WO2023206870A1 - 泵送系统、井场布局及用于泵送系统的控制方法 - Google Patents

泵送系统、井场布局及用于泵送系统的控制方法 Download PDF

Info

Publication number
WO2023206870A1
WO2023206870A1 PCT/CN2022/113242 CN2022113242W WO2023206870A1 WO 2023206870 A1 WO2023206870 A1 WO 2023206870A1 CN 2022113242 W CN2022113242 W CN 2022113242W WO 2023206870 A1 WO2023206870 A1 WO 2023206870A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
equipment
auxiliary
power
pumping
Prior art date
Application number
PCT/CN2022/113242
Other languages
English (en)
French (fr)
Inventor
仲跻风
吕亮
李守哲
王吉华
李心成
吴义朋
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023206870A1 publication Critical patent/WO2023206870A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating

Definitions

  • the present invention generally relates to the field of oil and gas field fracturing stimulation, and specifically relates to a pumping system, a well site layout and a control method for the pumping system.
  • Existing electric fracturing/pumping/cementing equipment that replaces diesel engines with electric motors usually includes: plunger pumps; electric motors (main motors) used to drive the plunger pumps; and heat dissipation devices (including auxiliary motors for heat dissipation). , lubrication devices (including auxiliary motors for lubrication) and control systems and other auxiliary electrical devices.
  • plunger pumps electric motors (main motors) used to drive the plunger pumps
  • heat dissipation devices including auxiliary motors for heat dissipation
  • lubrication devices including auxiliary motors for lubrication
  • control systems other auxiliary electrical devices.
  • the total power consumption during fracturing operations is generally between 0 and 35MW (megawatts) depending on the operating conditions.
  • Well sites are usually equipped with A power supply system with corresponding output power is used as the power source.
  • high-power power consuming devices such as 20MW to 30MW
  • the continuous high-power operation time during fracturing operations is about 2 hours, and the idle intermittent phase lasts from ten minutes to several hours). hours
  • the power consumption of various auxiliary power devices at the wellsite during the idle intermittent phase of fracturing operations is, for example, 0.2MW to 5MW
  • a high-power generator with a single unit power of, for example, 35MW will still consume a large amount of energy during idling. fuel, so the efficiency of electricity consumption at the well site is low and the economy is poor.
  • a combination of multiple power sources such as power grids and generators has been proposed.
  • the existing multi-power supply system lacks a unified control and deployment device and cannot meet the working conditions of high-power load fluctuations at the well site. Therefore, it will This will cause the generator to be in a high energy consumption and low output mode during standby, and also increase the difficulty of operation and use.
  • the present invention is made in view of the above situation.
  • One object of the present invention is to provide a pumping system containing electric fracturing equipment powered by a multi-power supply (two or more power supplies) system, which can solve the problems faced by the existing technology.
  • a single power supply system is used for power supply, if the single power supply system fails, the normal operation of the electric drive fracturing equipment cannot be guaranteed.
  • the present invention also uses an auxiliary power supply system to be more efficient and flexible during breaks in fracturing operations. Ground power supply solves the problem that the single power supply system in the prior art cannot meet the power demand of the auxiliary power device.
  • a pumping system includes an electrically driven fracturing device and a multiple power supply system.
  • the electrically driven fracturing equipment includes: a plunger pump; a main motor for driving the plunger pump; and at least one auxiliary electrical device.
  • the multi-power supply system supplies power to the electric drive fracturing equipment.
  • the multi-power supply system includes at least one main power supply and at least one auxiliary power supply.
  • the main power supply supplies power to the main motor, and the auxiliary power supply supplies power to the at least one auxiliary electrical device.
  • the working fluid of the electric fracturing equipment is fracturing fluid
  • the plunger pump pressurizes the fracturing fluid and transports it underground to fracture the formation.
  • a pumping system is obtained by replacing the electric drive fracturing equipment in the above pumping system with an electric drive pumping equipment, wherein the working fluid of the electric drive pumping equipment is For pumping liquid, the plunger pump pressurizes the pumping liquid and delivers it downhole to pump or drive downhole tools.
  • a pumping system is obtained by replacing the electric drive fracturing equipment in the above pumping system with an electric drive cementing equipment, wherein the working fluid of the electric drive cementing equipment is Cement slurry, the plunger pump pressurizes the cement slurry and transports it into at least one wellbore to fix the wellbore.
  • a well site layout includes any of the above pumping systems, and in the case where the main power supply and/or the auxiliary power supply uses fuel to generate electricity, the well site layout also includes using Transport devices for transporting fuel and processing devices for handling fuel.
  • the treatment device includes at least one of a gaseous fuel pressure regulating device, a liquid fuel vaporization device, and a fuel purification device.
  • a well site layout includes any of the above pumping systems, and also includes a liquid distribution area.
  • the liquid preparation area includes: a sand mixing device connected to the liquid inlet of the plunger pump; a sand supply device for supplying sand to the sand mixing device; and a sand supply device for supplying liquid to the sand mixing device.
  • a well site layout includes any one of the above-mentioned pumping systems, and wherein the plunger pumps of each of a plurality of the electrically driven fracturing/pumping/cementing equipment have their own advanced processes.
  • the liquid ports are connected to the upper liquid manifold, and the liquid discharge ports of the plunger pumps of each of the plurality of electric fracturing/pumping/cementing equipment share a discharge manifold connected to the wellhead.
  • the upper liquid manifold and the discharge manifold are integrated on at least one manifold facility.
  • the well site layout includes any of the above pumping systems, and also includes: instrument equipment and a centralized control system provided in the instrument equipment; a control system provided in the main power supply; A control system provided in the auxiliary power supply; a control system provided in the electric fracturing/pumping/cementing equipment; power distribution equipment and a control system provided in the power distribution equipment, the The main power supply and the auxiliary power supply supply power to the electric drive fracturing/pumping/cementing equipment via the power distribution equipment; a video system for video acquisition in the well site; and a video system for video collection in the well site. Sensor system for collecting environmental parameters.
  • the control system and the control system in the main power supply feed back information to the centralized control system respectively and provide control signals from the centralized control system respectively.
  • a control method for a pumping system wherein the pumping system includes electric fracturing/pumping/cementing equipment and a multi-power supply system.
  • the electrically driven fracturing/pumping/cementing equipment includes: a plunger pump; a main motor for driving the plunger pump; and at least one auxiliary electrical device.
  • the multi-power supply system supplies power to the electric fracturing/pumping/cementing equipment and includes at least one main power supply and at least one auxiliary power supply.
  • the control method includes: using the main power supply to supply power to the main motor, and using the auxiliary power supply to supply power to the at least one auxiliary electrical device.
  • ESG End, Society and governance
  • the main power supply and/or the auxiliary power supply of the present invention can use power generation equipment.
  • the present invention can use natural gas in all power generation equipment, and
  • the main power generation equipment can be shut down and wait during the idle gap of fracturing operations, thus reducing standby costs and standby emissions.
  • the auxiliary power supply of the present invention can meet the needs of auxiliary power systems such as air conditioning systems, lighting systems, lubrication systems, and control systems at high power efficiency. (These auxiliary power systems are all low-power (such as 0-5MW) power devices). Compared with the existing technology solution with only a single power supply, the power consumption of the auxiliary power system is guaranteed. Flexibility and efficiency.
  • Construction power supply is more reliable: This invention uses the auxiliary power supply to continuously supply power to the auxiliary power system. Even if the main power generation equipment suddenly loses power, the auxiliary power supply can ensure the normal operation of the auxiliary power system and avoid the risk of loss of control.
  • Turbine operation is safer: Unlike the conventional black start method, the auxiliary power supply used to power the turbine power generation equipment (main power generation equipment) in the dual power supply system of the present invention will not stop supplying power after the turbine is started. , so when the turbine shuts down abnormally, the auxiliary power supply can respond to the turbine's power demand at any time to avoid damage to the turbine.
  • the main power supply also supplies power to the auxiliary power device after being stepped down by a transformer. This provides more power supply channels and higher power supply stability.
  • Figure 1 is a block diagram of an example of a pumping system containing electrically driven fracturing equipment powered by a single power supply system in accordance with the prior art.
  • Figure 2A is a first example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 2B is a second example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 2C is a third example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 2D is a fourth example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 2E is a fifth example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 3 is an example of a schematic power supply path for a pumping system according to the invention.
  • FIG. 4 is a modification of the schematic power supply path shown in FIG. 3 .
  • Figure 5A is another example of a schematic power supply path for a pumping system according to the present invention.
  • FIG. 5B is a modification of the schematic power supply path shown in FIG. 5A.
  • FIG. 6 is a perspective view of an electric fracturing equipment integrated on a carrier as an example of an electric fracturing equipment according to the present invention.
  • Figure 7 is a schematic block diagram of a power supply path of a dual power supply system used in the electrically driven fracturing equipment according to the present invention.
  • FIG. 8 is an example of a circuit diagram adopted to implement the power supply path shown in FIG. 7 .
  • FIG. 9 is a modification of the circuit diagram shown in FIG. 8 .
  • Figure 10 is an example of a well site layout containing multiple electrically driven fracturing equipment according to the present invention.
  • FIG. 11 is a schematic block diagram corresponding to the wellsite layout shown in FIG. 10 .
  • Figure 12 shows examples of various control systems in the well site layout of the present invention.
  • Figure 13 shows a schematic block diagram of a supply path for supplying fuel to a fuel-using generator.
  • FIG. 14 is a diagram showing a specific configuration example of the purification equipment used in the processing device shown in FIG. 13 .
  • the pumping system of the present invention containing electric fracturing equipment powered by a multi-power supply system (refer to Figures 2A to 2E)
  • Figure 1 is an example of a pumping system containing electrically driven fracturing equipment powered by a single power supply system in accordance with the prior art.
  • the power supply system 3 supplies voltage to the power distribution system 4 and distributes it to the main motor 5 and at least one auxiliary power consumer 6 in the electric drive fracturing equipment 8 via the power distribution system 4 .
  • the main motor 5 is used to drive the plunger pump (not shown) in the electric fracturing equipment 8 .
  • At least one auxiliary electric device 6 is, for example, a heat dissipation motor, a lubricating motor, a control system, etc. in the electric fracturing equipment 8 .
  • Figure 2A is a first example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • the main power supply system 3a (which can, for example, provide high voltage above 10 kV) supplies power to the main motor 5 in the electric drive fracturing equipment 8 via the main power distribution system 4a
  • the auxiliary power supply system 3b (which can, for example, (providing a low voltage less than 1 kV) supplies power to at least one auxiliary electrical device 6 in the electrically driven fracturing equipment 8 via the auxiliary power distribution system 4b.
  • auxiliary electrical device 6 examples include (but are not limited to): control systems; air conditioning systems such as refrigeration and heating (which contain auxiliary motors such as compressor motors, fan motors, air guide motors, coolant pump motors, etc.) ; Lubrication system (which contains an auxiliary motor for driving the lubricating oil pump); lighting system; sensor system; and frequency conversion system for driving each auxiliary motor, etc.
  • control systems air conditioning systems such as refrigeration and heating (which contain auxiliary motors such as compressor motors, fan motors, air guide motors, coolant pump motors, etc.) ; Lubrication system (which contains an auxiliary motor for driving the lubricating oil pump); lighting system; sensor system; and frequency conversion system for driving each auxiliary motor, etc.
  • air conditioning systems such as refrigeration and heating
  • Lubrication system which contains an auxiliary motor for driving the lubricating oil pump
  • the main power supply system 3a may adopt a high-power power supply system, which may include at least one of a power grid and a generator, for example.
  • the output power of the high-power power supply system may range from 3MW to 60MW, for example.
  • the generator may be a generator using water power, wind power, steam, etc., or a generator using fuel (for example, in the present invention, a gas turbine generator or the like is preferred).
  • the fuel may be solid fuel, liquid fuel, gaseous fuel, or a combination thereof.
  • the fuel is transported, stored, processed and supplied from a dedicated fuel supply mechanism to the generators that use the fuel.
  • the main power supply system 3a may be the main power generation equipment.
  • the main power generation equipment may be composed of one or more generators.
  • the single power of the generators included in the main power generation equipment is usually above 3MW.
  • the power provided by one or a combination of multiple generators can range from 3MW to 60MW, and the power supply voltage can, for example, reach more than 10kV to meet the large-scale power demand in fracturing well sites.
  • the main power generation equipment may be a single 35MW gas turbine generator.
  • the main power generation equipment may include a combination of at least one generator and an energy storage device. For example, it may be multiple 5MW generators combined with an energy storage device, or it may be a 35MW generator combined with an energy storage device. .
  • the main power generation equipment has more power supply channels and more flexible power supply.
  • the energy storage device can store a part of the power from the generator, so as to achieve the best power supply efficiency.
  • Examples of energy storage units in energy storage devices include chemical batteries such as sodium-ion batteries and lithium-ion batteries; supercapacitors; or hydrogen fuel cells.
  • the auxiliary power supply system 3b may adopt a low-power power supply system, which may include, for example, at least one of an internal combustion engine (such as a piston internal combustion engine or a gas turbine) power generation equipment, a wellsite surrounding power grid, an energy storage device, and a solar power generation panel.
  • the output power of the low-power power supply system is, for example, 0.2 MW or more and 5 MW or less.
  • Internal combustion engine power generation equipment includes an internal combustion engine and a generator driven by the internal combustion engine to generate electricity.
  • the internal combustion engine may be, for example, a diesel engine, a gas engine, a gas turbine engine, or a hydrogen fuel engine, and its fuel types include fuel oil, natural gas, methanol, hydrogen, a mixture containing hydrogen (such as a mixture of natural gas and hydrogen, etc.), gaseous and liquid fuels mixtures, etc.
  • the auxiliary power supply system 3b may be an auxiliary power generation device, which may be connected to corresponding multiple auxiliary power devices via multiple switches and the like.
  • the auxiliary power generation device may be one generator or a combination of multiple generators, for example, it may generally consist of less than 2 generators.
  • the single-machine power of the generator included in the auxiliary power generation equipment does not exceed, for example, 5MW, and the power supply voltage is, for example, less than 1kV.
  • the auxiliary power generation device may employ a generator driven by multiple internal combustion engines.
  • the auxiliary power generation equipment may be a combination of at least one generator (eg, a 0.5 MW internal combustion engine generator) and an energy storage device. Such a combination can also achieve similar effects to the aforementioned main power generation equipment.
  • auxiliary power supply system is used to supply power to at least one auxiliary power device, compared with the situation in the prior art where only a single power supply system is used, power consumption is more flexible and power consumption efficiency is higher.
  • Figure 2B is a second example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 2C is a third example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • Figure 2D is a fourth example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • the difference between the second example shown in Fig. 2B and Fig. 2A is that in addition to supplying power to at least one auxiliary power device 6 in the electrically driven fracturing equipment 8, the auxiliary power supply system 3b also supplies power to the main power supply system 3a, thereby replacing A traditional black boot.
  • the traditional black start means that when the main power supply system 3a is a gas turbine generator, for example, the gas turbine generator must be equipped with a small power generation equipment.
  • the small power generation equipment is usually used for starting and heat dissipation of the gas turbine generator. , lubrication, etc.
  • black start The way this small power generation equipment starts a gas turbine generator without self-starting capability in situations such as a power outage at a well site.
  • Such small power generation equipment usually does not work continuously. Therefore, it is not possible to use the continuous power supply of the auxiliary power supply system 3b to meet the power requirements for starting, cooling and lubrication of the main power supply system 3a at any time as in the second example of the present invention. Therefore, the second example of the present invention can make the operation of the main power supply system 3a more convenient and safer.
  • the difference between the third example shown in Figure 2C and Figure 2A is that in addition to supplying power to the main motor 5 in the electric fracturing equipment 8, the main power supply system 3a can also reduce the voltage through the transformer 7 and then supply power to the electric fracturing equipment. At least one auxiliary electrical device 6 in 8 supplies power. According to the third example of the present invention, two power supplies are implemented for at least one auxiliary power supply device 6. No matter which power supply (main power supply system or auxiliary power supply system) fails, the other power supply (auxiliary power supply system or main power supply system) System) can still ensure the normal operation of auxiliary power devices. Therefore, there are more power supply channels and the power supply is more stable and reliable.
  • An on-off switch may be provided between the transformer 7 and at least one auxiliary electrical device 6 .
  • the power supply of the auxiliary power supply 3b to at least one auxiliary power device 6 takes priority over the power supply of the main power supply 3a to the at least one auxiliary power device 6 .
  • the fourth example shown in FIG. 2D is an example obtained by combining FIG. 2B and FIG. 2C.
  • the transformer 7 is used for voltage regulation (voltage adjustment)
  • the position of the transformer 7 is variable.
  • the transformer 7 is located between the main power distribution system 4a and the auxiliary power distribution system 4b and is provided independently; while in the fourth example shown in Figure 2D, the transformer 7 is integrated in For example, in the main distribution system 4a.
  • the transformer 7 can also be integrated into the auxiliary power distribution system 4b, or directly connected between the main power supply system 3a and at least one auxiliary power device 6, or directly connected to the main power distribution system 4a. and at least one auxiliary electrical device 6.
  • the transformer 7 can also be integrated upstream of at least one auxiliary consumer 6 with the corresponding auxiliary consumer 6 .
  • the installation position of the transformer 7 of the present invention is not limited to the examples given here.
  • the fourth example according to the present invention has the advantages of the aforementioned second and third examples.
  • FIG. 2E is a fifth example of a pumping system employing a multiple power supply system according to one embodiment of the present invention.
  • the difference between the fifth example shown in FIG. 2E and FIG. 2D is that one electrically driven fracturing device in the pumping system of FIG. 2D is replaced with multiple electrically driven fracturing devices.
  • both the main power supply system 3a and the auxiliary power supply system 3b are used to supply power to a plurality of electrically driven fracturing equipment 8 1 to 8 n (not shown).
  • Each of the plurality of electric fracturing equipments 8 1 to 8 n includes: a main motor 5 1 to 5 n ; and at least one auxiliary power device 6 1 to 6 n provided corresponding to the main motor 5 1 to 5 n .
  • multiple electric drive fracturing equipment are provided, on the one hand, they can be combined in any number to operate one wellhead or multiple wellheads; on the other hand, even if a certain electric drive fracturing equipment If the fracturing equipment fails, other electric-driven fracturing equipment can still continue to work, thus improving the efficiency of fracturing operations.
  • the multi-power supply system of the present invention contains more than two power supply systems. Although only two power supply systems, the main power supply system 3a and the auxiliary power supply system 3b, are shown in Figures 2A to 2E, the main power supply system 3a and the auxiliary power supply system 3b Neither is limited to one.
  • the present invention fully guarantees the normal operation of the electric drive fracturing equipment and improves the flexibility and efficiency of electricity use.
  • Figure 3 is an example of a schematic power supply path of a pumping system according to the present invention, in which the main power supply system 3a adopts a fuel-using generator 3a', and the auxiliary power supply system 3b adopts an internal combustion engine generator set 3b'. Note that Figure 3 corresponds to the case where multiple electrically driven fracturing devices are provided in the pumping system shown in Figure 2B. The solid arrows in Figure 3 show the power supply path.
  • the schematic power supply path shown in Figure 3 includes a fuel supply plant 111, a fuel-using generator 3a', an internal combustion engine generator set 3b', a switch cabinet trailer 41 and at least one (shown in Figure 3 (but not limited to ) 7) Electrically driven fracturing equipment trailer 112.
  • Each electric-driven fracturing equipment trailer 112 is equipped with at least one electric-driven fracturing equipment 8 (for example, please refer to the electric-driven fracturing equipment 100a shown in FIG. 6 described later).
  • One set of incoming wires is used to supply power to the main motor in the electric-driven fracturing equipment, and the other set of incoming wires is used to supply power to at least one of the electric-driven fracturing equipment.
  • the fuel supply plant 111 supplies fuel to the generator 3 a ′ that uses the fuel.
  • the main power distribution system 4a (for example, see FIG. 2B) includes a first switch 411 provided on the switch cabinet trailer 41, a first transmission cable connected to the first switch 411, and multiple power transmission cables connected to the first transmission cable.
  • a second switch 412, and the auxiliary power distribution system 4b (see, for example, FIG. 2B) includes a third switch 413 provided on the switch cabinet trailer 41, a second power transmission cable connected to the third switch 413, and a second power transmission cable connected to the second power transmission cable 412.
  • a plurality of fourth switches 414 on the cable is provided on the switch cabinet trailer 41, a second power transmission cable connected to the third switch 413, and a second power transmission cable connected to the second power transmission cable 412.
  • the fuel generator 3a' is a device that converts combustion energy of fuel into mechanical energy and generates electricity using the mechanical energy.
  • the generated electric power (for example, 10 kV or more) is supplied to the first transmission cable through the first switch 411. , and then supplied from the first transmission cable to the electric fracturing equipment (specifically, the main motor of the electric fracturing equipment) or other devices on the corresponding electric fracturing equipment trailer 112 via a plurality of second switches 412 .
  • the unused second switch 412 in Figure 3 can be used as a backup switch to be connected to other devices.
  • the plurality of second switches 412 for example (but not limited to) nine second switches 412 are shown in FIG. 3 .
  • the internal combustion engine generator set 3b' uses an internal combustion engine to drive a generator to generate electricity, which supplies the generated electric power (for example, less than 1 kV) to the second transmission cable through the third switch 413, and then from the second transmission cable through a plurality of third transmission cables.
  • the four switches 414 are respectively supplied to the electric fracturing equipment (specifically, at least one auxiliary power device in the electric fracturing equipment) or other devices on the corresponding electric fracturing equipment trailer 112 .
  • the internal combustion engine generator set 3b' can also provide power to the fuel-using generator 3a' to replace the traditional black start.
  • the internal combustion engine generator set 3b' can also provide power to the fuel supply plant 111.
  • the unused fourth switch 414 in Figure 3 can be used as a backup switch to be connected to other devices.
  • the plurality of fourth switches 414 for example (but not limited to) ten fourth switches 414 are shown in FIG. 3 .
  • the auxiliary power supply system of this example may provide power to the main power supply system, which may be continuous, as an example. Since the main power supply system and the auxiliary power supply system in this example both use generators to generate electricity, the present invention solves the problem that most oil and gas field well sites are in remote places and lack power grids.
  • Figure 4 is a modification of the schematic power supply path shown in Figure 3, in which the main power supply system 3a and the auxiliary power supply system 3b adopt a gas turbine generator 3a" and a gas turbine generator 3b". Accordingly, the gas is transported and/or processed from the gas supply mechanism 113 and then supplied to the gas turbine generators 3a" and 3b". According to this modification, when the gas is natural gas, it can be more economical and environmentally friendly than other fuels.
  • the gas turbine generator 3a′′ as the main power supply system can be stopped and waited.
  • the gas turbine generator 3b′′ can be powered on through the auxiliary power supply system.
  • a transformer e.g. 10kVA capacity specification
  • Other aspects are similar to Figure 3 and will not be described again.
  • FIG 5A is another example of a schematic power supply path of the pumping system according to the present invention.
  • the difference from Figure 4 is that a second switch 412 of the first power transmission cable and the second power transmission cable are also provided.
  • transformer 7 main transformer
  • fifth switch 416 In addition to being supplied to the main motor in the electrically driven fracturing equipment via a plurality of second switches 412, the power supplied by the gas turbine generator 3a" to the first transmission cable can also be supplied via the second switch 412, the transformer 7 and The fifth switch 416 supplies the power to the second transmission cable, and then supplies it to at least one auxiliary power device in the electric fracturing equipment via a plurality of fourth switches 414.
  • the capacity specification of the transformer 7 is, for example, above 0.5 MVA, which can The power from the high-voltage source is transformed into a low-voltage source and supplied to the auxiliary power device, which improves the safety of on-site power consumption.
  • two-way power supply is implemented for the auxiliary power device.
  • the channels for electricity selection are increased, thus improving the flexibility of electricity consumption.
  • the transformer 7 and the fifth switch 416 connected between the second switch 412 of the first transmission cable and the second transmission cable are not limited to A group.
  • Figure 5B is a modification of the schematic power supply path shown in Figure 5A, in which the auxiliary power supply system 3b is an energy storage device 3b"', or a combination of an energy storage device 3b"' and a generator (not shown).
  • the energy storage device 3b''' can be charged in advance.
  • the energy storage device 3b''' can store a part of the power from the generator combined with it, so that the generator can exert optimal power supply efficiency.
  • the generated power of the generator when the generated power of the generator is greater than the electrical power of the electrical device (for example, a certain set value), part of the power generated by the generator can be stored in the energy storage device, and when the electrical power of the electrical device When the set value is exceeded, the energy storage device can supply power to the outside world to meet temporary excess power demand.
  • the electrical power of the electrical device for example, a certain set value
  • switches 411, 412, 413, 414, 416 and the transformer 7 can be controlled through the cooperation of a control system explained later (for example, see various control systems 81, 82, 83, 84, 85, etc. in Figure 12) Control to improve the adaptability of power supply paths and achieve flexible power consumption choices.
  • the power supply of the auxiliary power supply system 3b to at least one auxiliary power device 6 or other power devices may be simultaneous or different from the power supply of the main power supply system 3a to the main motor 5.
  • the auxiliary power supply system 3b may first supply power to the gas turbine (turbine) of the gas turbine generator to start the gas turbine generator to start working.
  • the auxiliary power supply system 3b can also continue to supply power to the gas turbine of the gas turbine generator to prevent the gas turbine from abnormal shutdown and damage due to power outage.
  • the power supply of the auxiliary power supply system 3b to at least one auxiliary power consumption device 6 may be simultaneous or different from the power supply of the main power supply system 3a to at least one auxiliary power consumption device 6.
  • the power supply of the auxiliary power supply system 3b to the at least one auxiliary power consumption device 6 may be selected in priority to the power supply of the main power supply system 3a to the at least one auxiliary power consumption device 6 .
  • “Priority to” here means that the power provided by the main power supply system 3a to the auxiliary power device 6 is used as backup power for the power provided by the auxiliary power supply system 3b to the auxiliary power device 6 . Only when the auxiliary power supply system 3b cannot supply power normally, the power provided by the main power supply system 3a to the auxiliary power device 6 starts to be used through switching control.
  • each electric fracturing equipment 8 when each electric fracturing equipment trailer 112 is equipped with multiple electric fracturing equipment 8, each electric fracturing equipment 8 can be provided with two sets of terminals, wherein , a set of terminals of the first electric fracturing equipment 8 are electrically connected to the power supply systems 3a and 3b respectively via high-voltage incoming lines and low-voltage incoming lines to receive power from the power supply systems 3a and 3b, and the other set of terminals is used for Power is supplied to the next adjacent electric drive fracturing equipment 8.
  • One set of terminals of the second electric fracturing equipment 8 receives power from the adjacent previous electric fracturing equipment 8 , and the other set of terminals is used to supply power to the next adjacent electric fracturing equipment 8 ,And so on.
  • the other set of terminals is used to supply power to the next adjacent electric fracturing equipment 8 ,And so on.
  • only one high-voltage incoming line and one low-voltage incoming line are needed to directly supply power to multiple electric-driven fracturing equipment 8 , which simplifies circuit wiring and makes installation quick.
  • multiple electric fracturing equipments 8 can also receive power from the power supply systems 3a and 3b independently of each other, so that they can independently alarm, repair or replace when a fault occurs.
  • FIG. 6 is a perspective view of an electric fracturing equipment integrated on a carrier as an example of an electric fracturing equipment according to the present invention.
  • the electric fracturing equipment 100a shown in Figure 6 contains an integrated frequency conversion and speed regulation machine and uses the frequency conversion and speed regulation integrated machine to drive the plunger pump.
  • the electric fracturing equipment 100a includes: a bearing frame 67; an integrated frequency conversion and speed regulating machine 310 installed on the bearing frame 67; The plunger pump 11 of the integrated machine 310.
  • the frequency conversion and speed regulation integrated machine 310 includes a motor 21 and a frequency conversion system 40 integrally installed on the motor 21 .
  • the frequency conversion system 40 may be an inverter device, or may include a rectifier device and an inverter device, or may include a rectifier device, a filter device, and an inverter device.
  • the transmission output shaft of the electric motor 21 in the frequency conversion speed regulation integrated machine 310 can be directly connected to the power input shaft of the plunger pump 11 of the electric fracturing equipment 100a.
  • the two of them can be connected by splines.
  • the transmission output shaft of the motor 21 can have internal splines or external splines or flat keys or tapered keys, and the power input shaft of the plunger pump 11 can have a key adapted to the above-mentioned keys. External spline or internal spline or flat key or tapered key.
  • the transmission output shaft of the electric motor 21 can have a protective casing, and the power input shaft of the plunger pump 11 can have a protective casing.
  • the casings of both can be screwed, bolted, riveted, welded, or flanged. and are fixedly connected together.
  • the flange can be round or square or other forms.
  • Electrically driven fracturing equipment 100a may also include a control cabinet 66.
  • the control cabinet 66 is arranged at one end of the frequency conversion and speed regulation machine 310 in the -X direction
  • the plunger pump 11 of the electric fracturing equipment 100a is arranged at one end of the frequency conversion and speed regulation machine 310 in the X direction. at the other end.
  • the present invention does not limit the relative positions of the control cabinet 66, the frequency conversion speed regulation integrated machine 310 and the plunger pump 11, as long as their layout can enable the electric drive fracturing equipment 100a to be highly integrated.
  • the power transmitted from the main power supply system 3a can be directly provided to the integrated frequency conversion machine 310, or can be provided to the integrated frequency conversion machine 310 via the control cabinet 66 (without processing by the control cabinet or after processing by the control cabinet).
  • the power transmitted from the main power supply system 3a and the auxiliary power supply system 3b can be provided to other auxiliary power devices in the electric drive fracturing equipment 100a except the frequency conversion and speed regulation integrated machine 310 through the control cabinet 66.
  • the control cabinet 66 may include a power distribution system and a control system for distributing power to any electrical devices in the electric fracturing equipment 100a, and for distributing power to any electrical devices of the electric fracturing equipment 100a such as voltage, power, faults, etc.
  • the information is output to the outside in order to control the electric fracturing equipment 100a.
  • the control cabinet 66 may be integrated with a main switch cabinet, a main transformer, an auxiliary switch cabinet, an auxiliary transformer, etc.
  • the main switch cabinet and the main transformer can control and adjust the power transmitted from the main power supply system 3a to provide it to the frequency conversion and speed regulation integrated machine 310 or other auxiliary power devices in the electric drive fracturing equipment 100a.
  • the auxiliary switch cabinet and auxiliary transformer can control and adjust the power transmitted from the auxiliary power supply system 3b to provide it to other auxiliary power devices in the electric drive fracturing equipment 100a except the frequency conversion and speed regulation integrated machine 310.
  • the auxiliary transformer can output a low voltage of 220V to 500V (AC) for powering auxiliary electrical devices such as a lubrication system, a heat dissipation system, and a control system in the electric fracturing equipment 100a.
  • AC auxiliary voltage
  • the electric fracturing equipment 100a may also include at least one of the following: a lubrication system; a lubricating oil heat dissipation system; and a coolant heat dissipation system, etc.
  • the lubrication system includes, for example: a lubrication oil tank 60; a first lubrication motor 61; and a second lubrication motor 62, etc.
  • the electric fracturing equipment 100a can be equipped with different lubrication pumps according to different lubrication positions, and they are driven by the first lubrication motor 61 or the second lubrication motor 62 respectively to meet the lubrication requirements of different pressures, flow rates, and oil products.
  • the lubricating oil heat dissipation system includes, for example, a lubricating oil radiator 59 and the like for cooling the lubricating oil.
  • the coolant heat dissipation system includes, for example: a coolant radiator 63; and a heat dissipation motor 64, etc., for cooling the high-voltage frequency conversion integrated machine 412.
  • the above-mentioned lubricating oil heat dissipation system and coolant heat dissipation system can be integratedly arranged on the top or side of the plunger pump 11, or can also be integrated on the top or side of the high-voltage variable frequency integrated machine 412, so that the heat dissipation capability can be fully utilized.
  • the above-mentioned lubrication system can be integrally arranged on the side of the high-voltage frequency conversion integrated machine 412 .
  • the first lubrication motor 61 , the second lubrication motor 62 and the cooling motor 64 are also collectively referred to as the auxiliary motors 61 , 62 and 64 . Therefore, the auxiliary electrical devices in the electric fracturing equipment 100a include, for example, a lubricating motor, a heat dissipation motor, and a control system, for example, provided in a control cabinet.
  • the rated frequency of the frequency converter and speed regulator 310 may be 50 Hz or 60 Hz.
  • the rated frequency is the same as the power supply frequency of a power supply system such as a power supply network.
  • the frequency converter and speed regulator 310 may not require a transformer. Directly connected to the power supply system such as the power supply network, which simplifies the power supply method and is more adaptable.
  • the external wiring of the frequency converter and speed regulator 310 can be directly connected to the main power supply without the need for a transformer for adjusting the voltage from the power supply system. on the system.
  • the plunger pump 11 of the electric fracturing equipment 100a is driven by the frequency conversion speed regulation integrated machine 310 to pump the fracturing fluid underground.
  • the present invention is not limited to using the frequency conversion and speed regulation integrated machine 310 as an electric drive device.
  • An electric drive device in which the frequency conversion system 40 and the motor 21 are installed independently can also be used.
  • the frequency conversion system 40 can be installed in a control cabinet. Only a part of the frequency conversion system 40 (eg, the inverter device) may be integrated on the electric motor 21 .
  • the upper fluid manifold (low pressure manifold) 34 can be disposed on one side of the plunger pump 11 in the -Z direction, and is used to supply fracturing fluid to the liquid inlet (not shown) of the plunger pump 11 .
  • the discharge manifold (high pressure manifold) 33 may be provided at at least one end of the plunger pump 11 in the ) to discharge fracturing fluid.
  • the fracturing fluid enters the inside of the plunger pump 11 from the liquid inlet of the plunger pump 11 through the upper fluid manifold 34. Then, after being pressurized by the movement of the plunger pump 11, it passes from the liquid outlet of the plunger pump 11 through the discharge manifold. 33 is discharged to the high-pressure header outside the plunger pump 11, and then enters the ground or into the wellhead for fracturing operations.
  • the carrier frame 67 can be replaced by a skid frame or a semi-trailer (trailer).
  • Multiple electrically driven fracturing equipment 100a may be integrated on one or a group of carriers 67 (or skids or semi-trailers).
  • Figure 7 is a schematic block diagram of a power supply path of a dual power supply system used in the electrically driven fracturing equipment according to the present invention.
  • the electric fracturing equipment 100b in Figure 7 also includes: a frequency conversion system 91 connected upstream of the first lubrication motor 61 to frequency modulate the first lubrication motor 61; and a frequency conversion system 91 connected upstream of the second lubrication motor 62 to frequency modulate the second lubrication motor 62.
  • the frequency conversion systems 40, 91, 92, 94 may be arranged independently of the corresponding electric motors 21, 61, 62, 64.
  • the frequency conversion systems 40, 91, 92, 94 shown in Figure 7 can be at least partially integrated on the motors 21, 61, 94 respectively. 62, 64 on.
  • a dual power supply system is adopted.
  • the main power supply system supplies a high voltage of, for example, 3.3 kV or more to the main motor 21 via the high-voltage incoming line and frequency conversion system 40 , the main motor 21 drives the plunger pump to achieve stepless speed regulation of the plunger pump, thereby pressurizing the working liquid and pumping it into the wellbore.
  • the auxiliary power supply system supplies low voltage, for example, 220V to 1000V, to the control system 68 via the low-voltage incoming line, and the auxiliary power supply system also supplies the low voltage via the low-voltage incoming line and the frequency conversion system 91 , 92, and 94 are supplied to the auxiliary motors 61, 62, and 64 respectively.
  • the auxiliary motors 61, 62 and 64 realize lubrication, heat dissipation and other functions by driving corresponding lubricating oil pumps or coolant pumps.
  • auxiliary motor is not limited to the aforementioned first lubrication motor 61, second lubrication motor 62 and heat dissipation motor 64.
  • FIG. 8 is an example of a circuit diagram adopted to implement the power supply path shown in FIG. 7 .
  • the main power supply system for example, ⁇ 10kV
  • the on-off switch 69 the high-power transformer 7a (for example, 3000kVA ⁇ 7000kVA), the frequency converter VFD, and the main motor 21 are electrically connected in sequence .
  • the auxiliary power supply system for example, 220V ⁇ 1000V
  • the on-off switch 791 the optional low-power transformer 7b (for example, 0 ⁇ 10kVA)
  • the control system 68 are electrically connected in sequence.
  • the auxiliary power supply system also supplies power to the auxiliary motors 61, 62, and 64 through the frequency converters VFD1, VFD2, and VFD3 respectively.
  • Frequency converters VFD, VFD1, VFD2 and VFD3 are examples of the above frequency conversion systems 40, 91, 92 and 94 respectively.
  • Each of the inverters VFD and VFD1 to VFD3 may be composed of, for example, an IGBT power module.
  • the control system 68 performs signal communication with the on-off switch 69 and the frequency converters VFD, VFD1 to VFD3.
  • the main power supply system supplies a voltage of, for example, 10 kV or more to the high-power transformer 7a for voltage regulation.
  • the regulated voltage is converted by the frequency conversion system VFD. supplied to the main motor 21.
  • the on-off switch 69 is turned off, the main power supply system stops supplying power.
  • the auxiliary power supply system supplies a voltage of, for example, 220V to 1000V to the small power transformer 7b for voltage regulation, and the regulated voltage (for example, ⁇ 480V) is supplied to the control system 68 .
  • the auxiliary power supply system stops supplying power to the control system 68 .
  • the low power transformer 7b is not necessary.
  • the auxiliary power supply system supplies voltages of, for example, 220V to 1000V to the inverters VFD1, VFD2, and VFD3 for frequency conversion, and the converted voltages are supplied to the auxiliary motors 61, 62, and auxiliary motors 61, 62, respectively. 64.
  • the auxiliary power supply system stops supplying power to the auxiliary motors 61, 62, and 64.
  • the present invention can control the on-off switch 69 of the high-voltage incoming line and each frequency converter and other components through the control system 68 .
  • the control system 68 of the electric fracturing equipment 100b can receive instructions from the instrument equipment (not shown in Figure 8) and directly turn off the on-off switch 69 to realize an emergency stop of the electric fracturing equipment 100b. .
  • FIG. 9 is a modification of the circuit diagram shown in FIG. 8 .
  • the main power supply system further supplies power to the auxiliary motors 61, 62, and 64 through the tap of the high-power transformer 7a and the on-off switch 70.
  • the on-off switch 70 when the on-off switch 70 is turned on, the voltage output from the main power supply system through the tap of the high-power transformer 7a is supplied to the auxiliary motors 61, 62, and 64 respectively through the frequency converters VFD1, VFD2, and VFD3.
  • the high-power transformer 7a provides two different voltages to the main frequency converter VFD and the auxiliary frequency converters VFD1, VFD2, and VFD3 respectively through taps or taps, and ensures that the auxiliary motors 61, 62, and 64 have two power supplies.
  • the control system 68 to cut off the on-off switch 70, as mentioned above, the power supply from the auxiliary power supply system to the auxiliary power device can be prioritized over the power supply from the main power supply system to the auxiliary power device. choose.
  • Figures 7 to 9 illustrate a solution in which one frequency converter corresponds to one motor, in actual applications, a solution in which one frequency converter corresponds to multiple motors can also be used.
  • the start-up time of the auxiliary power supply system takes precedence over the start-up time of the main power supply system.
  • the working fluid of the electric fracturing equipment may be fracturing fluid.
  • the upper fluid manifold provides the fracturing fluid to the inlet of the plunger pump.
  • the plunger pump pressurizes the fracturing fluid and discharges it through the drain port to the discharge manifold, and then transports it underground to fracture the formation.
  • the electrically driven fracturing equipment in the above pumping system can be replaced with electrically driven pumping equipment.
  • the working fluid of the electrically driven pumping equipment may be a pumping fluid.
  • the upper liquid manifold provides the pumping liquid to the liquid inlet of the plunger pump.
  • the plunger pump pressurizes the pumping liquid and discharges it to the discharge manifold through the liquid outlet, and then transports it to the downhole for pumping (such as lower) downhole tools or drive downhole tools.
  • the electric drive fracturing equipment in the above pumping system can be replaced with electric drive cementing equipment.
  • the working fluid of the electric drive cementing equipment can be cement slurry.
  • the upper liquid manifold provides the cement slurry to the liquid inlet of the plunger pump.
  • the plunger pump pressurizes the cement slurry and discharges it to the discharge manifold through the liquid outlet, and then transports it to at least one wellbore to fix the wellbore.
  • FIG. 10 is an example of a well site layout containing multiple electrically driven fracturing equipment according to the present invention.
  • FIG. 11 is a schematic block diagram corresponding to the wellsite layout shown in FIG. 10 .
  • the well site layout includes multiple electrically driven fracturing equipment 100a, and the liquid inlets of the plunger pumps of the multiple electrically driven fracturing equipment 100a are equipped with their own upper liquid pipes.
  • the discharge ports of the respective plunger pumps of the multiple electric fracturing equipment 100a share a discharge manifold 33.
  • the low-pressure fracturing fluid is input to the liquid inlet of the plunger pump of each electric-driven fracturing equipment 100a through the corresponding upper fluid manifold.
  • the fracturing fluid is pressurized by the plunger pump driven by the main motor to obtain high pressure.
  • the fracturing fluid is output to the common discharge manifold 33 through the discharge port of the plunger pump, and is injected into the wellhead 18 through the discharge manifold 33 to enter the formation to fracturing the formation of the oil or gas well.
  • All manifolds can be integrated on one or a group (at least one) manifold skid, or can be integrated on a manifold semi-trailer to facilitate centralized observation and management.
  • the well site layout also includes a fluid dispensing area.
  • the liquid preparation area may include sand supply equipment (also called proppant supply device) 72, liquid supply equipment 73, mixing equipment 74, chemical addition equipment 75, sand mixing equipment 76, etc.
  • the fracturing fluid injected downhole is a sand-carrying fluid, so water, sand, chemical additives, etc. need to be mixed to suspend the sand particles in the fracturing fluid.
  • the liquid supply device 73 can directly extract the liquid transported by the transport truck, or can include multiple liquid tanks for storing liquid.
  • Liquids such as clean water can be supplied to the mixing device 74 via the liquid supply device 73 , and reagents such as chemical additives can be supplied to the mixing device 74 via the chemical addition device 75 .
  • Clean water and chemical additives may be mixed in compounding equipment 74 to form a compound fluid (fracturing base fluid).
  • the mixing fluid in the mixing equipment 74 and the sand in the sand supply equipment 72 can (usually at different times and through different inlets) enter the sand mixing equipment 76 for mixing to form the sand-carrying fracturing fluid required for the operation. .
  • the low-pressure fracturing fluid formed by the sand mixing equipment 76 is transported to the liquid inlet of the plunger pump 11 of each electric-driven fracturing equipment 100a via the upper fluid manifold 34.
  • the chemical addition device 75 may supply reagents such as chemical additives directly to the sand mixing device 76 without passing through the mixing device 74 , or may supply them separately to both the mixing device 74 and the sand mixing device 76 as needed. Reagents.
  • the liquid supply device 73 may supply liquid to the sand mixing device 76 via the mixing device 74 or without the mixing device 74 .
  • the sand mixing equipment 76 can be connected to any combination of the sand supply equipment 72, the liquid supply equipment 73, the mixing equipment 74 and the chemical addition equipment 75, and can receive supplies from any of these combinations as needed.
  • the mixing device 74 can be omitted.
  • chemical addition equipment 75 can be omitted.
  • the above-mentioned sand supply equipment 72, liquid supply equipment 73, mixing equipment 74, chemical addition equipment 75 and sand mixing equipment 76 are not all necessary. Their functions, quantities, combinations and layouts can be determined according to Working fluids are selected and designed according to their specific needs. For example, at least part of the functionality of the mixing device 74 may be integrated into the sand mixing device 76 .
  • the well site layout also includes areas for power generation and supply.
  • the wellsite layout may also include a fuel transportation device 51 and a pressure regulating device 53 and/or a gasification device 55 for processing the fuel (slightly later This will be described later with reference to Figure 13).
  • the wellsite layout may also include purification equipment 54 (described later with reference to Figures 13 and 14). Each of the pressure regulating equipment 53, purification equipment 54, and gasification equipment 55 can be installed inside or outside the power generation and power supply area.
  • the power generation and power supply area may include the main power supply system 3a and the auxiliary power supply system 3b described above.
  • the main power supply system 3a supplies power to the main electrical devices in the well site, for example, mainly to the motor used to drive the plunger pump in the electric fracturing equipment.
  • the auxiliary power supply system 3b supplies power to auxiliary power devices in the well site, for example, mainly to power auxiliary power devices such as cooling motors, lubrication motors, lighting systems, sensing systems, and control systems in electric fracturing equipment.
  • the auxiliary power supply system 3b can supply power to the main power supply system 3a.
  • the main power supply system 3a can supply power to the auxiliary power consumption devices in the well site.
  • the power generation and power supply area may also include the switch cabinet trailer 41 described above.
  • the well site layout may be provided with instrument equipment 71, which can remotely control the electric drive fracturing equipment 100a, liquid distribution area, power generation and power supply area, etc. Remote control can be achieved through wired communication or wireless communication.
  • the instrument equipment 71, sand supply equipment 72, liquid supply equipment 73, mixing equipment 74, chemical addition equipment 75, sand mixing equipment 76, etc. can use the power provided by the main power supply system 3a.
  • the switch cabinet trailer 41 may include any combination selected from the following as needed: a main switch, a main transformer and a main frequency converter for the main power supply system 3a, and an auxiliary switch, an auxiliary transformer, an auxiliary switch for the auxiliary power supply system 3b. Frequency converter, etc.
  • Each of the main frequency converter and the auxiliary frequency converter can be an inverter unit or any combination of an inverter unit, a rectifier unit, and a filter unit.
  • An optional combination of the main switch, the main transformer and the main frequency converter constitutes the main power distribution system of the switch cabinet trailer 41 .
  • An optional combination of auxiliary switches, auxiliary transformers and auxiliary frequency converters constitutes the auxiliary power distribution system of the switch cabinet trailer 41 .
  • the main power supply system 3a may be, for example, a gas turbine generator, which includes a gas turbine engine and a generator.
  • the gas turbine generator directly emits high voltage, which is sent to multiple electric-driven fracturing equipment 100a, instrument equipment 71, fluid distribution areas, etc. through the main switch, main transformer and main frequency converter of the switch cabinet trailer 41.
  • the auxiliary power supply system 3b may be, for example, a power generation device that emits low voltage and delivers it to multiple electric-driven fracturing equipment 100a through the auxiliary switch, auxiliary transformer and auxiliary frequency converter of the switch cabinet trailer 41.
  • Figure 12 shows an example of a control system in a well site layout of the present invention.
  • the well site layout includes instrument equipment 71, main power supply system 31a, auxiliary power supply system 31b, electric fracturing equipment trailer 112 and power distribution equipment 42.
  • the instrument equipment 71 includes a centralized control system 81
  • the main power supply system 31a includes a main power supply system control system 82
  • the auxiliary power supply system 31b includes an auxiliary power supply system control system 84
  • the electric drive fracturing equipment trailer 112 includes an electric drive fracturing equipment control system 83
  • Power distribution equipment 42 includes a power distribution equipment control system 85 .
  • a video system 86 and a sensor system 87 are also provided.
  • Video system 86 includes, for example, at least one video capture camera.
  • Sensor system 87 includes, for example, at least one sensor.
  • the instrument equipment 71 installed in the well site is equipped with a centralized control system 81 inside.
  • the centralized control system includes multiple input, output, calculation, display, communication, and storage modules, and can communicate with the main/auxiliary power supply system, electric drive voltage, etc. It communicates with the control systems in the fracturing equipment and power distribution equipment to realize remote centralized control of the main/auxiliary power supply system, electric drive fracturing equipment, and power distribution equipment.
  • the centralized control system can also use video collection cameras, sensors, etc. installed at key locations on the well site to achieve video collection of key locations on the well site and collection of environmental parameters such as temperature, smoke, gas content, etc. in key areas. .
  • the instrument equipment 71 emergency shutdown or emergency shutdown of the above-mentioned main/auxiliary power supply system, electric fracturing equipment, and power distribution equipment can be realized.
  • the instrument device 71 can promptly display alarm information such as sounds or images.
  • the cooperation between the above control systems can also be used to realize the emergency shutdown or shutdown of a certain type of equipment, a certain piece of equipment, or all equipment through automatic judgment of the pumping system.
  • the well site layout described above can also be applied to the situation where fracturing equipment is replaced by pumping equipment or cementing equipment, and the specific layout can be changed accordingly.
  • FIG. 13 shows a schematic block diagram of a supply path for supplying fuel to a fuel-using generator.
  • a transport device 51 and a processing device 52 are provided on the supply path of the fuel 50 .
  • the fuel 50 is transported to the processing device 52 via the transport device 51, and is supplied as a power source to the engines of each of the main power supply system 3a as the main power generation device and/or the auxiliary power supply system 3b as the auxiliary power generation device after being processed by the processing device 52. .
  • Fuel can be in liquid, solid, or gaseous form.
  • the fuel may be, for example, CNG (compressed natural gas), LNG (liquid natural gas) or may be such as wellhead gas or pipeline gas.
  • the corresponding processing device 52 may include a pressure regulating device 53. The CNG is adjusted to a certain pressure by the pressure regulating device 53 and then supplied to the main power generation equipment 3a (such as the gas turbine of a gas turbine generator) and the auxiliary power generation equipment. 3b (such as a piston internal combustion engine for a piston internal combustion engine generator).
  • the corresponding processing device 52 may include a gasification device 55. After the LNG is gasified by the gasification device 55, the gaseous fuel required for power generation is provided to the main power generation device 3a and the auxiliary power generation device 3b.
  • the corresponding treatment device 52 may include a purification device 54.
  • various above-mentioned processing devices may be provided in combination, so as to ensure that after the fuel is processed, fuel with a certain degree of purity and a certain pressure can be provided to the engine, etc., so as to meet the main/auxiliary power generation requirements. Equipment fuel requirements. Therefore, the choice of fuel 50 is flexible, ensuring that the wellsite layout can adapt to a wider range of conditions. For example, when a gas turbine generator replaces a traditional diesel generator, exhaust emissions can be reduced and fuel costs can be reduced.
  • FIG. 14 is a diagram showing a specific structural example of the purification equipment 54 used in the processing device 52 shown in FIG. 13 .
  • the purification equipment 54 includes: a filter 10; a compressor 12; an air cooler 13; a gas-liquid separator 14; a dehydration membrane separator 15; and a deheavy hydrocarbon membrane separator 16.
  • the inlet end of the filter 10 is connected to the wellhead gas pipeline, and the air outlet of the filter 10 is connected to the air inlet end of the compressor 12 to provide filtered wellhead gas to the compressor 12 .
  • the bottom of the filter 10 is also provided with a liquid or solid discharge port to discharge liquid droplets or solid particles generated during the filtration process.
  • the outlet end of the compressor 12 is connected to the inlet end of the air cooler 13, and the outlet end of the air cooler 13 is connected to the inlet of the gas-liquid separator 14.
  • the air cooler 13 cools the gas output after being compressed by the compressor 12 and provides it to the gas-liquid Separator 14.
  • the gas outlet of the gas-liquid separator 14 is connected to the inlet of the dehydration membrane separator 15 .
  • the gas-liquid separator 14 separates the gas from the air cooler 13 into gas and liquid, and the resulting gas is output to the dehydration membrane separator 15 .
  • the bottom of the gas-liquid separator 14 is also provided with a liquid discharge port to discharge the condensate generated during the gas-liquid separation process.
  • the gas outlet of the dehydration membrane separator 15 is connected to the inlet of the deheavy hydrocarbon membrane separator 16 .
  • the dehydration membrane separator 15 and the deheavy hydrocarbon membrane separator 16 perform dehydration treatment and deheavy hydrocarbon treatment on the incoming gas, and the outlet of the deheavy hydrocarbon membrane separator 16 discharges the purified gas to the outside.
  • the dehydration membrane separator 15 may be provided with, for example, two gas outlets, one of which is connected to the inlet of the deheavy hydrocarbon membrane separator 16, and the other gas outlet is connected to the wellhead gas pipeline to recycle the gas that needs to be dehydrated multiple times. Feeds to wellhead gas line. Each of these two air outlets can be opened/closed. For example, when feeding gas that requires repeated dehydration treatment, the one gas outlet of the dehydration membrane separator 15 connected to the inlet of the deheavy hydrocarbon membrane separator 16 is closed. If necessary, the heavy hydrocarbon membrane separator 16 may also be provided with two gas outlets similar to the dehydration membrane separator 15 .
  • the wellhead gas purification device adopts a serial membrane separation device.
  • the dehydration membrane separator and the heavy hydrocarbon removal membrane separator are used to achieve dehydration treatment and heavy hydrocarbon removal treatment respectively.
  • the entire purification device has a simple structure, is easy to assemble, and occupies an area of The small area, no additional material and reagent consumption, and low operating costs provide a guarantee for reducing the footprint of the entire well site layout system and reducing operating costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

一种泵送系统,其包括电驱压裂设备(8)和多电源系统。电驱压裂设备(8)包括:柱塞泵;用于驱动柱塞泵的主电动机(5);和至少一个辅助用电装置(6)。多电源系统对电驱压裂设备(8)供电。多电源系统包括至少一个主供电电源和至少一个辅助供电电源。主供电电源向主电动机(5)供电,辅助供电电源向至少一个辅助用电装置(6)供电。还提供了一种通过把上述泵送系统中的电驱压裂设备(8)替换为电驱泵送设备或电驱固井设备而得到泵送系统。此外,还提供了包括泵送系统的井场布局以及用于泵送系统的控制方法。

Description

泵送系统、井场布局及用于泵送系统的控制方法
相关申请的引用
本公开要求于2022年04月27日向中华人民共和国国家知识产权局提交的第202210451262.4号中国专利申请的优先权和权益,在此将其全部内容以援引的方式整体并入文本中。
技术领域
本发明一般涉及油气田压裂增产领域,具体涉及泵送系统、井场布局及用于泵送系统的控制方法。
背景技术
用电动机取代了柴油机的现有电驱压裂/泵送/固井设备通常包括:柱塞泵;用于驱动柱塞泵的电动机(主电动机);以及诸如散热装置(含散热用辅助电动机)、润滑装置(含润滑用辅助电动机)和控制系统等其他辅助用电装置。在现有的泵送系统或井场布局中,除了含有上述电驱压裂/泵送/固井设备之外,一般还需要布置有用于向该电驱压裂/泵送/固井设备供电的供电系统。例如在电驱压裂作业的泵送系统或井场布局中,根据作业工况的不同,压裂作业时的总用电功率一般在0~35MW(兆瓦)之间,井场通常会配备具有相应输出功率的供电系统作为电力来源。
一方面,因为一般压裂作业过程中的用电功率非常大,而油气田井场大多数都位于远离市区或发电厂的地方,供电基础设施非常薄弱,所以面临着现场缺少供电电网的问题,于是,在很多井场中需要配备有发电设备以给井场中的用电装置进行供电。另一方面,现有井场中即使可以采用发电设备作为供电系统,但是也存在如下一些问题:大功率发电机的单机功率(例如35MW)一般是为了满足井场最大用电需求而设计的,但是井场中的大功率用电装置(例如20MW~30MW)通常为间歇性作业(例如,在压裂作业过程中的连续大功率作业时间为2小时左右,空闲间歇阶段为十几分钟到几个小时),井场各种辅助用电装置在压裂作业的空闲间歇阶段中的用电功率例如为0.2MW~5MW,而单机功率例如为35MW的大功率发电机处于怠速过程中仍然会耗费大量燃料,于是井场用电效率低、经济性差。另外,也曾经提出了使用多种电源(比如电网和发电机)的组合方式,但是现有的多电源供电系统缺少统一的控制调配装置,无法满足井场大功率负载波动的工况,因此将会导致发电机在待机时处于高能耗低输出模式,同时也增加了操作和使用的难度。
发明内容
[要解决的技术问题]
本发明是鉴于上述情形而做出的,本发明的一个目的是提供一种含有由多电源(两个以上电源)系统供电的电驱压裂设备的泵送系统,其能够解决当现有技术中采用单电源系统供电时如果该单电源系统出现故障则无法保障电驱压裂设备的正常工作的问题,此外,本发明还通过采用辅助供电系统,能够在压裂作业间歇中更加高效和灵活地供电,解决了现有技术中的单电源系统不能满足辅助用电装置的用电需求的问题。
本发明的另一个目的是提供一种含有由多电源(两个以上电源)系统供电的电驱泵送设备的泵送系统。本发明的又一个目的是提供一种含有由多电源(两个以上电源)系统供电的电驱固井设备的泵送系统。本发明的再一目的是提供一种含有上述任一种泵送系统的井场布局。本发明的另外一目的是提供一种用于上述泵送系统的控制方法。
[解决问题的技术方案]
根据本发明一个实施方案的泵送系统包括电驱压裂设备和多电源系统。所述电驱压裂设备包括:柱塞泵;用于驱动所述柱塞泵的主电动机;和至少一个辅助用电装置。所述多电源系统对所述电驱压裂设备供电。其中,所述多电源系统包括至少一个主供电电源和至少一个辅助供电电源。所述主供电电源向所述主电动机供电,并且所述辅助供电电源向所述至少一个辅助用电装置供电。在此情况下,所述电驱压裂设备的工作液体是压裂液,所述柱塞泵将压裂液加压后输送到地下以压裂地层。
根据本发明一个实施方案的泵送系统是通过将上述泵送系统中的所述电驱压裂设备替换为电驱泵送设备而得到的,其中,所述电驱泵送设备的工作液体是泵送用液体,所述柱塞泵将泵送用液体加压后输送到井下以泵送或驱动井下工具。
根据本发明一个实施方案的泵送系统是通过将上述泵送系统中的所述电驱压裂设备替换为电驱固井设备而得到的,其中,所述电驱固井设备的工作液体是水泥浆,所述柱塞泵将水泥浆加压后输送到至少一个井筒内以固定所述井筒。
根据本发明一个实施方案的井场布局包括上述任一种泵送系统,并且在所述主供电电源和/或所述辅助供电电源使用燃料进行发电的情况下,所述井场布局还包括用于运输燃料的运输装置和用于处理燃料的处理装置。取决于所用燃料的来源或种类,所述处理装置包括气体燃料调压装置、液体燃料气化装置、燃料净化装置中的至少一种。
根据本发明一个实施方案的井场布局包括上述任一种泵送系统,且还包括配液区域。所述配液区域包括:与所述柱塞泵的进液口连通的混砂设备;用于将砂供给至所述混砂设备的供砂设备;以及用于将液体供给至所述混砂设备的供液设备。所述混砂设备将来自所述供砂设备的砂和来自所述供液设备的液体混合,以得到工作液体且将其供给到所述柱塞泵的所述进液口。
根据本发明一个实施方案的井场布局包括上述任一种泵送系统,且其中多个所述电驱压裂/泵送/固井设备各者的所述柱塞泵分别具有与自身的进液口连通的上液管汇,并且所述多个电驱压裂/泵送/固井设备各者的所述柱塞泵的排液口共用与井口连通的排出管汇。而且,所述上液管汇和所述排出管汇都集成于至少一个管汇设施上。
根据本发明一个实施方案的井场布局包括上述任一种泵送系统,且还包括:仪表设备及设置于所述仪表设备中的集中控制系统;设置于所述主供电电源中的控制系统;设置于所述辅助供电电源中的控制系统;设置于所述电驱压裂/泵送/固井设备中的控制系统;配电设备及设置于所述配电设备中的控制系统,所述主供电电源和所述辅助供电电源经由所述配电设备向所述电驱压裂/泵送/固井设备供电;用于井场中的视频采集的视频系统;以及用于井场中的环境参数采集的传感器系统。所述传感器系统、所述视频系统、所述配电设备中的所述控制系统、所述电驱压裂/泵送/固井设备中的所述控制系统、所述辅助供电电源中的所述控制系统和所述主供电电源中的所述控制系统分别向所述集中控制系统反馈信息且分别由所述集中控制系统提供控制信号。
根据本发明一个实施方案的用于泵送系统的控制方法,其中,所述泵送系统包括电驱压裂/泵送/固井设备和多电源系统。所述电驱压裂/泵送/固井设备包括:柱塞泵;用于驱动所述柱塞泵的主电动机;和至少一个辅助用电装置。所述多电源系统对所述电驱压裂/泵送/固井设备供电,且包括至少一个主供电电源和至少一个辅助供电电源。所述控制方法包括:利用所述主供电电源向所述主电动机供电,且利用所述辅助供电电源向所述至少一个辅助用电装置供电。
[本发明的有益效果]
(1)ESG(Environment,Society and Governance(环境、社会和治理))优势:本发明的主供电 电源和/或辅助供电电源可以采用发电设备,本发明可以在全部发电设备中都采用天然气,而且主发电设备在压裂作业的空闲间隙中可以停机等待,因此,能够减少待机费用和待机排放。
(2)用电更灵活更高效:在压裂作业的间歇中,本发明的辅助供电电源可以在较高的用电效率下满足空调系统、照明系统、润滑系统、控制系统等辅助用电系统(这些辅助用电系统都是低功率(例如0~5MW)用电装置)的用电需求,与现有技术的只有单一供电电源的方案相比而言,保障了辅助用电系统的用电灵活性和高效性。
(3)施工供电更可靠:本发明利用辅助供电电源持续为辅助用电系统供电,即使主发电设备突然断电,辅助供电电源也能保障辅助用电系统的正常工作,避免出现失控危险。
(4)涡轮机运行更安全:与常规的黑启动做法不同,本发明的双电源供电系统中的用于给涡轮机发电设备(主发电设备)供电的辅助供电电源不会在涡轮机启机后停止供电,所以当涡轮机异常停机时,辅助供电电源可以随时响应涡轮机的用电需求,避免涡轮机的损伤。
(5)本发明在有些实施例中提出了让主供电电源还经过变压器降压后向辅助用电装置供电的方案,供电的渠道更多,供电的稳定性更高。
附图说明
图1是根据现有技术的含有由单电源系统供电的电驱压裂设备的泵送系统的示例的框图。
图2A是根据本发明一个实施方案的采用了多电源系统的泵送系统的第一示例。
图2B是根据本发明一个实施方案的采用了多电源系统的泵送系统的第二示例。
图2C是根据本发明一个实施方案的采用了多电源系统的泵送系统的第三示例。
图2D是根据本发明一个实施方案的采用了多电源系统的泵送系统的第四示例。
图2E是根据本发明一个实施方案的采用了多电源系统的泵送系统的第五示例。
图3是根据本发明的泵送系统的示意性供电路径的一个示例。
图4是图3所示的示意性供电路径的一个变形例。
图5A是根据本发明的泵送系统的示意性供电路径的另一个示例。
图5B是图5A所示的示意性供电路径的一个变形例。
图6是作为根据本发明的电驱压裂设备的一个示例的集成于承载架上的电驱压裂设备的立体图。
图7是根据本发明的电驱压裂设备所使用的双电源供电系统的供电路径的示意性框图。
图8是为了实现图7所示的供电路径而采取的电路图的一个示例。
图9是图8所示的电路图的一个变形例。
图10是本发明的含有多个电驱压裂设备的井场布局的一个示例。
图11是对应于图10所示的井场布局的示意性框图。
图12示出了本发明的井场布局中的各种控制系统的示例。
图13示出了用于为使用燃料的发电机供给燃料的供给路径的示意性框图。
图14是示出了在图13所示的处理装置中所采用的净化设备的具体构造示例。
具体实施方式
下文中,将参照附图来详细说明本发明的实施方案。将会按照下列顺序来进行说明。
1.本发明的含有由多电源系统供电的电驱压裂设备的泵送系统(参照图2A至图2E)
2.利用开关柜拖车实现的供电路径(参照图3至图5B)
3.一体化的电驱压裂设备及其供电电路(参照图6至图9)
4.井场布局及控制系统(参照图10至图12)
5.燃料供给及燃料处理(参照图13至图14)
下面,首先说明现有技术的概况。
图1是根据现有技术的含有由单电源系统供电的电驱压裂设备的泵送系统的示例。
在图1中,供电系统3将电压供给到配电系统4,经由配电系统4配送到电驱压裂设备8中的主电动机5以及至少一个辅助用电装置6。主电动机5用于驱动电驱压裂设备8中的柱塞泵(未图示)。至少一个辅助用电装置6例如是电驱压裂设备8中的散热电动机、润滑电动机、控制系统等。
从图1所示的含有由单电源系统供电的电驱压裂设备的泵送系统可知,现有技术一般采用了单个供电系统,其既给电驱压裂设备中的主电动机供电又给电驱压裂设备中的其他辅助用电装置供电,用电效率低、经济性差,不能满足辅助用电装置的用电需求。
[1.本发明的含有由多电源系统供电的电驱压裂设备的泵送系统]
图2A是根据本发明一个实施方案的采用了多电源系统的泵送系统的第一示例。在图2A中,主供电系统3a(其例如可以提供10kV以上的高电压)经由主配电系统4a向电驱压裂设备8中的主电动机5供电,而且,辅助供电系统3b(其例如可以提供小于1kV的低电压)经由辅助配电系统4b向电驱压裂设备8中的至少一个辅助用电装置6供电。至少一个辅助用电装置6的示例包括(但不限于):控制系统;诸如制冷和制热等空调系统(其含有诸如压缩机电机、风扇电机、导风电机、冷却液泵电机等辅助电动机);润滑系统(其含有用于驱动润滑油泵的辅助电动机);照明系统;传感器系统;以及用于驱动各个辅助电动机的变频系统等。各个辅助电动机可以通过对压缩机、风扇或者诸如冷却液泵或润滑油泵等泵部件进行驱动来实现散热、润滑、制冷、加热等作用。
主供电系统3a可以采用大功率供电系统,其例如可以包括电网和发电机中的至少一种。大功率供电系统的输出功率的范围例如可以是3MW~60MW。发电机可以是使用水力、风力、蒸汽等的发电机,或者可以是使用燃料的发电机(例如在本发明中优选为燃气轮发电机等)。对于使用燃料的发电机而言,燃料可以是固体燃料、液体燃料、气体燃料或者它们的组合。燃料从专用的燃料供应机构被运输、储存、处理且供给到使用燃料的发电机。作为一个示例,主供电系统3a可以是主发电设备,主发电设备可以由1台或者多台发电机组成,主发电设备所含的发电机的单机功率通常在3MW以上。例如,由1台或者多台发电机的组合提供的功率范围可以是3MW~60MW,供电电压例如可以达到10kV以上,以满足压裂井场中的大规模用电需求。例如,主发电设备可以是单台35MW的燃气轮发电机。作为一个示例,主发电设备可以包括至少一台发电机与储能装置的组合,例如可以是多台5MW发电机与储能装置相结合,或者可以是一台35MW发电机与储能装置相结合。利用这样的组合,一方面,主发电设备的供电渠道更多且供电更灵活,另一方面,储能装置可以储存一部分来发电机的电力,藉此可以发挥最佳供电效率。储能装置内的储能单元的示例包括:诸如钠离子电池、锂离子电池等化学电池;超级电容;或者氢燃料电池等。
辅助供电系统3b可以采用小功率供电系统,其例如可以包括内燃机(例如活塞式内燃机或燃气轮机)发电设备、井场周边电网、储能装置和太阳能发电板中的至少一种。小功率供电系统的输出功率例如为0.2MW以上且5MW以下。内燃机发电设备包括内燃机和由该内燃机驱动以进行发电 的发电机。内燃机例如可以是柴油发动机、燃气发动机、燃气轮发动机、或氢燃料发动机等,其燃料类型包括燃油、天然气、甲醇、氢气、含氢气的混合物(例如天然气与氢气的混合物等)、气态和液态燃料的混合物等等。作为一个示例,辅助供电系统3b可以是辅助发电设备,其可以经由多个开关等连接到相应的多个辅助用电装置。作为一个示例,辅助发电设备可以是一台发电机或者可以是多台发电机的组合,例如通常可以由少于2台发电机构成。辅助发电设备所含的发电机的单机功率例如不超过5MW,供电电压例如低于1kV。作为又一示例,辅助发电设备可以采用由多台内燃机驱动的发电机。作为另一示例,辅助发电设备可以是至少一台发电机(例如0.5MW内燃机发电机)与储能装置的组合。这样的组合也能获得与前述的主发电设备类似的效果。
根据本发明的第一示例,由于采用辅助供电系统给至少一个辅助用电装置供电,与现有技术中仅采用单电源系统的情况相比,用电更灵活,用电效率更高。
图2B是根据本发明一个实施方案的采用了多电源系统的泵送系统的第二示例。图2C是根据本发明一个实施方案的采用了多电源系统的泵送系统的第三示例。图2D是根据本发明一个实施方案的采用了多电源系统的泵送系统的第四示例。
图2B所示的第二示例与图2A的区别在于,辅助供电系统3b除了向电驱压裂设备8中的至少一个辅助用电装置6供电之外,还向主供电系统3a供电,从而代替了传统的黑启动。传统的黑启动是指:在主供电系统3a例如为燃气轮发电机的情况下,该燃气轮发电机必须自身配备有小型发电设备,该小型发电设备通常用于燃气轮发电机的启动、散热、润滑等,该小型发电设备对无自启动能力的燃气轮发电机在例如井场停电等情况下进行启动的方式称为黑启动。这样的小型发电设备通常不是持续工作的,因此不如本发明第二示例那样能够利用辅助供电系统3b的持续供电随时满足主供电系统3a的启动、散热和润滑等用电需求。因此本发明第二示例能够让主供电系统3a的运行更便捷、更安全。
图2C所示的第三示例与图2A的区别在于,主供电系统3a除了向电驱压裂设备8中的主电动机5供电之外,还能够经过变压器7降压后向电驱压裂设备8中的至少一个辅助用电装置6供电。根据本发明的第三示例,对至少一个辅助用电装置6实施了两路供电,无论其中的哪一路供电(主供电系统或辅助供电系统)发生故障,另一路供电(辅助供电系统或主供电系统)依然能保障辅助用电装置的正常工作。因此,供电渠道更多,供电也更稳定和可靠。在变压器7与至少一个辅助用电装置6之间可以设置有通断切换开关。利用该通断切换开关,使得辅助供电电源3b向至少一个辅助用电装置6的供电优先于主供电电源3a向至少一个辅助用电装置6的供电。
图2D所示的第四示例是通过将图2B与图2C进行组合而得到的示例。请注意,在采用了变压器7来进行调压(调整电压)的情况下,变压器7的位置是可变动的。例如在图2C所示的第三示例中,变压器7位于主配电系统4a与辅助配电系统4b之间且独立地设置着;而在图2D所示的第四示例中,变压器7集成于例如主配电系统4a中。当然,根据井场实际设计需要,变压器7也可集成于辅助配电系统4b中,或者直接连接于主供电系统3a与至少一个辅助用电装置6之间,或者直接连接于主配电系统4a与至少一个辅助用电装置6之间。此外,变压器7也可在至少一个辅助用电装置6的上游跟相应的辅助用电装置6集成在一起。本发明的变压器7的安装位置不限于这里给出的示例。根据本发明的第四示例具有前述第二示例和第三示例的优点。
图2E是根据本发明一个实施方案的采用了多电源系统的泵送系统的第五示例。图2E所示的第五示例与图2D的区别在于,将图2D的泵送系统中的一个电驱压裂设备替换成多个电驱压裂设备。具体地,主供电系统3a和辅助供电系统3b都用于向多个电驱压裂设备8 1~8 n(未图示)供电。多 个电驱压裂设备8 1~8 n各者都包括:主电动机5 1~5 n;以及与主电动机5 1~5 n对应地设置的至少一个辅助用电装置6 1~6 n。根据本发明的第五示例,由于设置有多个电驱压裂设备,一方面,它们可以以任选的数量组合起来对一个井口或多个井口进行作业,另一方面,即使某个电驱压裂设备发生故障,其他电驱压裂设备仍能继续工作,因此能够提高压裂作业效率。
本发明的多电源系统含有两个以上的供电系统,虽然图2A至图2E中仅仅示出了主供电系统3a和辅助供电系统3b这两个供电系统,但是主供电系统3a和辅助供电系统3b都不限于一个。本发明通过采用多电源供电模式,充分保障了电驱压裂设备的正常工作,提高了用电灵活性和用电效率。
[2.利用开关柜拖车实现的供电路径]
图3是根据本发明的泵送系统的示意性供电路径的一个示例,其中主供电系统3a采用了使用燃料的发电机3a′,辅助供电系统3b采用了内燃机发电机组3b′。请注意,图3对应于在图2B所示的泵送系统中设置有多个电驱压裂设备的情况。图3中的实线箭头示出了供电路径。
具体地,图3所示的示意性供电路径包括燃料供应厂111、使用燃料的发电机3a′、内燃机发电机组3b′、开关柜拖车41以及至少一个(图3中示出了(但不限于)7个)电驱压裂设备拖车112。各个电驱压裂设备拖车112上搭载有至少一个电驱压裂设备8(例如,也可参考稍后说明的如图6所示的电驱压裂设备100a)。各个电驱压裂设备拖车112上有两组进线,一组进线用于向电驱压裂设备中的主电动机供电,另一组进线用于向电驱压裂设备中的至少一个辅助用电装置供电。
在图3的示例中,虽然未图示燃料供给路径,但是燃料供应厂111将燃料提供给使用燃料的发电机3a′。此外,主配电系统4a(例如参见图2B)包括设置于开关柜拖车41上的第一开关411、与第一开关411连接的第一输电线缆和连接于第一输电线缆上的多个第二开关412,并且辅助配电系统4b(例如参见图2B)包括设置于开关柜拖车41上的第三开关413、与第三开关413连接的第二输电线缆和连接于第二输电线缆上的多个第四开关414。
使用燃料的发电机3a′是通过把燃料的燃烧能转化为机械能、且利用该机械能进行发电的装置,其将所产生的电力(例如10kV以上)经由第一开关411供给到第一输电线缆,然后从第一输电线缆经由多个第二开关412分别供给到相应的电驱压裂设备拖车112上的电驱压裂设备(具体地,电驱压裂设备的主电动机)或其他装置。图3中的尚未使用的第二开关412可以用作将要连接至其他装置的备用开关。作为多个第二开关412的示例,在图3中例如示出了(但不限于)九个第二开关412。
内燃机发电机组3b′利用内燃机驱动发电机来进行发电,其将所产生的电力(例如低于1kV)经由第三开关413供给到第二输电线缆,然后从第二输电线缆经由多个第四开关414分别供给到相应的电驱压裂设备拖车112上的电驱压裂设备(具体地,电驱压裂设备中的至少一个辅助用电装置)或其他装置。此外,内燃机发电机组3b′还可以向使用燃料的发电机3a′供电,以代替传统的黑启动。另外,内燃机发电机组3b′还可以向燃料供应厂111供电。图3中的尚未使用的第四开关414可以用作将要连接至其他装置的备用开关。作为多个第四开关414的示例,在图3中例如示出了(但不限于)十个第四开关414。
本示例的辅助供电系统可以向主供电系统供电,作为一个例子,该供电可以是持续的。由于本示例的主供电系统和辅助供电系统都是利用发电机来发电,本发明解决了油气田井场大多数处于偏远地方而缺少电网的问题。
图4是图3所示的示意性供电路径的一个变形例,其中主供电系统3a和辅助供电系统3b采用 了燃气轮发电机3a″和燃气轮发电机3b″。相应地,燃气从燃气供应机构113经过运输和/或处理后供给到燃气轮发电机3a″和3b″。根据本变形例,在燃气是天然气的情况下,能够比其他燃料更加经济和环保。作为一个可供选择的示例,在压裂作业的空闲间隙中,可以让作为主供电系统的燃气轮发电机3a″停机等待。作为一个可供选择的示例,燃气轮发电机3b″可以经由辅助变压器(例如10kVA容量规格)将380V以上的交流电提供到第二输电线缆。该辅助变压器并非是必需的。其他方面与图3类似,不再赘述。
图5A是根据本发明的泵送系统的示意性供电路径的另一个示例,其与图4的区别在于,在第一输电线缆的一个第二开关412与第二输电线缆之间还设置有变压器7(主变压器)和第五开关416。由燃气轮发电机3a″供给到第一输电线缆的电力除了可以经由多个第二开关412供给到电驱压裂设备中的主电动机之外,还可以经过第二开关412、变压器7和第五开关416供给到第二输电线缆,然后经由多个第四开关414供给到电驱压裂设备中的至少一个辅助用电装置。变压器7的容量规格例如在0.5MVA以上,其可以将高电压源的电力变压成低电压源,从而供给到辅助用电装置,提高了现场用电的安全性。如前所述,本示例中通过对辅助用电装置实施了两路供电,用电选择的渠道增多了,因而提高了用电灵活性。在本发明中,连接于第一输电线缆的第二开关412与第二输电线缆之间的变压器7及第五开关416不限于一组。
图5B是图5A所示的示意性供电路径的一个变形例,其中辅助供电系统3b是储能装置3b″′,或者是储能装置3b″′和发电机的组合(未图示)。作为一种示例,储能装置3b″′可以提前被充电。作为一种示例,储能装置3b″′可以储存一部分来自与其组合的发电机的电力,藉此发电机可以发挥最佳供电效率。具体地,当发电机的发电功率大于用电装置的用电功率(例如某一设定值)时,由发电机产生的一部分电力就可以储存到储能装置中,而当用电装置的用电功率超过了设定值时,储能装置就可以向外供电,以满足临时的超额用电需求。
上述开关411、412、413、414、416以及变压器7都可以通过稍后所说明的控制系统(例如参见图12中的各种控制系统81、82、83、84、85等)的协作来予以控制,以提高供电路径的可调配性,实现灵活的用电选择。
在本发明中,作为一个示例,辅助供电系统3b向至少一个辅助用电装置6或其他用电装置的供电,可以与主供电系统3a向主电动机5的供电是同时的或者不同时的,在这种情况下,优选地,辅助供电系统3b的供电开始得比较早。例如,在主供电系统3a是燃气轮发电机的情况下,辅助供电系统3b可以先向该燃气轮发电机的燃气轮(涡轮机)供电,以启动该燃气轮发电机使其开始工作。例如,在燃气轮发电机正在工作的时候,辅助供电系统3b也可以持续向该燃气轮发电机的燃气轮供电,以免燃气轮因停电而异常停机受损。
作为一个示例,辅助供电系统3b向至少一个辅助用电装置6的供电,可以与主供电系统3a向至少一个辅助用电装置6的供电是同时的或者不同时的,在这种情况下,优选地,辅助供电系统3b向至少一个辅助用电装置6的供电可以优先于主供电系统3a向至少一个辅助用电装置6的供电而被选择。这里的“优先于”是指:主供电系统3a向辅助用电装置6提供的电力被用作辅助供电系统3b向辅助用电装置6提供的电力的备用电力。仅当辅助供电系统3b无法正常供电时,通过切换控制,才开始使用由主供电系统3a向辅助用电装置6提供的电力。
在图3至图5B中,在每个电驱压裂设备拖车112上搭载有多个电驱压裂设备8的情况下,各个电驱压裂设备8上可以设有两组接线端子,其中,第一个电驱压裂设备8的一组接线端子经由高压进线、低压进线分别与供电系统3a、3b电气连接,接收来自供电系统3a、3b的电力,另一组接 线端子用于给相邻的下一个电驱压裂设备8供电。第二个电驱压裂设备8的一组接线端子接收来自相邻的上一个电驱压裂设备8的电力,另一组接线端子用于给相邻的下一个电驱压裂设备8供电,依次类推。由此,可以实现仅需要一根高压进线和一根低压进线,就能直接供电给多个电驱压裂设备8,简化了电路接线,安装快捷。当然,多个电驱压裂设备8也可以相互独立地接收来自供电系统3a、3b的电力,以便发生故障时能够独立地报警、检修或更换。
[3.一体化的电驱压裂设备及其供电电路]
图6是作为根据本发明的电驱压裂设备的一个示例的集成于承载架上的电驱压裂设备的立体图。图6所示的电驱压裂设备100a含有变频调速一体机且使用该变频调速一体机驱动柱塞泵。
具体地,如图6所示,电驱压裂设备100a包括:承载架67;安装于承载架67上的变频调速一体机310;以及安装于承载架67上且集成地连接至变频调速一体机310的柱塞泵11。变频调速一体机310包括电动机21和集成地安装于电动机21上的变频系统40。变频系统40可以是逆变装置,或者可以包括整流装置和逆变装置,或者可以包括整流装置、滤波装置和逆变装置。变频调速一体机310中的电动机21的传动输出轴可以直接连接至电驱压裂设备100a的柱塞泵11的动力输入轴。它们二者可以通过花键连接,例如,电动机21的传动输出轴可以具有内花键或外花键或平键或锥形键,柱塞泵11的动力输入轴可以具有与上述键适配的外花键或内花键或平键或锥形键。电动机21的传动输出轴可以具有用于保护的外壳,柱塞泵11的动力输入轴可以具有用于保护的外壳,这二者的外壳可以通过螺钉、螺栓、铆接、焊接、或者法兰等方式而被固定连接在一起。该法兰可以是圆形或方形等其他形式。
在图6中,假设电动机21的传动输出轴水平地向外延伸的方向(从变频调速一体机310朝着柱塞泵11的方向)为X方向,与X方向垂直的向上方向为Y方向,与X方向及Y方向都正交且垂直于图6的纸面而向内的方向为Z方向。
电驱压裂设备100a还可以包括控制柜66。例如,控制柜66布置于变频调速一体机310的在-X方向上的一个端部处,电驱压裂设备100a的柱塞泵11布置于变频调速一体机310的在X方向上的另一个端部处。本发明并不限制控制柜66、变频调速一体机310和柱塞泵11的相对位置,只要它们的布局能够使得该电驱压裂设备100a能够高度集成就行了。从主供电系统3a输送过来的电力可以直接提供给变频调速一体机310,也可以经由控制柜66(未经控制柜处理或者由控制柜进行了处理后)提供给变频调速一体机310。此外,从主供电系统3a、辅助供电系统3b输送过来的电力可以经由控制柜66提供给电驱压裂设备100a中的除变频调速一体机310以外的其他辅助用电装置。例如,控制柜66可以包括配电系统和控制系统,以用于给电驱压裂设备100a中的任何用电装置分配电力,且用于将电驱压裂设备100a的诸如电压、功率、故障等信息向外输出,以便控制电驱压裂设备100a。例如,例如在控制柜66中可以集成地设置有主开关柜、主变压器、辅助开关柜、辅助变压器等。主开关柜、主变压器可以对从主供电系统3a输送过来的电力进行控制和调整以提供给电驱压裂设备100a中的变频调速一体机310或者其他辅助用电装置。辅助开关柜、辅助变压器可以对从辅助供电系统3b输送过来的电力进行控制和调整以提供给电驱压裂设备100a中的除变频调速一体机310外的其他辅助用电装置。作为一个示例,辅助变压器可以输出220V~500V(交流)的低电压,用于给电驱压裂设备100a内的诸如润滑系统、散热系统、控制系统等辅助用电装置供电。
电驱压裂设备100a还可以包括下列中的至少一种:润滑系统;润滑油散热系统;以及冷却液散热系统等。润滑系统例如包括:润滑油箱60;第一润滑电动机61;以及第二润滑电动机62等。 例如,电驱压裂设备100a可以根据润滑位置的不同而设置不同的润滑泵,它们分别由第一润滑电动机61或第二润滑电动机62驱动,以满足不同压力、流量、油品的润滑需求。润滑油散热系统例如包括润滑油散热器59等,用于给润滑油降温。冷却液散热系统例如包括:冷却液散热器63;以及散热电动机64等,以用于给高压变频一体机412降温。上述的润滑油散热系统和冷却液散热系统可以集成地布置于柱塞泵11的顶部或侧面处,也可以集成地布置于高压变频一体机412的顶部或侧面处,以便在充分发挥散热能力的同时,还允许实现压裂设备100a的整机布局的高集成度。类似地,上述的润滑系统可以集成地布置于高压变频一体机412的侧面处。在下文中,在不需要相互区分的时候,也把第一润滑电动机61、第二润滑电动机62和散热电动机64统称为辅助电动机61、62和64。因此,电驱压裂设备100a中的辅助用电装置例如包括:润滑电动机、散热电动机、以及例如设置于控制柜中的控制系统等。
变频调速一体机310的额定频率可以是50Hz或者是60Hz,该额定频率与诸如供电网等供电系统的供电频率相同,在此情况下,变频调速一体机310可以不需要经由变压器而是可以直接接到诸如供电网等供电系统,这就简化了供电方式,并且适应性更强。
整个电驱压裂设备100a由于采用了变频调速一体机310,在不需要用于调整来自供电系统的电压的变压器的情况下,该变频调速一体机310的外部接线可以直接连接到主供电系统上。电驱压裂设备100a的柱塞泵11由变频调速一体机310驱动从而将压裂液泵送到地下。本发明不限于使用变频调速一体机310作为电驱装置,也可以使用其中将变频系统40和电动机21独立安装着的电驱装置。例如,变频系统40可以安装于控制柜中。变频系统40可以仅有一部分(例如逆变装置)集成于电动机21上。
上液管汇(低压力管汇)34例如可以设置于柱塞泵11的在-Z方向上的一侧处,用于向柱塞泵11的进液口(未图示)供给压裂液。排出管汇(高压力管汇)33可以设置于柱塞泵11的在X方向和/或-X方向上的至少一个端部处,用于从柱塞泵11的排液口(未图示)排出压裂液。压裂液通过上液管汇34从柱塞泵11的进液口进入柱塞泵11内部,然后经过柱塞泵11的运动增压后,从柱塞泵11的排液口通过排出管汇33排出到柱塞泵11外部的高压力集管,然后进入地面下或井口内进行压裂作业。
在图6所示的电驱压裂设备100a中,承载架67可以替换成橇架或半挂车(拖车)。多个电驱压裂设备100a可以集成于一个或一组承载架67(或橇架或半挂车)上。
图7是根据本发明的电驱压裂设备所使用的双电源供电系统的供电路径的示意性框图。
图7中的电驱压裂设备100b如同图6中的电驱压裂设备100a一样包括:用于驱动柱塞泵(未图示)的主电动机21;连接于主电动机21的上游以对主电动机21进行调频的变频系统40;用于驱动第一润滑油泵(未图示)的第一润滑电动机61;用于驱动第二润滑油泵(未图示)的第二润滑电动机62;用于驱动冷却液泵(未图示)的散热电动机64;以及设置于控制柜(参见图6中的控制柜66)中的控制系统68。此外,图7中的电驱压裂设备100b还包括:连接于第一润滑电动机61的上游以对第一润滑电动机61进行调频的变频系统91;连接于第二润滑电动机62的上游以对第二润滑电动机62进行调频的变频系统92;以及连接于散热电动机64的上游以对散热电动机64进行调频的变频系统94。作为一个可选示例,变频系统40、91、92、94可以独立于相应的电动机21、61、62、64而布置着。可供替代地,如同图6所示的将变频系统40集成于主电动机21上一样,图7中所示的变频系统40、91、92、94可以至少部分地分别集成于电动机21、61、62、64上。
本发明的示例中采用了双电源供电系统,其中,当通断切换开关69被接通时,主供电系统将 例如为3.3kV以上的高电压经由高压进线和变频系统40供给到主电动机21,由主电动机21驱动柱塞泵,实现柱塞泵的无级调速,从而将工作液体增压后泵送到井筒内。当通断切换开关79被接通时,辅助供电系统将例如为220V~1000V的低电压经由低压进线供给到控制系统68,并且辅助供电系统还将该低电压经由低压进线和变频系统91、92、94分别供给到辅助电动机61、62、64。辅助电动机61、62、64通过驱动相应的润滑油泵或冷却液泵来实现润滑、散热等作用。
请注意,上述辅助电动机不限于前述的第一润滑电动机61、第二润滑电动机62和散热电动机64。
图8是为了实现图7所示的供电路径而采取的电路图的一个示例。
在图8所示的电驱压裂设备100b中,主供电系统(例如≥10kV)、通断切换开关69、大功率变压器7a(例如3000kVA~7000kVA)、变频器VFD、主电动机21依次电气连接。辅助供电系统(例如220V~1000V)、通断切换开关791、视需要可选用的小功率变压器7b(例如0~10kVA)、控制系统68依次电气连接。此外,利用通断切换开关792,辅助供电系统还经由变频器VFD1、VFD2及VFD3分别向辅助电动机61、62、64供电。
变频器VFD、VFD1、VFD2及VFD3分别是上述变频系统40、91、92、94的一个示例。变频器VFD、VFD1~VFD3各者都可以由例如IGBT功率模块构成。控制系统68与通断切换开关69以及变频器VFD、VFD1~VFD3各者进行信号通讯。
当通断切换开关69根据来自控制系统68的控制信号而被接通时,主供电系统将例如10kV以上的电压供给到大功率变压器7a进行调压,调压后的电压经由变频系统VFD变频后供给到主电动机21。当通断切换开关69被关断时,主供电系统停止供电。
当通断切换开关791被接通时,辅助供电系统将例如220V~1000V的电压供给到小功率变压器7b进行调压,调压后的电压(例如≤480V)被供给到控制系统68。当通断切换开关791被关断时,辅助供电系统停止向控制系统68供电。小功率变压器7b并非是必需的。
此外,当通断切换开关792被接通时,辅助供电系统将例如220V~1000V的电压供给到变频器VFD1、VFD2、VFD3以进行变频,变频后的电压分别被供给到辅助电动机61、62、64。当通断切换开关792被关断时,辅助供电系统停止向辅助电动机61、62、64供电。
于是,本发明通过控制系统68,可以控制高压进线的通断切换开关69以及各个变频器等部件。当紧急关断时,电驱压裂设备100b的控制系统68可以接收来自仪表设备(图8中未图示)的指令,直接断开通断切换开关69,实现电驱压裂设备100b的紧急停止。
图9是图8所示的电路图的一个变形例。
图9与图8的区别在于,主供电系统还进一步经由大功率变压器7a的分接头和通断切换开关70向辅助电动机61、62、64供电。具体地,当通断切换开关70被接通时,就把从主供电系统经由大功率变压器7a的分接头输出的电压经由变频器VFD1、VFD2及VFD3分别供给到辅助电动机61、62、64。藉此,大功率变压器7a通过抽头或分接头的方式分别为主变频器VFD和辅助变频器VFD1、VFD2、VFD3提供两种不同的电压,并且保障了辅助电动机61、62、64有两路供电,提高了辅助用电装置的用电稳定性。另一方面,利用控制系统68对通断切换开关70的切断控制,就可以如前所述,使得辅助供电系统向辅助用电装置的供电优先于主供电系统向辅助用电装置的供电而被选择。
在图7至图9中虽然都说明了一个变频器对应一个电动机的方案,但是实际应用时也可以采用一个变频器对应多个电动机的方案。
另外,在辅助供电系统优选地还向主供电系统供电的示例中,辅助供电系统的启动时刻优先于主供电系统的启动时刻。
在本发明的前述各实施例中,说明了泵送系统中包括电驱压裂设备的示例。此时,电驱压裂设备的工作液体可以是压裂液。上液管汇将压裂液提供至柱塞泵的进液口,柱塞泵将压裂液加压后经由排液口排出到排出管汇,然后输送到地下以压裂地层。
上述泵送系统中的电驱压裂设备可以被替换为电驱泵送设备。此时,电驱泵送设备的工作液体可以是泵送用液体。上液管汇将泵送用液体提供至柱塞泵的进液口,柱塞泵将泵送用液体加压后经由排液口排出到排出管汇,然后输送到井下,以泵送(例如下放)井下工具或驱动井下工具。
上述泵送系统中的电驱压裂设备可以被替换为电驱固井设备。此时,电驱固井设备的工作液体可以是水泥浆。上液管汇将水泥浆提供至柱塞泵的进液口,柱塞泵将水泥浆加压后经由排液口排出到排出管汇,然后输送到至少一个井筒内以固定井筒。
[4.井场布局及控制系统]
图10是本发明的含有多个电驱压裂设备的井场布局的一个示例。图11是对应于图10所示的井场布局的示意性框图。前面参照图6说明了电驱压裂设备100a各自的柱塞泵11都配备有上液管汇34和排出管汇33的示例。但是如图10和图11所示,在该井场布局中包括多个电驱压裂设备100a,多个电驱压裂设备100a各自的柱塞泵的进液口配有自身的上液管汇34,而多个电驱压裂设备100a各自的柱塞泵的排液口共用一个排出管汇33。低压力压裂液经由相应的上液管汇34输入到每台电驱压裂设备100a的柱塞泵的进液口,由被主电动机驱动的柱塞泵将压裂液加压后得到高压力压裂液,其经由柱塞泵的排液口输出到共用的排出管汇33,经由该排出管汇33注入到井口18以进入地层内,以便对油井或者气井的地层进行压裂。所有的管汇可以集成于一个或一组(至少一个)管汇橇架上,或者可以集成于一辆管汇半挂车上,以便于集中地观察和管理。
该井场布局还包括配液区域。该配液区域可以包括供砂设备(又称支撑剂供给装置)72、供液设备73、混配设备74、化添设备75及混砂设备76等。在一些情况下,注入到井下的压裂液为携砂液体,所以需要通过将水、砂、化学添加剂等混合以使砂粒悬浮在压裂液中。例如,供液设备73可以直接提取由运输车运输过来的液体,或者可以包含多个用于储存液体的液罐。诸如清水等液体可以经由供液设备73供给到混配设备74中,诸如化学添加剂等试剂可以经由化添设备75供给到混配设备74中。清水和化学添加剂可以在混配设备74中混合以形成混配液(压裂基液)。混配设备74中的混配液和供砂设备72中的砂可以(一般是不同时地,经由不同的进口)进入混砂设备76中进行混合,形成作业时所需要的携砂压裂液。由混砂设备76形成的低压力压裂液经由上液管汇34被输送至各个电驱压裂设备100a的柱塞泵11的进液口。
可供替代地,化添设备75可以将例如化学添加剂等试剂不经过混配设备74而是直接供给到混砂设备76,或者可以视需要向混配设备74和混砂设备76二者分别供给试剂。可供替代地,供液设备73可以经过混配设备74或不经过混配设备74向混砂设备76供给液体。或者,混砂设备76可以连通至供砂设备72、供液设备73、混配设备74及化添设备75中的任意组合,并且能够视需要接收来自这些任意组合的供给。
当供液设备73和化添设备75不是将水和化学添加剂添加到混配设备74而是直接添加到混砂设备76中时,在这种情况下,可以省去混配设备74。在有些情况下,可以省去化添设备75。在本发明中,上述供砂设备72、供液设备73、混配设备74、化添设备75及混砂设备76并非都是必需的,它们的功能、数量、组合使用方式及其布局可以根据工作液体的具体需要来选择和设计。例如, 混配设备74的至少一部分功能可以集成到混砂设备76上。
该井场布局还包括发电供电区域。可供选择地,在发电供电区域含有使用燃料的发电机的情况下,该井场布局还可以包括燃料的运输装置51以及对燃料进行处理的压力调节设备53和/或气化设备55(稍后参照图13进行说明)。可供选择地,在发电供电区域利用井口气或管道气等进行发电的情况下,该井场布局还可以包括净化设备54(稍后参照图13和图14进行说明)。压力调节设备53、净化设备54、气化设备55各者可以设置于发电供电区域之内或之外。
发电供电区域可以包括前面所说明的主供电系统3a和辅助供电系统3b。主供电系统3a向井场中的主用电装置供电,例如主要向电驱压裂设备中的用于驱动柱塞泵的电动机供电。辅助供电系统3b向井场中的辅助用电装置供电,例如主要向电驱压裂设备中的散热电动机、润滑电动机、照明系统、传感系统、控制系统等辅助用电装置供电。如前所述,辅助供电系统3b可以向主供电系统3a供电。如前所述,当辅助供电系统3b发生故障时,主供电系统3a可以向井场中的辅助用电装置供电。在有些情况下,发电供电区域还可以包括前面说明的开关柜拖车41。
此外,该井场布局可以设置有仪表设备71,其可以远程控制电驱压裂设备100a、配液区域、发电供电区域等。远程控制可以是通过有线通信或无线通信来实现的。
例如,仪表设备71、供砂设备72、供液设备73、混配设备74、化添设备75、混砂设备76等可以使用由主供电系统3a提供的电力。
例如,开关柜拖车41视需要可以包括选自下列中的任意组合:针对主供电系统3a配备的主开关、主变压器和主变频器,以及针对辅助供电系统3b配备的辅助开关、辅助变压器、辅助变频器等。主变频器和辅助变频器各者可以是逆变单元或者是逆变单元、整流单元、滤波单元的任意组合。主开关、主变压器和主变频器的任选组合构成开关柜拖车41的主配电系统。辅助开关、辅助变压器和辅助变频器的任选组合构成开关柜拖车41的辅助配电系统。这些主开关、主变压器、主变频器、辅助开关、辅助变压器、辅助变频器等可以集成在一个半挂车(拖车)上。主供电系统3a例如可以是燃气轮发电机,其包括燃气轮发动机和发电机。该燃气轮发电机直接发出高电压,通过开关柜拖车41的主开关、主变压器和主变频器等分多路输送给多个电驱压裂设备100a、仪表设备71和配液区域等。辅助供电系统3b例如可以是发电设备,其发出低电压,通过开关柜拖车41的辅助开关、辅助变压器及辅助变频器等分多路输送给多个电驱压裂设备100a。
图12示出了本发明的井场布局中的控制系统的示例。在图12中,井场布局包括仪表设备71、主供电系统31a、辅助供电系统31b、电驱压裂设备拖车112和配电设备42。仪表设备71包括集中控制系统81,主供电系统31a包括主供电系统控制系统82,辅助供电系统31b包括辅助供电系统控制系统84,电驱压裂设备拖车112包括电驱压裂设备控制系统83,配电设备42包括配电设备控制系统85。在图12所示的井场布局中,还设置有视频系统86和传感器系统87。视频系统86例如包括至少一个视频采集摄像头。传感器系统87例如包括至少一个传感器。
设置于井场中的仪表设备71在其内部设置有集中控制系统81,该集中控制系统包括多个输入、输出、计算、显示、通讯、存储模块,能够与主/辅助供电系统、电驱压裂设备、配电设备各者中的控制系统进行通讯,以实现主/辅助供电系统、电驱压裂设备、配电设备的远程集中控制。该集中控制系统还可利用设置于井场关键位置处的视频采集摄像头、传感器等,实现对井场关键位置的视频采集以及对关键区域中的诸如温度、烟雾、气体含量等环境参数的采集等。
例如,通过仪表设备71,可以实现上述主/辅助供电系统、电驱压裂设备、配电设备的紧急停机或紧急关断。比如当某一传感器检测到可燃气体含量超标时,或当主/辅助供电系统发出超电流、 超电压、超温等高等级报警时,仪表设备71内就能够及时地显示诸如声音或图像等报警信息,便于操作人员判断并实施某一类设备或某一台设备或所有设备的紧急停机或关断。另外,也可以利用上述各控制系统之间的协作,通过泵送系统的自动判断来实现某一类设备或某一台设备或所有设备的紧急停机或关断。
上面说明的井场布局,同样也可适用于将压裂设备替换为泵送设备或固井设备的情况,具体的布局可以适应地予以变更。
[5.燃料供给及燃料处理]
图13示出了用于为使用燃料的发电机供给燃料的供给路径的示意性框图。在主供电系统3a和/或辅助供电系统3b是使用燃料的发电机的情况下,如图13所示,在燃料50的供给路径上设置有运输装置51和处理装置52。燃料50经由运输装置51被输送到处理装置52,经过处理装置52处理后作为动力源被供给到作为主发电设备的主供电系统3a和/或作为辅助发电设备的辅助供电系统3b各者的发动机。
燃料的燃烧所产生的能量驱动发动机,发动机驱动发电机发电以满足井场中的用电需求。燃料可以是液体、固体、或气体形式。当燃料为燃气时,其例如可以是CNG(压缩天然气)、LNG(液态天然气)或者可以是诸如井口气或管道气等。当燃料是CNG时,相应的处理装置52可以包括压力调节设备53,CNG经过压力调节设备53调整为一定压力后被供给到主发电设备3a(例如燃气轮发电机的燃气轮)和辅助发电设备3b(例如活塞式内燃机发电机的活塞式内燃机)。当燃料是LNG时,相应的处理装置52可以包括气化设备55,LNG通过气化设备55的气化处理之后为主发电设备3a和辅助发电设备3b提供发电所需的气体燃料。当燃料是诸如井口气或管道气等含有杂质的燃气时,相应的处理装置52可以包括净化设备54。或者,取决于燃料50的来源和种类,可以组合地设置有上述各种处理装置,以便可以确保在燃料经过处理后能够为发动机等提供一定纯净程度、一定压力的燃料,从而满足主/辅助发电设备的燃料需求。于是,燃料50的选择灵活,为井场布局能够适应更广的条件提供了保障。例如,当用燃气轮发电机替换了传统柴油发电机时,能够减少废气排放,且能够降低燃料费用。
图14是示出了在图13所示的处理装置52中所采用的净化设备54的具体构造示例。
当燃气的气源为井口气或管道气等时,在图13所示的处理装置52中采用了净化设备54。如图14所示,净化设备54包括:过滤器10;压缩机12;空冷器13;气液分离器14;脱水膜分离器15;以及脱重烃膜分离器16。具体地,过滤器10的进口端与井口气管线连通,过滤器10的出气口与压缩机12的进气端连接,以把过滤后的井口气提供给压缩机12。过滤器10的底部还设置有液体或固体排出口,以排出过滤过程中产生的液滴或固体颗粒。压缩机12的出气端与空冷器13的进口端连接,空冷器13的出口端与气液分离器14的入口连接,空冷器13把由压缩机12压缩后输出的气体冷却后提供给气液分离器14。气液分离器14的出气口与脱水膜分离器15的入口连接,气液分离器14把来自空冷器13的气体进行气液分离,得到的气体被输出到脱水膜分离器15。气液分离器14的底部还设置有液体排出口以排出气液分离过程中产生的凝液。脱水膜分离器15的出气口与脱重烃膜分离器16的入口连接。脱水膜分离器15和脱重烃膜分离器16对输入进来的气体进行脱水处理和脱重烃处理,脱重烃膜分离器16的出气口将净化气排出到外部。
脱水膜分离器15可以设置有例如两个出气口,其中一个出气口与脱重烃膜分离器16的入口连接,另一个出气口与井口气管线连通以把需要重复多次脱水处理的气体再次馈送到井口气管线。这两个出气口各自是可打开/关闭的。例如,在馈送需要重复脱水处理的气体时,脱水膜分离器15的 与脱重烃膜分离器16的入口连接的所述一个出气口是关闭的。视需要,脱重烃膜分离器16也可类似于脱水膜分离器15那样设置有两个出气口。
这样,井口气的净化装置采用采用了串联的膜分离装置,通过脱水膜分离器和脱重烃膜分离器分别实现脱水处理和脱重烃处理,整个净化装置的结构简单,组装方便,占地面积小,无需额外材料和试剂消耗,运行成本低,为整个井场布局系统的缩小占地面积,降低运营成本提供了保障。
上面已经参照实施例和变形例说明了根据本发明的技术。然而,根据本发明的技术不限于上述实施例等,并且可以以多种方式变形。

Claims (24)

  1. 一种泵送系统,包括:
    电驱压裂设备,其包括:柱塞泵;用于驱动所述柱塞泵的主电动机;和至少一个辅助用电装置;以及
    多电源系统,其对所述电驱压裂设备供电,
    其中,所述多电源系统包括至少一个主供电电源和至少一个辅助供电电源,并且
    所述主供电电源向所述主电动机供电,所述辅助供电电源向所述至少一个辅助用电装置供电。
  2. 根据权利要求1所述的泵送系统,其中,
    所述辅助供电电源还能够向所述主供电电源供电。
  3. 根据权利要求1所述的泵送系统,其中,
    所述主供电电源还能够经由变压器向所述至少一个辅助用电装置供电,并且
    所述辅助供电电源向所述至少一个辅助用电装置的供电优先于所述主供电电源向所述至少一个辅助用电装置的供电。
  4. 根据权利要求2所述的泵送系统,其中,
    所述主供电电源还能够经由变压器向所述至少一个辅助用电装置供电,并且
    所述辅助供电电源向所述至少一个辅助用电装置的供电优先于所述主供电电源向所述至少一个辅助用电装置的供电。
  5. 根据权利要求2所述的泵送系统,其中,
    在所述泵送系统中设置有多个所述电驱压裂设备,
    第一开关的一个端子电气连接至所述主供电电源,多个第二开关各者的一个端子电气连接至所述第一开关的另一端子,且所述多个第二开关各者的另一端子分别电气连接至所述多个电驱压裂设备中的相应一者的所述主电动机,并且
    第三开关的一个端子电气连接至所述辅助供电电源,多个第四开关各者的一个端子电气连接至所述第三开关的另一端子,且所述多个第四开关各者的另一端子分别电气连接至所述多个电驱压裂设备中的相应一者的所述至少一个辅助用电装置。
  6. 根据权利要求4所述的泵送系统,其中,
    在所述泵送系统中设置有多个所述电驱压裂设备,
    第一开关的一个端子电气连接至所述主供电电源,多个第二开关各者的一个端子电气连接至所述第一开关的另一端子,且所述多个第二开关各者的另一端子分别电气连接至所述多个电驱压裂设备中的相应一者的所述主电动机,并且
    第三开关的一个端子电气连接至所述辅助供电电源,多个第四开关各者的一个端子电气连接至所述第三开关的另一端子,且所述多个第四开关各者的另一端子分别电气连接至所述多个电驱压裂设备中的相应一者的所述至少一个辅助用电装置。
  7. 根据权利要求1至6中任一项所述的泵送系统,其中,
    所述主供电电源包括电网和使用燃料的发电机中的至少一种,并且/或者
    所述辅助供电电源包括内燃机发电机组、井场周边电网、太阳能发电板和储能装置中的至少一 种。
  8. 根据权利要求7所述的泵送系统,其中,
    所述主供电电源和/或所述辅助供电电源是燃气轮发电机,
    所述泵送系统还包括用于将燃气提供至所述燃气轮发电机的燃气供应机构,并且
    所述辅助供电电源还向所述燃气供应机构供电。
  9. 根据权利要求1至6中任一项所述的泵送系统,其中,
    所述至少一个辅助用电装置包括控制系统和多个辅助电动机,
    所述主供电电源电气连接至第一变压器的电力输入端,所述第一变压器的电力输出端电气连接至第一变频器的电力输入端,所述第一变频器的电力输出端电气连接至所述主电动机,
    所述辅助供电电源电气连接至第二变压器的电力输入端,所述第二变压器的电力输出端电气连接至所述控制系统,
    所述辅助供电电源还电气连接至多个第二变频器各者的电力输入端,所述多个第二变频器各者的电力输出端电气连接至所述多个辅助电动机中的相应一者,并且
    所述控制系统基于从所述第一变频器及所述多个第二变频器各者接收到的功率、电压或电流信息,向所述第一变频器及所述多个第二变频器各者输出控制信号。
  10. 根据权利要求9所述的泵送系统,其中,
    第一通断切换开关电气连接于所述主供电电源与所述第一变压器的电力输入端之间,所述控制系统执行所述第一通断切换开关的通断切换控制,并且
    当所述第一通断切换开关被接通时,所述主供电电源向所述主电动机供电,而当所述第一通断切换开关被关断时,所述主供电电源停止向所述主电动机供电。
  11. 根据权利要求10所述的泵送系统,其中,
    所述第一变压器具有分接头,
    第二通断切换开关电气连接于所述第一变压器的所述分接头与所述多个第二变频器各者的电力输入端之间,所述控制系统执行所述第二通断切换开关的通断切换控制,并且
    当所述第二通断切换开关被接通时,所述主供电电源向各个所述辅助电动机供电,而当所述第二通断切换开关被关断时,所述主供电电源停止向各个所述辅助电动机供电。
  12. 根据权利要求1至6中任一项所述的泵送系统,其中,
    所述电驱压裂设备的工作液体是压裂液,所述柱塞泵将压裂液加压后输送到地下以压裂地层。
  13. 一种泵送系统,其是通过将根据权利要求1至11中任一项所述的泵送系统中的所述电驱压裂设备替换为电驱泵送设备而得到的,
    其中,所述电驱泵送设备的工作液体是泵送用液体,所述柱塞泵将泵送用液体加压后输送到井下以泵送或驱动井下工具。
  14. 一种泵送系统,其是通过将根据权利要求1至11中任一项所述的泵送系统中的所述电驱压裂设备替换为电驱固井设备而得到的,
    其中,所述电驱固井设备的工作液体是水泥浆,所述柱塞泵将水泥浆加压后输送到至少一个井筒内以固定所述井筒。
  15. 一种井场布局,其包括:
    根据权利要求1至14中任一项所述的泵送系统,
    其中,在所述主供电电源和/或所述辅助供电电源使用燃料进行发电的情况下,所述井场布局还包括用于运输燃料的运输装置和用于处理燃料的处理装置,并且
    所述处理装置包括气体燃料调压装置、液体燃料气化装置、燃料净化装置中的至少一种。
  16. 一种井场布局,其包括:
    根据权利要求1至14中任一项所述的泵送系统,
    其中,所述井场布局还包括配液区域,所述配液区域包括:
    与所述柱塞泵的进液口连通的混砂设备;
    用于将砂供给至所述混砂设备的供砂设备;以及
    用于将液体供给至所述混砂设备的供液设备,
    所述混砂设备将来自所述供砂设备的砂和来自所述供液设备的液体混合,以得到工作液体且将其供给到所述柱塞泵的所述进液口。
  17. 根据权利要求16所述的井场布局,其中,
    所述配液区域还包括:
    混配设备;和
    用于将化学添加剂供给至所述混砂设备的化添设备,并且
    来自所述供液设备的液体和来自所述化添设备的化学添加剂由所述混配设备混配后被供给到所述混砂设备。
  18. 一种井场布局,其包括:
    根据权利要求1至14中任一项所述的泵送系统,
    其中,多个所述电驱压裂/泵送/固井设备各者的所述柱塞泵分别具有与自身的进液口连通的上液管汇,并且所述多个电驱压裂/泵送/固井设备各者的所述柱塞泵的排液口共用与井口连通的排出管汇,并且
    所述上液管汇和所述排出管汇都集成于至少一个管汇设施上。
  19. 一种井场布局,其包括:
    根据权利要求1至14中任一项所述的泵送系统,
    其中,所述井场布局还包括:
    仪表设备及设置于所述仪表设备中的集中控制系统;
    设置于所述主供电电源中的控制系统;
    设置于所述辅助供电电源中的控制系统;
    设置于所述电驱压裂/泵送/固井设备中的控制系统;
    配电设备及设置于所述配电设备中的控制系统,所述主供电电源和所述辅助供电电源经由所述配电设备向所述电驱压裂/泵送/固井设备供电;
    用于井场中的视频采集的视频系统;以及
    用于井场中的环境参数采集的传感器系统,
    所述传感器系统、所述视频系统、所述配电设备中的所述控制系统、所述电驱压裂/泵送/固井设备中的所述控制系统、所述辅助供电电源中的所述控制系统和所述主供电电源中的所述控制系统分别向所述集中控制系统反馈信息且分别由所述集中控制系统提供控制信号。
  20. 根据权利要求19所述的井场布局,其中,
    利用所述配电设备中的所述控制系统、所述电驱压裂/泵送/固井设备中的所述控制系统、所述辅助供电电源中的所述控制系统和所述主供电电源中的所述控制系统与所述集中控制系统的协作,来实施所述主供电电源和所述辅助供电电源向所述电驱压裂/泵送/固井设备的供电的选择及控制。
  21. 根据权利要求19或20所述的井场布局,其中,
    所述集中控制系统是远程控制系统,并且
    当所述电驱压裂/泵送/固井设备出现故障时,所述电驱压裂/泵送/固井设备中的所述控制系统将与该故障相应的报警信息传输到所述远程控制系统,所述远程控制系统对所述电驱压裂/泵送/固井设备进行远程重置。
  22. 一种用于泵送系统的控制方法,其中,
    所述泵送系统包括:
    电驱压裂/泵送/固井设备,其包括:柱塞泵;用于驱动所述柱塞泵的主电动机;和至少一个辅助用电装置;以及
    多电源系统,其对所述电驱压裂/泵送/固井设备供电,且包括至少一个主供电电源和至少一个辅助供电电源,并且
    所述控制方法包括:
    利用所述主供电电源向所述主电动机供电,且利用所述辅助供电电源向所述至少一个辅助用电装置供电。
  23. 根据权利要求22所述的控制方法,还包括:
    在所述主供电电源启动之前及进行供电时,利用所述辅助供电电源持续向所述主供电电源供电。
  24. 根据权利要求22或23所述的控制方法,还包括:
    利用所述主供电电源经由变压器向所述至少一个辅助用电装置供电,
    其中,当所述辅助供电电源向所述至少一个辅助用电装置的供电发生故障时,使用所述主供电电源向所述至少一个辅助用电装置的供电。
PCT/CN2022/113242 2022-04-27 2022-08-18 泵送系统、井场布局及用于泵送系统的控制方法 WO2023206870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210451262.4A CN114962203B (zh) 2022-04-27 2022-04-27 泵送系统、井场布局及用于泵送系统的控制方法
CN202210451262.4 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023206870A1 true WO2023206870A1 (zh) 2023-11-02

Family

ID=82971905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113242 WO2023206870A1 (zh) 2022-04-27 2022-08-18 泵送系统、井场布局及用于泵送系统的控制方法

Country Status (2)

Country Link
CN (1) CN114962203B (zh)
WO (1) WO2023206870A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574495A (zh) * 2014-01-06 2017-04-19 莱姆仪器有限责任公司 液压压裂系统
CN113922360A (zh) * 2021-09-07 2022-01-11 烟台杰瑞石油装备技术有限公司 压裂井场供电系统
CN113969774A (zh) * 2021-09-28 2022-01-25 四川宏华电气有限责任公司 一种煤层气压裂设备及作业方法
CN215719294U (zh) * 2021-09-22 2022-02-01 烟台杰瑞石油装备技术有限公司 电驱压裂系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3234321T1 (sl) * 2014-12-19 2020-11-30 Typhon Technology Solutions, Llc Mobilno generiranje električne energije za hidravlično drobljenje podzemeljskih geoloških formacij
CN214887011U (zh) * 2020-11-24 2021-11-26 烟台杰瑞石油装备技术有限公司 压裂系统
CN110821464A (zh) * 2019-12-03 2020-02-21 烟台杰瑞石油装备技术有限公司 一种压裂的井场布局系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574495A (zh) * 2014-01-06 2017-04-19 莱姆仪器有限责任公司 液压压裂系统
CN113922360A (zh) * 2021-09-07 2022-01-11 烟台杰瑞石油装备技术有限公司 压裂井场供电系统
CN215719294U (zh) * 2021-09-22 2022-02-01 烟台杰瑞石油装备技术有限公司 电驱压裂系统
CN113969774A (zh) * 2021-09-28 2022-01-25 四川宏华电气有限责任公司 一种煤层气压裂设备及作业方法

Also Published As

Publication number Publication date
CN114962203B (zh) 2023-12-15
CN114962203A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US11725491B2 (en) Electrically driven fracturing system
US20220389804A1 (en) Fracturing system
CN215870792U (zh) 用于井场电驱设备的供电系统
US11680472B2 (en) Fracturing system
WO2022110379A1 (zh) 压裂系统
US12006806B2 (en) Fracturing apparatus and fracturing system
WO2021056174A1 (zh) 一种电驱压裂的井场系统
EP1142097B1 (en) Prime mover for operating an electric motor
CN110821464A (zh) 一种压裂的井场布局系统
WO2022116483A1 (zh) 压裂设备及压裂系统
US20120292992A1 (en) Dual fuel system and method of supplying power to loads of a drilling rig
WO2023206870A1 (zh) 泵送系统、井场布局及用于泵送系统的控制方法
WO2023060945A1 (zh) 由变频调速一体机驱动的压裂设备及井场布局
CN110518692B (zh) 一种水电站氢储能发电黑启动系统及方法
CN201215037Y (zh) 家用沼气发电装置
WO2023221386A1 (zh) 变频驱动系统、变频调速一体机、泵送系统及井场布局
US20230077170A1 (en) Low voltage power generation system for fluid pumping in well operations
RU109222U1 (ru) Установка автономного энергоснабжения с газотурбинным двигателем
CN214116803U (zh) 一种经济型应急取水泵房
CN210622951U (zh) 大功率柴油发电机组用燃油循环装置
CN107165732A (zh) 基于plc的柴油发电机组智能控制系统
CA3173687A1 (en) Electrically driven fracturing system
CN219826935U (zh) 透平发电装置
WO2023155038A1 (zh) 电驱泵送系统及其驱动方法
CN219436706U (zh) 一种绿氢热电氧三联供远程系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939696

Country of ref document: EP

Kind code of ref document: A1