WO2023155038A1 - 电驱泵送系统及其驱动方法 - Google Patents

电驱泵送系统及其驱动方法 Download PDF

Info

Publication number
WO2023155038A1
WO2023155038A1 PCT/CN2022/076321 CN2022076321W WO2023155038A1 WO 2023155038 A1 WO2023155038 A1 WO 2023155038A1 CN 2022076321 W CN2022076321 W CN 2022076321W WO 2023155038 A1 WO2023155038 A1 WO 2023155038A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
transformer
power
auxiliary
pumping system
Prior art date
Application number
PCT/CN2022/076321
Other languages
English (en)
French (fr)
Inventor
仲跻风
吕亮
崔树桢
吴义朋
李心成
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to PCT/CN2022/076321 priority Critical patent/WO2023155038A1/zh
Priority to CN202280000739.5A priority patent/CN114731057A/zh
Priority to US17/774,815 priority patent/US20240162738A1/en
Publication of WO2023155038A1 publication Critical patent/WO2023155038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • Embodiments of the present disclosure relate to an electrically driven pumping system and a driving method thereof.
  • Electric drive devices With the continuous development of oil and gas extraction technology, due to the advantages of high power, energy saving and environmental protection, light weight, and small size, electric drive devices are more and more widely used in the field of oil and gas extraction.
  • Electric drive devices usually use electric power to drive motors, and then use the motors to drive various functional components to achieve various functions.
  • the electric motor can drive the fracturing pump to pressurize the low-pressure fracturing fluid into high-pressure fracturing fluid; as another example, the electric motor can drive the lubricating pump to drive the lubricating fluid to lubricate the plunger pump.
  • Electric drive devices in the field of oil and gas extraction include electric drive cementing devices, electric drive acid fracturing devices, electric drive fracturing devices and other electric drive pumping devices. These devices are usually powered by power grids or power generation devices.
  • Embodiments of the present disclosure provide an electric drive pumping system and a driving method thereof.
  • the electric drive pumping system can supply power to the energy storage unit through the generator, and the energy storage unit supplies power to the motor, and a backup power supply is set up to avoid the risk of device shutdown and operation interruption caused by power failure of the power supply device.
  • the motor in the pumping device is driven by a frequency converter, which can realize stepless speed regulation; in addition, the internal combustion engine in the generator of this scheme is always in an economical working condition, and continues to work at rated power and rated speed, and the combustion thermal efficiency continues to be maintained in the high-efficiency range.
  • At least one embodiment of the present disclosure provides an electric drive pumping system, which includes: a power generation device; at least one energy storage system including an energy storage unit; a main motor; a pumping device connected to the main motor and configured to The mechanical power output by the main motor is used to pump the fluid; an auxiliary device; and a first transformer, including an input end, a first output end and a second output end, the power generation device is connected to the energy storage unit, and The input end of the first transformer is connected to the energy storage unit, the first output end of the first transformer is electrically connected to the main motor, and the second output end of the first transformer It is electrically connected with the auxiliary device.
  • the electric drive pumping system further includes: a first inverter, one end of which is connected to the first output end of the first transformer, and the other end is connected to the main motor, the The first inverter is configured to convert the direct current output by the first output terminal of the first transformer into alternating current, the power generation device includes a prime mover and a direct current generator, and the prime mover and the direct current generator connected and configured to drive the DC generator to generate DC power.
  • the electric drive pumping system provided by an embodiment of the present disclosure further includes: a second transformer including an input end and an output end; a control system; and a sensor, the input end of the second transformer is connected to the energy storage unit connected, and the output terminal of the second transformer is connected with the control system and the sensor.
  • the electric drive pumping system provided by an embodiment of the present disclosure further includes: a second inverter including an input end and an output end, the input end of the second inverter is connected to the second output end of the first transformer terminals, and the output terminal of the second inverter is connected to the auxiliary device.
  • a second inverter including an input end and an output end, the input end of the second inverter is connected to the second output end of the first transformer terminals, and the output terminal of the second inverter is connected to the auxiliary device.
  • the energy storage system further includes: a bidirectional converter, including a first end, a second end, and a third end, and the bidirectional converter
  • the first terminal is connected to the power generation device
  • the second terminal of the bidirectional converter is connected to the energy storage unit
  • the third terminal of the bidirectional converter is connected to the first transformer connected to the input terminals of the two-way converter
  • the bidirectional converter is configured to convert the AC power input at the first terminal into DC power and output it from the second terminal, convert the DC power input at the second terminal into AC power and
  • the power generating device includes a prime mover and an alternator, and the prime mover is connected to the alternator and is configured to drive the alternator to generate alternating current.
  • the electric drive pumping system provided by an embodiment of the present disclosure further includes: a control system; a sensor; and a third inverter, one end of which is connected to the second output end of the first transformer, and the other end Connected with the control system and the sensor, the third inverter is configured to convert the alternating current output by the first output terminal of the first transformer into direct current.
  • the electric drive pumping system provided by an embodiment of the present disclosure further includes: a first frequency converter, one end of which is connected to the first output end of the first transformer, and the other end is connected to the main motor.
  • the prime mover includes at least one of an internal combustion engine and a turbine engine.
  • the auxiliary device includes: a first auxiliary motor; and a first auxiliary component, the second output terminal of the first transformer is connected to the first An auxiliary motor is connected, and the first auxiliary motor is connected to the first auxiliary component and configured to drive the first auxiliary component.
  • the first auxiliary component includes lubricating pumps, cooling pumps, hydraulic pumps, liquid supply pumps, centrifugal pumps, gear pumps, agitators and rotor pumps. at least one.
  • the auxiliary device further includes: a second frequency converter; a second auxiliary motor; and a second auxiliary component, one end of the second frequency converter is connected to the The second output end of the first transformer is connected, the other end of the second frequency converter is connected to the second auxiliary motor, the second auxiliary motor is connected to the second auxiliary component, and is configured as The second auxiliary component is driven.
  • the second auxiliary component includes lubricating pumps, cooling pumps, hydraulic pumps, liquid supply pumps, centrifugal pumps, gear pumps, agitators and rotor pumps. at least one.
  • the energy storage unit includes at least one of a chemical battery and a capacitor.
  • the at least one energy storage system includes a plurality of energy storage systems, and the plurality of energy storage systems are connected in parallel between the power generation device and the second energy storage system. between a transformer.
  • the electric drive pumping system provided by an embodiment of the present disclosure further includes: a switch, including an input end, a first output end, and a second output end, the input end of the switch is connected to the power generation device, The first output end of the switch is connected to the energy storage system, and the second output end of the switch is connected to the first transformer.
  • a switch including an input end, a first output end, and a second output end, the input end of the switch is connected to the power generation device, The first output end of the switch is connected to the energy storage system, and the second output end of the switch is connected to the first transformer.
  • the energy storage system further includes: a power management system connected to the energy storage unit and configured to monitor the state of the energy storage unit and The energy storage unit is managed.
  • the electric drive pumping system provided by an embodiment of the present disclosure further includes a remote controller
  • the power generation device includes a power generation device controller
  • the control system communicates with the power generation device controller
  • the sensor and the power management The systems are respectively connected in communication
  • the remote controller is connected in communication with the control system.
  • At least one embodiment of the present disclosure also provides a driving method for an electric drive pumping system, including: controlling the power generation device to be in a high-efficiency operation state; The start-stop state of the power generation device and the charging and discharging state of the at least one energy storage system.
  • adjusting the charging and discharging state of the at least one energy storage system according to the electric power of the main motor and the auxiliary device includes: when the When the total power consumption of the main motor and the auxiliary device is greater than the power supply of the at least one energy storage system, control the power generation device and the at least one energy storage system to supply power to the main motor and the auxiliary device at the same time ; when the total power consumption of the main motor and the auxiliary device is less than the power supply of the at least one energy storage system, and the power of the at least one energy storage system is greater than the electric capacity of the at least one energy storage system When the preset ratio is reached, controlling the discharge of the at least one energy storage system and shutting down the power generation device; and when the total power consumption of the main motor and the auxiliary device is less than the power supply of the at least one energy storage system, And when the electric quantity of the at least one energy storage system is less than the preset ratio of the electric capacity of
  • the preset ratio is 20%
  • FIG. 1 is a schematic diagram of an electric drive pumping system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of another electric drive pumping system provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another electric drive pumping system provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of another electric drive pumping system provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another electric drive pumping system provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a driving method of an electric drive pumping system provided by an embodiment of the present disclosure.
  • the diesel engine in the traditional diesel drive device has low efficiency and needs to cooperate with the gearbox, and then the gearbox is connected to the plunger pump; The speed cannot meet the requirements for fine-tuning the flow rate during fine-grained operations.
  • the load rate of the diesel engine is determined by the actual working conditions, and the actual working conditions are usually not the economical load conditions of the diesel engine, and the frequent switching between the idle speed and the rated speed of the diesel engine will increase the loss.
  • electric drive devices are becoming more and more popular in oil and gas production well sites.
  • the electric drive device is powered by power supply facilities such as a power grid or a power generation device, and lacks a backup buffer power supply. Once the power supply facility is powered off, the electric drive device will shut down, resulting in interruption of operations.
  • the power generation device In addition, in the case of using the power generation device to directly supply power to the electric drive device, since the power of the electric drive device will vary with different working conditions, the power generation device needs to output different powers, resulting in the failure of the power generation device to run for a long time In the high-efficiency state, resulting in higher energy consumption and poor fuel economy.
  • the electric drive pumping system includes: a power generating device, at least one energy storage system, a main motor, a pumping device, an auxiliary device and a first transformer.
  • Each energy storage system includes an energy storage unit, the pumping device is connected to the main motor, and is configured to use the mechanical power output by the main motor to pump the fluid;
  • the first transformer includes an input end, a first output end, and a second output end , the power generation device is connected to the energy storage unit, the input end of the first transformer is connected to the energy storage unit, the first output end of the first transformer is electrically connected to the main motor, and the second output end of the first transformer is electrically connected to the auxiliary device .
  • the electric drive pumping system can avoid problems such as the shutdown of the main motor caused by the power failure of the power generation device, and ensure continuous operation.
  • the electric drive pumping system can also supply power to the main motor and auxiliary devices at the same time through at least one energy storage system, and in the case of load changes, the power generation device can run with high efficiency for a long time, improving fuel economy .
  • FIG. 1 is a schematic diagram of an electric drive pumping system provided by an embodiment of the present disclosure.
  • the electric drive pumping system 100 includes a power generating device 110 , at least one energy storage system 120 , a main motor 130 , a pumping device 140 , an auxiliary device 150 and a first transformer 161 .
  • Each energy storage system 120 includes an energy storage unit 122 ; the pumping device 140 is connected to the main motor 130 and is configured to pump fluid using the mechanical power output by the main motor 130 .
  • the first transformer 161 includes an input terminal, a first output terminal and a second output terminal, the power generation device 110 is connected to the energy storage unit 122, the input terminal of the first transformer 161 is connected to the energy storage unit 122, and the first output terminal of the first transformer 161 The terminal is electrically connected with the main motor 130 , and the second output terminal of the first transformer 161 is electrically connected with the auxiliary device 150 .
  • connection between the power generation device and the energy storage unit includes the situation that the power generation device is directly connected with the energy storage unit, and also includes the situation that the power generation device is indirectly connected through other electrical components;
  • the connection of the energy unit includes the situation that the input terminal of the first transformer is directly connected with the energy storage unit, and also includes the situation that the input terminal of the first transformer is indirectly connected with the energy storage unit through other electrical components.
  • the electric drive pumping system can avoid problems such as the shutdown of the main motor caused by the power failure or failure of the power generation device, so that it can Ensure continuous operation.
  • the electric drive pumping The system can simultaneously supply power to various electrical devices (such as main motors and auxiliary devices) that require different voltages and different powers, so as to cope with different working conditions.
  • the electric drive pumping system can also make the power generation device Long-term high-efficiency operation improves fuel economy.
  • the generator in the power generation device can flexibly choose the form of piston or turbine shaft, so it has high flexibility and economy;
  • the fuel of the prime mover in the power generation device can be Diesel oil, bio-oil and other oils can also be compressed natural gas (CNG), liquefied natural gas (LNG), wellhead gas, pipeline gas and other natural gas, hydrogen or hydrogen-containing mixtures, or other carbon or hydrogen-containing fuels.
  • CNG compressed natural gas
  • LNG liquefied natural gas
  • wellhead gas liquefied natural gas
  • pipeline gas and other natural gas hydrogen or hydrogen-containing mixtures, or other carbon or hydrogen-containing fuels.
  • the use of these low-carbon fuels in the prime mover can reduce carbon emissions and is conducive to environmental protection.
  • the electric drive pumping system can make the power generation device run with high efficiency for a long time under the condition of ensuring sufficient power supply and being able to cope with different loads.
  • the power generation device and at least one energy storage system can be controlled to supply power to the main motor and the auxiliary device at the same time.
  • the aforementioned preset ratio may also be set according to actual conditions.
  • the above-mentioned working mode is only an example illustrating that the electric-driven pumping device provided by the embodiment of the present disclosure can realize long-term high-efficiency operation of the power generation device.
  • the working mode of the electric-driven pumping device of the embodiment of the present disclosure Including but not limited to this.
  • the electric drive pumping system 100 further includes a first inverter 171, one end of the first inverter 171 is connected to the first output end of the first transformer 161, and the first inverter The other end of the inverter 171 is connected to the main motor 130 .
  • the first inverter 171 is configured to convert the direct current output by the first output terminal of the first transformer 161 into alternating current.
  • the power generation device 110 includes a prime mover 112 and a DC generator 114.
  • the prime mover 112 is connected to the DC generator 114, and It is configured to drive a DC generator 114 to generate DC power.
  • the first inverter is configured to convert the direct current output from the first output terminal of the first transformer into alternating current, so as to drive A main motor that needs to be powered by alternating current.
  • the above-mentioned main motor 130 may be a variable frequency motor.
  • the first inverter can convert the direct current output from the first output terminal of the first transformer into variable frequency alternating current, thus, the electric drive pumping system can realize stepless speed regulation, continuously change the speed, and improve transmission efficiency .
  • variable frequency motor may be a variable frequency motor in the form of three-phase asynchronous, permanent magnet, or integrated frequency conversion motor.
  • prime mover 112 may be coupled to generator 114 via a coupling, as shown in FIG. 1 .
  • the coupling may be a drive shaft, an elastic coupling, or the like.
  • the pumping device 140 includes a plunger pump, and the main motor 130 is connected to the plunger pump through a coupling, so as to pump fluid.
  • the embodiments of the present disclosure include but are not limited thereto, and the above-mentioned pumping device can also adopt other forms of pumping devices.
  • the aforementioned prime mover 112 includes at least one of an internal combustion engine and a turbine engine.
  • the aforementioned prime mover 112 may be a diesel engine.
  • the electrically driven pumping system 100 further includes a second transformer 162 , a control system 210 and a sensor 220 .
  • the second transformer 162 includes an input terminal and an output terminal. The input end of the second transformer 162 is connected with the energy storage unit 122 , and the output end of the second transformer 162 is connected with the control system 210 and the sensor 220 . Since the control system and sensors require low-voltage drive, the electric drive pumping device can flexibly increase or decrease the voltage by setting the above-mentioned second transformer to meet the voltage conditions required for the operation of various electrical devices.
  • the electric drive pumping system 100 further includes a second inverter 172, the second inverter 172 includes an input end and an output end, and the input end of the second inverter 172 is connected to the The second output terminal of the first transformer 161 is connected, and the output terminal of the second inverter 172 is connected with the auxiliary device 150 . Therefore, when the power generating device is a DC power generating device, the second inverter is configured to convert the DC power output by the first output terminal of the first transformer into AC power, so as to drive auxiliary devices that require AC power.
  • the auxiliary device 150 includes a first auxiliary motor 151 and a first auxiliary component 152, the second output end of the first transformer 161 is connected to the first auxiliary motor 151, and the first auxiliary motor 151 is connected to the first auxiliary motor 151.
  • the first auxiliary component 152 is connected and configured to drive the first auxiliary component 152 . It should be noted that, when the electric drive pumping system includes the above-mentioned second inverter, the first auxiliary motor can be connected to the second output end of the first transformer through the second inverter.
  • the first auxiliary component 152 includes at least one of a lubrication pump, a heat dissipation pump, a hydraulic pump, a liquid supply pump, a centrifugal pump, a gear pump, an agitator, and a rotor pump.
  • the auxiliary device can realize various types of auxiliary functions, such as lubricating functions, heat dissipation functions, and the like.
  • the first auxiliary motor 151 may be a fixed-frequency motor or a variable-frequency motor, which is not limited in this embodiment of the present disclosure.
  • the aforementioned energy storage unit 122 includes at least one of a chemical battery and a capacitor. Therefore, the above-mentioned energy storage unit has a faster charge and discharge capability and a relatively larger energy density.
  • the embodiments of the present disclosure include but are not limited thereto, and the above-mentioned energy storage unit may also adopt other energy storage methods.
  • the electric drive pumping device 100 further includes a switch 190, including an input end, a first output end and a second output end, the input end of the switch 190 is connected to the power generation device 110, A first output end of the switch 190 is connected to the energy storage system 120 , and a second output end of the switch 190 is connected to the first transformer 161 .
  • the switch connects the input end to the first output end, the power generated by the power generating device can be used to charge the energy storage system; when the switch connects the input end to the second output end, the power generated by the power generating device can be The main motor and auxiliary devices are driven directly through the first transformer.
  • the power generation device and the energy storage system can serve as backups for each other, and when the energy storage system fails, the power generation device can be used for power supply.
  • the power generation device and the at least one energy storage system can be controlled to be the main Electric motors and auxiliary devices are powered.
  • Fig. 2 is a schematic diagram of another electrically driven pumping system provided by an embodiment of the present disclosure.
  • the electric drive pumping system 100 includes a plurality of energy storage systems 120 , that is to say, at least one energy storage system 120 mentioned above is a plurality of energy storage systems 120 .
  • multiple energy storage systems 120 are connected in parallel between the power generation device 110 and the first transformer 161 .
  • multiple energy storage systems can increase the electric capacity of the electric drive pumping system; Continued work is still guaranteed.
  • the power generating device 110 may include multiple sub-generating devices 1100 , and the multiple sub-generating devices 1100 are set in one-to-one correspondence with the multiple energy storage systems 120 .
  • embodiments of the present disclosure include but are not limited thereto.
  • Fig. 3 is a schematic diagram of another electrically driven pumping system provided by an embodiment of the present disclosure.
  • the electric drive pumping system 100 includes a power generation device 110 , at least one energy storage system 120 , a main motor 130 , a pumping device 140 , an auxiliary device 150 and a first transformer 161 .
  • Each energy storage system 120 includes an energy storage unit 122 and a bidirectional converter 124 ; the pumping device 140 is connected to the main motor 130 and is configured to pump fluid using the mechanical power output by the main motor 130 .
  • the first transformer 161 includes an input terminal, a first output terminal and a second output terminal, the power generation device 110 is connected to the energy storage unit 122, the input terminal of the first transformer 161 is connected to the energy storage unit 122, and the first output terminal of the first transformer 161 The terminal is electrically connected with the main motor 130 , and the second output terminal of the first transformer 161 is electrically connected with the auxiliary device 150 .
  • the bidirectional converter 124 includes a first end, a second end and a third end; the first end of the bidirectional converter 124 is connected to the power generation device 110, and the second end of the bidirectional converter 124 is connected to the storage
  • the energy unit 122 is connected, and the third terminal of the bidirectional converter 124 is connected with the input terminal of the first transformer 161; the bidirectional converter 124 is configured to convert the alternating current input at the first terminal into direct current and output it from the second terminal, and the The direct current input at the second terminal is converted into alternating current and output at the third terminal.
  • the power generating device 110 includes a prime mover 112 and an alternator 116 , the prime mover 112 is connected to the alternator 116 and is configured to drive the alternator 116 to generate alternating current. Therefore, the electric drive pumping system can convert the alternating current provided by the power generation device into direct current through the bidirectional converter and store it in the energy storage unit, and can also convert the direct current output from the energy storage unit into alternating current through the bidirectional converter. And then drive the main motor and auxiliary devices that need to be driven by alternating current.
  • the aforementioned prime mover 112 may also include at least one of an internal combustion engine and a turbine engine.
  • the electric drive pumping system 100 further includes a control system 210 , a sensor 220 and a third inverter 173 ; one end of the third inverter 173 is connected to the second end of the first transformer 161 The output end is connected, and the other end of the third inverter 173 is connected with the control system 210 and the sensor 220, and the third inverter 173 is configured to convert the alternating current output from the second output end of the first transformer 161 into direct current, thereby driving Control systems and sensors that require direct current drive.
  • the electric drive pumping system 100 also includes a first frequency converter 181; one end of the first frequency converter 181 is connected to the first output end of the first transformer 161, and the first frequency converter 181 The other end of the main motor 130 is connected.
  • the first frequency converter can convert the direct current output from the first output terminal of the first transformer into frequency-variable alternating current, thus, the electric drive pumping system can realize stepless speed regulation, continuously change the speed, and improve transmission efficiency.
  • the above-mentioned main motor 130 may be a variable frequency motor.
  • the auxiliary device 150 includes a first auxiliary motor 151 and a first auxiliary component 152, the second output end of the first transformer 161 is connected to the first auxiliary motor 151, and the first auxiliary motor 151 is connected to the first auxiliary motor 151.
  • the first auxiliary component 152 is connected and configured to drive the first auxiliary component 152 . It should be noted that, when the electric drive pumping system includes the above-mentioned second inverter, the first auxiliary motor can be connected to the second output terminal of the first transformer through the second inverter.
  • the first auxiliary component 152 includes at least one of a lubrication pump, a heat dissipation pump, a hydraulic pump, a liquid supply pump, a centrifugal pump, a gear pump, an agitator, and a rotor pump.
  • the auxiliary device can realize various types of auxiliary functions, such as lubricating functions, heat dissipation functions, and the like.
  • the first auxiliary motor 151 may be a fixed-frequency motor or a variable-frequency motor, which is not limited in this embodiment of the present disclosure.
  • the auxiliary device 150 further includes a second frequency converter 182, a second auxiliary motor 154 and a second auxiliary component 155; one end of the second frequency converter 182 is connected to the second output of the first transformer 161 The other end of the second inverter 182 is connected to the second auxiliary motor 154 , and the second auxiliary motor 154 is connected to the second auxiliary component 155 and is configured to drive the second auxiliary component 155 .
  • the above-mentioned second auxiliary motor can also realize stepless speed regulation, continuously change the speed, and improve the transmission efficiency.
  • the second auxiliary component 155 may also include at least one of a lubricating pump, a cooling pump, a hydraulic pump, a liquid supply pump, a centrifugal pump, a gear pump, an agitator, and a rotor pump.
  • the auxiliary device can realize various types of auxiliary functions, such as lubricating functions, heat dissipation functions, and the like.
  • the aforementioned energy storage unit 122 includes at least one of a chemical battery and a capacitor. Therefore, the above-mentioned energy storage unit has a faster charge and discharge capability and a relatively larger energy density.
  • the embodiments of the present disclosure include but are not limited thereto, and the above-mentioned energy storage unit may also adopt other energy storage methods.
  • the electric drive pumping device 100 further includes a switch 190, including an input end, a first output end and a second output end, the input end of the switch 190 is connected to the power generation device 110, A first output end of the switch 190 is connected to the energy storage system 120 , and a second output end of the switch 190 is connected to the first transformer 161 .
  • the switch connects the input end to the first output end, the power generated by the power generating device can be used to charge the energy storage system; when the switch connects the input end to the second output end, the power generated by the power generating device can be The main motor and auxiliary devices are driven directly through the first transformer.
  • the power generation device and the energy storage system can serve as backups for each other, and when the energy storage system fails, the power generation device can be used for power supply.
  • the power generation device and the at least one energy storage system can be controlled to be the main Electric motors and auxiliary devices are powered.
  • the energy storage system 120 further includes a power management system 128, the power management system 128 is connected to the energy storage unit 122, and is configured to monitor the state of the energy storage unit 122 and manage the energy storage unit 122.
  • the power management system may include an energy storage unit protection module, and the energy storage unit protection module may set the charging timing of the energy storage unit. For example, when the electric quantity of the energy storage unit is less than 20% of the capacity of the energy storage unit, a request signal is sent to request the power generation device to charge the energy storage unit.
  • Fig. 4 is a schematic diagram of another electrically driven pumping system provided by an embodiment of the present disclosure.
  • the electric drive pumping system 100 includes a plurality of energy storage systems 120 , that is to say, at least one energy storage system 120 mentioned above is a plurality of energy storage systems 120 .
  • multiple energy storage systems 120 are connected in parallel between the power generation device 110 and the first transformer 161 .
  • multiple energy storage systems can increase the electric capacity of the electric drive pumping system; Continued work is still guaranteed.
  • Fig. 5 is a schematic diagram of another electrically driven pumping system provided by an embodiment of the present disclosure.
  • the electric drive pumping device 100 also includes a remote controller 250
  • the power generating device 110 includes a power generating device controller 118
  • the control system 210 is connected to the power generating device controller 118, the sensor 220, and the power management system 128 respectively.
  • the remote controller 250 communicates with the control system 210 .
  • the control system can obtain the operating parameters of the above-mentioned various devices (such as power generation devices, pumping devices, auxiliary devices, etc.) through various sensors, and control according to these operating parameters; Estimate the power consumption of various devices according to the operating parameters, and then estimate the total power.
  • the electric drive pumping device can also be remotely controlled by a remote controller.
  • the controller of the power generation unit includes a prime mover protection module.
  • the prime mover can be an internal combustion engine or a turbine engine, it usually requires preheating, cranking, idle heating, etc., and idle lubrication, heat dissipation, and shutdown disks are required when different models are running. Car heat dissipation, radiator continuous heat dissipation, etc.
  • the generator controller can automatically determine the reserved protection time, avoid overheating damage or cold start damage, etc.; in addition, the generator controller can also monitor the temperature of key parts of the prime mover and the pressure of the lubrication system , internal combustion engine speed, etc., automatically judge the buffer protection time, and at the same time meet the power demand of the system, avoiding the situation that the generator still cannot start when power generation is required.
  • control system can obtain the current, voltage, temperature, remaining capacity, alarm information, etc. of the energy storage unit through the power management system; the control system can obtain the generator current, voltage, frequency, temperature, speed, alarm information, The pressure of the liquid pipeline, the height of the oil position, etc.; after the control system obtains the alarm information, it can be displayed on the local display interface, and can also be displayed on the control interface on the remote controller. Therefore, when there are abnormal conditions such as device overheating, internal combustion engine overspeed, device discharge pipeline overpressure, etc., the control system can disconnect the switch between the power supply device and the motor and other power devices, stop power generation and power supply, and avoid device damage and overpressure accidents wait.
  • abnormal conditions such as device overheating, internal combustion engine overspeed, device discharge pipeline overpressure, etc.
  • the above-mentioned control system 210 can also communicate with the above-mentioned first frequency converter 181 and the second frequency converter 182 , so as to control the speed of the main motor 130 and the second auxiliary motor 154 .
  • the aforementioned communication connection includes communication connection through wired connection (such as wire, optical fiber, etc.), and also includes communication connection through wireless connection (such as WiFi, mobile network).
  • wired connection such as wire, optical fiber, etc.
  • wireless connection such as WiFi, mobile network
  • control system and remote controller may include a storage medium and a processor; the storage medium is used to store computer programs; and the processor is used to execute the computer programs in the storage medium to achieve various control operations.
  • the above-mentioned storage medium may be a volatile memory and/or a non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), etc., for example.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • the aforementioned processor may be a central processing unit (CPU) or other forms of processing devices with data processing capabilities and/or instruction execution capabilities, such as microprocessors, programmable logic controllers (PLCs), and the like.
  • CPU central processing unit
  • PLCs programmable logic controllers
  • an identified module of executable code may, by way of example, comprise one or more physical or logical blocks of computer instructions which may, for example, be structured as an object, procedure, or function. Notwithstanding, the executable code of an identified module need not be physically located together, but may comprise distinct instructions stored on different physical locations which, when logically combined, constitute the module and carry out the stated purpose of the module .
  • a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs and across multiple memory devices.
  • operational data may be identified within modules, and may be implemented in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed in different locations (including on different storage devices), and may exist, at least in part, only as electronic signals on a system or network.
  • the hardware circuit includes conventional very large scale integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very large scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.
  • Working mode 1 The power generation device continuously supplies power to the energy storage system.
  • the energy storage system supplies power to electrical devices such as the main motor and auxiliary devices, and the prime mover in the power generation device continues to operate with high efficiency.
  • Working mode 2 The power generation device continues to supply power to the main motor, auxiliary devices and other electrical devices. The excess power is used to charge the energy storage system. The energy storage system stores electricity. The prime mover in the power generation device operates at high efficiency most of the time.
  • Working mode three the power generation device and the energy storage system jointly supply power to the main motor, auxiliary devices and other electrical devices to ensure the high-power work requirements of the electrical devices, the prime mover in the power generation device ensures high-efficiency operation, and the energy storage system provides additional power .
  • the external power supply facility supplies power to the energy storage system, and the prime mover in the power generation device is used as a backup.
  • the above-mentioned external power supply facility may be a public power grid or a small local power grid.
  • the above-mentioned pumping device can be in the form of a vehicle, a skid, or a semi-trailer; in addition, the pumping device and the main engine can be integrated on the same vehicle or skid.
  • the electric drive pumping system can be combined with various device types according to actual working conditions, and at the same time, it can be easily transported to various well sites without being limited by site and power supply conditions.
  • the above-mentioned power generation device can be in the form of a vehicle, skid-mounted, semi-trailer, etc.; when the power generation device is in the form of a vehicle, the prime mover can also be the chassis engine of the vehicle, and the chassis engine can be driven by a special power take-off to generate electricity machine to generate electricity.
  • FIG. 6 is a schematic diagram of a driving method of an electric drive pumping system provided by an embodiment of the present disclosure. As shown in Figure 6, the driving method of the electric drive pumping system includes the following steps:
  • Step S101 Control the power generation device to be in a state of high-efficiency operation.
  • Step S102 Adjust the start-stop state of the power generation device and the charging and discharging state of at least one energy storage system according to the total power consumption of the main motor and the auxiliary device.
  • the driving method of the electric drive pumping system since the power generation device can be in high-efficiency operation state for a long time, the fuel economy is improved. Moreover, because the driving method can also adjust the start-stop state of the power generation device and the charging and discharging state of at least one energy storage system according to the total power consumption of the main motor and auxiliary devices, so as to ensure that the power storage The energy in the system can be kept within a certain range.
  • the above "high-efficiency operating state” means that the efficiency of the power generation device is 80% or more of the maximum efficiency of the power generation device. For example, when the power generation device adopts a gas turbine power generation device, and the maximum efficiency of the power generation device is 40%, the high-efficiency operation state of the power generation device refers to the state where the efficiency of the power generation device is greater than 32%.
  • adjusting the charging and discharging state of at least one energy storage system according to the power consumption of the main motor and the auxiliary device includes: when the total power consumption of the main motor and the auxiliary device is greater than the power supply of the at least one energy storage system, controlling the power generation device Simultaneously supply power to the main motor and auxiliary devices with at least one energy storage system; when the total power consumption of the main motor and auxiliary devices is less than the power supply power of at least one energy storage system, and the power of at least one energy storage system is greater than that of at least one When the preset ratio of electric capacity is reached, at least one energy storage system is controlled to discharge, and the power generation device is turned off; When the electric capacity of the at least one energy storage system is less than a preset ratio, the at least one energy storage system is controlled to discharge, and the power generation device is started to charge the at least one energy storage system. Therefore, the driving method can ensure sufficient power supply under various load conditions, and at the same time enable the power generation device to run with high efficiency for a long
  • the aforementioned preset ratio is 20%.
  • the embodiments of the present disclosure include but are not limited thereto, and the above-mentioned preset ratio can be set according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种电驱泵送系统及其驱动方法,该电驱泵送系统(100)包括发电装置(110)、至少一个储能系统(120)、与主电动机(130)相连的泵送装置(140)、辅助装置(150)和第一变压器(161)。第一变压器包括输入端、第一输出端和第二输出端。储能系统包括储能单元(122)。发电装置与储能单元相连,第一变压器的输入端与储能单元相连,第一变压器的第一输出端与主电动机电性相连,第一变压器的第二输出端与辅助装置电性相连。该电驱泵送系统可避免由于发电装置断电而导致的主电动机停机等问题,保证作业连续进行,并且还可在负载变化的情况下使得发电装置可长时间高效率运行,提高了燃油经济性。

Description

电驱泵送系统及其驱动方法 技术领域
本公开的实施例涉及一种电驱泵送系统及其驱动方法。
背景技术
随着油气开采技术的不断发展,由于具有功率大、节能环保、重量轻、体积小等优点,电驱装置在油气开采领域的应用也越来越广泛。电驱装置通常采用电力驱动电动机,然后使用电动机驱动各种功能部件以实现各种功能。例如,电动机可驱动压裂泵,以将低压的压裂液加压为高压的压裂液;又例如,电动机可驱动润滑泵,以驱动润滑液对柱塞泵进行润滑。
在油气开采领域常用的电驱装置可包括电驱固井装置、电驱酸化压裂装置、电驱压裂装置等采用电力驱动的泵送装置,这些装置通常由电网、或发电装置供电。
发明内容
本公开实施例提供一种电驱泵送系统及其驱动方法。该电驱泵送系统可通过发电机为储能单元供电,储能单元为电机供电,并设置备用电源,避免供电装置断电导致的装置停机以及带来的作业中断风险。并且,该泵送装置中电机通过变频器驱动,可以实现无极调速;另外本方案发电机中内燃机始终属于经济工况,持续在额定功率、额定转速下工作,燃烧热效率持续维持在高效区间。
本公开至少一个实施例提供一种电驱泵送系统,其包括:发电装置;至少一个储能系统,包括储能单元;主电动机;泵送装置,与所述主电动机相连,并被配置为利用所述主电动机输出的机械动力将流体进行泵送;辅助装置;以及第一变压器,包括输入端、第一输出端和第二输出端,所述发电装置与所述储能单元相连,所述第一变压器的所述输入端与所述储能单元相连,所述第一变压器的所述第一输出端与所述主电动机电性相连,所述第一变压器的所述第二输出端与所述辅助装置电性相连。
例如,本公开一实施例提供的电驱泵送系统还包括:第一逆变器,一端与所述第一变压器的所述第一输出端相连,另一端与所述主电动机相连,所述第一逆变器被配置为将所述第一变压器的所述第一输出端输出的直流电转换为 交流电,所述发电装置包括原动机和直流发电机,所述原动机与所述直流发电机相连,并被配置为驱动所述直流发电机发直流电。
例如,本公开一实施例提供的电驱泵送系统还包括:第二变压器,包括输入端和输出端;控制系统;以及传感器,所述第二变压器的所述输入端与所述储能单元相连,所述第二变压器的输出端与所述控制系统和所述传感器相连。
例如,本公开一实施例提供的电驱泵送系统还包括:第二逆变器,包括输入端和输出端,所述第二逆变器的输入端与所述第一变压器的第二输出端相连,所述第二逆变器的输出端与所述辅助装置相连。
例如,在本公开一实施例提供的电驱泵送系统中,所述储能系统还包括:双向变流器,包括第一端、第二端和第三端,所述双向变流器的所述第一端与所述发电装置相连,所述双向变流器的所述第二端与所述储能单元相连,所述双向变流器的所述第三端与所述第一变压器的所述输入端相连,所述双向变流器被配置为将所述第一端输入的交流电转化为直流电并从所述第二端输出,将所述第二端输入的直流电转化为交流电并所述第三端输出,所述发电装置包括原动机和交流发电机,所述原动机与所述交流发电机相连,并被配置为驱动所述交流发电机发交流电。
例如,本公开一实施例提供的电驱泵送系统还包括:还包括:控制系统;传感器;以及第三逆变器,一端与所述第一变压器的所述第二输出端相连,另一端与所述控制系统和所述传感器相连,所述第三逆变器被配置为将所述第一变压器的所述第一输出端输出的交流电转换为直流电。
例如,本公开一实施例提供的电驱泵送系统还包括:第一变频器,一端与所述第一变压器的所述第一输出端相连,另一端与所述主电动机相连。
例如,在本公开一实施例提供的电驱泵送系统中,所述原动机包括内燃机和涡轮发动机中的至少之一。
例如,在本公开一实施例提供的电驱泵送系统中,所述辅助装置包括:第一辅助电机;以及第一辅助部件,所述第一变压器的所述第二输出端与所述第一辅助电机相连,所述第一辅助电机与所述第一辅助部件相连,并被配置为驱动所述第一辅助部件。
例如,在本公开一实施例提供的电驱泵送系统中,所述第一辅助部件包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。
例如,在本公开一实施例提供的电驱泵送系统中,所述辅助装置还包括:第二变频器;第二辅助电机;以及第二辅助部件,所述第二变频器的一端与所述第一变压器的所述第二输出端相连,所述第二变频器的另一端与所述第二辅助电机相连,所述第二辅助电机与所述第二辅助部件相连,并被配置为驱动所述第二辅助部件。
例如,在本公开一实施例提供的电驱泵送系统中,所述第二辅助部件包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。
例如,在本公开一实施例提供的电驱泵送系统中,所述储能单元包括化学电池和电容器中的至少之一。
例如,在本公开一实施例提供的电驱泵送系统中,所述至少一个储能系统包括多个所述储能系统,多个所述储能系统并联在所述发电装置和所述第一变压器之间。
例如,本公开一实施例提供的电驱泵送系统还包括:切换开关,包括输入端、第一输出端和第二输出端,所述切换开关的所述输入端与所述发电装置相连,所述切换开关的所述第一输出端与所述储能系统相连,所述切换开关的所述第二输出端与所述第一变压器相连。
例如,在本公开一实施例提供的电驱泵送系统中,所述储能系统还包括:电源管理系统,与所述储能单元相连,并被配置为监测所述储能单元的状态和管理所述储能单元。
例如,本公开一实施例提供的电驱泵送系统还包括远程控制器,所述发电装置包括发电装置控制器,所述控制系统与所述发电装置控制器、所述传感器和所述电源管理系统分别通信相连,所述远程控制器与所述控制系统通信相连。
本公开至少一个实施例还提供一种电驱泵送系统的驱动方法,包括:控制所述发电装置处于高效运行状态;以及根据所述主电动机和所述辅助装置的用电总功率调节所述发电装置的启停状态和所述至少一个储能系统的充放电状态。
例如,在本公开一实施例提供的电驱泵送系统的驱动方法中,根据所述主电动机和所述辅助装置的用电功率调节所述至少一个储能系统的充放电状态包括:当所述主电动机和所述辅助装置的用电总功率大于所述至少一个储能系 统的供电功率时,控制所述发电装置和所述至少一个储能系统同时为所述主电动机和所述辅助装置供电;当所述主电动机和所述辅助装置的用电总功率小于所述至少一个储能系统的供电功率,且所述至少一个储能系统的电量大于所述至少一个储能系统的电容量的预设比例时,控制所述至少一个储能系统放电,并关闭所述发电装置;以及当所述主电动机和所述辅助装置的用电总功率小于所述至少一个储能系统的供电功率,且所述至少一个储能系统的电量小于所述至少一个储能系统的电容量的预设比例时,控制所述至少一个储能系统放电,并启动所述发电装置并向所述至少一个储能系统充电。
例如,在本公开一实施例提供的电驱泵送系统的驱动方法中,所述预设比例为20%
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种电驱泵送系统的示意图;
图2为本公开一实施例提供的另一种电驱泵送系统的示意图;
图3为本公开一实施例提供的另一种电驱泵送系统的示意图;
图4为本公开一实施例提供的另一种电驱泵送系统的示意图;
图5为本公开一实施例提供的另一种电驱泵送系统的示意图;以及
图6为本公开一实施例提供的一种电驱泵送系统的驱动方法的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的 组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在油气开采领域,传统的柴驱装置中的柴油发动机效率低,还需要配合变速箱,再由变速箱连接柱塞泵;然而,大功率变速箱档位速比不连续,无法实现无级调速,无法满足精细化作业时对流量微调的要求。并且,在实际作业过程中,柴油发动机的负载率由实际工况决定,而实际工况下通常不是柴油发动机的经济负载工况,而柴油发动机在怠速和额定转速频繁切换会增加损耗。
随着电驱技术的不断发展,电驱装置在油气开采井场日益普及。然而,由于油气开采井场的位置通常较为偏远,缺少供电设施,并且电网架设复杂;因此电驱装置的使用受到限制,无法满足灵活作业的要求。并且,电驱装置由电网或发电装置等供电设施供电,缺少备用的缓冲电源,一旦供电设施断电,则电驱装置停机,导致作业中断。另外,在采用发电装置直接为电驱装置供电的情况下,由于电驱装置的功率会随着工况的不同而产生变化,发电装置就需要输出不同的功率,从而导致发电装置无法长时间运行在高效状态,造成能耗较高,燃油经济性较差。
对此,本公开实施例提供一种电驱泵送系统及其驱动方法。该电驱泵送系统包括:发电装置、至少一个储能系统、主电动机、泵送装置、辅助装置和第一变压器。各储能系统包括储能单元,泵送装置与主电动机相连,并被配置为利用主电动机输出的机械动力将流体进行泵送;第一变压器包括输入端、第一输出端和第二输出端,发电装置与储能单元相连,第一变压器的输入端与储能单元相连,第一变压器的第一输出端与主电动机电性相连,第一变压器的第二输出端与辅助装置电性相连。由此,该电驱泵送系统可避免由于发电装置断电而导致的主电动机停机等问题,保证作业连续进行。另一方面,该电驱泵送系统还可通过至少一个储能系统为主电动机和辅助装置同时进行供电,并且在负载变化的情况下使得发电装置可长时间高效率运行,提高了燃油经济性。
下面,结合附图对本公开实施例提供的电驱泵送系统及其驱动方法进行详细的说明。
本公开一实施例提供一种电驱泵送系统。图1为本公开一实施例提供的一种电驱泵送系统的示意图。如图1所示,该电驱泵送系统100包括发电装置110、 至少一个储能系统120、主电动机130、泵送装置140、辅助装置150和第一变压器161。各储能系统120包括储能单元122;泵送装置140与主电动机130相连,并被配置为利用主电动机130输出的机械动力将流体进行泵送。第一变压器161包括输入端、第一输出端和第二输出端,发电装置110与储能单元122相连,第一变压器161的输入端与储能单元122相连,第一变压器161的第一输出端与主电动机130电性相连,第一变压器161的第二输出端与辅助装置150电性相连。需要说明的是,上述的发电装置与储能单元相连包括发电装置与储能单元直接相连的情况,也包括通过其他电器元件间接相连的情况;同样地,上述的第一变压器的输入端与储能单元相连包括第一变压器的输入端与储能单元直接相连的情况,也包括第一变压器的输入端与储能单元通过其他电器元件间接相连的情况。
在本公开实施例提供的电驱泵送系统中,通过设置上述的至少一个储能系统,该电驱泵送系统可避免由于发电装置断电或故障而导致的主电动机停机等问题,从而可保证作业连续进行。另外,由于第一变压器的输入端与储能单元相连,第一变压器的第一输出端与主电动机电性相连,第一变压器的第二输出端与辅助装置电性相连,该电驱泵送系统可同时为需求不同电压和不同功率的多种用电装置(例如主电动机和辅助装置)进行供电,从而可应对不同的工况。并且,由于不同电压和不同功率的多种用电装置在实际使用过程中会产生不同的负载,该电驱泵送系统通过上述的至少一个储能系统还可在负载变化的情况下使得发电装置长时间高效率运行,提高了燃油经济性。
另一方面,在该电驱泵送系统中,发电装置中的发电机可以灵活选择活塞或者涡轮轴等形式,因而具有较高的灵活性和经济性;发电装置中的原动机的燃料可以是柴油、生物油等油类,也可以是压缩天然气(CNG)、液化天然气(LNG)、井口气、管道气等天然气、氢气或含氢混合物、或其他含碳或氢的燃料,因此发电装置中的原动机采用这些低碳燃料可以减少碳排放,有利于环保。
在一些示例中,当主电动机和辅助装置的用电总功率小于至少一个储能系统的供电功率,且至少一个储能系统的电量大于至少一个储能系统的电容量的预设比例,例如20%时,控制至少一个储能系统放电,并关闭发电装置;当主电动机和辅助装置的用电总功率小于至少一个储能系统的供电功率,且至少一个储能系统的电量小于至少一个储能系统的电容量的预设比例,例如20%时, 控制至少一个储能系统放电,并启动发电装置并向至少一个储能系统充电。由此,该电驱泵送系统在保障电力供应充足且可应对不同的负载的情况下,可使得发电装置长时间高效率运行。需要说明的是,当主电动机和辅助装置的用电总功率大于至少一个储能系统的供电功率时,可控制发电装置和至少一个储能系统同时为主电动机和辅助装置供电。另外,上述的预设比例也可根据实际情况进行设置。
值得注意的是,上述的工作模式仅为说明本公开实施例提供的电驱泵送装置可实现发电装置长时间高效率运行的一种示例,本公开实施例的电驱泵送装置的工作模式包括但不限于此。
在一些示例中,如图1所示,该电驱泵送系统100还包括第一逆变器171,第一逆变器171的一端与第一变压器161的第一输出端相连,第一逆变器171的另一端与主电动机130相连。第一逆变器171被配置为将第一变压器161的第一输出端输出的直流电转换为交流电,发电装置110包括原动机112和直流发电机114,原动机112与直流发电机114相连,并被配置为驱动直流发电机114发直流电。在该示例提供的电驱泵送系统中,在发电装置为直流发电装置的情况下,第一逆变器被配置为将第一变压器的第一输出端输出的直流电转换为交流电,从而可驱动需要交流电驱动的主电动机。
在一些示例中,如图1所示,上述的主电动机130可为变频电机。由此,第一逆变器可将第一变压器的第一输出端输出的直流电转换为变频的交流电,由此,该电驱泵送系统可实现无级调速,连续改变转速,提高传动效率。
例如,上述的变频电机可以是三相异步、永磁、变频一体机等形式的变频电机。
在一些示例中,如图1所示,原动机112可通过联轴器与发电机114相连。例如,联轴器可以是传动轴、弹性联轴器等。
在一些示例中,上述泵送装置140包括柱塞泵,主电动机130通过联轴器连接柱塞泵,从而实现泵送流体。当然,本公开实施例包括但不限于此,上述的泵送装置也可采用其他形式的泵送装置。
在一些示例中,上述的原动机112包括内燃机和涡轮发动机中的至少之一。
例如,上述的原动机112可为柴油发动机。
在一些示例中,如图1所示,电驱泵送系统100还包括第二变压器162、控制系统210以及传感器220。第二变压器162包括输入端和输出端。第二变 压器162的输入端与储能单元122相连,第二变压器162的输出端与控制系统210和传感器220相连。由于控制系统和传感器需要低压驱动,因此该电驱泵送装置可通过设置上述的第二变压器将电压灵活升高或降低,满足各种不同用电装置运行所需电压条件。
在一些示例中,如图1所示,该电驱泵送系统100还包括第二逆变器172,第二逆变器172包括输入端和输出端,第二逆变器172的输入端与第一变压器161的第二输出端相连,第二逆变器172的输出端与辅助装置150相连。由此,在发电装置为直流发电装置的情况下,第二逆变器被配置为将第一变压器的第一输出端输出的直流电转换为交流电,从而可驱动需要交流电驱动的辅助装置。
在一些示例中,如图1所示,辅助装置150包括第一辅助电机151和第一辅助部件152,第一变压器161的第二输出端与第一辅助电机151相连,第一辅助电机151与第一辅助部件152相连,并被配置为驱动第一辅助部件152。需要说明的是,当该电驱泵送系统包括上述的第二逆变器时,第一辅助电机可通过第二逆变器与第一变压器的第二输出端相连。
在一些示例中,第一辅助部件152包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。由此,该辅助装置可实现各种类型的辅助功能,例如润滑功能、散热功能等。
例如,第一辅助电机151可为定频电机或者变频电机,本公开实施例在此不作限制。
在一些示例中,上述的储能单元122包括化学电池和电容器中的至少之一。由此,上述的储能单元具有较快的充放电能力和相对较大的能量密度。当然,本公开实施例包括但不限于此,上述的储能单元也可采用其他储能方式。
在一些示例中,如图1所示,该电驱泵送装置100还包括切换开关190,包括输入端、第一输出端和第二输出端,切换开关190的输入端与发电装置110相连,切换开关190的第一输出端与储能系统120相连,切换开关190的第二输出端与第一变压器161相连。由此,当切换开关将输入端和第一输出端连通时,发电装置产生的电力可用于储能系统的充电;当切换开关将输入端与第二输出端连通时,发电装置产生的电力可直接通过第一变压器驱动主电动机和辅助装置。由此,发电装置和储能系统可互为备用,在储能系统发生故障时,可通过发电装置进行供电。另外,当主电动机和辅助装置的用电总功率大于至少 一个储能系统的供电功率时,可通过将切换开关将输入端和第二输出端连通来控制发电装置和至少一个储能系统同时为主电动机和辅助装置供电。
图2为本公开一实施例提供的另一种电驱泵送系统的示意图。如图2所示,该电驱泵送系统100包括多个储能系统120,也就是说,上述的至少一个储能系统120为多个储能系统120。此时,多个储能系统120并联在发电装置110和第一变压器161之间。由此,一方面,多个储能系统能够增加该电驱泵送系统的电容量;另一方面,多个储能系统可相互备用,当一个储能系统系统出现故障时,其他储能系统仍可保证工作连续进行。
在一些示例中,如图2所示,发电装置110可包括多个子发电装置1100,多个子发电装置1100与多个储能系统120一一对应设置。当然,本公开实施例包括但不限于此。
图3为本公开一实施例提供的另一种电驱泵送系统的示意图。如图3所示,该电驱泵送系统100包括发电装置110、至少一个储能系统120、主电动机130、泵送装置140、辅助装置150和第一变压器161。各储能系统120包括储能单元122和双向变流器124;泵送装置140与主电动机130相连,并被配置为利用主电动机130输出的机械动力将流体进行泵送。第一变压器161包括输入端、第一输出端和第二输出端,发电装置110与储能单元122相连,第一变压器161的输入端与储能单元122相连,第一变压器161的第一输出端与主电动机130电性相连,第一变压器161的第二输出端与辅助装置150电性相连。
如图3所示,双向变流器124包括第一端、第二端和第三端;双向变流器124的第一端与发电装置110相连,双向变流器124的第二端与储能单元122相连,双向变流器124的第三端与第一变压器161的输入端相连;双向变流器124被配置为将第一端输入的交流电转化为直流电并从第二端输出,将第二端输入的直流电转化为交流电并第三端输出。发电装置110包括原动机112和交流发电机116,原动机112与交流发电机116相连,并被配置为驱动交流发电机116发交流电。由此,该电驱泵送系统既可以通过双向变流器将发电装置提供的交流电转化为直流电并储存在储能单元中,也可以通过双向变流器将储能单元输出的直流电转变为交流电进而驱动需要交流电驱动的主电动机和辅助装置。
在一些示例中,上述的原动机112也可包括内燃机和涡轮发动机中的至少之一。
在一些示例中,如图3所示,该电驱泵送系统100还包括控制系统210、传感器220和第三逆变器173;第三逆变器173的一端与第一变压器161的第二输出端相连,第三逆变器173的另一端与控制系统210和传感器220相连,第三逆变器173被配置为将第一变压器161的第二输出端输出的交流电转换为直流电,从而驱动需要直流电驱动的控制系统和传感器。
在一些示例中,如图3所示,该电驱泵送系统100还包括第一变频器181;第一变频器181的一端与第一变压器161的第一输出端相连,第一变频器181的另一端与主电动机130相连。由此,第一变频器可将第一变压器的第一输出端输出的直流电转换为变频的交流电,由此,该电驱泵送系统可实现无级调速,连续改变转速,提高传动效率。
在一些示例中,如图3所示,上述的主电动机130可为变频电机。
在一些示例中,如图3所示,辅助装置150包括第一辅助电机151和第一辅助部件152,第一变压器161的第二输出端与第一辅助电机151相连,第一辅助电机151与第一辅助部件152相连,并被配置为驱动第一辅助部件152。需要说明的是,当该电驱泵送系统包括上述的第二逆变器时,第一辅助电机可通过第二逆变器与第一变压器的第二输出端相连。
在一些示例中,第一辅助部件152包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。由此,该辅助装置可实现各种类型的辅助功能,例如润滑功能、散热功能等。
例如,第一辅助电机151可为定频电机或者变频电机,本公开实施例在此不作限制。
在一些示例中,如图3所示,辅助装置150还包括第二变频器182、第二辅助电机154和第二辅助部件155;第二变频器182的一端与第一变压器161的第二输出端相连,第二变频器182的另一端与第二辅助电机154相连,第二辅助电机154与第二辅助部件155相连,并被配置为驱动第二辅助部件155。由此,通过上述的第二变频器,上述的第二辅助电机也可实现无级调速,连续改变转速,提高传动效率。
在一些示例中,第二辅助部件155也可包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。由此,该辅助装置可实现各种类型的辅助功能,例如润滑功能、散热功能等。
在一些示例中,上述的储能单元122包括化学电池和电容器中的至少之一。 由此,上述的储能单元具有较快的充放电能力和相对较大的能量密度。当然,本公开实施例包括但不限于此,上述的储能单元也可采用其他储能方式。
在一些示例中,如图3所示,该电驱泵送装置100还包括切换开关190,包括输入端、第一输出端和第二输出端,切换开关190的输入端与发电装置110相连,切换开关190的第一输出端与储能系统120相连,切换开关190的第二输出端与第一变压器161相连。由此,当切换开关将输入端和第一输出端连通时,发电装置产生的电力可用于储能系统的充电;当切换开关将输入端与第二输出端连通时,发电装置产生的电力可直接通过第一变压器驱动主电动机和辅助装置。由此,发电装置和储能系统可互为备用,在储能系统发生故障时,可通过发电装置进行供电。另外,当主电动机和辅助装置的用电总功率大于至少一个储能系统的供电功率时,可通过将切换开关将输入端和第二输出端连通来控制发电装置和至少一个储能系统同时为主电动机和辅助装置供电。
在一些示例中,如图3所示,该储能系统120还包括电源管理系统128,电源管理系统128与储能单元122相连,并被配置为监测储能单元122的状态和管理储能单元122。
例如,电源管理系统可包括储能单元保护模块,储能单元保护模块可设定储能单元的充电时机。例如,当储能单元的电量小于储能单元的电容量的20%时,发出请求信号,请求发电装置为储能单元进行充电。
图4为本公开一实施例提供的另一种电驱泵送系统的示意图。如图4所示,该电驱泵送系统100包括多个储能系统120,也就是说,上述的至少一个储能系统120为多个储能系统120。此时,多个储能系统120并联在发电装置110和第一变压器161之间。由此,一方面,多个储能系统能够增加该电驱泵送系统的电容量;另一方面,多个储能系统可相互备用,当一个储能系统系统出现故障时,其他储能系统仍可保证工作连续进行。
图5为本公开一实施例提供的另一种电驱泵送系统的示意图。如图5所示,该电驱泵送装置100还包括远程控制器250,发电装置110包括发电装置控制器118,控制系统210与发电装置控制器118、传感器220和电源管理系统128分别通信相连,远程控制器250与控制系统210通信相连。由此,控制系统可以通过各种传感器获取上述各种装置(例如发电装置、泵送装置、辅助装置等)的运行参数,并根据这些运行参数进行控制;另外,上述的控制系统还可通过上述的运行参数估算各种装置的用电功率,进而估算出总功率。另外,该电驱 泵送装置还可通过远程控制器实现远程控制。
例如,发电装置控制器包括原动机保护模块,由于原动机可采用内燃机和涡轮发动机,通常需要预热、盘车启动、怠速加热等,不同机型运转结束时还需要怠速润滑、散热、停机盘车散热、散热器持续散热等。因此,通过上述的原动机保护模块,发电装置控制器可自动判断预留保护时间、避免过热损坏或冷启动损坏等付账;另外,发电装置控制器还可监控原动机关键部位温度、润滑系统压力、内燃机转速等自动判断缓冲保护时间,同时满足系统用电需求,避免需要发电时,发电机仍然无法启机的情况。
例如,控制系统可通过电源管理系统获取储能单元的电流、电压、温度、剩余量、报警信息等;控制系统通过发电装置控制器获取发电机电流、电压、频率、温度、转速、报警信息、液体管路压力、油液位置高度等;控制系统获取到报警信息后在本地显示界面显示,也可在远程控制器上的控制界面显示。因此,当出现装置过热、内燃机超速、装置排出管路超压等异常情况时,控制系统可断开供电装置与电机等动力装置之间的开关,停止发电供电,避免发生装置损坏、超压事故等。
在一些示例中,如图5所示,上述的控制系统210还可与上述的第一变频器181和第二变频器182通信相连,从而可控制主电动机130和第二辅助电机154的转速。
在一些示例中,上述的通信相连包括通过有线连接(例如导线、光纤等)的方式进行通信连接,也包括通过无线连接(例如WiFi、移动网络)的方式进行通信连接。
在一些示例中,上述的控制系统和远程控制器可包括存储介质和处理器;存储介质,用于存储计算机程序;处理器,用于执行存储介质中计算机程序以实现各种控制操作。
例如,上述的存储介质可为易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
例如,上述的处理器可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理装置,例如可以包括微处理器、可编程逻辑控制器(PLC)等。
当然,在本公开实施例提供的电驱泵送装置中,上述控制系统和远程控制 器也可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同物理上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
本公开实施例提供的电驱泵送装置可实现下列的几种工作模式:
工作模式一:发电装置持续为储能系统供电,储能系统为主电动机、辅助装置等用电装置供电,发电装置中的原动机持续高效率运行。
工作模式二:发电装置持续为主电动机、辅助装置等用电装置供电,多余电力为储能系统充电,储能系统储存电力,发电装置中的原动机大部分时间高效率运行。
工作模式三:发电装置和储能系统共同为主电动机、辅助装置等用电装置供电,保障用电装置的大功率工作需求,发电装置中的原动机保障高效率运行,储能系统提供额外动力。
工作模式四:外接供电设施为储能系统供电,发电装置中的原动机作为备用。例如,上述外接供电设施可以是公用电网或小型局部电网。
在一些示例中,上述的泵送装置可采用车载、撬装、半挂车等形式;另外,泵送装置可与主发动机集成在同一载具或撬装上。由此,该电驱泵送系统可以根据实际工况,选择多种装置形式进行组合,同时方便移运到各个井场,不受 场地和电力供应条件限制。
在一些示例中,上述的发电装置可采用车载、撬装、半挂车等形式;当发电装置采用车载形式时,原动机也可为载具的底盘发动机,底盘发动机可通过专用取力器驱动发电机进行发电。
本公开一实施例还提供一种电驱泵送系统的驱动方法。图6为本公开一实施例提供的一种电驱泵送系统的驱动方法的示意图。如图6所示,该电驱泵送系统的驱动方法包括以下步骤:
步骤S101:控制发电装置处于高效运行状态。
步骤S102:根据主电动机和辅助装置的用电总功率调节发电装置的启停状态和至少一个储能系统的充放电状态。
在本公开实施例提供的电驱泵送系统的驱动方法中,由于发电装置可长时间处于高效运行状态,提高了燃油经济性。并且,由于该驱动方法还可根据主电动机和辅助装置的用电总功率调节发电装置的启停状态和至少一个储能系统的充放电状态,从而在发电装置处于高效运行状态的同时,保证储能系统中的电量保持在一定范围之内。需要说明的是,上述的“高效运行状态”是指发电装置的效率为发电装置的最大效率的80%以上。例如,当发电装置采用燃气轮机发电装置,且发电装置的最大效率为40%时,该发电装置的高效运行状态是指该发电装置的效率大于32%的状态。
在一些示例中,根据主电动机和辅助装置的用电功率调节至少一个储能系统的充放电状态包括:当主电动机和辅助装置的用电总功率大于至少一个储能系统的供电功率时,控制发电装置和至少一个储能系统同时为主电动机和辅助装置供电;当主电动机和辅助装置的用电总功率小于至少一个储能系统的供电功率,且至少一个储能系统的电量大于至少一个储能系统的电容量的预设比例时,控制至少一个储能系统放电,并关闭发电装置;以及当主电动机和辅助装置的用电总功率小于至少一个储能系统的供电功率,且至少一个储能系统的电量小于至少一个储能系统的电容量的预设比例时,控制至少一个储能系统放电,并启动发电装置并向至少一个储能系统充电。由此,该驱动方法可在各种不同负载的情况下,保障电力供应充足,并且同时使得发电装置长时间高效率运行。
在一些示例中,上述的预设比例为20%。当然,本公开实施例包括但不限于此,上述的预设比例可根据实际需要进行设置。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种电驱泵送系统,包括:
    发电装置;
    至少一个储能系统,包括储能单元;
    主电动机;
    泵送装置,与所述主电动机相连,并被配置为利用所述主电动机输出的机械动力将流体进行泵送;
    辅助装置;以及
    第一变压器,包括输入端、第一输出端和第二输出端,
    其中,所述发电装置与所述储能单元相连,所述第一变压器的所述输入端与所述储能单元相连,所述第一变压器的所述第一输出端与所述主电动机电性相连,所述第一变压器的所述第二输出端与所述辅助装置电性相连。
  2. 根据权利要求1所述的电驱泵送系统,还包括:
    第一逆变器,一端与所述第一变压器的所述第一输出端相连,另一端与所述主电动机相连,
    其中,所述第一逆变器被配置为将所述第一变压器的所述第一输出端输出的直流电转换为交流电,所述发电装置包括原动机和直流发电机,所述原动机与所述直流发电机相连,并被配置为驱动所述直流发电机发直流电。
  3. 根据权利要求2所述的电驱泵送系统,还包括:
    第二变压器,包括输入端和输出端;
    控制系统;以及
    传感器,
    其中,所述第二变压器的所述输入端与所述储能单元相连,所述第二变压器的输出端与所述控制系统和所述传感器相连。
  4. 根据权利要求2所述的电驱泵送系统,还包括:
    第二逆变器,包括输入端和输出端,
    其中,所述第二逆变器的输入端与所述第一变压器的第二输出端相连,所述第二逆变器的输出端与所述辅助装置相连。
  5. 根据权利要求1所述的电驱泵送系统,其中,所述储能系统还包括:
    双向变流器,包括第一端、第二端和第三端,
    其中,所述双向变流器的所述第一端与所述发电装置相连,所述双向变流器的所述第二端与所述储能单元相连,所述双向变流器的所述第三端与所述第一变压器的所述输入端相连,
    所述双向变流器被配置为将所述第一端输入的交流电转化为直流电并从所述第二端输出,将所述第二端输入的直流电转化为交流电并所述第三端输出,
    所述发电装置包括原动机和交流发电机,所述原动机与所述交流发电机相连,并被配置为驱动所述交流发电机发交流电。
  6. 根据权利要求4所述的电驱泵送系统,还包括:
    控制系统;
    传感器;以及
    第三逆变器,一端与所述第一变压器的所述第二输出端相连,另一端与所述控制系统和所述传感器相连,
    其中,所述第三逆变器被配置为将所述第一变压器的所述第一输出端输出的交流电转换为直流电。
  7. 根据权利要求5或6所述的电驱泵送系统,还包括:
    第一变频器,一端与所述第一变压器的所述第一输出端相连,另一端与所述主电动机相连。
  8. 根据权利要求2-6中任一项所述的电驱泵送系统,其中,所述原动机包括内燃机和涡轮发动机中的至少之一。
  9. 根据权利要求1-6中任一项所述的电驱泵送系统,其中,所述辅助装置包括:
    第一辅助电机;以及
    第一辅助部件,
    其中,所述第一变压器的所述第二输出端与所述第一辅助电机相连,所述第一辅助电机与所述第一辅助部件相连,并被配置为驱动所述第一辅助部件。
  10. 根据权利要求9所述的电驱泵送系统,其中,所述第一辅助部件包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。
  11. 根据权利要求1-6中任一项所述的电驱泵送系统,其中,所述辅助装置还包括:
    第二变频器;
    第二辅助电机;以及
    第二辅助部件,
    其中,所述第二变频器的一端与所述第一变压器的所述第二输出端相连,所述第二变频器的另一端与所述第二辅助电机相连,所述第二辅助电机与所述第二辅助部件相连,并被配置为驱动所述第二辅助部件。
  12. 根据权利要求11所述的电驱泵送系统,其中,所述第二辅助部件包括润滑泵、散热泵、液压泵、供液泵、离心泵、齿轮泵、搅拌器和转子泵中的至少之一。
  13. 根据权利要求1-6中任一项所述的电驱泵送系统,其中,所述储能单元包括化学电池和电容器中的至少之一。
  14. 根据权利要求1-6中任一项所述的电驱泵送系统,其中,所述至少一个储能系统包括多个所述储能系统,多个所述储能系统并联在所述发电装置和所述第一变压器之间。
  15. 根据权利要求1-6中任一项所述的电驱泵送系统,还包括:
    切换开关,包括输入端、第一输出端和第二输出端,
    其中,所述切换开关的所述输入端与所述发电装置相连,所述切换开关的所述第一输出端与所述储能系统相连,所述切换开关的所述第二输出端与所述第一变压器相连。
  16. 根据权利要求2或5所述的电驱泵送系统,其中,所述储能系统还包括:
    电源管理系统,与所述储能单元相连,并被配置为监测所述储能单元的状态和管理所述储能单元。
  17. 根据权利要求16所述的电驱泵送系统,还包括:
    远程控制器,
    其中,所述发电装置包括发电装置控制器,所述控制系统与所述发电装置控制器、所述传感器和所述电源管理系统分别通信相连,所述远程控制器与所述控制系统通信相连。
  18. 一种根据权利要求1-17中任一项所述的电驱泵送系统的驱动方法,包括:
    控制所述发电装置处于高效运行状态;以及
    根据所述主电动机和所述辅助装置的用电总功率调节所述发电装置的启停状态和所述至少一个储能系统的充放电状态。
  19. 根据权利要求18所述的电驱泵送系统的驱动方法,其中,根据所述主电动机和所述辅助装置的用电功率调节所述至少一个储能系统的充放电状态包括:
    当所述主电动机和所述辅助装置的用电总功率大于所述至少一个储能系统的供电功率时,控制所述发电装置和所述至少一个储能系统同时为所述主电动机和所述辅助装置供电;
    当所述主电动机和所述辅助装置的用电总功率小于所述至少一个储能系统的供电功率,且所述至少一个储能系统的电量大于所述至少一个储能系统的电容量的预设比例时,控制所述至少一个储能系统放电,并关闭所述发电装置;以及
    当所述主电动机和所述辅助装置的用电总功率小于所述至少一个储能系统的供电功率,且所述至少一个储能系统的电量小于所述至少一个储能系统的电容量的预设比例时,控制所述至少一个储能系统放电,并启动所述发电装置并向所述至少一个储能系统充电。
  20. 根据权利要求19所述的电驱泵送系统的驱动方法,其中,所述预设比例为20%。
PCT/CN2022/076321 2022-02-15 2022-02-15 电驱泵送系统及其驱动方法 WO2023155038A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/076321 WO2023155038A1 (zh) 2022-02-15 2022-02-15 电驱泵送系统及其驱动方法
CN202280000739.5A CN114731057A (zh) 2022-02-15 2022-02-15 电驱泵送系统及其驱动方法
US17/774,815 US20240162738A1 (en) 2022-02-15 2022-02-15 Electrically-driven pumping system and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076321 WO2023155038A1 (zh) 2022-02-15 2022-02-15 电驱泵送系统及其驱动方法

Publications (1)

Publication Number Publication Date
WO2023155038A1 true WO2023155038A1 (zh) 2023-08-24

Family

ID=82232957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076321 WO2023155038A1 (zh) 2022-02-15 2022-02-15 电驱泵送系统及其驱动方法

Country Status (3)

Country Link
US (1) US20240162738A1 (zh)
CN (1) CN114731057A (zh)
WO (1) WO2023155038A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154765A (zh) * 1994-06-10 1997-07-16 诺思路·格鲁曼公司 电力车辆蓄电池充电器
US5767591A (en) * 1996-09-09 1998-06-16 Active Power, Inc. Method and apparatus for providing startup power to a genset-backed uninterruptible power supply
CN108360818A (zh) * 2018-04-19 2018-08-03 贵州大学 一种串联型油电混合动力臂架式混凝土泵车
KR20210087308A (ko) * 2020-01-02 2021-07-12 엘지전자 주식회사 엔진 발전 시스템
CN214227909U (zh) * 2021-02-07 2021-09-17 重庆润电科技有限公司 一种油电混合移动供电系统
CN214786070U (zh) * 2021-04-16 2021-11-19 中联重科股份有限公司 泵车
CN215621353U (zh) * 2021-04-27 2022-01-25 三一汽车制造有限公司 泵送车辆动力系统及泵送车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1154765A (zh) * 1994-06-10 1997-07-16 诺思路·格鲁曼公司 电力车辆蓄电池充电器
US5767591A (en) * 1996-09-09 1998-06-16 Active Power, Inc. Method and apparatus for providing startup power to a genset-backed uninterruptible power supply
CN108360818A (zh) * 2018-04-19 2018-08-03 贵州大学 一种串联型油电混合动力臂架式混凝土泵车
KR20210087308A (ko) * 2020-01-02 2021-07-12 엘지전자 주식회사 엔진 발전 시스템
CN214227909U (zh) * 2021-02-07 2021-09-17 重庆润电科技有限公司 一种油电混合移动供电系统
CN214786070U (zh) * 2021-04-16 2021-11-19 中联重科股份有限公司 泵车
CN215621353U (zh) * 2021-04-27 2022-01-25 三一汽车制造有限公司 泵送车辆动力系统及泵送车辆

Also Published As

Publication number Publication date
US20240162738A1 (en) 2024-05-16
CN114731057A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023087516A1 (zh) 压裂设备及其启动方法和压裂设备组
WO2022110379A1 (zh) 压裂系统
US20220389804A1 (en) Fracturing system
US20230323761A1 (en) Fracturing system
US11725491B2 (en) Electrically driven fracturing system
US9705357B2 (en) Hybrid electric generator set
CN204928358U (zh) 一种间歇性运转持续性供电的柴油发电机节能系统
CN104728219A (zh) 一种具有能量回收功能的液压泵试验台系统及能量回收方法
KR20110073646A (ko) 하이브리드용 전력 변환 장치
WO2022121268A1 (zh) 一种功率分配方法及分配系统
US11946353B2 (en) Mobile hybrid power platform
WO2023155038A1 (zh) 电驱泵送系统及其驱动方法
CN104153979B (zh) 一种动力用空气压缩机的运行控制方法及其压缩机
US20240159132A1 (en) Electrically-driven fracturing system
CN212676951U (zh) 全水冷永磁同步柴油发电机组应急无缝切换系统
WO2023206870A1 (zh) 泵送系统、井场布局及用于泵送系统的控制方法
CN115441495A (zh) 联合供电系统
CN214660493U (zh) 一种基于飞轮储能的拖挂式油田动力电站
CN212654343U (zh) 一种用于混合动力挖掘机的动力控制装置
CN205523720U (zh) 一种基于辅助引擎的充电系统
CN216904314U (zh) 一种透平/电力双驱动与储能一体化系统
CN217522758U (zh) 发电控制系统、发电系统及作业机械
CN216894548U (zh) 一种燃煤电厂汽动风机的驱动及储能装置
CN214506566U (zh) 黑启动电源系统
WO2017218931A1 (en) Power generation system and method of operating the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17774815

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926376

Country of ref document: EP

Kind code of ref document: A1