WO2022062327A1 - 一种改进型开关耦合电感准z源逆变器 - Google Patents

一种改进型开关耦合电感准z源逆变器 Download PDF

Info

Publication number
WO2022062327A1
WO2022062327A1 PCT/CN2021/080447 CN2021080447W WO2022062327A1 WO 2022062327 A1 WO2022062327 A1 WO 2022062327A1 CN 2021080447 W CN2021080447 W CN 2021080447W WO 2022062327 A1 WO2022062327 A1 WO 2022062327A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
power switch
switch tube
diode
capacitor
Prior art date
Application number
PCT/CN2021/080447
Other languages
English (en)
French (fr)
Inventor
张民
李海滨
韦正怡
周明珠
陈�光
李恺
郝杨阳
曹益畅
王凤莲
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022062327A1 publication Critical patent/WO2022062327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the invention belongs to the technical field of DC-AC conversion equipment, and relates to an improved switched coupled inductor quasi-Z source inverter (MSCL qZSI).
  • inverters play a vital role in solar power generation systems.
  • Traditional single-stage photovoltaic power generation systems use DC/AC inverters to directly transfer the energy output by photovoltaic cells to the grid.
  • this method can achieve higher conversion efficiency, it also has great drawbacks: First, it requires a higher input voltage, and multiple photovoltaic modules must be connected in series, which will greatly increase the system cost and failure rate and lead to non-ideal conditions. Second, in actual work, in order to track the maximum power point voltage of the photovoltaic cell, the DC bus voltage of the inverter needs to fluctuate within a wide range, which leads to an additional increase in the power capacity of the inverter design.
  • a two-stage control structure of cascaded DC-DC circuits can be used to solve the above problems.
  • a DC/DC circuit with maximum power point tracking function is added between the photovoltaic module and the inverter, and the DC circuit can be used to boost the voltage to reduce the number of photovoltaic modules in series and obtain a constant DC link voltage.
  • ZSI Z-Source Inverter
  • ZSI Z-Source Inverter
  • ZSI Z-Source Inverter
  • the inverter (ZSI) can step up and step down the voltage of a single-stage inverter, which has certain advantages when used in photovoltaic power generation grid-connected systems.
  • the development of single-chip photovoltaic module capacity has promoted the rapid development of micro-inverter grid-connected systems.
  • High-voltage gain ZSI is very suitable for such application scenarios.
  • experimental studies have found that traditional ZSI also has some shortcomings: First, it is limited by its own topology.
  • the quasi-Z-source inverter (qZSI) circuit is used for photovoltaic power generation and The grid system can realize the maximum power point tracking (MPPT) of the photovoltaic module and facilitate the grid connection of the inverter.
  • MPPT maximum power point tracking
  • the continuous input current of the qZSI contributes to the MPPT of the PV module, while the "low" voltage overshoot of the DC bus contributes to the type selection of switches and improves the electromagnetic environment (EMI) of the inverter, but the lower DC of the qZSI
  • the link boost capability requires a large number of PV modules to be connected in series to reach the grid-connected voltage level, which leads to high cost and failure rate of the PV module system.
  • Hafiz Furqan Ahmed, HonnyongCha et al proposed SCL qZSI, in which a bootstrap capacitor and a symmetrical parallel structure are used to improve the boost capability at a small shoot-through duty cycle D, and the symmetrical parallel structure can reduce the current stress of the components, in addition , the added tertiary winding N23 in the coupled inductor improves the boost capability of the inverter, however, the copper losses in the windings in the non-shoot-through state reduce the efficiency.
  • the mSSCL qZSI proposed by Saeed Sharifi and Mohammad Monfared achieves high voltage gain at small D by using a bootstrap capacitor and a switched-coupled inductor unit, however, during shoot-through and non-shoot-through states, the switch-coupled inductor tertiary winding N23 has higher
  • the high current stress leads to high copper loss in the coupled inductor, which in turn reduces the inverter efficiency. Therefore, it has become a challenging task in photovoltaic power generation systems to seek an inverter circuit with a simple structure, high conversion efficiency, low current stress, and suitable for high boost occasions.
  • MSCL qZSI switched-coupled-inductor quasi-Z-source inverter
  • the present invention provides the following scheme:
  • the main structure of the improved switched coupled inductor quasi-Z source inverter of the present invention includes a DC power supply, a first inductor, a first capacitor, a first diode, a second diode, a third pole tube, the second capacitor, the third capacitor, the first winding, the second winding, the third winding, the fourth winding and six power switch tubes, wherein the second diode, the third diode, the third capacitor, The first winding, the second winding, the third winding and the fourth winding form a boosting unit; the two ends of the first inductor are respectively connected to the anode of the DC power supply, the anode of the first diode and the cathode of the second capacitor.
  • the cathode of the diode is connected to the anode of the first capacitor, the same-named terminal of the first winding and the anode of the third diode respectively, the cathode of the third diode is connected to the different-named terminal of the fourth winding, and the terminal of the first winding is connected.
  • the synonym terminal is connected to the synonym terminal of the third winding and the cathode of the third capacitor respectively, the synonym terminal of the third winding is connected to the anode of the second diode, the anode of the third capacitor is respectively connected to the synonym terminal of the second winding and the anode of the second diode.
  • the same name terminal of the fourth winding is connected, the cathode of the second diode is connected to the anode of the second capacitor and the different name terminal of the second winding respectively, the drain of the upper bridge wall power switch tube is respectively connected to the anode of the second capacitor and the second terminal of the second capacitor.
  • the power switch tubes form a power switch tube group, and the power switch tube group includes the upper arm power switch tube and the lower arm power switch tube;
  • the upper bridge arm power switch tube includes a first power switch tube, a third power switch tube and a fifth power switch tube;
  • the lower arm power switch tube includes a second power switch tube, a fourth power switch tube and a sixth power switch tube a power switch tube; the drains of the first power switch tube, the third power switch tube and the fifth power switch tube are connected to form the drain of the upper arm power switch tube; the first power switch tube
  • the source of the switch tube is connected to the drain of the fourth power switch tube; the source of the third power switch tube is connected to the drain of the sixth power switch tube; the source of the fifth power switch tube is connected
  • the second power switch tube, the fourth power switch tube and the source of the sixth power switch tube are connected to form the lower arm power switch source of the tube.
  • the invention switches the working state of the circuit by controlling the on or off of the power switch tube, so as to control whether the DC power supply provides the energy required for the circuit operation to the coupled inductor, and by changing the size of the duty cycle and the winding turns ratio of the coupled inductor, The change of the gain of the input and output voltage is realized, so as to realize the step-up and step-down control of the DC power supply by the output voltage.
  • the present invention realizes the continuous charging and discharging process of the coupled inductance unit due to the on and off of the switch tube in actual work, so as to achieve the purpose of high boosting gain; and the four coupled inductances
  • the unique connection method between the terminals of the same name can effectively reduce the current stress of the winding, reduce the loss, and can reduce the resonance problem of the converter circuit, and the output efficiency is high.
  • FIG. 1 is a schematic diagram of the main structure circuit principle of the present invention.
  • FIG. 2 is a schematic diagram of the working state of the circuit when the power switch tubes S 1 -S 6 (marked as S eq in the figure) of the present invention are turned on.
  • FIG. 3 is a schematic diagram of the working state of the circuit when the power switch tubes S 1 to S 6 of the present invention are turned off.
  • FIG. 4 is a relationship diagram of the boost factor B and the shoot-through duty ratio D of the three inverters according to the embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the winding current and the voltage gain G of the three inverters according to the embodiment of the present invention.
  • FIG. 6 is a functional relationship diagram of the efficiency and output power of the three inverters according to the embodiment of the present invention.
  • the ability to achieve high voltage conversion including the DC power supply V g , first inductor L 1 , first capacitor C 1 , first diode D 1 , second diode D 21 , third diode D 22 , second capacitor C 2 , third capacitor C 21 , the first winding N 21 , the second winding N 22 , the third winding N 23 , the fourth winding N 24 and six power switch tubes S 1 -S 6 , wherein the second diode D 21 , the third diode D 22 , the third capacitor C 21 , the first winding N 21 , the second winding N 22 , the third winding N 23 and the fourth winding N 24 form a boosting unit; the two ends of the first inductor L 1 are respectively connected to the DC power supply V
  • the anode of g , the anode of the first diode D1 and the cathode of the second capacitor C2 are connected, and the cathode of the first diode D1
  • the anode of the third diode D 22 is connected to the anode of the third diode D 22
  • the cathode of the third diode D 22 is connected to the synonym end of the fourth winding N 24
  • the synonym end of the first winding N 21 is respectively connected to the synonym end of the third winding N 23 .
  • the different terminal is connected to the cathode of the third capacitor C 21 , the same terminal of the third winding N 23 is connected to the anode of the second diode D 21 , and the anode of the third capacitor C 21 is respectively connected to the same terminal of the second winding N 22 It is connected to the same name terminal of the fourth winding N 24 , the cathode of the second diode D 21 is connected to the anode of the second capacitor C 2 and the different name terminal of the second winding N 22 respectively, and the upper bridge wall power switch tube S 1 -
  • the drain of S3 is respectively connected with the anode of the second capacitor C2, the cathode of the second diode D21 and the different terminal of the second winding N22 , and the sources of the lower arm power switch tubes S4 - S6 are respectively It is connected to the negative electrode of the DC power supply V g and the negative electrode of the first capacitor C 1 ; the first winding N 21 , the second winding N 22 , the third winding N 23
  • six of the power switch tubes form a power switch tube group, and the power switch tube group includes the upper arm power switch tube and the lower arm power switch tube; the upper arm power switch tube;
  • the bridge arm power switch tube includes a first power switch tube S 1 , a third power switch tube S 3 and a fifth power switch tube S 5 ;
  • the lower arm power switch tube includes a second power switch tube S 2 and a fourth power switch tube S 5 .
  • the switch S4 and the sixth power switch S6 are connected to form the drain of the power switch tube of the upper bridge arm; the source of the first power switch S1 is connected to the drain of the fourth power switch S4; the source of the third power switch S3 is connected to the drain of the fourth power switch S4.
  • the drain of the sixth power switch S6 is connected; the source of the fifth power switch S5 is connected to the drain of the second power switch S2; the second power switch S2 ,
  • the fourth power switch S4 and the source of the sixth power switch S6 are connected to form the source of the lower arm power switch.
  • the unipolar SPWM mode is used to control the turn-on or turn-off of the power switch to complete the switching of different working modes, thereby reducing the switching loss in the overall circuit structure, improving the overall work efficiency of the circuit, and the switch-off and conduction of the switch.
  • the different working states of the on-time circuit are shown in Figure 2 and Figure 3 respectively:
  • the first diode D 1 is reverse biased, while the second diode D 21 and the third diode D 22 conduct, the first inductor L 1 is input by the second capacitor C 2 and The power supply V g is charged, the four windings N 21 , N 22 , N 23 and N 24 are all charged by the first capacitor C 1 , and the third capacitor C 21 stores the energy from the first capacitor C 1 .
  • the specific current loop is shown in the figure 2 shown. At this time, the circuit has the following voltage and current relationship:
  • the second diode D 21 and the third diode D 22 are reverse biased, the first diode D 1 is turned on, and the storage is stored in the first winding N 21 and the second winding N 22
  • the energy in the first inductor L 1 is combined with the DC power supply V g to supply power to the load.
  • the first capacitor C 1 and the second capacitor C 2 are charged in this state.
  • the specific current loop is shown in Figure 3, At this time, the circuit structure has the following voltage and current relationship:
  • V L1-ON , V N-ON , V L1-OFF , V N-OFF are the voltages across the magnetic elements (inductors and windings) in the shoot-through state and non-shoot-through state, respectively
  • VC is the capacitor voltage
  • V PN is the peak DC link voltage
  • V L1-ON (1-D) V PN
  • B is the peak DC link boost factor of the inverter
  • D is the shoot-through duty cycle (0 ⁇ D ⁇ 1)
  • the peak DC link boost factors of SCL qZSI and mSSCL qZSI in the prior art are as follows:
  • the boost factor of MSCL qZSI is between the boost factors of mSSCL qZSI and SCL qZSI;
  • MSCL qZSI is more efficient than the other two due to lower current stress on windings N 23 and N 2 4
  • the inverter has higher efficiency, despite the high boost capability of mSSCL qZSI, its efficiency is the lowest among the three inverters due to the high current stress in windings N 23 and N 24 , the coupled inductor in MSCLqZSI Power consumption is much smaller than the other two candidates.
  • the MSCL qZSI is tested under the test conditions of an input voltage of 100V, an effective value of an output phase voltage of 120V, and an output power of 1kW, and the maximum efficiency reaches 92.8%, which basically meets the design requirements.
  • the MSCL qZSI of this embodiment has the advantages of high voltage gain and high efficiency, it provides continuous input current and low DC bus voltage spikes, and can achieve maximum power point tracking (MPPT) of photovoltaic modules; Due to the unique design of coupled inductors, the winding current stress in the proposed MSCL qZSI is lower than that of SCL qZSI and mSSCL qZSI, reducing the power loss of the windings and improving the efficiency of the proposed inverter.
  • MPPT power point tracking

Abstract

一种改进型开关耦合电感准Z源逆变器,其主体结构包括直流电源(V g)、第一电感(L 1)、第一电容(C 1)、第一二极管(D 1)、第二二极管(D 21)、第三二极管(D 22)、第二电容(C 2)、第三电容(C 21)、第一绕组(N 21)、第二绕组(N 22)、第三绕组(N 23)、第四绕组(N 24)和六个功率开关管(S 1-S 6)。其中第二二极管(D 21)、第三二极管(D 22)、第三电容(C 21)、第一绕组(N 21)、第二绕组(N 22)、第三绕组(N 23)和第四绕组(N 24)组成升压单元,六个功率开关管(S 1-S 6)两两串联组成逆变器的三相桥臂;第一绕组(N 21)、第二绕组(N 22)、第三绕组(N 23)和第四绕组(N 24)两两耦合且均为同向耦合,四个耦合电感同名端之间独特的连接方式能够有效的降低绕组的电流应力,减少损耗,并且可以减少变换器电路出现的谐振问题,输出效率高。

Description

一种改进型开关耦合电感准Z源逆变器
本申请要求于2020年09月28日提交中国专利局、申请号为202011039876.9、发明名称为“一种改进型开关耦合电感准Z源逆变器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于DC-AC变换设备技术领域,涉及一种改进型开关耦合电感准Z源逆变器(MSCL qZSI)。
背景技术
21世纪以来,随着能源危机及环境污染问题越来越严峻,可再生清洁能源的快速发展成为世界各国能源发展的重点。太阳能、风能、水能、核能等可再生清洁能源得到广泛应用,以太阳能为基础的光伏系统因其无污染、无噪音、开发资源丰富等优势受到世界各国的普遍关注,被定为未来最有发展前景的新能源技术,现今已被广泛应用工业生产、国民经济的各个领域。其中电压源逆变器作为应用最为成熟的一种变流器,在不间断电源、交流电机调速、新能源发电等领域中均得到广泛应用。作为功率调节系统(PCS),逆变器在太阳能发电系统中扮演着至关重要的角色。传统单级式光伏发电系统使用DC/AC逆变器直接将光伏电池所输出的能量传递至电网。该方式虽能取得较高转换效率,但同时存在很大缺陷:一是需要较高的输入电压,必须将多个光伏模块串联,这将极大增加系统成本及故障率并导致在非理想条件下功率损失严重;二是实际工作时,为跟踪光伏电池最大功率点电压,需要使逆变器直流母线电压在较大范围内波动,这导致逆变器设计时额外增加其功率容量。可在单级发电系统的基础上,利用级联DC-DC电路的两级控制结构来解决上述问题。光伏模块与逆变器之间加入一个具有最大功率点跟踪功能的DC/DC电路,可通过该DC电路升压从而减少光伏模块的串联个数并得到恒定的直流链电压,实现逆变器并网工作时的独立控制及光伏电池最大功率点跟踪,但同时也存在一些缺点:一是加入DC-DC变换器导致整个系统效率下降;二是增加系统 中硬件电路数量,降低系统工作的可靠性,增加其维护费用。为了解决增益和效率低的问题,F.Z.Peng教授在2002年提出了一种新型单级升降压逆变器——Z-源逆变器(Z-Source Inverter(ZSI)),Z型源逆变器(ZSI)可以升压和降低单级逆变器的电压,在光伏发电并网系统中使用时具有某些优势。单芯片光伏模块容量的发展促进了微逆变器并网系统的快速发展,高压增益ZSI非常适合此类应用场景,然而实验研究发现,传统的ZSI也存在一些不足:一是受限于自身拓扑结构,其电压增益较低;二是其输入侧电流呈断续状态;三是储能电容两端所承受的电压较大;四是存在启动冲击电流、共模噪声的问题等等。为了解决这些问题,广大学者对传统ZSI进行了一系列的改进,其中最为经典的改进电路就是准Z-源逆变器(qZSI)电路,准Z源逆变器(qZSI)用于光伏发电并网系统,可以实现光伏模块的最大功率点跟踪(MPPT),并方便逆变器的电网连接。qZSI的连续输入电流有助于光伏模块的MPPT,而直流母线的“低”电压过冲则有助于开关的类型选择和改善逆变器的电磁环境(EMI),但是qZSI的较低的直流链路升压能力要求大量的光伏模块串联连接以达到并网电压水平,这导致光伏模块系统的高成本和故障率,在qZSI框架中,嵌入特定的升压单元会导致新的高压增益qZSI,这样的逆变器可以实现通过调整耦合电感的匝数比n和直通占空比D可以达到所需的并网电压电平,它可以保持连续的输入电流和较低的直流母线电压过冲,并增加逆变器的升压能力,但升压单元中组件的电流应力较高,增加了组件选择的难度和成本。因此,强调在qZSI中嵌入改进的boost单元。Hafiz Furqan Ahmed,HonnyongCha等人提出了SCL qZSI,其中自举电容器和对称的并联结构用于在较小的直通占空比D下提高升压能力,对称的并联结构可降低组件的电流应力,此外,在耦合电感器中增加的第三绕组N23提高了逆变器的升压能力,然而,在非直通状态下绕组中的铜损降低了效率。SaeedSharifi and Mohammad Monfared提出的mSSCL qZSI通过使用自举电容器和开关耦合电感单元在小D处实现了高电压增益,然而,在直通和非直通状态期间,开关耦合电感器的第三绕组N23具有较高的电流应力,高电流应力导致耦合电感的高铜损,进而降低逆变器效率。因此,寻求一种结构简单、转换效率较高、低电流应力的绕组、适应于高升压场合的逆变电路已经成为光伏发 电系统中挑战性工作课题。
发明内容
基于此,有必要提供一种改进型开关耦合电感准Z源逆变器(MSCL qZSI),提供连续的输入电流和低直流母线电压尖峰。
为实现上述目的,本发明提供了如下方案:
为了实现上述目的,本发明所述改进型开关耦合电感准Z源逆变器的主体结构包括直流电源、第一电感、第一电容、第一二极管、第二二极管、第三二极管、第二电容、第三电容、第一绕组、第二绕组、第三绕组、第四绕组和六个功率开关管,其中第二二极管、第三二极管、第三电容、第一绕组、第二绕组、第三绕组和第四绕组组成升压单元;第一电感的两端分别与直流电源的正极、第一二极管的阳极和第二电容的阴极相连,第一二极管的阴极分别与第一电容的阳极、第一绕组的同名端和第三二极管的阳极相连,第三二极管的阴极与第四绕组的异名端相连,第一绕组的异名端分别与第三绕组的异名端和第三电容的阴极相连,第三绕组的同名端与第二二极管的阳极相连,第三电容的阳极分别与第二绕组的同名端和第四绕组的同名端相连,第二二极管的阴极分别与第二电容的阳极和第二绕组的异名端相连,上桥壁功率开关管的漏极分别与第二电容的阳极、第二二极管的阴极和第二绕组异名端相连,下桥臂功率开关管的源极分别与直流电源的负极和第一电容的阴极相连;第一绕组、第二绕组、第三绕组和第四绕组两两耦合,其对应的匝数比为N 23/N 21=N 24/N 22=n,0<n<1,且均为同向耦合。
可选的,六个所述功率开关管组成功率开关管组,所述功率开关管组包括所述上桥臂功率开关管和所述下桥臂功率开关管;
所述上桥臂功率开关管包括第一功率开关管、第三功率开关管和第五功率开关管;所述下桥臂功率开关管包括第二功率开关管、第四功率开关管和第六功率开关管;所述第一功率开关管、所述第三功率开关管和所述第五功率开关管的漏极连接,形成所述上桥臂功率开关管的漏极;所述第一功率开关管的源极和所述第四功率开关管的漏极连接;所述第三功率开 关管的源极和所述第六功率开关管的漏极连接;所述第五功率开关管的源极和所述第二功率开关管的漏极连接;所述第二功率开关管、所述第四功率开关管和所述第六功率开关管的源极连接,形成所述下桥臂功率开关管的源极。
与现有技术相比,本发明的有益效果是:
本发明通过控制功率开关管的导通或截止进行电路工作状态的切换,从而控制直流电源是否向耦合电感提供电路工作需要的能量,通过改变占空比的大小以及耦合电感的绕组匝数比,实现输入输出电压增益的变化,从而实现输出电压对所述直流电源的升降压控制。
本发明与现有技术相比,在实际工作中,由于开关管的导通和截止,实现了耦合电感单元不断进行充、放电的过程,从而达到高升压增益的目的;而且四个耦合电感同名端之间独特的连接方式能够有效的降低绕组的电流应力,减少损耗,并且可以减少变换器电路出现的谐振问题,输出效率高。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的主体结构电路原理示意图。
图2为本发明所述功率开关管S 1-S 6(图中标示为S eq)导通时电路的工作状态示意图。
图3为本发明所述功率开关管S 1-S 6关断时电路的工作状态示意图。
图4为本发明实施例所述三个逆变器的升压因子B与直通占空比D关系图。
图5为本发明实施例所述三个逆变器的绕组电流与电压增益G关系图。
图6为本发明实施例所述三个逆变器的效率与输出功率的函数关系图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例:
本实施例所述MSCL qZSI的主体结构如图1所示,其中含耦合绕组的升压单元用于代替传统升压拓扑中单个独立的储能电感,利用耦合电感同时充放电的特点,在原逆变器只具有占空比D这一调节因子的基础上,增加匝数比这一可以调节的自由因子,通过改变耦合绕组的匝数比,从而实现高电压转换的能力,具体包括包括直流电源V g、第一电感L 1、第一电容C 1、第一二极管D 1、第二二极管D 21、第三二极管D 22、第二电容C 2、第三电容C 21、第一绕组N 21、第二绕组N 22、第三绕组N 23、第四绕组N 24和六个功率开关管S 1-S 6,其中第二二极管D 21、第三二极管D 22、第三电容C 21、第一绕组N 21、第二绕组N 22、第三绕组N 23和第四绕组N 24组成升压单元;第一电感L 1的两端分别与直流电源V g的正极、第一二极管D 1的阳极和第二电容C 2的阴极相连,第一二极管D 1的阴极分别与第一电容C 1的阳极、第一绕组N 21的同名端和第三二极管D 22的阳极相连,第三二极管D 22的阴极与第四绕组N 24的异名端相连,第一绕组N 21的异名端分别与第三绕组N 23的异名端和第三电容C 21的阴极相连,第三绕组N 23的同名端与第二二极管D 21的阳极相连,第三电容C 21的阳极分别与第二绕组N 22的同名端和第四绕组N 24的同名端相连,第二二极管D 21的阴极分别与第二电容C 2的阳极和第二绕组N 22的异名端相连,上桥壁功率开关管S 1-S 3的漏极分别与第二电容C 2的阳极、第二二极管D 21的阴极和第二绕组N 22异名端相连,下桥臂功率开关管S 4-S 6的源极分别与直流电源V g的负极和第一电容C 1的阴极相连;第一绕组N 21、第二绕组N 22、第三绕组N 23和第四绕组N 24两两耦合,其对应的匝数比为N 23/N 21=N 24/N 22=n,且均为同向耦合。
作为一种可选的实施方式,六个所述功率开关管组成功率开关管组,所述功率开关管组包括所述上桥臂功率开关管和所述下桥臂功率开关管;所述上桥臂功率开关管包括第一功率开关管S 1、第三功率开关管S 3和第五功率开关管S 5;所述下桥臂功率开关管包括第二功率开关管S 2、第四功率开关管S 4和第六功率开关管S 6;所述第一功率开关管S 1、所述第三功率开关管S 3和所述第五功率开关管S 5的漏极连接,形成所述上桥臂功率开关管的漏极;所述第一功率开关管S 1的源极和所述第四功率开关管S 4的漏极连接;所述第三功率开关管S 3的源极和所述第六功率开关管S 6的漏极连接;所述第五功率开关管S 5的源极和所述第二功率开关管S 2的漏极连接;所述第二功率开关管S 2、所述第四功率开关管S 4和所述第六功率开关管S 6的源极连接,形成所述下桥臂功率开关管的源极。
本实施例采用单极性SPWM模式控制功率开关管的导通或关断,完成不同工作方式的切换,从而整体电路结构中减少开关损耗,挺高电路的整体工作效率,开关管关断和导通时电路的不同工作状态分别如图2和图3所示:
在直通状态下,第一二极管D 1被反向偏置,而第二二极管D 21和第三二极管D 22导通,第一电感L 1由第二电容C 2和输入电源V g充电,四个绕组N 21、N 22、N 23和N 24全部由第一电容C 1充电,第三电容器C 21存储来自第一电容C 1的能量,具体的电流环路如图2所示。此时,电路存在以下电压、电流关系式:
Figure PCTCN2021080447-appb-000001
Figure PCTCN2021080447-appb-000002
在非直通状态下,第二二极管D 21和第三二极管D 22被反向偏置,第一二极管D 1导通,存储在第一绕组N 21、第二绕组N 22和第一电感L 1中的能量与直流电源V g相结合,为负载供电,第一电容C 1和第二电容C 2在该状态下被充电,具体的电流环路如图3所示,此时,电路结构存在以下的电压、电流关系:
Figure PCTCN2021080447-appb-000003
其中,V L1-ON,V N-ON,V L1-OFF,V N-OFF分别是处于直通状态和非直通状态的磁性元件(电感器和绕组)两端的电压,V C是电容器电压,V PN是峰值直流链路电压,
将伏秒平衡理论应用于L 1和N 21,得到:
Figure PCTCN2021080447-appb-000004
将安秒平衡理论应用于C 2,得到:
Figure PCTCN2021080447-appb-000005
由非直通状态里的电流关系可以得到:
Figure PCTCN2021080447-appb-000006
其中V N23=V N24=-nV N21=-nV N22
Figure PCTCN2021080447-appb-000007
V L1-ON=(1-D)V PN
Figure PCTCN2021080447-appb-000008
从而得到MSCL qZSI的峰值直流链路升压因子B:
Figure PCTCN2021080447-appb-000009
其中,B是逆变器的峰值直流链路升压因子,D是直通占空比(0<D<1),n=N 23/N 21=N 24/N 22是匝数比,0<n<1,N 21=N 22;现有技术中SCL qZSI和mSSCL qZSI的峰值直流链路升压因子如下:
Figure PCTCN2021080447-appb-000010
如上所述的三个逆变器具有相同类型的升压因子,即B=k N/1-kD,k>1,k N>1是与逆变器的结构相关联的系数,尽管所提出的逆变器具有四个绕组,但是为了使比较更有价值,在本实施例中基于不同逆变器中耦合电感的相同总匝数比进行比较,所以MSCL qZSI中的总匝数比N 23/N 21+N 24/N 22=0.15+0.15=0.3与SCL qZSI和mSSCL qZSI中的匝数比为n=N 23/N 21=0.3相等,在升压因子B与直通占空比D的关系图(如图4所示)里,MSCL qZSI的升压因子在mSSCL qZSI和SCL qZSI的升压因子之间;
使用简单的升压控制方法,D和M之间的关系为:D=1-M
Figure PCTCN2021080447-appb-000011
在绕组电流与电压增益G的关系图(如图5所示)里,MSCL qZSI的绕组N 23与N 24的电流明显要比mSSCL qZSI和SCL qZSI的低,绕组N 21与N 22的电流mSSCL qZSI和SCL qZSI的差不多;三个逆变器的效率与输出功率的函数关系图如图6所示,MSCL qZSI由于在绕组N 23和N 24上的电流应力较低,因此比其他两个逆变器具有更高的效率,尽管mSSCL qZSI具有很高的升压能力,但由于绕组N 23和N 24中的高电流应力,其效 率在三个逆变器中最低,MSCLqZSI中耦合电感的功耗比其他两个候选的要小得多。
本实施例将MSCL qZSI在输入电压100V、输出相电压有效值120V以及输出功率1kW的测试条件下进行测试,最大效率达到92.8%,基本满足设计要求。上述分析和实验结果表明,本实施例的MSCL qZSI具有高电压增益和高效率的优势,它提供了连续的输入电流和低直流母线电压尖峰,可以实现光伏模块的最大功率点跟踪(MPPT);由于耦合电感的独特设计,所提出的MSCL qZSI中的绕组电流应力低于SCL qZSI和mSSCL qZSI,减少了绕组的功率损耗并提高了所提出的逆变器的效率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (2)

  1. 一种改进型开关耦合电感准Z源逆变器,其特征在于主体结构包括直流电源、第一电感、第一电容、第一二极管、第二二极管、第三二极管、第二电容、第三电容、第一绕组、第二绕组、第三绕组、第四绕组和六个功率开关管,其中第二二极管、第三二极管、第三电容、第一绕组、第二绕组、第三绕组和第四绕组组成升压单元;第一电感的两端分别与直流电源的正极、第一二极管的阳极和第二电容的阴极相连,第一二极管的阴极分别与第一电容的阳极、第一绕组的同名端和第三二极管的阳极相连,第三二极管的阴极与第四绕组的异名端相连,第一绕组的异名端分别与第三绕组的异名端和第三电容的阴极相连,第三绕组的同名端与第二二极管的阳极相连,第三电容的阳极分别与第二绕组的同名端和第四绕组的同名端相连,第二二极管的阴极分别与第二电容的阳极和第二绕组的异名端相连,上桥壁功率开关管的漏极分别与第二电容的阳极、第二二极管的阴极和第二绕组异名端相连,下桥臂功率开关管的源极分别与直流电源的负极和第一电容的阴极相连;第一绕组、第二绕组、第三绕组和第四绕组两两耦合,其对应的匝数比为N 23/N 21=N 24/N 22=n,0<n<1,且均为同向耦合。
  2. 根据权利要求1所述的改进型开关耦合电感准Z源逆变器,其特征在于,六个所述功率开关管组成功率开关管组,所述功率开关管组包括所述上桥臂功率开关管和所述下桥臂功率开关管;
    所述上桥臂功率开关管包括第一功率开关管、第三功率开关管和第五功率开关管;所述下桥臂功率开关管包括第二功率开关管、第四功率开关管和第六功率开关管;所述第一功率开关管、所述第三功率开关管和所述第五功率开关管的漏极连接,形成所述上桥臂功率开关管的漏极;所述第一功率开关管的源极和所述第四功率开关管的漏极连接;所述第三功率开关管的源极和所述第六功率开关管的漏极连接;所述第五功率开关管的源极和所述第二功率开关管的漏极连接;所述第二功率开关管、所述第四功率开关管和所述第六功率开关管的源极连接,形成所述下桥臂功率开关管的源极。
PCT/CN2021/080447 2020-09-28 2021-03-12 一种改进型开关耦合电感准z源逆变器 WO2022062327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011039876.9A CN112072942A (zh) 2020-09-28 2020-09-28 一种改进型开关耦合电感准z源逆变器
CN202011039876.9 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022062327A1 true WO2022062327A1 (zh) 2022-03-31

Family

ID=73683684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080447 WO2022062327A1 (zh) 2020-09-28 2021-03-12 一种改进型开关耦合电感准z源逆变器

Country Status (2)

Country Link
CN (1) CN112072942A (zh)
WO (1) WO2022062327A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583990A (zh) * 2022-05-07 2022-06-03 深圳古瑞瓦特新能源有限公司 宽范围增益的单相逆变器、控制方法及三相逆变器
CN115800734A (zh) * 2023-02-08 2023-03-14 浙江日风电气股份有限公司 一种单级二阶升压逆变器、升压方法、装置、设备及介质
WO2023207049A1 (zh) * 2022-04-28 2023-11-02 中国科学院电工研究所 一种低压大电流无线充电系统及其协同控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072942A (zh) * 2020-09-28 2020-12-11 青岛理工大学 一种改进型开关耦合电感准z源逆变器
CN113676073A (zh) * 2021-08-13 2021-11-19 青岛理工大学 一种新型双自举耦合电感准z源逆变器及控制方法
CN113922690B (zh) * 2021-08-16 2023-11-07 青岛理工大学 一种改进型三耦合电感准z源升压逆变器及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234525A1 (en) * 2012-03-06 2013-09-12 Ferrotec (Usa) Corporation Electrical breakdown limiter for a high voltage power supply
CN105119487A (zh) * 2015-09-23 2015-12-02 青岛理工大学 一种带开关电感的耦合电感boost升压变换装置
CN105406751A (zh) * 2015-12-30 2016-03-16 哈尔滨工业大学 具有高升压比能力的三绕组耦合电感型z源逆变器电路
CN208424201U (zh) * 2018-07-27 2019-01-22 国网辽宁省电力有限公司铁岭供电公司 一种具有开关电感结构的boost变换器
CN112072942A (zh) * 2020-09-28 2020-12-11 青岛理工大学 一种改进型开关耦合电感准z源逆变器
CN212367153U (zh) * 2020-09-28 2021-01-15 青岛理工大学 一种改进型开关耦合电感准z源逆变器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234525A1 (en) * 2012-03-06 2013-09-12 Ferrotec (Usa) Corporation Electrical breakdown limiter for a high voltage power supply
CN105119487A (zh) * 2015-09-23 2015-12-02 青岛理工大学 一种带开关电感的耦合电感boost升压变换装置
CN105406751A (zh) * 2015-12-30 2016-03-16 哈尔滨工业大学 具有高升压比能力的三绕组耦合电感型z源逆变器电路
CN208424201U (zh) * 2018-07-27 2019-01-22 国网辽宁省电力有限公司铁岭供电公司 一种具有开关电感结构的boost变换器
CN112072942A (zh) * 2020-09-28 2020-12-11 青岛理工大学 一种改进型开关耦合电感准z源逆变器
CN212367153U (zh) * 2020-09-28 2021-01-15 青岛理工大学 一种改进型开关耦合电感准z源逆变器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAFIZ FURQAN AHMED, ET.AL.: "Switched-Coupled-Inductor Quasi-Z-Source Inverter", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 31, no. 2, 29 February 2016 (2016-02-29), XP011670453, DOI: 10.1109/TPEL.2015.2414971 *
ZHANG MIN; LI HAIBIN; HAO YANGYANG; LI KAI; DING XINPING: "A Modified Switched-Coupled-Inductor Quasi-Z-Source Inverter", IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, IEEE, PISCATAWAY, NJ, USA, vol. 9, no. 3, 12 October 2020 (2020-10-12), Piscataway, NJ, USA , pages 3634 - 3646, XP011857655, ISSN: 2168-6777, DOI: 10.1109/JESTPE.2020.3030245 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207049A1 (zh) * 2022-04-28 2023-11-02 中国科学院电工研究所 一种低压大电流无线充电系统及其协同控制方法
CN114583990A (zh) * 2022-05-07 2022-06-03 深圳古瑞瓦特新能源有限公司 宽范围增益的单相逆变器、控制方法及三相逆变器
CN114583990B (zh) * 2022-05-07 2022-08-16 深圳古瑞瓦特新能源有限公司 高增益单相逆变器、控制方法及三相逆变器
CN115800734A (zh) * 2023-02-08 2023-03-14 浙江日风电气股份有限公司 一种单级二阶升压逆变器、升压方法、装置、设备及介质

Also Published As

Publication number Publication date
CN112072942A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2022062327A1 (zh) 一种改进型开关耦合电感准z源逆变器
US10476398B1 (en) Power conversion circuit for photovoltaic power generation with high efficiency over wide input voltage range
CN113037120B (zh) 可抑制二次纹波提高功率密度的单相逆变器及控制方法
Lodh et al. Single stage multi-port Flyback type solar PV module integrated micro-inverter with battery backup
Tseng et al. Integrated buck and modified push− pull DC− DC converter with high step-down ratio
CN211183828U (zh) 一种改进型cmvr-ii可升压逆变器
CN108199603B (zh) 多绕组分时供电隔离反激直流斩波型单级多输入逆变器
CN212367153U (zh) 一种改进型开关耦合电感准z源逆变器
CN108429452B (zh) 一种光伏系统用二次型多自举dc-dc变换器
CN106208788A (zh) 一种基于aac的多模块电压源型逆变器
CN108199602B (zh) 多绕组分时供电正激直流斩波型单级多输入高频链逆变器
CN108023496B (zh) 串联同时选择开关电压型单级多输入低频环节逆变器
CN212367152U (zh) 一种集成开关电容电路的单极可升压逆变器
CN113708408A (zh) 自适应光照条件的多输出模式单相光伏逆变器及控制方法
CN114285281A (zh) 一种准开关电容型高增益dc-dc变换器
CN110165915B (zh) 一种新型倍压-z源逆变器
CN113014089A (zh) 一种对分升压式高升压比dc/dc变换器
CN108429451B (zh) 一种光伏系统用级联型多自举dc-dc变换器
CN112737316A (zh) 准z源逆变器及供电系统
Karthikeyan et al. Fuel Cell Fed BLDC Motor Drive
CN204696956U (zh) 基于增强型z源网络的光伏逆变器
He et al. Switched-inductor/switched-capacitor active-network converters
CN111277160A (zh) 一种六开关功率解耦电路及其控制方法
NL2029613B1 (en) Improved switch coupling inductance quasi-z-source inverter
CN215871227U (zh) 一种新型双自举耦合电感准z源逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870716

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2023)