WO2023207040A1 - 多联机空调、用于控制多联机空调的方法及装置 - Google Patents

多联机空调、用于控制多联机空调的方法及装置 Download PDF

Info

Publication number
WO2023207040A1
WO2023207040A1 PCT/CN2022/132550 CN2022132550W WO2023207040A1 WO 2023207040 A1 WO2023207040 A1 WO 2023207040A1 CN 2022132550 W CN2022132550 W CN 2022132550W WO 2023207040 A1 WO2023207040 A1 WO 2023207040A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcooling
air duct
expansion valve
electronic expansion
degree
Prior art date
Application number
PCT/CN2022/132550
Other languages
English (en)
French (fr)
Inventor
刘东来
远义忠
卢大海
毛守博
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2023207040A1 publication Critical patent/WO2023207040A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of multi-split air conditioners, for example, to a multi-split air conditioner, a method and a device for controlling a multi-split air conditioner.
  • Multi-split air conditioners include multiple indoor units used in parallel, and each indoor unit includes an indoor heat exchanger and an electronic expansion valve.
  • each indoor unit includes an indoor heat exchanger and an electronic expansion valve.
  • the refrigerant in front of the valve is in a gas-liquid two-phase state.
  • the refrigerant throttling sound is abnormally obvious.
  • the indoor unit is still prone to failure due to factors such as pipeline pressure loss and heat loss.
  • the subcooling in front of the electronic expansion valve is insufficient, causing throttling noise. This issue has been a major source of user complaints.
  • Embodiments of the present disclosure provide a multi-split air conditioner, a method and a device for controlling the multi-split air conditioner, so as to improve the problem of abnormal throttling sounds inside the multi-split air conditioner room.
  • the multi-connected air conditioner includes an outdoor unit and an indoor unit, and the indoor unit includes a plurality of indoor units connected in parallel; at least one indoor unit includes: a main flow path, including an electronic expansion valve connected in sequence through a main flow path; Indoor heat exchanger; wherein, at least part of the main pipeline located at the refrigeration liquid inlet end of the electronic expansion valve is used as a subcooling parallel section; a subcooling branch, including a subcooler; the subcooling branch It is connected in parallel with the subcooling parallel section; a switching communication component is configured to controllably connect the subcooling parallel section and/or the subcooling branch with the electronic expansion valve.
  • the subcooler is arranged in the wind field area on the outlet side of the indoor heat exchanger.
  • the indoor unit further includes: a main air duct provided with the indoor heat exchanger; a subcooling air duct located downstream of the main air duct and connected in parallel with the main air duct, so The subcooler is located in the subcooling air duct; the air inlet of the subcooling air duct is also provided with a damper, which is configured to controllably adjust the opening to change the air flow from the main air duct to the subcooling air duct. air flow.
  • the switching communication component includes: a first solenoid valve disposed in the subcooling parallel section; a second solenoid valve disposed in the subcooling branch.
  • the method for controlling a multi-split air conditioner includes: in response to a refrigeration mode operation instruction, obtaining the current first subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve; When the cooling degree is less than or equal to the first preset subcooling degree, the switching communication component is controlled to connect the subcooling branch to the electronic expansion valve.
  • obtaining the current first subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve includes:
  • the current first subcooling degree is determined based on the difference between the current condensing temperature of the outdoor unit and the first refrigerant temperature at the refrigeration liquid inlet end of the electronic expansion valve.
  • the current first degree of subcooling is obtained in the following manner:
  • SC j1 is the current first subcooling degree
  • TC is the current condensation temperature
  • T 1,j1 is the first refrigerant temperature
  • k is the subcooling degree correction parameter: k ⁇ 1.
  • control switching communication component to connect the subcooling branch to the electronic expansion valve includes:
  • the switching communication component is controlled so that both the subcooling branch and the subcooling parallel section are connected to the electronic expansion valve.
  • the step further includes:
  • the air flow rate from the main air duct to the subcooling air duct is controlled.
  • the current second degree of subcooling is obtained in the following manner:
  • SC j2 is the current second subcooling degree
  • TC is the current condensation temperature
  • T 1,j2 is the second refrigerant temperature
  • k is the subcooling degree correction parameter: k ⁇ 1.
  • the air flow rate from the main air duct to the subcooling air duct is controlled to be Change.
  • damper on the subcooling air duct, it is used to controllably adjust the opening to change the air flow flowing from the main air duct to the subcooling air duct;
  • controlling the air flow from the main air duct to the subcooling air duct to increase includes:
  • control the air door to rotate in the direction of increasing opening to increase the air flow from the main air duct to the subcooling air duct;
  • Controlling the reduction of air flow from the main air duct to the subcooling air duct includes:
  • the damper is controlled to rotate in the direction of decreasing opening to reduce the air flow from the main air duct to the subcooling air duct.
  • the switching communication component is controlled to disconnect the subcooling branch from the electronic expansion valve.
  • the device for controlling a multi-split air conditioner includes: an acquisition module configured to acquire the current first subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve in response to a refrigeration mode operation instruction; a control module , configured to control the switching communication component to connect the subcooling branch to the electronic expansion valve when the current first subcooling degree is less than or equal to the first preset subcooling degree.
  • the device for controlling a multi-line air conditioner includes a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned control method when running the program instructions. Multi-line air conditioning method.
  • the multi-line air conditioner, method and device for controlling the multi-line air conditioner provided by the embodiments of the present disclosure can achieve the following technical effects:
  • part of the main flow path of the indoor unit can be realized by switching the connecting components or All the refrigerant flow passes through the cold branch and enters the refrigeration liquid inlet end of the electronic expansion valve, which increases the pre-valve subcooling of the electronic expansion valve, thereby making the refrigerant more stable during the throttling process, so as to improve the throttling inside the multi-split air-conditioning room.
  • the purpose of the abnormal sound is to be realized by switching the connecting components or All the refrigerant flow passes through the cold branch and enters the refrigeration liquid inlet end of the electronic expansion valve, which increases the pre-valve subcooling of the electronic expansion valve, thereby making the refrigerant more stable during the throttling process, so as to improve the throttling inside the multi-split air-conditioning room.
  • Figure 1 is a schematic diagram of the connection structure of a multi-split air conditioner indoor unit in the related art
  • Figure 2 is a schematic connection diagram of an indoor unit of a multi-split air conditioner provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of an indoor unit of a multi-split air conditioner provided by an embodiment of the present disclosure
  • Figure 4 is a schematic cross-sectional view of the indoor unit shown in Figure 3;
  • Figure 5 is a schematic flowchart of a method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of another method for controlling a multi-connected air conditioner provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flowchart of another method for controlling a multi-connected air conditioner provided by an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of a device for controlling a multi-split air conditioner provided by an embodiment of the present disclosure
  • Figure 9 is a schematic diagram of another device for controlling a multi-split air conditioner provided by an embodiment of the present disclosure.
  • 100 indoor unit; 110: air inlet; 120: air outlet; 200: main flow path; 210: electronic expansion valve; 220: indoor heat exchanger; 230: subcooling parallel section; 240: main air duct; 300: Subcooling branch; 310: subcooler; 320: subcooling air duct; 330: damper; 410: first solenoid valve; 420: second solenoid valve.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • correspondence can refer to an association relationship or a binding relationship.
  • correspondence between A and B refers to an association relationship or a binding relationship between A and B.
  • Figure 1 is a schematic diagram of the connection structure of a multi-split air conditioner indoor unit in the related art.
  • the refrigerant circulation loop of the multi-split air conditioner indoor unit 100 is composed of a main liquid pipe, an electronic expansion valve 210, an indoor heat exchanger 220, and a main air pipe connected in sequence (taking the refrigerant flow in the cooling mode as an example for illustration) ).
  • the temperature at different locations in the refrigerant circulation loop, ambient temperature, etc. can also be obtained through temperature sensors.
  • the high-temperature and high-pressure refrigerant output from the outdoor unit flows directly into the indoor unit 100 through the main liquid pipe, and then is throttled by the electronic expansion valve 210 to become a low-temperature and low-pressure two-phase refrigerant, and is evaporated in the indoor heat exchanger. Heat exchange, after exchanging heat with indoor air, cool air is sent indoors.
  • this plan proposes a new form of multi-split air conditioner to improve the throttling sound through structural improvements and control strategies.
  • Figure 2 is a schematic connection diagram of an indoor unit of a multi-split air conditioner provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of an indoor unit of a multi-split air conditioner provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic cross-sectional view of the indoor unit shown in FIG. 3 .
  • the multi-connected air conditioner provided by the embodiment of the present disclosure includes an outdoor unit and an indoor unit.
  • the indoor unit includes a plurality of indoor units 100 connected in parallel.
  • at least one indoor unit 100 of the multi-split air conditioner includes:
  • the main pipeline 200 includes an electronic expansion valve 210 and an indoor heat exchanger 220 that are connected in sequence through a main pipeline; at least part of the main pipeline located at the refrigeration liquid inlet end of the electronic expansion valve 210 is used as a subcooling parallel section 230;
  • the subcooling branch 300 includes a subcooler 310; the subcooling branch 300 is connected in parallel with the subcooling parallel section 230;
  • the switching communication component is configured to controllably connect the subcooling parallel section 230 and/or the subcooling branch 300 to the electronic expansion valve 210.
  • a multi-split air conditioner includes one or more outdoor units and multiple indoor units. Multiple indoor units are installed in parallel and connected to the outdoor unit through corresponding piping to realize the flow of refrigerant.
  • This embodiment uses an indoor unit in a multi-split air conditioner as an example to illustrate the solution. The structural diagram of the outdoor unit part is not shown. Those skilled in the art can realize the connection between the indoor unit and the outdoor unit for the indoor unit provided in this embodiment, thereby forming a multi-connected air conditioning refrigerant circulation circuit.
  • the multi-connected air conditioner may include one or more indoor units in this embodiment.
  • the main flow path of the indoor unit is realized by switching the connecting components.
  • Part or all of the refrigerant flow passes through the cold branch and enters the refrigeration liquid inlet section of the electronic expansion valve, which increases the pre-valve subcooling of the electronic expansion valve, thereby making the refrigerant more stable during the throttling process, so as to improve the indoor interior of the multi-split air conditioner.
  • the purpose of the throttle sound and abnormal noise is realized by switching the connecting components.
  • the indoor heat exchanger 220 has an air inlet side and an air outlet side; the subcooler 310 is disposed in the wind field area on the air outlet side of the indoor heat exchanger 220 .
  • the subcooler 310 can be a regenerator or a heat exchanger, for example, a heat exchanger in the form of a single-row fin tube with a large fin spacing is used as the subcooler. Then, when it is installed on the air outlet side of the indoor heat exchanger, its structural design will not increase the wind resistance and will have little impact on the air outlet of the air conditioner for normal air conditioning.
  • the indoor unit 100 also includes a main air duct 240 and a subcooling air duct 320 .
  • the main air duct 240 is provided with an indoor heat exchanger 220; the subcooling air duct 320 is located in the downstream air duct of the main air duct 240 and is connected in parallel with the main air duct 240; the subcooler 310 is located in the subcooling air duct 320; The air inlet of the cold air duct 320 is also provided with a damper 330 , which is configured to controllably adjust the opening to change the air flow flowing through the main air duct 240 to the subcooling air duct 320 .
  • the air flow in the subcooling air duct is part of the air flow led from the main air duct under the action of the damper; the air outlet of the subcooling air duct is connected to the main air duct, that is, after heat exchange between the air flow in the subcooling air duct and the subcooler, it passes through the main air duct.
  • the air duct discharges the indoor unit.
  • the opening of the damper can be adjusted according to the subcooling degree of the refrigerant output from the subcooler, thereby ensuring a constant subcooling degree of the refrigerant in front of the valve, making the refrigerant flowing through the throttling process more stable, and improving the throttling sound.
  • the indoor unit 100 includes an air inlet 110 and an air outlet 120; indoor air enters the main air duct 240 from the air inlet 110 and exchanges heat with the indoor heat exchanger 220. The heat-exchanged cold air enters the room through the air outlet 120 .
  • the damper 330 can rotate between the A position and the B position in the subcooling air duct 320.
  • the damper 330 is located at the A position, the subcooling air duct 320 is not connected to the main air duct 240, and air cannot enter.
  • the direction in which the opening of the damper 330 is adjusted from position A to position B is used as the opening adjustment direction to increase the air flow; the direction adjusted from position B to position A is used as the opening adjustment direction to decrease the air flow. Adjust direction.
  • the switching communication component includes a first solenoid valve 410 disposed in the subcooling parallel section 230 and a second solenoid valve 420 disposed in the subcooling branch 300 .
  • the first solenoid valve 410 is controlled to open; if the subcooling branch 300 is to be connected to the electronic expansion valve 210, the second solenoid valve 420 is controlled to be opened.
  • the switching communication component may also be a three-way valve.
  • the three-way valve is arranged at the inlet end of the parallel connection between the subcooling branch 300 and the subcooling parallel section 230. Then the inlet end of the three-way valve is connected to the main flow channel 200, the first outlet end is connected to the subcooling parallel section 230, and the second outlet The end is connected to the subcooling branch 300.
  • the inlet end is controlled to be connected to the first outlet end; if the subcooling branch 300 is to be connected to the electronic expansion valve 210, the inlet end is controlled to be connected to the third outlet end.
  • the second outlet port is conductive.
  • the communication device When the communication device is switched so that the subcooling parallel section 230 is connected to the electronic expansion valve 210, and the subcooling branch 300 is disconnected from the electronic expansion valve 210, that is, the first solenoid valve 410 is opened and the second solenoid valve 420 is disconnected;
  • the refrigerant input from the outdoor unit passes through the main channel 200, it enters the electronic expansion valve 210 from the subcooling parallel section 230 for throttling. After throttling, it enters the indoor heat exchanger 220 for evaporation and heat exchange. After heat exchange with the indoor air, Outflow from the indoor unit 100.
  • the communication device When the communication device is switched to disconnect the subcooling parallel section 230 from the electronic expansion valve 210 and connect the subcooling branch 300 to the electronic expansion valve 210, that is, the first solenoid valve 410 is disconnected and the second solenoid valve 420 is opened; After the refrigerant input from the outdoor unit enters through the main channel 200, it is input into the subcooling branch 300. At this time, the refrigerant is subcooled in the subcooling branch 300. The refrigerant with an increased degree of subcooling enters the electronic expansion valve 210 for throttling. After throttling, it enters the indoor heat exchanger 220 for evaporation and heat exchange. After heat exchange with the indoor air, it flows out of the indoor unit 100.
  • the communication device When the communication device is switched so that the subcooling parallel section 230 is connected to the electronic expansion valve 210, and the subcooling branch 300 is connected to the electronic expansion valve 210, that is, the first solenoid valve 410 is opened, and the second solenoid valve 420 is also opened; from the outdoor After the refrigerant input from the machine passes through the main channel 200, part of it enters the subcooling parallel section 230, and part of it enters the subcooling branch 300 for subcooling adjustment; then the two channels of refrigerant are jointly input to the electronic expansion valve 210 for throttling, and then enter the room after throttling.
  • the heat exchanger 220 performs evaporation heat exchange, and after exchanging heat with the indoor air, flows out of the indoor unit 100 .
  • the main flow path of the indoor unit can be realized by switching the connecting components.
  • Part or all of the refrigerant flow passes through the cold branch and enters the refrigeration liquid inlet end of the electronic expansion valve, which increases the pre-valve subcooling of the electronic expansion valve, thereby making the refrigerant more stable during the throttling process, so as to improve the indoor interior of the multi-split air conditioner.
  • FIG. 5 is a schematic flowchart of a method for controlling a multi-connected air conditioner provided by an embodiment of the present disclosure, which is applied to the multi-connected air conditioner shown in FIG. 2 .
  • This method can be executed by the processor of the multi-line air conditioner, or can be executed in a cloud server that communicates with the multi-line air conditioner; it can also be executed at the control end of the multi-line air conditioner.
  • the solution is explained with the processor of the multi-connected air conditioner as the execution subject.
  • the method for controlling a multi-split air conditioner includes:
  • Step S501 In response to the refrigeration mode operation command, obtain the current first subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve.
  • the current first subcooling degree refers to the subcooling degree in front of the electronic expansion valve at the current moment when the refrigerant enters the electronic expansion valve through the cold parallel section.
  • the subcooling parallel section of the indoor unit is connected to the electronic expansion valve, the subcooling branch is disconnected from the electronic expansion valve, and the refrigerant flows from the main flow path through the cold parallel section into the electronic expansion valve for throttling. That is, the first solenoid valve is turned on and the second solenoid valve is turned off.
  • Step S502 When the current first subcooling degree is less than or equal to the first preset subcooling degree, control the switching communication component to connect the subcooling branch to the electronic expansion valve.
  • the first preset subcooling degree n 1 is used to indicate that the current subcooling degree is too small, there will be noise problems when the refrigerant flows through the electronic expansion valve, and the subcooling degree needs to be increased.
  • the subcooling branch is connected to the electronic expansion valve. , at this time, part or all of the refrigerant enters the electronic expansion valve for throttling after passing through the subcooling branch. Since the subcooling branch increases the subcooling degree of this part or all of the refrigerant, the pre-valve subcooling degree of the electronic expansion valve is adjusted. , thereby improving the problem of abnormal throttle noise.
  • controlling the switching communication component to connect the subcooling branch to the electronic expansion valve can include two situations, namely: only the subcooling branch is connected to the electronic expansion valve, and the subcooling parallel section is disconnected from the electronic expansion valve. At this time All the refrigerant enters the electronic expansion valve after passing through the cooling branch; alternatively, both the subcooling branch and the subcooling parallel section are connected to the electronic expansion valve. At this time, part of the refrigerant enters the subcooling parallel section and part enters the subcooling branch for subcooling adjustment. ;Then the two refrigerants are input to the electronic expansion valve for throttling.
  • connection state of the connected component is controlled to be switched according to the difference interval that the absolute value of the difference between SC j1 and n 1 satisfies.
  • the communication state of the control switching communication component is that only the subcooling branch is connected to the electronic expansion valve, and the subcooling parallel section is disconnected from the electronic expansion valve. Open the connection to greatly increase the subcooling degree of the refrigerant; when the absolute value of the difference between SC j1 and n 1 is less than the first difference, the connection state of the control switching unit is such that both the subcooling branch and the subcooling parallel section are connected to the electronic The expansion valve is connected. At this time, the subcooling degree of part of the refrigerant is adjusted to improve the problem of abnormal throttle sound.
  • the adjustment to enter the subcooling branch and The proportion of refrigerant in the subcooling parallel section when the absolute value of the difference between SC j1 and n 1 is less than the first difference, the adjustment to enter the subcooling branch and The proportion of refrigerant in the subcooling parallel section.
  • the corresponding relationship between the absolute value of the difference between SC j1 and n 1 and the refrigerant adjustment ratio interval can be obtained through experiments; after obtaining the absolute value of the current difference, the current difference can be obtained by querying the database The current proportional adjustment interval corresponding to the absolute value of , thereby adjusting the proportion of refrigerant entering the subcooling branch and the subcooling parallel section according to the current proportional adjustment interval.
  • the proportion of refrigerant entering the subcooling branch and the subcooling parallel section can be adjusted by switching the opening of the connecting device.
  • obtain the current subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve including:
  • the current first subcooling degree is determined based on the difference between the current condensing temperature of the outdoor unit and the first refrigerant temperature at the refrigeration liquid inlet end of the electronic expansion valve.
  • the current condensation temperature can be converted according to the current refrigerant pressure at the outlet of the outdoor unit condenser according to the corresponding relationship between temperature and saturation pressure, thereby obtaining the current condensation temperature TC of the outdoor unit.
  • the circulation of refrigerant in the pipeline may reduce the degree of subcooling due to pipeline extension resistance loss and heat loss. Therefore, the current refrigerant pressure needs to be corrected through the subcooling degree correction parameter.
  • SC j1 is the current first subcooling degree
  • TC is the current condensation temperature
  • T 1,j1 is the first refrigerant temperature
  • k is the subcooling degree correction parameter: k ⁇ 1.
  • FIG 6 is a schematic flowchart of a method for controlling a multi-split air conditioner provided by an embodiment of the present disclosure. It is applied to the multi-split air conditioner shown in Figure 2, and the indoor unit includes a main air duct and a subcooling air duct.
  • This method can be executed by the processor of the multi-line air conditioner, or can be executed in a cloud server that communicates with the multi-line air conditioner; it can also be executed at the control end of the multi-line air conditioner.
  • the solution is explained with the processor of the multi-connected air conditioner as the execution subject.
  • the method for controlling a multi-split air conditioner includes:
  • Step S601 in response to the refrigeration mode operation command, obtain the current first subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve.
  • Step S602 when the current first subcooling degree is less than or equal to the first preset subcooling degree, control the switching communication component to connect the subcooling branch to the electronic expansion valve.
  • Step S603 Obtain the second refrigerant temperature at the outlet end of the subcooling branch.
  • Step S604 Determine the current second subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve based on the difference between the current condensation temperature of the outdoor unit and the second refrigerant temperature.
  • Step S605 Control the air flow rate from the main air duct to the subcooling air duct according to the preset subcooling degree interval that the current second subcooling degree satisfies.
  • the air flow in the subcooling air duct exchanges heat with the subcooler, thereby increasing the degree of subcooling for the refrigerant in the subcooler.
  • the second refrigerant temperature may be the refrigerant temperature at the outlet end of the subcooler of the subcooling branch, or it may be the refrigerant temperature at the outlet end of the pipeline of the subcooling branch.
  • the current second subcooling degree refers to the subcooling degree in front of the electronic expansion valve at the current moment when part or all of the refrigerant enters the electronic expansion valve after passing through the cold branch.
  • the current second degree of subcooling can be obtained in the following way:
  • SC j2 is the current second subcooling degree
  • TC is the current condensation temperature
  • T 1,j2 is the second refrigerant temperature
  • k is the subcooling degree correction parameter: k ⁇ 1.
  • control the air flow from the main air duct to the subcooling air duct according to the preset subcooling degree interval that the current second subcooling degree satisfies including:
  • the air flow rate from the main air duct to the subcooling air duct is controlled to increase;
  • the air flow rate from the main air duct to the subcooling air duct is controlled to decrease;
  • the air flow rate from the main air duct to the subcooling air duct is controlled to remain unchanged.
  • the air flow rate flowing from the main air duct to the subcooling air duct is adjusted, so that the second subcooling degree is maintained within an appropriate range. At this time, the throttling will not There is an obvious throttling sound.
  • the second preset subcooling degree n 2 is used to indicate that the current subcooling degree is too large and there will be noise problems when the refrigerant flows through the electronic expansion valve, so the subcooling degree needs to be reduced.
  • the second degree of subcooling is maintained within the range of (n 1 , n 2 ] (i.e., the appropriate range of subcooling degree), thereby improving the abnormal throttle sound. the goal of.
  • the value of the appropriate subcooling range is determined based on the ambient temperature parameters and/or the electronic expansion valve diameter parameters.
  • Environment temperature parameters include outdoor ambient temperature and indoor ambient temperature.
  • the larger the caliber parameter of the electronic expansion valve the smaller the lower limit and upper limit of the appropriate subcooling range.
  • the corresponding relationship between the ambient temperature parameters, the electronic expansion valve caliber parameters and the appropriate subcooling range can be obtained through experiments; after obtaining the current ambient temperature parameters and/or the electronic expansion valve caliber parameters, query the database, The current suitable subcooling interval corresponding to the current ambient temperature parameter and/or the electronic expansion valve caliber parameter can be obtained, thereby controlling the main air duct flow direction based on the numerical relationship between the current second subcooling degree and the current subcooling appropriate interval. The air flow rate of the subcooled air duct.
  • the main air duct after controlling the air flow from the main air duct to the subcooling air duct, it also includes:
  • the second refrigerant temperature and condensation temperature at the outlet end of the subcooling branch are obtained at intervals according to a preset time period.
  • the preset time period is used as the adjustment time period, so that when the main air duct and the subcooling air duct are connected, the air flow rate entering the subcooling air duct is adjusted at intervals, so that the valve flow rate is determined according to the second refrigerant temperature and the condensation temperature.
  • the cooling degree is maintained within the appropriate range of supercooling.
  • the air flow from the main air duct to the subcooling air duct is realized by adjusting the opening of the damper provided on the subcooling air duct.
  • controlling the air flow from the main air duct to the subcooling air duct to increase may include: controlling the stepper motor to drive the air door to rotate in the direction of increasing opening.
  • controlling the stepper motor to drive the damper to rotate in the direction of increasing opening may include:
  • the stepper motor is controlled to run according to the current number of driving steps to control the damper to rotate according to the current opening adjustment value.
  • the damper rotation value can be controlled in real time according to SC j2 , so that the air flow rate from the main air duct to the subcooling air duct meets the demand for increasing the degree of subcooling.
  • controlling the stepper motor to drive the damper to rotate in the direction of decreasing opening may include:
  • the stepper motor is controlled to run according to the current number of driving steps to control the damper to rotate according to the current opening adjustment value.
  • FIG. 7 is a schematic flowchart of a method for controlling a multi-connected air conditioner provided by an embodiment of the present disclosure, which is applied to the multi-connected air conditioner shown in FIG. 2 .
  • This method can be executed by the processor of the multi-line air conditioner, or can be executed in a cloud server that communicates with the multi-line air conditioner; it can also be executed at the control end of the multi-line air conditioner.
  • the solution is explained with the processor of the multi-connected air conditioner as the execution subject.
  • the method for controlling a multi-split air conditioner includes:
  • Step S701 in response to the cooling mode operation command, obtain the outdoor ambient temperature.
  • Step S702 When the outdoor ambient temperature is greater than the preset temperature, obtain the current first subcooling degree of the refrigeration liquid inlet end of the electronic expansion valve.
  • Step S703 When the current first subcooling degree is less than or equal to the first preset subcooling degree, control the switching communication component to connect the subcooling branch to the electronic expansion valve.
  • Step S704 Obtain the outdoor ambient temperature at intervals.
  • Step S705 when the outdoor ambient temperature is less than or equal to the preset temperature, control the switching communication component to disconnect the subcooling branch from the electronic expansion valve; and, when the current first subcooling degree is greater than the first preset subcooling degree , control the switching communication component to disconnect the subcooling branch from the electronic expansion valve, or maintain the switching communication component to disconnect the subcooling branch from the electronic expansion valve.
  • the outdoor ambient temperature is greater than the preset temperature, which indicates that the outdoor ambient temperature is high, which may affect the temperature of the refrigerant flowing from the outdoor unit to the indoor unit, resulting in insufficient subcooling in front of the valve.
  • the preset temperature can be 26°C-30°C, such as 26°C, 27°C, 28°C, 29°C, 30°C. In this embodiment, the preset temperature is set to 27°C.
  • the subcooling degree acquisition operation in front of the valve is triggered, and then the value of the current first subcooling degree and the first preset subcooling degree at the refrigeration liquid inlet end of the electronic expansion valve is used to determine whether it is necessary By connecting the cooling branch, the subcooling degree in front of the valve is increased to achieve the purpose of improving the abnormal throttle sound.
  • the outdoor ambient temperature is less than or equal to the preset temperature, it is considered that the outdoor ambient temperature has less influence on the refrigerant temperature in the pipes flowing from the outdoor unit to the indoor unit, and the possibility of insufficient subcooling in front of the valve is reduced.
  • the connection between the subcooling branch and the electronic expansion valve is disconnected, allowing the refrigerant to directly enter the electronic expansion valve through the main flow path.
  • the liquid end increases the pre-valve subcooling of the electronic expansion valve, thereby making the refrigerant more stable during the throttling process; and restores the refrigerant circulation in the main flow path when the outdoor ambient temperature is less than or equal to the preset temperature.
  • Figure 8 is a schematic diagram of a device for controlling a multi-split air conditioner provided by an embodiment of the present application.
  • the device for controlling a multi-line air conditioner can be implemented through software, hardware or a combination of both.
  • the embodiment of the present disclosure provides a device 80 for controlling a multi-line air conditioner, including an acquisition module 81 and a control module 82; the acquisition module 81 is configured to acquire the electronic expansion valve in response to the cooling mode operation command.
  • the electronic expansion valve is connected.
  • Figure 9 is a schematic diagram of a device for controlling a multi-split air conditioner provided by an embodiment of the present application. As shown in FIG. 9 , the device 90 for controlling a multi-line air conditioner includes:
  • the device may also include a communication interface (Communication Interface) 92 and a bus 93.
  • Communication interface 92 may be used for information transmission.
  • the processor 90 can call logical instructions in the memory 91 to execute the method for controlling the multi-connected air conditioner in the above embodiment.
  • the above-mentioned logical instructions in the memory 91 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 91 can be used to store software programs, computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 90 executes the program instructions/modules stored in the memory 91 to execute functional applications and data processing, that is, to implement the method for controlling the multi-connected air conditioner in the above embodiment.
  • the memory 91 may include a stored program area and a stored data area, where the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the terminal device, etc.
  • the memory 91 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a multi-connected air conditioner, including the above-mentioned device 80 (90) for controlling a multi-connected air conditioner.
  • Embodiments of the present disclosure provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above method for controlling a multi-connected air conditioner.
  • An embodiment of the present disclosure provides a computer program that, when executed by a computer, causes the computer to implement the above method for controlling a multi-connected air conditioner.
  • Embodiments of the present disclosure provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the The computer executes the above method for controlling a multi-connected air conditioner.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage media can be non-transitory storage media, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to encompass any and all possible combinations of one or more of the associated listed items.
  • the term “comprise” and its variations “comprises” and/or “comprising” etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method or apparatus including the stated element.
  • each embodiment may focus on its differences from other embodiments, and the same and similar parts among various embodiments may be referred to each other.
  • the relevant parts can be referred to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined. Either it can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may be included in the block.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本申请涉及多联机空调技术领域,公开一种多联机空调,包括室外机和室内机组,室内机组包括多个并联的室内机;至少一个室内机包括:主流路,包括通过主管路依次连接的电子膨胀阀和室内换热器;其中,主管路的位于电子膨胀阀的制冷进液端的至少部分管路被作为过冷并联段;过冷支路,包括过冷器;过冷支路与过冷并联段相并联;切换连通组件,被配置为受控的使过冷并联段和/或过冷支路与电子膨胀阀连通。本申请能够提高电子膨胀阀的阀前过冷度,进而使得节流过程中的冷媒更稳定,以达到改善多联机空调室内侧的节流音异响的目的。本申请还公开一种用于控制多联机空调的方法及装置。

Description

多联机空调、用于控制多联机空调的方法及装置
本申请基于申请号为202210445855.X、申请日为2022年04月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及多联机空调技术领域,例如涉及一种多联机空调、用于控制多联机空调的方法及装置。
背景技术
多联机空调包括多个并联使用的室内机,每台室内机均包括室内换热器和电子膨胀阀。在制冷运行状态下,高压液态冷媒进入室内机后,在流经电子膨胀阀时,由于存在电子膨胀阀前的过冷度不足的情况,即阀前冷媒为气液两相态的情况,因而出现冷媒节流音表现异常明显的问题。尤其是对于长配管、大落差安装情况下的多联机空调,即使室外机输出的冷媒过冷度足够大,但进入室内机后,由于管路压力损失及热损失等因素,还是容易出现室内机电子膨胀阀前的过冷度不足,导致节流噪音的问题。该问题一直是用户投诉的主要问题。
相关技术中,通过给室外机增加板换、二重管等二次过冷设备,增大液管出口处的过冷度,以保证冷媒到达用户侧的电子膨胀阀前存在一定的过冷度,从而在一定程度上解决节流音问题。在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
由于多联机空调的室内机安装环境不都相同,因此即使室外侧外的冷媒具有较大过冷度,也不能保证每台室内机的阀前过冷度都满足要求,因此对显异常节流音的情况改善程度较小。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种多联机空调、用于控制多联机空调的方法及装置,以改善多联机空调室内侧的节流音异响问题。
在一些实施例中,所述多联机空调包括室外机和室内机组,所述室内机组包括多个并联的室内机;至少一个室内机包括:主流路,包括通过主管路依次连接的电子膨胀阀和室内换热器;其中,所述主管路的位于所述电子膨胀阀的制冷进液端的至少部分管路被作为过冷并联段;过冷支路,包括过冷器;所述过冷支路与所述过冷并联段相并联;切换连通组件,被配置为受控的使所述过冷并联段和/或所述过冷支路与所述电子膨胀阀连通。
可选地,所述过冷器设置在所述室内换热器的出风侧的风场区域内。
可选地,所述室内机还包括:主风道,设置有所述室内换热器;过冷风道,设于所述主风道的下游风路且与所述主风道并联连通,所述过冷器设于所述过冷风道内;所述过冷风道的进风口还设置有一风门,其被配置为受控地调节开度以改变流经自所述主风道流向过冷风道的空气流量。
可选地,所述切换连通组件包括:第一电磁阀,设置于所述过冷并联段;第二电磁阀,设置于所述过冷支路。
在一些实施例中,所述用于控制多联机空调的方法包括:响应于制冷模式运行指令,获取所述电子膨胀阀的制冷进液端的当前第一过冷度;在所述当前第一过冷度小于或等于第一预设过冷度时,控制所述切换连通组件以使所述过冷支路与所述电子膨胀阀连通。
可选地,所述获取所述电子膨胀阀的制冷进液端的当前第一过冷度,包括:
根据室外机的当前冷凝温度与所述电子膨胀阀的制冷进液端的第一冷媒温度的差值,确定所述当前第一过冷度。
可选地,通过如下方式获得所述当前第一过冷度:
SC j1=k×TC-T 1,j1
其中,SC j1为当前第一过冷度,TC为当前冷凝温度,T 1,j1为第一冷媒温度,k为过冷度修正参数:k<1。
可选地,所述控制切换连通组件以使过冷支路与所述电子膨胀阀连通,包括:
控制切换连通组件使得所述过冷支路与所述电子膨胀阀连通,所述过冷并联段与所述电子膨胀阀断开连通;或,
控制切换连通组件使得所述过冷支路和所述过冷并联段均与电子膨胀阀连通。
可选地,如果所述室内机包括主风道和过冷风道,则所述使所述过冷支路与所述电子膨胀阀连通后,还包括:
获得所述过冷支路出口端的第二冷媒温度;
根据室外机的当前冷凝温度与所述第二冷媒温度的差值,确定所述电子膨胀阀的制冷进液端的当前第二过冷度;
根据所述当前第二过冷度满足的预设过冷度区间,控制所述主风道流向过冷风道的空气流量。
可选地,通过如下方式获得所述当前第二过冷度:
SC j2=k×TC-T l,j2
其中,SC j2为当前第二过冷度,TC为当前冷凝温度,T 1,j2为第二冷媒温度,k为过冷度修正参数:k<1。
可选地,如果所述当前第二过冷度小于或等于所述第一预设过冷度,控制所述主风道流向所述过冷风道的空气流量增大;
如果所述当前第二过冷度大于第二预设过冷度,控制所述主风道流向所述过冷风道的空气流量减小;
如果所述当前第二过冷度大于所述第一预设过冷度,且小于或等于所述第二预设过冷度,控制所述主风道流向所述过冷风道的空气流量不变。
可选地,如果所述过冷风道上设有风门,用于受控地调节开度以改变流经自所述主风道流向过冷风道的空气流量;
则控制所述主风道流向所述过冷风道的空气流量增大,包括:
根据当前第二过冷度与第一预设过冷度的差值,控制风门向开度增大的方向转动,以增大主风道流向所述过冷风道的空气流量;
控制所述主风道流向所述过冷风道的空气流量减小,包括:
根据当前第二过冷度与第二预设过冷度的差值,控制风门向开度减小的方向转动,以减小主风道流向所述过冷风道的空气流量。
可选地,在室外环境温度大于预设温度时,获取所述电子膨胀阀的制冷进液端的当前第一过冷度;
在室外环境温度小于或等于预设温度时,控制所述切换连通组件使所述过冷支路与所述电子膨胀阀断开连通。
在一些实施例中,所述用于控制多联机空调的装置,包括:获取模块,被配置为响应于制冷模式运行指令,获取电子膨胀阀的制冷进液端的当前第一过冷度;控制模块,被配置为在所述当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以使过冷支路与所述电子膨胀阀连通。
在另一些实施例中,所述用于控制多联机空调的装置,包括处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行上述的用于控制多联机空调的方法。
本公开实施例提供的多联机空调、用于控制多联机空调的方法及装置,可以实现以下技术效果:
通过在多联机空调室内机的电子膨胀阀的制冷进液端前设置过冷并联段,以及与过冷并联段并联设置的过冷支路,从而通过切换连通组件实现室内机主流路的部分或全部冷媒流经过冷支路后进入电子膨胀阀的制冷进液端,提高电子膨胀阀的阀前过冷度,进而使得节流过程中的冷媒更稳定,以达到改善多联机空调室内侧的节流音异响的目的。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是相关技术中的多联机空调室内机的连接结构示意图;
图2是本公开实施例提供的一种多联机空调的室内机的连接示意图;
图3是本公开实施例提供的一种多联机空调的室内机的结构示意图;
图4是图3所示室内机的剖面示意图;
图5是本公开实施例提供的一种用于控制多联机空调的方法的流程示意图;
图6是本公开实施例提供的另一种用于控制多联机空调的方法的流程示意图;
图7是本公开实施例提供的另一种用于控制多联机空调的方法的流程示意图;
图8是本公开实施例提供的一种用于控制多联机空调的装置的示意图;
图9是本公开实施例提供的另一种用于控制多联机空调的装置的示意图。
其中,100:室内机;110:进风口;120:出风口;200:主流路;210:电子膨胀阀;220:室内换热器;230:过冷并联段;240:主风道;300:过冷支路;310:过冷器;320:过冷风道;330:风门;410:第一电磁阀;420:第二电磁阀。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
图1是相关技术中的多联机空调室内机的连接结构示意图。
如图1所示,多联机空调室内机100的冷媒循环回路由主液管、电子膨胀阀210、室内换热器220、主气管依次连接而成(以制冷模式下的冷媒流向为例进行说明)。同时,为实现空气调节功能,还可以通过温度传感器获取冷媒循环回路中不同位置的温度、环境温度等。
在制冷模式运行时,从室外机输出的高温高压冷媒由主液管直接流入室内机100,然后经过电子膨胀阀210节流变成低温低压的两相态冷媒,在室内热交换器中进行蒸发换热,与室内空气进行热交换后,将凉爽的风送到室内。
这样,由于电子膨胀阀的阀前冷媒状态存在差异化(如过冷度不足,或者存在气液两相流等),这样的冷媒在截流过程中的节流音就会较大,通常出现“嗤嗤声”,这种声音在室内背景音较安静时,会异常明显。
因此,本方案提出一种新的多联机空调形态,以通过结构改进和控制策略,实现对节流音的改善。
图2是本公开实施例提供的一种多联机空调的室内机的连接示意图。图3是本公开实施例提供的一种多联机空调的室内机的结构示意图。图4是图3所示室内机的剖面示意图。
结合图2至4所示,本公开实施例提供的多联机空调,包括室外机和室内机组,室内机组包括多个并联的室内机100。其中,多联机空调的至少一个室内机100包括:
主流路200,包括通过主管路依次连接的电子膨胀阀210和室内换热器220;其中,主管路的位于电子膨胀阀210的制冷进液端的至少部分管路被作为过冷并联段230;
过冷支路300,包括过冷器310;过冷支路300与过冷并联段230相并联;
切换连通组件,被配置为受控的使过冷并联段230和/或过冷支路300与电子膨胀阀 210连通。
一般地,多联机空调包括一个或多个室外机,以及多个室内机。多个室内机之间并联设置,并通过对应于配管连接至室外机,从而实现冷媒的流动。本实施例以多联机空调中的一个室内机为例,对方案进行说明。未示出室外机部分的结构图。本领域技术人员能够给本实施例提供的室内机,实现室内机与室外机的连接,从而构成多联机空调冷媒循环回路。在其他实施例中,多联机空调可以包括一个或多个本实施例中的室内机。
这里,通过在多联机空调室内机的电子膨胀阀的制冷进液端前设置过冷并联段,以及与过冷并联段并联设置的过冷支路,从而通过切换连通组件实现室内机主流路的部分或全部冷媒流经过冷支路后进入电子膨胀阀的制冷进液段,提高电子膨胀阀的阀前过冷度,进而使得节流过程中的冷媒更稳定,以达到改善多联机空调室内侧的节流音异响的目的。
可选地,室内换热器220具有进风侧和出风侧;过冷器310设置在室内换热器220的出风侧的风场区域内。
在制冷模式运行状态下,室内换热器与空气进行热交换时,如图2中的箭头方向,空气进风侧向出风侧运动,出风侧为换热后温度相对较低的空气。这样,通过将过冷器设置在该风场区域内,可以将部分从室内换热器出风侧的冷空气引向过冷器,达到给过冷器310内的冷媒增加过冷度的目的。同样,由于过冷度提高后,增大了单位质量流量工质的制冷量,因此弥补了将该部分冷空气引入过冷器造成的“冷量损失”。
这里,过冷器310可以回热器,也可以是换热器,如采用大翅片间距的单排翅片管形式的换热器作为过冷器。则,当其安装在室内换热器的出风侧时,其结构设计不会增大风阻,对空调正常空气调节的出风影响小。
进一步地,室内机100还包括主风道240和过冷风道320。
主风道240,设置有室内换热器220;过冷风道320,设于主风道240的下游风路且与主风道240并联连通,过冷器310设于过冷风道320内;过冷风道320的进风口还设置有一风门330,其被配置为受控地调节开度以改变流经自主风道240流向过冷风道320的空气流量。
这里,过冷风道内的气流是在风门作用下从主风道内引出的部分气流;过冷风道的出风口与主风道连通,即过冷风道的气流与过冷器进行热交换后,通过主风道排出室内机。风门的开度大小可以根据过冷器输出冷媒的过冷度进行调整,从而保证阀前冷媒的过冷度恒定,节流过程流经冷媒更稳定,改善节流音。
结合图3及图4,对如何通过风门调节主风道流向过冷风道的空气流量进行说明。
室内机100包括进风口110和出风口120;室内空气自进风口110进入主风道240与 室内换热器220进行换热。换热后的冷空气经出风口120进入室内。
在步进电机的驱动下,风门330在过冷风道320内可以在A位置与B位置之间转动,当风门330位于A位置时,过冷风道320与主风道240不连通,空气无法进入过冷风道320;当风门330位于B位置时,自主风道240进入过冷风道320的空气流量最大。因此,通过调节风门330的开度,可以实现对改变流经自主风道240流向过冷风道320的空气流量。
在本方案中,通过将风门330开度由A位置向B位置调节的方向,作为增大空气流量的开度调节方向;由B位置向A位置调节的方向,作为减小空气流量的开度调节方向。
可选地,切换连通组件包括第一电磁阀410,设置于过冷并联段230;第二电磁阀420,设置于过冷支路300。这样,若要使过冷并联段230与电子膨胀阀210连通,则控制第一电磁阀410开启;若要使过冷支路300与电子膨胀阀210连通,则控制第二电磁阀420开启。
此外,切换连通组件也可以是三通阀。将三通阀设置在过冷支路300与过冷并联段230并联的入口端,则三通阀的进口端与主流路200连接,第一出口端与过冷并联段230连接,第二出口端与过冷支路300连接。这样,若要使过冷并联段230与电子膨胀阀210连通,则控制进口端与第一出口端导通;若要使过冷支路300与电子膨胀阀210连通,则控制进口端与第二出口端导通。
下面结合切换连通装置的不同状态,对运行制冷模式下多联机空调室内机内的冷媒流动方向进行说明。
当切换连通装置使得过冷并联段230与电子膨胀阀210连通,并使得过冷支路300与电子膨胀阀210断开连通时,即第一电磁阀410开启,第二电磁阀420断开;自室外机输入的冷媒经过主流路200后,自过冷并联段230进入电子膨胀阀210进行节流,在节流后进入室内换热器220进行蒸发换热,与室内空气进行热交换后,流出室内机100。
当切换连通装置使得过冷并联段230与电子膨胀阀210断开连通,并使得过冷支路300与电子膨胀阀210连通时,即第一电磁阀410断开,第二电磁阀420开启;自室外机输入的冷媒经主流路200进入后,输入过冷支路300,此时冷媒在过冷支路300内进行过冷,过冷度提高后的冷媒进入电子膨胀阀210进行节流,在节流后进入室内换热器220进行蒸发换热,与室内空气进行热交换后,流出室内机100。
当切换连通装置使得过冷并联段230与电子膨胀阀210连通,并使得过冷支路300与电子膨胀阀210连通时,即第一电磁阀410开启,第二电磁阀420也开启;自室外机输入的冷媒经过主流路200后一部分进入过冷并联段230,一部分进入过冷支路300进行过冷度调节;之后两路冷媒共同输入电子膨胀阀210进行节流,在节流后进入室内换热器220 进行蒸发换热,与室内空气进行热交换后,流出室内机100。
如此,通过在多联机空调室内机的电子膨胀阀的制冷进液端前设置过冷并联段,以及与过冷并联段并联设置的过冷支路,从而通过切换连通组件实现室内机主流路的部分或全部冷媒流经过冷支路后进入电子膨胀阀的制冷进液端,提高电子膨胀阀的阀前过冷度,进而使得节流过程中的冷媒更稳定,以达到改善多联机空调室内侧的节流音异响的目的。
图5是本公开实施例提供的用于控制多联机空调的方法的流程示意图,应用于图2所示的多联机空调中。该方法可以由多联机空调的处理器执行,也可以在与多联机空调进行通讯的云服务器中执行;还可以在多联机空调的控制端执行。在本公开实施例中,以多联机空调的处理器为执行主体,对方案进行说明。
结合图5所示,该用于控制多联机空调的方法包括:
步骤S501,响应于制冷模式运行指令,获取电子膨胀阀的制冷进液端的当前第一过冷度。
当前第一过冷度是指冷媒经过冷并联段进入电子膨胀阀的情况下,电子膨胀阀当前时刻的阀前过冷度。
一般地,在制冷模式运行时,室内机的过冷并联段与电子膨胀阀连通,过冷支路与电子膨胀阀断开连通,冷媒自主流路经过冷并联段进入电子膨胀阀进行节流。即,第一电磁阀导通,第二电磁阀截止。
步骤S502,在当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以使过冷支路与电子膨胀阀连通。
第一预设过冷度n 1,用于表示当前过冷度偏小,冷媒流经电子膨胀阀时会有噪音问题,需要增大过冷度的情况。
在当前第一过冷度SC j1小于或等于n 1时,说明电子膨胀阀的阀前过冷度偏低,可能会出现节流音异响,因此通过使过冷支路与电子膨胀阀连通,此时部分或全部冷媒经过过冷支路后进入电子膨胀阀进行节流,由于过冷支路提高了该部分或全部冷媒的过冷度,因此调节了电子膨胀阀的阀前过冷度,从而改善节流音异响问题。
这里,控制切换连通组件以使过冷支路与电子膨胀阀连通可以包括两种情况,即:仅过冷支路与电子膨胀阀连通,过冷并联段与电子膨胀阀断开连通,此时全部冷媒经过冷支路后进入电子膨胀阀;或者,过冷支路和过冷并联段均与电子膨胀阀连通,此时一部分进入过冷并联段,一部分进入过冷支路进行过冷度调节;之后两路冷媒共同输入电子膨胀阀进行节流。
可选地,根据SC j1与n 1的差值的绝对值满足的差值区间,控制切换联通组件的连通 状态。
具体地,在SC j1与n 1的差值的绝对值大于第一差值时,控制切换联通组件的连通状态为仅过冷支路与电子膨胀阀连通,过冷并联段与电子膨胀阀断开连通,以大幅提高冷媒过冷度;在SC j1与n 1的差值的绝对值小于第一差值时,控制切换联通组件的连通状态为过冷支路和过冷并联段均与电子膨胀阀连通,此时通过对部分冷媒的过冷度调节,改善节流音异响问题。
进一步地,在SC j1与n 1的差值的绝对值小于第一差值时,还可以根据在SC j1与n 1的差值的绝对值满足的比例调节区间,调节进入过冷支路和过冷并联段的冷媒的比例。可以通过试验的方式,获得SC j1与n 1的差值的绝对值与冷媒调解比例区间之间的对应关系;在获得当前差值的绝对值之后,通过查询数据库,即可获得与当前差值的绝对值对应的当前比例调节区间,从而根据当前比例调节区间调节进入过冷支路和过冷并联段的冷媒的比例。对进入过冷支路和过冷并联段的冷媒比例的调节,可以通过切换连通装置的开度调节实现。
可选地,获取电子膨胀阀的制冷进液端的当前过冷度,包括:
根据室外机的当前冷凝温度与电子膨胀阀的制冷进液端的第一冷媒温度的差值,确定当前第一过冷度。
这里,当前冷凝温度可以通过室外机冷凝器出口的当前冷媒压力,根据温度与饱和压力之间的对应关系进行转换,从而得到室外机的当前冷凝温度TC。
可选地,由冷媒在配管内流通可能因管路延程阻力损失及热损失使得过冷度降低,因此需要通过过冷度修正参数对当前冷媒压力进行修正处理。
则,当前第一过冷度可以通过如下方式获得:
SC j1=k×TC-T 1,j1
其中,SC j1为当前第一过冷度,TC为当前冷凝温度,T 1,j1为第一冷媒温度,k为过冷度修正参数:k<1。
图6是本公开实施例提供的用于控制多联机空调的方法的流程示意图,应用于图2所示的多联机空调,且室内机包括主风道和过冷风道。该方法可以由多联机空调的处理器执行,也可以在与多联机空调进行通讯的云服务器中执行;还可以在多联机空调的控制端执行。在本公开实施例中,以多联机空调的处理器为执行主体,对方案进行说明。
结合图6所示,该用于控制多联机空调的方法包括:
步骤S601,响应于制冷模式运行指令,获取电子膨胀阀的制冷进液端的当前第一过冷度。
步骤S602,在当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以 使过冷支路与电子膨胀阀连通。
步骤S603,获得过冷支路出口端的第二冷媒温度。
步骤S604,根据室外机的当前冷凝温度与第二冷媒温度的差值,确定电子膨胀阀的制冷进液端的当前第二过冷度。
步骤S605,根据当前第二过冷度满足的预设过冷度区间,控制主风道流向过冷风道的空气流量。
这里,通过控制主风道流向过冷风道的空气流量,从而使得过冷风道的气流与过冷器进行热交换,为过冷器内的冷媒增加过冷度。
第二冷媒温度可以是过冷支路的过冷器出口端的冷媒温度,也可以是过冷支路的管路出口端的冷媒温度。
当前第二过冷度是指部分或全部冷媒经过冷支路后进入电子膨胀阀的情况下,电子膨胀阀当前时刻的阀前过冷度。
进一步地,当前第二过冷度可以通过如下方式获得:
SC j2=k×TC-T l,j2
其中,SC j2为当前第二过冷度,TC为当前冷凝温度,T 1,j2为第二冷媒温度,k为过冷度修正参数:k<1。
可选地,根据当前第二过冷度满足的预设过冷度区间,控制主风道流向过冷风道的空气流量,包括:
如果当前第二过冷度小于或等于第一预设过冷度,控制主风道流向过冷风道的空气流量增大;
如果当前第二过冷度大于第二预设过冷度,控制主风道流向过冷风道的空气流量减小;
如果当前第二过冷度大于第一预设过冷度,且小于或等于第二预设过冷度,控制主风道流向过冷风道的空气流量不变。
这里,根据当前第二过冷度满足的不同预设过冷度区间,调节主风道流向过冷风道的空气流量,从而使得第二过冷度保持在适度范围内,此时节流时不会出现明显节流音的情况。
第二预设过冷度n 2,用于表示当前过冷度偏大,冷媒流经电子膨胀阀时会有噪音问题,需要减小过冷度的情况。
即,通过控制主风道流向过冷风道的空气流量,使得第二过冷度维持在(n 1,n 2](即过冷度适宜区间)的范围内,已达到改善节流音异响的目的。
过冷度适宜区间的数值是根据环境温度参数和/或电子膨胀阀口径参数确定的。环境 温度参数包括室外环境温度和室内环境温度。示例地,电子膨胀阀的口径参数越大,过冷度适宜区间的下限值和上限值的取值越小。可选地,可以通过试验的方式,获得环境温度参数、电子膨胀阀口径参数与过冷度适宜区间的对应关系;在获得当前环境温度参数和/或电子膨胀阀口径参数后,通过查询数据库,即可获得与当前环境温度参数和/或电子膨胀阀口径参数相对应的当前过冷度适宜区间,从而根据当前第二过冷度与当前过冷度适宜区间的数值关系,控制主风道流向过冷风道的空气流量。
可选地,控制主风道流向过冷风道的空气流量后,还包括:
按照预设时长,间隔的获得过冷支路出口端的第二冷媒温度和冷凝温度。
即,预设时长作为调整时间周期,以在主风道与过冷风道连通的情况下,间隔的调整进入过冷风道的空气流量,从而使得根据第二冷媒温度和冷凝温度确定的阀前过冷度维持在过冷度适宜区间内。
进一步地,主风道流向过冷风道的空气流量是通过设置在过冷风道上的风门开度调节实现的。
结合图4,控制主风道流向过冷风道的空气流量增大,可以包括:控制步进电机驱动风门向开度增大的方向转动。
进一步地,控制步进电机驱动风门向开度增大的方向转动可以包括:
获得SC j2与n 1的当前过冷度差值,根据当前过冷度差值满足的差值区间,确定对应的当前开度调节值;
根据开度调节值与步进电机步数之间的对应关系,确定步进电机的当前驱动步数;
控制步进电机按照当前驱动步数运行,以控制风门按照当前开度调节值转动。
如此,能够实现根据SC j2实时的控制风门转动值,以使得主风道流向过冷风道的空气流量满足提高过冷度的需求。
同理,进一步地,控制步进电机驱动风门向开度减小的方向转动可以包括:
获得SC j2与n 2的当前过冷度差值,根据当前过冷度差值满足的差值区间,确定对应的当前开度调节值;
根据开度调节值与步进电机步数之间的对应关系,确定步进电机的当前驱动步数;
控制步进电机按照当前驱动步数运行,以控制风门按照当前开度调节值转动。
如此,能够实现根据SC j2实时的控制风门转动值,减小进入过冷风道的空气流量,从而避免过冷过度的情况发生。
图7是本公开实施例提供的用于控制多联机空调的方法的流程示意图,应用于图2所示的多联机空调。该方法可以由多联机空调的处理器执行,也可以在与多联机空调进行通 讯的云服务器中执行;还可以在多联机空调的控制端执行。在本公开实施例中,以多联机空调的处理器为执行主体,对方案进行说明。
结合图7所示,该用于控制多联机空调的方法包括:
步骤S701,响应于制冷模式运行指令,获得室外环境温度。
步骤S702,在室外环境温度大于预设温度时,获取电子膨胀阀的制冷进液端的当前第一过冷度。
步骤S703,在当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以使过冷支路与电子膨胀阀连通。
步骤S704,间隔的获取室外环境温度。
步骤S705,在室外环境温度小于或等于预设温度时,控制切换连通组件使过冷支路与电子膨胀阀断开连通;以及,在当前第一过冷度大于第一预设过冷度时,控制切换连通组件以使过冷支路与电子膨胀阀断开连通,或维持切换连通组件以使过冷支路与电子膨胀阀断开连通。
室外环境温度大于预设温度,用于表示室外环境温度较高,可能对室外机流向室内机的配管的冷媒温度造成影响,从而导致阀前过冷度不足的情况。预设温度可以是26℃-30℃,例如26℃、27℃、28℃、29℃、30℃。在本实施例中将预设温度设定为27℃。
在室外环境温度大于预设温度时,触发阀前过冷度获取操作,进而通过电子膨胀阀的制冷进液端的当前第一过冷度与第一预设过冷度的数值大小,确定是否需要通过连通过冷支路来提高阀前过冷度,以达到改善节流音异响的目的。
在室外环境温度小于或等于预设温度时,认为室外环境温度对室外机流向室内机的配管的冷媒温度影响较小,发生阀前过冷度不足情况的可能性降低。此时断开过冷支路与电子膨胀阀的连通关系,使得冷媒通过主流路直接进入电子膨胀阀。
如此,通过在多联机空调室内机的电子膨胀阀的制冷进液端前设置过冷并联段,以及与过冷并联段并联设置的过冷支路,从而在室外环境温度大于预设温度时,获取电子膨胀阀的阀前过冷度,以在阀前过冷度不足的情况下,控制切换连通组件实现室内机主流路的部分或全部冷媒流经过冷支路后进入电子膨胀阀的制冷进液端,提高电子膨胀阀的阀前过冷度,进而使得节流过程中的冷媒更稳定;并在室外环境温度小于或等于预设温度时,恢复主流路的冷媒循环。应用本实施例提供的用于控制多联机空调的控制方法,能够达到改善多联机空调室内侧的节流音异响的目的。
图8是本申请实施例提供的一种用于控制多联机空调的装置的示意图。该用于控制多联机空调的装置可通过软件、硬件或二者结合形式实现。
结合图8所示,本公开实施例提供一种用于控制多联机空调的装置80,包括获取模块81和控制模块82;获取模块81被配置为响应于制冷模式运行指令,获取电子膨胀阀的制冷进液端的当前第一过冷度;控制模块82被配置为在所述当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以使过冷支路与所述电子膨胀阀连通。
图9是本申请实施例提供的一种用于控制多联机空调的装置的示意图。结合图9所示,用于控制多联机空调的装置90包括:
处理器(processor)90和存储器(memory)91。可选地,该装置还可以包括通信接口(Communication Interface)92和总线93。其中,处理器90、通信接口92、存储器91可以通过总线93完成相互间的通信。通信接口92可以用于信息传输。处理器90可以调用存储器91中的逻辑指令,以执行上述实施例的用于控制多联机空调的方法。
此外,上述的存储器91中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器91作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器90通过运行存储在存储器91中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制多联机空调的方法。
存储器91可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器91可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种多联机空调,包含上述的用于控制多联机空调的装置80(90)。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于控制多联机空调的方法。
本公开实施例提供了一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现上述用于控制多联机空调的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于控制多联机空调的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元 的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (17)

  1. 一种多联机空调,包括:室外机和室内机组,所述室内机组包括多个并联的室内机;其特征在于,至少一个室内机包括:
    主流路,包括通过主管路依次连接的电子膨胀阀和室内换热器;其中,所述主管路的位于所述电子膨胀阀的制冷进液端的至少部分管路被作为过冷并联段;
    过冷支路,包括过冷器;所述过冷支路与所述过冷并联段相并联;
    切换连通组件,被配置为受控的使所述过冷并联段和/或所述过冷支路与所述电子膨胀阀连通。
  2. 根据权利要求1所述的多联机空调,其特征在于,
    所述过冷器设置在所述室内换热器的出风侧的风场区域内。
  3. 根据权利要求1或2所述的多联机空调,其特征在于,所述室内机还包括:
    主风道,设置有所述室内换热器;
    过冷风道,设于所述主风道的下游风路且与所述主风道并联连通,所述过冷器设于所述过冷风道内;所述过冷风道的进风口还设置有一风门,其被配置为受控地调节开度以改变流经自所述主风道流向过冷风道的空气流量。
  4. 根据权利要求1至3任一项所述的多联机空调,其特征在于,所述切换连通组件包括:
    第一电磁阀,设置于所述过冷并联段;
    第二电磁阀,设置于所述过冷支路。
  5. 一种用于控制权利要求1至4任一所述的多联机空调的方法,其特征在于,包括:
    响应于制冷模式运行指令,获取电子膨胀阀的制冷进液端的当前第一过冷度;
    在所述当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以使过冷支路与所述电子膨胀阀连通。
  6. 根据权利要求5所述的方法,其特征在于,所述获取所述电子膨胀阀的制冷进液端的当前第一过冷度,包括:
    根据室外机的当前冷凝温度与所述电子膨胀阀的制冷进液端的第一冷媒温度的差值,确定所述当前第一过冷度。
  7. 根据权利要求6所述的方法,其特征在于,通过如下方式获得所述当前第一过冷度:
    SC j1=k×TC-T 1,j1
    其中,SC j1为当前第一过冷度,TC为当前冷凝温度,T 1,j1为第一冷媒温度,k为过冷度修正参数:k<1。
  8. 根据权利要求5所述的方法,其特征在于,所述控制切换连通组件以使过冷支路与所述电子膨胀阀连通,包括:
    控制切换连通组件使得所述过冷支路与所述电子膨胀阀连通,所述过冷并联段与所述电子膨胀阀断开连通;或,
    控制切换连通组件使得所述过冷支路和所述过冷并联段均与电子膨胀阀连通。
  9. 根据权利要求5所述的方法,其特征在于,如果所述室内机包括主风道和过冷风道,则所述使所述过冷支路与所述电子膨胀阀连通后,还包括:
    获得所述过冷支路出口端的第二冷媒温度;
    根据室外机的当前冷凝温度与所述第二冷媒温度的差值,确定所述电子膨胀阀的制冷进液端的当前第二过冷度;
    根据所述当前第二过冷度满足的预设过冷度区间,控制所述主风道流向过冷风道的空气流量。
  10. 根据权利要求9所述的方法,通过如下方式获得所述当前第二过冷度:
    SC j2=k×TC-T l,j2
    其中,SC j2为当前第二过冷度,TC为当前冷凝温度,T 1,j2为第二冷媒温度,k为过冷度修正参数:k<1。
  11. 根据权利要求9所述的方法,其特征在于,
    如果所述当前第二过冷度小于或等于所述第一预设过冷度,控制所述主风道流向所述过冷风道的空气流量增大;
    如果所述当前第二过冷度大于第二预设过冷度,控制所述主风道流向所述过冷风道的空气流量减小;
    如果所述当前第二过冷度大于所述第一预设过冷度,且小于或等于所述第二预设过冷度,控制所述主风道流向所述过冷风道的空气流量不变。
  12. 根据权利要求11所述的方法,其特征在于,
    如果所述过冷风道上设有风门,用于受控地调节开度以改变流经自所述主风道流向过冷风道的空气流量;
    则控制所述主风道流向所述过冷风道的空气流量增大,包括:
    根据当前第二过冷度与第一预设过冷度的差值,控制风门向开度增大的方向转动,以增大主风道流向所述过冷风道的空气流量;
    控制所述主风道流向所述过冷风道的空气流量减小,包括:
    根据当前第二过冷度与第二预设过冷度的差值,控制风门向开度减小的方向转动,以减小主风道流向所述过冷风道的空气流量。
  13. 根据权利要求5至12任一项所述的方法,其特征在于,
    在室外环境温度大于预设温度时,获取所述电子膨胀阀的制冷进液端的当前第一过冷度;
    在室外环境温度小于或等于预设温度时,控制所述切换连通组件使所述过冷支路与所述电子膨胀阀断开连通。
  14. 一种用于控制权利要求1至4任一所述的多联机空调的装置,其特征在于,包括:
    获取模块,被配置为响应于制冷模式运行指令,获取电子膨胀阀的制冷进液端的当前第一过冷度;
    控制模块,被配置为在所述当前第一过冷度小于或等于第一预设过冷度时,控制切换连通组件以使过冷支路与所述电子膨胀阀连通。
  15. 一种用于控制权利要求1至4任一所述的多联机空调的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在运行所述程序指令时,执行如权利要求5至13任一项所述的用于控制多联机空调的方法。
  16. 一种计算机程序,当所述计算机程序被计算机执行时,使所述计算机实现如权利要求5至13任一项所述的用于控制多联机空调的方法。
  17. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机指令,当所述程序指令被计算机执行时,使所述计算机实现如权利要求5至13任一项所述的用于控制多联机空调的方法。
PCT/CN2022/132550 2022-04-26 2022-11-17 多联机空调、用于控制多联机空调的方法及装置 WO2023207040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210445855.XA CN116989450A (zh) 2022-04-26 2022-04-26 多联机空调、用于控制多联机空调的方法及装置
CN202210445855.X 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023207040A1 true WO2023207040A1 (zh) 2023-11-02

Family

ID=88517176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132550 WO2023207040A1 (zh) 2022-04-26 2022-11-17 多联机空调、用于控制多联机空调的方法及装置

Country Status (2)

Country Link
CN (1) CN116989450A (zh)
WO (1) WO2023207040A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003773A (zh) * 2010-11-25 2011-04-06 佛山市中格威电子有限公司 变频空调器多联机的分流补偿控制系统
CN102635926A (zh) * 2012-04-26 2012-08-15 青岛海尔空调电子有限公司 空调系统和用于空调系统的压力调整方法
CN102734865A (zh) * 2011-04-12 2012-10-17 珠海格力电器股份有限公司 多联机空调系统及其控制方法
CN111845821A (zh) * 2020-07-29 2020-10-30 山东朗进科技股份有限公司 一种空调及一种除湿方法
CN215295159U (zh) * 2021-06-04 2021-12-24 山东朗进科技股份有限公司 一种除湿精密空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003773A (zh) * 2010-11-25 2011-04-06 佛山市中格威电子有限公司 变频空调器多联机的分流补偿控制系统
CN102734865A (zh) * 2011-04-12 2012-10-17 珠海格力电器股份有限公司 多联机空调系统及其控制方法
CN102635926A (zh) * 2012-04-26 2012-08-15 青岛海尔空调电子有限公司 空调系统和用于空调系统的压力调整方法
CN111845821A (zh) * 2020-07-29 2020-10-30 山东朗进科技股份有限公司 一种空调及一种除湿方法
CN215295159U (zh) * 2021-06-04 2021-12-24 山东朗进科技股份有限公司 一种除湿精密空调系统

Also Published As

Publication number Publication date
CN116989450A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
EP0496505B1 (en) Air-conditioning system
US10612799B2 (en) Multi-split system and medium-pressure controlling method thereof
US11320185B2 (en) Defrosting control method for multi-split system
WO2017219650A1 (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
CN112032827A (zh) 多联机空调系统的回油控制方法
CN106440560B (zh) 冷凝面积可调的空调系统及其控制方法
JP4704728B2 (ja) 空調機の冷媒温度制御装置及び制御方法
JP6285172B2 (ja) 空気調和機の室外機
WO2018076934A1 (zh) 空调及其制冷系统
WO2022017297A1 (zh) 热泵系统
KR101624529B1 (ko) 냉난방 동시형 멀티 공기조화기
WO2021142993A1 (zh) 多联式空调机组的控制方法
EP3855094A1 (en) Cooling and heating switching device for variable refrigerant flow system capable of heat recovery, variable refrigerant flow system, and control method
WO2023207040A1 (zh) 多联机空调、用于控制多联机空调的方法及装置
JPH09178284A (ja) 空気調和装置
CN213020428U (zh) 一种冷凝器热回收系统
JP3626517B2 (ja) 空気調和装置
CN210154123U (zh) 空调系统
JP4391188B2 (ja) 空気調和装置
KR101891615B1 (ko) 실외 열교환기
KR20080084482A (ko) 공기 조화기의 제어방법
CN220507001U (zh) 室内换热器、室内机及空调
US11913680B2 (en) Heat pump system
KR20140089797A (ko) 공기조화기
CN213421283U (zh) 一种可控制多个室外机换热器的多联式空调室外机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022939855

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022939855

Country of ref document: EP

Effective date: 20240422