WO2022116483A1 - 压裂设备及压裂系统 - Google Patents

压裂设备及压裂系统 Download PDF

Info

Publication number
WO2022116483A1
WO2022116483A1 PCT/CN2021/096099 CN2021096099W WO2022116483A1 WO 2022116483 A1 WO2022116483 A1 WO 2022116483A1 CN 2021096099 W CN2021096099 W CN 2021096099W WO 2022116483 A1 WO2022116483 A1 WO 2022116483A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing
motor
muffler
radiator
turbine engine
Prior art date
Application number
PCT/CN2021/096099
Other languages
English (en)
French (fr)
Inventor
张鹏
吕亮
张日奎
毛竹青
王建伟
兰春强
吴义朋
李心成
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3144930A priority Critical patent/CA3144930C/en
Priority to AU2021390073A priority patent/AU2021390073A1/en
Publication of WO2022116483A1 publication Critical patent/WO2022116483A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition

Definitions

  • Embodiments of the present disclosure relate to a fracturing apparatus and a fracturing system.
  • Fracturing is the main measure to increase production in oil and gas fields.
  • the current well site layout mainly includes turbo fracturing well site layout, electric drive well site layout, and conventional diesel drive fracturing well site.
  • Embodiments of the present disclosure provide a fracturing apparatus and a fracturing system.
  • At least one embodiment of the present disclosure provides a fracturing apparatus comprising: a plunger pump configured to pressurize a fracturing fluid to form a high pressure fracturing fluid; a turbine engine, the turbine an engine is coupled to the plunger pump and is configured to provide driving force to the plunger pump; an auxiliary unit, the auxiliary unit includes a drive motor, the auxiliary unit is configured to provide a start-up assistance function to the fracturing apparatus , a function of at least one of a lubricating function, a cooling function, and an air supply function; and a power source, which is electrically connected to the drive motor of the auxiliary unit and configured to provide driving force to the auxiliary unit.
  • the auxiliary unit includes a starter unit configured to start the turbine engine, and the drive motor includes a starter motor.
  • the starter motor is configured to directly start the turbine engine, the starter motor is directly connected to the turbine engine, and the starting unit is provided on the turbine engine.
  • the auxiliary unit further includes a lubricating unit and a cooling unit
  • the driving motor includes a lubricating motor and a cooling motor
  • the lubricating unit further includes a lubricating pump and a lubricating oil tank
  • the lubricating motor is configured to drive the lubricating pump to
  • the lubricating oil in the lubricating oil tank is delivered to the lubricating point
  • the cooling unit further includes a radiator
  • the cooling motor is configured to drive the radiator to cool the lubricating oil
  • the lubricating motor is connected with the lubricating oil
  • the pump is directly connected
  • the cooling motor is directly connected to the radiator.
  • the fracturing equipment further includes an air supply unit
  • the drive motor includes an air circuit motor
  • the air supply unit further includes an air compressor
  • the air circuit motor is configured to drive the air compressor to the turbine engine Compressed air is provided, and the air circuit motor is directly connected to the air compressor.
  • the fracturing apparatus further includes a ventilation unit
  • the drive motor includes a ventilation motor
  • the ventilation unit further includes a ventilation part
  • the ventilation motor is configured to drive the ventilation part
  • the ventilation motor is directly connected to the ventilation part connected.
  • the power source includes at least one of a generator, a grid power, a fuel cell and an energy storage battery, and the power source is electrically connected to the drive motor through a switch cabinet and a substation.
  • the fracturing apparatus further includes a carrier on which the plunger pump, the turbine engine, and at least a part of the auxiliary unit are disposed, wherein the plunger pump is detachably fixed to the carrier. on the aforementioned carrier.
  • the plunger pump is fixed on a first base
  • the first base is provided with a first forklift hole
  • the plunger pump is detachably fixed on the carrier through the first base.
  • the radiator is arranged above the plunger pump.
  • the fracturing equipment further includes a muffler
  • the turbine engine includes an exhaust pipe
  • the muffler is connected with the exhaust pipe
  • the radiator is arranged at a distance of the muffler away from the exhaust pipe. side.
  • the fracturing apparatus further includes a baffle disposed outside the muffler and at least partially between the muffler and the radiator, the baffle including a plurality of holes, the baffle The distance between the plate and the muffler is less than the distance between the baffle and the heat sink.
  • the muffler includes a first side, a second side and a third side, the first side faces the radiator, the second side and the third side are respectively connected to the first side,
  • the baffle is located outside the first side, the second side and the third side of the muffler.
  • At least one embodiment of the present disclosure also provides a fracturing system, comprising: any one of the fracturing devices described above; and a peripheral device, the power supply being configured to be connected to the peripheral device to supply power thereto.
  • the peripheral equipment includes at least one of mixing equipment, sand mixing equipment, and conveying mechanism; the mixing equipment is configured to mix fracturing base fluid; the sand mixing equipment is configured to mix the fracturing base fluid The fluid is mixed with proppant to form the fracturing fluid; the delivery mechanism is configured to deliver the proppant stored in the sand tank to the sand mixing device.
  • fracturing devices For example, a plurality of fracturing devices are provided, and the plunger pump of at least one fracturing device is replaced with a generator to constitute at least a part of the power source.
  • the generator is fixed on a second base, and the second base is provided with a second forklift hole.
  • At least one embodiment of the present disclosure provides a fracturing apparatus comprising: a plunger pump configured to pressurize a fracturing fluid to form a high-pressure fracturing fluid; a turbine engine, the a turbine engine coupled to the plunger pump and configured to provide driving force to the plunger pump, the turbine engine including an exhaust pipe; a lubrication unit configured to deliver lubricating oil to a lubrication point; a cooling unit, the cooling unit includes a radiator, the radiator is configured to cool the lubricating oil; a muffler is connected with the exhaust pipe; the radiator is arranged on one side of the muffler, so The radiator is configured such that gas it exhausts flows toward the muffler.
  • the radiator is arranged on a side of the muffler away from the exhaust pipe.
  • the radiator there is a gap between the radiator and the muffler, and the air outlet side of the radiator faces the muffler.
  • the fracturing equipment further includes a baffle plate, the baffle plate is disposed outside the muffler and at least partially located between the muffler and the radiator In between, the baffle includes a plurality of holes, and the distance between the baffle and the muffler is smaller than the distance between the baffle and the radiator.
  • the muffler includes a first side, a second side and a third side, the first side faces the radiator, the second side and The third side surfaces are respectively connected with the first side surfaces, and the baffle plate is located outside the first side surface, the second side surface and the third side surface of the muffler.
  • the radiator is arranged above the plunger pump.
  • the radiator is disposed obliquely with respect to the axis of the plunger pump.
  • the lubricating unit includes a lubricating motor, a lubricating pump, and a lubricating oil tank, and the lubricating motor is configured to drive the lubricating pump to lubricate the oil in the lubricating oil tank.
  • lubricating oil is delivered to the lubricating point
  • the cooling unit includes a cooling motor configured to drive the radiator to cool the lubricating oil
  • the lubricating motor is directly connected to the lubricating pump
  • the cooling motor is directly connected to the radiator.
  • the fracturing apparatus further includes a starting unit, the starting unit is configured to start the turbine engine, and the starting unit includes a starting motor.
  • the starter motor is configured to directly start the turbine engine, the starter motor is directly connected to the turbine engine, and the starter unit is provided at the on the turbo engine.
  • the fracturing equipment further includes an air supply unit, the air supply unit includes an air compressor and an air circuit motor, the air circuit motor is configured to drive the air circuit
  • the compressor supplies gas with a predetermined pressure to the turbine engine, and the air circuit motor is directly connected to the air compressor.
  • the fracturing equipment further includes a ventilation unit, and the ventilation unit further includes a ventilation motor and a ventilation part, the ventilation motor is configured to drive the ventilation part, so The ventilation motor is directly connected with the ventilation component.
  • the fracturing equipment further includes a power source, the lubricating motor, the cooling motor, the starting motor, the gas circuit motor, and the ventilation motor are respectively connected with The power supply is connected.
  • At least one embodiment of the present disclosure also provides a fracturing system, comprising: any one of the fracturing devices described above; and a peripheral device, the power supply being configured to be connected to the peripheral device to supply power thereto.
  • the peripheral device includes at least one of a mixing device, a sand mixing device, and a conveying mechanism; the mixing device is configured to mix a fracturing base fluid; The sand mixer is configured to mix the fracturing base fluid with proppant to form the fracturing fluid; the delivery mechanism is configured to deliver the proppant stored in the sand tank to the sand mixer.
  • embodiments of the present disclosure provide a fracturing apparatus, the fracturing apparatus comprising: a plunger pump configured to pressurize fracturing fluid and then deliver it to a wellhead; a turbine engine, so the turbine engine is coupled to the plunger pump, and is configured to provide driving force to the plunger pump; an auxiliary unit, the auxiliary unit including a drive motor, the auxiliary unit is configured to provide starting to the fracturing apparatus an auxiliary function, a lubricating function, a cooling function and/or an air supply function; and a power source electrically connected to the drive motor of the auxiliary unit and configured to provide driving force to the auxiliary unit.
  • the auxiliary unit includes at least: a starting unit, which is arranged on the turbine engine and is used to assist the starting of the turbine engine; a lubricating unit, which includes a lubricating pump, a lubricating an oil tank and a lubricating motor configured to drive the lubricating pump to deliver lubricating oil in the lubricating oil tank to a lubrication point; a cooling unit including a radiator and a cooling motor, the cooling motor is configured to drive the radiator to cool the lubricating oil; and an air supply unit, the air supply unit includes an air circuit motor and an air compressor, the air circuit motor is configured to drive the air compressor to all
  • the turbine engine provides gas with a predetermined pressure; the power source is electrically connected to the starting unit, the lubricating motor, the cooling motor, and the gas circuit motor, respectively.
  • the power source includes a generator, grid power and/or an energy storage battery.
  • the fracturing apparatus further includes a carrier on which at least a part of the plunger pump, the turbine engine and the auxiliary unit are integrally provided, wherein the plunger pump Removably fixed on the carrier.
  • the plunger pump is fixed on a first base, the first base is provided with a first forklift hole, and the plunger pump is detachably fixed to the carrier through the first base superior.
  • the power source is electrically connected to the drive motor through a switch cabinet and a substation in sequence.
  • the fracturing system includes: a compounding device configured to mix a fracturing base fluid; a sand mixing device, the sand mixing device and the mixing device a fracturing device in fluid connection with a fracturing device configured to mix the fracturing base fluid with a proppant to form a fracturing fluid fluid; and any of the fracturing devices as described above, the fracturing device being in fluid connection with the sand mixing device .
  • the power source of the fracturing apparatus is electrically connected to the compounding apparatus and/or the sand mixing apparatus to supply power to the compounding apparatus and/or the sand mixing apparatus.
  • the fracturing system further includes a sand tank configured to store the proppant and deliver the proppant to the sand mixing device through a delivery mechanism electrically connected to the power source by The power supply is powered.
  • the fracturing system includes a plurality of fracturing devices, and the plunger pump of at least one fracturing device is replaced with a generator to form at least a portion of the power source.
  • the generator is fixed on a second base, and the second base is provided with a second forklift hole.
  • FIG. 1A is a schematic diagram of a turbo fracturing equipment
  • FIG. 1B is a schematic diagram of a turbo fracturing hydraulic equipment
  • FIG. 2A is a schematic diagram of a fracturing device provided by an embodiment of the present disclosure
  • FIG. 2B is a schematic diagram of a fracturing device provided by an embodiment of the present disclosure.
  • FIG. 3A is a schematic diagram of a fracturing device provided by an embodiment of the present disclosure.
  • FIG. 3B is a schematic diagram of a fracturing device provided by an embodiment of the present disclosure.
  • FIG. 3C is a schematic diagram of a fracturing device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a fracturing device provided by another embodiment of the present disclosure.
  • Fig. 5A is a schematic diagram of a fracturing device provided by another embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram of a baffle in a fracturing apparatus provided by an embodiment of the present disclosure
  • FIG. 5C is a schematic diagram of the arrangement position of baffles in a fracturing device according to an embodiment of the present disclosure
  • Fig. 5D is a schematic diagram of the arrangement position of a baffle plate in a fracturing device according to another embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of the connection between a power supply and an execution component of a fracturing device according to another embodiment of the present disclosure
  • FIG. 7A is a schematic diagram of a fracturing system provided by an embodiment of the present disclosure.
  • FIG. 7B is a schematic diagram of a fracturing system provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a plunger pump used in a fracturing apparatus provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a generator for a fracturing apparatus of an embodiment of the present disclosure.
  • the existing turbo fracturing equipment has at least one of the following disadvantages.
  • the power supply of the existing well site is unstable, and there are serious unreliable hidden dangers for the fracturing operation, especially the plunger pump operation.
  • the existing turbine engine uses the hydraulic starting form, and the auxiliary engine must be started before starting the turbine engine.
  • FIG. 1A is a schematic diagram of a turbo fracturing equipment
  • FIG. 1B is a schematic diagram of a turbo fracturing hydraulic system.
  • the solid line represents the hydraulic fluid
  • the arrow represents the direction of the hydraulic fluid
  • the dashed line represents the mechanical connection between the components.
  • a turbo fracturing apparatus 001 includes a vehicle body 1 , a hydraulic oil tank 01 , a fuel tank 02 , an engine 03 , a plunger pump 1 , a turbine engine 2 , a radiator 3 , and a muffler provided on the vehicle body 100 4.
  • engine 03 includes a diesel engine
  • fuel tank 02 includes a diesel tank.
  • the plunger pump 1 is connected to the turbine engine 2 through a reducer 6, a coupling 5 is provided between the plunger pump 1 and the reducer 6, and the reducer 6 includes a reducer box and a reducer located in the reducer box.
  • one end of the turbine engine 2 is connected with the plunger pump 1 through a reduction box to drive the plunger pump to suck in the low-pressure fracturing fluid and discharge the high-pressure fracturing fluid, that is, the plunger pump 1 is configured to pressurize the fracturing fluid to form High pressure fracturing fluid.
  • the other end of the turbine engine 2 is connected to an exhaust assembly 49 .
  • the exhaust assembly 49 includes an exhaust pipe 9 and a muffler 4 ; the exhaust pipe 9 is connected to the turbine engine 2 and is configured to discharge exhaust gas.
  • the muffler 4 is connected to the exhaust pipe 9 and is configured to reduce exhaust noise.
  • the fuel tank 02 supplies fuel to the engine 03, the engine 03 is connected to a hydraulic pump 04 (not shown in FIG. 1A, see FIG. 1B), and the hydraulic oil tank 01 is connected to the hydraulic pump 04 (see FIG. 1B).
  • fracturing fluids may also be referred to as fracturing fluids.
  • FIG. 1A shows the anechoic pod 7 .
  • the turbine engine 2 and the speed reducer 6 are located within a muffler pod 7 which is configured to reduce noise.
  • FIG. 1A also shows a high pressure manifold 101 .
  • the high pressure manifold 101 is configured to flow high pressure fracturing fluid.
  • the hydraulic pump 04 supplies oil to the execution motor 05 of the turbo fracturing equipment.
  • the execution motor 05 includes a starter motor 051 , a lubricating motor 052 , a cooling motor 053 , and a hydraulic motor 054 , and the lubricating motor 052 is connected to the lubricating pump 11 .
  • the lubricating oil is delivered from the lubricating oil tank 8 to the plunger pump 1 , the reducer 6 and the turbine engine 2 by driving the lubricating pump 11 to lubricate them.
  • the vehicle body 100 includes a semi-trailer, but is not limited thereto.
  • the cooling motor 053 drives the radiator 3
  • the starter motor 051 is connected to the turbine engine 2 to start the turbine engine 2
  • the hydraulic motor 054 drives the hydraulic air compressor 06 .
  • the turbo fracturing equipment 001 uses the auxiliary engine as the power source to drive the whole machine lubrication, cooling, turbine engine start, gas supply and other components.
  • the disadvantages of the turbo fracturing equipment 001 are: 1) the size of the whole vehicle is long, which is not conducive to well site transportation and market promotion; 2) the use of diesel as auxiliary power fuel causes certain environmental pollution; 3) the efficiency of the hydraulic unit is low.
  • Embodiments of the present disclosure provide a fracturing device and a fracturing system having the fracturing device, which can be used for on-site fracturing construction operations in oil and gas fields.
  • the fracturing equipment and the fracturing system having the fracturing equipment can be used for well site layout and process implementation of hydraulic fracturing, and can be used in fracturing well sites, mainly for turbine fracturing well site construction operations.
  • FIG. 2A is a schematic diagram of a fracturing apparatus according to an embodiment of the disclosure
  • FIG. 2B is a schematic diagram of a fracturing apparatus according to an embodiment of the disclosure.
  • the solid line represents the hydraulic fluid
  • the arrow represents the direction of the hydraulic fluid
  • the dashed line represents the mechanical connection between components
  • the double-dot chain line represents the direction of power supply.
  • the fracturing apparatus 1 a mainly includes a power source 12 , a vehicle body 100 , a turbine engine 2 , a plunger pump 1 , and an auxiliary unit 500 .
  • the auxiliary unit 500 includes at least one of a starting unit 501 , a lubricating unit 502 , a cooling unit 503 , an air supply unit 504 , and a ventilation unit 505 .
  • the turbine engine 2, the plunger pump 1, the cooling unit 503 and the lubricating unit 502 are provided on the vehicle body 100.
  • the auxiliary unit 500 includes a drive motor 50, and the auxiliary unit 500 is configured to provide auxiliary functions to the fracturing equipment, for example, the auxiliary functions include start-up auxiliary functions, lubrication functions, cooling functions, ventilation functions, and gas supply at least one of the functions.
  • the power supply 12 is electrically connected to the drive motor 50 of the auxiliary unit 500 and is configured to provide driving force to the auxiliary unit 500 .
  • the driving motor 50 includes at least one of a starter motor 51 , a lubricating motor 52 , a cooling motor 53 , an air circuit motor 54 and a ventilation motor 55 .
  • one drive motor is provided for each of the auxiliary units (starting unit 501, lubricating unit 502, cooling unit 503, air supply unit 504, and ventilation unit 505).
  • each auxiliary unit is electrically driven and directly driven with a power source.
  • no hydraulic unit is provided in the auxiliary unit 500 .
  • a hydraulic pump is not provided in the auxiliary unit 500, nor is a fuel tank and an engine that drive the hydraulic pump.
  • the fracturing apparatus 1a provided by the embodiment of the present disclosure is not provided with a hydraulic pump 04 , nor is provided with a fuel tank 02 and an engine 03 for driving the hydraulic pump 04 .
  • the auxiliary unit directly adopts electric drive.
  • a motor can be provided for each auxiliary unit, which can realize point-to-point driving and minimize energy waste.
  • the motor can be powered off when not working, and there is no need to input power to the motor to achieve a comprehensive and reasonable distribution of energy consumption.
  • using a turbine engine as the main power source for fracturing operations and using a power source to provide power to auxiliary units in an electric drive manner can make the overall layout of the fracturing equipment more compact.
  • the turbine engine is powered by natural gas
  • the fracturing equipment uses all clean energy, there is no environmental pollution, and efficiency can be maximized.
  • the turbine engine 2 is connected to the plunger pump 1 through a reduction box for driving the plunger pump 1 to convert low-pressure fracturing fluid into high-pressure fracturing fluid and then deliver it to the wellhead.
  • the turbine engine 2 is provided with a starting unit 501, including a starter motor 51, whose main function is to start the turbine engine, thereby realizing the normal operation of the turbine engine and providing power for the fracturing pump operation.
  • the starter motor 51 is configured to directly start the turbine engine 2 , and the starter motor 51 is directly connected to the turbine engine 2 .
  • the starter motor 51 may be used to drive the hydraulic unit, which is used to start the turbine engine.
  • the hydraulic unit includes a hydraulic pump and a hydraulic motor.
  • the turbine engine 2 is driven by fuel or gas, and the turbine engine 2 is started directly by electric drive.
  • a fuel tank is provided.
  • the lubricating unit 502 includes the lubricating pump 11 , the lubricating oil tank 8 and the lubricating motor 52 .
  • the main function of the lubricating motor 52 is to provide power for the lubricating oil, so as to realize the delivery of the lubricating oil in the lubricating oil tank 8 to the lubricating point.
  • the lubricating motor 52 is configured to drive the lubricating pump 11 to deliver the lubricating oil in the lubricating oil tank 8 to the lubrication point.
  • the lubrication point may be at least one of the plunger pump 1 , the turbine engine 2 and the speed reducer 6 .
  • the lubrication point may also include a motor.
  • the lubrication motor 52 is directly connected to the lubrication pump 11 .
  • the lubrication pump 11 is directly driven by electric power.
  • the cooling unit 503 includes the cooling motor 53 and the radiator 3 .
  • the main function of the cooling motor 53 is to provide power for the radiator 3 so as to achieve the purpose of cooling the lubricating oil.
  • the cooling motor 53 is configured to drive the radiator 3 to power lubricating oil cooling.
  • the radiator 3 is configured to cool the lubricating oil and cool the lubricating oil.
  • the cooling motor 53 is directly connected to the radiator 3 .
  • the radiator 3 directly adopts an electric drive.
  • the heat sink 3 includes a fan, but is not limited thereto.
  • the air supply unit 504 includes the air circuit motor 54 and the air compressor 13 .
  • the air circuit motor 54 and the air compressor 13 are directly connected.
  • the air compressor 13 is directly driven by electricity.
  • the air compressor 13 is an electronically controlled air compressor.
  • the air circuit motor 54 mainly provides driving force for the air compressor 13, and provides gas (compressed air) with a certain pressure for the turbine engine, so as to realize the use of dual fuel of the turbine engine.
  • the ventilation unit 505 includes the ventilation motor 55 and the ventilation member 14 .
  • the ventilation motor 55 is directly connected to the driving ventilation part 14 .
  • the ventilation part 14 is directly driven by electricity.
  • the ventilation motor 55 is configured to drive the ventilation member 14 .
  • the ventilation member 14 includes ventilation blades, but is not limited thereto.
  • the ventilation unit 505 is configured to reduce the temperature of the air inside the sound-absorbing cabin 7 so as to continuously circulate the air inside the sound-absorbing cabin 7 .
  • the ventilation member 14 includes a fan, but is not limited thereto.
  • the power supply 12 supplies power to the lubrication motor, cooling motor, ventilation motor, air circuit motor and starting unit, respectively.
  • the power source 12 may be at least one of a generator, grid power, fuel cell, and energy storage battery.
  • the motor drive used in the existing fracturing equipment needs to consume a part of the power to start the motor, and the hydraulic unit itself also consumes a part of the power, which leads to an increase in the energy consumption of the entire equipment; and if the motor is used to drive, Using inverter control to realize point-to-point drive, minimize energy waste, the motor can be powered off after starting, no need to input power to the motor, and achieve a comprehensive and reasonable distribution of energy consumption.
  • the same is true for other auxiliary units, and reference may be made to the description of the starting unit, which will not be repeated here.
  • the fracturing equipment omits the auxiliary engine and changes all the hydraulically driven actuators to electric ones, which has the following advantages: at least one of the following.
  • the size of the vehicle is small, which is more conducive to well site transportation and market promotion, and the layout of the vehicle is more compact.
  • the single unit of turbo fracturing equipment has higher power, which greatly saves the space occupied by the well site compared with conventional diesel-driven equipment.
  • the diesel engine and fuel tank are removed, and the hydraulic oil tank, hydraulic motor and other components are removed to reduce the number of parts and components of the whole vehicle, so as to achieve the purpose of reducing the size of the whole vehicle; Optimization, the layout of the well site will be more convenient, and the large operation of the small well site will be realized.
  • the turbine engine uses natural gas, and all other components are driven by an electric motor, and the power source of the electric motor is a power source, all of which are clean energy.
  • Each actuator is equipped with a motor drive. This solution minimizes the energy waste caused by the hydraulic unit itself, so as to maximize the efficiency.
  • the existing fracturing equipment is driven by a motor.
  • the starter motor needs to consume a part of the power, and the hydraulic unit also consumes a part of the power, which leads to an increase in the energy consumption of the entire equipment; if it is driven by a motor, it is controlled by a frequency converter.
  • the motor can be powered off after starting, no need to input power to the motor, and achieve a comprehensive and reasonable distribution of energy consumption.
  • the power supply can be 380V power supply.
  • This power supply source is very wide, which can be energy storage batteries, fuel cells , grid power, generators, etc., without the need for high-voltage electricity of about 10kV in the conventional electric drive well site, thereby improving the reliability of the well site.
  • a conventional electric drive well site needs to be equipped with 4 power generation equipment with predetermined power. If the power generation equipment fails, the entire well site will be "paralyzed".
  • the plunger pump with the largest energy consumption demand can use clean energy natural gas as fuel.
  • the optimization of energy utilization in fracturing operation is realized, the failure rate of well site is reduced, and the reliability of fracturing operation is improved.
  • the plunger pump can also use diesel fuel as fuel.
  • the predetermined power of the above-mentioned power plant may be less than 1 MW, or the predetermined power of the power plant may be greater than or equal to 1 MW and less than or equal to 8 MW.
  • a conventional electric drive well site needs to be equipped with 4 sets of electrical equipment with a power of 5.8 MW, but according to the embodiment of the present disclosure, only one power generation equipment with a power of 5.8 MW is required to meet the electricity demand of the well site.
  • the power of the power generating equipment can be adjusted as needed.
  • FIG. 3A is a schematic diagram of a fracturing apparatus provided by an embodiment of the present disclosure.
  • the direction of the arrow in FIG. 3A is the gas flow direction.
  • the fracturing apparatus 1 b includes a plunger pump 1 and a turbine engine 2 .
  • the turbine engine 2 is configured to drive the plunger pump 1 .
  • One end of the turbine engine 2 is connected with the plunger pump 1 through the reducer 6 to drive the plunger pump to suck in the low-pressure fracturing fluid and discharge the high-pressure fracturing fluid, that is, the plunger pump 1 is configured to pressurize the fracturing fluid to form a high pressure Fracturing fluid.
  • the radiator 3 is configured to cool the lubricating oil and cool the lubricating oil.
  • the radiator 3 is arranged on one side of the muffler 4 , for example, the radiator 3 is arranged above the plunger pump 1 . Because the height of the vertical part of the muffler 4 is relatively large, although the gas discharged from the radiator 3 in FIG. 3A is directed upward, it can also be seen that the gas discharged from the radiator 3 flows toward the muffler 4, so that the noise reduction can be increased. The flow speed of the air outside the device 4 is conducive to rapid cooling.
  • the radiator 3 By arranging the radiator 3 on the plunger pump, the length of the lubricating oil pipeline can be reduced, the space layout can be saved, and the entire equipment structure can be more compact.
  • the lubricating oil lines are arranged to pass through various lubrication points, are connected to the lubrication pump 11 , and dissipate heat through the radiator 3 .
  • the lubrication pump 11 is driven by the lubrication motor 52 .
  • the exhaust assembly 49 includes an exhaust pipe 9 and a muffler 4 ; the exhaust pipe 9 is connected to the turbine engine 2 and is configured to discharge exhaust gas.
  • the muffler 4 is connected to the exhaust pipe 9 and is configured to reduce exhaust noise.
  • the turbine engine 2 includes an exhaust pipe 9 to which the muffler 4 is connected. For example, from a position close to the turbine engine 2 to a position far from the turbine engine 2, the aperture of the exhaust pipe 9 is gradually increased to facilitate exhaust gas discharge.
  • the fracturing apparatus 1b further includes a power source 12 , a vehicle body 100 , and an auxiliary unit 500 .
  • a power source 12 for example, the battery 12 , the battery 14 , the battery 16 , the battery 16 , and the battery 14 .
  • the radiator 3 of the fracturing equipment 1b is also directly connected to the cooling motor, and the cooling motor is directly driven.
  • the turbine engine 2 of the fracturing equipment 1b is directly connected with the starter motor 51, and the starter motor 51 is used for direct driving.
  • the lubrication pump 11 of the fracturing equipment 1b is directly connected with the lubrication motor 52, and the lubrication motor 52 is directly driven.
  • the air compressor 13 of the fracturing equipment 1b is directly connected with the gas circuit motor 54, and the gas circuit motor 54 is used for direct driving.
  • the ventilation component 14 of the fracturing equipment 1b is directly connected with the ventilation motor 55, and the ventilation motor 55 is directly driven.
  • At least one of the radiator 3 of the fracturing equipment 1b, the auxiliary starting of the turbine engine 2, the lubrication pump 11, the air compressor 13, and the ventilation motor 55 is directly connected to its corresponding motor and directly driven by the motor.
  • the execution components such as the radiator 3, the auxiliary starting of the turbine engine 2, the lubrication pump 11, the air compressor 13, the ventilation motor 55, etc. are directly driven by the motor, and the hydraulic unit is driven by the motor.
  • the energy consumption is low, and the motor can be powered off when the actuator does not need to be driven, which is conducive to the realization of Comprehensive and reasonable distribution of energy consumption.
  • FIG. 3B is a schematic diagram of a fracturing apparatus provided by an embodiment of the present disclosure.
  • the radiator 3 is inclined to be arranged in the fracturing apparatus 1b1 , so as to facilitate the movement of the gas discharged from the radiator 3 to the muffler 4 .
  • the inclination angle a1 of the radiator 3 is 10°-30°.
  • the radiator 3 is inclined with respect to the surface of the vehicle body 100 .
  • the radiator 3 is inclined with respect to the axis a0 of the plunger pump 1 .
  • the air outlet side of the radiator 3 is inclined toward the muffler 4 .
  • FIG. 3C is a schematic diagram of a fracturing apparatus provided by an embodiment of the present disclosure.
  • the fracturing apparatus 1b2 is provided with a protective baffle 151 on the outer side of the muffler 4 .
  • the protective baffle 151 may be provided with weight-reducing holes (not shown in the drawings).
  • weight-reducing holes in the protective baffle 151 reference may be made to the holes 150 in the baffle 15 mentioned later.
  • the protective baffle 151 can play a protective role.
  • the protective baffle 151 is provided on at least one side of the muffler 4 .
  • baffles 151 may be provided on the other three sides of the muffler 4 except the side connected to the exhaust pipe.
  • FIG. 4 is a schematic diagram of a fracturing apparatus provided by another embodiment of the present disclosure.
  • the difference between the fracturing device 1c and the fracturing device 1b is that the radiator 3 is arranged on one side of the muffler 4 .
  • the gas discharged from the radiator 3 flows toward the muffler 4 .
  • the radiator 3 is arranged so that the exhaust gas flows toward the muffler 4 .
  • the radiator 3 is arranged on the side of the muffler 4 away from the exhaust pipe 9 .
  • the radiator 3 is adjacent to the muffler 4 .
  • the gas discharged from the radiator 3 can be flowed toward the muffler 4, thereby increasing the flow velocity of the air outside the muffler 4, so as to achieve a high speed. Cooling, and reuse of gas.
  • FIG. 5A is a schematic diagram of a fracturing apparatus according to another embodiment of the present disclosure.
  • FIG. 5B is a schematic diagram of a baffle in a fracturing apparatus provided in an embodiment of the present disclosure.
  • FIG. 5C is a schematic diagram of the arrangement position of a baffle plate in a fracturing apparatus according to an embodiment of the present disclosure.
  • FIG. 5D is a schematic diagram of the arrangement position of baffles in a fracturing equipment provided by another embodiment of the present disclosure.
  • the fracturing apparatus 1d shown in FIG. 5A is provided with baffles 15 as compared to the fracturing apparatus 1c shown in FIG. 4 .
  • a baffle 15 is provided outside the muffler 4 , and the baffle 15 is close to the side of the muffler 4 .
  • the baffle 15 is provided outside the muffler 4 and at least partially between the muffler 4 and the radiator 3 .
  • the arrangement of the baffle 15 is beneficial to maximally reduce the heat radiation.
  • the radiator 3 is arranged on one side of the muffler 4 .
  • the radiator 3 is arranged on one side of the muffler 4 so that the side (air outlet side) S0 of the exhaust gas of the radiator 3 faces the muffler 4, so that the gas discharged from the radiator 3 Flowing toward the muffler 4 increases the flow velocity of the air outside the muffler 4, thereby achieving rapid cooling and reuse of the gas.
  • the baffle 15 in order to facilitate the flow of the gas discharged from the radiator 3 toward the muffler 4, the baffle 15 includes a plurality of holes 150.
  • the holes can be in the form of a round hole, an oblong hole, etc.
  • the shape of the holes can be determined according to Setting is required, which is not limited here.
  • the baffle shown in FIG. 5B is described by taking the hole 150 as a circular hole as an example.
  • the gas exhausted by the radiator 3 may flow towards the muffler 4 through the holes in the baffle 15 . Referring to FIG. 3A , FIG. 4 , and FIG.
  • the radiator 3 includes an air outlet side and an air inlet side, and the air outlet side and the air inlet side are opposite to each other.
  • the upper side of the radiator 3 is the air outlet side
  • the lower side of the radiator 3 is the air inlet side.
  • the left side of the radiator 3 is the air outlet side
  • the right side of the radiator 3 is the air inlet side.
  • the gas enters from the air inlet side of the radiator 3 and is discharged from the air outlet side of the radiator 3.
  • FIGS. 5A , 5C and 5D there is a space between the radiator 3 and the muffler 4 , and the side SO of the exhaust gas of the radiator 3 faces the muffler 4 .
  • the side (air outlet side) S0 of the exhaust gas of the radiator 3 is shown in FIGS. 3A , 3B, 4 , 5A and 5C.
  • the baffle 15 includes a plurality of holes 150 , and referring to FIG. 5C , the distance D1 between the baffle 15 and the muffler 4 is smaller than the distance D2 between the baffle 15 and the radiator 3 .
  • the muffler 4 includes a first side S1 , a second side S2 and a third side S3 , the first side S1 faces the radiator 3 , and the second side S2 and the third side S3 are respectively connected to the radiator 3 .
  • the first side S1 is connected, and the baffle plate 15 is at least located on the outer side of the first side S1 of the muffler 4 to isolate the exposed high temperature part of the muffler 4 from the external components.
  • the baffle 15 is located outside the first side S1 , the second side S2 and the third side S3 of the muffler 4 . Therefore, by separating the exposed high temperature part of the muffler 4 from the external components, the influence of the muffler 4 on the external components such as the radiator 3 can be reduced.
  • the external components include, but are not limited to, the heat sink 3 .
  • the 5C sets the baffle 15 on both the second side S2 and the third side S3, and the length of the part of the baffle 15 outside the second side S2 in the first direction X is greater than that of the second side S2 in the first direction X
  • the length of the baffle plate 15 outside the third side S3 in the first direction X is greater than the length of the third side S3 in the first direction X as an example to illustrate.
  • the portion of the baffle 15 located outside the second side S2 may also have other lengths in the first direction X
  • the portion of the baffle 15 outside the third side S3 may also have other lengths in the first direction X
  • Other lengths may be used.
  • the second direction Y intersects the first direction X.
  • the second direction Y is perpendicular to the first direction X.
  • the second direction Y and the first direction X are directions parallel to the support surface of the vehicle body.
  • the support surface of the vehicle body is the surface on which the various components are placed.
  • the installation position of the baffle 15 is not limited to the case shown in FIG. 5C .
  • the baffle 15 may also be provided only on the outer side of the first side surface S1 of the muffler 4 .
  • the second side surface S2 and the third side surface S3 are disposed opposite to each other.
  • the muffler 4 includes a fourth side surface S4 , and the fourth side surface S4 is disposed opposite to the first side surface S1 .
  • the muffler 4 is connected to the exhaust pipe 9 at the fourth side S4.
  • the muffler 4 , the baffle 15 , and the radiator 3 are arranged in this order in the first direction X.
  • the size of the baffle 15 in the second direction Y is larger than the size of the muffler 4 in the second direction Y, and larger than the size of the radiator 3 in the second direction Dimensions on Y.
  • the size of the portion of the baffle 15 outside the first side S1 of the muffler 4 in the second direction Y is larger than the size of the muffler 4 in the second direction Y, and larger than the size of the radiator 3 in the second direction Y Dimensions in the two directions Y.
  • the baffle plate 15 can be made of a metal material, but not limited to this, and those skilled in the art can select a suitable material as required.
  • the baffle 15 may comprise a steel plate.
  • the muffler 4 may include a first part 41 and a second part 42 , the first part 41 and the second part 42 intersecting, for example, the first part 41 and the second part 42 Section 42 is vertical.
  • the muffler 4 is L-shaped.
  • the side of the muffler 4 may refer to the side of the first part 41 of the muffler.
  • the bottom surface of the first portion 41 of the muffler 4 is located on the vehicle body 100 .
  • the side surface of the muffler 4 may also refer to the overall side surface of the muffler 4 . In this case, the side surface of the muffler 4 may refer to the side surface of the muffler 4 that is not parallel to the support surface of the vehicle body 100 . part.
  • the auxiliary unit 500 may not directly use electric drive.
  • each unit included in the auxiliary unit 500 for example, at least one of the starting unit 501, the lubricating unit 502, the cooling unit 503, the air supply unit 504, and the ventilation unit 505, can be driven by hydraulic pressure.
  • FIG. 6 is a schematic diagram of a power transfer process of an auxiliary unit in a fracturing apparatus according to an embodiment of the present disclosure.
  • the fracturing equipment includes a power source 12 , a power distribution unit 60 , and an execution component 70 .
  • the power source 12 mainly includes grid power, chemical battery, generator, hydrogen power generation, and the like.
  • the battery includes at least one of an energy storage battery, an aluminum battery, a fuel cell, a lithium ion secondary battery, and a metal hydride nickel battery.
  • the generator may be a gas turbine or a fuel-fired power plant.
  • the power distribution unit 60 mainly includes a switch cabinet, a substation, a distribution station, and the like.
  • the execution component 70 mainly includes auxiliary units of the turbo fracturing equipment, sand conveying equipment, sand mixing equipment, compounding equipment, chemical addition equipment and other equipment requiring electricity.
  • the turbo fracturing auxiliary unit uses the motor as the power source to drive the lubrication, cooling, turbine engine start, air supply, ventilation and other components of the whole machine.
  • the direct connection between the drive motor and the execution part may refer to that there is no hydraulic unit between the drive motor and the execution part.
  • the hydraulic unit includes a hydraulic pump.
  • the execution components are electrically driven components rather than hydraulically driven components.
  • At least one embodiment of the present disclosure provides a fracturing system, including any of the above fracturing equipment.
  • FIG. 7A shows a schematic diagram of a fracturing system including turbo fracturing equipment, manifold equipment, sand mixing equipment, compounding equipment, sand conveying equipment, sand tanks, etc. as described above, according to an embodiment of the present disclosure .
  • sand tanks are used to store proppant and transport the proppant to the sand mixer through a delivery mechanism.
  • chemical additive equipment and fresh water sources are connected to compounding equipment to make fracturing base fluids within the compounding equipment.
  • the mixing equipment can deliver the fracturing base fluid into the sand mixing equipment.
  • sand mixers thoroughly mix fracturing base fluid and proppant to form fracturing fluids that are delivered to turbo fracturing equipment through manifolds.
  • turbo fracturing equipment pressurizes the fracturing fluid drawn in at low pressure to form high-pressure fracturing fluid and discharges it to the wellhead.
  • any one or more of chemical addition equipment, sand mixing equipment, sand conveying equipment, and compounding equipment may be powered by power source 12 .
  • Centralized control through instrument equipment can be vehicle-mounted, semi-trailer, skid-mounted), and can control turbo fracturing equipment, turbine power generation equipment, power supply 12, manifold equipment, sand mixing equipment, mixing equipment, sand conveying equipment, sand Tanks, etc., so as to realize the centralized control of the turbine-electric drive well site.
  • the power supply 12 can be connected to the switch cabinet and the substation in sequence to provide electrical energy for the motor of the sand conveying equipment, the motor of the sand mixing equipment, the motor of the mixing equipment, and the motor of the auxiliary unit of the turbo fracturing equipment.
  • FIG. 7B shows a fracturing system provided by an embodiment of the present disclosure.
  • the plunger pump of at least one fracturing device in the fracturing system is detachably provided, and the plunger pump can be removed and replaced with a generator, forming part of the power source 12 .
  • the quick replacement structure shown in Figure 8 and Figure 9 is designed, which can quickly change the turbo fracturing equipment to a turbo power generation equipment, which can be done by replacing the plunger pump 1 with the generator 303 Item function conversion.
  • the solid line represents the formulation of the fracturing fluid and the fracturing fluid trend diagram; the dashed line represents the cable control.
  • the first forklift hole 202 is designed on the first base 201 to facilitate the replacement of the plunger pump. Taking the plunger pump 1 and the first base 201 as a whole, when the plunger pump 1 needs to be replaced, the fixing bolts between the first base 201 and the vehicle body 100 are removed, and the forklift is inserted into the first forklift hole 202, The plunger pump 1 can be quickly replaced.
  • the quick replacement structure of the generator mainly includes a generator 303 , a second base 301 , and a second forklift hole 302 .
  • the speed reducer connected with the turbine engine sets a predetermined speed, which can reduce the speed of the turbine engine to a certain range, which can not only meet the operation requirements of the plunger pump, but also drive the generator to generate electricity.
  • the output cable of the generator can be quickly connected with the control system on the turbo fracturing equipment and sand mixing, mixing, sand conveying and other equipment through quick connection.
  • the turbine power generation equipment adopts one standby and one use to ensure the reliability of power supply.
  • Any two turbo fracturing equipment in the well site can be replaced by a generator through the plunger pump quick release structure to be used as a power source 12.
  • the two replaced turbine power generation equipments are preferably arranged on both sides of the manifold equipment respectively, so as to facilitate the connection of cables.
  • the two replaced turbine power generation equipments are arranged symmetrically with respect to the center line of the manifold equipment, which makes cable laying more convenient.
  • the fracturing equipment provided by the embodiments of the present disclosure may not adopt the structure of adjusting the radiator, or the arrangement positions of the radiator and the muffler as shown in FIG. 3A , FIG. 4 and FIG. 5A . That is, in the fracturing equipment provided by some embodiments of the present disclosure, the radiator may not be arranged above the plunger pump 1, and in the fracturing equipment provided by some embodiments of the present disclosure, the radiator may not be arranged with the muffler. 4 Relative settings. That is, in the fracturing equipment provided by some embodiments of the present disclosure, the radiator may also adopt other setting manners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

公开了一种压裂设备,包括:柱塞泵(1),柱塞泵(1)被配置为将压裂流体增压以形成高压压裂流体;涡轮发动机(2),涡轮发动机(2)与柱塞泵(1)联接,被配置为向柱塞泵(1)提供驱动力;辅助单元(500),辅助单元(500)包括驱动电机(50),辅助单元(500)被配置为向压裂设备提供启动辅助功能、润滑功能、冷却功能和供气功能中至少之一的功能;以及电源(12),电源(12)与辅助单元(500)的驱动电机(50)电连接,被配置为向辅助单元(500)提供驱动力;使用涡轮发动机为作为压裂作业的主要动力源,使用电源以电驱动的方式为辅助单元提供动力,可以使压裂设备整体布局更加紧凑,可以实现效率最大化利用;还公开了包括该压裂设备的压裂系统。

Description

压裂设备及压裂系统
相关申请的交叉引用
本专利申请要求于2020年12月4日递交的中国专利申请第202011396988.X号的优先权以及要求于2021年4月20日递交的中国专利申请第202110426496.9号的优先权,在此全文引用上述中国专利申请的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种压裂设备及压裂系统。
背景技术
压裂是油气田增产的主要措施。目前井场布局主要包括涡轮压裂井场布局、电驱井场布局、常规柴驱压裂井场。
发明内容
本公开的实施例提供一种压裂设备及压裂系统。
一方面,本公开的至少一实施例提供一种压裂设备,包括:柱塞泵,所述柱塞泵被配置为将压裂流体增压以形成高压压裂流体;涡轮发动机,所述涡轮发动机与所述柱塞泵联接,被配置为向所述柱塞泵提供驱动力;辅助单元,所述辅助单元包括驱动电机,所述辅助单元被配置为向所述压裂设备提供启动辅助功能、润滑功能、冷却功能和供气功能中至少之一的功能;以及电源,所述电源与所述辅助单元的所述驱动电机电连接,被配置为向所述辅助单元提供驱动力。
例如,所述辅助单元包括启动单元,所述启动单元被配置为启动所述涡轮发动机,所述驱动电机包括启动电机。
例如,所述启动电机被配置为直接启动所述涡轮发动机,所述启动电机与所述涡轮发动机直接相连,所述启动单元设置在所述涡轮发动机上。
例如,所述辅助单元还包括润滑单元和冷却单元,所述驱动电机包括润滑电机和冷却电机,所述润滑单元还包括润滑泵和润滑油箱,所述润滑电机被配置为驱动所述润滑泵以将所述润滑油箱内的润滑油输送至润滑点,所述冷却单元还包括散热器,所述冷却电机被配置为驱动所述散热器以冷却所述润滑油,所述润滑电机与所述润滑泵直接相连,所述冷却电机与所述散热器直接相连。
例如,压裂设备还包括供气单元,所述驱动电机包括气路电机,所述供气单元还包括空压机,所述气路电机被配置为驱动所述空压机向所述涡轮发动机提供压缩空气,所述气路电机与所述空压机直接相连。
例如,压裂设备还包括通风单元,所述驱动电机包括通风电机,所述通风单元还包括通风部件,所述通风电机被配置为驱动所述通风部件,所述通风电机与所述通风部件直接相连。
例如,所述电源包括发电机、网电、燃料电池和储能电池至少之一,所述电源通过开关柜、变电站 与所述驱动电机电连接。
例如,所述压裂设备还包括载体,所述柱塞泵、所述涡轮发动机、和所述辅助单元的至少一部分设置在所述载体上,其中,所述柱塞泵可拆卸地固定在所述载体上。
例如,所述柱塞泵固定在第一底座上,所述第一底座设置有第一叉车孔,所述柱塞泵通过所述第一底座可拆卸地固定在所述载体上。
例如,所述散热器布置在所述柱塞泵的上方。
例如,压裂设备还包括消音器,所述涡轮发动机包括排气管,所述消音器与所述排气管相连,所述散热器布置在所述消音器的远离所述排气管的一侧。
例如,所述散热器和所述消音器之间具有间隔,所述散热器的出风侧朝向所述消音器。
例如,压裂设备还包括挡板,所述挡板设置在所述消音器的外侧并至少部分位于所述消音器和所述散热器之间,所述挡板包括多个孔,所述挡板与所述消音器之间的距离小于所述挡板与所述散热器之间的距离。
例如,所述消音器包括第一侧面、第二侧面和第三侧面,所述第一侧面面向所述散热器,所述第二侧面和所述第三侧面分别与所述第一侧面相连,所述挡板位于所述消音器的所述第一侧面、所述第二侧面和所述第三侧面的外侧。
本公开的至少一实施例还提供一种压裂系统,包括:上述任一压裂设备;以及外围设备,所述电源配置为与所述外围设备相连以为其供电。
例如,所述外围设备包括混配设备、混砂设备、输送机构至少之一;所述混配设备被配置为混配压裂基液;所述混砂设备被配置为将所述压裂基液与支撑剂混合形成所述压裂流体;所述输送机构被配置为将砂罐中储存的支撑剂输送至混砂设备。
例如,压裂设备设置为多个,至少一个压裂设备的柱塞泵替换为发电机构成所述电源的至少一部分。
例如,所述发电机固定在第二底座上,所述第二底座设置有第二叉车孔。
另一方面,本公开的至少一实施例提供一种压裂设备,包括:柱塞泵,所述柱塞泵被配置为将压裂流体增压以形成高压压裂流体;涡轮发动机,所述涡轮发动机与所述柱塞泵联接,被配置为向所述柱塞泵提供驱动力,所述涡轮发动机包括排气管;润滑单元,所述润滑单元被配置为将润滑油输送至润滑点;冷却单元,所述冷却单元包括散热器,所述散热器被配置为冷却所述润滑油;消音器,与所述排气管相连;所述散热器布置在所述消音器的一侧,所述散热器被配置为使得其排出的气体朝向所述消音器流动。
例如,在本公开的一些实施例提供的压裂设备中,所述散热器布置在所述消音器的远离所述排气管的一侧。
例如,在本公开的一些实施例提供的压裂设备中,所述散热器和所述消音器之间具有间隔,所述散热器的出风侧朝向所述消音器。
例如,在本公开的一些实施例提供的压裂设备中,压裂设备还包括挡板,所述挡板设置在所述消音器的外侧并至少部分位于所述消音器和所述散热器之间,所述挡板包括多个孔,所述挡板与所述消音器之间的距离小于所述挡板与所述散热器之间的距离。
例如,在本公开的一些实施例提供的压裂设备中,所述消音器包括第一侧面、第二侧面和第三侧面, 所述第一侧面面向所述散热器,所述第二侧面和所述第三侧面分别与所述第一侧面相连,所述挡板位于所述消音器的所述第一侧面、所述第二侧面和所述第三侧面的外侧。
例如,在本公开的一些实施例提供的压裂设备中,所述散热器布置在所述柱塞泵的上方。
例如,在本公开的一些实施例提供的压裂设备中,所述散热器相对于所述柱塞泵的轴线倾斜设置。
例如,在本公开的一些实施例提供的压裂设备中,所述润滑单元包括润滑电机、润滑泵和润滑油箱,所述润滑电机被配置为驱动所述润滑泵以将所述润滑油箱内的润滑油输送至所述润滑点,所述冷却单元包括冷却电机,所述冷却电机被配置为驱动所述散热器以冷却所述润滑油,所述润滑电机与所述润滑泵直接相连,所述冷却电机与所述散热器直接相连。
例如,在本公开的一些实施例提供的压裂设备中,压裂设备还包括启动单元,所述启动单元被配置为启动所述涡轮发动机,所述启动单元包括启动电机。
例如,在本公开的一些实施例提供的压裂设备中,所述启动电机被配置为直接启动所述涡轮发动机,所述启动电机与所述涡轮发动机直接相连,所述启动单元设置在所述涡轮发动机上。
例如,在本公开的一些实施例提供的压裂设备中,压裂设备还包括供气单元,所述供气单元包括空压机和气路电机,所述气路电机被配置为驱动所述空压机向所述涡轮发动机提供具有预定压力的气体,所述气路电机与所述空压机直接相连。
例如,在本公开的一些实施例提供的压裂设备中,压裂设备还包括通风单元,所述通风单元还包括通风电机和通风部件,所述通风电机被配置为驱动所述通风部件,所述通风电机与所述通风部件直接相连。
例如,在本公开的一些实施例提供的压裂设备中,压裂设备还包括电源,所述润滑电机、所述冷却电机、所述启动电机、所述气路电机、所述通风电机分别与所述电源相连。
本公开的至少一实施例还提供一种压裂系统,包括:上述任一压裂设备;以及外围设备,所述电源配置为与所述外围设备相连以为其供电。
例如,在本公开的一些实施例提供的压裂系统中,所述外围设备包括混配设备、混砂设备、输送机构至少之一;所述混配设备被配置为混配压裂基液;所述混砂设备被配置为将所述压裂基液与支撑剂混合形成所述压裂流体;所述输送机构被配置为将砂罐中储存的支撑剂输送至混砂设备。
再一方面,本公开的实施例提供一种压裂设备,所述压裂设备包括:柱塞泵,所述柱塞泵被配置为将压裂流体增压之后输送至井口;涡轮发动机,所述涡轮发动机与所述柱塞泵联接,被配置为向所述柱塞泵提供驱动力;辅助单元,所述辅助单元包括驱动电机,所述辅助单元被配置为向所述压裂设备提供启动辅助功能、润滑功能、冷却功能和/或供气功能;以及电源,所述电源与所述辅助单元的所述驱动电机电连接,被配置为向所述辅助单元提供驱动力。
在一种实施方式中,所述辅助单元至少包括:启动单元,所述启动单元设置在所述涡轮发动机上,用以辅助所述涡轮发动机启动;润滑单元,所述润滑单元包括润滑泵、润滑油箱和润滑电机,所述润滑电机被配置为驱动所述润滑泵以将所述润滑油箱内的润滑油输送至润滑点;冷却单元,所述冷却单元包括散热器和冷却电机,所述冷却电机被配置为驱动所述散热器以冷却所述润滑油;和供气单元,所述供气单元包括气路电机和空压机,所述气路电机被配置为驱动所述空压机向所述涡轮发动机提供具有预定 压力的气体;所述电源分别与所述启动单元、所述润滑电机、所述冷却电机、所述气路电机电连接。
在一种实施方式中,所述电源包括发电机、网电和/或储能电池。
在一种实施方式中,所述压裂设备还包括载体,所述柱塞泵、所述涡轮发动机和所述辅助单元的至少一部分集成地设置在所述载体上,其中,所述柱塞泵可拆卸地固定在所述载体上。
在一种实施方式中,所述柱塞泵固定在第一底座上,所述第一底座设置有第一叉车孔,所述柱塞泵通过所述第一底座可拆卸地固定在所述载体上。
在一种实施方式中,所述电源顺次通过开关柜、变电站与所述驱动电机电连接。
根据本公开的实施例的另一个方面,所述压裂系统包括:混配设备,所述混配设备被配置为混配压裂基液;混砂设备,所述混砂设备与所述混配设备流体连接,被配置为将所述压裂基液与支撑剂混合形成压裂液流体;以及如上所述的任一种压裂设备,所述压裂设备与所述混砂设备流体连接。
在一种实施方式中,所述压裂设备的所述电源与所述混配设备和/或所述混砂设备电连接,以向所述混配设备和/或所述混砂设备供电。
在一种实施方式中,所述压裂系统还包括砂罐,所述砂罐被配置为储存支撑剂并通过输送机构将支撑剂输送至混砂设备,所输送机构与所述电源电连接由所述电源供电。
在一种实施方式中,所述压裂系统包括多个压裂设备,至少一个压裂设备的柱塞泵替换为发电机构成所述电源的至少一部分。
在一种实施方式中,所述发电机固定在第二底座上,所述第二底座设置有第二叉车孔。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为一种涡轮压裂设备示意图;
图1B为一种涡轮压裂液压设备的原理图;
图2A为本公开的实施例提供的一种压裂设备的示意图;
图2B为本公开的实施例提供的一种压裂设备的原理图;
图3A为本公开的实施例提供的一种压裂设备的示意图;
图3B为本公开的实施例提供的一种压裂设备的示意图;
图3C为本公开的实施例提供的一种压裂设备的示意图;
图4为本公开的另一实施例提供的一种压裂设备的示意图;
图5A为本公开的另一实施例提供的一种压裂设备的示意图;
图5B为本公开的一实施例提供的一种压裂设备中的挡板的示意图;
图5C为本公开的一实施例提供的一种压裂设备中的挡板的设置位置的示意图;
图5D为本公开的另一实施例提供的一种压裂设备中的挡板的设置位置的示意图;
图6为本公开的另一实施例提供的一种压裂设备的电源与执行部件相连的示意图;
图7A为本公开的一实施例提供的压裂系统的示意图;
图7B为本公开的另一实施例提供的压裂系统的示意图;
图8为用于本公开的实施例提供的压裂设备的柱塞泵的示意图;以及
图9为用于本公开的实施例的压裂设备的发电机的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
涡轮压裂设备井场布局中,既存在使用燃气的涡轮发动机,又存在使用燃油的发动机,这样对于环保要求以及压裂设备的控制等都存在很大的不便性。
电驱压裂井场布局中,设备全部使用电驱形式,如果发电机、变频设备等出现问题,整个井场将瘫痪,压裂作业将终止,这样是很危险的。其中发电设备采用燃气或燃油作为动力燃料,相比于涡轮设备,增加中间环节,降低了效率。
常规压裂井场布局中,设备全部使用燃油作为动力燃料,无论是燃油产生的污染还是噪音污染都很严重,是不可避免的缺陷。常规压裂井场布局存在成本高、燃料利用率不高、噪音大、作业停机风险大等缺点。
已有的涡轮压裂设备,存在如下至少之一的缺点。
1、已有涡轮压裂设备,设置一台柴油发动机为整机例如包括涡轮发动机启动、润滑、冷却、供气、通风等单元提供动力,存在成本高、不环保等缺点。
2、涡轮压裂井场,已有输砂、混砂、混配等设备全部采用的是柴油机驱动,同样是存在成本高、噪音大、不环保等缺点。
3、已有全电驱井场使用网电、变频器、开关柜等设备为电机提供动力,电机驱动压裂泵(柱塞泵)进行压裂作业,但是在实际应用过程中,变频器等电气设备存在经常出现故障等问题,作业停机风险大,严重影响井场作业效率。
4、井场占地空间大。
5、已有井场供电存在不稳定的情况,对压裂施工作业,特别是柱塞泵作业,存在严重的不可靠隐患。
6、已有的涡轮压裂设备润滑、冷却、涡轮发动机启动、供气均使用马达作为驱动元件,必须配置液压单元,液压单元需要动力源,又需要配置一个为液压单元提供高压力的动力设备即发动机,此发动机 作为附属设备为液压单元提供压力。这样既造成设备附件较多,也造成设备成本增加。
7、已有的涡轮发动机使用启动形式为液压启动,启动涡轮发动机前必须将辅助发动机进行启动运行。
图1A为一种涡轮压裂设备示意图,图1B为一种涡轮压裂液压系统原理图。如图1B所示,实线表示液压流体,箭头表示液压流体走向,虚线为部件之间的机械连接。参考图1A和图1B,涡轮压裂设备001包括车体1,设于车体100上的液压油箱01、燃油箱02、发动机03、柱塞泵1、涡轮发动机2、散热器3、消音器4、减速机6、以及润滑油箱8。例如,发动机03包括柴油发动机,燃油箱02包括柴油箱。
如图1A所示,柱塞泵1通过减速机6与涡轮发动机2相连,柱塞泵1和减速机6之间设有联轴器5,减速机6包括减速箱和位于减速箱内的减速结构,涡轮发动机2的一端通过减速箱与柱塞泵1连接以驱动柱塞泵吸入低压压裂流体并排出高压压裂流体,即,柱塞泵1被配置为将压裂流体增压以形成高压压裂流体。如图1A所示,涡轮发动机2的另一端连接排气组件49,排气组件49包括排气管9和消音器4;排气管9与涡轮发动机2相连,被配置为排出废气。消音器4与排气管9相连,被配置为降低排气噪音。燃油箱02为发动机03供油,发动机03与液压泵04(图1A未示出,参照图1B)连接,液压油箱01与液压泵04(参照图1B)连接。例如,压裂流体也可以称作压裂液。
图1A示出了消音舱体7。如图1A所示,涡轮发动机2和减速机6位于消音舱体7内,消音舱体7被配置为减少噪音。图1A还示出了高压管汇101。例如,高压管汇101被配置为流通高压压裂流体。
如图1B所示,液压泵04为涡轮压裂设备的执行马达05供油,执行马达05包括启动马达051、润滑马达052、冷却马达053、和液压马达054,润滑马达052与润滑泵11连接以驱动润滑泵11将润滑油从润滑油箱8输送至柱塞泵1、减速机6和涡轮发动机2以给其润滑。例如,车体100包括半挂车,但不限于此。
如图1B所示,冷却马达053驱动散热器3,启动马达051与涡轮发动机2连接以启动涡轮发动机2,液压马达054驱动液压空压机06。
涡轮压裂设备001采用附属发动机作为动力源驱动整机润滑、冷却、涡轮发动机启动、供气等部件。涡轮压裂设备001的缺点在于:1)整车尺寸长,不利于井场运输及市场推广;2)使用柴油作为辅助动力燃料,造成一定的环境污染;3)液压单元效率低。
因此,需要提供一种压裂设备及具有该压裂设备的压裂系统,以至少部分地解决上述问题。
本公开的实施例提供了一种压裂设备及具有该压裂设备的压裂系统,可用于油气田现场压裂施工作业。例如,该压裂设备及具有该压裂设备的压裂系统可用于水力压裂的井场布局及工艺实施方案,可以在压裂井场使用,主要是针对于涡轮压裂井场施工作业。
图2A为本公开一实施例提供的一种压裂设备的示意图,图2B为本公开一实施例提供的一种压裂设备的原理图。图2B中,实线表示液压流体,箭头表示液压流体走向,虚线为部件之间的机械连接,双点划线为供电方向。
如图2A和图2B所示,压裂设备1a主要包括电源12、车体100、涡轮发动机2、柱塞泵1、辅助单元500。如图2B所示,辅助单元500包括启动单元501、润滑单元502、冷却单元503、供气单元504、以及通风单元505至少之一。例如,涡轮发动机2、柱塞泵1、冷却单元503和润滑单元502设于车体 100上。
例如,如图2B所示,辅助单元500包括驱动电机50,辅助单元500被配置为向压裂设备提供辅助功能,例如,辅助功能包括启动辅助功能、润滑功能、冷却功能、通风功能和供气功能中至少之一。
例如,如图2B所示,电源12与辅助单元500的驱动电机50电连接,被配置为向辅助单元500提供驱动力。
例如,如图2B所示,驱动电机50包括启动电机51、润滑电机52、冷却电机53、气路电机54、通风电机55至少之一。例如,为各个辅助单元(启动单元501、润滑单元502、冷却单元503、供气单元504、以及通风单元505中的每一个)提供一个驱动电机。例如,各个辅助单元采用电驱动,且利用电源直接驱动。例如,在辅助单元500中不设置液压单元。例如,在辅助单元500中不设置液压泵,也不设置驱动液压泵的燃油箱和发动机。本公开的实施例提供的压裂设备1a与图1A和图1B所示的压裂设备001相比,不设置液压泵04,也不设置驱动液压泵04的燃油箱02和发动机03。
本公开的实施例提供的压裂设备1a,辅助单元直接采用电驱。可以为每个辅助单元提供一个电机,可以实现点对点的驱动,最大限度降低能源浪费,电机可在不工作时断电,无需再对电机输入功率,实现能耗的全面合理分配。
根据本公开的实施例,使用涡轮发动机为作为压裂作业的主要动力源,使用电源以电驱动的方式为辅助单元提供动力,可以使压裂设备整体布局更加紧凑。
例如,在一些实施例中,涡轮发动机采用天然气驱动,压裂设备全部使用清洁能源,不存在环境污染,并且可以实现效率最大化利用。
例如,如图2A所示,涡轮发动机2通过减速箱与柱塞泵1连接,用于驱动柱塞泵1动作以将低压力的压裂流体转化成高压力的压裂流体后输送至井口。例如,如图2B所示,涡轮发动机2上设有启动单元501,包括启动电机51,其主要作用是启动涡轮发动机,从而实现涡轮发动机的正常工作,为压裂泵作业提供动力。例如,如图2B所示,启动电机51被配置为直接启动涡轮发动机2,启动电机51与涡轮发动机2直接相连。当然,在另一些实施例中,启动电机51可用于驱动液压单元,液压单元用于启动涡轮发动机。例如,液压单元包括液压泵和液压马达。
例如,在一些实施例中,涡轮发动机2由燃油或燃气驱动,并直接采用电驱实现涡轮发动机2启动。例如,在涡轮发动机2由燃油驱动的情况下,设置燃油油箱。
例如,如图2A和图2B所示,润滑单元502包括润滑泵11、润滑油箱8和润滑电机52。润滑电机52的主要作用是为润滑油提供动力,从而实现将润滑油箱8内的润滑油输送至润滑点。例如,润滑电机52被配置为驱动润滑泵11以将润滑油箱8内的润滑油输送至润滑点。例如,润滑点可以是柱塞泵1、涡轮发动机2和减速机6至少之一。例如,润滑点还可以包括电机。例如,如图2B所示,润滑电机52与润滑泵11直接相连。例如,润滑泵11直接采用电驱。
例如,如图2B所示,冷却单元503包括冷却电机53和散热器3。冷却电机53的主要作用是为散热器3提供动力,从而实现润滑油冷却的目的。例如,冷却电机53被配置为驱动散热器3以给润滑油冷却提供动力。例如,散热器3被配置为冷却润滑油,给润滑油降温。例如,如图2B所示,冷却电机53与散热器3直接相连。例如,散热器3直接采用电驱。例如,散热器3包括风扇,但不限于此。
例如,如图2B所示,供气单元504包括气路电机54和空压机13。例如,气路电机54和空压机13直接相连。空压机13直接采用电驱。空压机13为电控空压机。气路电机54主要是为空压机13提供驱动力,为涡轮发动机提供具有一定压力的气体(压缩空气),实现涡轮发动机双燃料的使用。
例如,如图2B所示,通风单元505包括通风电机55和通风部件14。例如,通风电机55与驱动通风部件14直接相连。通风部件14直接采用电驱。通风电机55被配置为驱动通风部件14。例如,通风部件14包括通风叶片,但不限于此。例如,通风单元505被配置为降低消音舱体7内的空气温度,使消音舱体7内部的空气持续流通。例如,通风部件14包括风扇,但不限于此。
例如,电源12分别为润滑电机、冷却电机、通风电机、气路电机和启动单元供电。例如,电源12可以是发电机、网电、燃料电池和储能电池至少之一。
以涡轮发动机启动为例,已有的压裂设备中使用的马达驱动,启动马达需要消耗一部分功率,液压单元本身也会消耗一部分功率,这样导致整个设备能耗的增加;而如果使用电机驱动,使用变频器控制,实现点对点的驱动,最大限度降低能源浪费,启动完成即可将电机断电,无需再对此电机输入功率,实现能耗的全面合理分配。其他辅助单元也是如此,可参照对于启动单元的描述,在此不再赘述。
根据本公开的实施例,压裂设备省略了辅助发动机,将液压驱动执行元件全部更改为电驱元件,其优势在于以下至少一个。
1)整车尺寸小,更加利于井场运输及市场推广,整车布局更加紧凑。
涡轮压裂设备单机功率更大,相对于常规柴驱设备,大大节省井场占地空间。将柴油发动机及燃油箱去除,并且去除液压油箱、液压马达等部件,使整车的零部件数量减少,从而达到整车尺寸缩小的目的;功能不变,整车的尺寸减小,从而实现设计最优化,井场布局将更加方便,实现小井场大作业。
2)整车全部使用清洁能源,不存在环境污染。
例如,在一些实施例中,涡轮发动机使用天然气,其他部件全部使用电机驱动,电机动力来源为电源,均为清洁能源。
3)根据每个执行元件,均配置一个电机驱动,此种方案最大限度的降低液压单元本身带来的能源浪费,从而实现效率最大化利用。
比如涡轮发动机启动,已有的压裂设备使用的马达驱动,启动马达需要消耗一部分功率,液压单元也会消耗一部分功率,这样导致整个设备能耗的增加;而如果使用电机驱动,使用变频器控制,实现点对点的驱动,不存在能耗的浪费,启动完成即可将电机断电,无需再对此电机输入功率,实现能耗的全面合理分配。
4)将涡轮压裂设备上的润滑、冷却、涡轮发动机启动、供气全部使用电机驱动,例如,其电源采用380V的电源即可,这种电源来源很广,可以是储能电池、燃料电池、网电、发电机等,无需常规电驱井场大约10kV的高压电,从而提高井场的可靠性。
例如,常规电驱井场需要配置4台具有预定功率的发电设备,如果发电设备出现故障,将导致整个井场“瘫痪”。而根据本公开的实施例,只需要1台具有上述预定功率的发电设备即可能够满足井场用电需求,能耗需求最大的柱塞泵可采用清洁能源天然气作为燃料。实现压裂作业能源利用最优化,降低井场故障率、利于提高压裂作业的可靠性。当然,在另外一些实施例中,柱塞泵也可采用柴油作为燃料。
例如,上述提及的发电设备的预定功率可小于1MW,或发电设备的预定功率大于或等于1MW小于或等于8MW。例如,常规电驱井场需要配置4台功率为5.8MW的电设备,而根据本公开的实施例,只需要1台功率为5.8MW的发电设备即可能够满足井场用电需求。当然,发电设备的功率可根据需要进行调整。
图3A为本公开的实施例提供的一种压裂设备的示意图。图3A中箭头方向为气体流向。如图3A所示,压裂设备1b包括柱塞泵1和涡轮发动机2。涡轮发动机2被配置为驱动柱塞泵1。涡轮发动机2的一端通过减速机6与柱塞泵1连接以驱动柱塞泵吸入低压压裂流体并排出高压压裂流体,即,柱塞泵1被配置为将压裂流体增压以形成高压压裂流体。
例如,如图3A所示,散热器3被配置为冷却润滑油,给润滑油降温。如图3A所示,散热器3布置在消音器4的一侧,例如,散热器3布置在柱塞泵1的上方。因消音器4竖直部分的高度较大,虽然图3A中的散热器3排出的气体是朝向上方,也可以看做是散热器3排出的气体朝向消音器4流动,从而,可以增大消音器4外部气体的流动速度,利于快速降温。将散热器3设置在柱塞泵上,可减少润滑油管线的长度,节省空间布局,整个设备结构更加紧凑。
例如,在本公开的实施例中,参考图2B和图3A,润滑油管线设置为经过各个润滑点,与润滑泵11相连,并经散热器3散热。例如,润滑泵11由润滑电机52驱动。
如图3A所示,涡轮发动机2的另一端连接排气组件49,排气组件49包括排气管9和消音器4;排气管9与涡轮发动机2相连,被配置为排出废气。消音器4与排气管9相连,被配置为降低排气噪音。例如,涡轮发动机2包括排气管9,消音器4与排气管9相连。例如,从靠近涡轮发动机2的位置到远离涡轮发动机2的位置,排气管9的孔径逐渐增大以利于废气排出。
例如,压裂设备1b还包括电源12、车体100、以及辅助单元500。有关于电源12、车体100、辅助单元500可参考对于压裂设备1a之前的描述,在此不再赘述。
在一些实施例中,对于冷却单元503,与压裂设备1a相同的是,压裂设备1b的散热器3也与冷却电机直接相连,采用冷却电机直接驱动。
在一些实施例中,对于启动单元501,与压裂设备1a相同的是,压裂设备1b的涡轮发动机2与启动电机51直接相连,采用启动电机51直接驱动。
在一些实施例中,对于润滑单元502,与压裂设备1a相同的是,压裂设备1b的润滑泵11与润滑电机52直接相连,采用润滑电机52直接驱动。
在一些实施例中,对于供气单元504,与压裂设备1a相同的是,压裂设备1b的空压机13与气路电机54直接相连,采用气路电机54直接驱动。
在一些实施例中,对于通风单元505,与压裂设备1a相同的是,压裂设备1b的通风部件14与通风电机55直接相连,采用通风电机55直接驱动。
在一些实施例中,压裂设备1b的散热器3、涡轮发动机2的辅助启动、润滑泵11、空压机13、通风电机55至少之一直接与其对应的电机相连,直接采用电机驱动。
本公开的实施例提供的压裂设备中,执行部件例如,散热器3、涡轮发动机2的辅助启动、润滑泵11、空压机13、通风电机55等采用电机直接驱动,与电机驱动液压单元,液压单元驱动散热器3、涡轮 发动机2的辅助启动、润滑泵11、空压机13、通风电机55的方式相比,能耗低,电机可在不需要驱动执行部件时断电,利于实现能耗的全面合理分配。
图3B为本公开的实施例提供的一种压裂设备的示意图。如图3B所示,压裂设备1b1与图3A所示的压裂设备1b相比,散热器3倾斜设置,以更有利于散热器3排出的气体向消音器4移动。例如,为了利于散热器3排出的气体向消音器4移动并利于散热器和润滑油管线的安装,散热器3的倾斜角度a1为10°-30°。例如,散热器3相对于车体100的表面倾斜设置。例如,散热器3相对于柱塞泵1的轴线a0倾斜设置。例如,散热器3的出风侧朝向消音器4倾斜设置。
图3C为本公开的实施例提供的一种压裂设备的示意图。如图3C所示,压裂设备1b2与图3A所示的压裂设备1b相比,在消音器4的外侧设有保护挡板151。例如,保护挡板151可设置有减重孔(图中未示出)。保护挡板151上中的减重孔可参照后续提及的挡板15上中的孔150。保护挡板151可起到保护作用。保护挡板151设置在消音器4的至少一侧。例如,可在消音器4的除了与排气管相连的一侧外的其余三侧外均设置挡板151。
图4为本公开的另一实施例提供的一种压裂设备的示意图。压裂设备1c与压裂设备1b的区别在于:散热器3布置在消音器4的一侧。如图4所示,散热器3排出的气体朝向消音器4流动。即,散热器3被配置为使其排出的气体朝向消音器4流动。例如,如图4所示,散热器3布置在消音器4的远离排气管9的一侧。例如,如图4所示,散热器3与消音器4相邻。
因消音器4的外表面温度相对于散热器3排出气体的温度高,因此可以通过将散热器3排出的气体朝向消音器4流动,从而增大消音器4外部气体的流动速度,从而实现快速降温,以及气体的重复利用。
图5A为本公开的另一实施例提供的一种压裂设备的示意图。图5B为本公开的一实施例提供的一种压裂设备中的挡板的示意图。图5C为本公开的一实施例提供的一种压裂设备中的挡板的设置位置的示意图。图5D为本公开的另一实施例提供的一种压裂设备中的挡板的设置位置的示意图。
例如,与图4所示的压裂设备1c相比,图5A所示的压裂设备1d设置挡板15。例如,为避免消音器4的外表面温度对散热器3的影响,在消音器4的外侧设置挡板15,挡板15靠近消音器4的一侧。例如,如图5A、图5C和图5D所示,挡板15设置在消音器4的外侧并至少部分位于消音器4和散热器3之间。挡板15的设置利于最大化的降低热辐射。
参考图3A、图4和图5A,为了利于散热器3的位置设置,散热器3布置在消音器4的一侧。
如图4和图5A所示,散热器3布置在消音器4的一侧,以使得散热器3的排出气体的一侧(出风侧)S0面向消音器4,使散热器3排出的气体朝向消音器4流动,增大消音器4外部气体的流动速度,从而实现快速降温,以及气体的重复利用。
例如,如图5B所示,为了利于散热器3排出的气体朝向消音器4流动,挡板15包括多个孔150,例如,孔可以为圆孔、长圆孔等结构形式,孔的形态可根据需要进行设置,在此不做限定。图5B所示的挡板以孔150为圆孔为例进行说明。例如,散热器3排出的气体可以通过挡板15中的孔朝向消音器4流动。参考图3A、图4、以及图5A,散热器3包括出风侧和进风侧,出风侧和进风侧相对设置。如图3A所示,散热器3的上侧为出风侧,散热器3的下侧为进风侧。如图4和图5A所示,散热器3的左侧为出风侧,散热器3的右侧为进风侧。例如,气体从散热器3的进风侧进入,并从散热器3的出风侧排 出。
例如,参考图5A、图5C和图5D,散热器3和消音器4之间具有间隔,散热器3的排出气体的一侧S0面向消音器4。散热器3的排出气体的一侧(出风侧)S0如图3A、图3B、图4、图5A和图5C所示。
例如,参考图5B,挡板15包括多个孔150,参考图5C,挡板15与消音器4之间的距离D1小于挡板15与散热器3之间的距离D2。
例如,如图5C和图5D所示,消音器4包括第一侧面S1、第二侧面S2和第三侧面S3,第一侧面S1面向散热器3,第二侧面S2和第三侧面S3分别与第一侧面S1相连,挡板15至少位于消音器4的第一侧面S1的外侧,以将消音器4裸露高温部分与外部部件隔开。
如图5C所示,挡板15位于消音器4的第一侧面S1、第二侧面S2和第三侧面S3的外侧。从而,将消音器4裸露高温部分与外部部件隔开,可减少消音器4对于外部部件例如散热器3的影响。例如外部部件包括但不限于散热器3。图5C以第二侧面S2和第三侧面S3均设置挡板15,且挡板15的位于第二侧面S2外的部分在第一方向X上的长度大于第二侧面S2在第一方向X上的长度,挡板15的位于第三侧面S3外的部分在第一方向X上的长度大于第三侧面S3在第一方向X上的长度为例进行说明。在其他的实施例中,挡板15的位于第二侧面S2外的部分在第一方向X上也可以采用其他长度,挡板15的位于第三侧面S3外的部分在第一方向X上也可以采用其他长度。
例如,在本公开的实施例中,第二方向Y与第一方向X相交。进一步例如,第二方向Y与第一方向X垂直。例如,第二方向Y和第一方向X为平行于车体的支撑面的方向。例如,车体的支撑面为放置各个部件的表面。
需要说明的是,挡板15的设置位置不限于图5C所示的情况。挡板15也可以如图5D所示,仅设置在消音器4的第一侧面S1的外侧。
如图5C和图5D所示,第二侧面S2和第三侧面S3相对设置。
如图5C和图5D所示,消音器4包括第四侧面S4,第四侧面S4与第一侧面S1相对设置。例如,消音器4在第四侧面S4处与排气管9相连。
如图5D所示,消音器4、挡板15、以及散热器3在第一方向X上依次设置。在一些实施例中,为了更好的起到降低热辐射作用,挡板15在第二方向Y上的尺寸大于消音器4在第二方向Y上的尺寸,并大于散热器3在第二方向Y上的尺寸。如图5C所示,挡板15的在消音器4的第一侧面S1外的部分在第二方向Y上的尺寸大于消音器4在第二方向Y上的尺寸,并大于散热器3在第二方向Y上的尺寸。
例如,挡板15可采用金属材料制作,但不限于此,本领域技术人员可根据需要选用合适的材料。在一些实施例中,挡板15可包括钢板。
在本公开的实施例中,参考图1A、图3A至图5A,消音器4可包括第一部分41和第二部分42,第一部分41与第二部分42相交,例如,第一部分41与第二部分42垂直。例如,消音器4呈L型。例如,消音器4的侧面可指消音器的第一部分41的侧面。例如,消音器4的第一部分41的底面位于车体100上。当然,在其他的实施例中,消音器4的侧面也可指消音器4的整体的侧面,此情况下,消音器4的侧面可指消音器4的不平行于车体100的支撑面的部分。
需要说明的是,本公开的实施例提供的压裂设备1b、压裂设备1b1、压裂设备1b2、压裂设备1c或压裂设备1d,辅助单元500也可以不直接采用电驱。例如,辅助单元500包括的各个单元,例如,启动单元501、润滑单元502、冷却单元503、供气单元504、以及通风单元505至少之一,可以采用液压驱动。
图6为本公开一实施例提供的压裂设备中的辅助单元电能传递过程示意图。如图6所示,压裂设备包括电源12、配电单元60、以及执行部件70。例如,电源12主要包括网电、化学电池、发电机、氢能发电等。例如,电池包括储能电池、铝电池、燃料电池、锂离子二次电池、金属氢化物镍电池至少之一。例如,发电机可为燃气轮机,也可以是燃油发电设备。
例如,配电单元60主要包括开关柜、变电站、配电站等。
例如,执行部件70主要包括涡轮压裂设备的辅助单元、输砂设备、混砂设备、混配设备、化添设备等需要用电的设备。例如,涡轮压裂辅助单元采用电机作为动力源,驱动整机润滑、冷却、涡轮发动机启动、供气、通风等部件。
例如,在本公开的实施例中,驱动电机与执行部件直接相连可指驱动电机与执行部件之间不具有液压单元。例如,液压单元包括液压泵。例如,在本公开的实施例中,执行部件为电驱部件,而非液压驱动的部件。
本公开至少一实施例提供一种压裂系统,包括上述任一压裂设备。
图7A示出了根据本公开的实施例的一种压裂系统的示意图,其包括如上所述的涡轮压裂设备、管汇设备、混砂设备、混配设备、输砂设备、砂罐等。例如,砂罐用于储存支撑剂并通过输送机构将支撑剂输送至混砂设备。例如,化添设备和清水源与混配设备连接,以在混配设备内制作压裂基液。例如,混配设备能够将压裂基液输送至混砂设备内。例如,混砂设备将压裂基液和支撑剂充分混合形成压裂流体,并通过管汇输送至涡轮压裂设备。例如,涡轮压裂设备将低压吸入的压裂流体增压后形成高压压裂流体排出至井口。
例如,化添设备、混砂设备、输砂设备、混配设备中任一种或多种可由电源12供电。通过仪表设备(可为车载、半挂车载、橇装)进行集中控制,可控制涡轮压裂设备、涡轮发电设备、电源12、管汇设备、混砂设备、混配设备、输砂设备、砂罐等,从而实现涡轮-电驱井场的集中控制。
例如,参照图6,电源12可以通过依次连接开关柜、变电站,从而为输砂设备的电机、混砂设备的电机、混配设备的电机、涡轮压裂设备辅助单元的电机提供电能。
图7B示出了本公开一实施例提供的一种压裂系统。例如,如图7B所示,压裂系统中的至少一个压裂设备的柱塞泵可拆卸地设置,并且该柱塞泵可以拆下替换为发电机,形成电源12的一部分。针对于井场用电问题,设计如图8和图9所示的快速更换结构,可将涡轮压裂设备快速更改为涡轮发电设备,其通过更换柱塞泵1为发电机303即可完成此项功能的转换。
如图7A和图7B所示,实线表示配制压裂流体及压裂流体走向图;虚线表示电缆控制。
如图8所示,在第一底座201设计第一叉车孔202,可以方便柱塞泵更换。将柱塞泵1与第一底座201作为一个整体,当需要更换柱塞泵1时,将第一底座201与车体100之间的固定螺栓拆除,通过叉车伸入第一叉车孔202中,即可将柱塞泵1进行快速更换。
如图9所示,类似地,发电机的快速更换结构主要包括发电机303、第二底座301、第二叉车孔302。当需要将涡轮压裂设备更改为发电机设备时,只需要将柱塞泵1快速更换下来,将发电机303快速更换上去,实现压裂作业与发电作业的快速转换。与涡轮发动机联接的减速机设定预定的转速,可以将涡轮发动机的转速降低到一定的范围内,既能够满足柱塞泵作业需求,也能够驱动发电机进行发电作业。发电机的输出电缆可通过快接形式,与涡轮压裂设备及混砂、混配、输砂等设备上的控制系统进行快速连接。
例如,涡轮发电设备采用一备一用,保证供电的可靠性,可以将井场中的任意两台涡轮压裂设备通过柱塞泵快拆结构将柱塞泵更换成发电机,以用作电源12。在另外的实施方式中,两台更换后的涡轮发电设备最好分别设置在管汇设备的两侧,便于电缆的连接。在另外的实施方式中,两台更换后的涡轮发电设备关于管汇设备的中心线对称设置,使电缆铺设更加方便。
需要说明的是,本公开的实施例提供的压裂设备也可以不采用图3A、图4和图5A中的对于散热器、或者散热器和消音器的设置位置进行调整的结构。即,本公开的一些实施例提供的压裂设备中,散热器也可以不布置在柱塞泵1的上方,本公开的一些实施例提供的压裂设备中,散热器也可以不与消音器4相对设置。即,本公开的一些实施例提供的压裂设备,散热器也可以采用其他的设置方式。
在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易向到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种压裂设备,包括:
    柱塞泵,所述柱塞泵被配置为将压裂流体增压以形成高压压裂流体;
    涡轮发动机,所述涡轮发动机与所述柱塞泵联接,被配置为向所述柱塞泵提供驱动力;
    辅助单元,所述辅助单元包括驱动电机,所述辅助单元被配置为向所述压裂设备提供启动辅助功能、润滑功能、冷却功能和供气功能中至少之一的功能;以及
    电源,所述电源与所述辅助单元的所述驱动电机电连接,被配置为向所述辅助单元提供驱动力。
  2. 根据权利要求1所述的压裂设备,其中,所述辅助单元包括启动单元,所述启动单元被配置为启动所述涡轮发动机,所述驱动电机包括启动电机。
  3. 根据权利要求2所述的压裂设备,其中,所述启动电机被配置为直接启动所述涡轮发动机,所述启动电机与所述涡轮发动机直接相连,所述启动单元设置在所述涡轮发动机上。
  4. 根据权利要求1-3任一项所述的压裂设备,其中,所述辅助单元还包括润滑单元和冷却单元,
    所述驱动电机包括润滑电机和冷却电机,所述润滑单元还包括润滑泵和润滑油箱,所述润滑电机被配置为驱动所述润滑泵以将所述润滑油箱内的润滑油输送至润滑点,
    所述冷却单元还包括散热器,所述冷却电机被配置为驱动所述散热器以冷却所述润滑油,
    所述润滑电机与所述润滑泵直接相连,所述冷却电机与所述散热器直接相连。
  5. 根据权利要求4所述的压裂设备,还包括供气单元,其中,所述驱动电机包括气路电机,
    所述供气单元还包括空压机,所述气路电机被配置为驱动所述空压机向所述涡轮发动机提供压缩空气,
    所述气路电机与所述空压机直接相连。
  6. 根据权利要求1-5任一项所述的压裂设备,还包括通风单元,其中,所述驱动电机包括通风电机,所述通风单元还包括通风部件,所述通风电机被配置为驱动所述通风部件,
    所述通风电机与所述通风部件直接相连。
  7. 根据权利要求1-6任一项所述的压裂设备,其中,所述电源包括发电机、网电、燃料电池和储能电池至少之一,所述电源通过开关柜、变电站与所述驱动电机电连接。
  8. 根据权利要求1-7任一项所述的压裂设备,还包括载体,其中,所述柱塞泵、所述涡轮发动机、和所述辅助单元的至少一部分设置在所述载体上,其中,所述柱塞泵可拆卸地固定在所述载体上。
  9. 根据权利要求8所述的压裂设备,其中,所述柱塞泵固定在第一底座上,所述第一底座设置有第一叉车孔,所述柱塞泵通过所述第一底座可拆卸地固定在所述载体上。
  10. 根据权利要求4所述的压裂设备,其中,所述散热器布置在所述柱塞泵的上方。
  11. 根据权利要求4所述的压裂设备,还包括消音器,其中,所述涡轮发动机包括排气管,所述消音器与所述排气管相连,所述散热器布置在所述消音器的远离所述排气管的一侧。
  12. 根据权利要求11所述的压裂设备,其中,所述散热器和所述消音器之间具有间隔,所述散热器的出风侧朝向所述消音器。
  13. 根据权利要求11或12所述的压裂设备,还包括挡板,其中,所述挡板设置在所述消音器的外侧并至少部分位于所述消音器和所述散热器之间,所述挡板包括多个孔,所述挡板与所述消音器之间的距离小于所述挡板与所述散热器之间的距离。
  14. 根据权利要求13所述的压裂设备,其中,所述消音器包括第一侧面、第二侧面和第三侧面,所述第一侧面面向所述散热器,所述第二侧面和所述第三侧面分别与所述第一侧面相连,所述挡板位于所述消音器的所述第一侧面、所述第二侧面和所述第三侧面的外侧。
  15. 一种压裂系统,包括:
    根据权利要求1至14中任意一项所述的压裂设备;以及
    外围设备,所述电源配置为与所述外围设备相连以为其供电。
  16. 根据权利要求15所述的压裂系统,其中,所述外围设备包括混配设备、混砂设备、输送机构至少之一;
    所述混配设备被配置为混配压裂基液;
    所述混砂设备被配置为将所述压裂基液与支撑剂混合形成所述压裂流体;
    所述输送机构被配置为将砂罐中储存的支撑剂输送至混砂设备。
  17. 根据权利要求15或16所述的压裂系统,其中,压裂设备设置为多个,至少一个压裂设备的柱塞泵替换为发电机构成所述电源的至少一部分。
  18. 根据权利要求17所述的压裂系统,其中,所述发电机固定在第二底座上,所述底座设置有第二叉车孔。
PCT/CN2021/096099 2020-12-04 2021-05-26 压裂设备及压裂系统 WO2022116483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3144930A CA3144930C (en) 2020-12-04 2021-05-26 Fracturing apparatus and fracturing system
AU2021390073A AU2021390073A1 (en) 2020-12-04 2021-05-26 Fracturing apparatus and fracturing system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011396988.X 2020-12-04
CN202011396988 2020-12-04
CN202110426496.9 2021-04-20
CN202110426496.9A CN112983382A (zh) 2020-12-04 2021-04-20 压裂设备及压裂系统

Publications (1)

Publication Number Publication Date
WO2022116483A1 true WO2022116483A1 (zh) 2022-06-09

Family

ID=76341355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096099 WO2022116483A1 (zh) 2020-12-04 2021-05-26 压裂设备及压裂系统

Country Status (2)

Country Link
CN (2) CN214741266U (zh)
WO (1) WO2022116483A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109335B (zh) * 2021-10-14 2023-09-19 烟台杰瑞石油装备技术有限公司 由变频调速一体机驱动的压裂设备及井场布局
US11680474B2 (en) 2019-06-13 2023-06-20 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
US11746636B2 (en) 2019-10-30 2023-09-05 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Fracturing apparatus and control method thereof, fracturing system
CN113315111B (zh) 2021-04-26 2023-01-24 烟台杰瑞石油装备技术有限公司 一种供电方法及供电系统
CN113323834A (zh) * 2021-06-29 2021-08-31 烟台杰瑞石油装备技术有限公司 涡轮压裂设备
CN113978337A (zh) * 2021-10-09 2022-01-28 烟台杰瑞石油装备技术有限公司 电驱固井车
CN215870792U (zh) * 2021-10-12 2022-02-18 烟台杰瑞石油装备技术有限公司 用于井场电驱设备的供电系统
CA3179258A1 (en) 2021-10-14 2023-04-14 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. A fracturing device driven by a variable-frequency adjustable-speed integrated machine and a well site layout
CN114070169B (zh) * 2021-11-16 2023-08-18 烟台杰瑞石油装备技术有限公司 压裂设备及其启动方法和压裂设备组
CN115977602A (zh) * 2021-11-18 2023-04-18 烟台杰瑞石油装备技术有限公司 涡轮压裂设备
US20240159132A1 (en) * 2022-02-16 2024-05-16 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. Electrically-driven fracturing system
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162923A1 (en) * 2005-01-25 2006-07-27 World Energy Systems, Inc. Method for producing viscous hydrocarbon using incremental fracturing
US20070125544A1 (en) * 2005-12-01 2007-06-07 Halliburton Energy Services, Inc. Method and apparatus for providing pressure for well treatment operations
CN110821464A (zh) * 2019-12-03 2020-02-21 烟台杰瑞石油装备技术有限公司 一种压裂的井场布局系统
CN111206992A (zh) * 2020-03-12 2020-05-29 美国杰瑞国际有限公司 一种持续大功率涡轮压裂设备
CN211201919U (zh) * 2019-09-20 2020-08-07 烟台杰瑞石油装备技术有限公司 一种涡轮压裂设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162923A1 (en) * 2005-01-25 2006-07-27 World Energy Systems, Inc. Method for producing viscous hydrocarbon using incremental fracturing
US20070125544A1 (en) * 2005-12-01 2007-06-07 Halliburton Energy Services, Inc. Method and apparatus for providing pressure for well treatment operations
CN211201919U (zh) * 2019-09-20 2020-08-07 烟台杰瑞石油装备技术有限公司 一种涡轮压裂设备
CN110821464A (zh) * 2019-12-03 2020-02-21 烟台杰瑞石油装备技术有限公司 一种压裂的井场布局系统
CN111206992A (zh) * 2020-03-12 2020-05-29 美国杰瑞国际有限公司 一种持续大功率涡轮压裂设备

Also Published As

Publication number Publication date
CN112983382A (zh) 2021-06-18
CN214741266U (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2022116483A1 (zh) 压裂设备及压裂系统
US12006806B2 (en) Fracturing apparatus and fracturing system
US20230029574A1 (en) Fracturing Apparatus and Fracturing System
US11905880B2 (en) Power generation apparatus and power system
US11746637B2 (en) Adaptive mobile power generation system
US11982169B2 (en) Fracturing device driven by a variable-frequency adjustable-speed integrated machine and a well site layout
US11680474B2 (en) Fracturing apparatus and control method thereof, fracturing system
US11746636B2 (en) Fracturing apparatus and control method thereof, fracturing system
US11702980B2 (en) Mobile power system
US20210086851A1 (en) Turbine fracturing semi-trailer
US11725491B2 (en) Electrically driven fracturing system
CN210660319U (zh) 一种双车载燃气轮机发电机组
WO2023035567A1 (zh) 具有冷却功能的空压机系统、燃料电池系统及控制方法
WO2023060945A1 (zh) 由变频调速一体机驱动的压裂设备及井场布局
CN110661020A (zh) 一种燃料电池的空气系统
US20230212933A1 (en) Hydraulic Fracturing System for Driving a Plunger Pump with a Turbine Engine
CN217602640U (zh) 压裂设备及压裂系统
US20230279762A1 (en) Fracturing apparatus and control method thereof, fracturing system
CN211907587U (zh) 一种模块化燃料电池备用发电装置
CA3144930C (en) Fracturing apparatus and fracturing system
CN114962203B (zh) 泵送系统、井场布局及用于泵送系统的控制方法
CN114622993A (zh) 偏置式微型燃气轮机发电机组
WO2021081797A1 (zh) 一种变频一体机的电驱压裂半挂车
CN217455790U (zh) 移动式发电设备
US20120227684A1 (en) Hydrogen/oxygen gas generating apparatus and internal combustion engine system having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021390073

Country of ref document: AU

Date of ref document: 20210526

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899526

Country of ref document: EP

Kind code of ref document: A1