WO2022121268A1 - 一种功率分配方法及分配系统 - Google Patents

一种功率分配方法及分配系统 Download PDF

Info

Publication number
WO2022121268A1
WO2022121268A1 PCT/CN2021/099971 CN2021099971W WO2022121268A1 WO 2022121268 A1 WO2022121268 A1 WO 2022121268A1 CN 2021099971 W CN2021099971 W CN 2021099971W WO 2022121268 A1 WO2022121268 A1 WO 2022121268A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy source
idle
energy
load
power
Prior art date
Application number
PCT/CN2021/099971
Other languages
English (en)
French (fr)
Inventor
吴展盛
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2022121268A1 publication Critical patent/WO2022121268A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a power distribution method and a distribution system, belonging to the field of energy.
  • Each energy source includes a power generation module (such as a micro gas turbine generator set) and a supporting energy storage module (such as a power battery).
  • a power generation module such as a micro gas turbine generator set
  • a supporting energy storage module such as a power battery
  • each energy source includes an electric energy generation module and a supporting energy storage module to charge the load
  • the existing power distribution method only involves a power supply system including a plurality of energy storage modules, or a power supply system in which a set of power generation modules is matched with a set of energy storage modules.
  • the power supply system only includes a single range extender and a single power battery, and the power distribution method is only for a single range extender and a single power battery, and does not involve the power distribution in multiple energy sources. distribute.
  • the power supply system of a single range extender and a single power battery it is difficult for the power supply system of a single range extender and a single power battery to meet the charging requirements of multiple loads.
  • the multi-branch power distribution system of the Chinese invention patent application with publication number CN 108819747 A only involves the power distribution of multi-branch batteries, does not include an electric energy generation module, and does not include a micro gas turbine generator set. Both of these schemes involve only one level of power distribution. Therefore, how to effectively distribute power to a charging system that includes multiple energy sources and each energy source includes an electric energy generating module and a matching energy storage module will be a technical problem that needs to be solved.
  • the present invention provides a power distribution method and distribution system.
  • a power distribution method is based on having two or more energy sources Si in parallel , each energy source Si including a charging system with an electric energy generating module T i and an energy storage module B i ; the energy source
  • the Si power distribution method includes the following steps:
  • each energy source Si (the number of energy sources Si N ⁇ 2 , each energy source can be represented in the form of S1, S2, S3...SN), the state information is obtained from the energy source by the HCU EMS i acquisition inside Si ;
  • the HCU sends the partial power P Si of the target energy source to the corresponding EMS i , and the EMS i conducts the two power sources inside the target energy source Si, that is, the power generation module Ti and the energy storage module B i , based on P Si . Controlled to satisfy the output power of the energy source Si as P Si . Further, when PSi is less than or equal to the rated power of the energy storage module, the energy storage module works alone; otherwise, the power generation module is activated, and the two work simultaneously to charge externally.
  • the energy storage module works alone, if the SOC value of the energy storage module is lower than the second threshold (which can be equal to or different from the first threshold), or the new demand power P Si is greater than the rated power of the energy storage module, or the storage
  • the power generation module is started, and the two work at the same time to charge externally.
  • the SOC value of the energy storage module is greater than the third threshold (such as 65%), or if insufficient fuel is detected, the power generation module will be turned off, and the energy storage module will work alone.
  • the SOC value of the energy storage module is lower than the second threshold and the fuel quantity is insufficient, the energy source stops external charging.
  • the method of "determining target energy source and corresponding output power" in S130 includes the following steps:
  • S210 Find an idle energy source; if an energy source is in a state of charging an external load to be charged (meaning that at least an electric energy generating module or an energy storage module in the energy source is working and outputs electric energy to the external load to be charged), the energy The source is a non-idle energy source; otherwise, the energy source is determined to be an idle energy source;
  • S220 Determine the output capability of the idle energy source; further, include the following three situations:
  • the SOC of the energy storage module in the energy source is less than or equal to the first threshold (this value is determined according to the startup power consumption performance of the electric energy generation module and the performance of the energy storage module itself, such as 35%), then the output of the energy source The capacity is determined as the rated output power of the power generation module;
  • the second case the SOC of the energy storage module in the energy source is higher than the first threshold (eg 35%), then the output capability of the energy source is determined as the rated output power of the energy storage module;
  • the third situation the electric energy generation module is running and is charging the energy storage module, then the output capability of the energy source is determined as the sum of the rated output power of the electric energy generation module and the rated output power of the energy storage module;
  • S230 Determine the target energy source based on the output capability of the idle energy source and the load power demand; to more accurately determine which energy sources should be activated to charge the load to be charged, so as to reduce unnecessary start and stop of the gas turbine.
  • the target energy source may be determined based on the output capability of the idle energy source, such as:
  • the output capacity of all single idle energy sources is less than the load power requirement P load , and there is an idle energy source combination whose output capacity is greater than or equal to the load power requirement P load , if the number of idle energy source combinations that satisfy this condition is one , then all idle energy sources in the combination are determined as target energy sources; if the number of idle energy source combinations that meet this condition is more than two, then all idle energy sources in a combination are randomly determined as target energy sources. , excluding other idle energy sources.
  • the combination containing the least number of idle energy sources is randomly selected; the idle energy source combination includes more than two single idle energy sources, and the output capability of the combination is the sum of the output capabilities of all the single idle energy sources in the combination ;
  • the target energy source may be finally determined based on the output capability of the idle energy source and then combined with the status information of the idle energy source, such as:
  • the output capacity of a single idle energy source is greater than or equal to the load power demand P load , if the number of single idle energy sources that satisfy this condition is one, other idle energy sources are excluded, and the single idle energy source is determined as the target energy source ; If the number of a single idle energy source that satisfies this condition is more than two, it is further selected according to the state information of the energy source, for example: the corresponding energy storage module has the best state (such as the maximum SOC or SOH value), or the corresponding The idle energy source with the optimal state of the power generation module (such as the largest remaining fuel amount) is the target energy source;
  • the idle energy source is the target energy source. For example, among the combinations that meet the power conditions, first select the combination with the least number of idle energy sources, and then select the optimal state of the corresponding energy storage module (such as the maximum sum of SOC or SOH), or the corresponding energy storage module.
  • the idle energy source in the combination with the optimal state of the power generation module (such as the maximum remaining fuel quantity) is the target energy source;
  • the ordering may be based on the status information of the idle energy sources, and then the output capability of the idle energy sources may be combined to finally determine the target energy source, such as:
  • the idle energy sources are sorted based on the status information of the idle energy sources, which can be sorted based on the status information of the energy storage modules (such as SOC, SOH values), and can also be sorted based on the status information of the power generation modules (such as the remaining fuel amount). ;
  • the idle energy source with the best state in the sequence that is, corresponding to SOC, SOH, or the largest fuel remaining
  • the idle energy source is determined as the target energy source; otherwise, the idle energy source with the suboptimal state is selected, and it is judged whether the sum of the output capacity of the optimal state and the suboptimal energy source is greater than or equal to the load power demand P load ; if the sum of the output capacity of the two is greater than or equal to the load power demand P load , then the two are determined as the target energy source; and so on.
  • S240 Determine the target output power of the target energy source based on the output capability of the target energy source and the load power requirement.
  • Output Power For example: if it is determined that S3 and S5 are both the target energy sources, the partial power of the energy source S3 (that is, the power finally output by the energy source S3 to the load) is:
  • the present invention also provides a power distribution system suitable for the above-mentioned power distribution method.
  • Two or more parallel energy sources Si wherein, the charging gun is connected with the energy source Si through the busbar, the HCU is connected with each energy source Si through the communication bus, and the charging control system CHRG is connected with the load to be charged and the HCU, using It is used to obtain the power demand of the load to be charged and upload it to the HCU (CHRG communicates with the load to be charged through the charging gun).
  • Each energy source Si includes an electric energy generating module Ti, an energy storage module B i and an energy management system EMS i , and the HCU is connected to each energy management system EMS i .
  • the HCU includes an acquisition module, a power distribution module and a transmission module, wherein,
  • the obtaining module is used to obtain the power demand P load of the load to be charged, and obtain the state information of each energy source S i in the multiple energy sources S i provided by the EMS i ; the state information includes the energy source S i The running state information of the middle electric energy generating module T i and the electric energy state information of the energy storage module B i ;
  • the power distribution module is used to: determine the output power P Si of each energy source Si in the multiple energy sources Si based on the load power demand P load and the state information of the energy source Si ;
  • the sending module is used to send the sub-power PSi of the target energy source to the corresponding EMSi ;
  • the power distribution module includes: an idle energy source determination unit, a target energy source determination unit and an output power determination unit, wherein,
  • the idle energy source determining unit configured to determine idle energy sources and corresponding output capabilities
  • the target energy source determination unit is configured to: determine the target energy source based on the output capability of the idle energy source and the load power requirement;
  • the output power determining unit is configured to: determine the target output power of the target energy source based on the output capability and load power requirement of the target energy source.
  • the idle energy source determination unit determines the output capability of the idle energy source, if the SOC of the energy storage module in the energy source is less than or equal to the first threshold (the value is based on the startup power consumption performance and energy storage of the electric energy generation module) The performance of the module itself is determined, such as 35%), then the output capability of the energy source is determined as the rated output power of the power generation module; if the SOC of the energy storage module in the energy source is higher than the first threshold, the output capability of the energy source is determined as The rated output power of the energy storage module; if the energy generation module is running and is charging the energy storage module, the output capability of the energy source is determined as the sum of the rated output power of the energy generation module and the rated output power of the energy storage module.
  • the first threshold the value is based on the startup power consumption performance and energy storage of the electric energy generation module
  • the target energy source determination unit when determining the target energy source, determines the target energy source based on the output capability of the idle energy source; or: firstly based on the output capability of the idle energy source, and then finally determines the state information of the idle energy source.
  • the target energy source or: First, sort based on the status information of the idle energy source, and then combine the output capability of the idle energy source to finally determine the target energy source.
  • the output capacity of all single idle energy sources is less than the load power requirement P load , and there is an idle energy source combination whose output capacity is greater than or equal to the load power requirement P load , if the number of idle energy source combinations that satisfy this condition is one , then all idle energy sources in the combination are determined as target energy sources; if the number of idle energy source combinations that meet this condition is more than two, then all idle energy sources in a combination are randomly determined as target energy sources. , excluding other idle energy sources.
  • the combination containing the least number of idle energy sources is randomly selected; the idle energy source combination includes more than two single idle energy sources, and the output capability of the combination is the sum of the output capabilities of all the single idle energy sources in the combination ;
  • the specific implementation method of finally determining the target energy source is as follows:
  • the output capacity of a single idle energy source is greater than or equal to the load power demand P load , if the number of single idle energy sources that satisfy this condition is one, other idle energy sources are excluded, and the single idle energy source is determined as the target energy source ; If the number of a single idle energy source that satisfies this condition is more than two, it is further selected according to the state information of the energy source, for example: the corresponding energy storage module has the best state (such as the maximum SOC or SOH value), or the corresponding The idle energy source with the optimal state of the power generation module (such as the largest remaining fuel amount) is the target energy source;
  • the idle energy source is the target energy source. For example, among the combinations that meet the power conditions, first select the combination with the least number of idle energy sources, and then select the optimal state of the corresponding energy storage module (such as the maximum sum of SOC or SOH), or the corresponding energy storage module.
  • the idle energy source in the combination with the optimal state of the power generation module (such as the maximum remaining fuel quantity) is the target energy source;
  • the specific implementation method of first determining the target energy source based on the status information of the idle energy source and then combining the output capability of the idle energy source is as follows:
  • the idle energy sources are sorted based on the status information of the idle energy sources, which can be sorted based on the status information of the energy storage modules (such as SOC, SOH values), and can also be sorted based on the status information of the power generation modules (such as the remaining fuel amount). ;
  • the idle energy source with the best state in the sequence that is, corresponding to SOC, SOH, or the largest fuel remaining
  • the idle energy source is determined as the target energy source; otherwise, the idle energy source with the suboptimal state is selected, and it is judged whether the sum of the output capacity of the optimal state and the suboptimal energy source is greater than or equal to the load power demand P load ; if the sum of the output capacity of the two is greater than or equal to the load power demand P load , then the two are determined as the target energy source; and so on.
  • the number of charging guns can be one, or more than two; when there are more than two charging guns, each charging gun is connected to the HCU through the charging control unit CHRG, and each charging gun is respectively connected to the bus distribution unit through the bus bar, and the bus is connected.
  • the distribution unit includes the same number of switches as the number of energy sources Si , and the switches are used to select which busbar to output the electrical energy of the energy source Si to.
  • the HCU is also connected to the on-board terminal and/or the upper-layer server, and is used to report the aggregated state information of all energy sources S i and the state information of the load to be charged to the on-board terminal and/or the upper-layer server and receive the on-board terminal. and/or upper-level server information.
  • the power generation module T i is a gas turbine generator set, and the output power is constant under stable conditions;
  • the energy storage module B i is a battery, and the charging/discharging power is adjustable under stable conditions.
  • the structure of the single energy source Si further includes a fuel supply system, a sensor, an electronic control unit ECU, a DPC i , and a DC/DC controller.
  • the power distribution of multiple energy sources is uniformly performed by the HCU.
  • the EMS inside the energy source controls the internal energy storage module and the two power sources of the gas turbine according to the power commands issued by the HCU, which reduces the complexity of the system. This makes the system easy to expand, and the number of energy sources Si can be increased or decreased according to specific applications.
  • the influence of gas turbine state and battery SOC on the allocation strategy is comprehensively considered.
  • the power distribution method of the present invention can reduce the frequent start and stop of the gas turbine to prolong the service life of the gas turbine and reduce the energy loss of the frequent start and stop of the gas turbine under the condition of satisfying the load power demand as much as possible, and at the same time ensure the balanced use of the battery to prolong the service life of the gas turbine. battery life.
  • Figure 1 Schematic diagram of the structure and principle of the power distribution system of Embodiment 1 (one charging gun).
  • Figure 2 A schematic diagram of the structure of the HCU.
  • FIG. 3 is a schematic flowchart of the power distribution method of the present invention.
  • Figure 4 Schematic diagram of the structural principle of the energy source.
  • FIG. 5 is a schematic diagram of the structure and principle of the power distribution system in Embodiment 4 (multiple charging guns).
  • Embodiment 1 A power distribution system and method
  • a power distribution system is a charging system based on having two or more energy sources Si in parallel, each energy source Si including a power generation module T i and an energy storage module B i , as shown in FIG. 1 , including A charging control unit CHRG (Charging Control Unit), a hybrid control unit HCU (Hybrid Control Unit), a bus bar, a charging gun, and two or more parallel energy sources Si ; wherein, the charging gun is connected to the energy source S through the bus bar i is connected, HCU is connected to each energy source Si through the communication bus , and the charging control system CHRG is connected to the load to be charged and the HCU to obtain the power demand of the load to be charged and upload it to the HCU (CHRG is realized by the charging gun and the load to be charged) communication).
  • Each energy source Si includes an electric energy generating module Ti, an energy storage module B i and an energy management system EMS i , and the HCU is connected to each energy management system EMS i .
  • the HCU includes an acquisition module, a power distribution module and a transmission module, as shown in FIG. 2 , wherein,
  • the obtaining module is used to obtain the power demand P load of the load to be charged, and obtain the state information of each energy source S i in the multiple energy sources S i provided by the EMS i ; the state information includes the energy source S i The running state information of the middle electric energy generating module T i and the electric energy state information of the energy storage module B i ;
  • the power distribution module is used to: determine the output power P Si of each energy source Si in the multiple energy sources Si based on the load power demand P load and the state information of the energy source Si ;
  • the sending module is used to send the sub-power PSi of the target energy source to the corresponding EMSi ;
  • the power distribution module includes: an idle energy source determination unit, a target energy source determination unit and an output power determination unit, wherein,
  • the idle energy source determining unit configured to determine idle energy sources and corresponding output capabilities
  • the target energy source determination unit is configured to: determine the target energy source based on the output capability of the idle energy source and the load power requirement;
  • the output power determining unit is configured to: determine the target output power of the target energy source based on the output capability and load power requirement of the target energy source.
  • the entire charging system CS (Charging System) includes N (N ⁇ 2) parallel energy sources S i , a charging control unit CHRG (Charging Control Unit), a hybrid control unit HCU (Hybrid Control Unit), and a busbar , charging gun.
  • the charging gun is connected with the energy source Si through the bus bar, and the HCU is connected with each energy source Si through the communication bus.
  • the charging control unit CHRG directly participates in the charging control communication of the charged vehicle.
  • the software and hardware function requirements of the charging control unit CHRG follow the national standard for off-board chargers to charge electric vehicles (GB T 27930-2015), including physical connection completion, low-voltage auxiliary power-on, charging handshake, charging parameter configuration, charging stage and charging End the waiting process.
  • the charging control unit CHRG records various parameters of the charged vehicle during the charging process, such as power demand and SOC value of the power battery, and dynamically uploads it to the HCU.
  • the energy management system EMS i Electronicgy Management System ) inside the HCU or the energy source Si determines the output power of each energy source Si according to the power demand of the load to be charged and the status information of each energy source Si , and the charging current is output through the charging gun To the load to be charged, the charging gun is directly connected to the load to be charged.
  • FIG. 4 is a structural diagram of the energy source Si .
  • each energy source Si includes an electric energy generating module Ti , an energy storage module B i and an energy management system EMS i .
  • a single energy source Si includes not only an electric energy generating module Ti and an energy storage module B i (including a battery management system EMS i ) , but also a fuel supply system, a sensor, and an electronic control unit (ECU) (Electronic Control Unit). , DPC i (Digital Power Controller), DC/DC controller, EMS i (not shown one by one).
  • ECU electronice control unit
  • the electric energy generation module Ti is used to generate electric energy, and consists of a prime mover and a generator.
  • the prime mover refers to a thermal energy engine that converts the energy of fuel into mechanical energy and outputs mechanical energy through a rotating shaft. The mechanical energy generated by the motor is converted into electrical output.
  • the generator can also run as an electric motor during the starting stage of the prime mover, pulling the prime mover to rotate.
  • the prime mover can be a diesel generator, a gasoline generator, a gas turbine, or the like.
  • a micro gas turbine referred to as micro gas turbine, micro gas turbine or MT (Microturbine)
  • MT Microturbine
  • the power generation module T i is a micro gas turbine generator set composed of a micro gas turbine and a generator.
  • micro gas turbine generator sets Compared with traditional internal combustion engine generator sets (such as diesel generator sets), micro gas turbine generator sets have the advantages of small size, light weight, low vibration, low noise, faster starting, less moving parts, long service life, simple maintenance, and environmental friendliness. Wide fuel adaptability and other advantages. Therefore, in addition to being used as a common power supply for important national defense facilities in the military field, it is used as a backup power supply for equipment such as military communications and missile launches; in the civilian field, it is used as a common/backup power supply for small commercial buildings, and is used for distribution in remote areas. In addition to the type power supply system, the micro gas turbine generator set is expected to be widely used in the field of electric vehicle charging.
  • the single unit capacity of the micro gas turbine is generally within 300kW. However, there is no unified definition of the single unit capacity range of a micro gas turbine (generator set) internationally, and some researchers believe that the power less than 500kW is a micro gas turbine (generator set). However, these do not constitute limitations to this application. It should be noted that, although the micro gas turbine generator set with a smaller rated power is preferred as the power generation module in this embodiment, in fact, the power distribution system and method proposed in this application are also applicable to small, medium, and large power plants with large power. Systems for gas turbine generator sets.
  • this application does not specifically limit the single capacity of a gas turbine (generator set), and when mentioned in this application, it is generally referred to as "gas turbine” or “gas turbine".
  • gas turbine gas turbine
  • the gas turbine as the prime mover, is the one that provides energy, and the energy loss from the gas turbine to the generator can be ignored.
  • Capacity is the same as “output power/rated power/unit capacity of gas turbine generator set”.
  • "output power/rated power/single unit capacity of the prime mover” is the same as “output power/rated power/single unit capacity of the electric energy generating module Ti ".
  • the start-up control of the power generation module Ti is one of the control contents of the charging system CS. Since the start-up control of the power generation module Ti is the prime mover that is driven by the generator of Ti to turn Ti from a standstill to running at the starting speed, in this application, the terms "startup of the power generation module Ti ", The meanings indicated by “startup of the power generation module T i prime mover” and “startup of the prime mover” are the same. In the start-up phase, the generator of Ti operates as a motor, and the required electrical energy can be provided by the energy storage module Bi .
  • the startup phase in addition to consuming electrical energy to drive the prime mover to the startup speed, it is also necessary to precisely control other variables, such as temperature, fuel volume, air volume, etc. It can be seen that the startup of the power generating module T i is a process that consumes both energy and is complicated. In the working process of the charging system CS, reasonably reducing the start and stop times of the power generation module T i can effectively improve the system efficiency, reduce the system loss, and lighten the burden on the control system.
  • Energy storage module B i the functions of the energy storage module B i include the following: providing starting electric energy for the prime mover of the electric energy generating module T i ; outputting electric energy to the load to be charged; and storing the electric energy generated by the electric energy generating module T i .
  • the energy storage module B i may be any form of rechargeable and dischargeable electrical energy storage device, such as a battery, a super capacitor, and the like.
  • the energy management system EMS i completes the internal power management of the single energy source Si according to the allocated output power , determines the start and stop of the electric energy generating module Ti and the charging and discharging power of the energy storage module B i , and realizes the efficient utilization of energy.
  • ECU i By controlling the pump body, valve body, ignition controller and other actuators in the oil and gas circuit, combined with the feedback information of each sensor, and cooperate with DPC i , the closed-loop control of the output power of the electric energy generation module T i is realized.
  • DC/DC i1 stabilize the bus voltage, and realize the smooth start and stop of the power generation module T i by controlling the charge and discharge of the energy storage module B i .
  • DC/DC i2 Discharge the external load to be charged based on the command of EMS i .
  • the distribution of the load demand power can be realized by mutual coordination between the HCU connected to the energy source Si and the EMS i inside the energy source Si .
  • the power information of the load to be charged including the power demand of the load and/or the SOC value of the load power battery, etc.
  • the status of each energy source Si provided by the EMS i are obtained by the HCU in real time . information, and determine the output power of each energy source Si according to the load power information and the state information of the energy source Si .
  • the HCU connected to the energy source Si can also be used for: status summary and reporting - real-time summary of the status information of all energy sources Si and the status information of the charged load, and reported to the vehicle terminal and/or upper-layer server ; Receive information from the vehicle terminal and/or the upper-layer server (such as scheduling instructions, location information of the load to be charged, etc.).
  • the power distribution method is based on a charging system having more than two energy sources Si in parallel , each energy source Si including an electric energy generating module T i and an energy storage module B i .
  • the power distribution process 100 of multiple energy sources S i includes the following steps (as shown in FIG. 3 ):
  • S110 Determine the load power demand P load , that is, the HCU obtains the power demand P load of the external load to be charged from the CHRG.
  • S120 Acquire state information of each energy source Si in the N (N ⁇ 2) energy sources , and the state information is obtained by the HCU from the EMS i inside the energy source Si .
  • each energy source S i includes an electric energy generating module T i (preferably a gas turbine generator set, that is, a gas turbine + generator, can be any other form of power generation equipment that can generate electric energy) and a
  • the state information includes the operation state information of the electric energy generating module T i and the electric energy state information of the energy storage module B i .
  • the operating status information of the power generation module T i indicates the current operation status of the power generation module T i , which can be a shutdown (or shutdown, stop) state, a standby state, a power generation state, a fault state, etc., and can also be some information indicating the power generation module T
  • the information of the performance status of i such as the factory date of the electric energy generating module Ti , the remaining fuel quantity, etc.
  • the state of charge information of the energy storage module B i indicates the current state of charge of the energy storage module B i .
  • the state of charge information may be a battery state of charge (SOC) or a battery SOH (state of health); when the energy storage module B i is preferably a super capacitor, the state of charge information may be the state of charge SOC of the super capacitor.
  • SOC battery state of charge
  • SOH state of health
  • the battery state of charge (SOC) is used to reflect the physical quantity of the remaining capacity of the battery, and its value is defined as the ratio of the remaining battery capacity to the battery capacity; the battery health degree (SOH) is defined as the ratio of the current maximum output capacity to the battery factory capacity; Capacitor state of charge SOC (super capacitor state of charge) is based on the actual measured capacitor energy, expressed as a percentage of the square of the maximum nominal voltage of the paired capacitors.
  • S130 Determine the target energy source and the corresponding output power based on the load power demand P load and the state information of the energy source Si . See process 200 for details.
  • the HCU sends the partial power P Si of the target energy source to the corresponding EMS i , and the EMS i conducts the two power sources inside the target energy source Si, that is, the power generation module Ti and the energy storage module B i , based on P Si . Controlled to satisfy the output power of the energy source Si as P Si .
  • the PSi is less than or equal to the rated power of the energy storage module, the energy storage module works alone; otherwise, the power generation module is activated, and the two work simultaneously to charge externally.
  • the energy storage module works alone, if the SOC value of the energy storage module is lower than the second threshold (which can be equal to or different from the first threshold), or the new demand power P Si is greater than the rated power of the energy storage module, or the storage
  • the power generation module is started, and the two work at the same time to charge externally.
  • the SOC value of the energy storage module is greater than the third threshold (such as 65%), or if insufficient fuel is detected, the power generation module will be turned off, and the energy storage module will work alone.
  • the SOC value of the energy storage module is lower than the second threshold and the fuel quantity is insufficient, the energy source stops external charging.
  • the process 200 of determining the target energy source and the corresponding output power includes the following steps:
  • S210 Find an idle energy source; if an energy source is in a state of charging an external load to be charged (meaning that at least an electric energy generating module or an energy storage module in the energy source is working and outputs electric energy to the external load to be charged), the energy The source is a non-idle energy source; otherwise, the energy source is determined to be an idle energy source.
  • the SOC of the energy storage module in the energy source is less than or equal to the first threshold (this value is determined according to the startup power consumption performance of the electric energy generation module and the performance of the energy storage module itself, such as 35%), then the output of the energy source The capacity is determined as the rated output power of the power generation module;
  • the second case the SOC of the energy storage module in the energy source is higher than the first threshold, then the output capability of the energy source is determined as the rated output power of the energy storage module;
  • the third situation the power generation module is running and is charging the energy storage module, then the output capability of the energy source is determined as the sum of the rated output power of the power generation module and the rated output power of the energy storage module.
  • S230 Determine the target energy source based on the output capability of the idle energy source and the load power requirement.
  • the output capacity of all single idle energy sources is less than the load power requirement P load , and there is an idle energy source combination whose output capacity is greater than or equal to the load power requirement P load , if the number of idle energy source combinations that satisfy this condition is one , then all idle energy sources in the combination are determined as target energy sources; if the number of idle energy source combinations that meet this condition is more than two, then all idle energy sources in a combination are randomly determined as target energy sources. , excluding other idle energy sources.
  • the combination containing the least number of idle energy sources is randomly selected; the idle energy source combination includes more than two single idle energy sources, and the output capability of the combination is the sum of the output capabilities of all the single idle energy sources in the combination ;
  • S240 Determine the target output power of the target energy source based on the output capability of the final target energy source and the load power requirement.
  • the target output power of each target energy source is its own output capability; when the number of target energy sources is less than the number of idle energy sources, the target energy source Si
  • the partial power of (ie the power output by the target energy source Si to the load finally) P Si P load ⁇ P i /(the sum of the output powers of all target energy sources), where P i is the output power of the target energy source Si.
  • the partial power of the energy source S3 that is, the power finally output by the energy source S3 to the load) is:
  • step S230 the target energy source is finally determined based on the output capability of the idle energy source, and then combined with the status information of the idle energy source:
  • the output capacity of a single idle energy source is greater than or equal to the load power demand P load , if the number of single idle energy sources that satisfy this condition is one, other idle energy sources are excluded, and the single idle energy source is determined as the target energy source ; If the number of a single idle energy source that satisfies this condition is more than two, it is further selected according to the state information of the energy source, for example: the corresponding energy storage module has the best state (such as the maximum SOC or SOH value), or the corresponding The idle energy source with the optimal state of the power generation module (such as the largest remaining fuel amount) is the target energy source;
  • the idle energy source is the target energy source. For example, among the combinations that meet the power conditions, first select the combination with the least number of idle energy sources, and then select the optimal state of the corresponding energy storage module (such as the maximum sum of SOC or SOH), or the corresponding energy storage module.
  • the idle energy source in the combination with the optimal state of the power generation module (such as the maximum remaining fuel quantity) is the target energy source;
  • step S230 sorting is performed based on the status information of the idle energy sources, and then the target energy sources are finally determined in combination with the output capabilities of the idle energy sources, such as:
  • the idle energy sources are sorted based on the status information of the idle energy sources, which can be sorted based on the status information of the energy storage modules (such as SOC, SOH values), and can also be sorted based on the status information of the power generation modules (such as the remaining fuel amount). ;
  • the idle energy source with the best state in the sequence that is, corresponding to SOC, SOH, or the largest fuel remaining
  • the idle energy source is determined as the target energy source; otherwise, the idle energy source with the suboptimal state is selected, and it is judged whether the sum of the output capacity of the optimal state and the suboptimal energy source is greater than or equal to the load power demand P load ; if the sum of the output capacity of the two is greater than or equal to the load power demand P load , then the two are determined as the target energy source; and so on.
  • the charging system CS may be provided with a plurality of charging guns.
  • the illustration takes setting up two charging guns as an example.
  • the two charging guns are respectively connected to the HCU through the two charging control units CHRG, and the two charging guns are respectively connected to the bus distribution unit through the bus bar.
  • the bus distribution unit contains the same number of switches as the number of energy sources Si .
  • the switches are used to select The electrical energy of the energy source Si is output to one of the bus bars 1 and 2 .
  • the HCU also obtains the power requirements of the loads to be charged from the CHRGs, and the energy management system EMS i inside the HCU or the energy source Si is based on the power requirements of the loads to be charged and the state information of each energy source Si , Determine the output power of each energy source Si.
  • the energy management system EMS i inside the HCU or the energy source Si is based on the power requirements of the loads to be charged and the state information of each energy source Si , Determine the output power of each energy source Si.
  • Others are the same as in Example 1.
  • the load power distribution is performed uniformly by the HCU, and the EMS inside the energy source needs to control the two power sources of the internal energy storage module and the power generation module according to the power command issued by the HCU.
  • This solution can reduce the complexity of the system, so that the system is easy to expand, for example, the number of energy sources can be increased or decreased according to specific applications, and only a few modifications to the HCU control software are required.
  • the EMS inside the energy source can also coordinate the load power distribution according to the load power demand provided by the HCU.
  • the management system EMS i is set as the slave energy management system EMS i
  • the master energy management system EMS i is mainly responsible for coordinating operations, which can also reduce the complexity of the system and make the system easy to expand, such as adding or reducing energy sources according to specific applications.
  • the number of EMS only need to make a small modification to the control software.
  • the master and slave relationships are not distinguished for each energy management system EMS i , when the energy source Si is expanded , the modification of the corresponding energy management system EMS i will be more complicated, and the more energy sources Si are expanded , the more , the system becomes more complex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种功率分配方法,包括步骤S130:基于负载功率需求P load及能量源S i状态信息,确定目标能量源及对应的输出功率;S130具体包括:S210:寻找空闲能量源;S220:确定空闲能量源的输出能力;S230:确定最终目标能量源;S240:确定目标能量源的目标输出功率。还公开了一种功率分配系统,包括混合控制单元HCU及两个以上并联的能量源S i,HCU包括获取模块、功率分配模块和发送模块,每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i。功率分配方法综合考虑了燃机状态、电池SOC对分配策略的影响,可以在尽量满足负载功率需求的情况下,减少燃机的频繁启停以延长燃机的使用寿命并降低燃机频繁启停的能量损耗,同时确保电池的均衡使用以延长电池的使用寿命。

Description

一种功率分配方法及分配系统 技术领域
本发明涉及一种功率分配方法及分配系统,属于能源领域。
背景技术
目前,随着电动汽车充电需求的增加,为满足多辆电动汽车同时充电的充电需求,在一个移动设备上搭载或在充电站/停车场设置包含多个能量源的充电系统将是一个好的选择。每个能量源包含电能发生模块(如微型燃气轮机发电机组)及配套的储能模块(如动力电池)。
在使用包含多个能量源,且每个能量源包含电能发生模块及配套的储能模块的充电系统给负载充电时,需要首先对各能量源进行一级功率分配,随后再在每个能量源内部的电能发生模块及储能模块间进行二级功率分配。然而现有的功率分配方法仅涉及包含多个储能模块的电源系统,或者一套电能发生模块配套一组储能模块的电源系统。如公开号为CN 108973831 A的中国发明专利,供电系统仅包含单个增程器及单个动力电池,功率分配方法也仅针对单个增程器及单个动力电池,不涉及功率在多个能量源中的分配。此外,单个增程器及单个动力电池的供电系统难以满足多负载的充电需求。又如,公开号为CN 108819747 A中国发明专利申请的多支路功率分配系统中仅涉及多支路电池的功率分配,不包含电能发生模块,不包含微型燃气轮机发电机组。这两个方案都仅涉及一级功率分配。因此,如何对包含多个能量源,且每个能量源包含电能发生模块及配套的储能模块的充电系统进行有效的功率分配将是一个需要解决的技术问题。
发明内容
针对上述现有技术,本发明提供了一种功率分配方法及分配系统。
本发明是通过以下技术方案实现的:
一种功率分配方法,一种功率分配方法,基于具有两个以上的能量源S i并联,每个能量源S i包括有一电能发生模块T i和一储能模块B i的充电系统;能量源S i功率分配方法包括如下步骤:
S110:确定负载功率需求P load,即由HCU从CHRG获取外部待充电负载的功率需求P load
S120:获取每一个能量源S i的状态信息(能量源S i的个数N≥2,每个能量源可以以S1、S2、S3……SN的方式表示),状态信息由HCU从能量源S i内部的EMS i获取;
S130:基于负载功率需求P load及能量源S i状态信息,确定目标能量源及对应的输出功率;
S140:HCU将目标能量源的分功率P Si发送至相应的EMS i,由EMS i基于P Si对目标能量源S i 内部的两个电源,即电能发生模块T i和储能模块B i进行控制,以满足能量源S i的输出功率为P Si。进一步的,当P Si小于等于储能模块的额定功率时,由储能模块单独工作;否则启动电能发生模块,二者同时工作对外充电。当储能模块单独工作时,若出现储能模块的SOC值低于第二阈值(可以与第一阈值相等或不等),或新的需求功率P Si大于储能模块的额定功率,或储能模块所能提供能量低于负载需求电量时,启动电能发生模块,二者同时工作对外充电。当二者同时工作对外充电时,若储能模块的SOC值大于第三阈值(如65%),或检测到燃油量不足,则关闭电能发生模块,由储能模块单独工作。当储能模块的SOC值低于第二阈值且燃油量不足时,能量源停止对外充电。
其中,所述S130中“确定目标能量源及对应的输出功率”的方法,包括如下步骤:
S210:寻找空闲能量源;若某个能量源处于对外部待充负载充电的状态(指能量源中至少有电能发生模块或储能模块在工作并对外部待充负载输出电能),则该能量源为非空闲能量源;否则,则确定该能量源为空闲能量源;
S220:确定空闲能量源的输出能力;进一步的,包括以下三种情况:
第一种情况:能量源中的储能模块SOC小于等于第一阈值(该数值大小根据电能发生模块的启动耗电性能及储能模块本身的性能确定,如35%),则能量源的输出能力确定为电能发生模块的额定输出功率;
第二种情况:能量源中的储能模块SOC高于第一阈值(如35%),则能量源的输出能力确定为储能模块的额定输出功率;
第三种情况:电能发生模块运行并正在给储能模块充电,则能量源的输出能力确定为电能发生模块的额定输出功率与储能模块的额定输出功率的总和;
S230:基于空闲能量源的输出能力及负载功率需求,确定目标能量源;以更精确地确定该启动哪些能量源为待充负载充电,减少燃机不必要的启停。
在一些实施例中,可以基于空闲能量源的输出能力确定目标能量源,如:
当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上(“以上”包括本数,下同),则从中随机确定某一个单个空闲能量源为目标能量源,剔除其它空闲能量源;
当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合 的个数为两个以上,则从中随机确定某一个组合中的所有空闲能量源为目标能量源,剔除其它空闲能量源。优选地,随机选择包含空闲能量源数量最少的组合;所述空闲能量源组合,包含两个以上的单个空闲能量源,组合的输出能力为该组合中所有的单个空闲能量源的输出能力之和;
当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源。
在另一些实施例中,可以先基于空闲能量源的输出能力,再结合空闲能量源的状态信息最终确定目标能量源,如:
当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上时,则根据能量源的状态信息进一步选定,例如:对应储能模块状态最优(如SOC或SOH值最大),或者对应电能发生模块状态最优(如剩余燃油量最大)的空闲能量源为目标能量源;
当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则进一步结合空闲能量源的状态信息从中确定一个最优组合中的空闲能量源为目标能量源,例如:在满足功率条件的组合中,先选出空闲能量源数量最少的组合,再选择对应储能模块状态最优(如SOC或SOH之和最大),或者对应电能发生模块状态最优(如剩余燃油量之和最大)的组合中的空闲能量源为目标能量源;
当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源。
在另一些实施例中,可以先基于空闲能量源的状态信息排序,再结合空闲能量源的输出能力最终确定目标能量源,如:
先基于空闲能量源的状态信息对空闲能量源进行排序,可以基于储能模块的状态信息(如SOC、SOH值)进行排序,还可以基于电能发生模块的状态信息(如剩余燃油量)进行排序;
选定序列中状态最优(即对应SOC、SOH,或燃油剩余量最大)的空闲能量源,判断该空闲能量源的输出能力是否大于等于负载功率需求P load;如该空闲能量源的输出能力大于等于负载功率需求P load,则确定该空闲能量源为目标能量源;否则,选定状态次优的空 闲能量源,判断状态最优及次优能量源的输出能力之和是否大于等于负载功率需求P load;如二者的输出能力之和大于等于负载功率需求P load,则确定二者为目标能量源;依次类推。
S240:基于目标能量源的输出能力及负载功率需求确定目标能量源的目标输出功率。
进一步的,当目标能量源的数量即为空闲能量源的数量时,则每个目标能量源的目标输出功率即为自身的输出能力;当目标能量源的数量小于空闲能量源的数量时,目标能量源Si的分功率(即目标能量源Si最终向负载输出的功率)P Si=P load×P i/(所有目标能量源的输出功率之和),其中,P i为目标能量源Si的输出功率。例如:若确定S3和S5共同为目标能量源,则能量源S3的分功率(即能量源S3最终向负载输出的功率)为
Figure PCTCN2021099971-appb-000001
本发明还提供了一种适用于上述功率分配方法的功率分配系统,结构为:包括充电控制单元CHRG(Charging Control Unit)、混合控制单元HCU(Hybrid Control Unit)、汇流母排、充电枪,以及两个以上并联的能量源S i;其中,充电枪通过汇流母排与能量源S i连接,HCU通过通信总线与各能量源S i连接,充电控制系统CHRG与待充电负载以及HCU连接,用于获取待充电负载的功率需求并上传至HCU(CHRG通过充电枪与待充电负载实现通讯)。每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i,HCU与各能量管理系统EMS i连接。
所述HCU包括获取模块、功率分配模块和发送模块,其中,
所述获取模块,用于获取待充电负载的功率需求P load,以及获取由EMS i提供的多个能量源S i中每一个能量源S i的状态信息;所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
所述功率分配模块,用于:基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
所述发送模块,用于将目标能量源的分功率P Si发送至相应的EMS i
所述功率分配模块,包括:空闲能量源确定单元、目标能量源确定单元和输出功率确定单元,其中,
所述空闲能量源确定单元,用于确定空闲能量源及对应的输出能力;
所述目标能量源确定单元,用于:基于空闲能量源的输出能力及负载功率需求,确定目标能量源;
所述输出功率确定单元,用于:基于目标能量源的输出能力及负载功率需求,确定目标能量源的目标输出功率。
进一步的,所述空闲能量源确定单元,确定空闲能量源的输出能力时,若能量源中的储能模块SOC小于等于第一阈值(该数值大小根据电能发生模块的启动耗电性能及储能模块本身的性能确定,如35%),则能量源的输出能力确定为电能发生模块的额定输出功率;若能量源中的储能模块SOC高于第一阈值,则能量源的输出能力确定为储能模块的额定输出功率;若电能发生模块运行并正在给储能模块充电,则能量源的输出能力确定为电能发生模块的额定输出功率与储能模块的额定输出功率的总和。
进一步的,所述目标能量源确定单元,确定目标能量源时,基于空闲能量源的输出能力确定目标能量源;或:先基于空闲能量源的输出能力,再结合空闲能量源的状态信息最终确定目标能量源;或:先基于空闲能量源的状态信息排序,再结合空闲能量源的输出能力最终确定目标能量源。
进一步的,基于空闲能量源的输出能力确定目标能量源的具体实现方式为:
当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上(“以上”包括本数,下同),则从中随机确定某一个单个空闲能量源为目标能量源,剔除其它空闲能量源;
当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则从中随机确定某一个组合中的所有空闲能量源为目标能量源,剔除其它空闲能量源。优选地,随机选择包含空闲能量源数量最少的组合;所述空闲能量源组合,包含两个以上的单个空闲能量源,组合的输出能力为该组合中所有的单个空闲能量源的输出能力之和;
当所有的空闲能量源的功率之和小于等于负载功率需求时P load,则确定所有的空闲能量源为目标能量源。
进一步的,先基于空闲能量源的输出能力,再结合空闲能量源的状态信息最终确定目标能量源的具体实现方式为:
当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上时,则根据能量源的状态信息进一步选定,例如:对应储能模块状态最优(如SOC或SOH值最大),或者对应电能发生 模块状态最优(如剩余燃油量最大)的空闲能量源为目标能量源;
当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则进一步结合空闲能量源的状态信息从中确定一个最优组合中的空闲能量源为目标能量源,例如:在满足功率条件的组合中,先选出空闲能量源数量最少的组合,再选择对应储能模块状态最优(如SOC或SOH之和最大),或者对应电能发生模块状态最优(如剩余燃油量之和最大)的组合中的空闲能量源为目标能量源;
当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源。
进一步的,先基于空闲能量源的状态信息排序,再结合空闲能量源的输出能力最终确定目标能量源的具体实现方式为:
先基于空闲能量源的状态信息对空闲能量源进行排序,可以基于储能模块的状态信息(如SOC、SOH值)进行排序,还可以基于电能发生模块的状态信息(如剩余燃油量)进行排序;
选定序列中状态最优(即对应SOC、SOH,或燃油剩余量最大)的空闲能量源,判断该空闲能量源的输出能力是否大于等于负载功率需求P load;如该空闲能量源的输出能力大于等于负载功率需求P load,则确定该空闲能量源为目标能量源;否则,选定状态次优的空闲能量源,判断状态最优及次优能量源的输出能力之和是否大于等于负载功率需求P load;如二者的输出能力之和大于等于负载功率需求P load,则确定二者为目标能量源;依次类推。
进一步的,所述输出功率确定单元,确定目标能量源的目标输出功率时,当目标能量源的数量即为空闲能量源的数量时,则每个目标能量源的目标输出功率即为自身的输出能力;当目标能量源的数量小于空闲能量源的数量时,目标能量源Si的分功率(即目标能量源Si最终向负载输出的功率)P Si=P load×P i/(所有目标能量源的输出功率之和),其中,P i为目标能量源Si的输出功率。
所述充电枪可以为一个,或两个以上;当充电枪为两个以上时,各个充电枪分别经过充电控制单元CHRG与HCU连接,各个充电枪分别通过汇流母排与汇流分配单元连接,汇流分配单元包含数量与能量源S i数量相同的开关,开关用于选择将能量源S i的电能输出至哪一个汇流母排中。
进一步的,所述HCU还连接至车载终端和/或上层服务器,用于将汇总的所有能量源S i 的状态信息及待充电负载的状态信息上报至车载终端和/或上层服务器以及接收车载终端和/或上层服务器的信息。
进一步的,所述电能发生模块T i为燃气轮机发电机组,在稳定工况下输出功率恒为定值;所述储能模块B i为蓄电池,在稳定工况下充电/放电功率可调。
进一步的,所述单个的能量源S i的结构中,还包括燃油供给系统、传感器、电子控制单元ECU、DPC i、DC/DC控制器。
本发明的功率分配方法、分配系统,具有以下有益效果:
1、由HCU统一执行多个能量源的功率分配,能量源内部的EMS根据HCU下发的功率指令进行内部储能模块和燃机两个电源的控制,降低了系统的复杂度。如此使得系统易于拓展,可根据具体应用场合增加或减少能量源S i的数量。
2、综合考虑了燃机状态、电池SOC对分配策略的影响。本发明的功率分配方法可以在尽量满足负载功率需求的情况下,减少燃机的频繁启停以延长燃机的使用寿命并降低燃机频繁启停的能量损耗,同时确保电池的均衡使用以延长电池的使用寿命。
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。提及的术语和短语如有与公知含义不一致的,以本发明所表述的含义为准。
附图说明
图1:实施例1的功率分配系统结构原理示意图(一个充电枪)。
图2:HCU的结构示意简图。
图3:本发明的功率分配方法的流程示意图。
图4:能量源的结构原理示意图。
图5:实施例4的功率分配系统结构原理示意图(多个充电枪)。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域的专业人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
实施例1 一种功率分配系统及方法
一种功率分配系统,为基于具有两个以上的能量源S i并联,每个能量源S i包括有一电能发生模块T i和一储能模块B i的充电系统,如图1所述,包括充电控制单元CHRG(Charging Control Unit)、混合控制单元HCU(Hybrid Control Unit)、汇流母排、充电枪,以及两个以上并联的能量源S i;其中,充电枪通过汇流母排与能量源S i连接,HCU通过通信总线与各 能量源S i连接,充电控制系统CHRG与待充电负载以及HCU连接,用于获取待充电负载的功率需求并上传至HCU(CHRG通过充电枪与待充电负载实现通讯)。每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i,HCU与各能量管理系统EMS i连接。
所述HCU包括获取模块、功率分配模块和发送模块,如图2所示,其中,
所述获取模块,用于获取待充电负载的功率需求P load,以及获取由EMS i提供的多个能量源S i中每一个能量源S i的状态信息;所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
所述功率分配模块,用于:基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
所述发送模块,用于将目标能量源的分功率P Si发送至相应的EMS i
所述功率分配模块,包括:空闲能量源确定单元、目标能量源确定单元和输出功率确定单元,其中,
所述空闲能量源确定单元,用于确定空闲能量源及对应的输出能力;
所述目标能量源确定单元,用于:基于空闲能量源的输出能力及负载功率需求,确定目标能量源;
所述输出功率确定单元,用于:基于目标能量源的输出能力及负载功率需求,确定目标能量源的目标输出功率。
参照图1,整个充电系统CS(Charging System)包含N(N≥2)个并联的能量源S i、充电控制单元CHRG(Charging Control Unit)、混合控制单元HCU(Hybrid Control Unit)、汇流母排、充电枪。充电枪通过汇流母排与能量源S i连接,HCU通过通信总线与各能量源S i连接。充电控制单元CHRG直接参与被充车辆的充电控制通讯。充电控制单元CHRG的软硬件功能需求遵循非车载充电机给电动汽车充电的国家标准(GB T 27930-2015),包括物理连接完成,低压辅助上电,充电握手,充电参数配置,充电阶段和充电结束等流程。充电控制单元CHRG记录被充车辆在充电过程中各个参数,如功率需求及动力电池SOC值,并动态上传至HCU。HCU或能量源S i内部的能量管理系统EMS i(Energy Management System)根据待充电负载的功率需求以及各个能量源S i状态信息,确定各个能量源S i的输出功率,充电电流经充电枪输出至待充电负载,充电枪直接与待充电负载连接。
图4是能量源S i的结构图。在本实施例中,N个并联的能量源S i中,每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i
在本实施例中,单个能量源S i除了包括电能发生模块T i、储能模块B i(包括电池管理系统 EMS i),还包括燃油供给系统、传感器、电子控制单元ECU(Electronic Control Unit)、DPC i(Digital Power Controller)、DC/DC控制器、EMS i(未一一示出)。
其中,电能发生模块T i:电能发生模块T i用于产生电能,由原动机和发电机组成,原动机指将燃料的能量转化为机械能并通过转轴输出机械能的热能发动机,发电机则将原动机产生的机械能转换为电能输出。发电机在原动机的启动阶段也可作电动机运行,拖转原动机转动。原动机可以是柴油发电机、汽油发电机、燃气轮机等。本实施例中优先选用微型燃气轮机(简称微型燃机、微燃机或MT(Microturbine))作为原动机,此时电能发生模块T i即为微型燃气轮机与发电机构成的微型燃气轮机发电机组。与传统的内燃机发电机组(如柴油机发电机组)相比,微型燃气轮机发电机组具有体积小、重量轻、振动小、噪声低、启动较快、运动部件少、使用寿命长、维护简单、环境友好、燃料适应性广等优点。因此,除了可在军事领域用作重要国防设施的常用电源,用作军事通信和导弹发射等装备的备用电源;在民用领域用作小型商业建筑物的常用/备用电源,用作偏远地区的分布式供电系统外,微型燃气轮机发电机组有望在电动汽车充电领域有广泛应用。
微型燃气轮机(发电机组)的单机容量一般在300kW内。但对于微型燃气轮机(发电机组)的单机容量范围在国际上并没有统一定义,有些学着认为功率小于500kW为微型燃气轮机(发电机组)。但这些并不构成对本申请的限制。需要说明的是,虽然本实施例优选额定功率较小的微型燃气轮机发电机组作为电能发生模块,但实际上,本申请提出的功率分配系统及方法同样适用于包含功率较大的小型、中型、大型燃气轮机发电机组的系统。因此,本申请不对燃气轮机(发电机组)的单机容量做具体限定,本申请在提及时,通用“燃气轮机”或“燃机”指代。此外,由于对于燃气轮机发电机组而言,燃气轮机作为原动机,是提供能量的一方,从燃气轮机到发电机的能量损失可以忽略不计,因此,在本申请中,“燃气轮机的输出功率/额定功率/单机容量”与“燃气轮机发电机组的输出功率/额定功率/单机容量”是相同的。同样的,在本申请中,“原动机的输出功率/额定功率/单机容量”与“电能发生模块T i的输出功率/额定功率/单机容量”也是相同的。
电能发生模块T i的启动控制是充电系统CS的控制内容之一。由于电能发生模块T i的启动控制也就是由T i的发电机拖转T i的原动机从静止到运行在启动转速,因此,在本申请中,术语“电能发生模块T i的启动”、“电能发生模块T i原动机的启动”、“原动机的启动”等表明的意思一致。在启动阶段,T i的发电机作电动机运转,所需的电能可以由储能模块B i提供。启动阶段,除了要消耗电能以拖动原动机运行至启动转速外,还需要对其他变量进行精准控制,如温度、燃料量、空气量等。由此可见,电能发生模块T i的启动是一个既耗能又复杂的过程。 在充电系统CS的工作过程中,合理地降低电能发生模块T i的启停次数,可以有效提高系统效率、降低系统损耗、减轻控制系统负担。
储能模块B i:储能模块B i的作用包括以下多种:为电能发生模块T i的原动机提供启动电能;向待充负载输出电能;存储电能发生模块T i生成的电能。在本实施例中储能模块B i可以是任何形式的可充放电的电能存储设备,例如蓄电池、超级电容等。
能量管理系统EMS i:依据分配的输出功率完成单个能量源S i内部功率管理,确定电能发生模块T i的启停和储能模块B i的充放电功率,实现能量的高效利用。
ECU i:通过控制油气路中泵体、阀体、点火控制器等执行器,结合各个传感器反馈的信息,配合DPC i,实现电能发生模块T i输出功率的闭环控制。
DC/DC i1:稳定母线电压,通过控制储能模块B i的充放电,实现电能发生模块T i的平稳启停。
DC/DC i2:基于EMS i的指令,对外部待充电负载放电。
针对本实施例的能量源S i结构,可通过与能量源S i连接的HCU及能量源S i内部的EMS i相互协调实现负载需求功率的分配。当通过HCU实现负载需求功率分配时,由HCU实时获取待充电负载的功率信息(包括负载的功率需求和/或负载动力电池SOC值等)以及由EMS i提供的每一个能量源S i的状态信息,并根据负载功率信息及能量源S i的状态信息,确定各个能量源S i的输出功率。
与能量源S i连接的HCU除上述功能外,其还可用于:状态汇总上报——实时汇总所有能量源S i的状态信息及被充负载的状态信息,上报至车载终端和/或上层服务器;接收车载终端和/或上层服务器的信息(如调度指令、待充负载的位置信息等)。
在本实施例中,功率分配方法基于具有两个以上的能量源S i并联,每个能量源S i包括有一电能发生模块T i和一储能模块B i的充电系统。多个能量源S i功率分配流程100包括如下步骤(如图3所示):
S110:确定负载功率需求P load,即由HCU从CHRG获取外部待充电负载的功率需求P load
S120:获取N(N≥2)个能量源中每一个能量源S i的状态信息,状态信息由HCU从能量源S i内部的EMS i获取。
在本实施例的功率分配方法中,每个能量源S i包含一电能发生模块T i(优选为燃气轮机发电机组,即燃气轮机+发电机,可以是其他任何形式可产生电能的发电设备)和一储能模块B i(优选为蓄电池,可以是其他任何形式的可充放电的电能存储设备)。i=1,2,3……N。状态信息包括电能发生模块T i的运行状态信息和储能模块B i的电量状态信息。电能发生模块T i的 运行状态信息表明电能发生模块T i的当前运行情况,可以是关机(或停机、停止)状态、待机状态、发电状态、故障状态等,还可以是一些表明电能发生模块T i性能状态的信息如电能发生模块T i的出厂日期、剩余燃油量等。储能模块B i的电量状态信息表明储能模块B i的当前电量情况,作为示例,当储能模块B i优选为蓄电池时电量状态信息可以是电池荷电状态SOC(state of charge)或电池健康度SOH(state of health);当储能模块B i优选为超级电容时,电量状态信息可以是超级电容荷电状态SOC。其中,电池荷电状态SOC用来反映电池的剩余容量状况的物理量,其数值定义为电池剩余容量占电池容量的比值;电池健康度SOH定义为当前可输出的最大容量占电池出厂容量的比值;电容荷电状态SOC(super capacitor state of charge)为基于实际测量的电容能量,表示成对电容最大标称电压平方的百分比。
S130:基于负载功率需求P load及能量源S i状态信息,确定目标能量源及对应的输出功率。详见流程200。
S140:HCU将目标能量源的分功率P Si发送至相应的EMS i,由EMS i基于P Si对目标能量源S i内部的两个电源,即电能发生模块T i和储能模块B i进行控制,以满足能量源S i的输出功率为P Si。当P Si小于等于储能模块的额定功率时,由储能模块单独工作;否则启动电能发生模块,二者同时工作对外充电。当储能模块单独工作时,若出现储能模块的SOC值低于第二阈值(可以与第一阈值相等或不等),或新的需求功率P Si大于储能模块的额定功率,或储能模块所能提供能量低于负载需求电量时,启动电能发生模块,二者同时工作对外充电。当二者同时工作对外充电时,若储能模块的SOC值大于第三阈值(如65%),或检测到燃油量不足,则关闭电能发生模块,由储能模块单独工作。当储能模块的SOC值低于第二阈值且燃油量不足时,能量源停止对外充电。
确定目标能量源及对应的输出功率流程200,包括如下步骤:
S210:寻找空闲能量源;若某个能量源处于对外部待充负载充电的状态(指能量源中至少有电能发生模块或储能模块在工作并对外部待充负载输出电能),则该能量源为非空闲能量源;否则,则确定该能量源为空闲能量源。
S220:确定空闲能量源的输出能力:
第一种情况:能量源中的储能模块SOC小于等于第一阈值(该数值大小根据电能发生模块的启动耗电性能及储能模块本身的性能确定,如35%),则能量源的输出能力确定为电能发生模块的额定输出功率;
第二种情况:能量源中的储能模块SOC高于第一阈值,则能量源的输出能力确定为储能 模块的额定输出功率;
第三种情况:电能发生模块运行并正在给储能模块充电,则能量源的输出能力确定为电能发生模块的额定输出功率与储能模块的额定输出功率的总和。
S230:基于空闲能量源的输出能力及负载功率需求,确定目标能量源。
基于空闲能量源的输出能力确定目标能量源:
当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上(“以上”包括本数,下同),则从中随机确定某一个单个空闲能量源为目标能量源,剔除其它空闲能量源;
当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则从中随机确定某一个组合中的所有空闲能量源为目标能量源,剔除其它空闲能量源。优选地,随机选择包含空闲能量源数量最少的组合;所述空闲能量源组合,包含两个以上的单个空闲能量源,组合的输出能力为该组合中所有的单个空闲能量源的输出能力之和;
当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源。
以S1、S3、S5为空闲能量源为例,若S1的输出能力小于负载功率需求P load,S3或S5的输出能力大于等于负载功率需求P load,则随机确定S3或S5为目标能量源,剔除S1;
若S1、S3、S5的输出能力均小于负载功率需求P load,且S3和S5的输出能力之和大于等于负载功率需求P load,则确定S3和S5同为目标能量源,剔除S1;
若S1、S3、S5的输出能力均小于负载功率需求P load,且S1、S3、S5中任意两个的输出能力之和也均小于负载功率需求P load,则确定S1、S3、S5同为目标能量源。
采用这样的方法可以更精确地确定该启动哪些能量源为待充负载充电,减少燃机不必要的启停。
S240:基于最终目标能量源的输出能力及负载功率需求确定目标能量源的目标输出功率。
当目标能量源的数量即为空闲能量源的数量时,则每个目标能量源的目标输出功率即为自身的输出能力;当目标能量源的数量小于空闲能量源的数量时,目标能量源Si的分功率(即目标能量源Si最终向负载输出的功率)P Si=P load×P i/(所有目标能量源的输出功率之和), 其中,P i为目标能量源Si的输出功率。例如:若确定S3和S5共同为目标能量源,则能量源S3的分功率(即能量源S3最终向负载输出的功率)为
Figure PCTCN2021099971-appb-000002
实施例2
在该实施例中,步骤S230中,先基于空闲能量源的输出能力,再结合空闲能量源的状态信息最终确定目标能量源:
当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上时,则根据能量源的状态信息进一步选定,例如:对应储能模块状态最优(如SOC或SOH值最大),或者对应电能发生模块状态最优(如剩余燃油量最大)的空闲能量源为目标能量源;
当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则进一步结合空闲能量源的状态信息从中确定一个最优组合中的空闲能量源为目标能量源,例如:在满足功率条件的组合中,先选出空闲能量源数量最少的组合,再选择对应储能模块状态最优(如SOC或SOH之和最大),或者对应电能发生模块状态最优(如剩余燃油量之和最大)的组合中的空闲能量源为目标能量源;
当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源。
其它同实施例1。
实施例3
在该实施例中,步骤S230中,先基于空闲能量源的状态信息排序,再结合空闲能量源的输出能力最终确定目标能量源,如:
先基于空闲能量源的状态信息对空闲能量源进行排序,可以基于储能模块的状态信息(如SOC、SOH值)进行排序,还可以基于电能发生模块的状态信息(如剩余燃油量)进行排序;
选定序列中状态最优(即对应SOC、SOH,或燃油剩余量最大)的空闲能量源,判断该空闲能量源的输出能力是否大于等于负载功率需求P load;如该空闲能量源的输出能力大于等于负载功率需求P load,则确定该空闲能量源为目标能量源;否则,选定状态次优的空 闲能量源,判断状态最优及次优能量源的输出能力之和是否大于等于负载功率需求P load;如二者的输出能力之和大于等于负载功率需求P load,则确定二者为目标能量源;依次类推。
其它同实施例1。
实施例4
参照图2,在本实施例中,充电系统CS可以设置多个充电枪。图示以设置两个充电枪为例。两个充电枪分别经过两个充电控制单元CHRG与HCU连接,两个充电枪分别通过汇流母排与汇流分配单元连接,汇流分配单元包含数量与能量源S i数量相同的开关,开关用于选择将能量源S i的电能输出至汇流母排1和2中的一个。通过多个充电枪的设置,能够满足对多个待充电负载的同时充电作业。在本实施例中,HCU同样从各CHRG中获取各待充电负载的功率需求,HCU或能量源S i内部的能量管理系统EMS i根据待充电负载的功率需求以及各个能量源S i状态信息,确定各个能量源S i的输出功率。其它同实施例1。
上述实施例中,由HCU统一执行负载功率的分配,能量源内部的EMS需根据HCU下发的功率指令进行内部储能模块和电能发生模块两个电源的控制。该方案能够降低系统的复杂度,如此使得系统易于拓展,例如可根据具体应用场合增加或减少能量源的数量而只需对HCU控制软件做少量修改。同时还可通过能量源内部的EMS根据HCU提供的负载功率需求相互协调进行负载功率的分配,在具体实施过程中,可将各能量管理系统EMS i设置一个主能量管理系统EMS i,而其它能量管理系统EMS i设置为从能量管理系统EMS i,由主能量管理系统EMS i主要负责协调作业,如此同样能够降低系统的复杂度,使得系统易于拓展,例如可根据具体应用场合增加或减少能量源的数量而只需对EMS的控制软件做少量修改。而如果对于各能量管理系统EMS i不区分主、从关系,在进行能量源S i的扩展时,相应的各能量管理系统EMS i的修改则会比较复杂,且扩展的能量源S i越多,系统会变得越复杂。
给本领域技术人员提供上述实施例,以完全公开和描述如何实施和使用所主张的实施方案,而不是用于限制本文公开的范围。对于本领域技术人员而言显而易见的修饰将在所附权利要求的范围内。

Claims (10)

  1. 一种功率分配方法,基于具有两个以上的能量源S i并联,每个能量源S i包括有一电能发生模块T i和一储能模块B i的充电系统;其特征在于:包括如下步骤:
    S110:确定负载功率需求P load,即由HCU从CHRG获取外部待充电负载的功率需求P load
    S120:获取每一个能量源S i的状态信息,状态信息由HCU从能量源S i内部的EMS i获取;
    S130:基于负载功率需求P load及能量源S i状态信息,确定目标能量源及对应的输出功率;
    S140:HCU将目标能量源的分功率P Si发送至相应的EMS i,由EMS i基于P Si对目标能量源S i内部的两个电源,即电能发生模块T i和储能模块B i进行控制,以满足能量源S i的输出功率为P Si
    所述S130中“确定目标能量源及对应的输出功率”的方法,包括如下步骤:
    S210:寻找空闲能量源;若某个能量源处于对外部待充负载充电的状态,则该能量源为非空闲能量源;否则,则确定该能量源为空闲能量源;
    S220:确定空闲能量源的输出能力;
    S230:基于空闲能量源的输出能力及负载功率需求,确定最终目标能量源;
    S240:基于最终目标能量源的输出能力及负载功率需求确定目标能量源的目标输出功率。
  2. 根据权利要求1所述的功率分配方法,其特征在于:所述步骤S140中,当P Si小于等于储能模块的额定功率时,由储能模块单独工作;否则启动电能发生模块,二者同时工作对外充电;
    当储能模块单独工作时,若出现储能模块的SOC值低于第二阈值,或新的需求功率P Si大于储能模块的额定功率,或储能模块所能提供能量低于负载需求电量时,启动电能发生模块,二者同时工作对外充电;
    当二者同时工作对外充电时,若储能模块的SOC值大于第三阈值,或检测到燃油量不足,则关闭电能发生模块,由储能模块单独工作;
    当储能模块的SOC值低于第二阈值且燃油量不足时,能量源停止对外充电。
  3. 根据权利要求1所述的功率分配方法,其特征在于:所述步骤S220中,包括以下三种情况:
    第一种情况:能量源中的储能模块SOC小于等于第一阈值,则能量源的输出能力确定为电能发生模块的额定输出功率;
    第二种情况:能量源中的储能模块SOC高于第一阈值,则能量源的输出能力确定为储能模块的额定输出功率;
    第三种情况:电能发生模块运行并正在给储能模块充电,则能量源的输出能力确定为电 能发生模块的额定输出功率与储能模块的额定输出功率的总和。
  4. 根据权利要求1所述的功率分配方法,其特征在于:所述步骤S230中,确定目标能量源的方式选自以下(1)、(2)、(3)之一:
    (1)基于空闲能量源的输出能力确定目标能量源:
    当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上,则从中随机确定某一个单个空闲能量源为目标能量源,剔除其它空闲能量源;
    当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则从中随机确定某一个组合中的所有空闲能量源为目标能量源,剔除其它空闲能量源。优选地,随机选择包含空闲能量源数量最少的组合;所述空闲能量源组合,包含两个以上的单个空闲能量源,组合的输出能力为该组合中所有的单个空闲能量源的输出能力之和;
    当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源;
    (2)先基于空闲能量源的输出能力,再结合空闲能量源的状态信息最终确定目标能量源:
    当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上时,则根据能量源的状态信息进一步选定:对应储能模块状态最优,或者对应电能发生模块状态最优的空闲能量源为目标能量源;
    当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则进一步结合空闲能量源的状态信息从中确定一个最优组合中的空闲能量源为目标能量源:在满足功率条件的组合中,先选出空闲能量源数量最少的组合,再选择对应储能模块状态最优,或者对应电能发生模块状态最优的组合中的空闲能量源 为目标能量源;
    当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源;
    (3)先基于空闲能量源的状态信息排序,再结合空闲能量源的输出能力最终确定目标能量源:
    先基于空闲能量源的状态信息对空闲能量源进行排序:基于储能模块的状态信息进行排序,或基于电能发生模块的状态信息进行排序;
    选定序列中状态最优的空闲能量源,判断该空闲能量源的输出能力是否大于等于负载功率需求P load;如该空闲能量源的输出能力大于等于负载功率需求P load,则确定该空闲能量源为目标能量源;否则,选定状态次优的空闲能量源,判断状态最优及次优能量源的输出能力之和是否大于等于负载功率需求P load;如二者的输出能力之和大于等于负载功率需求P load,则确定二者为目标能量源;依次类推。
  5. 根据权利要求1所述的功率分配方法,其特征在于:所述步骤S240中,当目标能量源的数量即为空闲能量源的数量时,则每个目标能量源的目标输出功率即为自身的输出能力;当目标能量源的数量小于空闲能量源的数量时,目标能量源Si的分功率P Si=P load×P i/(所有目标能量源的输出功率之和),其中,P i为目标能量源Si的输出功率。
  6. 根据权利要求1~5中任一项所述的功率分配方法,其特征在于:所述充电系统,包括充电控制单元CHRG、混合控制单元HCU、汇流母排、充电枪,以及两个以上并联的能量源S i;其中,充电枪通过汇流母排与能量源S i连接,HCU通过通信总线与各能量源S i连接,充电控制系统CHRG与待充电负载以及HCU连接,用于获取待充电负载的功率需求并上传至HCU;
    每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i,HCU与各能量管理系统EMS i连接;
    所述HCU包括获取模块、功率分配模块和发送模块,其中,
    所述获取模块,用于获取待充电负载的功率需求P load,以及获取由EMS i提供的多个能量源S i中每一个能量源S i的状态信息;所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
    所述功率分配模块,用于:基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
    所述发送模块,用于将目标能量源的分功率P Si发送至相应的EMS i
    所述功率分配模块,包括:空闲能量源确定单元、目标能量源确定单元和输出功率确定 单元,其中,
    所述空闲能量源确定单元,用于确定空闲能量源及对应的输出能力;
    所述目标能量源确定单元,用于:基于空闲能量源的输出能力及负载功率需求,确定目标能量源;
    所述输出功率确定单元,用于:基于目标能量源的输出能力及负载功率需求,确定目标能量源的目标输出功率。
  7. 一种功率分配系统,其特征在于:包括充电控制单元CHRG、混合控制单元HCU、汇流母排、充电枪,以及两个以上并联的能量源S i;其中,充电枪通过汇流母排与能量源S i连接,HCU通过通信总线与各能量源S i连接,充电控制系统CHRG与待充电负载以及HCU连接,用于获取待充电负载的功率需求并上传至HCU;
    每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i,HCU与各能量管理系统EMS i连接;
    所述HCU包括获取模块、功率分配模块和发送模块,其中,
    所述获取模块,用于获取待充电负载的功率需求P load,以及获取由EMS i提供的多个能量源S i中每一个能量源S i的状态信息;所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
    所述功率分配模块,用于:基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
    所述发送模块,用于将目标能量源的分功率P Si发送至相应的EMS i
    所述功率分配模块,包括:空闲能量源确定单元、目标能量源确定单元和输出功率确定单元,其中,
    所述空闲能量源确定单元,用于确定空闲能量源及对应的输出能力;
    所述目标能量源确定单元,用于:基于空闲能量源的输出能力及负载功率需求,确定目标能量源;
    所述输出功率确定单元,用于:基于目标能量源的输出能力及负载功率需求,确定目标能量源的目标输出功率。
  8. 根据权利要求7所述的功率分配系统,其特征在于:所述目标能量源确定单元,确定目标能量源的方式选自以下(1)、(2)、(3)之一:
    (1)基于空闲能量源的输出能力确定目标能量源:
    当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单 个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上,则从中随机确定某一个单个空闲能量源为目标能量源,剔除其它空闲能量源;
    当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则从中随机确定某一个组合中的所有空闲能量源为目标能量源,剔除其它空闲能量源。优选地,随机选择包含空闲能量源数量最少的组合;所述空闲能量源组合,包含两个以上的单个空闲能量源,组合的输出能力为该组合中所有的单个空闲能量源的输出能力之和;
    当所有的空闲能量源的功率之和小于等于负载功率需求时P load,则确定所有的空闲能量源为目标能量源;
    (2)先基于空闲能量源的输出能力,再结合空闲能量源的状态信息最终确定目标能量源:
    当存在单个空闲能量源的输出能力大于等于负载功率需求P load时,若满足该条件的单个空闲能量源的个数为一个,则剔除其它空闲能量源,确定该单个空闲能量源为目标能量源;若满足该条件的单个空闲能量源的个数为两个以上时,则根据能量源的状态信息进一步选定:对应储能模块状态最优,或者对应电能发生模块状态最优的空闲能量源为目标能量源;
    当所有的单个空闲能量源的输出能力均小于负载功率需求P load,且存在空闲能量源组合的输出能力大于等于负载功率需求P load时,若满足该条件的空闲能量源组合的个数为一个,则确定该组合中的所有空闲能量源为目标能量源;若满足该条件的空闲能量源组合的个数为两个以上,则进一步结合空闲能量源的状态信息从中确定一个最优组合中的空闲能量源为目标能量源:在满足功率条件的组合中,先选出空闲能量源数量最少的组合,再选择对应储能模块状态最优,或者对应电能发生模块状态最优的组合中的空闲能量源为目标能量源;
    当所有的空闲能量源的功率之和小于等于负载功率需求P load时,则确定所有的空闲能量源为目标能量源;
    (3)先基于空闲能量源的状态信息排序,再结合空闲能量源的输出能力最终确定目标能量源:
    先基于空闲能量源的状态信息对空闲能量源进行排序:基于储能模块的状态信息进行排序,或基于电能发生模块的状态信息进行排序;
    选定序列中状态最优的空闲能量源,判断该空闲能量源的输出能力是否大于等于负载功率需求P load;如该空闲能量源的输出能力大于等于负载功率需求P load,则确定该空闲能量源为目标能量源;否则,选定状态次优的空闲能量源,判断状态最优及次优能量源的输出能力之和是否大于等于负载功率需求P load;如二者的输出能力之和大于等于负载功率需求P load,则确定二者为目标能量源;依次类推。
  9. 根据权利要求7所述的功率分配系统,其特征在于:所述空闲能量源确定单元,确定空闲能量源的输出能力时,若能量源中的储能模块SOC小于等于第一阈值,则能量源的输出能力确定为电能发生模块的额定输出功率;若能量源中的储能模块SOC高于第一阈值,则能量源的输出能力确定为储能模块的额定输出功率;若电能发生模块运行并正在给储能模块充电,则能量源的输出能力确定为电能发生模块的额定输出功率与储能模块的额定输出功率的总和;
    或/和:所述输出功率确定单元,确定目标能量源的目标输出功率时,当目标能量源的数量即为空闲能量源的数量时,则每个目标能量源的目标输出功率即为自身的输出能力;当目标能量源的数量小于空闲能量源的数量时,目标能量源Si的分功率P Si=P load×P i/(所有目标能量源的输出功率之和),其中,P i为目标能量源Si的输出功率。
  10. 根据权利要求7或8或9所述的功率分配系统,其特征在于:所述充电枪为两个以上;各个充电枪分别经过充电控制单元CHRG与HCU连接,各个充电枪分别通过汇流母排与汇流分配单元连接,汇流分配单元包含数量与能量源S i数量相同的开关,开关用于选择将能量源S i的电能输出至哪一个汇流母排中;
    或/和:所述CHRG通过充电枪与待充电负载实现通讯;
    或/和:所述HCU还连接至车载终端和/或上层服务器,用于将汇总的所有能量源S i的状态信息及待充电负载的状态信息上报至车载终端和/或上层服务器以及接收车载终端和/或上层服务器的信息;
    或/和:所述电能发生模块T i为燃气轮机发电机组,在稳定工况下输出功率恒为定值;所述储能模块B i为蓄电池,在稳定工况下充电/放电功率可调;
    或/和:所述单个的能量源S i的结构中,还包括燃油供给系统、传感器、电子控制单元ECU、DPC i和DC/DC控制器。
PCT/CN2021/099971 2020-12-07 2021-06-15 一种功率分配方法及分配系统 WO2022121268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011428517.2 2020-12-07
CN202011428517.2A CN112721707B (zh) 2020-12-07 2020-12-07 一种功率分配方法及分配系统

Publications (1)

Publication Number Publication Date
WO2022121268A1 true WO2022121268A1 (zh) 2022-06-16

Family

ID=75598654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099971 WO2022121268A1 (zh) 2020-12-07 2021-06-15 一种功率分配方法及分配系统

Country Status (2)

Country Link
CN (1) CN112721707B (zh)
WO (1) WO2022121268A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276191A (zh) * 2022-09-26 2022-11-01 西安特来电智能充电科技有限公司 一种功率分配方法、装置、设备及介质
CN115520056A (zh) * 2022-11-22 2022-12-27 小米汽车科技有限公司 充电桩控制方法、装置、存储介质及充电桩
CN116512968A (zh) * 2023-07-04 2023-08-01 深圳市菲尼基科技有限公司 基于换电柜的充电功率分配方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721707B (zh) * 2020-12-07 2022-06-21 靳普 一种功率分配方法及分配系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696748A (zh) * 2017-01-25 2017-05-24 华为技术有限公司 一种充电桩系统
CN107346908A (zh) * 2017-01-05 2017-11-14 宁波三星智能电气有限公司 一种智能调配功率的充电桩及其控制方法
CN107757396A (zh) * 2017-09-13 2018-03-06 深圳市科华恒盛科技有限公司 一种柔性充电系统、柔性充电方法以及柔性充电装置
US10150380B2 (en) * 2016-03-23 2018-12-11 Chargepoint, Inc. Dynamic allocation of power modules for charging electric vehicles
CN110901461A (zh) * 2019-12-03 2020-03-24 国网智能科技股份有限公司 一种充电系统功率分配的方法、系统及设备
CN110979073A (zh) * 2019-12-23 2020-04-10 至玥腾风科技集团有限公司 一种功率分配方法及分配系统
CN110979075A (zh) * 2019-12-18 2020-04-10 青岛海汇德电气有限公司 一种功率分配电路和充电桩及其功率分配方法和控制装置
CN112721707A (zh) * 2020-12-07 2021-04-30 靳普 一种功率分配方法及分配系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515497A (zh) * 2016-12-05 2017-03-22 青岛理工大学 一种燃料电池叉车的混合动力系统及其控制方法
AU2018211014B2 (en) * 2017-01-17 2024-05-30 Ivys Inc. Hydrogen gas dispensing systems and methods
US10836274B1 (en) * 2020-01-13 2020-11-17 NAD Grid Corp. Methods and systems for facilitating charging sessions for electric vehicles
CN111422095B (zh) * 2020-04-21 2023-09-12 南京能瑞电力科技有限公司 充电桩的功率分配方法、装置、充电桩和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10150380B2 (en) * 2016-03-23 2018-12-11 Chargepoint, Inc. Dynamic allocation of power modules for charging electric vehicles
CN107346908A (zh) * 2017-01-05 2017-11-14 宁波三星智能电气有限公司 一种智能调配功率的充电桩及其控制方法
CN106696748A (zh) * 2017-01-25 2017-05-24 华为技术有限公司 一种充电桩系统
CN107757396A (zh) * 2017-09-13 2018-03-06 深圳市科华恒盛科技有限公司 一种柔性充电系统、柔性充电方法以及柔性充电装置
CN110901461A (zh) * 2019-12-03 2020-03-24 国网智能科技股份有限公司 一种充电系统功率分配的方法、系统及设备
CN110979075A (zh) * 2019-12-18 2020-04-10 青岛海汇德电气有限公司 一种功率分配电路和充电桩及其功率分配方法和控制装置
CN110979073A (zh) * 2019-12-23 2020-04-10 至玥腾风科技集团有限公司 一种功率分配方法及分配系统
CN112721707A (zh) * 2020-12-07 2021-04-30 靳普 一种功率分配方法及分配系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276191A (zh) * 2022-09-26 2022-11-01 西安特来电智能充电科技有限公司 一种功率分配方法、装置、设备及介质
CN115520056A (zh) * 2022-11-22 2022-12-27 小米汽车科技有限公司 充电桩控制方法、装置、存储介质及充电桩
CN115520056B (zh) * 2022-11-22 2023-03-10 小米汽车科技有限公司 充电桩控制方法、装置、存储介质及充电桩
CN116512968A (zh) * 2023-07-04 2023-08-01 深圳市菲尼基科技有限公司 基于换电柜的充电功率分配方法、装置、设备及存储介质
CN116512968B (zh) * 2023-07-04 2023-09-08 深圳市菲尼基科技有限公司 基于换电柜的充电功率分配方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112721707B (zh) 2022-06-21
CN112721707A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022121268A1 (zh) 一种功率分配方法及分配系统
CN110194065B (zh) 车辆的整车能量控制方法、装置、车辆和存储介质
CN110962693B (zh) 一种基于有限状态分层的燃料电池汽车能量管理方法
US9705357B2 (en) Hybrid electric generator set
RU2389618C2 (ru) Гибридная силовая установка (варианты) и способ управления мощностью гибридной силовой установки (варианты)
WO2021129422A1 (zh) 一种功率分配方法及分配系统
CN110457859B (zh) 混合电力船舶推进系统的优化控制方法
KR102249662B1 (ko) 선박용 통합전력제어관리시스템
US20170274890A1 (en) Load Based Engine Start-Stop Control
US8364332B2 (en) Control algorithm for low-voltage circuit in hybrid and conventional vehicles
CN112208737B (zh) 一种混合电力推进系统
KR20220048037A (ko) 베어링 검사 방법, 검사 시스템, 가스 터빈의 시동 방법, 시동 시스템
CN212400925U (zh) 增程式混合动力工程机械能量管理系统
CN114290916A (zh) 一种氢燃料混合动力重型卡车能量管理方法及系统
CN104786863B (zh) 一种汽车用三电压电源系统及其控制方法
CN105790374A (zh) 一种车载储电箱
CN109606136B (zh) 一种混合动力能量存储系统及其控制方法、混合动力汽车
CN212400926U (zh) 多动力源工程机械能量管理系统
CN211335646U (zh) 一种功率分配系统
CN113696749B (zh) 一种燃料电池复合电源控制方法
CN115864594A (zh) 基于油电双驱动船舶的锂电池充放电控制方法
CN211567690U (zh) 一种充电系统
CN110901427B (zh) 一种充电方法及充电系统
CN207339344U (zh) 一种储能电池
CN111030228B (zh) 一种多模式充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21901980

Country of ref document: EP

Kind code of ref document: A1