WO2021129422A1 - 一种功率分配方法及分配系统 - Google Patents

一种功率分配方法及分配系统 Download PDF

Info

Publication number
WO2021129422A1
WO2021129422A1 PCT/CN2020/135889 CN2020135889W WO2021129422A1 WO 2021129422 A1 WO2021129422 A1 WO 2021129422A1 CN 2020135889 W CN2020135889 W CN 2020135889W WO 2021129422 A1 WO2021129422 A1 WO 2021129422A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
energy source
power
load
target
Prior art date
Application number
PCT/CN2020/135889
Other languages
English (en)
French (fr)
Inventor
靳普
袁奇俊
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2021129422A1 publication Critical patent/WO2021129422A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to the field of energy, in particular to a power distribution method and distribution system.
  • the existing power distribution method only involves a power supply system including multiple energy storage modules, or a power supply system with a set of energy generation modules supporting a set of energy storage modules.
  • the power supply system with the publication number CN108973831A only includes a single range extender and a single power battery, and the power distribution method is only for a single range extender and a single power battery, and does not involve the distribution of power among multiple energy sources.
  • the power supply system of a single range extender and a single power battery cannot meet the charging requirements of multiple loads.
  • the multi-branch power distribution system with the publication number CN108819747A only involves the multi-branch battery and does not include the power generation module.
  • the purpose of the present invention is to provide a power distribution method and distribution system.
  • a power allocation method that when two or more parallel source of energy S i based on the output power of each energy source are allocated using the S i, wherein each energy source comprises S i
  • An electric energy generation module T i and an energy storage module B i the method includes:
  • the status information includes an energy source module T i operating state information and the state of charge of the energy storage module information B i S i occurs in the electric power;
  • the determining an output power of the energy source of the N S i S i for each energy source of P Si comprises:
  • the energy source based on the state information S i, the energy source of the N S i classifying comprises:
  • the energy source that does not output electric energy to the current load satisfies any one of the following three conditions:
  • the first case the energy source of the energy storage module S i B i of health SOH i less than a calibrated value
  • the third situation the energy source S i is running to charge another load
  • the electric energy generation module Th of the first target energy source is in a power generation state
  • the number of first target energy sources is denoted as n
  • the total output power of the energy storage module B i Based on the total output power of the energy storage module B i P B (total), to determine the specific power output of each energy source S i P Si, comprises:
  • the maximum allowable power value of the power generation power output of the summation module T h in the first target energy source, ⁇ P Bh (max) as a first target energy source, an energy storage module B h can be output.
  • the calculation formula for the discharge power P Bh of the energy storage module B h is:
  • P Th T h is the output power of the electric power generating module first target energy source
  • ⁇ P Sh is the total output power of the first target energy source
  • k h is the contribution coefficient of the first target energy source, which is determined based on the power state information of the energy storage module B h of the first target energy source
  • k j is the contribution coefficient of the second target energy source, based on the storage of the second target energy source
  • the power status information of the energy module B j is determined.
  • the method for determining the contribution coefficient k h of the first target energy source and the contribution coefficient k j of the second target energy source includes:
  • the reference value SOC jref is determined, and the calculation formula of the reference value SOC jref is:
  • SOC Jmax the second source is the maximum value of the target energy storage module B j in the state of charge SOC, SOC jmin second target energy source, energy storage module B j in the minimum state of charge SOC.
  • the contribution coefficient k h of the first target energy source may be replaced by k′ h or k′′ h
  • the contribution coefficient k j of the second target energy source may be replaced by k′ j or k′′ j;
  • the power generation block T i is the gas turbine generator sets, in the stable conditions of constant output power value; B i of the battery energy storage module, in stable conditions charge / discharge power adjustable.
  • a power allocation method is based upon two or more energy sources S i parallel, the output power of the energy source S i each are allocated using the aspect of the invention, there is provided, wherein each energy source S i comprises a power generation block T i, S i for each energy source, a common energy storage module B, the method comprising:
  • the power generation block T i is the gas turbine generator sets, in the stable conditions of constant output power value; providing starting power to the storage battery module B, T i is the power modules occurs.
  • a power distribution system comprising at least two parallel energy source S i, S i for each energy source comprises a power generation block T i, B i and a storage module an energy management System EMS i , the distribution system further includes an HCU, and the HCU is connected to each energy management system EMS i ;
  • the state information includes a charge state of the energy source operating in the power generation module S i T i and the information of the energy storage module B i status information;
  • a power distribution system comprising at least two parallel energy source S i, S i for each energy source module comprising a T i and the energy management system EMS i a power occurs, each energy source S i shares an energy storage module B, the distribution system further includes an HCU, and the HCU is connected to each energy management system EMS i ;
  • HCU for acquiring the power demand P load a load to be charged and the operation state information of the module T i S i for each energy source, a plurality of electrical energy generating energy provided by the source S i in the EMS i, based on the load power demand P T i module load operation state information of each energy source and the energy S i occurs, determining a plurality of energy sources in each energy source S i S i of the output power P Si;
  • the HCU is used to obtain the power demand P load of the load to be charged and send it to each energy management system EMS i , and the energy management system EMS i is used for the electric energy generation module based on the load power demand P load and the energy source S i T i is the operation state information, determining a plurality of energy output sources S i S i for each energy source of P Si.
  • the present invention has the following beneficial effects:
  • the present invention is directed to multiple energy sources, each of which includes the power distribution method provided by the electric energy generation module and the energy storage module, and comprehensively considers the influence of the operation status of the electric energy generation module and the power state of the energy storage module on the distribution strategy.
  • the power distribution method can reduce the frequent start and stop of the power generation module to extend the service life of the power generation module and reduce the energy loss of the frequent start and stop of the power generation module while ensuring the balance of the energy storage module while meeting the load power demand as much as possible. Use to extend battery life.
  • the present invention is directed to multiple energy sources, each of which includes an electric energy generation module, and multiple energy sources share the power distribution method provided by an energy storage module, and comprehensively consider the influence of the operation status of the electric energy generation module on the distribution strategy.
  • the power distribution method can reduce the frequent start and stop of the power generation module to prolong the service life of the power generation module and reduce the energy loss of the frequent start and stop of the power generation module while meeting the load power demand as much as possible.
  • the HCU performs the load power distribution uniformly.
  • the EMS inside the energy source only needs to control the two power sources of the internal energy storage module and the energy generation module according to the power command issued by the HCU.
  • the complexity of the system is reduced, so that the system is easy to expand.
  • the number of energy sources can be increased or decreased according to specific applications, with only a small amount of modification to the HCU control software; at the same time, the power distribution system provided by the present invention can also pass through the internal energy source According to the load power demand provided by the HCU, the EMS coordinates the load power distribution.
  • each EMS can be set as a master EMS, and the others can be set as a slave EMS, which can also reduce the system
  • the complexity of EMS makes the system easy to expand. For example, the number of energy sources can be increased or decreased according to specific applications, and only a few modifications to the EMS control software are required.
  • Fig. 1 is a schematic diagram of the structure of a charging system in an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a charging system using multiple charging guns in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the structure of an energy source in an embodiment of the present invention.
  • Fig. 4 is a flow chart of power allocation in an embodiment of the present invention.
  • Fig. 5 is a flowchart of a method for determining the output power of an energy source in an embodiment of the present invention.
  • Fig. 6 is a flowchart of a method for determining a contribution coefficient in an embodiment of the present invention.
  • Fig. 7 is a general flowchart of a charging method in an embodiment of the present invention.
  • Fig. 8 is a start-up flowchart of a gas turbine in an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a support scheme for a rotor bearing of a gas turbine generator set in an embodiment of the present invention.
  • Fig. 10 is a flow chart of bearing inspection in an embodiment of the present invention.
  • Fig. 11 is a flow chart of shutting down the gas turbine in the embodiment of the present invention.
  • Fig. 12 is a flowchart of a multi-mode charging method in an embodiment of the present invention.
  • FIG. 13 is a flowchart of power supply for the energy storage module in the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an embodiment of the charging system provided by the present invention.
  • the power distribution system of the present invention is implemented based on the CS structure of the charging system.
  • the entire charging system CS (Charging System) comprises N (N ⁇ 2) parallel energy sources S i, the charging control unit CHRG (Charging Control Unit), hybrid control unit HCU (Hybrid Control Unit), the bus busbar, charging gun.
  • the charging gun is connected to the energy source S i through the bus bar, and the HCU is connected to each energy source S i through the communication bus.
  • the charging control unit CHRG directly participates in the charging control communication of the charged vehicle.
  • the software and hardware function requirements of the charging control unit CHRG follow the national standard for charging electric vehicles by off-board chargers (GB T 27930-2015), including physical connection completion, low-voltage auxiliary power-on, charging handshake, charging parameter configuration, charging stage and charging End the waiting process.
  • the charging control unit CHRG records various parameters of the charged vehicle during the charging process, such as power demand and power battery SOC value, and dynamically uploads them to the HCU.
  • Energy Management System EMS i Energy Management System
  • EMS i Electronicgy Management System
  • FIG. 2 is a schematic diagram of another embodiment of the charging system provided by the present invention.
  • the charging system CS may be provided with multiple charging guns.
  • the figure shows an example of setting two charging guns.
  • the bus assignment unit comprises the same number of switches S i energy source, a switch for selecting the output power of the energy source S i to a bus busbar 1 and 2.
  • the HCU likewise acquires each be charged load power demand from each CHRG in, the HCU or internal energy source S i Energy Management System EMS i information based to be charged load power demand and the various energy sources S i state, determining an output power of the respective power sources S i.
  • FIG. 3 is an embodiment of the present invention provides an energy source S i according to the structure of FIG.
  • N parallel source of energy in S i, S i for each energy source comprises a power generation block T i, B i and a storage module an energy management system EMS i.
  • the energy storage module B i (including a battery management system BMS i), further comprising a fuel supply system, a sensor, an electronic control unit ECU (Electronic Control Unit) , DPC i (Digital Power Controller), DC/DC controller, EMS i (not shown one by one).
  • ECU Electronic Control Unit
  • DPC i Digital Power Controller
  • DC/DC controller EMS i (not shown one by one).
  • the electric energy generation module T i is used to generate electric energy and is composed of a prime mover and a generator.
  • the prime mover refers to a thermal engine that converts fuel energy into mechanical energy and outputs mechanical energy through a rotating shaft. The mechanical energy generated by the motive is converted into electrical output.
  • the generator can also be operated as a motor during the start-up phase of the prime mover, dragging the prime mover to rotate.
  • the prime mover can be a diesel generator, a gasoline generator, a gas turbine, etc.
  • microturbine referred to as micro-gas turbine, micro gas turbine, or MT (Microturbine)
  • the power generation module case T i microturbine generator microturbine and the generator is the configuration.
  • micro gas turbine generator sets Compared with traditional internal combustion engine generator sets (such as diesel generator sets), micro gas turbine generator sets have the advantages of small size, light weight, low vibration, low noise, faster start-up, fewer moving parts, long service life, simple maintenance, environmentally friendly, Advantages such as wide fuel adaptability.
  • micro gas turbine generator sets are expected to have a wide range of applications in the field of electric vehicle charging.
  • the single unit capacity of a micro gas turbine is generally within 300kW. However, there is no unified international definition for the single-unit capacity range of micro gas turbines (generator sets). Some researchers believe that the power is less than 500kW as micro gas turbines (generator sets). However, these do not constitute limitations on this application. It should be noted that although this embodiment preferably uses a miniature gas turbine generator set with a smaller rated power as the power generation module, in fact, the power distribution method proposed in this application is also suitable for power generation including small, medium, and large gas turbines with larger power. The system of the unit. Therefore, this application does not specifically limit the single-unit capacity of a gas turbine (generator set).
  • gas turbine or “gas turbine” is generally referred to.
  • the gas turbine as the prime mover, is the party that provides energy, and the energy loss from the gas turbine to the generator is negligible. Therefore, in this application, “gas turbine output/rated power/single unit “Capacity” is the same as “output power/rated power/single unit capacity of gas turbine generator set”.
  • the "prime mover output power / rated power / unit capacity” is the same as the "power module T i output power / rated power / unit capacity occurs.”
  • T i start control module is controlled by one of the electric power generating content charging system CS. Since T i start controlling electrical energy generating module is dragged by the generator T i T i is the prime mover rotation from standstill to startup speed running, therefore, in the present application, the term "power to start generating module T i", “T i start module prime mover electric power generating”, “prime mover start” and the like indicate the same meaning.
  • T i as a generator motor operation, electric power required may be provided by an energy storage module B i.
  • the start-up phase in addition to consuming electrical energy to drive the prime mover to the start-up speed, other variables such as temperature, fuel volume, and air volume need to be precisely controlled.
  • the activation module T i is both energy-consuming and complex process of energy occurs.
  • the start and stop reasonably reduce the number of electric power generating module T i, can improve system efficiency and reduce system losses, reducing the burden on the control system.
  • Energy storage module B i B i action of the energy storage module includes the plurality of: providing starting power to the prime mover of the power generating modules T i; external output power to a load; T i power module generates electrical energy storage occurs.
  • the energy storage module B i can be any form of rechargeable electrical energy storage device, such as a battery, a super capacitor, and the like.
  • the energy management system EMS i S i to complete a single energy source based on the output power of the internal power distribution management, determining the occurrence of the charge-discharge power of power storage module stops with the module B i T i, the efficient use of energy.
  • ECU i the control oil passage pump, valve, actuator and ignition controller, in conjunction with feedback information of each sensor, with the DPC i, T i closed-loop control module output power occurs.
  • DC / DC i1 stable bus voltage by controlling the energy storage module is charged and discharged B i, T i smooth start and stop of the electric power generating modules.
  • DC/DC i2 Based on the instruction of EMS i , discharge the external load to be charged.
  • the source may be an internal EMS HCU by S i by the energy source or energy S i is connected to the i-coordinated to achieve load distribution of the power demand:
  • the HCU obtains the power information of the load to be charged (including the power demand of the load and/or the SOC value of the load power battery, etc.) and the status of each energy source S i provided by the EMS i in real time information (including T i operating status of the module information and the state of charge of the energy storage module B i electric power generating current information), the source and the state information S i based on the load power and energy information, determines the output power of the respective power source of S i;
  • the HCU obtains the power information of the load to be charged (including the power demand of the load and/or the SOC value of the load power battery, etc.) and sends it to each the energy management system EMS i, each of the energy management system EMS i load power demand and the status information of the energy source S i (including the state of charge information and the like of the operating state of the module information T i B i and an energy storage module of the electric power generating current) is determined according to the respective energy power source output S i S i of each energy source P Si.
  • the HCU connected to the energy source S i can also be used for: status summary report-real-time summary of the status information of all energy sources S i and the status information of the charged load, and report to the vehicle terminal and/or upper server ; Receive information from the vehicle-mounted terminal and/or the upper server (such as dispatching instructions, location information of the load to be charged, etc.).
  • each energy source S i includes an energy storage module B i .
  • This setting allows the charging system CS to fine-tune the output power to accurately track the load demand, thereby saving charging time and improving charging efficiency , It is more suitable for emergency charging occasions where fast charging is desired.
  • the charging system CS can be mounted on a mobile vehicle as an (emergency) charging vehicle, which can receive the user's electricity request at any time and travel to a predetermined service location to provide electricity service for the electric load (such as an electric vehicle).
  • Embodiments of the invention further provides another energy source S i structure.
  • each energy source S i includes an electric energy generation module T i and an energy management system EMS i , the energy source S i does not include an energy storage module B i , and the corresponding energy source S i does not include DC /DC i1 , at this time, multiple energy sources S i in the entire charging system CS share an external energy storage module B and the corresponding DC/DC 1 (not shown in the figure), the main energy storage module B at this time
  • the function is to provide starting electric energy for the electric energy generating module T i of the multiple energy sources S i , so when the load demand power is allocated, the output of the energy storage module B does not need to be considered.
  • HCU S i since the energy storage module B without output power to the load, connected to an energy source so HCU S i may not assume the function S i between the energy source of the power distribution, but the interior of each energy source S i EMS i coordinated with each other.
  • the source may be an internal EMS HCU by S i by the energy source or energy S i is connected to the i-coordinated to achieve load distribution of the power demand:
  • the HCU When the load demand power distribution is realized through the HCU, the HCU obtains the power information of the load to be charged (including the power demand of the load and/or the SOC value of the load power battery, etc.) and the electric energy in each energy source S i provided by the EMS i in real time.
  • T i operating module state information, and the operation state information module T i load power and electric power generating information in accordance with each determined output power of the energy source of S i;
  • the HCU obtains the power information of the load to be charged (including the power demand of the load and/or the SOC value of the load power battery, etc.) and sends it to each the energy management system EMS i, each of the energy management system EMS i T i operating state information module of the electric power generating load power demand and the energy source according to S i, determining an output power of each energy source S i S i for each energy source of P Si .
  • multiple energy sources S i share one energy storage module B.
  • the realization of power distribution is also simpler to reduce the complexity of the control system. Since the energy storage module B does not output electric energy to the load, the charging system CS generally cannot accurately track the load power demand at this time, but supplies power to the load at a power value lower than the load power demand, so it is more suitable for applications where cost saving or charging is required. Occasions where time is not strictly required.
  • the charging system CS can connect more than a dozen energy sources S i in parallel to serve as power supplies for parking lots or charging stations to provide charging services for electric vehicles.
  • the HCU performs the load power distribution uniformly, and the EMS inside the energy source only needs to control the two power sources of the internal energy storage module and the energy generation module according to the power command issued by the HCU, which can reduce the complexity of the system.
  • the number of energy sources can be increased or decreased according to specific applications with only a small amount of modification to the HCU control software; at the same time, the internal EMS of the energy source can be coordinated with each other according to the load power demand provided by the HCU. Carry out load power distribution.
  • each energy management system EMS i can be set as a master energy management system EMS i
  • other energy management systems EMS i can be set as a slave energy management system EMS i by the master energy management system EMS i
  • the master energy management system EMS i is mainly responsible for coordinating operations, which can also reduce the complexity of the system and make the system easy to expand. For example, the number of energy sources can be increased or decreased according to specific applications, and only a few modifications to the EMS control software are required. And if not distinguished for each of the primary energy management system EMS i, from the relationship, during the expansion of the energy source S i, each corresponding modification of the energy management system EMS i will be more complex, and more extended energy source S i , The system will become more complex.
  • the embodiment of the present invention also provides a power distribution method, where the power distribution is power distribution among energy sources S i .
  • the power allocation method means based on real-time power requirements of the load, according to various energy sources difference S i output capability, the distribution of the output power of tasks to each of the energy source S i to meet the real-time power requirement of the load, i.e., determining the individual energy sources S i of Output power P Si .
  • FIG. 4 is a flowchart of the power distribution method of this embodiment.
  • each energy source comprises a S i T i and the power generation module storage module B i a charging system.
  • a plurality of energy sources S i power allocation process 400 comprises the steps of:
  • S410 Determine the load power requirement P load . That is, the HCU obtains the power demand P load of the external load to be charged from the CHRG.
  • S420 acquiring status information N (N ⁇ 2) a source of energy in each of the energy source S i. HCU status information acquired by the energy source from the interior of the S i EMS i.
  • each energy source S i comprises a power generation block T i (preferably a gas turbine generator sets, i.e. gas turbine + generator, may be any other form of power plant generating electrical energy) and a
  • the energy storage module B i (preferably a battery, can be any other form of rechargeable electrical energy storage device).
  • i 1,2,...,N.
  • Status information includes information of state of charge of the module T i operating status information module B i and storage of energy occurs.
  • Electric power generating operating state of the module T I information indicates that the current operation of the module T I electric energy occurs, may be turned off (or down, stop) state, the standby state, power state, failure state, etc., may also be a module T number indicate electric power generating i performance status information as date of occurrence of the power module T i, the remaining amount of fuel and the like.
  • the state of charge of the energy storage module B i B i information indicates that the current storage module battery condition, by way of example, when the energy storage module is a storage battery B i preferably power status information may be the state of charge SOC of the battery or a battery health of S0H; when When the energy storage module B i is preferably a super capacitor, the power state information may be the state of charge SOC of the super capacitor.
  • the battery state of charge SOC (state of charge) is used to reflect the physical quantity of the remaining capacity of the battery, and its value is defined as the ratio of the remaining battery capacity to the battery capacity;
  • the super capacitor state of charge SOC (super capacitor state of charge) is based on The actually measured capacitance energy is expressed as a percentage of the square of the maximum nominal voltage of the pair of capacitances.
  • Battery state of charge SOC state of charge
  • battery health SOH state of health
  • HCU battery management system
  • S430 P load based on the load power demand and the power source status information S i, determining an output power of the energy source of the N S i S i for each energy source of P Si.
  • P Si P Ti + P Bi.
  • P Ti T i output module generating electrical power P Ti value of zero or greater.
  • P Bi is the output power of the energy storage module B i
  • P Bi values may be greater than zero, may be less than zero.
  • the value of P Bi is greater than zero, it indicates that the energy storage module B i is in a discharging state, that is, it outputs electric energy to the load; when the value of P Bi is less than zero, it indicates that the energy storage module B i is in a charging state, that is, P Ti is divided by In addition to outputting electric energy to the load, there is excess electric energy to charge the energy storage module B i.
  • each energy source comprises two energy sources S i: T i and the energy storage module B i electric power generating module, a power allocation scheme is detailed in the flow of energy between the source S i 500-600.
  • the HCU After determining P Si , the HCU sends P Si to the corresponding EMS i . EMS i based on two internal power P Si energy source S i, i.e., T i and the power generation module storage module B i is controlled to meet the output power of the energy source S i P Si. More details on the basis of the description, see EMS i S i internal energy source for controlling the electric power generating module T i and the energy storage module 700 processes B i P Si and description.
  • the sub-step process 500 of S430 includes:
  • S510 Based on the state information S i is the energy source, the energy source of the N S i classification.
  • S511 First determine the energy source that does not output electrical energy to the current load among the N energy source S i modules. If any one of the following three conditions is met, it is judged as an energy source that does not output electric energy to the current load, and the number is denoted as p.
  • the first case when the SOH i of the energy storage module B i is less than 80% (the value can be calibrated), it is determined that the energy source S i is the energy source of the energy storage module B i to be replaced.
  • the energy storage module B i to be replaced does not output power to the outside, that is, the output power is 0;
  • the third case When the charging system CS includes more than one charging gun (as shown in Figure 2), that is, when the charging system CS can charge multiple loads at the same time, if a certain energy source S i is running, it will be charged to another charging of the load, the energy source S i is also not recognized as a current load output power of energy source module.
  • n first objectives determining the remaining energy source energy source S i of Np module.
  • the energy source S i is determined as the first target energy source, referred to as the n.
  • the electric energy generation module in the first target energy source is recorded as the electric energy generation module Th
  • the energy source S i is determined as the second target energy source, referred to as the m, a second energy source target power generation module referred to as
  • N is the total number of energy source modules
  • p is the number of energy sources judged to not output electric energy to the current load
  • n is the number of first target energy sources
  • m is the number of second target energy sources.
  • S512 module T i based on the occurrence of a power generation state or in the stop / standby mode the energy source S i classification.
  • the energy source S i may also be classified based on other operating state information of the electric energy generation module T i.
  • modules may be combined electric power generating T i is in a power / stop / standby mode, and the remaining amount of fuel energy source for classified S i, T i the power generation module and the state of power generation fuel remaining amount is equal to a set threshold energy source S i determined as the first target energy source; T i the power generation module in a generating state, but the residual fuel amount is less than a set threshold, the energy source is S or stop / standby state i determined as the second target energy source .
  • all energy sources S i can be sorted and numbered based on the status information.
  • the number range of the first target energy source is defined to be 1 to n, and the n first target energy sources can be arranged in any order.
  • the following describes the numbers in descending order according to the SOC value of the energy storage module B h.
  • the number range of the second target energy source is defined as n+1 to n+m, and the m second target energy sources are numbered in descending order according to the SOC value of the energy storage module B j. Define the remaining N-(n+m), that is, p.
  • the number range of energy sources that do not output electric energy to the current load is n+m+1 to N, and they can be numbered in any order.
  • the renumbered N energy sources are: S 1 ,S 2 ,...,S n ,S (n+1) ,...,S (n+m) ,S (n+m+1) ,...,S N , the corresponding energy generation module and energy storage module are also numbered the same. It must be noted that the operation of reordering and numbering the energy sources is not necessary, and it is just for the convenience of distinction here.
  • S520 Based on the classification result of S510, determining a total output power of the energy storage module B i P B (total).
  • the charging power still needed by the charged vehicle is:
  • the occurrence of a specific power output of the power module T i can change over time, or it can be a constant value.
  • the output power of each electric energy generation module T i The value of can be the same or different.
  • the prime mover module T i is preferably a gas turbine electric power generating, and all electric power generating modules T i prime mover, the same parameters of the generator.
  • the power generation module T i in a steady state power generation, gas turbine operate in optimum operating point, the output power Constant, which is the rated output power of the gas turbine.
  • the output power of the energy generation module P T is a constant, that is, the rated output power of the gas turbine, for example, 15 kW (just an example).
  • the output power of the power generation module T i is in a stopped state, the output power of the power generation module T i
  • P B(total) ⁇ 0 it means that the external power demand is less than the output power of the power generation module Th in the first target energy source. In this case, the output power of the power generation module Th meets the external power demand power at the same time, The remaining output power is the energy storage module B h of the charging system for charging.
  • the formula for calculating the output power P Sh of each first target energy source is:
  • the method for determining k h , k′ h , k′′ h is calculated according to the logic algorithm in the process 600 (see below).
  • P Si P Ti +P Bi described above
  • the first target energy source can be calculated
  • P Bh of the middle energy storage module B h the output power of the energy generation module T j (stop state) and the energy storage module B j are both zero.
  • the second case is a first case
  • n first target energy sources can meet the power demand of the load, and the power generation module Th and energy storage module of the first target energy source are required B h outputs power to the load at the same time.
  • the output power of the electric energy generation module T j (stop state) and the energy storage module B j are both zero.
  • ⁇ P Bh(max) is the maximum allowable power value that can be output by the energy storage module B h in the first target energy source .
  • the maximum allowable power value is affected by the current battery SOC, battery and Ambient temperature, humidity, etc.; in addition, in order to enable the entire system to continue to meet the external charging requirements, the maximum allowable power P Bh(max) value that can be output by the energy storage module B h in the first target energy source is made corresponding Restrictions can be achieved through calibration look-up tables. Determine the output power P Sh of the first target energy source according to the following steps.
  • the discharge coefficient b h (discharge) of the energy storage module B h in each first target energy source is k h , k′ h , k′′ h (k h , k′ h , k′′ h .
  • the determination method is 600 Calculation in the logic algorithm), namely:
  • the contribution coefficient determination process 600 the method of determining the contribution coefficients k h , k′ h , k′′ h and k j , k′ j , k′′ j includes:
  • the reference value SOC jref is determined, and the calculation formula of the reference value SOC jref is:
  • This embodiment comprehensively considers the influence of the operation status of the power generation module and the power status of the energy storage module on the distribution strategy.
  • the power distribution method of this embodiment can reduce the frequent start and stop of the power generation module while meeting the load power demand as much as possible. Extend the service life of the power generation module and reduce the energy loss of frequent start and stop of the power generation module, while ensuring the balanced use of the energy storage module to extend the service life of the battery.
  • the embodiment of the present invention also provides another power distribution method.
  • the above-described embodiment differs from the embodiment in that the power allocation method, the present embodiment is based on S i having at least two parallel energy source, the energy source S i and each includes a power generation block T i, a plurality of a common energy source S i
  • the charging system of energy storage module B is used.
  • the load power allocation method in the present embodiment is as follows: when the charging system CS plurality of energy sources S i B share one energy storage module, the storage module B does not participate in the output power to the load, is only responsible for the charging system CS the energy source S i T i power generation module providing a starting power, so the power distribution load without considering the power storage module B.
  • the state information of the energy source S i is the operating state information of the power generating module T i.
  • Electric power generating operating state of the module T I information indicates that the current operation of the module T I electric energy occurs, may be turned off (or down, stop) state, the standby state, power state, failure state, etc., may also be a module T number indicate electric power generating i performance status information as date of occurrence of the power module T i, the remaining amount of fuel and the like.
  • only necessary energy source S determines which output power P i of the Si load, and the output power of the energy source S i, i.e., electric power generating module output power P T i steady operation according to the electric power generating operation state information of the module T i Ti .
  • the remaining amount of fuel as a filter criteria can select a larger amount of fuel remaining on the energy source S i load output power P Si, another example, prefers the energy source in the standby state S i to the load output power P Si.
  • This embodiment comprehensively considers the influence of the operation status of the power generation module on the distribution strategy.
  • the power distribution method of this embodiment can reduce the frequent start and stop of the power generation module to prolong the use of the power generation module while meeting the load power demand as much as possible. Life and reduce the energy loss of frequent start and stop of the electric energy generation module.
  • Embodiments of the invention further provides a method of charging, the present charging method for outputting power to a load by an energy source S i, by reasonable control electric power generating modules energy source S i T i and the energy storage module to increase the charge B i effectiveness.
  • power allocation method may be used in the implementation of the above-described embodiment, the allocated power required by the load, so as to determine the respective energy source S i The output power. It should be understood that although the charging system shown in FIG. 1 and FIG. 2 of the present invention includes multiple energy sources, the charging method is also applicable to the case of a single energy source.
  • FIG. 7 is an overall flowchart of the charging method of this embodiment.
  • each energy source S i comprises a power generation block T i (preferably a gas turbine generator sets, i.e. gas turbine + generator, may be any other form of power plant generating electrical energy) and a reservoir
  • the energy module B i preferably a battery, can be any other form of rechargeable electrical energy storage device).
  • the overall charging process 100 mainly includes:
  • the charging control unit CHRG communicates with the load to be charged, confirms that an external load to be charged is connected, and obtains load demand related information sent by the load to be charged.
  • the load demand related information includes the power demand P load and the SOC value of the power battery of the load to be charged.
  • S120 determining information based on load demand output power of at least one energy source S i S i for each energy source of P Si.
  • the charging system CS comprises only one energy source S i, i.e., determining the output load P load power demand for the energy source S i P Si.
  • the HCU complete power distribution of tasks between the amount of the source S i, in particular based on real-time power requirements of the load, according to various different energy sources S i output capability , the output power of each task assigned to the energy source S i to meet the real-time power requirement of the load, i.e., the output power of the energy source to determine the respective S i of P Si, load demand power allocation method detailed process 400, process 500, process 600.
  • HCU determines an output power of each energy source S i P Si
  • P Si will be sent to the output power energy management unit EMS i S i of the respective energy source.
  • EMS i determines the charging current I Si based on the output power P Si.
  • I Si P Si /V load
  • V load is related to the load to be charged. For example, when the load to be charged is a power battery on an electric vehicle, V load is a function of the SOC of the power battery, and has a one-to-one correspondence with the SOC.
  • the subsequent DC/DC controller will control the DC/DC i2 to output electric energy according to the charging current I Si.
  • each energy source S i of the charging system CS includes two power sources: an energy storage module B i and an electric energy generation module T i .
  • the energy management unit EMS internal energy source S i i received HCU allocated output power P Si, and further performs the power distribution inside the energy source based on the output power P Si, so that the two power sources of the internal control, two The different operating states of the two power sources are combined into multiple operating modes of the energy source P Si.
  • EMS i whether on or off the power generating modules T i based on the SOC value to determine the size of the output power P Si and B i of the energy storage module.
  • the electric energy occurs when the prime mover is a gas turbine module T i, start flow into the gas turbine 201; an energy source when it is determined based on the output S i and the SOC of power storage module P Si B i operating mode L2 switching from mode to mode L1, T i Close power generation module, when the prime mover power generating modules T i is the gas turbine, flow off into the gas turbine 300; based on the output when the power P Si and the SOC of the energy storage module B i determined when the mode
  • V Si DC/DC i2
  • V load 400V
  • V Si 415V
  • the difference between V Si and V load is too large. For example, if the former is 600V and the latter is 400V, V Si will be pulled down to the same size as V load , so that the load cannot be charged.
  • the size of V Si can be calibrated through test experiments to select an appropriate value.
  • S160 The system judges that the charging is complete and stops outputting electric energy to the outside.
  • the judgment condition may be that the user requests to stop the charging service (for example, the user clicks "charging end" on the app interface of the mobile phone) or detects that the power battery SOC of the load to be charged is greater than a certain expected value (for example, 90%).
  • the system is determined after completion of the service charge and closed for charging the energy storage modules B i since the energy source within the system is in power shortage state S i, T i required power generation module or its complement electrically through an external
  • the power supply (such as the power grid) supplements electricity, and the relevant description is shown in process 800.
  • the charging method of this embodiment can realize reasonable control of the start-generation-stop process of the electric energy generation module and the energy storage module to efficiently charge the load to be charged connected to the charging system.
  • the prime mover of the power generation module is a micro gas turbine
  • the larger truck is flexible and less restricted by traffic roads, making it easier to provide charging services for vehicles lacking electricity anytime and anywhere.
  • charging piles based on micro gas turbines do not rely on the grid, which saves construction costs and is more flexible in installation.
  • the pressure also relieves the traffic pressure.
  • Embodiments of the invention further provides another method for charging, the charging method in the present embodiment, each energy source S i comprises a power generation block T i, a plurality of the energy source S i a shared storage module B.
  • the module T i start and stop electric power generating process similar to the above embodiment of the charging method. The difference is that when multiple energy sources S i of the charging system CS share an energy storage module B, the energy storage module B does not participate in outputting electric energy to the load, and is only responsible for the energy source S i of the charging system CS. T i power generation module providing a starting power, thus charging process without considering the power storage module B.
  • the charging method of this embodiment can realize reasonable control of the start-generation-shutdown process of the electric energy generation module to efficiently charge the load to be charged connected to the charging system, and at the same time avoid frequent startup of the electric energy generation module to save energy. Improve the service life of the power generation module.
  • Example needle further embodiment of the present invention provides a method of starting a gas turbine, the prime mover when the power generation module according to the present invention is the gas turbine T i, is preferably used to start the gas turbine of the present embodiment is a method for controlling a gas turbine smooth start.
  • the voltage of the DC bus has not yet been established, that is, the voltage of the DC bus has not reached the set value U DC , and the DC bus voltage needs to be established at this time.
  • the energy source comprises energy storage module S i internal B i.
  • the energy storage module B i starts and outputs electric energy to the outside, and the DC/DC controller controls DC/DC i1 to boost the DC power output by the energy storage module B i , and stabilize the voltage value of the DC bus at the DC bus reference voltage U DC .
  • the size of U DC can be set, and when its value is larger, it is beneficial to reduce the output loss, but correspondingly, the withstand voltage level of each component of the entire charging system CS should be designed to be correspondingly higher.
  • the system when it is decided to turn on the gas turbine, the system is already in a standby state.
  • the energy storage module B i and DC/DC i1 responsible for providing starting electric energy are already working, and the voltage of the DC bus is increased to the set value U DC (such as 780V, 800V, can be calibrated).
  • U DC such as 780V, 800V, can be calibrated
  • DPC i obtains the “start” instruction of ECU i , and DPC i works in the inverter mode to invert the direct current of the DC bus into alternating current.
  • the AC power supplies AC power to the motor coaxially arranged with the gas turbine.
  • the motor works in electric mode. When the motor rotates, it drives the gas turbine to run, and the speed gradually rises to the ignition speed.
  • ECU i controls the air pump to increase the air pressure, the fuel pump and the corresponding valve body are opened, and the fuel is delivered. After the preparation work is completed, ECU i controls the ignition controller to ignite, and the fuel starts to burn in the gas turbine. Burning in the chamber.
  • S241 Drag the gas turbine to accelerate to the first set speed, and heat the gas turbine to the first specified temperature.
  • the DPC i drags the gas turbine to accelerate to the first set speed (different gas turbines have different values, which is a speed range determined during the design stage of the gas turbine, for example, 50000-55000 rpm).
  • the gas turbine is maintained at the first designated speed, and the temperature of the gas turbine (for example, the temperature of the back end of the gas turbine turbine) is closed-loop controlled to increase the temperature of the gas turbine to the first designated temperature (different gas turbines have different values).
  • the gas engine is a kind of heat engine, and only when it reaches a certain temperature, can the chemical energy of the fuel be efficiently converted into kinetic energy.
  • S251 Drag the gas turbine to the target speed according to the target speed signal.
  • ECU i sends a target speed signal to DPC i (the target speed is calculated by the target output power of the gas turbine, for example, the target output power of the gas turbine is its rated power, and the speed calculated based on the rated power is the target speed), DPC i After receiving the signal, drag the gas turbine to the target speed. At this stage, DPC i can drag the gas turbine to a new speed (corresponding to the new output power) based on the new speed signal.
  • the embodiment of the present invention also provides a method for bearing detection during the startup of the gas turbine.
  • the gas turbine uses an air bearing.
  • Air bearing is a kind of bearing that uses air elastic cushion to play a supporting role. Compared with other types of bearings, air bearings have the following advantages: the viscosity of air is small, resulting in low friction loss and small heat distortion; simple operation, low cost, high reliability, simple maintenance, and avoids lubrication, supply and filtration The energy consumption of the system. Therefore, air bearings are very suitable for applications in ultra-precision and ultra-high-speed rotating shafts, such as in micro gas turbines.
  • the normal operation of the air bearing to form a pressurized air film to support the gas turbine rotor is a prerequisite for the successful start of the gas turbine.
  • a compressed air film cannot be formed to support the gas turbine rotor, which may result in excessive friction between the rotor and the control bearing and the rotor cannot accelerate. Drag the rotor to accelerate, and even cause serious consequences of damage to the rotor or damage to other parts of the gas turbine.
  • FIG. 9 is a schematic diagram of the bearing support scheme of the rotor of the gas turbine generator set of this embodiment.
  • the reference signs are: 1, No. 1 air bearing; 2, No. 2 air bearing; 3. Rotor; 4. Turbine; 5. Compressor; 6. Motor.
  • the support mode in the figure is only for illustration, in fact, there can be multiple support schemes.
  • a No. 3 bearing can be arranged between the compressor and the turbine.
  • the bearing support scheme of the rotor does not limit the bearing detection during the start-up phase of the gas turbine.
  • the bearing is a non-contact bearing, which can be an air bearing or a hybrid bearing composed of an air bearing and a magnetic suspension bearing.
  • the bearing inspection process 202 when the gas turbine is started in this embodiment includes:
  • the ECU i controls the opening of the air pump and the air valve to provide an air source for the air bearing, which will enter from the air inlet of the air bearing.
  • the DPC i works and drags the rotor of the synchronous motor coaxially connected with the gas turbine to rotate in the first direction at the first speed.
  • the first direction can be defined as the direction in which the impeller of the gas turbine turbine rotates during normal operation.
  • the value range of the first rotation speed is not specifically limited, and the calibration value during the calibration experiment shall prevail. For example, for a gas turbine with a rated speed of tens to hundreds of thousands of revolutions, the speed of the first speed may be several million to 10,000 r/m.
  • the first torque is the output torque (also referred to as torque) when the rotor of the synchronous motor rotates at the first speed in the first direction.
  • DPC i determines the first torque t 1 based on the feedback voltage and current values.
  • the rotor output torque t 1 P machine / ⁇ .
  • P is the mechanical power output by the rotor
  • is the angular velocity.
  • the output mechanical power of the rotor can be approximated by the electrical power of the motor.
  • P machine ⁇ P electricity 3U phase ⁇ I phase or The phase current I phase and the line current I line are equal.
  • the air bearing can form a pressurized air film with the gas turbine rotor to support the rotor.
  • the rotor is in a "floating" state, and there is no mechanical contact with the air bearing.
  • the first torque at this time is less than the torque threshold.
  • the size of the torque threshold is also not specifically limited, and the calibration value during the calibration experiment shall prevail. Different types of gas turbines, or when the same type of gas turbines are running at different first speeds, the calibrated torque threshold may be different.
  • the first torque is greater than or equal to the torque threshold, it cannot be immediately determined that the air bearing is faulty. It is necessary to determine the commutation time or the second torque, and further determine whether the air bearing is faulty based on the commutation time or the second torque.
  • the commutation time is defined as the time from the moment when the rotor is controlled to commutation to the moment when the rotor reaches the second rotation speed in the second direction.
  • the second torque is defined as the output torque when the rotor of the synchronous motor rotates at the second speed in the second direction.
  • the second direction is defined as the direction opposite to the first direction.
  • the magnitude of the second rotational speed may be the same as or different from the magnitude of the first rotational speed.
  • the DPC i first drags the rotor until the speed drops to zero, and then controls the rotor to reversely rotate and increase the speed to the second speed.
  • DPC i can change the rotor rotation by controlling the phase sequence of the three-phase energization of the synchronous motor.
  • the method of determining the second torque is the same as the method of determining the first torque.
  • DPC i determines that the bearing is faulty, it reports an error to ECU i , and ECU i further reports an error to HCU.
  • HCU determines whether to shut down the gas turbine immediately. If it is determined to shut down the gas turbine, the gas turbine shut down process 300 can be executed.
  • the above-mentioned bearing detection method provided by this embodiment ensures the good operation of the air bearing during the start-up phase of the gas turbine, and prevents the gas turbine from speeding up rashly when the failure of the air bearing is unknown, which may cause excessive friction between the rotor and the control bearing
  • the detection method is simple and reliable, and can be detected based on the existing hardware, without the need to add an additional detection mechanism.
  • Needle further embodiment of the invention provides a method of closing a gas turbine, the prime mover when the power generation module according to the present invention, T i is the gas turbine, the gas turbine of the present embodiment is preferably used in a gas turbine control method embodiment for closing the stationary stop.
  • the gas turbine shutdown process 300 includes:
  • the ECU i controls the oil and gas circuit to stop fuel supply, and at the same time sends the second designated speed signal to the DPC i.
  • the second designated rotational speed may be the same as or different from the first designated rotational speed.
  • S320 Drag the gas turbine to the second designated speed, and cool the gas turbine to the second designated temperature.
  • DPC i drags the gas turbine to the second specified speed, maintains the gas turbine running at the second specified speed, and starts the cooling system of the charging system CS to cool the gas turbine to the second specified temperature.
  • the second designated temperature may be the same as or different from the first designated temperature.
  • the embodiment of the present invention also provides a multi-mode charging method.
  • the charging system when a single energy source is used to charge a load, it is necessary to determine the output power P Si of the single energy source based on the real-time power demand of the load; When multiple energy sources are used to charge an external load, it is necessary to allocate the output power task to each energy source to meet the real-time power demand of the load based on the real-time power demand of the load and according to the difference in the output capacity of each energy source.
  • the load demand power allocation method may refer to the process 400, the process 500, and the process 600 for details.
  • the multi-mode charging method of this embodiment refers to further determining the working modes of the two power sources of the electric energy generation module and the energy storage module in the energy source based on the distributed output power P Si of the energy source. It should be understood that although the charging system shown in FIGS. 1 and 2 of the present invention includes multiple energy sources, the multi-mode charging method is also applicable to the case of a single energy source.
  • FIG. 12 is a flowchart of an embodiment of a multi-mode charging method provided by the present invention.
  • the energy source includes a power generation module S i T i (preferably a gas turbine generator sets, i.e. gas turbine + generator, may be any other form of power plant generating electrical energy) and the energy storage module B i (preferably The battery can be any other form of rechargeable electrical energy storage device).
  • a power generation module S i T i preferably a gas turbine generator sets, i.e. gas turbine + generator, may be any other form of power plant generating electrical energy
  • the energy storage module B i preferably The battery can be any other form of rechargeable electrical energy storage device.
  • the multi-mode charging process 700 includes:
  • Each energy source S i of the mode of operation is divided into four modes: a low power mode (L mode), the power mode (M mode), high-power mode (H mode) and the power generation module standalone mode (T mode ).
  • L mode and M mode are subdivided into L1, L2 and M1, M2 modes respectively. (See Figure 4 for details).
  • EMS i receives the transmitted output power P Si HCU, based on the magnitude of the output power P Si, determining an initial operating mode of the energy source S i:
  • the module operates in the optimum T i operating point of the output power P Ti electrical energy occurs.
  • the occurrence of a specific power output of the power module T i It can change over time, or it can be a constant value.
  • the output power of each electric energy generation module T i The value of can be the same or different.
  • the prime mover module T i is preferably a gas turbine electric power generating, and all electric power generating modules T i prime mover, the same parameters of the generator.
  • the power generation module T i When the system is in stable condition, the power generation module T i in a steady state power generation, gas turbine operate in optimum operating point, the output power Constant, which is the rated output power of the gas turbine. At this time, the output power of the energy generation module P T is a constant, that is, the rated output power of the gas turbine, for example, 15 kW (just an example).
  • the power generation module T i When the power generation module T i is in a stopped state, the output power of the power generation module T i
  • the energy source S i runs in the L1 mode by default.
  • the energy storage module B i alone satisfies the power P Si . This is because when the energy source S requires less power P Si i output, the energy storage module energy source B i S i is generally able to meet the demand, an energy source without starting the power B i generation block T i.
  • the energy source S i runs in the L1 mode by default.
  • the SOC value of the energy storage module B i is lower than the first threshold (such as 40%, it can be calibrated; if the SOC value is lower than the first threshold, it indicates that the remaining power of the energy storage module B i is insufficient) when, into L2 mode, for starting the power generation module T i.
  • the power generation module T i output power P Ti (eg 15kW, 45kW, 60kW, associated with the gas turbine model), in the case where P Si meet, the excess power (P Si -P Ti) to The energy storage module B i is charged.
  • the energy storage module B i SOC value continues to rise, the energy storage module when the detected SOC value B i is not less than a second threshold value (e.g., 80% , Can be calibrated; when the SOC value is greater than or equal to the second threshold, it indicates that the energy storage module has sufficient power to output electrical energy), turn off the power generation module T i and return to L1 mode operation, that is, the energy storage module B i alone meets the power P Si .
  • a second threshold value e.g., 80% , Can be calibrated; when the SOC value is greater than or equal to the second threshold, it indicates that the energy storage module has sufficient power to output electrical energy
  • P Si P Ti + P Bi.
  • P Ti T i output module generating electrical power P Ti value of zero or greater.
  • P Bi is the output power of the energy storage module B i
  • P Bi values may be greater than zero, may be less than zero.
  • the value of P Bi is greater than zero, it indicates that the energy storage module B i is in a discharging state, that is, it outputs electric energy to the load; when the value of P Bi is less than zero, it indicates that the energy storage module B i is in a charging state, that is, P Ti is divided by In addition to outputting electric energy to the load, there is excess electric energy to charge the energy storage module B i.
  • P Ti ⁇ P Si ⁇ (P Ti + P b ) confirm that the energy source enters the M mode operation.
  • P b is a set power, which is related to the parameters of the energy storage module B i.
  • P b may be the corresponding discharge power when the discharge rate of the energy storage module B i is 1C.
  • the first type the energy source S i runs in the M1 mode by default. In the M1 mode, the energy storage module B i alone satisfies the power P Si .
  • the power generation module T i When the SOC value below a third threshold (e.g., 35%, can be calibrated), enters the M2 mode, i.e., for starting the power generation block T i, at the M2 mode, the power generation module T i output power P Ti (eg 15kW, 45kW, 60kW associated with the module models electric power generating T i), at the same time, the energy storage module B i output power (P Si -P Ti).
  • a third threshold e.g., 35%, can be calibrated
  • the second type if the power provided by the energy storage module B i can meet the power demand of the load, it enters the M1 mode, otherwise it enters the M2 mode.
  • the conditions for judging to enter the M1 mode are:
  • C load-demand is the power required by the load
  • C B1 is the power that the energy storage module B i can provide.
  • C load-demand C load-total ⁇ (SOC demand -SOC load )
  • C load-total is the total load capacity
  • SOC demand is the SOC value that the load hopes to reach. It can be a default value (such as 90%) set based on experience, or a value entered by the user
  • SOC load is the SOC value of the load .
  • C B1 is the amount of electricity that the energy storage module can provide;
  • C B-total is the total capacity of the energy storage module ,
  • SOC B is the current SOC value of the energy storage module, and
  • SOC lim1 is the first limit of the energy storage module. When SOC B is less than the first limit, it will switch from M1 mode to M2 mode to run.
  • the power generation module T i output power P Ti (eg 15kW, 45kW, 60kW, energy type associated with the occurrence of the module T i), at the same time, the energy storage module B i output power (P Si -P Ti) .
  • the energy source S i can automatically switch among the four operating modes (L mode, M mode, H mode and T mode), namely the energy source S i
  • the working mode can be updated based on the initial working mode (the current working mode) and the change of P Si (or called determining the new working mode) to better track the output power P Si .
  • L1 mode is switched to M1 mode
  • L2 mode is switched to the M2 mode
  • the advantages that the output of the energy source S i more gradual, reducing the start power generation block T i, reduce system losses simultaneously stop operation, protects the power generation module T i of ,Improve efficiency. Otherwise, assuming that L1 is switched to the mode M2 mode, turn on the power generation block T i, and the mode is switched to L2 M1 mode, the power generation module needs to close T i.
  • Energy source S i H-mode or run mode M2 when the SOC of the energy storage module B i is less than the fourth threshold value (e.g., 25%, can be calibrated), the energy source S i to T mode automatically switches. Because when the SOC value of the energy storage module B i is already very small, continuing to discharge will cause certain damage to the energy storage module B i.
  • the fourth threshold value e.g. 25%
  • the multi-mode charging method provided by the embodiment of the present invention enables the energy source to be automatically switched in multiple working modes, so that the energy source can accurately track the constantly changing load power demand.
  • the setting of switching conditions between working modes makes the output of the energy source smoother, reduces the startup and shutdown operations of the power generation module, protects the power generation module, reduces system losses and improves efficiency.
  • the embodiment of the present invention also provides a method for supplementing the power of the energy storage module to ensure that the energy storage module has the desired amount of power after the charging is completed.
  • the charging process 800 of the energy storage module includes:
  • the SOC value of the energy storage module is first judged. When the SOC value is greater than or equal to 85% (this value can be set according to the actual situation), it is determined that the energy storage module does not need to be charged; otherwise, determine whether to charge to the energy storage module.
  • Module charging When it is necessary to charge the energy storage module, determine whether to perform external recharge. When performing external recharge, the energy storage module is recharged by the external power supply. When external recharge is not required, the energy storage module is operated by the gas turbine The module is charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种功率分配方法及分配系统,其中,所述方法基于两个以上能量源S i并联时,对各个能量源S i的输出功率进行分配使用,其中,每个能量源S i包含一电能发生模块T i和一储能模块B i,所述方法包括:获取负载功率需求P load(S410);获取N个能量源S i中每一个能量源S i的状态信息(S420),其中状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;基于负载功率需求P load及能量源S i的状态信息,确定N个能量源S i中每个能量源S i的输出功率P si(S430);其中,N为能量源S i的数量,N≥2,i表示N个能量源S i中第i个,i=1,2,…,N。该方法可以减少电能发生模块的频繁启停以延长电能发生模块的使用寿命并降低电能发生模块频繁启停的能量损耗。

Description

一种功率分配方法及分配系统 技术领域
本发明涉及能源领域,尤其涉及一种功率分配方法及分配系统。
背景技术
随着电动汽车充电需求的增加,为满足多个负载的充电需求,在一个移动设备上搭载或在充电站/停车场设置多个电能发生模块(如微型燃气轮机发电机组)及配套的储能模块(如动力电池)作为能量源将是一个好的选择。
多个能量源使用时需要对各能量源进行功率分配,然而现有的功率分配方法仅涉及包含多个储能模块的电源系统,或者一套电能发生模块配套一组储能模块的电源系统。如公开号为CN108973831A的供电系统仅包含单个增程器及单个动力电池,功率分配方法也仅针对单个增程器及单个动力电池,不涉及功率在多个能量源中的分配。此外,单个增程器及单个动力电池的供电系统难以满足多负载的充电需求。又如,公开号为CN108819747A的多支路功率分配系统中仅涉及多支路电池,不包含电能发生模块。
因此,如何对包含多个电能发生模块及配套的储能模块进行有效的功率分配将是一个需要解决的技术问题。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种功率分配方法及分配系统。
本发明的技术方案如下:
基于本发明的一个方面,提供一种功率分配方法,所述方法基于两个以上能量源S i并联时,对各个能量源S i的输出功率进行分配使用,其中,每个能量源S i包含一电能发生模块T i和一储能模块B i,所述方法包括:
获取负载功率需求P load
获取N个能量源S i中每一个能量源S i的状态信息,其中状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
基于负载功率需求P load及能量源S i的状态信息,确定N个能量源S i中每个能量源S i的输出功率P Si
其中,N为能量源S i的数量,N≥2,i表示N个能量源S i中第i个,i=1,2,…,N。
进一步的,所述确定N个能量源S i中每个能量源S i的输出功率P Si,具体包括:
基于能量源S i的状态信息,对N个能量源S i进行分类;
基于能量源S i的分类结果及负载功率需求P load,确定储能模块B i的总输出功率P B(total)
基于储能模块B i的总输出功率P B(total),确定每个能量源S i的具体输出功率P Si
进一步的,所述基于能量源S i的状态信息,对N个能量源S i进行分类,具体包括:
将N个能量源S i分为不对当前负载输出电能的能量源、第一目标能量源、第二目标能量源;
其中,所述不对当前负载输出电能的能量源满足以下三种情况中任意一种:
第一种情况:能量源S i的储能模块B i健康度SOH i小于标定值;
第一种情况:选取所有能量源S i中储能模块B i对应的健康度SOH中最大的SOH记为SOH max,对储能模块B i对应的健康度SOH i进行计算△SOH i=SOH max-SOH i,△SOH i大于等于标定值;
第三种情况:能量源S i正在运行对另一负载充电;
所述第一目标能量源的电能发生模块T h处于发电状态,第一目标能量源个数记为n,h表示n个第一目标能量源中第h个,h=1,2,…,n;
所述第二目标能量源的电能发生模块T j处于停机状态,第二目标能量源个数记为m,j表示m个第二目标能量源中第j个,j=1,2,…,m。
进一步的,所述储能模块B i的总输出功率
Figure PCTCN2020135889-appb-000001
所述基于储能模块B i的总输出功率P B(total),确定每个能量源S i的具体输出功率P Si,具体包括:
若P B(total)<0,使用第一目标能量源的电能发生模块T h为负载供电,并计算各第一目标能量源的输出功率P Sh大小;
若0≤P B(total)≤∑P Bh(max),使用第一目标能量源的电能发生模块T h及储能模块B h同时为负载供电,并计算各第一目标能量源的输出功率P Sh大小;
若P B(total)>∑P Bh(max),使用第一目标能量源和第二目标能量源同时为负载供电,并计算第一目标能量源的输出功率P Sh、第二目标能量源的输出功率P Sj大小;
其中,
Figure PCTCN2020135889-appb-000002
为第一目标能量源中电能发生模块T h输出的功率总和,∑P Bh(max)为在第一目标能量源中储能模块B h可输出的最大允许功率值。
进一步的,当P B(total)<0时,第一目标能量源的输出功率P Sh计算公式为:
P Sh=k h×P load/n
当0≤P B(total)≤∑P Bh(max)时,第一目标能量源的输出功率P Sh计算公式为:
P Sh=P Bh+P Th
储能模块B h的放电功率P Bh计算公式为:
P Bh=b h(discharge)×P B(total)/n
放电系数b h(discharge)计算公式为:
b h(discharge)=k h
当P B(total)>∑P Bh(max)时,第一目标能量源的输出功率P Sh计算公式为:
P Sh=P Th+P Bh(max)
第二目标能量源的输出功率P Sj计算公式为:
Figure PCTCN2020135889-appb-000003
其中,P Th为第一目标能量源中电能发生模块T h的输出功率,∑P Sh为第一目标能量源的总输出功率,
Figure PCTCN2020135889-appb-000004
k h为第一目标能量源的贡献系数,基于第一目标能量源的储能模块B h的电量状态信息确定;k j为第二目标能量源的贡献系数,基于第二目标能量源的储能模块B j的电量状态信息确定。
进一步的,第一目标能量源的贡献系数k h、第二目标能量源的贡献系数k j确定方法包括:
对于贡献系数k h,确定参考值SOC href,参考值SOC href的计算公式为:SOC href=∑SOC h/n
第一目标能量源的贡献系数k h计算公式为:
Figure PCTCN2020135889-appb-000005
对于贡献系数k j,确定参考值SOC jref,参考值SOC jref的计算公式为:
SOC jref=∑SOC j/m;
第二目标能量源的贡献系数k j计算公式为:
Figure PCTCN2020135889-appb-000006
其中,SOC hmax为第一目标能量源的储能模块B h中荷电状态SOC的最大值,SOC hmin为第一目标能量源的储能模块B h中荷电状态SOC的最小值;SOC jmax为第二目标能量源的储能模块B j中荷电状态SOC的最大值,SOC jmin为第二目标能量源的储能模块B j中荷电状态SOC的最小值。
进一步的,第一目标能量源的贡献系数k h可由k′ h或k″ h代替,第二目标能量源的贡献系数k j可由k′ j或k″ j代替;
其中,k′ h=k h×SOH h;k″ h=k′ h×n/∑k′ h;k′ j=k j×SOH j;k″ j=k′ j×m/∑k′ j
进一步的,所述电能发生模块T i为燃气轮机发电机组,在稳定工况下输出功率恒为定值;所述储能模块B i为蓄电池,在稳定工况下充电/放电功率可调。
根据本发明的另一方面,提供一种功率分配方法,所述方法基于两个以上能量源S i并联时,对各个能量源S i的输出功率进行分配使用,其中,每个能量源S i包含一电能发生模块T i,各能量源S i共用一储能模块B,所述方法包括:
获取负载功率需求P load
获取N个能量源S i中每一个能量源S i的电能发生模块T i的运行状态信息;
基于负载功率需求P load及每一个能量源S i的电能发生模块T i的运行状态信息,确定N个能量源S i中每个能量源S i的输出功率P Si
其中,N为能量源S i的数量,N≥2,i表示N个能量源S i中第i个,i=1,2,…,N。
进一步的,所述电能发生模块T i为燃气轮机发电机组,在稳定工况下输出功率恒为定值;所述储能模块B为蓄电池,为所述电能发生模块T i提供启动电能。
根据本发明的另一方面,提供一种功率分配系统,包括两个以上并联的能量源S i,每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i,所述分配系统还包括HCU,所述HCU与各能量管理系统EMS i连接;
所述HCU用于获取待充电负载的功率需求P load以及由EMS i提供的多个能量源S i中每一个能量源S i的状态信息,并基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si,所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
或者,所述HCU用于获取待充电负载的功率需求P load并发送至各能量管理系统EMS i,所述能量管理系统EMS i用于基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si,所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息。
根据本发明的另一方面,提供一种功率分配系统,包括两个以上并联的能量源S i,每个能量源S i包含一电能发生模块T i和一能量管理系统EMS i,各能量源S i共用一储能模块B,所述分配系统还包括HCU,所述HCU与各能量管理系统EMS i连接;
所述HCU用于获取待充电负载的功率需求P load以及由EMS i提供的多个能量源S i中每一个能量源S i的电能发生模块T i的运行状态信息,并基于负载功率需求P load及每一个能量源S i的电能发生模块T i的运行状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
或者,所述HCU用于获取待充电负载的功率需求P load并发送至各能量管理系统EMS i,所述能量管理系统EMS i用于基于负载功率需求P load以及能量源S i的电能发生模块T i的运行状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
与现有技术相比,本发明具有如下有益效果:
1、本发明针对多个能量源中,每个能量源均包括电能发生模块和储能模块所提供功率分配方法,综合考虑了电能发生模块运行状态、储能模块电量状态对分配策略的影响,本功率分配方法可以在尽量满足负载功率需求 的情况下,减少电能发生模块的频繁启停以延长电能发生模块的使用寿命并降低电能发生模块频繁启停的能量损耗,同时确保储能模块的均衡使用以延长电池的使用寿命。
2、本发明针对多个能量源中,每个能量源均包括电能发生模块,多个能量源共用一储能模块所提供功率分配方法,综合考虑了电能发生模块运行状态对分配策略的影响,本功率分配方法可以在尽量满足负载功率需求的情况下,减少电能发生模块的频繁启停以延长电能发生模块的使用寿命并降低电能发生模块频繁启停的能量损耗。
3、本发明所提供的功率分配系统,由HCU统一执行负载功率的分配,能量源内部的EMS只需根据HCU下发的功率指令进行内部储能模块和电能发生模块两个电源的控制,能够降低系统的复杂度,如此使得系统易于拓展,例如可根据具体应用场合增加或减少能量源的数量而只需对HCU控制软件做少量修改;同时本发明提供的功率分配系统还可通过能量源内部的EMS根据HCU提供的负载功率需求相互协调进行负载功率的分配,在通过EMS进行负载功率需求相互协调分配时,可将各EMS设置一个主EMS,而其它设置为从EMS,如此同样能够降低系统的复杂度,使得系统易于拓展,例如可根据具体应用场合增加或减少能量源的数量而只需对EMS的控制软件做少量修改。
附图说明
图1为本发明实施例中充电系统结构原理图。
图2为本发明实施例中采用多个充电枪的充电系统结构原理图。
图3为本发明实施例中能量源结构原理图。
图4为本发明实施例中功率分配流程图。
图5为本发明实施例中能量源的输出功率确定方法流程图。
图6为本发明实施例中贡献系数确定方法流程图。
图7为本发明实施例中充电方法总流程图。
图8为本发明实施例中燃气轮机启动流程图。
图9为本发明实施例中燃气轮机发电机组转子轴承支撑方案示意图。
图10为本发明实施例中轴承检测流程图。
图11为本发明实施例中燃气轮机关闭流程图。
图12为本发明实施例中多模式充电方法流程图。
图13为本发明实施例中储能模块补电流程图。
具体实施方式
为了更好的了解本发明的技术方案,下面结合具体实施例、说明书附图对本发明作进一步说明。
请参照图1,图1是本发明提供的充电系统的一个实施例原理图。
本发明的功率分配系统基于充电系统CS结构实现。
整个充电系统CS(Charging System)包含N(N≥2)个并联的能量源S i、充电控制单元CHRG(Charging Control Unit)、混合控制单元HCU(Hybrid Control Unit)、汇流母排、充电枪。充电枪通过汇流母排与能量源S i连接,HCU通过通信总线与各能量源S i连接。充电控制单元CHRG直接参与被充车辆的充电控制通讯。充电控制单元CHRG的软硬件功能需求遵循非车载充电机给电动汽车充电的国家标准(GB T 27930-2015),包括物理连接完成,低压辅助上电,充电握手,充电参数配置,充电阶段和充电结束等流程。充电控制单元CHRG记录被充车辆在充电过程中各个参数,如功率需求及动力电池SOC值,并动态上传至HCU。HCU或者能量源S i内部的能量管理系统EMS i(Energy Management System)根据待充电负载的功率需求以及各个能量源S i状态信息,确定各个能量源S i的输出功率,充电电流经充电枪输出至待充电负载,充电枪直接与待充电负载连接。
请参照图2,图2是本发明提供的充电系统的另一个实施例原理图。在本实施例中,充电系统CS可以设置多个充电枪。图示以设置两个充电枪为例。两个充电枪分别经过两个充电控制单元CHRG与HCU连接,两个充电枪分别通过汇流母排与汇流分配单元连接,汇流分配单元包含数量与能量源S i数量相同的开关,开关用于选择将能量源S i的电能输出至汇流母排1和2中的一个。通过多个充电枪的设置,能够满足对多个待充电负载的同时充电作业。在本实施例中,HCU同样从各CHRG中获取各待充电负载的功率需求,HCU或者能量源S i内部的能量管理系统EMS i根据待充电负载的功率需求以及各个能量源S i状态信息,确定各个能量源S i的输出功率。
请参照图3,图3是本发明提供的能量源S i的一个实施例结构图。在本实施例中,N个并联的能量源S i中,每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i
在本实施例中,单个能量源S i除了包括电能发生模块T i、储能模块B i(包括电池管理系统BMS i),还包括燃油供给系统、传感器、电子控制单元ECU(Electronic Control Unit)、DPC i(Digital Power Controller)、DC/DC控制器、EMS i(未一一示出)。
其中,电能发生模块T i:电能发生模块T i用于产生电能,由原动机和发电机组成,原动机指将燃料的能量转化为机械能并通过转轴输出机械能的热能发动机,发电机则将原动机产生的机械能转换为电能输出。发电机在原动机的启动阶段也可作电动机运行,拖转原动机转动。原动机可以是柴油发电机、汽油发电机、燃气轮机等。本实施例中优先选用微型燃气轮机(简称微型燃机、微燃机或MT(Microturbine))作为原动机,此时电能发生模块T i即为微型燃气轮机与发电机构成的微型燃气轮机发电机组。与传统的内燃机发电机组(如柴油机发电机组)相比,微型燃气轮机发电机组具有体积小、重量轻、振动小、噪声低、启动较快、运动部件少、使用寿命长、维护简单、环境友好、燃料适应性广等优点。因此,除了可在军事领域用作重要国防设施的常用电源,用作军事通信和导弹发射等装备的备用电源;在民用领域用作小型商业建筑物的常用/备用电源,用作偏远地区的分布式供电系统外,微型燃气轮机发电机组有望在电动汽车充电领域有广泛应用。
微型燃气轮机(发电机组)的单机容量一般在300kW内。但对于微型燃气轮机(发电机组)的单机容量范 围在国际上并没有统一定义,有些学着认为功率小于500kW为微型燃气轮机(发电机组)。但这些并不构成对本申请的限制。需要说明的是,虽然本实施例优选额定功率较小的微型燃气轮机发电机组作为电能发生模块,但实际上,本申请提出的功率分配方法同样适用于包含功率较大的小型、中型、大型燃气轮机发电机组的系统。因此,本申请不对燃气轮机(发电机组)的单机容量做具体限定,本申请在提及时,通用“燃气轮机”或“燃机”指代。此外,由于对于燃气轮机发电机组而言,燃气轮机作为原动机,是提供能量的一方,从燃气轮机到发电机的能量损失可以忽略不计,因此,在本申请中,“燃气轮机的输出功率/额定功率/单机容量”与“燃气轮机发电机组的输出功率/额定功率/单机容量”是相同的。同样地,在本申请中,“原动机的输出功率/额定功率/单机容量”与“电能发生模块T i的输出功率/额定功率/单机容量”也是相同的。
电能发生模块T i的启动控制是充电系统CS的控制内容之一。由于电能发生模块T i的启动控制也就是由T i的发电机拖转T i的原动机从静止到运行在启动转速,因此,在本申请中,术语“电能发生模块T i的启动”、“电能发生模块T i原动机的启动”、“原动机的启动”等表明的意思一致。在启动阶段,T i的发电机作电动机运转,所需的电能可以由储能模块B i提供。启动阶段,除了要消耗电能以拖动原动机运行至启动转速外,还需要对其他变量进行精准控制,如温度、燃料量、空气量等。由此可见,电能发生模块T i的启动是一个既耗能又复杂的过程。在充电系统CS的工作过程中,合理地降低电能发生模块T i的启停次数,可以有效提高系统效率、降低系统损耗、减轻控制系统负担。
储能模块B i:储能模块B i的作用包括以下多种:为电能发生模块T i的原动机提供启动电能;向负载对外输出电能;存储电能发生模块T i生成的电能。在本实施例中储能模块B i可以是任何形式的可充放电的电能存储设备,例如蓄电池、超级电容等。
能量管理系统EMS i:依据分配的输出功率完成单个能量源S i内部功率管理,确定电能发生模块T i的启停和储能模块B i的充放电功率,实现能量的高效利用。
ECU i:通过控制油气路中泵体、阀体、点火控制器等执行器,结合各个传感器反馈的信息,配合DPC i,实现电能发生模块T i输出功率的闭环控制。
DC/DC i1:稳定母线电压,通过控制储能模块B i的充放电,实现电能发生模块T i的平稳启停。
DC/DC i2:基于EMS i的指令,对外部待充电负载放电。
针对本实施例的能量源S i结构,可通过与能量源S i连接的HCU或者能量源S i内部的EMS i相互协调实现负载需求功率的分配:
当通过HCU实现负载需求功率分配时,由HCU实时获取待充电负载的功率信息(包括负载的功率需求和/或负载动力电池SOC值等)以及由EMS i提供的每一个能量源S i的状态信息(包括当前电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息等),并根据负载功率信息及能量源S i的状态信息,确定各个能量源S i的输出功率;
当通过能量源S i内部的EMS i相互协调实现负载需求功率的分配时,由HCU实时获取待充电负载的功率信息(包括负载的功率需求和/或负载动力电池SOC值等)并发送至各能量管理系统EMS i,各能量管理系统EMS i根据负载功率需求及能量源S i的状态信息(包括当前电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息等),确定各个能量源S i中每个能量源S i的输出功率P Si
与能量源S i连接的HCU除上述功能外,其还可用于:状态汇总上报——实时汇总所有能量源S i的状态信息及被充负载的状态信息,上报至车载终端和/或上层服务器;接收车载终端和/或上层服务器的信息(如调度指令、待充负载的位置信息等)。
本实施例中,每个能量源S i内部都包括一个储能模块B i,该设置方式使得充电系统CS可以对输出功率进行细调,从而精确跟踪负载需求,以此节约充电时间提高充电效率,更适和应用在希望能够快速充电的应急充电场合。例如,充电系统CS可以装载在移动车辆上,作为(应急)充电车,随时接收用户的用电请求,并行使至预定的服务地点为用电负载(如电动汽车)提供用电服务。
本发明实施例还提供有另一中能量源S i结构。本实施例中,每个能量源S i包含一电能发生模块T i和一能量管理系统EMS i,能量源S i内部不包含储能模块B i,相应的能量源S i内部也不包含DC/DC i1,此时整个充电系统CS中的多个能量源S i共用一个外部的储能模块B及相应的DC/DC 1(未在图中示出),储能模块B此时的主要功能是为多个能量源S i中电能发生模块T i提供启动电能,因此在对负载需求功率进行分配时,无需考虑储能模块B的输出。在本实施例中,由于储能模块B无需向负载输出功率,因此与能量源S i连接的HCU可以不承担能量源S i之间功率分配的功能,而是由每个能量源S i内部的EMS i之间相互协调。
针对本实施例的能量源S i结构,可通过与能量源S i连接的HCU或者能量源S i内部的EMS i相互协调实现负载需求功率的分配:
当通过HCU实现负载需求功率分配时,由HCU实时获取待充电负载的功率信息(包括负载的功率需求和/或负载动力电池SOC值等)以及由EMS i提供的每一个能量源S i中电能发生模块T i的运行状态信息,并根据负载功率信息及电能发生模块T i的运行状态信息,确定各个能量源S i的输出功率;
当通过能量源S i内部的EMS i相互协调实现负载需求功率的分配时,由HCU实时获取待充电负载的功率信息(包括负载的功率需求和/或负载动力电池SOC值等)并发送至各能量管理系统EMS i,各能量管理系统EMS i根据负载功率需求及能量源S i中电能发生模块T i的运行状态信息,确定各个能量源S i中每个能量源S i的输出功率P Si
在本实施例中,多个能量源S i共用一个储能模块B,除能够节约成本(动力电池的成本较高)外,功率分配的实现也更简单进而降低控制系统的复杂度。由于储能模块B不向负载输出电能,此时充电系统CS一般不能精确跟踪负载功率需求,而是以低于负载功率需求的功率值向负载供电,因此更适合应用在要求节约成本或对充电时间没有严格要求的场合。例如,充电系统CS可以并联十几个能量源S i,作为停车场或充电站的电源设备,为电动汽车提供充电服务。
本发明上述实施例中,由HCU统一执行负载功率的分配,能量源内部的EMS只需根据HCU下发的功率指令进行内部储能模块和电能发生模块两个电源的控制,能够降低系统的复杂度,如此使得系统易于拓展,例如可根据具体应用场合增加或减少能量源的数量而只需对HCU控制软件做少量修改;同时还可通过能量源内部的EMS根据HCU提供的负载功率需求相互协调进行负载功率的分配,在具体实施过程中,可将各能量管理系统EMS i设置一个主能量管理系统EMS i,而其它能量管理系统EMS i设置为从能量管理系统EMS i,由主能量管理系统EMS i主要负责协调作业,如此同样能够降低系统的复杂度,使得系统易于拓展,例如可根据具体应用场合增加或减少能量源的数量而只需对EMS的控制软件做少量修改因为。而如果对于各能量管理系统EMS i不区分主、从关系,在进行能量源S i的扩展时,相应的各能量管理系统EMS i的修改则会比较复杂,且扩展的能量源S i越多,系统会变得越复杂。
本发明实施例还提供一种功率分配方法,该功率分配为能量源S i间的功率分配。该功率分配方法指基于负载的实时功率需求,根据各个能量源S i输出能力的差别,将输出功率任务分配至各个能量源S i以满足负载的实时功率需求,即确定各个能量源S i的输出功率P Si
请参照图4,为本实施例的功率分配方法流程图。
在本实施例的功率分配方法基于具有两个以上的能量源S i并联,每个能量源S i包括有一电能发生模块T i和一储能模块B i的充电系统使用。多个能量源S i功率分配流程400包括如下步骤:
S410:确定负载功率需求P load。即由HCU从CHRG获取外部待充电负载的功率需求P load
S420:获取N(N≥2)个能量源中每一个能量源S i的状态信息。状态信息由HCU从能量源S i内部的EMS i获取。
在本实施例的功率分配方法中,每个能量源S i包含一电能发生模块T i(优选为燃气轮机发电机组,即燃气轮机+发电机,可以是其他任何形式可产生电能的发电设备)和一储能模块B i(优选为蓄电池,可以是其他任何形式的可充放电的电能存储设备)。i=1,2,…,N。状态信息包括电能发生模块T i的运行状态信息和储能模块B i的电量状态信息。电能发生模块T i的运行状态信息表明电能发生模块T i的当前运行情况,可以是关机(或停机、停止)状态、待机状态、发电状态、故障状态等,还可以是一些表明电能发生模块T i性能状态的信息如电能发生模块T i的出厂日期、剩余燃油量等。储能模块B i的电量状态信息表明储能模块B i的当前电量情况,作为示例,当储能模块B i优选为蓄电池时电量状态信息可以是电池荷电状态SOC或电池健康度S0H;当储能模块B i优选为超级电容时,电量状态信息可以是超级电容荷电状态SOC。其中,电池荷电状态SOC(state of charge)用来反映电池的剩余容量状况的物理量,其数值定义为电池剩余容量占电池容量的比值;电容荷电状态SOC(super capacitor state of charge)为基于实际测量的电容能量,表示成对电容最大标称电压平方的百分比。
电池荷电状态SOC(state of charge),电池健康度SOH(state of health)。由电池管理系统BMS监测,最终上报至HCU。其中,对于储能模块B i,其
Figure PCTCN2020135889-appb-000007
C i(current-max)为储能模块B i当前可输出的最大容量,该数据由储能模块B i的BMS i提供;C i(original)为储能模块B i的出厂容量。可设定SOH i的正常取值范围为SOH i∈[80%,100%],即当SOH i小于80%(该数值可标定)时,该储能模块B i随即报废,需要更换。
S430:基于负载功率需求P load及能量源S i状态信息,确定N个能量源S i中每个能量源S i的输出功率P Si
在本实施例中,定义各个能量源S i模块的输出功率P Si:P Si=P Ti+P Bi。其中,P Ti为电能发生模块T i的输出功率,P Ti的取值大于等于零。P Bi为储能模块B i的输出功率,P Bi的取值可以大于等于零,也可以小于零。当P Bi的取值大于零时,说明储能模块B i处于放电状态,即向负载输出电能;当P Bi的取值小于零时,说明储能模块B i处于充电状态,即P Ti除对负载输出电能外,还有多余电能对储能模块B i充电。
在本实施例的充电方法中,如上式所示,每个能量源S i包含两个电能来源:电能发生模块T i和储能模块B i,能量源S i间的功率分配方案详见流程500-600。
S440:HCU确定P Si后,将P Si发送至相应的EMS i。EMS i基于P Si对能量源S i内部的两个电源,即电能发生模块T i和储能模块B i进行控制,以满足能量源S i的输出功率为P Si。更详细的关于EMS i基于P Si对能量源S i内部电能发生模块T i和储能模块B i进行控制的描述见流程700及相关描述。
参照图5,上述S430的子步骤流程500包括:
S510:基于能量源S i的状态信息,对N个能量源S i进行分类。
S511:首先在N个能量源S i模块中确定不对当前负载输出电能的能量源。满足以下三种情况中任意一种则被判定为不对当前负载输出电能的能量源,其数量记为p个。
第一种情况:当储能模块B i的SOH i<80%(该值可标定),确定能量源S i为待更换储能模块B i的能量源。待更换储能模块B i不对外输出功率,也即输出功率为0;
第二种情况:对能量源S i模块中所有电池组对应的SOH进行排序并选取最大的SOH记为SOH max,对能量源S i模块中所有电池组对应的SOH i进行计算△SOH i=SOH max-SOH i,若△SOH i大于等于0.04(该值可标定),则该能量源S i不对外输出功率,即输出功率为0;
第三种情况:当充电系统CS包含一个以上的充电枪(如图2所示),即充电系统CS可以同时对多个负载充电时,若某个能量源S i正在运行对另一待充负载充电,则该能量源S i也被确认为不对当前负载输出电能的能量源模块。
S512:在剩下的N-p个能量源S i模块中确定第一目标能量源和第二目标能量源。
基于能量源S i的状态信息,在剩下的N-p个能量源S i模块中确定n个第一目标能量源。
当电能发生模块T i的运行状态信息显示电能发生模块T i处于发电状态(由EMS i反馈给HCU),则确定能量源S i为第一目标能量源,记为n个。第一目标能量源中的电能发生模块记为电能发生模块T h,储能模块记为储能模块B h;其中,h表示n个第一目标能量源中第h个,h=1,2,…,n。
当能发生模块T i的运行状态信息显示电能发生模块T i处于停机状态,则确定能量源S i为第二目标能量源,记为m个,第二目标能量源中的电能发生模块记为电能发生模块T j,储能模块记为储能模块B j;其中,j表示m个第二目标能量源中第m个,j=1,2,…,m。
能量源模块的总数满足:N=p+m+n,
其中N为能量源模块总数,p为判定为不对当前负载输出电能的能量源个数,n为第一目标能量源个数,m为第二目标能量源个数。
需要说明的是,S512基于电能发生模块T i是处于发电状态还是停机/待机状态对能量源S i进行分类。在另一些实施例中,还可以基于电能发生模块T i的其他运行状态信息对能量源S i进行分类。例如,可以结合电能发生模块T i是否处于发电/停机/待机状态及剩余燃油量对能量源S i进行分类,将电能发生模块T i处于发电状态且剩余燃油量大于等于某一设定阈值的能量源S i确定为第一目标能量源;将电能发生模块T i处于发电状态但剩余燃油量小于某一设定阈值,或处于停机/待机状态的能量源S i确定为第二目标能量源。
进一步,可基于状态信息对所有能量源S i进行排序并编号。
定义第一目标能量源的编号范围是1到n,该n个第一目标能量源可按任意顺序排列,下文以按其储能模块B h的SOC值从大到小排序编号作为说明。定义第二目标能量源的编号范围是n+1到n+m,该m个第二目标能量源按其储能模块B j的SOC值从大到小排序编号。定义剩余N-(n+m)个,即p个,不对当前负载输出电能的能量源的编号范围是n+m+1到N,可按任意顺序编号。
即重新编号后的N个能量源为:S 1,S 2,…,S n,S (n+1),…,S (n+m),S (n+m+1),…,S N,与之对应的电能发生模块和储能模块也进行相同编号。必须说明的是,对能量源重新排序并编号的操作并不是必须的,此处只是为了方便区分。
S520:基于S510的分类结果,确定储能模块B i的总输出功率P B(total)
首先计算除去第一目标能量源中电能发生模块T h可输出的功率后,被充车辆仍需要的充电功率为:
Figure PCTCN2020135889-appb-000008
为第一目标能量源中电能发生模块T h输出的功率总和。
在本实施例中,在系统处于稳定工况时,某个特定电能发生模块T i的输出功率
Figure PCTCN2020135889-appb-000009
可以随时间变化,也可以为一恒定值。各个电能发生模块T i的输出功率
Figure PCTCN2020135889-appb-000010
的数值可以相同、也可以不同。例如,优选电能发生模块T i的原动机为燃气轮机,且所有电能发生模块T i原动机、发电机的参数相同。当系统处于稳定工况,电能发生模块T i处于稳定发电状态时,燃机工作在最佳工作点,输出功率
Figure PCTCN2020135889-appb-000011
恒定,为燃机额定输出功率。此时电能发生模块输出功率
Figure PCTCN2020135889-appb-000012
P T为一常数,即燃机额定输出功率,例如15kW(仅为示例)。当电能发生模块T i处于停止状态时,电能发生模块T i的输出功率
Figure PCTCN2020135889-appb-000013
S530:基于储能模块B i的总输出功率P B(total)确定每个能量源S i的具体输出功率P Si。根据P B(total)的大小,分三种情况。
第一种情况:
若P B(total)<0,说明外界功率需求小于第一目标能量源中电能发生模块T h的输出功率,在此情形下电能发生模块T h的输出功率在满足外界功率需求功率的同时,剩余输出功率为充电系统的储能模块B h进行充电。各第一目标能量源的输出功率P Sh计算公式为:
P Sh=k h×P load/n,或
P Sh=k′ h×P load/n,或
P Sh=k″ h×P load/n
k h,k′ h,k″ h的确定方法按流程600中(见下文)的逻辑算法进行计算。根据前文所述的公式P Si=P Ti+P Bi,可以计算出第一目标能量源中储能模块B h的充电功率P Bh。在此状态下,第二目标能量源中,电能发生模块T j(停机状态)和储能模块B j的输出功率均为零。
第二种情况:
若0≤P B(total)≤∑P Bh(max),说明:n个第一目标能量源能够满足负载的功率需求,且需由第一目标能量源的电能发生模块T h和储能模块B h同时向负载输出功率。此时第二目标能量源中,电能发生模块T j(停机状态)和储能模块B j的输出功率均为零。
∑P Bh(max)为在第一目标能量源中储能模块B h可输出的最大允许功率值,当储能模块B h优选为蓄电池时,该最大允许功率值受当前电池SOC,电池和环境温度,湿度等影响;另外为了使整个系统可以持续满足外接的充电需求,会对第一目标能量源中储能模块B h的可输出的最大允许功率P Bh(max)值做出相应的限制,可通过标定查表实现。按如下步骤确定第一目标能量源的输出功率P Sh
A、每个第一目标能量源中储能模块B h的放电系数b h(discharge)为k h,k′ h,k″ h(k h,k′ h,k″ h的确定方法按600中的逻辑算法进行计算),即:
b h(discharge)=k h
b h(discharge)=k′ h
b h(discharge)=k″ h
B、储能模块B h的放电功率P Bh计算公式为:
P Bh=b h(discharge)×P B(total)/n
C、确定第一目标能量源的输出功率P Sh
P Sh=P Bh+P Th
第三种状况:
若P B(total)>∑P Bh(max)说明n个第一目标能量源不能够满足负载功率需求,需要m个第二目标能量源进行补充。按以下步骤进行:
A、计算n个第一目标能量源的输出功率P Sh。此时第一目标能量源的电能发生模块T h按最佳功率点输出,第一目标能量源的储能模块B h按照可输出的最大允许功率值P Bh(max)进行输出,即
P Sh=P Th+P Bh(max)
B、计算m个第二目标能量源的输出功率P Sj。此时第二目标能量源中的电能发生模块T j(停机状态)的输出功率为零,第二目标能量源中的储能模块B j的输出功率按照如下分配。
B1:计算n个第一目标能量源的总输出功率∑P Sh
Figure PCTCN2020135889-appb-000014
B2:对剩余的功率进行P load-∑P Sh进行分配,每个第二目标能量源的输出功率为:
Figure PCTCN2020135889-appb-000015
请参照图6,贡献系数确定流程600:确定贡献系数k h,k′ h,k″ h以及k j,k′ j,k″ j的方法包括:
S610:对于贡献系数k h,确定参考值SOC href,参考值SOC href的计算公式为:SOC href=∑SOC h/n
对于贡献系数k j,确定参考值SOC jref,参考值SOC jref的计算公式为:
SOC jref=∑SOC j/m;
S620:计算贡献系数k h
Figure PCTCN2020135889-appb-000016
计算贡献系数k j
Figure PCTCN2020135889-appb-000017
S630:基于SOH值对k h、k j进行修正。
S631第一轮修正:k′ h=k h×SOH h,k′ j=k j×SOH j;该修正考虑SOH值对储能模块可充放电容量的影响,以保证储能模块的使用寿命。
S632第二轮修正:k″ h=k′ h×n/∑k′ h,k″ j=k′ j×m/∑k′ j;该修正是为了保证∑k″ h=n,∑k″ j=m;以尽量满足负载的功率需求,同时避免出现系统输出功率大于负载功率需求。
上述修正操作不是必须的,上述修正操作只在∑k′ h>n,∑k′ j>m下作用。
本实施例综合考虑了电能发生模块运行状态、储能模块电量状态对分配策略的影响,本实施例的功率分配方法可以在尽量满足负载功率需求的情况下,减少电能发生模块的频繁启停以延长电能发生模块的使用寿命并降低电能发生模块频繁启停的能量损耗,同时确保储能模块的均衡使用以延长电池的使用寿命。
本发明实施例还提供另一种功率分配方法。与上述功率分配方法实施例不同之处在于,本实施例基于具有两个以上的能量源S i并联,且每个能量源S i包括有一电能发生模块T i,多个能量源S i共用一储能模块B的充电系统使用。在本实施例中,负载功率分配采用如下方法:充电系统CS的多个能量源S i共用一个储能模块B时,该储能模块B不参与对负载输出电能,仅负责为充电系统CS的能量源S i中的电能发生模块T i提供启动电能,因此对负载功率分配时无需考虑储能模块B的功率。此时,能量源S i的状态信息即为电能发生模块T i的运行状态信息。电能发生模块T i的运行状态信息表明电能发生模块T i的当前运行情况,可以是关机(或停机、停止)状态、待机状态、发电状态、故障状态等,还可以是一些表明电能发生模块T i性能状态的信息如电能发生模块T i的出厂日期、剩余燃油量等。此时,仅需要根据电能发生模块T i的运行状态信息确定选择哪个能量源S i对负载输出功率P Si,且能量源S i的输出功率即电能发生模块T i稳定运行时的输出功率P Ti。例如,以剩余燃油量作为筛选标准,可以选取剩余燃油量较多的能量源S i对负载输出功率P Si,再例如,优先选取处于待机状态的能量源S i对负载输出功率P Si
本实施例综合考虑了电能发生模块运行状态对分配策略的影响,本实施例的功率分配方法可以在尽量满足负载功率需求的情况下,减少电能发生模块的频繁启停以延长电能发生模块的使用寿命并降低电能发生模块频繁启停的能量损耗。
本发明实施例还提供一种充电方法,本充电方法用于通过能量源S i向负载输出电能,通过对能量源S i中电能发生模块T i和储能模块B i的合理控制以提高充电效率。在本实施例中,当通过两个或两个以上能量源S i向负载输出电能时,则可使用上述实施例中的功率分配方法实现负载所需功率的分配,从而确定各个能量源S i的输出功率。应当理解,虽然本发明图1、图2所示的充电系统包含有多个能量源,但本充电方法同样适用于单个能量源的情形。
请参照图7,为本实施例的充电方法总体流程图。
在本实施例的充电方法中,每个能量源S i包括有一电能发生模块T i(优选为燃气轮机发电机组,即燃气轮机+发电机,可以是其他任何形式可产生电能的发电设备)和一储能模块B i(优选为蓄电池,可以是其他任何形式的可充放电的电能存储设备)。
总体充电流程100主要包括:
S110:充电枪与待充负载连接后,充电控制单元CHRG与待充负载通信,确认有外部待充电负载接入并获取待充负载发送的负载需求相关信息。
负载需求相关信息包括功率需求P load和待充负载的动力电池的SOC值。
S120:基于负载需求相关信息确定至少一个能量源S i中每个能量源S i的输出功率P Si
具体的,当充电系统CS仅包含一个能量源S i时,即确定负载需求功率P load为该能量源S i的输出功率P Si。当充电系统CS包含两个或两个以上能量源S i时,由HCU完成量源S i之间的功率分配任务,具体是基于负载的实时功率需求,根据各个能量源S i输出能力的差别,将输出功率任务分配至各个能量源S i以满足负载的实时功率需求,即确定各个能量源S i的输出功率P Si,负载需求功率分配方法详见流程400、流程500、流程600。能量源 S i内部的能量管理单元EMS i接收HCU分配的输出功率P Si,并进一步根据输出功率P Si执行能量源S i内部的功率分配,进而控制能量源S i内部电能发生模块T i的启停和储能模块B i的充放电,详见流程700。
S130:基于输出功率P Si确定充电电流I Si
具体地,HCU确定每个能量源S i的输出功率P Si后,会将输出功率P Si发送至相应能量源S i的能量管理单元EMS i。随后EMS i基于输出功率P Si确定充电电流I Si。I Si=P Si/V load,V load与待充负载相关。例如,当待充负载为电动汽车上的动力电池时,V load是动力电池SOC的函数,与SOC一一对应。后续DC/DC控制器会控制DC/DC i2根据充电电流I Si对外输出电能。
S140:基于输出功率P Si,确定能量源S i的工作模式,控制电能发生模块T i的启停和/或储能模块B i的充放电。
由于充电系统CS的每一个能量源S i内部包含两个电力来源:储能模块B i及电能发生模块T i。此时,能量源S i内部的能量管理单元EMS i接收HCU分配的输出功率P Si,并进一步根据输出功率P Si执行能量源内部的功率分配,从而对内部的两个电力来源进行控制,两个电力来源的不同运行状态组合成能量源P Si的多个工作模式。
具体地,EMS i基于输出功率P Si的大小及储能模块B i的SOC值判断是否开启或关闭电能发生模块T i。例如,当基于输出功率P Si及储能模块B i的SOC确定能量源S i的工作模式由L1模式切换至L2模式,或由M1模式切换至M2模式,或由M1模式切换至H模式时,确定启动电能发生模块T i,当电能发生模块T i的原动机为燃气轮机时,进入燃气轮机启动流程201;当基于输出功率P Si及储能模块B i的SOC确定能量源S i的工作模式由L2模式切换至L1模式时,关闭电能发生模块T i,当电能发生模块T i的原动机为燃气轮机时,进入燃气轮机关闭流程300;当基于输出功率P Si及储能模块B i的SOC确定能量源S i的工作模式由L2模式切换至M2模式或M2模式切换至L2模式时,维持电能发生模块T i的运行状态。关于能量源S i工作模式的定义及各模式间的切换条件详见流程700及相关描述。
在本发明的上述步骤中,S130和S140的顺序不做限定。
S150:基于充电电流I Si对外输出电能。
具体地,DC/DC i2为确保其输出电流为I Si且能够对负载充电,会将直流母线DC bus直流电变换为大小略大于V load的直流电压,即DC/DC i2的输出电压V Si略大于V load。例如,V load为400V,V Si为415V。V Si与V load的差值过大,如前者为600V后者为400V,V Si会被拉低至与V load相同的大小,从而无法对负载充电。V Si的大小可以通过测试实验进行标定以选取合适的值。
S160:系统判断充电完成,停止对外输出电能。
具体地,判断条件可以是用户要求停止充电服务(例如用户在手机的app界面点击“充电结束”)或检测到待充电负载的动力电池SOC大于某一期望值(如90%)。
在一些实施方式中,在系统判断充电服务完成并停止对外充电后,由于系统内部能量源S i的储能模块B i处于缺电状态,需要电能发生模块T i对其进行补电或通过外接电源(如电网)进行补电,相关描述详见流程800。
本实施例的充电方法,能够实现对电能发生模块的启动-发电-停机过程以及储能模块进行合理控制以对接入充电系统的待充负载进行高效充电。当电能发生模块的原动机为微型燃气轮机时,基于微型燃气轮机轻小型充电车较大型卡车而言,行驶灵活且受交通道路限制少,更便于随时随地为缺电车辆提供充电服务。相较于电力来源于电网的传统充电桩,基于微型燃气轮机的充电桩,由于不依赖于电网,节省了建设成本,敷设更灵活,大量电动车同时充电时也不会对电网造成负担,缓解电网压力的同时也缓解了交通压力。
本发明的实施例还提供有另一种充电方法,在本实施例的充电方法中,每个能量源S i包括有一电能发生模块T i,多个能量源S i共用一储能模块B。本实施例中总体充电流程、电能发生模块T i启停流程与上述实施例的充电方法相同。其不同之处在于,当充电系统CS的多个能量源S i共用一个储能模块B时,该储能模块B不参与对负载输出电能,仅负责为充电系统CS的能量源S i中的电能发生模块T i提供启动电能,因此在充电过程中无需考虑储能模块B的功率。此时,在充电过程中,基于输出功率P Si,只需控制电能发生模块T i的启停,具体的是:若P Si大于0且能量源S i中的电能发生模块T i处于停机状态,则启动电能发生模块T i;若P Si大于0且能量源S i中的电能发生模块T i处于运行状态,则保持电能发生模块T i处于运行状态;若P Si为0且能量源S i中的电能发生模块T i处于运行状态,则关闭电能发生模块T i
本实施例的充电方法,能够实现对电能发生模块的启动-发电-停机过程进行合理控制以对接入充电系统的待充负载进行高效充电,同时避免电能发生模块的频繁启动,以节约能源,提高电能发生模块的使用寿命。
本发明实施例针还提供一种燃气轮机启动方法,当本发明的电能发生模块T i的原动机为燃气轮机时,优选采用本实施例的燃气轮机启动方法以控制燃气轮机进行平稳的启动。
请参照图8,燃气轮机启动流程201,
S211:将直流母线DC bus升压至直流母线参考电压U DC
在一些实施例中,在决定开启燃机时,DC bus的电压还未建立,即DC bus的电压未达到设定值U DC,此时需建立DC bus电压。
在一些实施例中,能量源S i内部包含储能模块B i。此时,储能模块B i启动并对外输出电能,DC/DC控制器控制DC/DC i1对储能模块B i输出的直流电进行升压变换,将DC bus的电压值稳定在直流母线参考电压U DC。U DC的大小可设定,其值较大时有利于减小输出损耗,但相应地,整个充电系统CS各个元件的耐压等级也要设计得相应较高。
在一些实施例中,在决定开启燃机时,系统已经处于待机状态,例如,负责提供启动电能的储能模块B i及DC/DC i1已经工作,将DC bus的电压升至设定值U DC(如780V,800V,可标定)。此时无需再启动DC/DC i1建立电压。因此步骤S211并不是必须的。
S221:获取“启动”命令,将燃机拖转到点火速度。
具体地,DPC i获取ECU i的“启动”指令,DPC i工作在逆变模式,将DC bus的直流电逆变为交流电。交流电向与燃机同轴设置的电机提供交流电源,电机工作在电动模式,电机转动时带动燃机运行,速度逐渐上升至点火速度。
S231:控制点火器点火。
具体地,当燃机达到点火速度后,ECU i控制气泵增加气压,燃料泵和相应的阀体开启,输送燃料,准备工作完成后,ECU i控制点火控制器点火,燃料开始在燃机的燃烧室中燃烧。
S241:拖转燃气轮机加速至第一设定转速,并将燃气轮机加热至第一指定温度。
具体地,DPC i拖转燃机加速至第一设定转速(不同的燃机该数值不同,是燃机设计阶段即确定的一个转速范围,例如50000~55000转/s)。此后维持燃机在第一指定转速不变,对燃机温度(例如燃气轮机透平后端的温度)进行闭环控制,使燃机温度上升至第一指定温度(不同的燃机该数值不同)。这是由于燃机属于热机的一种,只有在达到一定温度的情况下,才能将燃料的化学能高效地转化为动能。
S251:根据目标转速信号拖转燃气轮机至目标转速。
具体地,ECU i向DPC i发送目标转速信号(目标转速通过燃机目标输出功率计算,例如,燃机的目标输出功率为其额定功率,根据额定功率计算的转速及为目标转速),DPC i收到信号后将燃机拖转至目标转速。在该阶段,DPC i可以基于新的转速信号将燃机拖转至新的转速(对应新的输出功率)。
本发明实施例还提供有一种用于在燃气轮机启动过程中轴承检测的方法。在一些实施例中,燃机使用的是空气轴承。空气轴承是利用空气弹性垫来起支撑作用的一种轴承。与其他类型的轴承相比,空气轴承有如下优势:空气的粘度很小,导致摩擦损耗小,发热变形小;操作简单、成本低、可靠性高、维护简单,并且避免了润滑又供应和过滤系统的耗能。因此空气轴承很适合应用在超精密和超高速旋转轴的应用场合,例如应用在微型燃气轮机中。空气轴承能正常运行形成压力空气膜以将燃机转子支撑起来,是燃机能成功启动的前提条件。在燃机启动阶段,若空气轴承损坏或转子轴弯曲变形,无法形成压力空气膜将燃机转子支撑起,则可能导致转子与控制轴承间的摩擦力过大而转子无法加速的情形,若强行拖转转子加速,甚至造成转子损坏或燃机其他部件损坏的严重后果。因此,对于采用空气轴承的燃气轮机,在燃机启动阶段对空气轴承进行检测,确保轴承能够成功将燃机转子支撑起来,并且在空气轴承发生故障的情况下能将故障及时上报是必须重视的技术问题。
请参照图9,为本实施例燃气轮机发电机组转子的轴承支撑方案示意图。图示中,附图标记分别为:1、1号空气轴承;2、2号空气轴承;3、转子;4、涡轮机;5、压缩机;6、电机。图示中的支撑方式仅为示意,实际上可以有多种支撑方案。例如,压缩机和涡轮机之间可设置3号轴承。需明确的是,转子的轴承支撑方案不对燃机启动阶段的轴承检测构成限制。轴承为非接触式轴承,可以是空气轴承,也可以是空气轴承和磁悬浮轴承二者组成的混合轴承。
请参照图10,为本实施例燃气轮机启动时轴承检测流程202,包括:
S212:开启气泵和气阀。
具体地,ECU i控制气泵和气阀开启,为空气轴承提供气源,气源会从空气轴承的进气孔进入。
S222:拖转转子沿第一方向以第一转速转动。
具体地,DPC i工作,拖转与燃机同轴相连的同步电机转子沿第一方向以第一转速转动。第一方向可定义为燃机透平的叶轮正常运行时旋转的方向。对第一转速的取值范围不做具体限定,以标定实验时的标定值为准。例如,对于额定转速为十几至几十万转的燃机而言,第一转速的转速可以为几百-1万r/m。
S232:确定对应于第一方向的第一扭矩。
第一转矩为同步电机转子沿第一方向以第一转速转动时的输出扭矩(也称为转矩)。具体地,DPC i基于反馈的电压和电流值,确定第一扭矩t 1。具体地,对于电机,转子输出扭矩t 1=P /ω。P为转子输出的机械功率,ω为角速度。转子输出机械功率可以由电机电功率近似求解P ≈P =3U ×I
Figure PCTCN2020135889-appb-000018
其中相电流I 和线电流I 线相等。在一些实施例中,也可以通过电机电功率乘以电机电能转化为机械能的效率η求解机械功率P ,如P =ηP ,η为估算值。
S242:若第一扭矩小于扭矩阈值,确定轴承性能良好,进入燃机升速阶段,即从流程201的S221开始执行(因为此时DC bus的电压已建立)。
当空气轴承性能良好,不存在损坏或故障时,空气轴承可以和燃机转子间形成压力空气膜,将转子支撑起来,机转子处于“浮起”状态,与空气轴承见不存在机械接触。此时的第一扭矩是小于扭矩阈值的。
对扭矩阈值的大小也不做具体限定,以标定实验时的标定值为准。不同型号的燃机,或者相同型号的燃机运行在不同的第一转速下时,标定的扭矩阈值可能不同。
S252:否则确定换向时间和第二扭矩。
若第一扭矩大于或等于扭矩阈值,此时也不能立刻判定空气轴承存在故障,还需近一步确定换向时间或第二扭矩,通过换向时间或第二扭矩进一步判断空气轴承是否存在故障。
换向时间定义为控制转子换向的时刻至转子沿第二方向达到以第二转速转动的时刻的时长。第二扭矩定义为同步电机转子沿第二方向以第二转速转动时的输出扭矩。第二方向定义为与第一方向相反的方向。第二转速的大小可以与第一转速的大小相同或不同。
S262:若换向时间小于换向时间阈值,且第二扭矩小于扭矩阈值,确定轴承性能良好,进入燃机升速阶段,即从流程201的S221开始执行(因为此时DC bus的电压已建立)。
具体地,DPC i先将转子拖转至速度降为零再控制转子反向旋转升速至第二转速。DPC i可以通过控制同步电机三相通电的相序来改变转子转向。第二扭矩的确定方法与第一扭矩的确定方法相同。
S272:若换向时间大于或等于换向时间阈值,或第二扭矩大于或等于扭矩阈值,确定空气轴承存在故障。
具体地,DPC i判断轴承存在故障后,向ECU i报错,ECU i进一步向HCU报错,HCU确定是否立即关闭燃机, 若确定关闭燃机,可执行燃机关闭流程300。
本实施例提供的上述轴承检测方法,在燃机启动阶段确保空气轴承的良好运行,防止在未知空气轴承存在故障的情况下贸然加速燃机,可能导致的转子与控制轴承间的摩擦力过大而转子无法加速的情形,甚至造成转子损坏或燃机其他部件损坏的严重后果,检测方法简单可靠,基于现有的硬件即可检测,无需增加额外的检测机构。
本发明实施例针还提供一种燃气轮机关闭方法,当本发明的电能发生模块T i的原动机为燃气轮机时,优选采用本实施例的燃气轮机关闭方法以控制燃气轮机进行平稳的停机。
请参照图11,燃气轮机关闭流程300包括,
S310:接收“停机”指令后停止供油。
具体地,ECU i接收HCU发送的停机指令后,控制油气路停止供油,同时向DPC i发送第二指定转速信号。第二指定转速可以与第一指定转速相同,也可以不同。
S320:将燃气轮机拖转至第二指定转速,并将燃气轮机冷却至第二指定温度。
具体地,DPC i将燃机拖转至第二指定转速,维持燃机运行在第二指定转速,充电系统CS的冷却系统启动,将燃机冷却至第二指定温度。第二指定温度可以与第一指定温度相同,也可以不同。
S330:DPC i将燃气轮机拖转至目标转速0,燃气轮机停机。
本发明实施例还提供有一种多模式充电方法,在充电系统中,当采用单个能量源对负载进行充电时,需要基于负载的实时功率需求,确定该所述单个能量源的输出功率P Si;当采用多个能量源对外部负载进行充电时,需要基于负载的实时功率需求,根据各个能量源输出能力的差别,将输出功率任务分配至各个能量源以满足负载的实时功率需求,即确定各个能量源的输出功率P Si,使用多个能量源对外部负载进行充电时,负载需求功率分配方法具体参考流程400、流程500、流程600。在由电能发生模块和储能模块两个电量来源组成的能量源中,在确定能量源的输出功率P Si后,还需要进一步确定能量源内部的工作模式。本实施例的多模式充电方法指基于能量源被分配的输出功率P Si,进一步确定能量源内部电能发生模块和储能模块两个电量来源的工作模式。应当理解,虽然本发明图1、图2所示的充电系统包含有多个能量源,但本多模式充电方法同样适用于单个能量源的情形。
请参照图12,图12是本发明提供的一种多模式充电方法实施例流程图。
在本实施例中,能量源S i包括电能发生模块T i(优选为燃气轮机发电机组,即燃气轮机+发电机,可以是其他任何形式可产生电能的发电设备)和储能模块B i(优选为蓄电池,可以是其他任何形式的可充放电的电能存储设备)。
多模式充电流程700包括:
将每个能量源S i的运行模式,分为四种模式:低功率模式(L模式)、中功率模式(M模式)、高功率模式(H模式)和电能发生模块独立运行模式(T模式)。其中,L模式和M模式又分别细分为L1、L2和M1、M2模式。(详见图4)。
EMS i接收HCU发送的输出功率P Si,基于输出功率P Si的大小,确定能量源S i的初始工作模式:
1.如果0≤P Si≤P Ti,确定能量源S i进入L模式运行,P Ti为电能发生模块T i工作在最佳工作点时的输出功率。在本实施例中,在系统处于稳定工况时,某个特定电能发生模块T i的输出功率
Figure PCTCN2020135889-appb-000019
可以随时间变化,也可以为一恒定值。各个电能发生模块T i的输出功率
Figure PCTCN2020135889-appb-000020
的数值可以相同、也可以不同。例如,优选电能发生模块T i的原动机为燃气轮机,且所有电能发生模块T i原动机、发电机的参数相同。当系统处于稳定工况,电能发生模块T i处于稳定发电状态时,燃机工作在最佳工作点,输出功率
Figure PCTCN2020135889-appb-000021
恒定,为燃机额定输出功率。此时电能发生模块输出功率
Figure PCTCN2020135889-appb-000022
P T为一常数,即燃机额定输出功率,例如15kW(仅为示例)。当电能发生模块T i处于停止状态时,电能发生模块T i的输出功率
Figure PCTCN2020135889-appb-000023
进入L模式后,能量源S i默认运行在L1模式。在L1模式下,由储能模块B i单独满足功率P Si。这是由于当需要能量源S i输出的功率P Si较小时,能量源S i中的储能模块B i一般能满足需求,无需启动能量源B i中的电能发生模块T i
能量源S i默认运行在L1模式,当储能模块B i的SOC值低于第一阈值(如40%,可标定;SOC值低于第一阈值表明储能模块B i的剩余电量不足)时,进入L2模式,启动电能发生模块T i。在L2模式下标,电能发生模块T i输出功率P Ti(如15kW,45kW,60kW,与燃机的型号相关),在满足P Si的情况下,多余的功率(P Si-P Ti)给储能模块B i充电。在电能发生模块T i输出功率P Ti给储能模块B i充电过程中,储能模块B i的SOC值持续上升,当检测储能模块B i的SOC值大于等于第二阈值(如80%,可标定;SOC值大于等于第二阈值表明储能模块有充足的电量可以对外输出电能)时,关闭电能发生模块T i,返回至L1模式运行,即由储能模块B i单独满足功率P Si
在本实施例中,定义各个能量源S i模块的输出功率P Si:P Si=P Ti+P Bi。其中,P Ti为电能发生模块T i的输出功率,P Ti的取值大于等于零。P Bi为储能模块B i的输出功率,P Bi的取值可以大于等于零,也可以小于零。当P Bi的取值大于零时,说明储能模块B i处于放电状态,即向负载输出电能;当P Bi的取值小于零时,说明储能模块B i处于充电状态,即P Ti除对负载输出电能外,还有多余电能对储能模块B i充电。
2.如果P Ti<P Si≤(P Ti+P b),确定能量源进入M模式运行。其中,P b为一设定功率,与储能模块B i的参数相关。例如,P b可以是储能模块B i放电倍率为1C时对应的放电功率。
进入M模式后,可通过两种方法判断运行在M1模式还是M2模式:
第一种:能量源S i默认运行在M1模式,在M1模式下,由储能模块B i单独满足功率P Si
当SOC值低于第三阈值(如35%,可标定),进入M2模式,即启动电能发生模块T i,在M2模式下,电能发生模块T i输出功率P Ti(如15kW,45kW,60kW,与电能发生模块T i的型号相关),同时,储能模块B i输出功率为(P Si-P Ti)。
第二种:若储能模块B i可提供的电量能满足负载需求电量,则进入M1模式,否则进入M2模式。判断进入M1模式的条件为:
C load-demand≤C B1
C load-demand为负载需求电量,C B1为储能模块B i可提供的电量,两个变量分别通过如下方式计算:
C load-demand=C load-total×(SOC demand-SOC load)
C load-total为负载总容量,SOC demand为负载希望最终达到的SOC值,可以是根据经验设定的默认值(如90%),也可以是用户输入的数值;SOC load是负载的SOC值。
C B1=C B-total×(SOC B-SOC lim1)
C B1为储能模块可提供的电量;C B-total为储能模块的总容量,SOC B为储能模块的当前SOC值,SOC lim1是储能模块第一限值,当储能模块的SOC B小于第一限值时,会由M1模式变换为M2模式运行。
3.如果(P Ti+P b)<P Si确定能量源进入H模式运行。
在H模式下,电能发生模块T i输出功率P Ti(如15kW,45kW,60kW,与电能发生模块T i的型号相关),同时,储能模块B i输出功率为(P Si-P Ti)。
在充电过程中,随着P Si的变化(升高或降低),能量源S i可以在四种运行模式(L模式、M模式、H模式和T模式)间自动切换,即能量源S i可以基于初始工作模式(当前工作模式)及P Si的变化更新工作模式(或称为确定新的工作模式),以更好地跟踪输出功率P Si
L模式切换至M模式:
能量源S i工作在L模式下时,当检测到P Ti<P Si≤(P Ti+P b),则自动切换至M模式。具体切换至M1还是M2模式,需进一步判断:若能量源S i的当前运行模式为L1,即Mode current=L1,则切换至M1模式,即Mode updated=M1;若能量源S i的当前运行模式为L2,即Mode current=L2,则切换至M2模式,即Mode updated=M2。L1模式切换至M1模式,L2模式切换至M2模式的有益效果是,能量源S i的输出更平缓,减少电能发生模块T i的启动、停机操作,保护电能发生模块T i的同时减少系统损耗,提高效率。否则,假设L1模式切换至M2模式,需要开启电能发生模块T i,而L2模式切换至M1模式,需要关闭电能发生模块T i
M模式切换至L模式:
能量源工作在M模式下时,当检测到0≤P Si≤P Ti,则自动切换至L模式。具体切换至L1还是L2模式,需进一步判断:若能量源S i的当前运行模式为M1,即Mode current=M1,则切换至L1模式,即Mode updated=L1;若能量源S i的当前运行模式为M2,即Mode current=M2,则切换至L2模式,即Mode updaeed=L2。
M模式切换至H模式:
能量源S i工作在M模式下时,当检测到(P Ti+P b)<P Si,则自动切换至H模式。
H模式切换至M2模式:
能量源S i工作在H模式下时,当检测到P Ti<P Si≤(P Ti+P b),则自动切换至M2模式。
H/M2模式切换至T模式:
能量源S i运行在H模式或M2模式时,当储能模块B i的SOC小于第四阈值(如25%,可标定)时,能量源S i自动切换至T模式。因为当储能模块B i的SOC值已经很小时,继续放电会给储能模块B i造成一定损害。
T模式切换至L2模式:
能量源在T模式下工作时,随着充电的进行,P Si降低,当P Si降低至满足条件0≤P Si≤P Ti时,能量源由T模式自动切换至L2模式,即电能发生模块T i输出的功率除满足P Si外,多余的功率(P Si-P Ti)用于给储能模块B i充电。
本发明实施例提供的多模式充电方法使得能量源可以在多个工作模式下自动切换,使得能量源能够准确地跟踪不断变化的负载功率需求。工作模式间切换条件的设置使得能量源的输出更平缓,减少电能发生模块的启动、停机操作,保护电能发生模块的同时减少系统损耗,提高效率。
本发明的实施例还提供一种用于储能模块的补电方法,以保证充电完成后储能模块具有所期望的电量。
请参考图13,储能模块的补电流程800包括:
在充电过程中,当用户要求停止充电服务(例如用户在手机的app界面点击“充电结束”)或检测到待充负载的动力电池SOC大于某一期望值(如90%)时,按图13所示的流程执行。具体是在充电结束后,首先判断储能模块的SOC值,当其SOC值大于等于85%(可根据实际情况设定该值)时,确定储能模块无需充电;否则确定是否要向储能模块充电,当需要向储能模块充电时,确定是否执行外部补电,当执行外部补电时,由外部电源给储能模块补电,当无需外部补电时,通过燃机运行向储能模块进行补电。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能。

Claims (10)

  1. 一种功率分配方法,所述方法基于两个以上能量源S i并联时,对各个能量源S i的输出功率进行分配使用,其中,每个能量源S i包含一电能发生模块T i和一储能模块B i,其特征在于,所述方法包括:
    获取负载功率需求P load
    获取N个能量源S i中每一个能量源S i的状态信息,其中状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
    基于负载功率需求P load及能量源S i的状态信息,确定N个能量源S i中每个能量源S i的输出功率P Si
    其中,N为能量源S i的数量,N≥2,i表示N个能量源S i中第i个,i=1,2,…,N。
  2. 根据权利要求1所述的一种功率分配方法,其特征在于,所述确定N个能量源S i中每个能量源S i的输出功率P Si,具体包括:
    基于能量源S i的状态信息,对N个能量源S i进行分类;
    基于能量源S i的分类结果及负载功率需求P load,确定储能模块B i的总输出功率P B(total)
    基于储能模块B i的总输出功率P B(total),确定每个能量源S i的具体输出功率P Si
  3. 根据权利要求2所述的一种功率分配方法,其特征在于,所述基于能量源S i的状态信息,对N个能量源S i进行分类,具体包括:
    将N个能量源S i分为不对当前负载输出电能的能量源、第一目标能量源、第二目标能量源;
    其中,所述不对当前负载输出电能的能量源满足以下三种情况中任意一种:
    第一种情况:能量源S i的储能模块B i健康度SOH i小于标定值;
    第一种情况:选取所有能量源S i中储能模块B i对应的健康度SOH中最大的SOH记为SOH max,对储能模块B i对应的健康度SOH i进行计算△SOH i=SOH max-SOH i,△SOH i大于等于标定值;
    第三种情况:能量源S i正在运行对另一负载充电;
    所述第一目标能量源的电能发生模块T h处于发电状态,第一目标能量源个数记为n,h表示n个第一目标能量源中第h个,h=1,2,…,n;
    所述第二目标能量源的电能发生模块T j处于停机状态,第二目标能量源个数记为m,j表示m个第二目标能量源中第j个,j=1,2,…,m。
  4. 根据权利要求3所述的一种功率分配方法,其特征在于,所述储能模块B i的总输出功率
    Figure PCTCN2020135889-appb-100001
    所述基于储能模块B i的总输出功率P B(total),确定每个能量源S i的具体输出功率P Si,具体包括:
    若P B(total)<0,使用第一目标能量源的电能发生模块T h为负载供电,并计算各第一目标能量源的输出功率P Sh大小;
    若0≤P B(total)≤∑P Bh(max),使用第一目标能量源的电能发生模块T h及储能模块B h同时为负载供电,并计算各第一目标能量源的输出功率P Sh大小;
    若P B(total)>∑P Bh(max),使用第一目标能量源和第二目标能量源同时为负载供电,并计算第一目标能量源的输出功率P Sh、第二目标能量源的输出功率P Sj大小;
    其中,
    Figure PCTCN2020135889-appb-100002
    为第一目标能量源中电能发生模块T h输出的功率总和,∑P Bh(max)为在第一目标能量源中储能模块B h可输出的最大允许功率值。
  5. 根据权利要求4所述的一种功率分配方法,其特征在于,
    当P B(total)<0时,第一目标能量源的输出功率P Sh计算公式为:
    P Sh=k h×P load/n
    当0≤P B(total)≤∑P Bh(max)时,第一目标能量源的输出功率P Sh计算公式为:
    P Sh=P Bh+P Th
    储能模块B h的放电功率P Bh计算公式为:
    P Bh=b h(discharge)×P B(total)/n
    放电系数b h(discharge)计算公式为:
    b h(discharge)=k h
    当P B(total)>∑P Bh(max)时,第一目标能量源的输出功率P Sh计算公式为:
    P Sh=P Th+P Bh(max)
    第二目标能量源的输出功率P Sj计算公式为:
    Figure PCTCN2020135889-appb-100003
    其中,P Th为第一目标能量源中电能发生模块T h的输出功率,∑P Sh为第一目标能量源的总输 出功率,
    Figure PCTCN2020135889-appb-100004
    k h为第一目标能量源的贡献系数,基于第一目标能量源的储能模块B h的电量状态信息确定;k j为第二目标能量源的贡献系数,基于第二目标能量源的储能模块B j的电量状态信息确定。
  6. 根据权利要求5所述的一种功率分配方法,其特征在于,第一目标能量源的贡献系数k h、第二目标能量源的贡献系数k j确定方法包括:
    对于贡献系数k h,确定参考值SOC href,参考值SOC href的计算公式为:SOC href=∑SOC h/n
    第一目标能量源的贡献系数k h计算公式为:
    Figure PCTCN2020135889-appb-100005
    对于贡献系数k j,确定参考值SOC jref,参考值SOC jref的计算公式为:
    SOC jref=∑SOC j/m;
    第二目标能量源的贡献系数k j计算公式为:
    Figure PCTCN2020135889-appb-100006
    其中,SOC hmax为第一目标能量源的储能模块B h中荷电状态SOC的最大值,SOC hmin为第一目标能量源的储能模块B h中荷电状态SOC的最小值;SOC jmax为第二目标能量源的储能模块B j中荷电状态SOC的最大值,SOC jmin为第二目标能量源的储能模块B j中荷电状态SOC的最小值。
  7. 根据权利要求6所述的一种功率分配方法,其特征在于,第一目标能量源的贡献系数k h可由k′ h或k″ h代替,第二目标能量源的贡献系数k j可由k′ j或k″ j代替;
    其中,k′ h=k h×SOH h;k″ h=k′ h×n/∑k′ h;k′ j=k j×SOH j;k″ j=k′ j×m/∑k′ j
  8. 一种功率分配方法,所述方法基于两个以上能量源S i并联时,对各个能量源S i的输出功率进行分配使用,其中,每个能量源S i包含一电能发生模块T i,各能量源S i共用一储能模块B,其特征在于,所述方法包括:
    获取负载功率需求P load
    获取N个能量源S i中每一个能量源S i的电能发生模块T i的运行状态信息;
    基于负载功率需求P load及每一个能量源S i的电能发生模块T i的运行状态信息,确定N个能量源S i中每个能量源S i的输出功率P Si
    其中,N为能量源S i的数量,N≥2,i表示N个能量源S i中第i个,i=1,2,…,N。
  9. 一种功率分配系统,包括两个以上并联的能量源S i,每个能量源S i包含一电能发生模块T i、一储能模块B i和一能量管理系统EMS i,其特征在于,所述分配系统还包括HCU,所述HCU与各能量管理系统EMS i连接;
    所述HCU用于获取待充电负载的功率需求P load以及由EMS i提供的多个能量源S i中每一个能量源S i的状态信息,并基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si,所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息;
    或者,所述HCU用于获取待充电负载的功率需求P load并发送至各能量管理系统EMS i,所述能量管理系统EMS i用于基于负载功率需求P load及能量源S i的状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si,所述状态信息包括能量源S i中电能发生模块T i的运行状态信息以及储能模块B i的电量状态信息。
  10. 一种功率分配系统,包括两个以上并联的能量源S i,每个能量源S i包含一电能发生模块T i和一能量管理系统EMS i,各能量源S i共用一储能模块B,其特征在于,所述分配系统还包括HCU,所述HCU与各能量管理系统EMS i连接;
    所述HCU用于获取待充电负载的功率需求P load以及由EMS i提供的多个能量源S i中每一个能量源S i的电能发生模块T i的运行状态信息,并基于负载功率需求P load及每一个能量源S i的电能发生模块T i的运行状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
    或者,所述HCU用于获取待充电负载的功率需求P load并发送至各能量管理系统EMS i,所述能量管理系统EMS i用于基于负载功率需求P load以及能量源S i的电能发生模块T i的运行状态信息,确定多个能量源S i中每个能量源S i的输出功率P Si
PCT/CN2020/135889 2019-12-23 2020-12-11 一种功率分配方法及分配系统 WO2021129422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911339018.3A CN110979073B (zh) 2019-12-23 2019-12-23 一种功率分配方法及分配系统
CN201911339018.3 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021129422A1 true WO2021129422A1 (zh) 2021-07-01

Family

ID=70075665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135889 WO2021129422A1 (zh) 2019-12-23 2020-12-11 一种功率分配方法及分配系统

Country Status (2)

Country Link
CN (1) CN110979073B (zh)
WO (1) WO2021129422A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123405A (zh) * 2021-11-19 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种储能系统
CN115940221A (zh) * 2022-11-10 2023-04-07 南京英飞源技术有限公司 一种pcs模块组的功率分配方法及相关装置
CN117639112A (zh) * 2024-01-25 2024-03-01 中成空间(深圳)智能技术有限公司 基于气膜系统的风力发电控制方法、系统和介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110979073B (zh) * 2019-12-23 2023-12-05 刘慕华 一种功率分配方法及分配系统
CN111953294B (zh) * 2020-07-22 2021-06-15 国网河南省电力公司西峡县供电公司 基于物联网的台区备电系统及方法
CN112366800A (zh) * 2020-11-05 2021-02-12 深圳市华宝新能源股份有限公司 并联储能电源输出控制方法、装置、电子设备和存储介质
CN112721707B (zh) * 2020-12-07 2022-06-21 靳普 一种功率分配方法及分配系统
CN113103906B (zh) * 2021-04-25 2024-01-30 浙江吉利控股集团有限公司 一种充电桩的控制方法
CN117713273B (zh) * 2023-10-31 2024-06-11 东莞市安泰电子科技有限公司 一种智能化电能管理系统
CN117526388B (zh) * 2024-01-08 2024-03-19 江苏泰思数字技术有限公司 一种混合式储能能量调配控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931722A (zh) * 2012-11-28 2013-02-13 上海师范大学 一种分布式供电管理方法及其系统
US20170274792A1 (en) * 2016-03-23 2017-09-28 Chargepoint, Inc. Dynamic allocation of power modules for charging electric vehicles
CN107346908A (zh) * 2017-01-05 2017-11-14 宁波三星智能电气有限公司 一种智能调配功率的充电桩及其控制方法
CN108973763A (zh) * 2018-09-07 2018-12-11 国网冀北电力有限公司经济技术研究院 一种基于风光互补补充能源的智慧汽车充电亭(站)
CN109572456A (zh) * 2019-01-25 2019-04-05 贵州长江汽车有限公司 一种电动汽车充电系统及其充电方法
CN110979073A (zh) * 2019-12-23 2020-04-10 至玥腾风科技集团有限公司 一种功率分配方法及分配系统
CN211335646U (zh) * 2019-12-23 2020-08-25 至玥腾风科技集团有限公司 一种功率分配系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682448A (zh) * 2015-03-12 2015-06-03 成都鼎智汇科技有限公司 一种基于功率预测的电池储能电站的运行及监控方法
US11207991B2 (en) * 2016-12-15 2021-12-28 Ford Global Technologies, Llc Vehicle charging system for DC fast charging electrified vehicles
CN108400627A (zh) * 2017-12-15 2018-08-14 蔚来汽车有限公司 移动充电装置、控制方法及充电车
CN208411534U (zh) * 2018-07-06 2019-01-22 至玥腾风科技投资集团有限公司 一种移动充电车和移动能源站
CN108973831B (zh) * 2018-08-08 2020-02-11 宁波洁程汽车科技有限公司 一种移动充电车对外供电系统以及方法
CN109941130A (zh) * 2019-01-31 2019-06-28 至玥腾风科技投资集团有限公司 一种微型燃气轮机发电的车载充电系统及移动充电车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931722A (zh) * 2012-11-28 2013-02-13 上海师范大学 一种分布式供电管理方法及其系统
US20170274792A1 (en) * 2016-03-23 2017-09-28 Chargepoint, Inc. Dynamic allocation of power modules for charging electric vehicles
CN107346908A (zh) * 2017-01-05 2017-11-14 宁波三星智能电气有限公司 一种智能调配功率的充电桩及其控制方法
CN108973763A (zh) * 2018-09-07 2018-12-11 国网冀北电力有限公司经济技术研究院 一种基于风光互补补充能源的智慧汽车充电亭(站)
CN109572456A (zh) * 2019-01-25 2019-04-05 贵州长江汽车有限公司 一种电动汽车充电系统及其充电方法
CN110979073A (zh) * 2019-12-23 2020-04-10 至玥腾风科技集团有限公司 一种功率分配方法及分配系统
CN211335646U (zh) * 2019-12-23 2020-08-25 至玥腾风科技集团有限公司 一种功率分配系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123405A (zh) * 2021-11-19 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种储能系统
CN114123405B (zh) * 2021-11-19 2024-04-19 中国华能集团清洁能源技术研究院有限公司 一种储能系统
CN115940221A (zh) * 2022-11-10 2023-04-07 南京英飞源技术有限公司 一种pcs模块组的功率分配方法及相关装置
CN115940221B (zh) * 2022-11-10 2024-02-23 南京英飞源技术有限公司 一种pcs模块组的功率分配方法及相关装置
CN117639112A (zh) * 2024-01-25 2024-03-01 中成空间(深圳)智能技术有限公司 基于气膜系统的风力发电控制方法、系统和介质
CN117639112B (zh) * 2024-01-25 2024-04-19 中成空间(深圳)智能技术有限公司 基于气膜系统的风力发电控制方法、系统和介质

Also Published As

Publication number Publication date
CN110979073B (zh) 2023-12-05
CN110979073A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021129422A1 (zh) 一种功率分配方法及分配系统
WO2021129423A1 (zh) 轴承检测方法、检测系统、燃气轮机启动方法、启动系统
US11597287B2 (en) Vehicle with AC-to-DC inverter system for vehicle-to-grid power integration
RU2389618C2 (ru) Гибридная силовая установка (варианты) и способ управления мощностью гибридной силовой установки (варианты)
US9705357B2 (en) Hybrid electric generator set
US20080215199A1 (en) Vehicle-use dual voltage type power supply apparatus
KR102249662B1 (ko) 선박용 통합전력제어관리시스템
WO2010042118A1 (en) Building with multiple power generation sources enabled by an elevator system
WO2022121268A1 (zh) 一种功率分配方法及分配系统
CN112677781A (zh) 基于燃料电池和储能电池的混合动力电源系统及汽车
CN110901427B (zh) 一种充电方法及充电系统
CN110920418B (zh) 在纯电动车上实现自主发电增程的子系统及方法
JPH114507A (ja) ハイブリッド車両
CN111030228B (zh) 一种多模式充电方法
US11448148B2 (en) Method and system for reducing a startup time of a genset
CN211335646U (zh) 一种功率分配系统
US11801767B2 (en) Control of vehicle and home energy storage systems
CN117141451A (zh) 一种混动汽车怠速发电的控制方法、装置及储存介质
CN115742828A (zh) 基于油电双驱动船舶的锂电池岸电充电控制方法
CN115441654A (zh) 一种增程发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905665

Country of ref document: EP

Kind code of ref document: A1