WO2023206864A1 - 一种无人机动态起降装置及起降方法 - Google Patents

一种无人机动态起降装置及起降方法 Download PDF

Info

Publication number
WO2023206864A1
WO2023206864A1 PCT/CN2022/112072 CN2022112072W WO2023206864A1 WO 2023206864 A1 WO2023206864 A1 WO 2023206864A1 CN 2022112072 W CN2022112072 W CN 2022112072W WO 2023206864 A1 WO2023206864 A1 WO 2023206864A1
Authority
WO
WIPO (PCT)
Prior art keywords
azimuth
take
turntable
landing
uav
Prior art date
Application number
PCT/CN2022/112072
Other languages
English (en)
French (fr)
Inventor
崔向宇
张冬
李雪玲
赵利娟
黄静
Original Assignee
天津航天中为数据系统科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津航天中为数据系统科技有限公司 filed Critical 天津航天中为数据系统科技有限公司
Publication of WO2023206864A1 publication Critical patent/WO2023206864A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/007Helicopter portable landing pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations for handling aircraft
    • B64F1/222Ground or aircraft-carrier-deck installations for handling aircraft for storing aircraft, e.g. in hangars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention belongs to the technical field of unmanned aerial vehicles, and in particular relates to a dynamic take-off and landing device and a take-off and landing method for an unmanned aerial vehicle.
  • UAVs are increasingly used in transportation, security, forestry, electric power, petroleum and other industries. How to achieve long-distance, large-scale, and high-frequency operational census and monitoring of UAVs is particularly important. As UAV control technology continues to improve, how to minimize human participation, save labor costs, and enable UAVs to perform tasks autonomously has become particularly important.
  • the real-time adjustment speed is slow, making the UAV take-off and landing process more complicated;
  • the UAV's nose needs to be continuously adjusted in the air to make turns and fly to the first target point, and the flight distance increases. Larger ones will also consume a certain amount of power; when the drone lands, the drone's nose needs to be adjusted in real time according to the moving carrier.
  • the drone's descending position is constantly adjusted, the drone's nose direction must be constantly adjusted to keep it at the same position.
  • the platforms are oriented in the same direction, which greatly increases the difficulty of landing, and consumes more power during the landing process; therefore, this patent application designs a dynamic take-off and landing device and take-off and landing method for a UAV.
  • the present invention aims to propose a dynamic take-off and landing device and a take-off and landing method for a UAV to solve the problem of inconvenient adjustment of the UAV take-off and landing device.
  • UAV take-off and landing are more difficult and tend to consume more power. Problems that seriously affect the efficiency of UAV mission execution.
  • the present invention provides a dynamic take-off and landing device for an unmanned aerial vehicle, which is installed on a carrier base and includes an attitude adjustment mechanism and a landing pad arranged on the attitude adjustment mechanism.
  • the attitude adjustment mechanism is arranged on the carrier base. It is used to dynamically adjust the position and posture of the apron.
  • the attitude adjustment mechanism and the landing pad are both connected to a controller; the controller is used to receive the first target point information of the UAV mission route before taking off, and calculate the target angle value, and adjust the attitude adjustment mechanism according to the calculated target angle value to stop the aircraft.
  • the platform points to the first target point in real time to ensure that the nose of the aircraft is always facing the first target point; the controller is used to receive the UAV heading information before landing, and calculate the azimuth pointing angle of the attitude adjustment mechanism, and adjust the attitude adjustment according to the calculated azimuth pointing angle.
  • the mechanism is used to adjust the apron horizontally to ensure that the orientation of the apron and the nose of the aircraft are always consistent.
  • the attitude adjustment mechanism includes an azimuth turntable, a pitch turntable and a roll turntable; the azimuth turntable is set on the carrier base, the azimuth turntable is used to adjust the horizontal rotation angle of the apron, the pitch turntable is set on the top of the azimuth turntable, and the pitch turntable is rotated. It has a U-shaped structure.
  • the pitch turntable is used to adjust the pitch angle of the apron.
  • the roll turntable is mounted on the pitch turntable.
  • the apron is fixed on the roll turntable.
  • the roll state is used to adjust the roll angle of the apron.
  • the azimuth turntable includes a fixed base and an azimuth turntable.
  • the fixed base is provided with multiple sets of fixing holes.
  • the fixed base is fixed and installed on the carrier base through bolts.
  • a gear is assembled between the fixed base and the azimuth turntable.
  • the azimuth turntable is fixed with an azimuth motor, and the output shaft end of the azimuth motor is equipped with gear two, which meshes with gear one.
  • the azimuth turntable is also fixed with an azimuth encoder, and the main shaft end of the azimuth encoder is equipped with gear three. , gear three also meshes with gear one;
  • the pitch turntable includes a support frame and a bogie.
  • the support frame is fixed on the azimuth turntable.
  • a pitch motor is fixed on the side plate of the support frame.
  • the output shaft of the pitch motor is fixedly equipped with gear four.
  • the inner walls of both sides of the support frame are provided with a pitch motor.
  • the bogie has a U-shaped structure.
  • the bottom end of the bogie is equipped with an arc-shaped rack meshing with the gear four.
  • the bogie is The outer walls on both sides are fixed with arc-shaped protrusions that match the rollers, and the other side plate of the support frame is equipped with a pitch encoder that records the steering angle of the bogie;
  • the roll turntable includes an angle adjustment plate, a roll motor and a roll encoder.
  • the two sets of angle adjustment plates are installed at both ends of the bogie for corresponding rotation. There is a space between the two sets of angle adjustment plates.
  • the bottom ends of the two sets of angle adjustment plates are equipped with arc racks.
  • the roll motor and roll encoder are installed on the bogie through the fixed plate, and the output shaft end of the roll motor is fixed.
  • gear five which meshes with the arc-shaped rack two provided on one of the angle adjustment plates.
  • the main shaft end of the roll encoder is equipped with gear six, which meshes with the arc rack two provided on the other set of angle adjustment plates.
  • the arc-shaped rack meshes with two phases.
  • the landing pad includes an upper cabin and a lower cabin.
  • the top of the upper cabin is equipped with an opening and closing door.
  • the upper cabin is equipped with a homing mechanism for automatically centering the UAV.
  • the lower cabin is equipped with a There is a lifting mechanism and a charging mechanism.
  • the center of the bottom plate of the upper cabin is provided with a through hole for the lifting mechanism to move up and down.
  • the lifting platform of the lifting mechanism is provided with a through hole corresponding to the charging electrode of the charging mechanism. After the lifting mechanism is controlled to return, The drone is accurately connected to the charging electrode of the charging mechanism.
  • the controller is fixedly installed on the fixed base of the azimuth turntable.
  • the controller includes a control circuit board.
  • the control circuit board is integrated with a servo control module.
  • the servo control module is used for real-time analysis of data.
  • the servo control module is connected with inertial navigation. module and 5G module.
  • the inertial navigation module is set on the carrier and is used to sense the position, attitude and heading information of the carrier.
  • the number of 5G modules is two groups, one group is installed on the drone, and the other group is installed on the carrier. Through 5G The module interacts with information, transmits the UAV route and attitude information back to the servo control module in real time, and transmits the carrier information back to the UAV in real time.
  • control circuit board is also integrated with an azimuth drive unit used to control the operation of the azimuth motor, a pitch drive unit used to control the operation of the pitch motor, and a roll drive unit used to control the operation of the roll motor.
  • the azimuth drive unit, pitch Both the drive unit and the roll drive unit are connected to the servo control module;
  • the attitude adjustment mechanism, landing pad and controller are all connected to power modules.
  • the present invention provides a method for dynamic take-off and landing of a UAV, including a take-off method, which includes the following steps:
  • the UAV receives the take-off command and performs the flight mission.
  • the attitude adjustment mechanism automatically stabilizes the aircraft, isolates the carrier from disturbance, and ensures that the take-off and landing device is in a horizontal state;
  • step A2 Determine whether the horizontal stability accuracy of the take-off and landing device in step A1 meets the take-off requirements; if it meets the requirements, the apron will automatically open the door and the drone will rise to the take-off position; if it does not meet the requirements, adjust the horizontal state of the take-off and landing device until Meet takeoff requirements;
  • the servo control module receives the position information of the first target point of the UAV route through the 5G module, and performs data fusion processing with the inertial navigation module to calculate the azimuth and pointing angle of the attitude adjustment mechanism and stop the aircraft.
  • the platform drives the drone, and the nose of the drone points to the first target point of the route in real time;
  • step A4 Determine whether the azimuth and pointing accuracy of the take-off and landing device in step A3 meets the take-off requirements; if so, proceed to the next step; if not, adjust the azimuth and pointing accuracy of the take-off and landing device until it meets the take-off requirements;
  • the orientation of the take-off and landing device meets the requirements for pointing and taking off, the locking mechanism is released, and the drone is unlocked and takes off; at this time, the apron door is closed, and the attitude adjustment structure is stowed to the zero position.
  • step A3 is:
  • the inertial navigation module uses the longitude, latitude and altitude information of the first target point of the UAV route and the inertial navigation module, calculate the direction vector of the carrier pointing to the first target point of the UAV route in the earth coordinate system, and then integrate the current attitude information of the carrier inertial navigation module , use the coordinate transformation method to calculate the target angle, and calculate the azimuth pointing angle of the attitude adjustment mechanism;
  • the calculation expression of the direction vector of the first target point of the UAV route is:
  • the direction vector of the carrier pointing to the first target point of the UAV route is:
  • R 0 is the radius of the earth, is the longitude, latitude, and altitude of the first target point of the UAV route, are the longitude, latitude, and altitude of the carrier;
  • the transformation matrix from the local horizontal plane coordinate system to the carrier coordinate system is:
  • ⁇ a , ⁇ r and ⁇ f are the angle values of the azimuth turntable, roll turntable and pitch turntable;
  • the direction vector of the carrier pointing to the first target point of the UAV route is:
  • the azimuth angle of the attitude adjustment module is:
  • a landing method is also included, and the landing method includes the following steps:
  • the UAV receives the mission end command and performs the landing mission.
  • the attitude adjustment mechanism is horizontally stabilized and isolated from carrier disturbance;
  • step B2 Determine whether the horizontal stability accuracy of the take-off and landing device in step B1 meets the landing requirements; if it meets the requirements, the apron door will automatically open and the lifting platform will rise to the top; if it does not meet the requirements, adjust the horizontal state of the take-off and landing device until it meets the landing requirements. Require;
  • the servo control module receives the drone heading information through the 5G module, and performs data fusion processing with the inertial navigation module to calculate the azimuth and pointing angle of the attitude adjustment mechanism to ensure the direction of the apron and the drone's nose. consistent; consistent;
  • step B4 Determine whether the azimuth and pointing accuracy of the take-off and landing device in step B3 meets the pointing and landing requirements; if so, proceed to the next step; if not, adjust the azimuth and pointing accuracy of the take-off and landing device until it meets the landing requirements;
  • the orientation of the take-off and landing device meets the requirements for pointing and taking off, and the drone lands autonomously; the homing mechanism, locking mechanism and lifting mechanism act to land the drone on the apron, the charging mechanism automatically charges the drone, and the apron is closed The hatch and attitude adjustment mechanism are reset to zero.
  • step B3 is:
  • the servo control module fuses the drone's heading information with the current attitude information of the inertial navigation module, uses coordinate transformation to calculate the target angle, and calculates the azimuth pointing angle of the attitude adjustment mechanism;
  • the heading angle is ⁇ .
  • the azimuth space angle of the apron also needs to be adjusted to ⁇ ;
  • the direction vector of the carrier pointing to the drone is:
  • the transformation matrix from the local horizontal plane coordinate system to the carrier coordinate system is:
  • ⁇ a , ⁇ r and ⁇ f are the angle values of the azimuth turntable, roll turntable and pitch turntable;
  • the direction vector of the carrier pointing to the first target point of the UAV route is:
  • the azimuth angle of the attitude adjustment module is:
  • the dynamic take-off and landing device and take-off and landing method of a UAV according to the present invention have the following beneficial effects:
  • a dynamic take-off and landing device for a UAV places the landing pad above the attitude adjustment mechanism, and the control unit is placed on the carrier to form a UAV take-off and landing device.
  • the attitude adjustment mechanism adopts a U-shaped frame Design, rationally utilize the compact space, reserve reasonable space for the lower cabin of the apron, and achieve the minimization and optimal design of the attitude adjustment mechanism;
  • the take-off and landing device During the take-off and landing process of the UAV, the take-off and landing device is always in a horizontal state, effectively isolating the large-angle disturbance caused by the bumps during the movement of the car body, ship hull, etc., and providing a good environment for the UAV to take off and land;
  • the landing pad is automatically stored, and the attitude adjustment mechanism automatically returns to zero and returns to the initial position without any further attitude adjustments, saving power.
  • the dynamic take-off and landing device for a UAV can realize that before the UAV takes off, the apron door automatically opens, the UAV rises to the take-off position, the locking mechanism is released, and the UAV takes off; After the drone takes off, the apron door automatically closes. Before the drone lands, the apron door automatically opens; after the drone lands, the apron automatically performs fully autonomous processes such as returning the drone, locking, descending, charging, and closing the door, without human intervention, effectively increasing Drone protection.
  • the servo control module integrates the inertial navigation module information to perform attitude calculation, realize horizontal adjustment of the take-off and landing device, and isolate the carrier Disturbance; the door automatically opens and the drone rises to the take-off position.
  • the servo controller receives the longitude and latitude coordinates of the first target point of the drone's mission route through the drone's 5G module, and integrates the inertial navigation module information to determine the target angle. Solve the problem and drive the motor of the attitude adjustment mechanism to point the apron to the first target point in real time to ensure that the nose of the aircraft is always facing the first target point. The locking mechanism is released and the drone takes off automatically.
  • the dynamic take-off and landing method of a UAV enables the UAV to fly to the moving take-off and landing point in fixed-wing mode on the mission route. After reaching the preset height, it switches to the rotor mode to descend. At this time, the servo control The module receives the UAV heading information through the 5G module, and integrates the inertial navigation module information to perform data fusion attitude calculation, and calculates the azimuth and pointing angle of the attitude adjustment mechanism.
  • the attitude adjustment mechanism drives the apron to adjust horizontally, keeping the orientation of the apron consistent with the nose of the aircraft. Always consistent, the drone does not need to adjust the nose during the entire descent process, only horizontal adjustment is required, which greatly reduces the difficulty of mobile landing and saves power.
  • Figure 1 is a system diagram of a dynamic take-off and landing device for an unmanned aerial vehicle according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the overall structure of a dynamic take-off and landing device for an unmanned aerial vehicle according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of the first angle structure of the attitude adjustment mechanism according to the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the second angle structure of the attitude adjustment mechanism according to the embodiment of the present invention.
  • Figure 5 is a front view of the apron hatch in an open state according to the embodiment of the present invention.
  • Figure 6 is a top view of the return mechanism, lifting mechanism and charging mechanism according to the embodiment of the present invention.
  • Figure 7 is a front view of the return mechanism, lifting mechanism and charging mechanism according to the embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of the lifting mechanism and charging mechanism according to the embodiment of the present invention.
  • Figure 9 is a top view of the UAV according to the embodiment of the present invention when it lands on the apron take-off and landing device;
  • Figure 10 is a flow chart of the UAV dynamic take-off method according to the embodiment of the present invention.
  • Figure 11 is a flow chart of the dynamic landing method of a UAV according to the embodiment of the present invention.
  • Figure 12 is a circuit diagram of the servo control module according to the embodiment of the present invention.
  • Figure 13 is a circuit diagram of the azimuth driving unit according to the embodiment of the present invention.
  • Figure 14 is a circuit diagram of the pitch drive unit according to the embodiment of the present invention.
  • FIG. 15 is a circuit diagram of the roll drive unit according to the embodiment of the present invention.
  • Attitude adjustment mechanism 11. Azimuth turntable; 111. Fixed base; 112. Azimuth turntable; 113. Gear one; 114. Azimuth motor; 115. Gear two; 116. Azimuth encoder; 117. Gear three; 12. Pitch turntable; 121. Support frame; 122. Bogie; 123. Pitch motor; 124. Gear four; 125. Roller; 126. Arc rack one; 127. Arc protrusion; 128. Pitch encoder; 13 , Rolling turntable; 131. Angle adjustment plate; 132. Rolling motor; 133. Rolling encoder; 134. Arc rack two; 135. Fixed plate; 136. Gear five; 137. Gear six; 2. Shutdown 21. Upper cabin; 212. Hatch door; 22. Lower cabin; 23. Returning mechanism; 24. Lifting mechanism; 25. Charging mechanism.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • Embodiment 1 provides a dynamic take-off and landing device for a UAV, which is installed on the base of a carrier (mobile carrier such as a vehicle or ship) and includes an attitude adjustment mechanism 1 , and an apron 2 arranged on the attitude adjustment mechanism 1.
  • the attitude adjustment mechanism 1 is arranged on the carrier base and is used to dynamically adjust the posture state of the apron 2.
  • the apron 2 is placed above the attitude adjustment mechanism 1, and the control unit is placed on the carrier to form a UAV take-off and landing device.
  • the attitude adjustment mechanism 1 adopts a U-shaped frame design to rationally utilize the compact space and reserve a reasonable space for the apron. 2 lower the cabin to achieve the minimized and optimized design of the attitude adjustment mechanism 1;
  • the take-off and landing device During the take-off and landing process of the UAV, the take-off and landing device is always in a horizontal state, effectively isolating the large-angle disturbance caused by the bumps during the movement of the car body, ship hull, etc., and providing a good environment for the UAV to take off and land;
  • the attitude adjustment mechanism automatically returns to zero, and returns to the initial position without any further attitude adjustments, saving power;
  • the attitude adjustment mechanism 1 and the apron 2 are both connected to a controller; the controller is used to receive the first target point information of the UAV mission route before takeoff, calculate the target angle value, and adjust the attitude adjustment mechanism 1 according to the calculated target angle value.
  • the controller is used to receive the UAV heading information before landing, and calculate the azimuth pointing angle of the attitude adjustment mechanism 1, and according to the calculated azimuth Adjust the pointing angle of the attitude adjustment mechanism 1 to adjust the apron 2 horizontally to ensure that the orientation of the apron 2 is always consistent with the nose of the aircraft;
  • the existing conventional attitude adjustment mechanism can also be used, that is, the position of the apron 2 can be adjusted in real time.
  • the attitude adjustment mechanism 1 includes an azimuth turntable 11, a pitch turntable 12 and a roll turntable 13; the azimuth turntable 11 is provided on the carrier base, and the azimuth turntable 11 is used to adjust the horizontal rotation angle of the apron 2 , the pitch turntable 12 is rotatably installed on the top of the azimuth turntable 11.
  • the pitch turntable 12 has a U-shaped structure.
  • the pitch turntable 12 is used to adjust the pitch angle of the apron 2.
  • the roll turntable 13 is rotatably installed on the pitch turntable 12, and the apron 2 is fixed.
  • the roll turntable 13 is used to adjust the roll angle of the apron 2; the attitude adjustment mechanism 1 can realize 360° rotation in the azimuth, and the rotation angle range of the pitch turntable 12 and the roll turntable 13 is -45 ° ⁇ +45°.
  • the azimuth turntable 11 includes a fixed base 111 and an azimuth turntable 112.
  • the fixed base 111 is provided with multiple sets of fixing holes.
  • the fixed base 111 is fixed and installed on the carrier base through bolts.
  • the fixed base 111 and the azimuth turntable 112 are assembled between Gear one 113 is installed, an azimuth motor 114 is fixed on the azimuth turntable 112, gear two 115 is installed on the output shaft end of the azimuth motor 114, gear two 115 meshes with gear one 113, and an azimuth code is fixed on the azimuth turntable 112.
  • Gear 116, the main shaft end of the azimuth encoder 116 is equipped with gear three 117, gear three 117 is also meshed with gear one 113;
  • the pitch turntable 12 includes a support frame 121 and a bogie 122.
  • the support frame 121 is fixedly mounted on the azimuth turntable 112.
  • a pitch motor 123 is fixedly mounted on the side plate of the support frame 121.
  • the output shaft of the pitch motor 123 is fixedly mounted with a gear 124.
  • Multiple sets of corresponding rollers 125 are provided on the inner walls of both sides of the support frame 121.
  • Positions for installing the bogie 122 are provided between the rollers 125 on both sides.
  • the bogie 122 has a U-shaped structure, and the bottom end of the bogie 122 is provided with There is an arc-shaped rack 126 meshing with the gear 124.
  • the outer walls of both sides of the bogie 122 are fixed with arc-shaped protrusions 127 that cooperate with the rollers 125.
  • the other side plate of the support frame 121 is provided with a recording steering wheel.
  • the roll turntable 13 includes an angle adjustment plate 131, a roll motor 132 and a roll encoder 133.
  • the number of the angle adjustment plates 131 is two sets.
  • the two sets of angle adjustment plates 131 are installed at both ends of the bogie 122 for corresponding rotation.
  • the apron 2 is rigidly connected to the angle adjustment plates 131.
  • the bottom ends of the two sets of angle adjustment plates 131 are equipped with arc racks 134 and a roll motor 132.
  • the roll encoder 133 is installed on the bogie 122 through the fixed plate 135.
  • the output shaft end of the roll motor 132 is fixed with gear five 136.
  • Gear five 136 and one set of arc teeth provided on the angle adjustment plate 131 The second bar 134 meshes, and the main shaft end of the roll encoder 133 is equipped with the sixth gear 137.
  • the sixth gear 137 meshes with the second arc-shaped rack 134 provided on another set of angle adjustment plates 131.
  • the apron 2 includes an upper cabin 21 and a lower cabin 22.
  • the top of the upper cabin 21 is provided with an opening and closing door 212, and the upper cabin 21 is equipped with an automatic door for UAVs.
  • the homing mechanism 23 is in the center.
  • the homing mechanism 23 used in this technical solution is a conventional setting in this field, so it will not be described in too much detail;
  • the upper cabin 21 is also provided with a locking hook for locking the drone, and the locking hook
  • the locking hook used in this technical solution is a conventional technology well known to those skilled in the art. This patent application does not improve the locking hook, and the structure of the locking hook is not patented. The innovation point applied for is only capable of locking and fixing the drone, so no further details will be given;
  • the front of the lower cabin is provided with an opening and closing door
  • the lower cabin 22 is provided with a lifting mechanism 24 and a charging mechanism 25
  • the center of the bottom plate of the upper cabin 21 is provided with a lifting mechanism 24 for the lifting mechanism 24 to move up and down.
  • the lifting platform of the lifting mechanism 24 is provided with a through hole corresponding to the charging electrode of the charging mechanism 25.
  • the charging electrode of the charging mechanism 25 is connected to the charging power source.
  • the lifting mechanism 24 controls the drone and the charging mechanism after returning to the position. 25mm charging electrode for precise docking;
  • the lifting module of the lifting mechanism 24 drives the lifting platform to perform lifting movements.
  • the entire UAV adopts a partial lifting method.
  • the lifting mechanism 24 lowers the landing gear of the UAV to the upper cabin 21 of the apron 2.
  • the charging electrode in the lower cabin 22 is accurately connected to the UAV landing gear electrode, realizing automatic charging of the UAV's internal battery, and the door 212 automatically closing;
  • the relative position of the apron 2 and the nose of the UAV is shown in Figure 9. Keeping the same, the apron area at this time is the smallest; after the drone lands, the homing mechanism 23 advances simultaneously from the horizontal and vertical directions to quickly return the drone to the center; the locking mechanism is used to realize the drone Lock, and after locking, the lifting mechanism 24 drives the drone down. After reaching the bottom position, the landing gear electrode of the drone is accurately connected to the charging electrode provided on the lower cabin 22, and the drone battery is automatically charged.
  • the controller is fixedly installed on the fixed base 111 of the azimuth turntable 11.
  • the controller includes a control circuit board.
  • the control circuit board is integrated with a servo control module.
  • the servo control module is used for real-time analysis of data.
  • the servo control module is connected to an inertial navigation module. and 5G module.
  • the inertial navigation module is set on the carrier to sense the carrier's position, attitude and heading information data.
  • the inertial navigation module consists of a three-axis gyroscope and a three-axis accelerometer using GPS and IMU tightly coupled technology to provide high-precision three-dimensional position. , speed and attitude information, the dual antennas are divided into master and slave antennas, which can sense the position and attitude information of the carrier.
  • the inertial navigation module adopts the SDI-699GI model mature product produced by Qiwei Aerial Survey Company, so it will not be described further; the number of 5G modules There are two groups, one is installed on the UAV, and the other is installed on the carrier. Information interaction is carried out through the 5G module, and the UAV route and attitude information is transmitted back to the servo control module in real time, and the carrier information is transmitted back in real time.
  • the inertial navigation module and 5G module used in this patent application are conventional mature technologies in this field. This patent application has not improved them, and the specific connection relationships between the modules will not be further described;
  • the servo control module is the control core of the entire dynamic take-off and landing device. Its main functions are as follows:
  • the first target point of the UAV mission route is received in real time through the 5G module, and combined with the carrier inertial navigation module for data fusion, the azimuth pointing angle is calculated in real time, and the azimuth motor is driven to drive the apron rotation to ensure During the movement of the carrier, the drone's nose always faces the first target point;
  • the 5G module receives the drone heading information in real time, and combines it with the inertial navigation module for data fusion to calculate the azimuth pointing angle in real time, and drive the azimuth motor to drive the apron rotation to ensure that the carrier is moving , ensuring that the apron always points to the nose of the aircraft;
  • the control circuit board is also integrated with an azimuth drive unit for controlling the operation of the azimuth motor 114, a pitch drive unit for controlling the operation of the pitch motor 123, and a roll drive unit for controlling the operation of the roll motor 132.
  • the azimuth drive unit, pitch Both the drive unit and the roll drive unit are connected to the servo control module;
  • the power module supplies power to the entire attitude adjustment mechanism 1, the apron 2 and the internal modules of the controller.
  • the servo control module includes the main control chip U6.
  • the main control chip uses but is not limited to the STM32F405VGT7 model chip.
  • the PD5 pin and PD6 pin of the main control chip U6 are connected to the inertial navigation through the RS422 serial communication circuit.
  • module, the PA9 pin and PA10 pin of the main control chip U6 are connected to the 5G module through the RS422 serial communication circuit.
  • the RS422 serial communication circuit is a conventional communication circuit in this field, so it will not be described further;
  • the azimuth drive unit includes chip U2, the pitch drive unit includes chip U3, and the roll unit includes chip U4.
  • Chip U2, chip U3 and chip U4 use but are not limited to G_HOR5/100SE chip.
  • the main control chip The PC12 pin and PD2 pin of U6 are connected to the RS232_TX pin and RS232_RX pin of the chip U2.
  • the M2 pin and M3 pin of the chip U2 are connected to the azimuth motor input end.
  • the PC6 pin and PC7 tube of the main control chip U6 are connected.
  • the pins are connected to the RS232_TX pin and RS232_RX pin of the chip U3.
  • the M2 pin and M3 pin of the chip U3 are connected to the pitch motor input terminal.
  • the PC10 pin and PC11 pin of the main control chip U6 are connected to the RS232_TX tube of the chip U4.
  • pin, RS232_RX pin, the M2 pin and M3 pin of the chip U4 are connected to the input terminal of the roll motor
  • the PD12 pin and PD13 pin of the main control chip U6 are connected to the azimuth encoder and the main control chip through the RS422 serial communication circuit.
  • the PD10 and PD11 pins of U6 are connected to the pitch encoder through the RS422 serial communication circuit
  • the PD14 and PD15 pins of the main control chip U6 are connected to the roll encoder through the RS422 serial communication circuit.
  • the take-off and landing device is suitable for installation on mobile carriers or stationary carriers such as vehicles and ships.
  • Applicable UAVs mainly include vertical take-off and landing UAVs and multi-rotor UAVs, which mainly include attitude adjustment mechanisms, landing pads, and controllers. It consists of three parts.
  • the attitude adjustment mechanism adopts the form of a U-shaped frame and is placed under the apron to rationally utilize the space.
  • the attitude adjustment mechanism can drive the apron to rotate 360°;
  • the dynamic take-off and landing device can effectively isolate the carrier disturbance and always keep the apron level during the take-off and landing of the UAV, providing a good and stable take-off and landing device for the UAV's take-off and landing.
  • Embodiment 2 This embodiment of the present invention also provides a dynamic take-off and landing method for a UAV implemented by a UAV dynamic take-off and landing device.
  • the method includes a take-off method and a landing method;
  • the take-off method includes the following steps:
  • the servo control module After receiving the take-off command, the servo control module integrates the speed and attitude information of the inertial navigation module to perform stability control and isolate carrier disturbance.
  • the expression of the three-axis frame speed compensation is as follows:
  • ⁇ bx , ⁇ b y , and ⁇ bz are the components of the carrier angular velocity output by the inertial navigation module along the coordinate axis, and ⁇ a and ⁇ r are the azimuth and roll frame angle values;
  • the apron door is opened and the drone rises to the take-off position
  • the longitude and latitude information of the first target point of the UAV route is transmitted to the servo control unit through the 5G module.
  • the longitude, latitude and altitude information of the first target point of the UAV route and the inertial navigation module are used to calculate the download volume of the earth coordinate system.
  • the direction vector pointing to the first target point of the UAV route is then integrated with the current attitude information of the inertial navigation module, and the target angle is calculated using the coordinate transformation method to calculate the azimuth pointing angle of the attitude adjustment mechanism; the specific calculation expression is as follows: Show:
  • the direction vector of the carrier pointing to the first target point of the UAV route is:
  • R 0 is the radius of the earth, is the longitude, latitude, and altitude of the first target point of the UAV route, are the longitude, latitude, and altitude of the carrier;
  • the transformation matrix from the local horizontal plane coordinate system to the carrier coordinate system is:
  • ⁇ a , ⁇ r and ⁇ f are the azimuth, roll and pitch frame angle values
  • the direction vector of the carrier pointing to the first target point of the UAV route is:
  • the azimuth angle of the attitude adjustment module is
  • the motor of the driving attitude adjustment mechanism moves so that the apron points to the first target point in real time.
  • the azimuth pointing accuracy is ⁇ 0.5°
  • the locking mechanism is released and the drone is unlocked and takes off;
  • the landing method includes the following steps:
  • the servo control module After receiving the UAV mission end command, the servo control module integrates the speed and attitude information of the inertial navigation module to perform stability control and isolate carrier disturbance; the expression of the speed compensation of the take-off and landing device is as follows:
  • ⁇ bx , ⁇ b y , and ⁇ bz are the components of the carrier angular velocity output by the inertial navigation module along the coordinate axis, and ⁇ a and ⁇ r are the azimuth and roll platform angle values;
  • the apron door When the spatial horizontal stability accuracy of the take-off and landing device is less than 0.5°, the apron door will be opened;
  • the servo control module fuses the UAV heading information with the current attitude information of the inertial navigation module, uses coordinate transformation to calculate the target angle, and calculates the azimuth pointing angle of the attitude adjustment mechanism.
  • the specific calculation expression is as follows:
  • the heading angle is ⁇ .
  • the azimuth space angle of the apron also needs to be adjusted to ⁇ ;
  • the direction vector of the carrier pointing to the drone is:
  • the transformation matrix from the local horizontal plane coordinate system to the carrier coordinate system is:
  • ⁇ a , ⁇ r and ⁇ f are the azimuth, roll and pitch turntable angle values
  • the direction vector of the carrier pointing to the first target point of the UAV route is:
  • the azimuth angle of the attitude adjustment module is
  • the motor movement of the driving attitude adjustment mechanism makes the landing pad point in the direction of the drone's nose in real time.
  • the azimuth pointing accuracy is ⁇ 0.5°, the drone lands autonomously;
  • the drone After confirming that the drone has landed, the drone returns to the center, the locking mechanism is released, lowers to the bottom, the hatch is closed, and the take-off and landing device is stowed to the azimuth, pitch, and roll zero positions.
  • the attitude adjustment mechanism automatically stabilizes, isolates the carrier disturbance, and ensures that the platform is level; at this time, the door automatically opens, the UAV rises to the take-off position, and the servo controller receives the UAV signal through the 5G module.
  • the location information of the first target point on the aircraft route is combined with the inertial navigation module for data fusion to calculate the azimuth and pointing angle of the attitude adjustment mechanism to ensure that during the movement of the carrier, the apron is always facing the first target point on the mission route, and the UAV takes off and lands vertically. After setting the altitude, it flies to the first target point in the shortest distance without adjusting the nose in the air, saving power and reaching the first target point quickly.
  • the attitude adjustment mechanism When the UAV moves and lands, the attitude adjustment mechanism is horizontally stable and isolates carrier disturbance; the servo controller receives the UAV heading information through the 5G module, and integrates the inertial navigation module for data fusion to calculate the azimuth and pointing angle of the attitude adjustment mechanism to ensure The landing pad is in the same direction as the aircraft nose; the drone does not need to adjust the aircraft nose during mobile landing, which reduces the difficulty of mobile landing, shortens the landing time, and saves the drone's power.
  • the apron automatically carries out fully autonomous processes such as returning the drone, locking, storing, charging, and automatically closing the door. No human intervention is required. The drone can be effectively protected after being stored on the apron. .
  • the attitude adjustment mechanism automatically returns to zero and remains consistent with the relative position of the carrier (car body or hull). The attitude adjustment is no longer required to save energy loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机动态起降装置及起降方法,无人机动态起降装置安装在载体基座上,包括姿态调整机构(1)、以及设置在姿态调整机构(1)上的停机坪(2),姿态调整机构(1)设置在载体基座上,用于动态调整停机坪(2)的位姿状态,停机坪(2)内设有用于存放无人机的停机位;姿态调整机构(1)和停机坪(2)均连接有控制器,控制器用于实时动态调整姿态调整机构(1)的位姿,以使停机坪(2)始终保持水平状态。

Description

一种无人机动态起降装置及起降方法
本申请要求申请号: 202210432802.4,发明名称:《 一种无人机动态起降装置及起降方法》作为优先权。
技术领域
本发明属于无人机技术领域,尤其是涉及一种无人机动态起降装置及起降方法。
背景技术
无人机在交通、安防、林业、电力、石油等行业应用越来越广,如何才能实现无人机的长距离、大范围、高频次作业普查、监测显得尤为重要。随着无人机控制技术的不断提升,如何最大限度减少人为参与,节省人工成本,实现无人机自主执行任务的需求变得尤为重要。
目前,为保证无人机能快速到达指定地点作业,不少用户将无人机起降装置安放于车辆、船舶等移动载体,当车辆、船舶等载体移动时,由于地面及海平面易受地势、海浪等复杂环境影响,现有的无人机起降装置通过姿态传感器感知载体姿态变化,大部分通过气缸进行起降装置水平调整,实时调整速度较慢,导致无人机起降过程较为复杂;同时,在无人机起飞过程中,由于无人机机头朝向与航线第一目标点并不重合,因此空中需要不断调整无人机机头,进行转弯飞向第一目标点,飞行距离增大的同时会损耗一定电量;在无人机降落时,需要根据移动载体对无人机机头进行实时调整,在不断调整无人机下降位置时还要不断调整无人机机头方向保持于平台朝向一致,大大增加降落难度,且降落过程中耗电量较多;因此,本专利申请设计了一种无人机动态起降装置及起降方法。
发明内容
有鉴于此,本发明旨在提出一种无人机动态起降装置及起降方法,以解决无人机起降装置调整不便,无人机起降难度较大,且容易消耗较多电量,严重影响无人机任务执行的工作效率的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一方面,本发明提供了一种无人机动态起降装置,安装在载体基座上,包括姿态调整机构、以及设置在姿态调整机构上的停机坪,姿态调整机构设置在载体基座上,用于动态调整停机坪的位姿状态,停机坪内设有用于存放无人机的停机位;
姿态调整机构和停机坪均连接有控制器;所述控制器用于起飞前接收无人机任务航线第一目标点信息,并计算目标角度值,根据计算的目标角度值调整姿态调整机构以使停机坪实时指向第一目标点,保证机头始终朝向第一目标点;所述控制器用于降落前接收无人机航向信息,并计算姿态调整机构方位指向角度,根据计算的方位指向角度调整姿态调整机构以使停机坪进行水平调整,保证停机坪朝向与机头始终保持一致。
进一步的,姿态调整机构包括方位转台、俯仰转台和横滚转台;方位转台设置在载体基座上,方位转台用于调节停机坪的水平旋转角度,俯仰转台转动设置在方位转台的顶部,俯仰转台为U形结构,俯仰转台用于调节停机坪的俯仰角度,横滚转台转动安装在俯仰转台上,停机坪固定设置在横滚转台上,横滚状态用于调节停机坪的横滚角度。
进一步的,方位转台包括固定基座和方位转盘,固定基座上设有多组固定孔,固定基座通过螺栓固定安装在载体基座上,固定基座与方位转盘之间装配安装有齿轮一,方位转盘上固定设置有方位电机,方位电机的输出轴端安装有齿轮二,齿轮二与齿轮一相啮合,方位转盘上还固定设置有方位编码器,方位编码器的主轴端安装有齿轮三,齿轮三也与齿轮一相啮合;
俯仰转台包括支撑架和转向架,支撑架固定设置在方位转盘上,支撑架的侧板上固定设置有俯仰电机,俯 仰电机的输出轴固定设置有齿轮四,支撑架的两侧板内壁上设有多组对应的滚轮,两侧滚轮之间设有用于安装转向架的安置位,转向架为U形结构,转向架的底端设有与齿轮四啮合的弧形齿条一,转向架的两侧外壁上固设有与滚轮配合的弧形凸起部,支撑架的另一侧板上设有对记录转向架转向角度的俯仰编码器;
横滚转台包括角度调节板、横滚电机和横滚编码器,角度调节板的数量为两组,两组角度调节板对应转动安装在转向架的两端,两组角度调节板之间留有用于安装停机坪的空隙,两组角度调节板的底端均设有弧形齿条二,横滚电机和横滚编码器通过固定板安装在转向架上,横滚电机的输出轴端固定设置有齿轮五,齿轮五与其中一组角度调节板上设有的弧形齿条二相啮合,横滚编码器的主轴端安装有齿轮六,齿轮六与另一组角度调节板上设有的弧形齿条二相啮合。
进一步的,停机坪包括上舱体和下舱体,上舱体的顶端设有开合的舱门,上舱体内设有对无人机自动归位居中的归位机构,下舱体内设有升降机构和充电机构,上舱体的底板中心位置设有供升降机构上下升降的通孔,升降机构的升降平台上设有与充电机构的充电电极对应的贯穿孔,升降机构控制归位后的无人机与充电机构的充电电极精准对接。
进一步的,控制器固定设置在方位转台的固定基座上,控制器包括控制电路板,控制电路板上集成配置有伺服控制模块,伺服控制模块用于数据实时解析,伺服控制模块连接有惯性导航模块和5G模块,惯性导航模块设置在载体上,用于感知载体位置、姿态和航向信息,5G模块的数量为两组,一组安装在无人机上,另一组安装在载体上,通过5G模块进行信息交互,将无人机航线及姿态信息实时回传至伺服控制模块,并将载体信息实时回传给无人机。
进一步的,控制电路板上还集成配置有用于控制方位电机工作的方位驱动单元、用于控制俯仰电机工作的俯仰驱动单元和用于控制横滚电机工作的横滚驱动单元,方位驱动单元、俯仰驱动单元和横滚驱动单元均连接伺服控制模块;
姿态调整机构、停机坪和控制器均连接有电源模块。
另一方面,本发明提供了一种无人机动态起降方法,包括起飞方法,所述起飞方法包括如下步骤:
A1、无人机接收起飞指令执行飞行任务,姿态调整机构自动增稳,隔离载体扰动,保证起降装置处于水平状态;
A2、判断步骤A1中的起降装置水平稳定精度是否符合起飞要求;若符合,则停机坪自动打开舱门,无人机升至起飞位;若不符合,则调整起降装置水平状态,直至符合起飞要求;
A3、对升至起飞位后的无人机,伺服控制模块通过5G模块接收无人机航线第一目标点位置信息,并与惯性导航模块进行数据融合处理,计算姿态调整机构方位指向角度,停机坪带动无人机,无人机机头实时指向航线第一目标点;
A4、判断步骤A3中的起降装置方位指向精度是否符合指向起飞要求;若符合,则进行下一步;若不符合,则调整起降装置方位指向直至符合起飞要求;
A5、起降装置方位符合指向起飞要求,锁紧机构释放,无人机解锁起飞;此时,停机坪关闭舱门,姿态调整结构收藏至零位。
进一步的,步骤A3具体方法为:
利用无人机航线第一目标点和惯性导航模块的经度、纬度和高度信息,计算出地球坐标系下载体指向无人机航线第一目标点的方向向量,再融合载体惯性导航模块当前姿态信息,利用坐标变换方式进行目标角度计算,计算出姿态调整机构的方位指向角度;
其中,无人机航线第一目标点的方向向量计算表达式为:
地球坐标系下,载体指向无人机航线第一目标点的方向向量为:
Figure PCTCN2022112072-appb-000001
其中,R 0为地球半径,
Figure PCTCN2022112072-appb-000002
为无人机航线第一目标点的经度、纬度、高度,
Figure PCTCN2022112072-appb-000003
为载体的经度、纬度、高度;
利用载体的经度、纬度信息可以得到地球坐标系与当地水平面坐标系的变换矩阵为M,从而计算出当地水平面坐标系下,载体指向无人机航线第一目标点的方向向量为:Q=M*R;
当地水平面坐标系到载体坐标系的变换矩阵为:
Figure PCTCN2022112072-appb-000004
其中,θ a、θ r、θ f为方位转台、横滚转台、俯仰转台角度值;
载体坐标系下,载体指向无人机航线第一目标点的方向向量为:
Figure PCTCN2022112072-appb-000005
姿态调整模块的方位角为:
Figure PCTCN2022112072-appb-000006
进一步的,还包括降落方法,所述降落方法包括如下步骤:
B1、无人机接收任务结束指令执行降落任务,姿态调整机构水平增稳,隔离载体扰动;
B2、判断步骤B1中的起降装置水平稳定精度是否符合降落要求;若符合,则停机坪自动打开舱门,升降平台升至顶端;若不符合,则调整起降装置水平状态,直至符合降落要求;
B3、升降平台升至顶端后,伺服控制模块通过5G模块接收无人机航向信息,并与惯性导航模块进行数据融合处理,计算姿态调整机构方位指向角度,保证停机坪与无人机机头方向一致;
B4、判断步骤B3中的起降装置方位指向精度是否符合指向降落要求;若符合,则进行下一步;若不符合,则调整起降装置方位指向直至符合降落要求;
B5、起降装置方位符合指向起飞要求,无人机自主降落;归位机构、锁紧机构和升降机构动作,将无人机降落至停机坪内,充电机构对无人机自动充电,停机坪关闭舱门,姿态调整机构归零。
进一步的,步骤B3具体方法为:
伺服控制模块将无人机航向信息与惯性导航模块当前姿态信息进行数据融合,利用坐标变换方式进行目标角度解算,计算出姿态调整机构的方位指向角度;
无人机降落时航向角度为Ω,为保证无人机快速平稳降落,降低移动降落难度,停机坪方位空间角度也需调整为Ω;
当地水平面坐标系下,载体指向无人机的方向向量为:
Figure PCTCN2022112072-appb-000007
当地水平面坐标系到载体坐标系的变换矩阵为:
Figure PCTCN2022112072-appb-000008
其中,θ a、θ r、θ f为方位转台、横滚转台、俯仰转台角度值;
载体坐标系下,载体指向无人机航线第一目标点的方向向量为:
Figure PCTCN2022112072-appb-000009
姿态调整模块的方位角为:
Figure PCTCN2022112072-appb-000010
相对于现有技术,本发明所述的一种无人机动态起降装置及起降方法具有以下有益效果:
(1)本发明所述的一种无人机动态起降装置将停机坪放置于姿态调整机构上方,控制单元置于载体上,共同组成无人机起降装置,姿态调整机构采用U型框架设计,合理利用紧凑空间,预留合理空间安置停机坪下舱,实现姿态调整机构最小化、最优化设计;
无人机起降过程中,起降装置始终处于水平状态,有效隔离车体、船体等移动过程中颠簸造成的大角度扰动,为无人机起降提供良好环境;
无人机起降后,停机坪自动收藏,姿态调整机构自动归零,回归初始位置,不再进行姿态调整,节省电量。
(2)本发明所述的一种无人机动态起降装置可实现无人机起飞前,停机坪舱门自动打开,无人机升至起飞位,锁紧机构释放,无人机起飞;无人机起飞后,停机坪舱门自动关闭。无人机降落前,停机坪舱门自动打开;无人机降落后,停机坪自动进行无人机归位、锁紧、下降、充电、关闭舱门等全自主流程,无需人为干预,有效增加无人机防护。
(3)本发明所述的一种无人机动态起降方法在无人机接收到起飞指令下达后,伺服控制模块融合惯性导航模块信息进行姿态解算,实现起降装置水平调整,隔离载体扰动;舱门自动打开,无人机升至起飞位,此时,伺服控制器通过无人机5G模块,接收无人机任务航线第一目标点经纬度坐标,并融合惯性导航模块信息进行目标角度解算,并驱动姿态调整机构电机使停机坪实时指向第一目标点,保证机头始终朝向第一目标点,锁紧机构释放,无人机自动起飞。
(4)本发明所述的一种无人机动态起降方法实现无人机执行任务航线固定翼模式飞向移动起降点,达到预设高度后,切入旋翼模式进行下降,此时伺服控制模块通过5G模块接收无人机航向信息,并融合惯性导航模块信息进行数据融合姿态解算,计算出姿态调整机构方位指向角度,姿态调整机构带动停机坪进行水平调整,保持停机坪朝向与机头始终保持一致,无人机整个下降过程中无需进行机头调整,只需要进行水平调整即可,大大降低移动降落难度,节省电量。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的一种无人机动态起降装置系统图;
图2为本发明实施例所述的一种无人机动态起降装置整体结构示意图;
图3为本发明实施例所述的姿态调整机构第一角度结构示意图;
图4为本发明实施例所述的姿态调整机构第二角度结构示意图;
图5为本发明实施例所述的停机坪舱门打开状态时的正视图;
图6为本发明实施例所述的归位机构、升降机构和充电机构俯视图;
图7为本发明实施例所述的归位机构、升降机构和充电机构正视图;
图8为本发明实施例所述的升降机构和充电机构结构示意图;
图9为本发明实施例所述的无人机降落至停机坪起降装置时的俯视图;
图10为本发明实施例所述的无人机动态起飞方法流程图;
图11为本发明实施例所述的无人机动态降落方法流程图;
图12为本发明实施例所述的伺服控制模块电路图;
图13为本发明实施例所述的方位驱动单元电路图;
图14为本发明实施例所述的俯仰驱动单元电路图;
图15为本发明实施例所述的横滚驱动单元电路图。
附图标记说明:
1、姿态调整机构;11、方位转台;111、固定基座;112、方位转盘;113、齿轮一;114、方位电机;115、齿轮二;116、方位编码器;117、齿轮三;12、俯仰转台;121、支撑架;122、转向架;123、俯仰电机;124、齿轮四;125、滚轮;126、弧形齿条一;127、弧形凸起部;128、俯仰编码器;13、横滚转台;131、角度调节板;132、横滚电机;133、横滚编码器;134、弧形齿条二;135、固定板;136、齿轮五;137、齿轮六;2、停机坪;21、上舱体;212、舱门;22、下舱体;23、归位机构;24、升降机构;25、充电机构。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、 “左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明中的具体含义。
下面将参考附图并结合实施例来详细说明本发明。
实施例一,请参阅图1和图2所示,本发明实施例提供了一种无人机动态起降装置,安装在载体(车、船等移动载体)基座上,包括姿态调整机构1、以及设置在姿态调整机构1上的停机坪2,姿态调整机构1设置在载体基座上,用于动态调整停机坪2的位姿状态,停机坪内设有用于存放无人机的停机位;将停机坪2放置于姿态调整机构1上方,控制单元置于载体上,共同组成无人机起降装置,姿态调整机构1采用U型框架设计,合理利用紧凑空间,预留合理空间安置停机坪2下舱,实现姿态调整机构1最小化、最优化设计;
无人机起降过程中,起降装置始终处于水平状态,有效隔离车体、船体等移动过程中颠簸造成的大角度扰动,为无人机起降提供良好环境;
无人机起降后,停机坪自动收藏,姿态调整机构自动归零,回归初始位置,不再进行姿态调整,节省电量;
姿态调整机构1和停机坪2均连接有控制器;所述控制器用于起飞前接收无人机任务航线第一目标点信息,并计算目标角度值,根据计算的目标角度值调整姿态调整机构1以使停机坪2实时指向第一目标点,保证机头始终朝向第一目标点;所述控制器用于降落前接收无人机航向信息,并计算姿态调整机构1方位指向角度,根据计算的方位指向角度调整姿态调整机构1以使停机坪2进行水平调整,保证停机坪2朝向与机头始终保持一致;
除采用本专利申请设计的姿态调整机构1以外,也可采用现有的常规姿态调整机构,即能够对停机坪2的位置进行实时调整。
如图3和图4所示,姿态调整机构1包括方位转台11、俯仰转台12和横滚转台13;方位转台11设置在载体基座上,方位转台11用于调节停机坪2的水平旋转角度,俯仰转台12转动设置在方位转台11的顶部,俯仰转台12为U形结构,俯仰转台12用于调节停机坪2的俯仰角度,横滚转台13转动安装在俯仰转台12上,停机坪2固定设置在横滚转台13上,横滚转台13用于调节停机坪2的横滚角度;姿态调整机构1能够实现方位上的360°旋转,俯仰转台12和横滚转台13转动角度范围为-45°~+45°。
方位转台11包括固定基座111和方位转盘112,固定基座111上设有多组固定孔,固定基座111通过螺栓固定安装在载体基座上,固定基座111与方位转盘112之间装配安装有齿轮一113,方位转盘112上固定设置有方位电机114,方位电机114的输出轴端安装有齿轮二115,齿轮二115与齿轮一113相啮合,方位转盘112上还固定设置有方位编码器116,方位编码器116的主轴端安装有齿轮三117,齿轮三117也与齿轮一113相啮合;
俯仰转台12包括支撑架121和转向架122,支撑架121固定设置在方位转盘112上,支撑架121的侧板上固定设置有俯仰电机123,俯仰电机123的输出轴固定设置有齿轮四124,支撑架121的两侧板内壁上设有多组对应的滚轮125,两侧滚轮125之间设有用于安装转向架122的安置位,转向架122为U形结构,转向架122的底端设有与齿轮四124啮合的弧形齿条一126,转向架122的两侧外壁上固设有与滚轮125配合的弧形凸起部127,支撑架121的另一侧板上设有记录转向架122转向角度的俯仰编码器128;
横滚转台13包括角度调节板131、横滚电机132和横滚编码器133,角度调节板131的数量为两组,两组 角度调节板131对应转动安装在转向架122的两端,两组角度调节板131之间留有用于安装停机坪2的空隙,停机坪2与角度调节板131刚性连接,两组角度调节板131的底端均设有弧形齿条二134,横滚电机132和横滚编码器133通过固定板135安装在转向架122上,横滚电机132的输出轴端固定设置有齿轮五136,齿轮五136与其中一组角度调节板131上设有的弧形齿条二134相啮合,横滚编码器133的主轴端安装有齿轮六137,齿轮六137与另一组角度调节板131上设有的弧形齿条二134相啮合。
如图5至图7所示,停机坪2包括上舱体21和下舱体22,上舱体21的顶端设有开合的舱门212,上舱体21内设有对无人机自动归位居中的归位机构23,当无人机降落至停机坪2的上舱体21平台后,归位机构23的水平推杆和竖直推杆两个方向同时推进,实现无人机归中,本技术方案中采用的归位机构23为本领域常规设置,故不再过多赘述;上舱体21内还设有对无人机锁紧的锁紧卡钩,锁紧卡钩未在附图中展示,本技术方案采用的锁紧卡钩为本领域技术人员熟知的常规技术,本专利申请并未对锁紧卡钩进行改进,该锁紧卡钩的结构也不是本专利申请的创新点,仅能够实现对无人机进行锁紧固定即可,因此,不再作过多赘述;
如图7和图8所示,下舱体的正面设有开合门,下舱体22内设有升降机构24和充电机构25,上舱体21的底板中心位置设有供升降机构24上下升降的通孔,升降机构24的升降平台上设有与充电机构25的充电电极对应的贯穿孔,充电机构25的充电电极连接充电电源,升降机构24控制归位后的无人机与充电机构25的充电电极精准对接;
升降机构24的升降模组带动升降平台进行升降动作,整个无人机采用局部升降方式,当无人机归中后,升降机构24将无人机起落架降至停机坪2的上舱体21内,下舱体22内的充电电极与无人机起落架电极实现精准对接,实现无人机内部电池自动充电,舱门212自动关闭;
停机坪2与无人机机头朝向相对位置如图9所示,X为机头及转台零位方向,Y为无人机机翼方向;无人机降落后机头与起降装置相对位置保持一致,此时的停机坪面积最小;无人机降落后,归位机构23从水平、竖直两个方向同时推进,进行无人机快速归位居中;利用锁紧机构实现无人机锁紧,锁紧后升降机构24带动无人机下降,到达底位后实现无人机起落架电极与下舱体22设有的充电电极精准对接,无人机电池进行自动充电。
控制器固定设置在方位转台11的固定基座111上,控制器包括控制电路板,控制电路板上集成配置有伺服控制模块,伺服控制模块用于数据实时解析,伺服控制模块连接有惯性导航模块和5G模块,惯性导航模块设置在载体上,用于感知载体位置、姿态和航向信息数据,惯性导航模块由三轴陀螺、三轴加速度计用GPS和IMU紧耦合技术,提供高精度的三维位置、速度和姿态信息,双天线分为主从天线,可感知载体位置及姿态信息,惯性导航模块采用七维航测公司生产的SDI-699GI型号成熟产品,故不再作进一步赘述;5G模块的数量为两组,一组安装在无人机上,另一组安装在载体上,通过5G模块进行信息交互,将无人机航线及姿态信息实时回传至伺服控制模块,并将载体信息实时回传给无人机,本专利申请采用的惯性导航模块和5G模块均为本领域常规的成熟技术,本专利申请并未对其进行改进,具体模块间连接关系故不再作进一步赘述;
伺服控制模块为整个动态起降装置控制核心,主要功能如下:
(1)连接惯性导航模块、5G模块,实现数据实时解析;
(2)接收惯性导航模块姿态信息,实时解算姿态调整机构电机指向角度,并通过编码器做位置闭环控制,保持停机坪处于水平,隔离载体扰动;
(3)无人机起飞前,通过5G模块实时接收无人机任务航线第一目标点,并结合载体惯性导航模块做数据融合,实时解算方位指向角度,驱动方位电机带动停机坪旋转,保证载体移动过程中,无人机机头始终朝向第一目标点;
(4)无人机降落过程中,通过5G模块实时接收无人机航向信息,并结合惯性导航模块做数据融合,实时解算方位指向角度,驱动方位电机带动停机坪旋转,保证载体移动过程中,保证停机坪始终指向机头;
(5)无人机起降后,驱动停机坪电机实现无人机归位、锁紧、升降、充电、舱门开关等全自主流程;
(6)无人机收藏至停机坪后,控制姿态调整机构方位、俯仰、横滚电机自动指向零位,姿态调整机构归 零。
控制电路板上还集成配置有用于控制方位电机114工作的方位驱动单元、用于控制俯仰电机123工作的俯仰驱动单元和用于控制横滚电机132工作的横滚驱动单元,方位驱动单元、俯仰驱动单元和横滚驱动单元均连接伺服控制模块;
电源模块对整个姿态调整机构1、停机坪2及控制器内部模块进行供电。
具体实施时,如图12所示,伺服控制模块包括主控芯片U6,主控芯片采用但不限于STM32F405VGT7型号芯片,主控芯片U6的PD5管脚、PD6管脚通过RS422串口通信电路连接惯性导航模块,主控芯片U6的PA9管脚、PA10管脚通过RS422串口通信电路连接5G模块,RS422串口通信电路为本领域常规的通信电路,故不再作进一步赘述;
如图13至图15所示,方位驱动单元包括芯片U2,俯仰驱动单元包括芯片U3,横滚单元包括芯片U4,芯片U2、芯片U3和芯片U4采用但不限于G_HOR5/100SE芯片,主控芯片U6的PC12管脚、PD2管脚对应连接芯片U2的RS232_TX管脚、RS232_RX管脚,芯片U2的M2管脚、M3管脚对应连接方位电机输入端,主控芯片U6的PC6管脚、PC7管脚对应连接芯片U3的RS232_TX管脚、RS232_RX管脚,芯片U3的M2管脚、M3管脚对应连接俯仰电机输入端,主控芯片U6的PC10管脚、PC11管脚对应连接芯片U4的RS232_TX管脚、RS232_RX管脚,芯片U4的M2管脚、M3管脚对应连接横滚电机输入端,主控芯片U6的PD12管脚、PD13管脚通过RS422串口通信电路对应连接方位编码器,主控芯片U6的PD10管脚、PD11管脚通过RS422串口通信电路对应连接俯仰编码器,主控芯片U6的PD14管脚、PD15管脚通过RS422串口通信电路对应连接横滚编码器。
该起降装置适用于安装于车载、船载等移动载体或静止载体上,适用无人机主要包括垂直起降无人机,多旋翼无人机,主要包括姿态调整机构、停机坪、控制器三部分组成,姿态调整机构采用U型框架形式,放置停机坪下方,合理利用空间,且姿态调整机构可带动停机坪实现360°旋转;
动态起降装置可有效隔离载体扰动,在无人机起降过程中,始终保持停机坪处于水平,为无人机起降提供良好、稳定起降装置。
实施例二,本发明实施例还提供了一种无人机动态起降装置实现的无人机动态起降方法,该方法包括起飞方法和降落方法;
如图10所示,所述起飞方法包括如下步骤:
伺服控制模块接收到起飞指令后,融合惯性导航模块速度、姿态信息进行增稳控制,隔离载体扰动,三轴框架速度补偿的表达式如下:
Figure PCTCN2022112072-appb-000011
Figure PCTCN2022112072-appb-000012
Figure PCTCN2022112072-appb-000013
其中,
Figure PCTCN2022112072-appb-000014
分别为方位、横滚、俯仰转动角速度;ω bx、ω b y、ω bz为惯性导航模块输出的载体角速度沿坐标轴分量,θ a、θ r为方位、横滚框架角度值;
当起降装置空间水平稳定精度<0.5°,停机坪打开舱门,无人机升至起飞位;
无人机航线第一目标点经度、纬度信息度通过5G模块传输给伺服控制单元,利用无人机航线第一目标点 和惯性导航模块的经度、纬度、高度信息,计算出地球坐标系下载体指向无人机航线第一目标点的方向向量,再融合惯性导航模块当前姿态信息,利用坐标变换方式进行目标角度解算,计算出姿态调整机构的方位指向角;具体的计算表达式如下式所示:
地球坐标系下,载体指向无人机航线第一目标点的方向向量为:
Figure PCTCN2022112072-appb-000015
其中,R 0为地球半径,
Figure PCTCN2022112072-appb-000016
为无人机航线第一目标点的经度、纬度、高度,
Figure PCTCN2022112072-appb-000017
为载体的经度、纬度、高度;
利用载体的经度、纬度信息可以得到地球坐标系与当地水平面坐标系的变换矩阵为M,从而计算出当地水平面坐标系下,载体指向无人机航线第一目标点的方向向量为:Q=M*R;
当地水平面坐标系到载体坐标系的变换矩阵为:
Figure PCTCN2022112072-appb-000018
其中,θ a、θ r、θ f为方位、横滚、俯仰框架角度值;
载体坐标系下,载体指向无人机航线第一目标点的方向向量为:
Figure PCTCN2022112072-appb-000019
姿态调整模块的方位角为
Figure PCTCN2022112072-appb-000020
驱动姿态调整机构电机运动,使得停机坪实时指向第一目标点,当方位指向精度<0.5°时,锁紧机构释放,无人机解锁起飞;
确认无人机起飞后,停机坪关闭舱门,转台收藏至方位、俯仰、横滚零位。
如图11所示,所述降落方法包括如下步骤:
伺服控制模块接收到无人机任务结束指令后,融合惯性导航模块速度、姿态信息进行增稳控制,隔离载体扰动;起降装置速度补偿的表达式如下式所示:
Figure PCTCN2022112072-appb-000021
Figure PCTCN2022112072-appb-000022
Figure PCTCN2022112072-appb-000023
其中,
Figure PCTCN2022112072-appb-000024
分别为方位、横滚、俯仰转动角速度;ω bx、ω b y、ω bz为惯性导航模块输出的载体角速度沿坐标轴分量,θ a、θ r为方位、横滚平台角度值;
当起降装置空间水平稳定精度<0.5°,停机坪打开舱门;
伺服控制模块将无人机航向信息与惯性导航模块当前姿态信息进行数据融合,利用坐标变换方式进行目标角度解算,计算出姿态调整机构的方位指向角,具体计算表达式如下:
无人机降落时航向角度为Ω,为保证无人机快速平稳降落,降低移动降落难度,停机坪方位空间角度也需调整为Ω;
当地水平面坐标系下,载体指向无人机的方向向量为:
Figure PCTCN2022112072-appb-000025
当地水平面坐标系到载体坐标系的变换矩阵为:
Figure PCTCN2022112072-appb-000026
其中,θ a、θ r、θ f为方位、横滚、俯仰转台角度值;
载体坐标系下,载体指向无人机航线第一目标点的方向向量为:
Figure PCTCN2022112072-appb-000027
姿态调整模块的方位角为
Figure PCTCN2022112072-appb-000028
驱动姿态调整机构电机运动,使得停机坪实时指向无人机机头方向,当方位指向精度<0.5°时,无人机自主降落;
确认无人机降落后,无人机归中、锁紧机构释放、降至底部、关闭舱门,起降装置收藏至方位、俯仰、横滚零位。
当无人机起飞指令下达后,姿态调整机构自动增稳,隔离载体扰动,保证平台处于水平;此时,舱门自动打开,无人机升至起飞位,伺服控制器通过5G模块接收无人机航线第一目标点位置信息,并融合惯性导航模块做数据融合,计算姿态调整机构方位指向角度,保证载体移动过程中,停机坪始终朝向任务航线第一目标点,无人机垂直起降至设定高度后,最短距离飞向第一目标点,无需空中调整机头,节省电量,快速到达第一目标点。
当无人机移动降落过程中,姿态调整机构水平稳定,隔离载体扰动;伺服控制器通过5G模块接收无人机航向信息,并融合惯性导航模块做数据融合,计算姿态调整机构方位指向角度,保证停机坪与机头方向一致;无人机在移动降落中无需进行机头调整,降低移动降落难度,缩短降落时间,节省无人机电量。
无人机起、降后,停机坪自动进行无人机归位、锁紧、收藏、充电、舱门自动关闭等全自主流程,无需人为干预,停机坪收藏后可对无人机进行有效防护。
无人机任务结束,停机坪收藏后,姿态调整机构自动归零,保持与载体(车身或船体)相对位置一致,不在进行姿态调整,节省能量损耗。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种无人机动态起降装置,安装在载体基座上,其特征在于:包括姿态调整机构(1)、以及设置在姿态调整机构(1)上的停机坪(2),姿态调整机构(1)设置在载体基座上,用于动态调整停机坪(2)的位姿状态,停机坪内设有用于存放无人机的停机位;
    姿态调整机构(1)和停机坪(2)均连接控制器,控制器包括控制电路板,控制电路板上集成配置有伺服控制模块,伺服控制模块用于数据实时解析,伺服控制模块连接有惯性导航模块和5G模块,通过5G模块进行信息交互,将无人机航线及姿态信息实时回传至伺服控制模块,并将载体信息实时回传给无人机;
    所述控制器用于起飞前接收无人机任务航线第一目标点信息,并计算目标角度值,根据计算的目标角度值调整姿态调整机构(1)以使停机坪(2)实时指向第一目标点,保证机头始终朝向第一目标点;所述控制器用于降落前接收无人机航向信息,并计算姿态调整机构(1)方位指向角度,根据计算的方位指向角度调整姿态调整机构(1)以使停机坪(2)进行水平调整,保证停机坪(2)朝向与机头始终保持一致。
  2. 根据权利要求1所述的一种无人机动态起降装置,其特征在于:姿态调整机构(1)包括方位转台(11)、俯仰转台(12)和横滚转台(13);方位转台(11)设置在载体基座上,方位转台(11)用于调节停机坪(2)的水平旋转角度,俯仰转台(12)转动设置在方位转台(11)的顶部,俯仰转台(12)为U形结构,俯仰转台(12)用于调节停机坪(2)的俯仰角度,横滚转台(13)转动安装在俯仰转台(12)上,停机坪(2)固定设置在横滚转台(13)上,横滚转台(13)用于调节停机坪(2)的横滚角度。
  3. 根据权利要求2所述的一种无人机动态起降装置,其特征在于:方位转台(11)包括固定基座(111)和方位转盘(112),固定基座(111)上设有多组固定孔,固定基座(111)通过螺栓固定安装在载体基座上,固定基座(111)与方位转盘(112)之间装配安装有齿轮一(113),方位转盘(112)上固定设置有方位电机(114),方位电机(114)的输出轴端安装有齿轮二(115),齿轮二(115)与齿轮一(113)相啮合,方位转盘(112)上还固定设置有方位编码器(116),方位编码器(116)的主轴端安装有齿轮三(117),齿轮三(117)也与齿轮一(113)相啮合;
    俯仰转台(12)包括支撑架(121)和转向架(122),支撑架(121)固定设置在方位转盘(112)上,支撑架(121)的侧板上固定设置有俯仰电机(123),俯仰电机(123)的输出轴固定设置有齿轮四(124),支撑架(121)的两侧板内壁上设有多组对应的滚轮(125),两侧滚轮(125)之间设有用于安装转向架(122)的安置位,转向架(122)为U形结构,转向架(122)的底端设有与齿轮四(124)啮合的弧形齿条一(126),转向架(122)的两侧外壁上固设有与滚轮(125)配合的弧形凸起部(127),支撑架(121)的另一侧板上设有记录转向架(122)转向角度的俯仰编码器(128);
    横滚转台(13)包括角度调节板(131)、横滚电机(132)和横滚编码器(133),角度调节板(131)的数量为两组,两组角度调节板(131)对应转动安装在转向架(122)的两端,两组角度调节板(131)之间留有用于安装停机坪(2)的空隙,两组角度调节板(131)的底端均设有弧形齿条二(134),横滚电机(132)和横滚编码器(133)通过固定板(135)安装在转向架(122)上,横滚电机(132)的输出轴端固定设置有齿轮五(136),齿轮五(136)与其中一组角度调节板(131)上设有的弧形齿条二(134)相啮合,横滚编码器(133)的主轴端安装有齿轮六(137),齿轮六(137)与另一组角度调节板(131)上设有的弧形齿条二(134)相啮合。
  4. 根据权利要求3所述的一种无人机动态起降装置,其特征在于:停机坪(2)包括上舱体(21)和下舱体(22),上舱体(21)的顶端设有开合的舱门(212),上舱体(21)内设有对无人机自动归位居中的归位机构(23),下舱体(22)内设有升降机构(24)和充电机构(25),上舱体(21)的底板中心位置设有供升降机构(24)上下升降的通孔,升降机构(24)的升降平台上设有与充电机构(25)的充电电极对应的贯穿孔,升降机构(24)控制归位后的无人机与充电机构(25)的充电电极精准对接。
  5. 根据权利要求4所述的一种无人机动态起降装置,其特征在于:控制器固定设置在方位转台(11)的固定基座(111)上,惯性导航模块设置在载体上,用于感知载体位置、姿态和航向信息,5G模块的数量为两组,一组安装在无人机上,另一组安装在载体上。
  6. 根据权利要求5所述的一种无人机动态起降装置,其特征在于:控制电路板上还集成配置有用于控制方位电机(114)工作的方位驱动单元、用于控制俯仰电机(123)工作的俯仰驱动单元和用于控制横滚电机(132)工作的横滚驱动单元,方位驱动单元、俯仰驱动单元和横滚驱动单元均连接伺服控制模块;
    姿态调整机构(1)、停机坪(2)和控制器均连接电源模块。
  7. 一种应用于权利要求6所述的一种无人机动态起降装置的动态起降方法,其特征在于:包括起飞方法,所述起飞方法包括如下步骤:
    A1、无人机接收起飞指令执行飞行任务,姿态调整机构自动增稳,隔离载体扰动,保证起降装置处于水平状态;
    A2、判断步骤A1中的起降装置水平稳定精度是否符合起飞要求;若符合,则停机坪自动打开舱门,无人机升至起飞位;若不符合,则调整起降装置水平状态,直至符合起飞要求;
    A3、对升至起飞位后的无人机,伺服控制模块通过5G模块接收无人机航线第一目标点位置信息,并与惯性导航模块进行数据融合处理,计算姿态调整机构方位指向角度,停机坪带动无人机,无人机机头实时指向航线第一目标点;
    A4、判断步骤A3中的起降装置方位指向精度是否符合指向起飞要求;若符合,则进行下一步;若不符合,则调整起降装置方位指向直至符合指向起飞要求;
    A5、起降装置方位符合指向起飞要求,锁紧机构释放,无人机解锁起飞;此时,停机坪关闭舱门,姿态调整结构收藏至零位。
  8. 根据权利要求7所述的一种无人机动态起降方法,其特征在于,步骤A3具体方法为:
    利用无人机航线第一目标点和惯性导航模块的经度、纬度和高度信息,计算出地球坐标系下载体指向无人机航线第一目标点的方向向量,再融合载体惯性导航模块当前姿态信息,利用坐标变换方式进行目标角度计算,计算出姿态调整机构的方位指向角度;
    其中,无人机航线第一目标点的方向向量计算表达式为:
    地球坐标系下,载体指向无人机航线第一目标点的方向向量为:
    Figure PCTCN2022112072-appb-100001
    其中,R 0为地球半径,
    Figure PCTCN2022112072-appb-100002
    为无人机航线第一目标点的经度、纬度、高度,
    Figure PCTCN2022112072-appb-100003
    为载体的经度、纬度、高度;
    利用载体的经度、纬度信息可以得到地球坐标系与当地水平面坐标系的变换矩阵为M,从而计算出当地水平面坐标系下,载体指向无人机航线第一目标点的方向向量为:Q=M*R;
    当地水平面坐标系到载体坐标系的变换矩阵为:
    Figure PCTCN2022112072-appb-100004
    其中,θ a、θ r、θ f为方位转台、横滚转台、俯仰转台角度值;
    载体坐标系下,载体指向无人机航线第一目标点的方向向量为:
    Figure PCTCN2022112072-appb-100005
    姿态调整模块的方位角为:
    Figure PCTCN2022112072-appb-100006
  9. 根据权利要求7所述的一种无人机动态起降方法,其特征在于:还包括降落方法,所述降落方法包括如下步骤:
    B1、无人机接收任务结束指令执行降落任务,姿态调整机构水平增稳,隔离载体扰动;
    B2、判断步骤B1中的起降装置水平稳定精度是否符合降落要求;若符合,则停机坪自动打开舱门,升降平台升至顶端;若不符合,则调整起降装置水平状态,直至符合降落要求;
    B3、升降平台升至顶端后,伺服控制模块通过5G模块接收无人机航向信息,并与惯性导航模块进行数据融合处理,计算姿态调整机构方位指向角度,保证停机坪与无人机机头方向一致;
    B4、判断步骤B3中的起降装置方位指向精度是否符合指向降落要求;若符合,则进行下一步;若不符合,则调整起降装置方位指向直至符合指向降落要求;
    B5、起降装置方位符合指向起飞要求,无人机自主降落;归位机构、锁紧机构和升降机构动作,将无人机降落至停机坪内,充电机构对无人机自动充电,停机坪关闭舱门,姿态调整机构归零。
  10. 根据权利要求9所述的一种无人机动态起降方法,其特征在于,步骤B3具体方法为:
    伺服控制模块将无人机航向信息与惯性导航模块当前姿态信息进行数据融合,利用坐标变换方式进行目标角度解算,计算出姿态调整机构的方位指向角度;
    无人机降落时航向角度为Ω,为保证无人机快速平稳降落,降低移动降落难度,停机坪方位空间角度也需调整为Ω;
    当地水平面坐标系下,载体指向无人机的方向向量为:
    Figure PCTCN2022112072-appb-100007
    当地水平面坐标系到载体坐标系的变换矩阵为:
    Figure PCTCN2022112072-appb-100008
    其中,θ a、θ r、θ f为方位转台、横滚转台、俯仰转台角度值;
    载体坐标系下,载体指向无人机航线第一目标点的方向向量为:
    Figure PCTCN2022112072-appb-100009
    姿态调整模块的方位角为:
    Figure PCTCN2022112072-appb-100010
PCT/CN2022/112072 2022-04-24 2022-08-12 一种无人机动态起降装置及起降方法 WO2023206864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210432802.4 2022-04-24
CN202210432802.4A CN114524105B (zh) 2022-04-24 2022-04-24 一种无人机动态起降装置及起降方法

Publications (1)

Publication Number Publication Date
WO2023206864A1 true WO2023206864A1 (zh) 2023-11-02

Family

ID=81628312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112072 WO2023206864A1 (zh) 2022-04-24 2022-08-12 一种无人机动态起降装置及起降方法

Country Status (2)

Country Link
CN (1) CN114524105B (zh)
WO (1) WO2023206864A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117645010A (zh) * 2024-01-30 2024-03-05 西安中创博远网络科技有限公司 一种测绘无人飞行平台

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524105B (zh) * 2022-04-24 2022-08-02 天津航天中为数据系统科技有限公司 一种无人机动态起降装置及起降方法
CN116573155A (zh) * 2023-06-29 2023-08-11 北京卫星环境工程研究所 一种无人机调姿装置
CN116620596A (zh) * 2023-07-21 2023-08-22 国网四川省电力公司成都供电公司 无人机用智能机场控制方法
CN116873201B (zh) * 2023-09-01 2023-11-17 交通运输部水运科学研究所 基于船舶引航的自适应航行态势感知设备投掷保护装置
CN116923760B (zh) * 2023-09-14 2023-12-22 天津航天中为数据系统科技有限公司 一种车载伸缩无人机升降归位平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650136B1 (ko) * 2016-02-05 2016-08-25 김석준 원위치 자동복귀·컬러트래킹 자동추적을 갖는 스마트 드론 장치
CN106647785A (zh) * 2016-11-16 2017-05-10 深圳市元征科技股份有限公司 无人机停机坪控制方法及装置
CN209814320U (zh) * 2019-03-27 2019-12-20 湖南优加特装智能科技有限公司 适用于系留无人机的起降平台
CN111596687A (zh) * 2020-05-26 2020-08-28 北京航空航天大学 一种垂直起降无人机移动平台降落引导装置及其引导方法
CN213734758U (zh) * 2020-10-12 2021-07-20 天津航天中为数据系统科技有限公司 一种车载无人机自动归位装置
CN113737668A (zh) * 2020-11-26 2021-12-03 宁夏翼航智控科技有限公司 无人机自动归中及航向校准停机坪
CN114524105A (zh) * 2022-04-24 2022-05-24 天津航天中为数据系统科技有限公司 一种无人机动态起降装置及起降方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126553B (zh) * 2010-01-12 2012-12-26 北京航空航天大学 一种垂直起降小型无人机
PL218824B1 (pl) * 2011-11-08 2015-01-30 Sławomir Malicki Zespół wózka do systemu przemieszczania samolotów po płycie lotniska
WO2017109780A1 (en) * 2015-12-21 2017-06-29 Straus Itai Autonomous docking station for drones
CN206654178U (zh) * 2017-03-21 2017-11-21 常州信息职业技术学院 一种无飞行甲板航母
CN109383787B (zh) * 2018-08-31 2022-09-16 辽宁同心圆科技有限公司 航空发动机助力系统
CN111731499A (zh) * 2020-07-21 2020-10-02 天津航天中为数据系统科技有限公司 一种无人机自动充电的无人值守系统
US20220097849A1 (en) * 2020-09-30 2022-03-31 Zhejiang University Tailstock type vertical take-off and landing unmanned aerial vehicle and control method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650136B1 (ko) * 2016-02-05 2016-08-25 김석준 원위치 자동복귀·컬러트래킹 자동추적을 갖는 스마트 드론 장치
CN106647785A (zh) * 2016-11-16 2017-05-10 深圳市元征科技股份有限公司 无人机停机坪控制方法及装置
CN209814320U (zh) * 2019-03-27 2019-12-20 湖南优加特装智能科技有限公司 适用于系留无人机的起降平台
CN111596687A (zh) * 2020-05-26 2020-08-28 北京航空航天大学 一种垂直起降无人机移动平台降落引导装置及其引导方法
CN213734758U (zh) * 2020-10-12 2021-07-20 天津航天中为数据系统科技有限公司 一种车载无人机自动归位装置
CN113737668A (zh) * 2020-11-26 2021-12-03 宁夏翼航智控科技有限公司 无人机自动归中及航向校准停机坪
CN114524105A (zh) * 2022-04-24 2022-05-24 天津航天中为数据系统科技有限公司 一种无人机动态起降装置及起降方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117645010A (zh) * 2024-01-30 2024-03-05 西安中创博远网络科技有限公司 一种测绘无人飞行平台
CN117645010B (zh) * 2024-01-30 2024-03-29 西安中创博远网络科技有限公司 一种测绘无人飞行平台

Also Published As

Publication number Publication date
CN114524105B (zh) 2022-08-02
CN114524105A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023206864A1 (zh) 一种无人机动态起降装置及起降方法
US20230303244A1 (en) High speed multi-rotor vertical takeoff and landing aircraft
CN109917767A (zh) 一种分布式无人机集群自主管理系统及控制方法
EP3167535B1 (en) Systems and methods for uav battery exchange
KR101262968B1 (ko) 구형 탑재부를 구비한 무인항공기 및 무인항공기 탑재를 위한 무인지상차량을 포함하는 무인 항공 장치
RU2718460C1 (ru) Мультикоптер с воздушными винтами различного назначения
NL2017971B1 (en) Unmanned aerial vehicle
CN112482855A (zh) 紧凑型翻转式双无人机机巢及控制方法
AU2019100363A4 (en) Unmanned Aerial Vehicle And Its Program Control Device Unmanned Aerial Vehicle And Its Program Control Device
CN104364154A (zh) 飞行器,优选无人驾驶的飞行器
RU194136U1 (ru) Станция для беспилотного летательного аппарата
WO2018011402A1 (en) Unmanned aerial or submarine vehicle
CN208506595U (zh) 一种无人机控制系统
CN108423153A (zh) 模块化微型无人机
CN103350624A (zh) 螺旋翼推进式飞行汽车
CN109597424A (zh) 基于视频图像处理的无人机巡线控制系统
RU2518440C2 (ru) Беспилотный летательный аппарат и комплекс авианаблюдения для него
CN115959317A (zh) 一种空地协同的无人机起降系统
CN115071349A (zh) 一种水陆空多域混动球笼自稳无人机系统
Sun et al. Design and field test of a foldable wing unmanned aerial–underwater vehicle
Ranasinghe et al. Development of gasoline-electric hybrid propulsion surveillance and reconnaissance VTOL UAV
CN112849390A (zh) 一种运用折叠机翼和共轴双桨动力模块的双形态无人机
US12006033B1 (en) Boom assembly for aerial vehicle
CN220548894U (zh) 一种新型两栖无人机
RU2798089C1 (ru) Летательный аппарат (варианты), самоходный модуль, полезная нагрузка, система и способ для перемещения полезной нагрузки (варианты)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939690

Country of ref document: EP

Kind code of ref document: A1