Sr4驱动S r3、S r4反向导通,此时倍流同步整流电路工作在续流模式,如图3(b)所示。在续流模式下,两个电感L r1、L r2分别通过S r3、S r4为电池充电,由于没有电流路径,倍流同步整流电路的输入电流I rec为0。
同样地,倍流同步整流电路输入电压V rec的负半周期(V rec<0)也包含如图3(c)和(d)所示的同步整流和续流两个工作状态。
本发明所提出的倍流同步整流电路的输出电流I o由两个电感电流I r1、I r2叠加而成,可表示为:
Figure PCTCN2022133231-appb-000005
倍流同步整流电路的等效输入电阻R rec可表示为:
Figure PCTCN2022133231-appb-000006
通过调节倍流同步整流电路的占空比D s,使等效输入电阻R rec等于系统最优负载R opt,便实现系统最大效率跟踪控制,倍流同步整流电路的最优占空比D s-opt为:
Figure PCTCN2022133231-appb-000007
为了进一步说明本发明所提出的倍流同步整流电路的特征,定义倍流同步整流电路的电流增益G I是I o与I rec的比值,负载等效电阻增益G R是R rec与R o的比值,两者都是D s的函数。图5是本发明所述副边倍流同步整流电路电流增益G I和负载等效电阻增益G R随D s变化趋势图,如图5所示,通过调节D s可以极大地改变G I和G R,从而解决负载等效电阻偏离系统最优负载的问题。
本发明一个具体实施例,当D s为0.3时,G I和G R分别为4.89和23.94。具有这一优点的倍流同步整流电路非常适用于大电流输出的无线充电系统,它不仅可以限制线圈和谐振补偿电路中的电流,还可以增加输出电流,从而降低系统的损耗。更重要的是,D s可以极大地改变倍流同步整流电路的等效输入阻抗,使其在很大范围内跟随系统的最佳负载,从而优化无线充电系统的传输效率。
示例性的,谐振补偿电路包括:原边补偿电感L f、原边补偿电容C f、原边补偿电容C p、原边线圈L p、副边线圈L s和副边补偿电容C s。原边补偿电感L f的一端与全桥逆变电路的第一输出端连接,原边补偿电感L f的另一端分别与原边补偿电容C f的一端、原边补偿电容C p的一端连接;原边线圈L p的一端与原边补偿电容C f的另一端连接,原边线圈L p的另一端与原边补偿电容C p的另一端连接。副边线圈L s的一端分别与副边补偿电容C s的一端和金氧半场效晶体管S r1的漏极连接;副边线圈L s的另一端分别与副边补偿电容C s的一端和金氧半场效晶体管S r2的漏极连接。
示例性的,第一控制模块包括:第一采样电路、第一控制电路和第一驱动电路。第一采样电路的输入端与准Z源逆变电路的输入端连接,第 一采样电路的输出端与第一控制电路的第一输入端连接;所述第一采样电路用于采集准Z源逆变电路输入端输入的直流电电压,并将直流电电压传输至第一控制电路。第一控制电路的第二输入端和第一输出端均与第一无线通信电路连接,第一控制电路的第二输出端与第一驱动电路的控制端连接,第一驱动电路的驱动端与准Z源逆变电路的控制端连接;所述第一控制电路用于根据所述直流电电压、负载电池组的电压和电流获得准Z源逆变电路的直通占空比调节值,并通过第一驱动电路将准Z源逆变电路的直通占空比调节至直通占空比调节值。
示例性的,第二控制模块包括:第二采样电路、第二控制电路和第二驱动电路。第二采样电路的输入端与负载电池组连接,第二采样电路的输出端与第二控制电路的第一输入端连接;所述第二采样电路用于采集负载电池组的电压和电流,并将负载电池组的电压和电流传输至第二控制电路。第二控制电路的第二输入端和第一输出端均与第二无线通信电路连接,第二控制电路的第二输出端与第二驱动电路的控制端连接,第二驱动电路的驱动端与倍流同步整流电路的控制端连接;所述第二控制电路用于获取负载电池组的电压和电流,并根据负载电池组的电压和电流、所述直流电电压和直通占空比调节同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点。
示例性的,低压大电流无线充电系统还包括:第三采样电路和比较电路。第三采样电路的输入端与倍流同步整流电路的输入端连接,第三采样电路的输出端与比较电路的输入端连接,比较电路的输出端与第二控制电路的第三输入端连接。所述第三采样电路用于采集倍流同步整流电路的输入电压;所述比较电路用于根据倍流同步整流电路的输入电压产生控制时序信号,并将所述控制时序信号传输至第二控制电路。
本发明公开了一种低压大电流无线充电系统,所述系统的原边采用准Z源逆变电路,取代了传统的原边DC/DC变换电路和逆变电路,提高了逆变电路的直流输入电压,降低了功率回路的电流,减小了系统发热量,提高了系统效率。所述系统副边采用倍流同步整流电路取代传统二极管整流电路和副边DC/DC变换电路,通过调节倍流同步整流电路的占空比, 可以大范围地调节等效负载电阻并实时跟踪系统最优负载,使系统始终工作在最大效率点。所述系统通过原副边协同控制实现恒功率和最大效率跟踪控制。本发明具有系统功率回路损耗小、传输效率高、输入输出纹波小等优点,非常适合于低压大电流应用场合。
本发明提出一种原边采用准Z源逆变电路和副边采用倍流同步整流电路的低压大电流无线充电系统,该系统能够大幅度地调节无线充电系统的等效负载电阻,实现系统的最大效率跟踪控制,同时能够提高系统逆变器输入电压,减小功率回路电流,从而减小系统元件的导通损耗。
实施例2
本发明实施例提供了一种低压大电流无线充电系统的协同控制方法,如图6所示,协同控制方法应用实施例1的低压大电流无线充电系统,协同控制方法包括:
步骤1,预设使低压大电流无线充电系统处于充电状态的初始直通占空比和初始同步整流占空比。
步骤2,获取当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压。
步骤3,若所述当前负载电池组的电压小于截止电压,则根据初始直通占空比、当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压,分别计算负载电池组的当前电阻和原副边线圈的当前互感。
其中,原副边线圈的当前互感M表示为:
Figure PCTCN2022133231-appb-000008
步骤4,根据负载电池组的当前电阻和原副边线圈的当前互感,计算倍流同步整流电路的当前最优占空比,并控制倍流同步整流电路的同步整流占空比等于当前最优占空比,以使倍流同步整流电路的等效负载电阻等于当前系统最优负载。
示例性的,倍流同步整流电路的当前最优占空比的计算过程为:
根据原副边线圈的当前互感,利用公式
Figure PCTCN2022133231-appb-000009
计算当前系统最优负载R opt;再根据当前系统最优负载R opt,利用公式
Figure PCTCN2022133231-appb-000010
计算当前最优占空比D s-opt;其中,ω为系统谐振角频率,R p、R s和R Lf分别为原边线圈L p、副边线圈L s和原边补偿电感L f的内阻;R o为负载电池组的等效电阻。
步骤5,在充电过程中实时检测R o和M,一旦发生变化,根据所述当前最优负载和负载电池组的当前电阻,调节同步整流占空比,获得使倍流同步整流电路的等效负载电阻等于当前系统最优负载时的当前同步整流占空比。
步骤6,根据当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压,计算输出功率。
其中,输出功率P o表示为:
Figure PCTCN2022133231-appb-000011
步骤7,根据输出功率、当前负载电池组的电压和电流以及原副边线圈的当前互感进行PI控制,调节直通占空比,以对负载电池组进行恒功率充电。
步骤8,若所述当前负载电池组的电压大于或等于截止电压,则整个充电过程完成。
在控制过程中,原副边的控制电路独立工作。
基于上述过程中D p和D s的调节机制,本发明通过准Z源逆变电路和倍流同步整流电路的协同工作,完成最大效率跟踪控制和恒功率充电。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的 都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种低压大电流无线充电系统,其特征在于,所述低压大电流无线充电系统包括:准Z源逆变电路、谐振补偿电路、原边线圈、副边线圈、倍流同步整流电路、负载电池组、第一控制模块、第二控制模块、第一无线通信电路和第二无线通信电路;
    准Z源逆变电路的输入端输入电源端的直流电,准Z源逆变电路的输出端与谐振补偿电路的原边电路的输入端连接,原边线圈与谐振补偿电路的原边电路的输出端连接;谐振补偿电路的副边电路的输入端与副边线圈连接,谐振补偿电路的副边电路的输出端与倍流同步整流电路的输入端连接,倍流同步整流电路的输出端与负载电池组连接;
    所述准Z源逆变电路用于将直流电转换为高频交流电,并将所述高频交流电传输至谐振补偿电路的原边电路;所述谐振补偿电路用于将原边电路的高频交流电依次通过原边线圈和副边线圈耦合至副边电路,并同时补偿后传输至倍流同步整流电路;所述倍流同步整流电路用于将补偿后的高频交流电转换为负载端的直流电后给负载电池组充电;
    第一控制模块分别与准Z源逆变电路和第一无线通信电路连接;第二控制模块分别与倍流同步整流电路、负载电池组和第二无线通信电路连接;第一无线通信电路与第二无线通信电路无线连接;
    第二控制模块用于获取负载电池组的电压和电流,并依次通过第二无线通信电路、第一无线通信电路传输至第一控制模块;第一控制模块用于获取准Z源逆变电路输入端输入的直流电电压,并根据所述直流电电压、负载电池组的电压和电流调节准Z源逆变电路的直通占空比,使对负载电池组进行恒功率充电;
    第一控制模块还用于将所述直流电电压和直通占空比依次通过第一无线通信电路、第二无线通信电路传输至第二控制模块;所述第二控制模块还用于根据负载电池组的电压和电流、所述直流电电压和直通占空比调节同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点。
  2. 根据权利要求1所述的低压大电流无线充电系统,其特征在于,所述准Z源逆变电路包括:二极管D z、电感L z1、电感L z2、电容C z1、电容C z2和全桥逆变电路;
    电感L z1的一端与电源端的正极连接,电感L z1的另一端分别与二极管D z的阳极和电容C z1的一端连接;二极管D z的阴极分别与电容C z2的一端和电感L z2的一端连接;电容C z2的另一端分别与电源端的负极和全桥逆变电路的第一输入端连接;电感L z2的另一端分别与电容C z1的另一端和全桥逆变电路的第二输入端连接;全桥逆变电路的两个输出端分别与谐振补偿电路的原边电路的两端连接;全桥逆变电路的控制端与第一控制模块连接。
  3. 根据权利要求2所述的低压大电流无线充电系统,其特征在于,所述倍流同步整流电路包括:金氧半场效晶体管S r1、金氧半场效晶体管S r2、金氧半场效晶体管S r3、金氧半场效晶体管S r4、电感L r1和电感L r2
    金氧半场效晶体管S r1的漏极与谐振补偿电路的副边电路的一端连接,金氧半场效晶体管S r1的源极分别与金氧半场效晶体管S r3的漏极和电感L r1的一端连接;金氧半场效晶体管S r3的源极与金氧半场效晶体管S r4的源极连接;电感L r1的另一端与电感L r2的一端连接;
    电感L r2的另一端分别与金氧半场效晶体管S r4的漏极和金氧半场效晶体管S r2的源极连接;金氧半场效晶体管S r2的漏极与谐振补偿电路的副边电路的另一端连接;
    金氧半场效晶体管S r1的栅极、金氧半场效晶体管S r2的栅极、金氧半场效晶体管S r3的栅极、金氧半场效晶体管S r4的栅极均与第二控制模块连接。
  4. 根据权利要求3所述的低压大电流无线充电系统,其特征在于,所述谐振补偿电路包括:原边补偿电感L f、原边补偿电容C f、原边补偿电容C p和副边补偿电容C s
    原边补偿电感L f的一端与全桥逆变电路的第一输出端连接,原边补偿电感L f的另一端分别与原边补偿电容C f的一端、原边补偿电容C p的一端连接;原边线圈的一端与原边补偿电容C f的另一端连接,原边线圈的另一端与原边补偿电容C p的另一端连接;
    副边线圈的一端分别与副边补偿电容C s的一端和金氧半场效晶体管S r1的漏极连接;副边线圈的另一端分别与副边补偿电容C s的一端和金氧半场效晶体管S r2的漏极连接。
  5. 根据权利要求1所述的低压大电流无线充电系统,其特征在于,所述第一控制模块包括:第一采样电路、第一控制电路和第一驱动电路;
    第一采样电路的输入端与准Z源逆变电路的输入端连接,第一采样电路的输出端与第一控制电路的第一输入端连接;所述第一采样电路用于采集准Z源逆变电路输入端输入的直流电电压,并将直流电电压传输至第一控制电路;
    第一控制电路的第二输入端和第一输出端均与第一无线通信电路连接,第一控制电路的第二输出端与第一驱动电路的控制端连接,第一驱动电路的驱动端与准Z源逆变电路的控制端连接;所述第一控制电路用于根据所述直流电电压、负载电池组的电压和电流获得准Z源逆变电路的直通占空比调节值,并通过第一驱动电路将准Z源逆变电路的直通占空比调节至直通占空比调节值。
  6. 根据权利要求1所述的低压大电流无线充电系统,其特征在于,所述第二控制模块包括:第二采样电路、第二控制电路和第二驱动电路;
    第二采样电路的输入端与负载电池组连接,第二采样电路的输出端与第二控制电路的第一输入端连接;所述第二采样电路用于采集负载电池组的电压和电流,并将负载电池组的电压和电流传输至第二控制电路;
    第二控制电路的第二输入端和第一输出端均与第二无线通信电路连接,第二控制电路的第二输出端与第二驱动电路的控制端连接,第二驱动电路的驱动端与倍流同步整流电路的控制端连接;所述第二控制电路用于获取负载电池组的电压和电流,并根据负载电池组的电压和电流、所述直流电电压和直通占空比调节同步整流占空比,使得倍流同步整流电路的等效负载电阻实时跟踪系统最优负载,保证系统始终工作在最大效率点。
  7. 根据权利要求6所述的低压大电流无线充电系统,其特征在于,所述低压大电流无线充电系统还包括:第三采样电路和比较电路;
    第三采样电路的输入端与倍流同步整流电路的输入端连接,第三采样电路的输出端与比较电路的输入端连接,比较电路的输出端与第二控制电路的第三输入端连接;
    所述第三采样电路用于采集倍流同步整流电路的输入电压;所述比较电路用于根据倍流同步整流电路的输入电压产生控制时序信号,并将所述 控制时序信号传输至第二控制电路。
  8. 根据权利要求1所述的低压大电流无线充电系统,其特征在于,所述准Z源逆变电路包含直通和非直通两种工作模态;
    所述倍流同步整流电路包含正半周期的同步整流模态和续流工作模态,以及负半周期的同步整流模态和续流工作模态。
  9. 一种低压大电流无线充电系统的协同控制方法,其特征在于,所述协同控制方法应用权利要求1-8任一项所述的低压大电流无线充电系统,所述协同控制方法包括:
    预设使低压大电流无线充电系统处于充电状态的初始直通占空比和初始同步整流占空比;
    获取当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压;
    若所述当前负载电池组的电压小于截止电压,则根据初始直通占空比、当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压,分别计算负载电池组的当前电阻和原副边线圈的当前互感;
    根据负载电池组的当前电阻和原副边线圈的当前互感,计算倍流同步整流电路的当前最优占空比,并控制倍流同步整流电路的同步整流占空比等于当前最优占空比,以使倍流同步整流电路的等效负载电阻等于当前系统最优负载;
    根据当前负载电池组的电压和电流、当前准Z源逆变电路输入端的直流电电压,计算输出功率;
    根据输出功率、当前负载电池组的电压和电流以及原副边线圈的当前互感进行PI控制,调节直通占空比,以对负载电池组进行恒功率充电;
    若所述当前负载电池组的电压大于或等于截止电压,则整个充电过程完成。
  10. 根据权利要求9所述的协同控制方法,其特征在于,根据负载电池组的当前电阻和原副边线圈的当前互感,计算倍流同步整流电路的当前最优占空比,具体包括:
    根据所述原副边线圈的当前互感,利用公式
    Figure PCTCN2022133231-appb-100001
    计算当前系统最优负载R opt;其中,ω为系统谐振角频率,R p、R s和R Lf分别为原边线圈L p、副边线圈L s和原边补偿电感L f的内阻,M为原副边线圈的当前互感;
    根据当前系统最优负载R opt,利用公式
    Figure PCTCN2022133231-appb-100002
    计算当前最优占空比D s-opt;其中,R o为负载电池组的等效电阻。
PCT/CN2022/133231 2022-04-28 2022-11-21 一种低压大电流无线充电系统及其协同控制方法 WO2023207049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210470193.1A CN114784996A (zh) 2022-04-28 2022-04-28 一种低压大电流无线充电系统及其协同控制方法
CN202210470193.1 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207049A1 true WO2023207049A1 (zh) 2023-11-02

Family

ID=82434723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133231 WO2023207049A1 (zh) 2022-04-28 2022-11-21 一种低压大电流无线充电系统及其协同控制方法

Country Status (2)

Country Link
CN (1) CN114784996A (zh)
WO (1) WO2023207049A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784996A (zh) * 2022-04-28 2022-07-22 中国科学院电工研究所 一种低压大电流无线充电系统及其协同控制方法
CN117477803B (zh) * 2023-12-28 2024-03-15 中国人民解放军国防科技大学 逆变谐振恒功率无线充电系统和控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183621A (zh) * 2018-03-13 2018-06-19 刘钰山 一种基于SiC的单相准Z源逆变器及其功率密度提高方法
JPWO2021117098A1 (zh) * 2019-12-09 2021-06-17
WO2022062327A1 (zh) * 2020-09-28 2022-03-31 青岛理工大学 一种改进型开关耦合电感准z源逆变器
CN114784996A (zh) * 2022-04-28 2022-07-22 中国科学院电工研究所 一种低压大电流无线充电系统及其协同控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391044B (zh) * 2018-11-14 2021-06-01 中国矿业大学 一种感应电能传输系统稳压综合控制系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183621A (zh) * 2018-03-13 2018-06-19 刘钰山 一种基于SiC的单相准Z源逆变器及其功率密度提高方法
JPWO2021117098A1 (zh) * 2019-12-09 2021-06-17
WO2022062327A1 (zh) * 2020-09-28 2022-03-31 青岛理工大学 一种改进型开关耦合电感准z源逆变器
CN114784996A (zh) * 2022-04-28 2022-07-22 中国科学院电工研究所 一种低压大电流无线充电系统及其协同控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAO, CHENGXUAN ET AL.: "A High-Efficiency Wireless Power Transfer System Using Quasi-Z-Source Inverter and Current-Double Synchronous Rectifier for Low-Voltage and High-Current Applications", IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, vol. 8, no. 2, 26 January 2022 (2022-01-26), XP011906395, ISSN: 2332-7782, DOI: 10.1109/TTE.2022.3146426 *

Also Published As

Publication number Publication date
CN114784996A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023207049A1 (zh) 一种低压大电流无线充电系统及其协同控制方法
CN109889047B (zh) 一种适用于宽输入宽输出电压范围的两级式dc-dc变换器
WO2021057195A1 (zh) 一种obc电路、obc充电器、新能源汽车及充电桩
CN109039121B (zh) 一种高频隔离型交直流变换电路及其控制方法
CN108879895B (zh) 电动汽车能量传输系统及传输方法
CN111654116B (zh) 一种高增益恒压恒流输出电场耦合无线电能传输系统
CN208955902U (zh) 一种适用于双向近场电能传输的电路拓扑结构
CN109842299B (zh) 组合式直流变换系统及其控制方法
CN110601525A (zh) 新能源汽车集成车载充电变换系统
CN113472089A (zh) 电动汽车无线充电系统以及控制方法
CN209313739U (zh) 一种高频隔离型交直流变换电路
WO2023029885A1 (zh) 发射端、接收端、动态无线供电系统及电动汽车
CN114825663B (zh) 一种sp型双输出单独可调无线电能传输系统及其控制方法
CN110739872A (zh) 一种新型双向高变比swiss整流器
CN115664225A (zh) 一种有源钳位隔离双向谐振型变换器及其调制方法
CN113595256B (zh) 一种基于混合调制技术提升ss结构wpt系统轻载效率的方法
CN112491162B (zh) 一种无线电能传输装置
CN209105058U (zh) 一种隔离型双向交直流变换电路
CN212627329U (zh) 一种无线充电系统的发射端、接收端及无线充电系统
CN109039139B (zh) 一种隔离型双向交直流变换电路及其控制方法
CN111371195A (zh) 一种用于lcc-s无线电能传输系统的电力变换电路
CN110829876B (zh) 单相固态变压器的拓扑结构
CN218416188U (zh) 一种新型Sepic功率因数校正变换器
CN112491156B (zh) 电动汽车大功率动态无线供电系统接收端多模块siso电路拓扑的控制方法
CN117375262B (zh) 一种大功率无线电能传输系统及移相控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939864

Country of ref document: EP

Kind code of ref document: A1