WO2023206885A1 - 换热器、换热器的流路控制方法、可读存储介质及空调器 - Google Patents
换热器、换热器的流路控制方法、可读存储介质及空调器 Download PDFInfo
- Publication number
- WO2023206885A1 WO2023206885A1 PCT/CN2022/115238 CN2022115238W WO2023206885A1 WO 2023206885 A1 WO2023206885 A1 WO 2023206885A1 CN 2022115238 W CN2022115238 W CN 2022115238W WO 2023206885 A1 WO2023206885 A1 WO 2023206885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control valve
- heat exchanger
- heat exchange
- flow path
- exchange tube
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000007788 liquid Substances 0.000 claims abstract description 117
- 239000003507 refrigerant Substances 0.000 claims description 30
- 238000000926 separation method Methods 0.000 claims description 30
- 238000001704 evaporation Methods 0.000 claims description 29
- 230000008020 evaporation Effects 0.000 claims description 29
- 238000012423 maintenance Methods 0.000 claims description 16
- 238000005057 refrigeration Methods 0.000 claims description 16
- 230000002441 reversible effect Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 86
- 239000012530 fluid Substances 0.000 description 78
- 230000008859 change Effects 0.000 description 65
- 239000012071 phase Substances 0.000 description 61
- 230000000694 effects Effects 0.000 description 30
- 230000001965 increasing effect Effects 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 14
- 238000001816 cooling Methods 0.000 description 9
- 230000005494 condensation Effects 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007792 gaseous phase Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
- F24F1/16—Arrangement or mounting thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
- F24F11/67—Switching between heating and cooling modes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/37—Capillary tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/64—Airborne particle content
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/50—Air quality properties
- F24F2110/65—Concentration of specific substances or contaminants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2130/00—Control inputs relating to environmental factors not covered by group F24F2110/00
- F24F2130/30—Artificial light
Definitions
- the present application relates to the technical field of heat exchangers, and in particular to a heat exchanger, a flow path control method for a heat exchanger, a readable storage medium, and an air conditioner using the heat exchanger.
- the flow path of the heat exchanger is the same under various operating conditions such as cooling, heating, and different operating frequencies.
- various operating conditions such as cooling, heating, and different operating frequencies.
- a large number of studies have shown that under cooling, heating, and different operating frequencies, The optimal flow paths for indoor and outdoor heat exchangers are different.
- the heat exchanger serves as a condenser, its pressure loss is small.
- the reduction in logarithmic average temperature difference caused by pressure loss has a dominant influence on heat transfer.
- air-conditioning heat exchangers also change the flow path in evaporation/condensation mode, but the existing heat exchangers are highly specific and have low modularity, making it difficult to adapt to large-capacity air conditioners with large heat exchange areas; flow paths Changes are limited to adding or subtracting a few flow paths, and there are few ways to change; there is still gas-phase refrigerant during the evaporation process that deteriorates the evaporation heat transfer coefficient, limiting the performance of heat exchangers and heat pumps (hot air fans, heat pump water heaters).
- the main purpose of this application is to propose a heat exchanger that aims to improve the problem of gas-phase refrigerant deteriorating heat transfer coefficient and improve the heat exchange effect.
- the heat exchanger proposed in this application includes a collecting pipe
- a gas-liquid separator the gas-liquid separator includes two liquid ends and a gas end, the gas end is connected to the gas collection pipe through a first pipeline;
- a detachable module one end of the detachable module is connected to a liquid end of the gas-liquid separator through a second pipeline, and the other end is connected to the liquid collecting pipe through a third pipeline;
- variable flow path module includes: a first heat exchange tube group, a second heat exchange tube group and a control valve assembly, the control valve assembly includes a first control valve, a second control valve and a third Three control valves;
- One end of the first heat exchange tube group is connected to the gas collecting pipe through a fourth pipeline, and the other end is connected to the other liquid end through a fifth pipeline; one end of the second heat exchange tube group is connected to the sixth tube
- the pipeline is connected to the gas collecting pipe, and the other end is connected to the other liquid end through the seventh pipeline;
- the first control valve is located in the fifth pipeline, the second control valve is located in the sixth pipeline;
- the third control valve has a first end and a second end that are connected to each other, and the The first end is connected to an end of the first control valve away from the gas collecting pipe, the second end is connected to an end of the second control valve away from the other liquid end;
- a fourth control valve is provided on the first pipeline.
- the separable module includes two first separation flow paths, and the two first separation flow paths are arranged in parallel.
- the separable module further includes a second separation flow path, and the two first separation flow paths are connected in parallel and arranged in series with the second separation flow path.
- the single flow path flow length of the separable module is 0.15 to 0.55 times the single flow path flow length of the variable flow path module.
- the first control valve is a first one-way valve, and the conduction direction of the first one-way valve is the direction from the other liquid end to the first heat exchange tube group;
- the second control valve is a second one-way valve, and the conducting direction of the second one-way valve is the direction from the second heat exchange tube group to the gas collecting pipe.
- first heat exchange tube groups there are at least two first heat exchange tube groups and at least two second heat exchange tube groups. At least two first heat exchange tube groups are arranged in parallel, and at least two second heat exchange tube groups are arranged in parallel. Two heat exchange tube groups are set up in parallel;
- the third control valve is provided with one end of each first heat exchange tube group close to the liquid collecting pipe connected to the first end; each second heat exchange tube group close to the One end of the gas collecting pipe is connected with the second end.
- the fourth control valve is a third one-way valve, and the conducting direction of the third one-way valve is the direction from the gas end to the gas collecting pipe;
- the fourth control valve is an electronic expansion valve or a capillary tube.
- This application also proposes a flow path control method based on the above-mentioned heat exchanger, which is used in a refrigeration system.
- the flow path control method includes:
- the opening and closing states of the first control valve and the second control valve are controlled to be the same, and the opening and closing states of the third control valve and the first control valve are controlled to be opposite.
- the step of obtaining the operating mode of the heat exchanger and the load mode of the refrigeration system includes:
- the opening and closing states of the first control valve and the second control valve are controlled to be the same, and the opening and closing states of the third control valve and the first control valve are controlled.
- the reverse steps for opening and closing the state are as follows:
- variable flow path module adopts the full flow path mode, that is, controls the first control valve and the second control valve to conduct, and controls the third control valve to conduct.
- the control valve is closed;
- variable flow path module adopts a half flow path mode, that is, controls the first control valve and the second control valve to close, and controls the third control valve to close.
- the valve is open, wherein the first load is greater than the second load.
- the flow path control method of the heat exchanger further includes:
- the initial opening and maintenance time of the electronic expansion valve are obtained, and initialization control is performed.
- the steps of obtaining the initial opening and maintenance time of the electronic expansion valve based on the judgment result and performing initialization control are specifically:
- the range of the first opening degree A is 20P ⁇ 100P
- the range of the second opening degree B is 50P ⁇ 150P
- the range of t1 is 2min ⁇ 15min
- the range of t2 is 1min ⁇ 15min.
- This application also proposes a readable storage medium, which stores a flow path control program of the heat exchanger.
- the flow path control program of the heat exchanger is executed by the processor, the above-mentioned heat exchanger is realized. The steps of the flow path control method.
- This application also proposes an air conditioner, including any of the above heat exchangers.
- the air conditioner includes an outdoor unit, and the heat exchanger is provided in the outdoor unit.
- the technical solution of this application is that when the heat exchanger is used as an evaporator, the liquid phase change working fluid enters from the liquid collecting pipe; it first undergoes preliminary evaporation through the separable module, and then enters the gas-liquid separator through the liquid end for gas-liquid separation, and separates
- the gas enters the first pipeline through the gas end, and can enter the gas collecting pipe after passing through the fourth control valve; the liquid part enters the variable flow path module through the other liquid end.
- the initial heat exchange it can be Separating the gas part makes the heat transfer coefficient of the subsequent liquid part higher, effectively enhancing the heating effect of the heat exchanger.
- After entering the variable flow path module it is divided into two paths.
- the first control valve By turning on the first control valve, it can flow to the first heat exchange tube group and the second heat exchange tube group respectively along the fifth pipeline and the seventh pipeline, and After heat exchange with the first heat exchange tube group, the gaseous phase change working fluid is formed and flows to the fourth pipeline. After heat exchange with the second heat exchange tube group, the gaseous phase change working fluid is formed and flows to the sixth pipeline. If the second control valve is installed, the phase change working fluid can flow out from both the third pipeline and the fourth pipeline and merge together into the gas collecting pipe.
- the number of flow paths for the phase change working fluid is the sum of the first heat exchange tube group and the second heat exchange tube group, that is, the number of flow paths is larger, thereby increasing the heat transfer amount in the evaporation mode and further achieving A better heat exchange effect.
- the heat exchanger is used as a condenser
- the gaseous phase change working fluid enters from the gas collecting pipe; by conducting the third control valve and shutting off the first control valve and the second control valve, the first heat exchange tube group and the second exchanger tube group are connected to each other.
- the heat pipe groups are connected in series.
- the phase change working fluid flowing out from the gas collecting pipe flows to the liquid collecting pipe after being exchanged by the first heat exchange pipe group and the second heat exchange pipe group. This reduces the number of flow paths and improves the phase efficiency in the condensation mode.
- the flow rate of the working fluid is changed, thereby increasing the heat transfer coefficient and achieving better heat transfer effect.
- Figure 1 is a schematic structural diagram of a heat exchanger used as an evaporator in one embodiment of the present application
- FIG 2 is a schematic structural diagram of the heat exchanger shown in Figure 1 when used as a condenser;
- FIG 3 is a schematic flow path diagram of the heat exchanger shown in Figure 1 when used as an evaporator in an air conditioner;
- Figure 4 is a schematic flow path diagram of the heat exchanger shown in Figure 1 when used as a condenser in an air conditioner;
- FIG. 5 is a schematic structural diagram of another embodiment of the heat exchanger of the present application.
- FIG. 6 is a schematic structural diagram of another embodiment of the heat exchanger of the present application.
- label name label name 100 Collecting tube 650 Fifth pipeline 200 collecting pipe 660 Sixth pipeline 300
- the first heat exchange tube group 670 The seventh pipeline 400 Second heat exchange tube group 700
- Gas-liquid separator 510 first control valve 701 gas end 520 Second control valve 702, 703 liquid end 530
- Third control valve 800 detachable module 540
- Second pipeline 900 Commonly used heat exchange tube groups 630 Third pipeline 2000 compressor 640 Fourth pipeline
- This application proposes a heat exchanger.
- the heat exchanger includes a liquid collecting pipe 100, a gas collecting pipe 200, a gas-liquid separator 700, a separable module 800, a variable flow path module and a fourth control Valve 540, the gas-liquid separator 700 includes two liquid ends (702, 703) and a gas end 701, the gas end 701 is connected to the gas collection pipe 200 through the first pipeline 610;
- One end of the separable module 800 is connected to the liquid end 702 of the gas-liquid separator 700 through the second pipeline 620, and the other end is connected to the liquid collecting pipe 100 through the third pipeline 630;
- the variable flow path module includes: a first heat exchange tube group 300, a second heat exchange tube group 400, and a control valve assembly.
- the control valve assembly includes a first control valve 510, a second control valve 520, and a third control valve.
- Valve 530 one end of the first heat exchange tube group 300 is connected to the gas collecting pipe 200 through the fourth pipeline 640, and the other end is connected to the other liquid end 703 through the fifth pipeline 650;
- One end of the pipe set 400 is connected to the gas collecting pipe 200 through the sixth pipe 660, and the other end is connected to the other liquid end 703 through the seventh pipe 670;
- the first control valve 510 is provided in the fifth pipe 650.
- the second control valve 520 is provided in the sixth pipeline 660; the third control valve 530 has a first end and a second end that are connected to each other, and the first end is connected to the first control valve.
- 510 is an end away from the gas collecting pipe 200, and the second end is connected to an end of the second control valve 520 away from the other liquid end 703; the fourth control valve 540 is provided in the first pipeline 610 superior.
- the flow direction of the phase change working fluid of the heat exchanger in the technical solution of the present application can be from the liquid collecting pipe 100 to the gas collecting pipe 200, or from the gas collecting pipe 200.
- the heat exchanger in the technical solution of the present application can be adapted to an air conditioner that can have a cooling function and a heating function.
- the air conditioner when the air conditioner is in the heating mode, its position in the air conditioner is It serves as an evaporator in the outdoor unit; or as a condenser in the outdoor unit of the air conditioner when the air conditioner is in cooling mode.
- the heat exchanger can also be used in heat pump systems or other systems for cooling or heating, such as refrigeration/heat pump devices in commercial, automotive, and drilling industries.
- the flow pattern of the refrigerant as its dryness increases is single liquid phase flow, bubble flow, slug flow, annular flow, mist flow and single gas phase flow; in bubble flow In the flow, slug flow and annular flow areas, as the refrigerant dryness increases, the heat transfer coefficient of the inner surface of the tube increases due to the increase in the average flow velocity in the refrigerant tube; while in the mist flow area, due to the excessive dryness of the refrigerant, The liquid film on the inner surface of the tube is destroyed, causing heat transfer to deteriorate and the heat transfer coefficient to drop sharply, which greatly affects the heat exchange performance of the evaporator.
- phase separation evaporator technology can reduce the average flow rate of the refrigerant, thereby reducing the resistance loss on the refrigerant side and improving the overall performance of the heat exchanger. Therefore, when the heat exchanger is in the evaporation mode, a part of the phase change working fluid can be evaporated first through the separable module 800, and then the gas-liquid separator 700 can separate the heat-exchanged gas phase working fluid at the position where the heat exchange efficiency deteriorates, and the remaining phase change fluid can be separated.
- the liquid working fluid continues to evaporate, thereby improving the problem of worsening evaporation heat transfer coefficient of the gas phase refrigerant and improving the heat transfer effect and heat transfer efficiency. That is to say, gaseous refrigerant can be extracted during heating to increase the evaporation heat transfer coefficient, thereby improving the heat exchange efficiency of the entire machine.
- the heat exchanger can achieve switching effects of different numbers of flow paths when it is in different operating states. It can be understood that when the heat exchanger is used as an evaporator, compared with the effect of flow rate on the heat transfer coefficient, the reduction in the logarithmic average temperature difference caused by the pressure loss has a dominant effect on the heat transfer amount. At this time, we hope to use More flow paths increase heat transfer.
- the heat exchanger serves as an evaporator
- the third control valve 530 is turned off
- the fourth control valve 540 is also turned on
- the first heat exchanger is turned on.
- the two ends of the tube group 300 are connected to the gas collecting pipe 200 and the gas-liquid separator 700 through the fourth pipeline 640 and the fifth pipeline 650 respectively
- the two ends of the second heat exchange tube group 400 are connected to the sixth pipeline 660 and the seventh tube respectively.
- Road 670 connects the gas collecting pipe 200 and the gas-liquid separator 700, then the phase change working fluid entering from the liquid collecting pipe 100 will first pass through the separable module 800, and then enter the gas-liquid separator 700 after preliminary evaporation and heat exchange.
- the gaseous working fluid after heat exchange can be separated in time to reduce the deterioration of the heat exchange performance of the liquid working fluid.
- the numbers of the first heat exchange tube group 300 and the second heat exchange tube group 400 are defined as A and B respectively, the phase change working fluid can flow through (A+B) flow paths simultaneously in the variable flow path module. .
- the flow rate of the phase change working fluid has a dominant influence on the heat transfer amount.
- the high-temperature and high-pressure gaseous phase-change working fluid entering from the gas collecting pipe 200 will only pass through the fourth control valve 540 .
- the pipeline 640 flows into the first heat exchange tube group 300 for heat exchange, so that the phase change working fluid is condensed into a liquid state.
- the phase change working fluid will not flow from the fifth pipeline 650 into the gas-liquid separator 700 ;
- the phase change working fluid that has been heat exchanged through the first heat exchange tube group 300 will enter the second heat exchange tube group 400 to be heat exchanged again into more liquid phase change working fluid.
- the gas then flows from the second heat exchange tube group 400 to the seventh pipeline 670 , and from the seventh pipeline 670 to the gas-liquid separator 700 .
- the phase change working fluid can first flow through the main exchanger A simultaneously.
- the hot flow path then flows through the B subcooling flow path at the same time.
- the number of the first heat exchange tube group 300 and the second heat exchange tube group 400 may be the same.
- the technical solution of the present application The number of heat exchange channels when the heat exchanger in is used as an evaporator is twice the number of heat exchange channels when the heat exchanger is used as a condenser.
- the technical solution of this application can realize the circulation of phase change working fluid with different numbers of flow paths in different operating modes by only adding three control valves to the heat exchanger, and by conducting and blocking these three valves,
- the control can achieve more flow paths when the heat exchanger is operating as an evaporator, thereby increasing the heat transfer capacity and improving the heat exchange effect in the evaporation state, and through the separable module 800 and the gas-liquid separator 700
- the setting further improves the problem of evaporation heat transfer coefficient of gaseous working fluid deteriorating liquid working fluid and improves heat transfer efficiency; and when the heat exchanger is operating as a condenser, it has the effect of fewer flow paths, thereby improving the phase change process.
- the mass flow rate improves the heat transfer effect in the condensation state. In this way, the heat exchanger can adapt to different operating conditions and have better heat exchange effects under different operating conditions.
- both the first heat exchange tube group 300 and the second heat exchange tube group 400 in the heat exchanger in the technical solution of the present application can be modularized and can be adapted to large-capacity air conditioners with large heat exchange areas. Small air conditioners with low capacity, or air conditioners focusing on dehumidification, etc. That is, when it is necessary to operate in a large load mode with a large heat exchange area, the number of the first heat exchange tube group 300 and/or the second heat exchange tube group 400 can only be increased through parallel connection without adding other control valve groups. It can achieve different heat exchange flow path effects in different operating modes. Therefore, the heat exchanger in the technical solution of this application can be modularized, has strong versatility, simple control, low cost, and can be adapted to various different applications. operating state, and the number of the first heat exchange tube group 300 and/or the second heat exchange tube group 400 can be flexibly increased.
- the liquid phase change working fluid enters from the liquid collecting pipe 100; it first undergoes preliminary evaporation through the separable module 800, and then enters the gas-liquid separator 700 through the liquid end 702 for gas-liquid separation. Separation, the separated gas enters the first pipeline 610 through the gas end 701, and can enter the gas collecting pipe 200 after passing through the fourth control valve 540; the liquid part enters the variable flow path module through the other liquid end 703, so, After the initial heat exchange, the gas part can be separated in time, so that the heat transfer coefficient of the subsequent liquid part is higher, effectively enhancing the heating effect of the heat exchanger. After entering the variable flow path module, it is divided into two paths.
- the fluid can flow to the first heat exchange tube group 300 and the second heat exchange tube group 300 along the fifth pipeline 650 and the seventh pipeline 670 respectively.
- the phase change working fluid can flow out from both the third pipeline 630 and the fourth pipeline 640 and merge together into the gas collecting pipe 200 .
- the number of flow paths for the phase change working fluid is the sum of the first heat exchange tube group 300 and the second heat exchange tube group 400, that is, the number of flow paths is larger, thereby increasing the heat transfer amount in the evaporation mode. Better heat exchange effect is further achieved.
- the heat exchanger is used as a condenser, the gaseous phase change working fluid enters from the gas collecting pipe 200; by turning on the third control valve 530 and blocking the first control valve 510 and the second control valve 520, the first heat exchange tube group 300 is connected in series with the second heat exchange tube group 400.
- phase change working fluid flowing out from the gas collecting pipe 200 flows to the liquid collecting pipe 100 after being exchanged by the first heat exchange tube group 300 and the second heat exchange tube group 400, so that in the condensation mode
- the number of flow paths is reduced, the flow rate of the phase change working fluid is increased, and the heat transfer coefficient is increased, and a better heat transfer effect is also achieved.
- the separable module 800 includes two first separation flow paths 801, and the two first separation flow paths 801 are arranged in parallel.
- the use of phase separation evaporator technology can reduce the average flow rate of the refrigerant in the tube, thereby reducing the resistance loss on the refrigerant side; and improving the overall performance of the heat exchanger.
- the separable module 800 by disposing the separable module 800 at one end of the liquid collecting pipe 100 away from the first heat exchange tube group 300 and the second heat exchange tube group 400, the separable module 800 includes two parallel first separation flow paths 801. When When the heat exchanger serves as an evaporator, the flow rate of the working fluid is reduced by increasing the flow path.
- the phase-changed working fluid After passing through the two first separation flow paths 801, the phase-changed working fluid enters the gas-liquid separator 700, so that part of the evaporated gas can be separated from The fourth control valve 540 enters the gas collecting pipe 200, and the remaining liquid part continues to enter the variable flow path module for continued evaporation.
- the heat exchanger is used as a condenser
- the phase change working fluid after exchanging heat through the first heat exchange tube group 300 and the second heat exchange tube group 400, can also pass through the two first separation flow paths 801 and then undergo heat exchange. , carrying out re-cooling treatment can further improve the heat exchange energy efficiency.
- first separation flow paths 801 may also be provided in parallel.
- the separable module 800 further includes a second separation flow path 802.
- the two first separation flow paths 801 are connected in parallel and are arranged in series with the second separation flow path 802.
- the phase change working fluid continues to pass through the second separation flow path 802 for heat exchange, that is, it is subcooled, and then concentrated into the liquid collecting pipe 100, so that Further improve the heat exchange energy efficiency, improve the heat exchange effect, and allow the phase change working fluid to be fully heat exchanged, improving the heat exchange efficiency.
- the single flow path flow length of the detachable module 800 is 0.15 to 0.55 times the single flow path flow length of the variable flow path module.
- the separable module 800 is used as a module to improve the heat transfer coefficient at the location where the gas phase working fluid deteriorates.
- the length of its single flow path should not be too large and cannot exceed the length of the variable flow path module that serves as the main heat exchange function.
- Single flow path length the length of the single flow path should not be too small, otherwise it will not be able to reduce the flow rate and improve the heat transfer coefficient. Therefore, the single flow path flow length of the separable module 800 is the single flow path of the variable flow path module. 0.15 times to 0.55 times the process length, for example, 0.15 times, 0.2 times, 0.3 times, 0.4 times or 0.5 times, etc., can be combined with the variable flow path module to achieve better heat exchange effects.
- the single flow path flow length of the separable module 800 is 0.5 times the single flow path flow length of the variable flow path module.
- the number of flow paths of the detachable module 800 should not be too large.
- the total number of flow paths of the detachable module 800 is smaller than the maximum number of flow paths of the variable flow path module.
- the detachable module 800 includes two A separation flow path 801 is smaller than the variable flow path module.
- the maximum number of flow paths is four.
- the first control valve 510 is a first one-way valve, and the conduction direction of the first one-way valve is from the other liquid end 703 to The direction of the first heat exchange tube group 300;
- the second control valve 520 is a second one-way valve, and the conducting direction of the second one-way valve is the direction from the second heat exchange tube group 400 to the gas collecting pipe 200 .
- the one-way valve can only conduct in one direction of the flow path, but cannot conduct in the other direction opposite to this direction. Therefore, by setting the first control valve 510 as a one-way valve, it can There is no need to set up other control units to control the opening and closing of the first control valve 510 .
- the conduction direction of the first one-way valve is limited to the direction in which the phase change working fluid flows from the gas-liquid separator 700 to the first heat exchange tube group 300, but does not allow the phase change working fluid to flow from the first heat exchange tube group 300 to the first heat exchange tube group 300. 300 flows to the gas-liquid separator 700.
- the conduction direction of the second one-way valve is also limited to allow the phase change working fluid to flow from the second heat exchange tube group 400 to the gas header 200, but not to allow the phase change working fluid to flow from the gas header 200 to the second heat exchange tube. Group 400.
- the first control valve 510 is provided in the fifth pipeline 650 and the second control valve 520 is provided in the sixth pipeline 660.
- the heat exchanger when used as an evaporator, it can be installed in the fifth pipeline.
- the first one-way valve on the pipeline 650 allows the phase change working fluid to flow on the fifth pipeline 650
- the second one-way valve provided on the sixth pipeline 660 also allows the phase change working fluid to flow on the sixth pipeline 660.
- phase change working fluid can at least have a flow path that flows out from the gas-liquid separator 700 and sequentially passes through the fifth pipeline 650, the first heat exchange tube group 300, the fourth pipeline 640 to the gas collecting pipe 200, and It flows out from the liquid collecting pipe 100 and sequentially passes through the seventh pipeline 670 , the second heat exchange tube group 400 , and the sixth pipeline 660 to the flow path of the gas collecting pipe 200 .
- the working fluid with phase change flows out from the gas collecting pipe 200 and enters the second heat exchange pipe group 400 through the fourth pipeline 640, the first heat exchange tube group 300, and the third control valve 530.
- the pressure of the phase change working fluid after flowing out is lower than the pressure when it enters the first heat exchange tube group 300, and therefore is also lower than The pressure at one end of the second one-way valve close to the gas collecting pipe 200. Therefore, even if the second one-way valve passes through the third control valve 530 and enters one end of the second heat exchange tube group 400 close to the gas collecting pipe 200, it will not pass through the third control valve 530.
- the two one-way valves return to the gas collecting pipe 200, but continue to exchange heat through the second heat exchange tube group 400 and enter the seventh pipeline 670, and then enter the gas-liquid separator 700.
- solenoid valves may also be used as the first control valve 510 and/or the second control valve 520 .
- the first control valve 510 and/or the second control valve 520 are solenoid valves
- the first control valve 510 and the second control valve 520 can be controlled to be in an open state when the heat exchanger serves as an evaporator.
- the first control valve 510 and the second control valve 520 can be controlled to be in a closed state.
- the first control valve 510 is provided in the fourth pipeline 640 and the second control valve 520 is provided in the seventh pipeline 670, since the first end of the third control valve 530 is connected to the first control valve 510, it is far away from the gas-liquid separator 700.
- One end of the second control valve 520 is connected to an end of the second control valve 520 away from the gas collecting pipe 200.
- the heat exchanger is used as a condenser, the phase change working fluid flowing out of the gas collecting pipe 200 will flow to the second exchanger through the sixth pipeline 660.
- the heat pipe group 400 after exchanging heat with the second heat exchange pipe group 400, enters the first heat exchange pipe group 300 through the third control valve 530 to continue heat exchange, and then flows into the gas-liquid separator 700 through the seventh pipeline 670. .
- the third control valve 530 is a solenoid valve, so the third control valve 530530 in this embodiment is limited to be opened only when the heat exchanger is used as a condenser, and not opened when the heat exchanger is used as an evaporator.
- the first control valve 510 is provided in the fourth pipeline 640 and the second control valve 520 is provided in the sixth pipeline 660, since the first end of the third control valve 530 is connected to the first control valve 510, it is far away from the gas-liquid separator 700.
- One end of the second control valve 520 is connected to the end of the second control valve 520 away from the gas collecting pipe 200.
- the phase change working fluid flowing out of the gas collecting pipe 200 will flow to the first exchanger through the fourth pipeline 640.
- the heat pipe group 300 after exchanging heat with the first heat exchange pipe group 300, enters the second heat exchange pipe group 400 through the third control valve 530 to continue heat exchange, and then flows into the gas-liquid separator 700 through the seventh pipeline 670. .
- At least two of the first heat exchange tube group 300 and the second heat exchange tube group 400 are provided. At least two of the first heat exchange tube groups 300 are arranged in parallel. At least two of the first heat exchange tube groups 300 are arranged in parallel. The second heat exchange tube group 400 is arranged in parallel;
- the third control valve 530 is provided with one end of each first heat exchange tube group 300 close to the liquid collecting pipe 100 connected to the first end; each second heat exchange tube group 400 has one end close to the gas collecting pipe 200 connected to the second end.
- the separable module 800 includes two first separation flow paths 801, which is smaller than the maximum number of flow paths of the variable flow path module.
- the third control valve 530 By providing a third control valve 530, you only need to control the opening and closing of the third control valve 530 to control the series and parallel operation of the first heat exchange tube group 300 and the second heat exchange tube group 400, which is simple and easy. Convenient and reduces the settings of the control program. Specifically, when the third control valve 530 is controlled to open, the module composed of all the first heat exchange tube groups 300 arranged in parallel and the module composed of all the second heat exchange tube groups 400 arranged in parallel can be controlled to be connected in series. Together, this reduces the number of flow paths for the phase change working fluid and can be used in the connection state when the heat exchanger serves as a condenser.
- each third control valve 530 may be provided, and each third control valve 530 is connected between a first heat exchange tube group 300 and a second heat exchange tube group 400.
- the heat exchanger is used as a condenser, the first heat exchange tube group 300 and the second heat exchange tube group 400 are connected in series.
- each third control valve 530 controls a group of modules composed of the first heat exchange tube group 300 and the second heat exchange tube group 400, thereby making the control of the number of flow paths of the entire heat exchanger more flexible, and also making the corresponding The path of the modified fluid when flowing from the first heat exchange tube group 300 to the second heat exchange tube group 400 (or the second heat exchange tube group 400 flowing to the first heat exchange tube group 300) is shorter, and it can also avoid the situation when one of them flows.
- the third control valve 530 is damaged, the entire heat exchanger cannot work.
- the fourth control valve 540 is a third one-way valve, and the conducting direction of the third one-way valve is from the gas end 701 to the collector.
- the fourth control valve 540 is an electronic expansion valve or a capillary tube.
- the fourth control valve 540 is a third one-way valve.
- the conduction direction can only conduct conduction in one flow path direction, but cannot conduct conduction in the other direction opposite to this direction. Therefore, the fourth control valve 540 can conduct conduction in the direction opposite to this direction.
- the control valve 540 is a one-way valve, the procedure of setting up another control unit to control the opening and closing of the fourth control valve 540 can be eliminated.
- the third one-way valve can be turned on, so that the gas in the gas-liquid separator 700 can enter the gas collecting pipe 200 through the third one-way valve and the first pipeline 610 .
- the third one-way valve is not conducting.
- the second control valve 520 is not conducting either, and the phase change working fluid entering through the gas collecting pipe 200 can only flow to the fourth pipeline.
- the fourth control valve 540 can also be an electronic expansion valve or a capillary tube.
- the electronic expansion valve is conducted when the heat exchanger serves as an evaporator and is adjusted to an appropriate opening, so that The gas-phase working fluid separated from the gas-liquid separator 700 can be appropriately decompressed through the electronic expansion valve, enter the gas collecting pipe 200, and then return to the compressor 2000 for suction.
- the opening of the electronic expansion valve is set to zero, that is, the gas collecting pipe 200 does not enter the gas-liquid separator 700 through the first pipeline 610, but passes through the variable flow path module. Heat exchange is carried out and then flows to the gas-liquid separator 700.
- the pressure of the phase-change working fluid is reduced after heat exchange and is less than the pressure of the working fluid coming out of the gas collecting pipe 200. Therefore, it cannot pass through the electronic expansion valve and be directly re-cooled or super-cooled. Enter the collecting pipe 100.
- the heat exchanger also includes a common heat exchange tube group 900, One end of the commonly used heat exchange tube group 900 is connected to the fourth pipeline 640, and the other end is connected to the seventh pipeline 670.
- the common heat exchange tube group 900 By connecting one end of the common heat exchange tube group 900 to the fourth pipeline 640 and the other end to the seventh pipeline 670, the common heat exchange tube group 900 is in a constant flow state, and the common heat exchange tube group 900 is not affected by The switching of the first control valve 510, the second control valve 520, etc. is affected. That is to say, no matter whether the first control valve 510 and/or the second control valve 520 are in an open state or a closed state, the common heat exchange tube group 900 can provide the phase change working fluid to circulate, and enable the phase change working fluid to flow from the inflow state. The tube flows in the direction of the outflow tube.
- first control valve 510 when the first control valve 510 is provided in the seventh pipeline 670 and the second control valve 520 is provided in the fourth pipeline 640, one end of the common heat exchange tube group 900 is connected to the sixth pipeline. 660, and the other end is connected to the fifth pipeline 650.
- the common heat exchange tube group 900 may be provided with one, two or more.
- the number of commonly used heat exchange tube groups 900 to be M, and when the numbers of the first heat exchange tube group 300 and the second heat exchange tube group 400 are both N, when the heat exchanger serves as an evaporator, the phase change working fluid flow
- the number of heat exchange flow paths that pass through is (2N+M); when the heat exchanger is used as a condenser, the number of heat exchange flow paths that the phase change working fluid flows through is (N+M).
- the values of N and M can be the same or different, and N and M are both integers.
- the values of N and M can be 1, 2, 3, 4 or 5, etc.
- the first heat exchange tube group 300 is a double-row heat exchange tube group or a single-row heat exchange tube group; and/or the second heat exchange tube group 400 is a double-row heat exchange tube group or a single-row heat exchange tube group.
- Heat pipe set Regardless of whether the first heat exchange tube group 300 is a double row of heat exchange tubes or a single row of heat exchange tubes, it has two interconnected ports, and both of them are a line for the phase change working fluid to enter through one of the ports and pass through the other port. Outflow pipe.
- first heat exchange tube group 300 when the first heat exchange tube group 300 is a double-row heat exchange tube, it can pass through and the two single-row heat exchange tube groups are arranged side by side and the outlet of one of the two single-row heat exchange tube groups It is connected to the inlet of the other one through an intermediate pipeline.
- the type of the second heat exchange tube group 400 may be the same as or different from the first heat exchange tube group 300.
- the second heat exchange tube group 400 may also be a double-row heat exchange tube group or a single-row heat exchange tube group. .
- the air conditioner includes a heat exchanger.
- the specific structure of the heat exchanger refers to the above-mentioned embodiments. Since this air conditioner adopts all the technical solutions of all the above-mentioned embodiments, it at least has the characteristics of the above-mentioned embodiments. All the beneficial effects brought by the technical solutions will not be repeated here.
- the air conditioner may be a split air conditioner, that is, it includes an indoor unit and an outdoor unit, and the indoor unit and the outdoor unit are connected through a refrigerant pipe.
- a first heat exchange module is provided in the indoor unit
- a second heat exchange module is provided in the outdoor unit.
- the first heat exchange module, the second heat exchange module and the compressor 2000 are connected through refrigerant pipes to form a circulation loop.
- the heat exchanger in the technical solution of this application can be installed in the indoor unit, that is, as the first heat exchange module; or the heat exchanger in the technical solution of this application can also be installed in the outdoor unit, that is, as the second heat exchange module.
- This application also proposes a flow path control method based on the above-mentioned heat exchanger.
- the heat exchanger is used in a refrigeration system, and the flow path control method includes:
- Step S1 Obtain the operating mode of the heat exchanger and the load mode of the refrigeration system
- Step S2 When the operating mode is the evaporation mode, control the fourth control valve 540 to conduct;
- Step S3 When the operating mode is the condensing mode, control the fourth control valve 540 to close;
- Step S4 According to the obtained load mode, control the opening and closing states of the first control valve 510 and the second control valve 520 to be the same, and control the third control valve 530 and the first control valve 510 The opening and closing states are opposite.
- the fourth control valve 540 controls the gas circulation state in the gas-liquid separator 700, when the heat exchanger is in the evaporation mode, gas-liquid separation needs to be performed in a timely manner. Therefore, the fourth control valve 540 is turned on to allow the gas-phase working medium to It enters the gas collecting pipe 200 through the fourth control valve 540 .
- the fourth control valve 540 is closed, so that the phase change working fluid can be heat exchanged and condensed through the variable flow path module. Therefore, it is necessary to obtain the operating mode of the heat exchanger to control the fourth control valve 540 to thereby improve the heat transfer coefficient.
- the heat exchanger serves as an evaporator or a condenser, it has a first load mode and a second load mode, wherein the first load is greater than the second load.
- the first load mode the heat exchanger requires a larger number of heat exchange channels, thereby increasing the heat transfer capacity in the larger load mode and achieving better heat exchange effects.
- the second load mode There is no need for more flow paths, thereby obtaining better flow rate and improving heat exchange effect. Therefore, the first control valve 510 , the second control valve 520 and the third control valve 530 need to be controlled according to the load mode of the refrigeration system to achieve the best heat exchange effect.
- the third control valve 530 when the first control valve 510 and the second control valve 520 are both in an open state, that is, a conduction state, the third control valve 530 is in a closed state, that is, a cut-off state.
- the third control valve 530 is in an open state, that is, a conductive state.
- the first control valve 510 may be a one-way valve or a two-way solenoid valve.
- the first control valve 510 When the first control valve 510 is a one-way valve, in order to allow the heat exchanger to have more heat exchange flow paths when it serves as an evaporator, and to have fewer heat exchange flow paths when the heat exchanger serves as a condenser, the first control valve 510 The conduction direction of the valve 510 is the direction of flow from the liquid collecting pipe 100 to the gas collecting pipe 200 .
- the second control valve 520 may be a one-way valve or a two-way solenoid valve.
- the second control valve 520 is a one-way valve, in order to allow the heat exchanger to have more heat exchange flow paths when it serves as an evaporator, and to have fewer heat exchange flow paths when the heat exchanger serves as a condenser, the second control valve 520 is configured as a one-way valve.
- the direction of conduction to the valve is the direction of flow from the liquid collecting pipe 100 to the gas collecting pipe 200 .
- the heat exchanger in this application can realize the effect that the number of heat exchange flow paths of the heat exchanger can be changed by simply adjusting the opening and closing of the first control valve 510, the second control valve 520 and the third control valve 530, thus
- the heat exchanger has a number of heat exchange flow paths corresponding to the load mode under different load modes, so that the heat exchanger can have better heat exchange effects under different modes.
- by adjusting the opening and closing of the fourth control valve 540 the effect of deteriorating the heat transfer coefficient in the evaporation mode can be improved, and by adding the separable module 800, the working fluid flow rate can be further reduced to adapt to the multi-flow path mode. Further improve the heat exchange effect.
- gaseous refrigerant can be extracted during heating to increase the evaporation heat transfer coefficient, thereby improving the heat exchange efficiency of the entire machine.
- the first heat exchange tube group 300 and the second heat exchange tube group 400 in this application can be modularized, so that the number of flow paths can be increased arbitrarily, and the number of flow paths can be increased or decreased arbitrarily. , can be realized without increasing the number of control valves, so that the heat exchanger has many ways to change the heat exchange flow path, simple control, and low cost.
- the step of obtaining the operating mode of the heat exchanger and the load mode of the refrigeration system includes:
- Step S11 Obtain the flow direction of the refrigerant
- Step S12 When the flow direction of the refrigerant is obtained from the liquid collecting pipe 100 to the gas collecting pipe 200, determine that the heat exchanger is in the evaporation mode;
- Step S13 When it is obtained that the flow direction of the refrigerant is from the gas collecting pipe 200 to the liquid collecting pipe 100, it is determined that the heat exchanger is in the condensing mode.
- the flow direction of the refrigerant in the heat exchanger is also different.
- the operating state of the heat exchanger can be indirectly determined, and then the operation status of the heat exchanger can be determined for each operation mode.
- the open or closed state of the control valve acts as a prompt signal, which is simple and convenient, and effectively improves control efficiency.
- the flow direction of the refrigerant is obtained from the liquid collecting pipe 100 to the gas collecting pipe 200, it is determined that the heat exchanger is in the evaporation mode.
- the opening of the fourth control valve 540 On the basis of controlling the opening of the fourth control valve 540, the first control valve 510 and The opening and closing states of the second control valve 520 are the same, and the control of the third control valve 530 is opposite to that of the first control valve 510 .
- the first control valve 510 and the second control valve 520 are controlled to open and close in the same manner, and the third control valve 530 and the first control valve 510 are controlled to have opposite states.
- an air conditioner with both cooling and heating functions usually has a four-way valve, and the four-way valve has different states in the cooling state and the heating state.
- a signal can be sent to the heat exchanger so that the heat exchanger operates in the appropriate operating mode, that is, a signal is sent to the heat exchanger. , so that it is in evaporation mode or condensation mode.
- the opening and closing states of the first control valve 510 and the second control valve 520 are controlled to be the same, and the third control valve 530 and the first control valve are controlled to be in the same opening and closing state.
- the steps to reverse the opening and closing state of the control valve 510 are specifically:
- Step S41 When the load mode is the first load mode, the variable flow path module adopts the full flow path mode, that is, controls the first control valve 510 and the second control valve 520 to conduct, and Control the third control valve 530 to close;
- Step S42 When the load mode is the second load mode, the variable flow path module adopts the half flow path mode, that is, controls the first control valve 510 and the second control valve 520 to close, and controls The third control valve 530 is opened, wherein the first load is greater than the second load.
- the variable flow path adopts the full flow path mode to control the first control valve 510 and the second control valve 520 to open.
- the third control valve 530 is closed, the phase change working fluid can flow in from the liquid collecting pipe 100 and enter the gas-liquid separator 700 after passing through the separable module 800. Part of the evaporated gas will be separated and flow out through the fourth control valve 540.
- the liquid part flows into the first heat exchange tube group 300 through the fifth pipeline 650 and the first control valve 510, and flows into the second heat exchange tube group 400 through the seventh pipeline 670, and passes through the first heat exchange tube group 300.
- the phase change working fluid flowing out flows into the gas collecting pipe 200 through the fourth pipeline 640, and the phase changing working fluid flowing out through the second heat exchange tube group 400 flows into the gas collecting pipe 200 through the sixth pipeline 660 and the second control valve 520.
- the phase change working fluid flows in from the gas collecting pipe 200 and flows into the first heat exchange tube group 300 through the fourth pipeline 640, and then flows into the first heat exchange tube group 300 through the sixth pipeline.
- the pipeline 660 and the second solenoid valve flow into the second heat exchange tube group 400, and the phase change working fluid flowing out of the first heat exchange tube group 300 flows into the gas-liquid separator 700 through the fifth pipeline 650 and the first solenoid valve.
- the phase change working fluid flowing out of the second heat exchange tube group 400 flows into the gas-liquid separator 700 through the seventh pipeline 670 .
- the number of flow paths for the phase change working fluid is the sum of the first heat exchange tube group 300 and the second heat exchange tube group 400, and the number of heat exchange flow paths is larger. , thereby increasing the heat transfer amount under larger load operation mode and achieving better heat transfer effect.
- This arrangement increases the number of heat exchange flow paths to meet the need for increased heat exchange when used as an evaporator, thereby achieving higher heat exchange efficiency.
- the heat exchanger adopts the semi-flow path mode and only opens the first control valve 510 and the second control valve 520 by closing the
- the third control valve 530 allows the first heat exchange tube group 300 and the second heat exchange tube group 400 to be connected in series, thereby reducing the number of flow paths under small load operation, thereby increasing the flow rate of the phase change working fluid, thereby meeting the requirements It meets the need to increase the heat transfer coefficient under smaller load operation conditions and achieve better heat transfer effects.
- the flow path control method of the heat exchanger further includes:
- Step S5 Obtain the target operating frequency Fr of the refrigeration system
- Step S7 According to the judgment result, obtain the initial opening and maintenance time of the electronic expansion valve, and perform initialization control.
- the fourth control valve 540 is an electronic expansion valve
- the electronic expansion valve in order to enhance the heating effect, when the heat exchanger is in evaporation mode, the electronic expansion valve is opened, and the initial opening of the electronic expansion valve is set according to the target operating frequency of the refrigeration system. degree and maintenance time, thereby effectively saving energy and improving the efficiency of gas-liquid separation.
- the target operating frequency is compared with the third preset value c.
- the third preset value is the proportional value of the sum of the maximum operating frequency and the minimum operating frequency of the compressor 2000.
- the range of the proportional coefficient l is 0.45. ⁇ 0.75, for example, select 0.5, 0.6 or 0.7, etc.
- the proportional coefficient is selected to be 0.5, so that the target operating frequency is compared with the third preset value which is half of the sum of Fmax and Fmin, which can maximize
- the degree reflects the load mode of the refrigeration system, so that the opening and maintenance time of the electronic expansion valve can be initialized and controlled more accurately and the heat exchange efficiency can be improved.
- the steps of obtaining the initial opening and maintenance time of the electronic expansion valve based on the judgment result and performing initialization control are specifically:
- Step S71 If Fr ⁇ c, set the initial opening of the electronic expansion valve to the first opening A, and the maintenance time to t1;
- Step S72 If Fr>c, set the initial opening of the electronic expansion valve to the second opening B, and the maintenance time is t2;
- A is smaller than B
- the range of the first opening degree A is 20P ⁇ 100P
- the range of the second opening degree B is 50P ⁇ 150P
- the range of t1 is 2min ⁇ 15min
- the range of t2 is 1min ⁇ 15min.
- the heat exchanger is in the heating mode, and then combined with obtaining the frequency Fr of the compressor 2000, the operating mode of the heat exchanger is further determined. If the target operating frequency of the compressor 2000 Fr ⁇ c, it proves that the target operating frequency of the compressor 2000 is low, so the heat exchanger may be operating at a small load, so the opening of the electronic expansion valve can be set relatively small
- the first opening degree A at this time, the range of A is 20P ⁇ 100P, for example, 30P, 40P, 50P, 60P, 70P, 80P, 90P, etc.
- the preferred opening degree is 50P
- the maintenance time is t1
- the range It is 2min ⁇ 15min, for example, 3min, 4min, 5min, 6min, 8min, 10min, 12min, etc.
- the preferred embodiment sets t1 to 5min, so as to effectively save energy and improve heat exchange efficiency while meeting the small load demand.
- Fr>c it proves that the target operating frequency of the compressor 2000 is high, so the heat exchanger may be in a large load operating state, then the initial opening of the electronic expansion valve is set to the second opening B, B
- the range is 50P ⁇ 150P, for example, 50P, 60P, 70P, 80P, 90P, 100P, 120P, 140P, etc.
- the second opening B is selected to be 80P
- the maintenance time is t2
- the range of t2 is 1 min ⁇ 15min, for example, 2min, 3min, 4min, 5min, 6min, 8min, 10min, 12min, etc.
- t2 is selected as 2min, so as to ensure the heat exchange effect while meeting the large load demand.
- This application also provides a readable storage medium, which stores a flow path control program of the heat exchanger.
- the flow path control program of the heat exchanger is executed by the processor, the flow path of the heat exchanger is realized. The steps of the control method.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Analytical Chemistry (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Pipeline Systems (AREA)
Abstract
一种换热器、换热器的流路控制方法、可读存储介质及空调器。换热器包括集液管(100)、集气管(200)、气液分离器(700)、可分离模块(800)、可变流路模块及第四控制阀(540),气液分离器(700)的气体端(701)通过第一管路(610)连接集气管(200);可分离模块(800)的两端分别通过第二管路(620)和第三管路(630)连接气液分离器(700)的一液体端(702)和集液管(100);可变流路模块中的第一换热管组(300)的两端分别通过第四管路(640)和第五管路(650)连通集气管(200)和另一液体端(703);第二换热管组(400)的两端通过第六管路(660)和第七管路(670)连通集气管(200)和另一液体端(703),第三控制阀(530)的一端连接第一控制阀(510)远离集气管(200)的一端,另一端连接第二控制阀(520)远离另一液体端(703)的一端;第四控制阀(540)设于第一管路(610)上。
Description
本申请要求于2022年4月29日申请的、申请号为202210484240.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及换热器技术领域,特别涉及一种换热器、换热器的流路控制方法、可读存储介质及应用该换热器的空调器。
对于现有热泵空调换热器而言,在制冷、制热、不同的运行频率各种运行状态下换热器的流路都是相同的,而大量研究表明制冷、制热以及不同的频率下室内外换热器的最佳流路是不相同的。当换热器作为冷凝器时其压力损失较小,这时我们需要采用较少的分路数来提高冷媒流速增大换热系数;当换热器作为蒸发器时,机组在中高频运行时与流速对换热系数的影响相比,压力损失产生的对数平均温差减小对换热量的影响占主导因素,这时我们需要采用较多的分路数来提高换热量。如此一来对于同一个换热器就无法做到根据实际运行情况的不同来改变换热器流路。
现有的技术中空调换热器也有蒸发/冷凝模式时改变流路的,但现有的换热器特异性较强,模块化程度低,难以适应换热面积大的大能力空调;流路变化时仅限于增加或减少若干条流路,变化方式少;蒸发过程中仍存在气相制冷剂恶化蒸发传热系数,限制换热器及热泵(热风机、热泵热水器)的性能。
本申请的主要目的是提出一种换热器,旨在改善气相制冷剂恶化传热系数的问题,并可以提升换热效果。
为实现上述目的,本申请提出的换热器包括集液管;
集气管;
气液分离器,所述气液分离器包括两个液体端和一气体端,所述气体端通过第一管路连接所述集气管;
可分离模块,所述可分离模块的一端通过第二管路连接所述气液分离器的一所述液体端,另一端通过第三管路连接所述集液管;
可变流路模块,所述可变流路模块包括:第一换热管组、第二换热管组以及控制阀组件,所述控制阀组件包括第一控制阀、第二控制阀以及第三控制阀;
所述第一换热管组的一端通过第四管路连通所述集气管,另一端通过第五管路连通另一所述液体端;所述第二换热管组的一端通过第六管路连通所述集气管,另一端通过第七管路连通另一所述液体端;
所述第一控制阀设于所述第五管路,所述第二控制阀设于所述第六管路;所述第三控制阀具有相互连通的第一端和第二端,所述第一端连接所述第一控制阀远离所述集气管的一端,所述第二端连接所述第二控制阀远离另一所述液体端的一端;及
第四控制阀,所述第四控制阀设于所述第一管路上。
在一实施例中,所述可分离模块包括两个第一分离流路,两所述第一分离流路并联设置。
在一实施例中,所述可分离模块还包括第二分离流路,两所述第一分离流路并联后与所述第二分离流路串联设置。
在一实施例中,所述可分离模块的单流路流程长度为所述可变流路模块的单流路流程长度的0.15倍~0.55倍。
在一实施例中,所述第一控制阀为第一单向阀,所述第一单向阀的导通方向为由另一所述液体端至所述第一换热管组的方向;
和/或,所述第二控制阀为第二单向阀,所述第二单向阀的导通方向为由所述第二换热管组至所述集气管的方向。
在一实施例中,所述第一换热管组和所述第二换热管组均设有至少两个,至少两个所述第一换热管组并联设置,至少两个所述第二换热管组并联设置;
所述第三控制阀设有一个,每一所述第一换热管组靠近所述集液管的一端均与所述第一端连通;每一所述第二换热管组靠近所述集气管的一端均与所述第二端连通。
在一实施例中,所述第四控制阀为第三单向阀,所述第三单向阀的导通方向为由所述气体端至所述集气管的方向;
或,所述第四控制阀为电子膨胀阀或毛细管。
本申请还提出一种基于上述的换热器的流路控制方法,所述换热器应用于制冷系统中,该流路控制方法包括:
获取所述换热器的运行模式和所述制冷系统的负荷模式;
当所述运行模式为蒸发模式时,控制所述第四控制阀导通;
当所述运行模式为冷凝模式时,控制所述第四控制阀关闭;
根据获取的所述负荷模式,控制所述第一控制阀与所述第二控制阀的启闭状态相同,且控制所述第三控制阀与所述第一控制阀的启闭状态相反。
在一实施例中,所述获取所述换热器的运行模式和所述制冷系统的负荷模式的步骤包括:
获取冷媒的流动方向;
当获取到冷媒的流动方向为由所述集液管至所述集气管的方向流动时,判定所述换热器为蒸发模式;
当获取到冷媒的流动方向为由所述集气管至所述集液管的方向流动时,判定所述换热器为冷凝模式。
在一实施例中,根据获取的所述负荷模式,控制所述第一控制阀与所述第二控制阀的启闭状态相同,且控制所述第三控制阀与所述第一控制阀的启闭状态相反的步骤具体为:
当所述负荷模式为第一负荷模式时,所述可变流路模块采用全流路模式,即,控制所述第一控制阀和所述第二控制阀导通,并控制所述第三控制阀关闭;
当所述负荷模式为第二负荷模式时,所述可变流路模块采用半流路模式,即,控制所述第一控制阀和所述第二控制阀关闭,并控制所述第三控制阀开启,其中,所述第一负荷大于所述第二负荷。
在一实施例中,当所述第四控制阀为电子膨胀阀时,所述换热器的流路控制方法还包括:
获取所述制冷系统的目标运行频率Fr;
判断所述目标运行频率Fr与第三预设值c的大小,其中,c=l*(Fmax+Fmin),l的范围为0.45~0.75,Fmax为压缩机的最大运行频率,Fmin为压缩机的最小运行频率;
根据所述判断结果,获取所述电子膨胀阀的初始开度和维持时间,进行初始化控制。
在一实施例中,所述根据所述判断结果,获取所述电子膨胀阀的初始开度和维持时间,进行初始化控制的步骤具体为:
若Fr≤c,则设定所述电子膨胀阀的初始开度为第一开度A,维持时间为t1;
若Fr>c,则设定所述电子膨胀阀的初始开度为第二开度B,维持时间为t2;
其中A小于B,所述第一开度A的范围为20P~100P,所述第二开度B的范围为50P~150P;t1的范围为2min~15min,t2的范围为1min~15min。
本申请还提出一种可读存储介质,所述可读存储介质上存储有换热器的流路控制程序,所述换热器的流路控制程序被处理器执行时实现上述的换热器的流路控制方法的步骤。
本申请还提出一种空调器,包括上述任一的换热器。
在一实施例中,所述空调器包括室外机,所述换热器设于所述室外机内。
本申请技术方案在换热器用作蒸发器时,液态的相变工质从集液管进入;首先通过可分离模块进行初步蒸发,然后经液体端进入气液分离器进行气液分离,分离出的气体经过气体端进入第一管路,并经过第四控制阀后可进入集气管内;液体部分则经另一液体端进入可变流路模块,如此,能够在初步换热后,能够及时将气体部分分离出去,使得后续的液体部分换热系数更高,有效强化换热器的制热效果。而进入可变流路模块后分为两路,通过导通第一控制阀,则可沿第五管路和第七管路分别流向第一换热管组和第二换热管组,且经过第一换热管组换热后形成气态的相变工质流向第四管路,经过第二换热管组换热后形成气态的相变工质流向第六管路,通过导通第二控制阀,则相变工质能够从第三管路和第四管路均流出,并共同汇合至集气管内。此状态下相变工质的流路的数量为第一换热管组与第二换热管组的总和,即流路数量较多,从而提高了在蒸发模式下的换热量,进一步实现了较佳的换热效果。在换热器用作冷凝器时,气态的相变工质从集气管进入;通过导通第三控制阀而截止第一控制阀和第二控制阀,则第一换热管组与第二换热管组串联,从集气管流出的相变工质经第一换热管组和第二换热管组换热后流向集液管,从而在冷凝模式下减少了流路数量,提高了相变工质的流速,进而增大了换热系数,同样实现了较佳的换热效果。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请换热器一实施例中作为蒸发器时的结构示意图;
图2为图1所示换热器作为冷凝器时的结构示意图;
图3为图1所示换热器于空调器中作为蒸发器时的流路示意图;
图4为图1所示换热器于空调器中作为冷凝器时的流路示意图;
图5为本申请换热器另一实施例的结构示意图;
图6为本申请换热器又一实施例的结构示意图。
附图标号说明:
标号 | 名称 | 标号 | 名称 |
100 | 集液管 | 650 | 第五管路 |
200 | 集气管 | 660 | 第六管路 |
300 | 第一换热管组 | 670 | 第七管路 |
400 | 第二换热管组 | 700 | 气液分离器 |
510 | 第一控制阀 | 701 | 气体端 |
520 | 第二控制阀 | 702,703 | 液体端 |
530 | 第三控制阀 | 800 | 可分离模块 |
540 | 第四控制阀 | 801 | 第一分离流路 |
610 | 第一管路 | 802 | 第二分离流路 |
620 | 第二管路 | 900 | 常用换热管组 |
630 | 第三管路 | 2000 | 压缩机 |
640 | 第四管路 |
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种换热器。
在本申请实施例中,如图1和图2所示,该换热器包括集液管100、集气管200、气液分离器700、可分离模块800、可变流路模块及第四控制阀540,所述气液分离器700包括两个液体端(702,703)和一气体端701,所述气体端701通过第一管路610连接所述集气管200;
所述可分离模块800的一端通过第二管路620连接所述气液分离器700的一所述液体端702,另一端通过第三管路630连接所述集液管100;
所述可变流路模块包括:第一换热管组300、第二换热管组400以及控制阀组件,所述控制阀组件包括第一控制阀510、第二控制阀520以及第三控制阀530;所述第一换热管组300的一端通过第四管路640连通所述集气管200,另一端通过第五管路650连通另一所述液体端703;所述第二换热管组400的一端通过第六管路660连通所述集气管200,另一端通过第七管路670连通另一所述液体端703;所述第一控制阀510设于所述第五管路650,所述第二控制阀520设于所述第六管路660;所述第三控制阀530具有相互连通的第一端和第二端,所述第一端连接所述第一控制阀510远离所述集气管200的一端,所述第二端连接所述第二控制阀520远离另一所述液体端703的一端;所述第四控制阀540设于所述第一管路610上。
请结合图3和图4,需要说明的是,本申请技术方案中的换热器的相变工质的流向既可从集液管100向集气管200的方向流动,也可从集气管200至集液管100的方向流动,因此本申请技术方案中的换热器可适应于能够具有制冷功能和制热功能的空调器,例如当空调器处于制热模式时,其在空调器中的室外机内用作蒸发器;或者当空调器处于制冷模式时,其在空调器的室外机内用作冷凝器。当然,换热器也可以应用在热泵系统或其他进行制冷或制热的系统中,例如商用、车载、钻探行业的制冷/热泵装置。
对于圆管内制冷剂蒸发过程,制冷剂的流型随其干度的增大依次为单液相流、泡状流、弹状流、环状流、雾状流和单气相流;在泡状流、弹状流和环状流区域,随制冷剂干度增加,由于制冷剂管内平均流速的增加,管内表面传热系数增大;而在雾状流区域,由于制冷剂干度过大,管内表面液膜被破坏,导致传热恶化,传热系数急剧下降,这极大影响了蒸发器的换热性能。应用气体旁通蒸发技术可有效减小雾状流区域的面积,从而增大换热器有效换热面积。在本申请技术方案中,采用相分离蒸发器技术可降低制冷剂的平均流速,进而降低制冷剂侧阻力损失,提升换热器的综合性能。故换热器在处于蒸发模式时,能够通过可分离模块800先蒸发一部分相变工质,然后在换热效率恶化位置通过气液分离器700将换热后的气相工质进行分离,剩余的液态工质继续蒸发,从而改善气相制冷剂恶化蒸发传热系数问题,提高换热效果和换热效率。也即,制热时可以抽取气态冷媒,提高蒸发换热系数,从而提高整机换热效率。同时,换热器在处于不同运行状态时,能够实现不同数量的流路的切换效果。可以理解的是,当换热器作为蒸发器时,与流速对换热系数的影响相比,压力损失产生的对数平均温差减小对换热量的影响占主导因素,此时我们希望采用较多的流路提高换热量。
具体地,在换热器作为蒸发器时,通过将第一控制阀510和第二控制阀520均导通,第三控制阀530截止,第四控制阀540也导通,且第一换热管组300的两端分别通过第四管路640和第五管路650连通集气管200和气液分离器700,第二换热管组400的两端分别通过第六管路660和第七管路670连通集气管200和气液分离器700,则从集液管100进入的相变工质会首先经过可分离模块800,经过初步的蒸发换热后进入气液分离器700中,气态工质会从气体端701流向集气管200,剩余的液体工质则分为两路进行流动,其中一路会依次流过第五管路650(包括流过第一控制阀510)、第一换热管组300;另外一路会流过第七管路670及第二换热管组400。接着,通过在第一换热管组300和第二换热管组400内同时换热后形成气态,并分别经第四管路640和第六管路660共同汇入至集气管200。因此,当换热器用作蒸发器时,可以及时分离出换热后的气态工质,减少恶化液体工质的换热性能。同时定义第一换热管组300和第二换热管组400的数量分别为A和B时,则相变工质在可变流路模块内可同时流过(A+B)条流路。
当换热器作为冷凝器时,相变工质的流速对换热量的影响占主导因素,此时我们希望采用较少的流路来增大换热系数。具体地,通过将第一控制阀510和第二控制阀520截止,并将第四控制阀540也截止,则从集气管200内进入的高温高压的气态的相变工质仅会通过第四管路640流进第一换热管组300内进行换热,以使相变工质冷凝成液态。接着,由于与第一换热管组300连通的第五管路650上的第一控制阀510处于截止状态,因此,相变工质不会从第五管路650流向气液分离器700内;但是通过将第三控制阀530导通,则通过第一换热管组300换热后的相变工质会进入第二换热管组400再次进行换热成更多的液态相变工质,然后从第二换热管组400流向第七管路670,并由第七管路670流向气液分离器700。因此,当换热器作为冷凝器时,定义第一换热管组300和第二换热管组400的数量分别为A和B时,相变工质的可首先同时流过A条主换热流路,然后同时流过B条过冷流路。可以理解的是,第一换热管组300与第二换热管组400的数量可相同,当第一换热管组300与第二换热管组400的数量相同时,本申请技术方案中的换热器在用作蒸发器时的换热流路数量为换热器在用作冷凝器时的换热流路数量的2倍。
本申请技术方案仅通过在换热器中添加三个控制阀,即可实现在不同运行模式下具有不同数量流路的供相变工质流通,并且通过对这三个阀的导通与截止的控制,可实现在换热器作为蒸发器时的运行状态下具有较多流路,从而提高换热量,改善了蒸发状态时的换热效果,并通过可分离模块800和气液分离器700的设置,进一步改善气态工质恶化液体工质的蒸发换热系数问题,提高换热效率;而在换热器作为冷凝器时的运行状态下具有较少流路的效果,从而提高相变工质的流速,改善了冷凝状态时的换热效果。如此,则使得该换热器能够适应不同的运行状态,且在不同运行状态下均具有较好的换热效果。
另外,本申请技术方案中的换热器中的第一换热管组300和第二换热管组400均可模块化,能适应换热面积大的大能力空调,也可适应换热面积小的小能力空调,或者侧重于除湿等空调等。即当需要在换热面积大的大负荷模式下,可仅通过并联增加其中的第一换热管组300和/或第二换热管组400的数量,而不用另外增加其他控制阀组即可实现在不同的运行模式下具有不同的换热流路的效果,因此,本申请技术方案中的换热器可模块化,通用性较强,控制简单,成本低,可适应于各种不同的运行状态,并且可灵活增加第一换热管组300和/或第二换热管组400的数量。
本申请技术方案在换热器用作蒸发器时,液态的相变工质从集液管100进入;首先通过可分离模块800进行初步蒸发,然后经液体端702进入气液分离器700进行气液分离,分离出的气体经过气体端701进入第一管路610,并经过第四控制阀540后可进入集气管200内;液体部分则经另一液体端703进入可变流路模块,如此,能够在初步换热后,能够及时将气体部分分离出去,使得后续的液体部分换热系数更高,有效强化换热器的制热效果。而进入可变流路模块后分为两路,通过导通第一控制阀510,则可沿第五管路650和第七管路670分别流向第一换热管组300和第二换热管组400,且经过第一换热管组300换热后形成气态的相变工质流向第四管路640,经过第二换热管组400换热后形成气态的相变工质流向第六管路660,通过导通第二控制阀520,则相变工质能够从第三管路630和第四管路640均流出,并共同汇合至集气管200内。此状态下相变工质的流路的数量为第一换热管组300与第二换热管组400的总和,即流路数量较多,从而提高了在蒸发模式下的换热量,进一步实现了较佳的换热效果。在换热器用作冷凝器时,气态的相变工质从集气管200进入;通过导通第三控制阀530而截止第一控制阀510和第二控制阀520,则第一换热管组300与第二换热管组400串联,从集气管200流出的相变工质经第一换热管组300和第二换热管组400换热后流向集液管100,从而在冷凝模式下减少了流路数量,提高了相变工质的流速,进而增大了换热系数,同样实现了较佳的换热效果。
请继续参照图1和图2,所述可分离模块800包括两个第一分离流路801,两所述第一分离流路801并联设置。
在一实施例中,采用相分离蒸发器技术可降低制冷剂在管内的平均流速,进而降低制冷剂侧阻力损失;提升换热器综合性能。具体地,通过在集液管100远离第一换热管组300和第二换热管组400的一端设置可分离模块800,可分离模块800包括两个并联的第一分离流路801,当在换热器作为蒸发器时,通过增加流路而降低工质流速,经过两个第一分离流路801后相变工质进入气液分离器700,使得蒸发后的部分气体可以分离出从第四控制阀540进入集气管200内,其余的液体部分继续进入可变流路模块内进行继续蒸发。当换热器用作冷凝器时,可使得相变工质在经第一换热管组300和第二换热管组400换热后还可经过两第一分离流路801再进行换热后,进行再冷处理,能够进一步提高换热能效。
当然,于其他实施例中,也可以设置两个以上的第一分离流路801进行并联设置。
在一实施例中,所述可分离模块800还包括第二分离流路802,两所述第一分离流路801并联后与所述第二分离流路802串联设置。
为了进一步提升换热效能,相变工质在经过两个第一分离流路801后,继续经过第二分离流路802进行换热,即进行过冷处理,再集中进入集液管100内,能够进一步提高换热能效,提高换热效果,并使得相变工质得到充分的换热,提高换热效率。
在一实施例中,所述可分离模块800的单流路流程长度为所述可变流路模块的单流路流程长度的0.15倍~0.55倍。
在一实施例中,可分离模块800作为改善气相工质恶化位置处的换热系数的模块,其单流流路的长度不宜过大,不能超过作为主要换热功能的可变流路模块的单流路长度。当然,其单流流路的长度也不宜过小,否则不能起到降低流速和改善换热系数的作用,因此,可分离模块800的单流路流程长度为可变流路模块的单流路流程长度的0.15倍~0.55倍,例如,0.15倍、0.2倍、0.3倍、0.4倍或0.5倍等,能够与可变流路模块配合,实现更好的换热效果。此处,在一实施例中可分离模块800的单流路流程长度为可变流路模块的单流路流程长度的0.5倍。
当然,基于上述理由,可分离模块800的流路数量也不宜过大,可分离模块800的总流路数小于可变流路模块的最大流路数,例如,可分离模块800包括两个第一分离流路801,小于可变流路模块设置两个第一换热管组300和两个第二换热管组400时,最大流路数为4个。
请再次参照图1和图2,在一实施例中,所述第一控制阀510为第一单向阀,所述第一单向阀的导通方向为由另一所述液体端703至所述第一换热管组300的方向;
和/或,所述第二控制阀520为第二单向阀,所述第二单向阀的导通方向为由所述第二换热管组400至所述集气管200的方向。
可以理解的是,单向阀仅能在一个流路方向上进行导通,而在与该方向相反的另一方向上无法导通,从而通过将第一控制阀510设为单向阀,则可免去设置其他控制单元控制第一控制阀510的开闭的程序。具体地,第一单向阀的导通方向限定为使得相变工质从气液分离器700流向第一换热管组300的方向,而不能使得相变工质从第一换热管组300流向气液分离器700。同样地,第二单向阀的导通方向也限定为使得相变工质从第二换热管组400流向集气管200,而不能使得相变工质从集气管200流向第二换热管组400。
以下仍以第一控制阀510设于第五管路650,第二控制阀520设于第六管路660为例,如此设置,则可实现在换热器用作蒸发器时,设置在第五管路650上的第一单向阀允许相变工质在第五管路650上流动,设置在第六管路660上的第二单向阀也允许相变工质在第六管路660上流动,从而使得相变工质至少能够具有从气液分离器700流出并依次经过第五管路650、第一换热管组300、第四管路640至集气管200的流路,以及从集液管100流出并依次经过第七管路670、第二换热管组400、第六管路660至集气管200的流路。
当换热器用作冷凝器时,具有相变工质从集气管200流出,并经过第四管路640、第一换热管组300、第三控制阀530进入第二换热管组400。可以理解的是,当相变工质从第一换热管组300换热后,其相变工质流出后的压力低于其进入第一换热管组300时的压力,因此也低于第二单向阀靠近集气管200的一端的压力,因此第二单向阀经过第三控制阀530后即使进入到第二换热管组400靠近集气管200的一端,但并不会通过第二单向阀回流至集气管200中,而是继续通过第二换热管组400换热并进入到第七管路670,继而进入气液分离器700内。
当然,在其他实施例中,第一控制阀510和/或第二控制阀520也可选用电磁阀。当第一控制阀510和/或第二控制阀520选用电磁阀时,则在换热器作为蒸发器时可控制第一控制阀510和第二控制阀520处于开启状态,在换热器作为冷凝器时,可控制第一控制阀510和第二控制阀520处于关闭状态。
当第一控制阀510设于第四管路640,第二控制阀520设于第七管路670时,由于第三控制阀530的第一端连接第一控制阀510远离气液分离器700的一端,第二端连接第二控制阀520远离集气管200的一端,则在换热器用作冷凝器时,从集气管200流出的相变工质会经第六管路660流向第二换热管组400,经第二换热管组400换热后,通过第三控制阀530进入第一换热管组300继续换热,然后再经第七管路670流入气液分离器700内。
此处,第三控制阀530为电磁阀,则本实施例中的第三控制阀530530限定为仅在换热器用作冷凝器时开启,而在换热器用作蒸发器时不开启。当第一控制阀510设于第四管路640,第二控制阀520设于第六管路660时,由于第三控制阀530的第一端连接第一控制阀510远离气液分离器700的一端,第二端连接第二控制阀520远离集气管200的一端,则在换热器用作冷凝器时,从集气管200流出的相变工质会经第四管路640流向第一换热管组300,经第一换热管组300换热后,通过第三控制阀530进入第二换热管组400继续换热,然后再经第七管路670流入气液分离器700内。
在一实施例中,所述第一换热管组300和所述第二换热管组400均设有至少两个,至少两个所述第一换热管组300并联设置,至少两个所述第二换热管组400并联设置;
所述第三控制阀530设有一个,每一所述第一换热管组300靠近所述集液管100的一端均与所述第一端连通;每一所述第二换热管组400靠近所述集气管200的一端均与所述第二端连通。
通过设置至少两个第一换热管组300,至少两个第一换热管组300并联设置,则可增加换热器用作蒸发器时的流路数量,也可增加换热器用作冷凝器时的流路路程。可以理解的是,第一换热管组300的数量与第二换热管组400的数量可相同,也可不同。当第一换热管组300和第二换热管组400数量相同且均设有N个时,换热器用作蒸发器时的流路数量为2N条,换热器用作冷凝器时的流路数量为N条。其中,N为整数,例如可以为1、2、3、4或5等。此时,可分离模块800包括两个第一分离流路801,小于可变流路模块的最大流路数。
通过设置一个第三控制阀530,则该仅需控制该一个第三控制阀530的启闭,即可控制第一换热管组300与第二换热管组400的串联和并联运行,简单方便,减少了控制程序的设置。具体地,当控制该第三控制阀530开启时,可控制所有并联设置的第一换热管组300组成的模组与所有并联设置的第二换热管组400组成的模组串联连接在一起,从而减少了相变工质的流路数量,可用于换热器作为冷凝器时的连接状态。当控制该第三控制阀530关闭时,可控制所有的第一换热管组300与所有的第二换热管组400并联连接在一起,从而增多了相变工质的流路数量,可用于换热器作为蒸发器时的连接状态。
当然,于其他实施例中,第三控制阀530也可设有至少两个,每一第三控制阀530连接于一第一换热管组300与一第二换热管组400之间,并于换热器用作冷凝器时,将第一换热管组300与第二换热管组400串联。则每一第三控制阀530控制一组第一换热管组300和第二换热管组400组合成的模块,从而使得整个换热器的流路条数的控制更加灵活,也使得相变工质在第一换热管组300流向第二换热管组400(或者第二换热管组400流向第一换热管组300)时的路径较短,并且还能避免当其中一个第三控制阀530损坏时,整个换热器无法工作的情况。
请结合图3至图5,在一实施例中,所述第四控制阀540为第三单向阀,所述第三单向阀的导通方向为由所述气体端701至所述集气管200的方向;
或,所述第四控制阀540为电子膨胀阀或毛细管。
结合图3,第四控制阀540为第三单向阀,导通方向仅能在一个流路方向上进行导通,而在与该方向相反的另一方向上无法导通,从而通过将第四控制阀540设为单向阀,则可免去设置其他控制单元控制第四控制阀540的开闭的程序。当换热器作为蒸发器时,第三单向阀可以导通,使得气液分离器700中的气体可以通过第三单向阀和第一管路610进入集气管200内。当然换热器作为冷凝器时,则该第三单向阀不导通,此时,第二控制阀520也不导通,由集气管200进入的相变工质只能流向第四管路640进入第一换热管组300内,而且当相变工质经过可变流路模块后进入气液分离器700时,此时由于第三单向阀靠近气液分离器700的一端的压力小于其靠近集气管200的一端,因此,气液分离器700并不工作,从而均从下端的液体端702进入可分离模块800,再进行再冷或过冷处理,进一步提升换热效果。
请参照图5,于其他实施例中,第四控制阀540也可以是电子膨胀阀或毛细管,该电子膨胀阀在换热器作为蒸发器时导通,并调到合适的开度,从而使得从气液分离器700分离出的气相工质能够通过电子膨胀阀进行适当降压后进入到集气管200内,再回到压缩机2000内进行吸气。而在换热器作为冷凝器时,将电子膨胀阀的开度设为零,也即,集气管200不会通过第一管路610进入气液分离器700,而是通过可变流路模块进行换热,再流向气液分离器700,此时相变工质经换热后压力减小,小于集气管200出来的工质压力,故而无法通过电子膨胀阀,直接进行再冷或过冷处理进入集液管100。
进一步地,如图6所示,基于第一控制阀510设于第五管路650,第二控制阀520设于第六管路660的方案,换热器还包括常用换热管组900,常用换热管组900一端连接第四管路640,另一端连接第七管路670。
通过将常用换热管组900的一端连接第四管路640,另一端连接第七管路670,则使得该常用换热管组900处于常流通的状态,该常用换热管组900不受第一控制阀510、第二控制阀520等的开关影响。也就是说,无论第一控制阀510和/或第二控制阀520处于开启状态还是关闭状态,该常用换热管组900均能供相变工质流通,且使得相变工质能够从流入管向流出管的方向流动。
当然,在另一实施例中,当第一控制阀510设于第七管路670,第二控制阀520设于第四管路640的方案,常用换热管组900一端连接第六管路660,另一端连接第五管路650。
可以理解的是,常用换热管组900可设有一个、两个或者多个。定义常用换热管组900设置的数量为M,第一换热管组300、第二换热管组400的数量均为N时,则在换热器作为蒸发器时,相变工质流过的换热流路的条数为(2N+M);在换热器作为冷凝器时,相变工质流过的换热流路的条数为(N+M)。其中,N和M的值可以相同,也可以不同,且N和M均为整数,N和M的取值可以为1、2、3、4或5等。
在一实施例中,第一换热管组300为双排换热管组或者单排换热管组;和/或,第二换热管组400为双排换热管组或者单排换热管组。无论第一换热管组300为双排换热管还是单排换热管,其均具有两个相互连通的口,其均为一条供相变工质从其中一个口进入,并从另一个口流出的管路。可以理解的是,当第一换热管组300为双排换热管时,其可通过且两个单排换热管组并列设置且两个单片换热管组中的其中一个的出口与其中之另一个的进口通过中间管路连接。当然第二换热管组400的类型可与第一换热管组300的类型相同,也可不同,第二换热管组400也可为双排换热管组或者单排换热管组。
本申请还提出一种空调器,该空调器包括换热器,该换热器的具体结构参照上述实施例,由于本空调器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
进一步地,空调器可以为分体式空调器,即包括室内机和室外机,室内机和室外机通过冷媒管连接。具体地,室内机内设有第一换热模块,室外机内设有第二换热模块,第一换热模块、第二换热模块及压缩机2000通过冷媒管连接形成循环回路。本申请技术方案中的换热器可设于室内机内,即作为第一换热模块;或者本申请技术方案中的换热器也可设于室外机内,即作为第二换热模块。
本申请还提出一种基于上述的换热器的流路控制方法,本申请换热器的具体实施方式可以参照上述换热器的各实施例,在此不再赘述。所述换热器应用于制冷系统中,该流路控制方法包括:
步骤S1:获取所述换热器的运行模式和所述制冷系统的负荷模式;
步骤S2:当所述运行模式为蒸发模式时,控制所述第四控制阀540导通;
步骤S3:当所述运行模式为冷凝模式时,控制所述第四控制阀540关闭;
步骤S4:根据获取的所述负荷模式,控制所述第一控制阀510与所述第二控制阀520的启闭状态相同,且控制所述第三控制阀530与所述第一控制阀510的启闭状态相反。
由于第四控制阀540管控气液分离器700中的气体流通状态,当换热器为蒸发模式时,需要及时的进行气液分离,故而,将第四控制阀540导通,使得气相工质通过第四控制阀540进入集气管200内。而当换热器为冷凝模式时,不需要气体首先进入气液分离器700,故而第四控制阀540关闭,从而使得相变工质能够通过可变流路模块进行换热冷凝。因此,需要获取换热器的运行模式进行第四控制阀540的控制,进而提升换热系数。
可以理解的是,无论换热器作为蒸发器还是冷凝器,均具有第一负荷模式和第二负荷模式,其中第一负荷大于第二负荷。换热器在第一负荷模式下,需要换热流路数量较多,从而提高了在较大负荷模式下的换热量,实现了较佳的换热效果,在第二负荷模式下,则不需要较多流路数,从而获取更好的流速,提高换热效果。因此,需要根据制冷系统的负荷模式进行第一控制阀510、第二控制阀520和第三控制阀530的控制,从而实现最佳的换热效果。
具体地,当第一控制阀510与第二控制阀520同处于开启状态,即导通状态时,则第三控制阀530处于关闭的状态,即截止的状态。当第一控制阀510与第二控制阀520同处于关闭状态,即截止状态时,则第三控制阀530处于开启的状态,即导通的状态。其中,第一控制阀510可以为单向阀或者双向电磁阀。当第一控制阀510为单向阀时,为了使得换热器作为蒸发器时具有较多条换热流路,而换热器作为冷凝器时具有较少条换热流路,第一控制阀510的导通方向为由集液管100向集气管200流动时的方向。同样地,第二控制阀520可以为单向阀或者双向电磁阀。当第二控制阀520为单向阀时,为了使得换热器作为蒸发器时具有较多条换热流路,而换热器作为冷凝器时具有较少条换热流路,第二单向阀的导通方向为由集液管100向集气管200流动时的方向。
本申请中的换热器仅通过调整第一控制阀510、第二控制阀520及第三控制阀530的启闭,即可实现换热器的换热流路条数可变化的效果,从而使得换热器在不同负荷模式下具有与其负荷模式相对应条数的换热流路,以使换热器在不同模式下均能具有较好的换热效果。且,通过调整第四控制阀540的启闭,即可改善蒸发模式下的换热系数恶化的效果,并通过可分离模块800的增加,能够进一步降低工质流速,从而配合多流路的模式进一步提升换热效果。也即,制热时可以抽取气态冷媒,提高蒸发换热系数,从而提高整机换热效率。另外,本申请中的第一换热管组300和第二换热管组400可模块化,从而可任意增加流路条数,并且在任意增大流路条数和减少流路条数时,无需增加控制阀的数量即可实现,从而使得该换热器的换热流路变化方式较多,控制简单,成本低。
在一实施例中,所述获取所述换热器的运行模式和所述制冷系统的负荷模式的步骤包括:
步骤S11:获取冷媒的流动方向;
步骤S12:当获取到冷媒的流动方向为由所述集液管100至所述集气管200的方向流动时,判定所述换热器为蒸发模式;
步骤S13:当获取到冷媒的流动方向为由所述集气管200至所述集液管100的方向流动时,判定所述换热器为冷凝模式。
可以理解的,在换热器应用于不同的运行模式时,换热器内的冷媒的流向也不同,通过获取冷媒的流动方向,可以间接判定换热器所处的运行状态,进而可以为各控制阀的开启或关闭状态起到提示信号的效果,简单方便,有效提升控制效率。当获取到冷媒的流动方向为由集液管100至集气管200的方向流动时,判定换热器为蒸发模式,在控制第四控制阀540开启的基础上,可控制第一控制阀510和第二控制阀520启闭状态相同、且控制第三控制阀530与第一控制阀510相反。
当获取到冷媒的流动方向为由所述集气管200至所述集液管100的方向流动时,判定换热器作为冷凝器运行模式时,在控制第四控制阀540关闭的基础上,可控制第一控制阀510和第二控制阀520启闭相同、且控制第三控制阀530与第一控制阀510状态相反。
于其他实施例中,在同时具有制冷和制热的空调器中,通常具有四通阀,在制冷状态和制热状态时,四通阀分别具有不同的状态。通过监测四通阀的状态,可以判定该空调器处于制冷模式还是制热模式,进而可以向换热器发送信号,以使得换热器对应运行相适应的运行模式,即向换热器发送信号,以使其处于蒸发模式或者冷凝模式。
在一实施例中,根据获取的所述负荷模式,控制所述第一控制阀510与所述第二控制阀520的启闭状态相同,且控制所述第三控制阀530与所述第一控制阀510的启闭状态相反的步骤具体为:
步骤S41:当所述负荷模式为第一负荷模式时,所述可变流路模块采用全流路模式,即,控制所述第一控制阀510和所述第二控制阀520导通,并控制所述第三控制阀530关闭;
步骤S42:当所述负荷模式为第二负荷模式时,所述可变流路模块采用半流路模式,即,控制所述第一控制阀510和所述第二控制阀520关闭,并控制所述第三控制阀530开启,其中,所述第一负荷大于所述第二负荷。
请结合图3,当换热器作为蒸发器时,且换热器处于第一负荷模式时,可变流路采用全流路模式,控制第一控制阀510和第二控制阀520开启,控制第三控制阀530关闭,则相变工质可由集液管100流入,并经过可分离模块800后进入气液分离器700中,将蒸发后的部分气体进行分离并经过第四控制阀540流出,液体部分一路经第五管路650和第一控制阀510流入第一换热管组300,另一路经第七管路670流入第二换热管组400,经第一换热管组300流出的相变工质经第四管路640流入集气管200内,经第二换热管组400流出的相变工质经第六管路660和第二控制阀520流入集气管200内。
当换热器作为冷凝器时,且换热器处于第一负荷模式时,相变工质由集气管200流入,并分别经第四管路640流入第一换热管组300,经第六管路660、第二电磁阀流入第二换热管组400,经第一换热管组300流出的相变工质经第五管路650和第一电磁阀流入气液分离器700内,经第二换热管组400流出的相变工质经第七管路670流入气液分离器700内。综上,只要换热器在第一负荷模式下,相变工质的流路的数量则为第一换热管组300与第二换热管组400的总和,换热流路数量较多,从而提高了在较大负荷运行模式下的换热量,实现了较佳的换热效果。如此设置,从而使得换热流路条数增多,以满足其作为蒸发器时可增大换热量的需求,从而具有较高的换热效率。
请结合图4,无论是蒸发模式还是冷凝模式,当换热器在第二负荷模式时,换热器采用半流路模式,通过关闭第一控制阀510和第二控制阀520,而仅开启第三控制阀530,则第一换热管组300与第二换热管组400串联,从而在小负荷运行状态下能够减少流路条数,从而提高了相变工质的流速,进而满足了在较小负荷运行状态下能增大换热系数的需求,实现较佳的换热效果。
在一实施例中,当所述第四控制阀540为电子膨胀阀时,所述换热器的流路控制方法还包括:
步骤S5:获取所述制冷系统的目标运行频率Fr;
步骤S6:判断所述目标运行频率Fr与第三预设值c的大小,其中,c=l*(Fmax+Fmin),l的范围为0.45~0.75,Fmax为压缩机2000允许的最大运行频率,Fmin为压缩机2000允许的最小运行频率;
步骤S7:根据所述判断结果,获取所述电子膨胀阀的初始开度和维持时间,进行初始化控制。
第四控制阀540为电子膨胀阀时,为了强化制热效果,故而在换热器为蒸发模式时,将电子膨胀阀打开,且根据制冷系统的目标运行频率从而去设置电子膨胀阀的初始开度和维持时间,从而能够有效节能,并提升气液分离的效率。
具体地,将目标运行频率与第三预设值c进行比较,此处,第三预设值为压缩机2000的最大运行频率与最小运行频率之和的比例值,比例系数l的范围为0.45~0.75,例如,选择0.5、0.6或0.7等,优选的实施例中,选择该比例系数为0.5,从而使得目标运行频率与第三预设值为Fmax与Fmin之和的一半进行比较,能够最大程度体现出制冷系统的负荷模式,从而进行对电子膨胀阀的开度和维持时间进行初始化控制,能够更加准确,提高换热效率。
在一实施例中,所述根据所述判断结果,获取所述电子膨胀阀的初始开度和维持时间,进行初始化控制的步骤具体为:
步骤S71:若Fr≤c,则设定所述电子膨胀阀的初始开度为第一开度A,维持时间为t1;
步骤S72:若Fr>c,则设定所述电子膨胀阀的初始开度为第二开度B,维持时间为t2;
其中,A小于B,所述第一开度A的范围为20P~100P,所述第二开度B的范围为50P~150P;t1的范围为2min~15min,t2的范围为1min~15min。
具体地,换热器处于制热模式,再结合获取压缩机2000的频率Fr,进一步判断换热器的运行模式。若压缩机2000的目标运行频率Fr≤c时,则证明压缩机2000目标运行频率较低,从而换热器可能处于小负荷的运行状态,因此可以将电子膨胀阀的开度设定相对较小的第一开度A,此时,A的范围为20P~100P,例如,30P、40P、50P、60P、70P、80P、90P等,优选的为开度为50P,维持的时间为t1,范围为2min~15min,例如,3min、4min、5min、6min、8min、10min、12min等,优选的实施例设置t1为5min,从而能够满足小负荷需求的前提下,有效节能,提高换热效率。而当若Fr>c,证明压缩机2000目标运行频率较高,从而换热器可能处于大负荷的运行状态,则设定所述电子膨胀阀的初始开度为第二开度B,B的范围为50P~150P,例如,50P、60P、70P、80P、90P、100P、120P、140P等,优选的实施例中,选择第二开度B为80P,维持时间为t2,t2的范围为1min~15min,例如,2min、3min、4min、5min、6min、8min、10min、12min等,优选的,t2选择为2min,从而在满足大负荷需求的前提下,保证换热效果。
本申请还提供一种可读存储介质,该可读存储介质上存储有换热器的流路控制程序,换热器的流路控制程序被处理器执行时实现上述的换热器的流路控制方法的步骤。
本申请可读存储介质具体实施方式可以参照上述换热器的流路控制方法各实施例,在此不再赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。
Claims (15)
- 一种换热器,其中,包括:集液管;集气管;气液分离器,所述气液分离器包括两个液体端和一气体端,所述气体端通过第一管路连接所述集气管;可分离模块,所述可分离模块的一端通过第二管路连接所述气液分离器的一所述液体端,另一端通过第三管路连接所述集液管;可变流路模块,所述可变流路模块包括:第一换热管组、第二换热管组以及控制阀组件,所述控制阀组件包括第一控制阀、第二控制阀以及第三控制阀;所述第一换热管组的一端通过第四管路连通所述集气管,另一端通过第五管路连通另一所述液体端;所述第二换热管组的一端通过第六管路连通所述集气管,另一端通过第七管路连通另一所述液体端;所述第一控制阀设于所述第五管路,所述第二控制阀设于所述第六管路;所述第三控制阀具有相互连通的第一端和第二端,所述第一端连接所述第一控制阀远离所述集气管的一端,所述第二端连接所述第二控制阀远离另一所述液体端的一端;及第四控制阀,所述第四控制阀设于所述第一管路上。
- 如权利要求1所述的换热器,其中,所述可分离模块包括两个第一分离流路,两所述第一分离流路并联设置。
- 如权利要求2所述的换热器,其中,所述可分离模块还包括第二分离流路,两所述第一分离流路并联后与所述第二分离流路串联设置。
- 如权利要求2所述的换热器,其中,所述可分离模块的单流路流程长度为所述可变流路模块的单流路流程长度的0.15倍~0.55倍。
- 如权利要求1至4中任意一项所述的换热器,其中,所述第一控制阀为第一单向阀,所述第一单向阀的导通方向为由另一所述液体端至所述第一换热管组的方向;和/或,所述第二控制阀为第二单向阀,所述第二单向阀的导通方向为由所述第二换热管组至所述集气管的方向。
- 如权利要求5所述的换热器,其中,所述第一换热管组和所述第二换热管组均设有至少两个,至少两个所述第一换热管组并联设置,至少两个所述第二换热管组并联设置;所述第三控制阀设有一个,每一所述第一换热管组靠近所述集液管的一端均与所述第一端连通;每一所述第二换热管组靠近所述集气管的一端均与所述第二端连通。
- 如权利要求1至4中任意一项所述的换热器,其中,所述第四控制阀为第三单向阀,所述第三单向阀的导通方向为由所述气体端至所述集气管的方向;或,所述第四控制阀为电子膨胀阀或毛细管。
- 一种基于权利要求1至7中任意一项所述的换热器的流路控制方法,所述换热器应用于制冷系统中,其中,该流路控制方法包括:获取所述换热器的运行模式和所述制冷系统的负荷模式;当所述运行模式为蒸发模式时,控制所述第四控制阀导通;当所述运行模式为冷凝模式时,控制所述第四控制阀关闭;根据获取的所述负荷模式,控制所述第一控制阀与所述第二控制阀的启闭状态相同,且控制所述第三控制阀与所述第一控制阀的启闭状态相反。
- 如权利要求8所述的换热器的流路控制方法,其中,所述获取所述换热器的运行模式和所述制冷系统的负荷模式的步骤包括:获取冷媒的流动方向;当获取到冷媒的流动方向为由所述集液管至所述集气管的方向流动时,判定所述换热器为蒸发模式;当获取到冷媒的流动方向为由所述集气管至所述集液管的方向流动时,判定所述换热器为冷凝模式。
- 如权利要求8所述的换热器的流路控制方法,其中,根据获取的所述负荷模式,控制所述第一控制阀与所述第二控制阀的启闭状态相同,且控制所述第三控制阀与所述第一控制阀的启闭状态相反的步骤具体为:当所述负荷模式为第一负荷模式时,所述可变流路模块采用全流路模式,即,控制所述第一控制阀和所述第二控制阀导通,并控制所述第三控制阀关闭;当所述负荷模式为第二负荷模式时,所述可变流路模块采用半流路模式,即,控制所述第一控制阀和所述第二控制阀关闭,并控制所述第三控制阀开启,其中,所述第一负荷大于所述第二负荷。
- 如权利要求8所述的换热器的流路控制方法,其中,当所述第四控制阀为电子膨胀阀时,所述换热器的流路控制方法还包括:获取所述制冷系统的目标运行频率Fr;判断所述目标运行频率Fr与第三预设值c的大小,其中,c=l*(Fmax+Fmin),l的范围为0.45~0.75,Fmax为压缩机的最大运行频率,Fmin为压缩机的最小运行频率;根据所述判断结果,获取所述电子膨胀阀的初始开度和维持时间,进行初始化控制。
- 如权利要求11所述的换热器的流路控制方法,其中,所述根据所述判断结果,获取所述电子膨胀阀的初始开度和维持时间,进行初始化控制的步骤包括:Fr≤c,设定所述电子膨胀阀的初始开度为第一开度A,维持时间为t1;Fr>c,设定所述电子膨胀阀的初始开度为第二开度B,维持时间为t2;其中,A小于B,所述第一开度A的范围为20P~100P,所述第二开度B的范围为50P~150P;t1的范围为2min~15min,t2的范围为1min~15min。
- 一种可读存储介质,其中,所述可读存储介质上存储有换热器的流路控制程序,所述换热器的流路控制程序被处理器执行时实现如权利要求8至12中任一项所述的换热器的流路控制方法的步骤。
- 一种空调器,其中,包括如权利要求1至7中任意一项所述的换热器。
- 如权利要求14所述的空调器,其中,所述空调器包括室外机,所述换热器设于所述室外机内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210484240.8 | 2022-04-29 | ||
CN202210484240.8A CN117006745A (zh) | 2022-04-29 | 2022-04-29 | 换热器、换热器的流路控制方法、可读存储介质及空调器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023206885A1 true WO2023206885A1 (zh) | 2023-11-02 |
Family
ID=88517115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/115238 WO2023206885A1 (zh) | 2022-04-29 | 2022-08-26 | 换热器、换热器的流路控制方法、可读存储介质及空调器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117006745A (zh) |
WO (1) | WO2023206885A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118400975A (zh) * | 2024-06-25 | 2024-07-26 | 珠海格力电器股份有限公司 | 一种散热系统及其控制方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015063853A1 (ja) * | 2013-10-29 | 2015-05-07 | 株式会社日立製作所 | 冷凍サイクルおよび空気調和機 |
CN105202740A (zh) * | 2015-10-14 | 2015-12-30 | 珠海格力电器股份有限公司 | 一种热泵空调及其换热器 |
CN105865008A (zh) * | 2016-04-14 | 2016-08-17 | 上海交通大学 | 换热工质流向与流路数目同步变化的热泵型空调换热器 |
CN110425722A (zh) * | 2019-08-22 | 2019-11-08 | 珠海格力电器股份有限公司 | 换热器组件及空调器 |
CN111306846A (zh) * | 2020-02-24 | 2020-06-19 | 西安交通大学 | 一种双排微通道换热器及其工作方法 |
CN213713302U (zh) * | 2020-11-02 | 2021-07-16 | 广东美的精密模具科技有限公司 | 室外换热装置、空调室外机及空调系统 |
CN215765861U (zh) * | 2021-08-27 | 2022-02-08 | 海信(广东)空调有限公司 | 一种换热器及空调室外机 |
-
2022
- 2022-04-29 CN CN202210484240.8A patent/CN117006745A/zh active Pending
- 2022-08-26 WO PCT/CN2022/115238 patent/WO2023206885A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015063853A1 (ja) * | 2013-10-29 | 2015-05-07 | 株式会社日立製作所 | 冷凍サイクルおよび空気調和機 |
CN105202740A (zh) * | 2015-10-14 | 2015-12-30 | 珠海格力电器股份有限公司 | 一种热泵空调及其换热器 |
CN105865008A (zh) * | 2016-04-14 | 2016-08-17 | 上海交通大学 | 换热工质流向与流路数目同步变化的热泵型空调换热器 |
CN110425722A (zh) * | 2019-08-22 | 2019-11-08 | 珠海格力电器股份有限公司 | 换热器组件及空调器 |
CN111306846A (zh) * | 2020-02-24 | 2020-06-19 | 西安交通大学 | 一种双排微通道换热器及其工作方法 |
CN213713302U (zh) * | 2020-11-02 | 2021-07-16 | 广东美的精密模具科技有限公司 | 室外换热装置、空调室外机及空调系统 |
CN215765861U (zh) * | 2021-08-27 | 2022-02-08 | 海信(广东)空调有限公司 | 一种换热器及空调室外机 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118400975A (zh) * | 2024-06-25 | 2024-07-26 | 珠海格力电器股份有限公司 | 一种散热系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117006745A (zh) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10794620B2 (en) | Air-conditioning apparatus | |
CN111231611B (zh) | 一种双排微通道换热器空调器及其控制方法 | |
CN108775725B (zh) | 三管制多联机的室内机及三管制多联机 | |
WO2022110898A1 (zh) | 一种新风空调系统及其热回收方法 | |
US20210199349A1 (en) | Air conditioner | |
US20210231317A1 (en) | Air conditioning apparatus | |
CN111306833A (zh) | 一种双温空调系统 | |
US11578898B2 (en) | Air conditioning apparatus | |
US11499727B2 (en) | Air conditioning apparatus | |
WO2023206885A1 (zh) | 换热器、换热器的流路控制方法、可读存储介质及空调器 | |
EP3734199B1 (en) | Air-conditioner system | |
CN217031695U (zh) | 换热器模块和空调器 | |
JPWO2019211893A1 (ja) | 熱交換器及び冷凍サイクル装置 | |
CN114608220A (zh) | 换热器、换热器流路控制方法、可读存储介质及空调器 | |
CN210320592U (zh) | 换热器组件及空调器 | |
WO2023206884A1 (zh) | 换热器、换热器的流路控制方法、存储介质及家用电器 | |
WO2021014520A1 (ja) | 空気調和装置 | |
JPH10196984A (ja) | 空気調和機 | |
CN218936505U (zh) | 室外换热装置、空调室外机及空调器 | |
KR20200114123A (ko) | 공기조화 장치 | |
CN221611613U (zh) | 一种具有过冷管路的换热器及空调器 | |
CN117006744A (zh) | 换热器、换热器的流路控制方法、可读存储介质及空调器 | |
CN221005559U (zh) | 一种多级换热的换热器及空调热泵系统 | |
CN219955525U (zh) | 一种污水源磁悬浮离心式多联机空调系统 | |
CN220689309U (zh) | 一种三管制带热回收多功能制冷装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22939711 Country of ref document: EP Kind code of ref document: A1 |