WO2023206713A1 - 一种Micro LED光投射芯片及其制造方法 - Google Patents

一种Micro LED光投射芯片及其制造方法 Download PDF

Info

Publication number
WO2023206713A1
WO2023206713A1 PCT/CN2022/097040 CN2022097040W WO2023206713A1 WO 2023206713 A1 WO2023206713 A1 WO 2023206713A1 CN 2022097040 W CN2022097040 W CN 2022097040W WO 2023206713 A1 WO2023206713 A1 WO 2023206713A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lens
chip
wafer
light projection
Prior art date
Application number
PCT/CN2022/097040
Other languages
English (en)
French (fr)
Inventor
张帆
张婷芳
吴永胜
Original Assignee
福建兆元光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建兆元光电有限公司 filed Critical 福建兆元光电有限公司
Priority to EP22879668.6A priority Critical patent/EP4293734A1/en
Priority to US18/142,044 priority patent/US20230352616A1/en
Publication of WO2023206713A1 publication Critical patent/WO2023206713A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to the field of semiconductor electronic technology, and in particular to a Micro LED light projection chip and a manufacturing method thereof.
  • Micro LED has the following three major advantages: 1. High brightness; 2. Long life, high reliability, and high environmental tolerance.
  • Micro Examples of LEDs being used in automotive projection displays There is currently no Micro Examples of LEDs being used in automotive projection displays.
  • Existing automotive projection light sources mostly use single-point large-size LEDs, which have low integration, poor pixel density, occupy a large volume, and require more optical components such as lenses.
  • the technical problem to be solved by the present invention is to provide a Micro LED light projection chip and a manufacturing method thereof, which can reduce the demand for optical components of the light projection chip and improve the resolution of vehicle projection.
  • the technical solution adopted by the present invention is:
  • a method for manufacturing Micro LED light projection chips including steps:
  • the substrate On the side of the wafer substrate away from the metal electrode, the substrate is made into a lens according to a preset array pattern;
  • the electrodes of the integrated chip are welded to the driving base using a welding material to obtain a light projection chip.
  • a Micro LED light projection chip including an integrated chip, welding material and driving substrate;
  • the integrated chip includes a substrate and a plurality of sub-pixels located on the surface of the substrate;
  • the side of the substrate away from the sub-pixels has a lens shape etched according to a preset array pattern
  • the sub-pixels are arranged according to a preset array pattern, and a welding pad is provided at the position of each sub-pixel on the surface of the substrate;
  • the soldering pad is connected to the driving base through soldering material.
  • the beneficial effects of the present invention are: making the substrate into a lens according to a preset array pattern on the side of the wafer substrate away from the metal electrode, so that the chip can integrate the lens without using additional lenses or optical components; and cutting the wafer Circles can obtain integrated chips. Through multiple sub-pixels on integrated chips, they can obtain chips with high integration, high pixel density and small size. Each pixel on the chip corresponds to the driving substrate, which facilitates the realization of resolution through driving design. Adjustable and pixel-free partitioning effect.
  • Figure 1 is a flow chart of a manufacturing method of a Micro LED light projection chip according to an embodiment of the present invention
  • Figure 2 is a structural diagram of a Micro LED light projection chip using a substrate to make a lens according to an embodiment of the present invention
  • Figure 3 is a structural diagram of a Micro LED light projection chip that adjusts the shape of a lens made from a substrate according to an embodiment of the present invention
  • Figure 4 shows a Micro LED light projection chip using a substrate and a silicon oxide layer to make a lens according to an embodiment of the present invention
  • Figure 5 is an application scenario diagram of a Micro LED light projection chip according to an embodiment of the present invention.
  • Figure 6 is a driving effect diagram of a Micro LED light projection chip according to an embodiment of the present invention.
  • Pixel array 1. Pixel array; 2. Pad; 3. Sub-pixel; 4. Substrate; 5. Lens; 6. Integrated chip; 7. Welding material; 8. Driving substrate; 9. Light projection chip mounting position; 10. Projection area; 11. Silicon oxide layer.
  • an embodiment of the present invention provides a method for manufacturing a Micro LED light projection chip, including the steps:
  • the substrate On the side of the wafer substrate away from the metal electrode, the substrate is made into a lens according to a preset array pattern;
  • the electrodes of the integrated chip are welded to the driving base using a welding material to obtain a light projection chip.
  • the beneficial effect of the present invention is that the substrate is made into a lens according to a preset array pattern on the side of the wafer substrate away from the metal electrode, so that the chip can integrate the lens without using additional lenses or optics. components; and cutting the wafer can produce an integrated chip.
  • a chip with high integration, high pixel density and small size can be obtained; each pixel on the chip corresponds to the driving substrate, making it easy to pass
  • the driver design achieves adjustable resolution and free pixel partitioning.
  • the method includes:
  • a pixel array of the chip is arranged on the wafer according to the arrangement of the driving substrate, and a plurality of LED self-luminous pixels are integrated into the chip of the wafer according to the preset array pattern of the pixel array.
  • making the substrate into a lens according to a preset array pattern includes:
  • the side of the wafer substrate away from the metal electrode is ground and polished, and the substrate is etched according to a preset array pattern to make the substrate into a lens.
  • using a substrate to make a lens can enable the chip to integrate the lens instead of adding an external lens or optical component, thereby reducing redundant connection lines.
  • using a substrate to make a lens can also improve the corrosion resistance and acid and alkali resistance of the lens. ability.
  • making the substrate into a lens also includes:
  • a silicon oxide layer is deposited on the lens, and the silicon oxide layer is etched to adjust the morphology of the lens.
  • performing secondary deposition and secondary etching on the lens can adjust the shape of the lens to the expected aspect ratio and tip angle.
  • fabricating the substrate into a lens according to a preset array pattern also includes:
  • a silicon oxide layer is deposited on the side of the wafer substrate away from the metal electrode, and the substrate and the silicon oxide layer are etched according to a preset array pattern. Based on the substrate and the oxide The silicon layer is made into a lens.
  • FIG. 2 another embodiment of the present invention provides a Micro LED light projection chip, including an integrated chip, soldering material and a driving substrate;
  • the integrated chip includes a substrate and a plurality of sub-pixels located on the surface of the substrate;
  • the side of the substrate away from the sub-pixels has a lens shape etched according to a preset array pattern
  • the sub-pixels are arranged according to a preset array pattern, and a welding pad is provided at the position of each sub-pixel on the surface of the substrate;
  • the soldering pad is connected to the driving base through soldering material.
  • the substrate is made into a lens according to a preset array pattern on the side of the wafer substrate away from the metal electrode, so that the chip can integrate the lens without using additional lenses or optical components; and cutting the wafer can An integrated chip is obtained.
  • a chip with high integration, high pixel density and small size can be obtained; each pixel on the chip corresponds to the driving substrate, making it easy to achieve adjustable resolution through driving design. And the effect of free pixel partitioning.
  • a silicon oxide layer is deposited on the side of the substrate away from the sub-pixels, and the side of the substrate away from the sub-pixels is a lens obtained by etching the substrate and the silicon oxide layer according to the preset array pattern. shape.
  • a silicon oxide layer with a lens-shaped surface is provided on a lens shape on a side of the substrate away from the sub-pixel.
  • performing secondary deposition and secondary etching on the lens can adjust the shape of the lens to the expected aspect ratio and tip angle.
  • the base width of the lens shape is 10-200 ⁇ m, and the height is 50-500 ⁇ m.
  • the thickness of the silicon oxide layer is 10-300 ⁇ m.
  • the morphology of the lens can be adjusted by depositing a silicon oxide layer, thereby improving the flexibility of lens production.
  • Micro LED light projection chip and its manufacturing method of the present invention are suitable for use as a high-definition projection light source for vehicles.
  • the specific implementation is described below:
  • Micro LED light projection chip manufacturing method including steps:
  • 9 to 1 million high-brightness LED self-luminous pixels can be integrated into a chip.
  • the chip size depends on the number of pixels.
  • the pixel density can reach more than 1000ppi, and the corresponding size is between 20 ⁇ m ⁇ 2cm.
  • the substrate 4 is made into a lens 5 according to a preset array pattern.
  • the lens 5 can choose a convex lens for concentrating or a concave lens for scattering.
  • Making the lens 5 includes the following three methods:
  • the side of the wafer substrate 4 away from the metal electrode is ground and polished, and the substrate 4 is etched according to a preset array pattern, and an integrated lens 5 is produced based on the substrate 4 .
  • the side of the wafer substrate 4 away from the metal electrode is ground and polished, and the substrate 4 is etched according to a preset array pattern, and an integrated lens 5 is made based on the substrate 4; A silicon oxide layer 11 is deposited on the integrated lens 5 , and the silicon oxide layer 11 is etched to adjust the morphology of the lens 5 .
  • a silicon oxide layer 11 is deposited on the side of the wafer's substrate 4 away from the metal electrode, and the substrate 4 and the silicon oxide layer 11 are etched according to a preset array pattern. Based on the substrate 4 and the silicon oxide layer 11 to make an integrated lens 5 .
  • This embodiment provides a specific manufacturing method of Micro LED light projection chip, in which the substrate 4 is used to make the lens 5, specifically:
  • Step 11 Use the GaN epitaxial wafer grown on the sapphire substrate 4 using MOCVD equipment as the substrate, use photolithography machines and photoresist and other photolithography facilities and materials to transfer the pattern according to the designed chip pattern, and make the GaN surface by etching N-type layer.
  • Step 12 Evaporate the conductive layer on the above wafer, use photolithography equipment and materials such as photolithography machine and photoresist to transfer the pattern according to the designed chip pattern, and remove the current expansion layer film on the N-type layer through etching .
  • Step 13 Use ALD equipment and PECVD equipment to deposit aluminum oxide and silicon oxide protective layers on the above wafer.
  • Step 14 Apply glue and photolithography on the above-mentioned wafer, then use metal evaporation to evaporate metal electrodes, and then perform metal stripping to leave metal electrodes at predetermined positions.
  • Step 15 Please refer to Figure 2 to grind and polish the 4 surfaces of the substrate of the above wafer.
  • Pattern transfer, ICP etching is performed to produce an integrated lens 5.
  • the bottom width of the lens 5 ranges from 10 to 200 ⁇ m, and the height of the lens 5 ranges from 50 to 300 ⁇ m.
  • Step 16 Cut the above wafer into an integrated Micro LED chip with lens 5 .
  • Step 17 Weld the above-mentioned chip to the driving base 8 through the welding material 7.
  • the welding surface of the chip is the chip electrode. After welding, the chip electrode surface is below and combined with the driving base 8, and the lens 5 is above.
  • the above is the manufacturing method of Micro LED light projection chip for automobiles. Please refer to Figure 5. Mount the above-mentioned driver and chip in the light projection chip installation position 9 such as in the car.
  • the projection effect can be achieved in the projection area 10 by providing power and control through the driver. and control of projected graphics.
  • This embodiment provides a specific manufacturing method of Micro LED light projection chip, in which the shape of the lens 5 made of the substrate 4 is adjusted, specifically:
  • Step 21 Use MOCVD equipment to grow the GaN epitaxial wafer on the sapphire substrate 4 as the substrate, use photolithography machines and photoresist and other photolithography facilities and materials to transfer the pattern according to the designed chip pattern, and etch the GaN surface to produce N-type layer.
  • Step 22 Evaporate a conductive layer on the above wafer.
  • the conductive layer can be made of indium tin oxide, NiAu alloy metal or molybdenum oxide.
  • Step 23 Use DBR equipment and PECVD equipment to deposit titanium oxide and silicon oxide protective layers on the above-mentioned wafers.
  • Step 24 Apply glue and photolithography on the above-mentioned wafer, use electron beam evaporation of metal or sputtering of metal to make conductive pad 2, and then perform metal stripping to leave a metal electrode at a predetermined position.
  • Step 25 Grind and polish the four substrate surfaces of the above-mentioned wafer. The processing continues on the sapphire surface, and the photolithography equipment and materials such as photolithography machine and photoresist are used to transfer the pattern on the substrate 4 according to the designed microlens array pattern.
  • Step 26 Perform ICP etching according to the pattern produced in Step 25 to produce an integrated lens 5.
  • the bottom width of the lens 5 ranges from 10 to 200 ⁇ m, and the height of the lens 5 ranges from 50 to 500 ⁇ m.
  • Step 27 Use ALD or PECVD equipment to continue secondary deposition on the surface of the above-mentioned lens 5, deposit SiO2 material, and then use photoresist to create patterns through a photolithography machine.
  • Step 28 Please refer to Figure 3 to perform a second etching on the lens 5.
  • the second etching can adjust the shape of the lens 5 to obtain the desired aspect ratio and tip angle.
  • Step 29 Cut the above wafer to make an integrated Micro LED chip with lens 5. Weld the above chip to the driving substrate 8 through the welding material 7. The welding surface of the chip is the chip electrode. After welding, the chip electrode surface is below. , combined with the driving substrate 8.
  • the above-mentioned driver and chip are mounted at the light projection chip installation location 9 such as in a car, and the projection effect and control of the projection graphics can be achieved in the projection area 10 by providing power and control through the driver.
  • This embodiment provides a specific manufacturing method of Micro LED light projection chip, in which the substrate 4 and the silicon oxide layer 11 are used to make the lens 5. Specifically:
  • Step 31 Use MOCVD equipment to grow the GaN epitaxial wafer on the sapphire substrate 4 as the substrate, use photolithography machines and photoresist and other photolithography facilities and materials to transfer the pattern according to the designed chip pattern, and etch the GaN surface to produce N-type layer.
  • Step 32 Evaporate a conductive layer on the above wafer.
  • the conductive layer can be made of indium tin oxide, NiAu alloy metal or molybdenum oxide.
  • Step 33 Use DBR equipment and PECVD equipment to deposit titanium oxide and silicon oxide protective layers on the above-mentioned wafers.
  • Step 34 Apply glue and photolithography on the above-mentioned wafer, use electron beam evaporation of metal or sputtering of metal to make conductive pad 2, and then perform metal stripping to leave a metal electrode at a predetermined position.
  • Step 35 Please refer to Figure 4 to grind and polish the 4 surfaces of the substrate of the above wafer.
  • Silicon oxide is deposited on the sapphire surface with a thickness ranging from 10-300 ⁇ m.
  • Step 36 Perform ICP etching on the above pattern to produce an integrated lens 5.
  • the bottom width of the lens 5 ranges from 10 to 200 ⁇ m, and the height of the lens 5 ranges from 50 to 500 ⁇ m.
  • Step 37 Cut the above wafer into an integrated Micro LED chip with lens 5 .
  • Step 38 Weld the above-mentioned chip to the driving base 8 through the welding material 7.
  • the welding surface of the chip is the chip electrode. After welding, the chip electrode surface is below and combined with the driving base 8.
  • the above-mentioned driver and chip are mounted at the light projection chip installation location 9 such as in a car, and the projection effect and control of the projection graphics can be achieved in the projection area 10 by providing power and control through the driver.
  • a Micro LED light projection chip includes an integrated chip 6, a soldering material 7 and a driving substrate 8;
  • the integrated chip 6 includes a substrate 4 and a plurality of sub-pixels 3 located on the surface of the substrate 4;
  • a soldering pad 2 is provided at the position of each sub-pixel 3 on the surface of the substrate, and the soldering pad 2 is connected to the driving substrate 8 through a soldering material 7 .
  • the side of the substrate 4 away from the sub-pixel 3 is in the shape of a lens 5 etched according to the preset array pattern.
  • the side of the substrate 4 away from the sub-pixel 3 is deposited on the lens shape.
  • a silicon oxide layer 11 is deposited on the side of the substrate 4 away from the sub-pixel 3 , and the side of the substrate 4 away from the sub-pixel 3 is formed according to the preset array.
  • the lens shape obtained by pattern etching the substrate 4 and the silicon oxide layer 11;
  • the base width of the lens shape is 10-200 ⁇ m
  • the height of the lens shape is 50-500 ⁇ m
  • the thickness of the silicon oxide layer 11 is 10-300 ⁇ m.
  • the projection demonstration effect of placing the Micro LED light projection chip on the car is shown in Figure 5, and please refer to Figure 6 to achieve adjustable resolution and free pixel partitioning light source effects through driver design to achieve single-pixel display or multi-pixel display.
  • the present invention provides a Micro LED light projection chip and a manufacturing method thereof.
  • the present invention is characterized by performing semiconductor process processing on the wafer and integrating multiple sub-pixels on the wafer.
  • the projection light source is compressed to a very small range and has extremely high pixel density; combined with the driving substrate, the size and shape of the spot formed by the projection light source can be more controllable, and can be combined in real time through software without relying on hardware conditions.
  • the gallium nitride, aluminum oxide, and silicon oxide materials used in the manufacturing method of the present invention are all materials with strong resistance to environmental humidity, temperature, acid and alkali, etc.
  • the chip can be directly placed on the outer surface of basic objects such as cars without Protected or covered by other materials.
  • the integrated matrix chip in the present invention has its own lens, and the chip and the lens are integrated on a substrate.
  • the function of the lens can be customized during the chip processing stage to achieve light gathering and scattering, and the lens can be composed of multiple components, which can By combining two or more materials to form a projection-strengthening structure, the shape and projection effect of the projection lens can be customized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

一种Micro LED光投射芯片(6)及其制造方法,在晶圆的衬底(4)远离金属电极的一面按照预设阵列图形基于衬底(4)制作一体式透镜(5),使得芯片(6)能够集成透镜(5),而不需要使用外加的透镜或者光学组件;并且切割晶圆能够得到集成式芯片(6),通过集成式芯片(6)上的多个子像素能够得到高集成度、高像素密度和小体积的芯片(6);芯片(6)上的每一个像素与驱动基底(8)相对应,便于通过驱动设计实现分辨率可调以及像素自由分区的效果。

Description

一种Micro LED光投射芯片及其制造方法 技术领域
本发明涉及半导体电子技术领域,特别涉及一种Micro LED光投射芯片及其制造方法。
背景技术
目前Micro LED具备以下三大优势:1、高亮度;2、高寿命、高可靠性、高环境耐受能力。但是,目前还没有Micro LED应用于车用投影显示的案例,并且现有的汽车用投影光源多使用单点大尺寸LED,其集成度很低,像素密度差,占用体积大,需要配备较多的透镜等光学组件。
技术问题
本发明所要解决的技术问题是:提供一种Micro LED光投射芯片及其制造方法,能够减少光投射芯片对光学组件的需求并提高车用投影的分辨率。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案为:
一种Micro LED光投射芯片制造方法,包括步骤:
按照预设阵列图形在晶圆上依次制备导电层、保护层并蒸镀金属电极;
在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜;
将刻蚀后的所述晶圆进行切割,得到带透镜的集成式芯片;
通过焊接材料将所述集成式芯片的电极与驱动基底焊接,得到光投射芯片。
为了解决上述技术问题,本发明采用的另一技术方案为:
一种Micro LED光投射芯片,包括集成式芯片、焊接材料和驱动基底;
所述集成式芯片包括衬底以及位于所述衬底表面的多个子像素;
所述衬底远离所述子像素的一面为按照预设阵列图形刻蚀的透镜形状;
所述子像素按照预设阵列图形排列,所述衬底表面每一个子像素的位置上设置有焊接焊盘;
所述焊接焊盘通过焊接材料与驱动基底连接。
有益效果
本发明的有益效果在于:在晶圆的衬底远离金属电极的一面按照预设阵列图形将衬底制作成透镜,使得芯片能够集成透镜,而不需要使用外加的透镜或者光学组件;并且切割晶圆能够得到集成式芯片,通过集成式芯片上的多个子像素能够得到高集成度、高像素密度和小体积的芯片;芯片上的每一个像素与驱动基底相对应,便于通过驱动设计实现分辨率可调以及像素自由分区的效果。
附图说明
图1为本发明实施例的一种Micro LED光投射芯片的制造方法的流程图;
图2为本发明实施例的一种Micro LED光投射芯片的使用衬底制作成透镜的结构图;
图3为本发明实施例的一种Micro LED光投射芯片的对衬底制作的透镜进行形貌调整的结构图;
图4为本发明实施例的一种Micro LED光投射芯片的使用衬底和氧化硅层制作透镜;
图5为本发明实施例的一种Micro LED光投射芯片的应用场景图;
图6为本发明实施例的一种Micro LED光投射芯片的驱动效果图;
标号说明:
1、像素阵列;2、焊盘;3、子像素;4、衬底;5、透镜;6、集成式芯片;7、焊接材料;8、驱动基底;9、光投射芯片安装位置;10、投射区域;11、氧化硅层。
本发明的实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
请参照图1,本发明实施例提供了一种Micro LED光投射芯片制造方法,包括步骤:
按照预设阵列图形在晶圆上依次制备导电层、保护层并蒸镀金属电极;
在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜;
将刻蚀后的所述晶圆进行切割,得到带透镜的集成式芯片;
通过焊接材料将所述集成式芯片的电极与驱动基底焊接,得到光投射芯片。
从上述描述可知,本发明的有益效果在于:在晶圆的衬底远离金属电极的一面按照预设阵列图形将衬底制作成透镜,使得芯片能够集成透镜,而不需要使用外加的透镜或者光学组件;并且切割晶圆能够得到集成式芯片,通过集成式芯片上的多个子像素能够得到高集成度、高像素密度和小体积的芯片;芯片上的每一个像素与驱动基底相对应,便于通过驱动设计实现分辨率可调以及像素自由分区的效果。
进一步地,所述按照预设阵列图形在晶圆上依次制备导电层、保护层并蒸镀金属电极之前包括:
根据驱动基底的排列在晶圆上设置芯片的像素阵列,将多个LED自发光像素按照所述像素阵列的预设阵列图形集成在晶圆的芯片内。
由上述描述可知,在晶圆上直接集成像素阵列,能够将多个高亮度LED自发光像素集成在一个芯片内,能够在提高像素密度和集成度的同时不需要对每一个芯片进行单独焊接。
进一步地,在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜包括:
在所述晶圆的衬底远离所述金属电极的一面进行研磨抛光,并按照预设阵列图形对所述衬底进行刻蚀,将所述衬底制作成透镜。
由上述描述可知,利用衬底制作透镜,能够使得芯片集成透镜,而不是外加透镜或者光学组件,从而减少多余的连接线路,同时使用衬底制作透镜也能够提高透镜的耐腐蚀和耐酸碱的能力。
进一步地,将所述衬底制作成透镜,之后还包括:
在所述透镜上沉积氧化硅层,并对所述氧化硅层进行刻蚀并调整透镜的形貌。
由上述描述可知,对透镜进行二次沉积和二次刻蚀,能够调整透镜的形貌,使其调整为预期的长宽比和尖端角度。
进一步地,在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜还包括:
在所述晶圆的衬底远离所述金属电极的一面沉积氧化硅层,并按照预设阵列图形对所述衬底和所述氧化硅层进行刻蚀,基于所述衬底和所述氧化硅层制作成透镜。
由上述描述可知,在衬底上沉积氧化硅层,并且同时对衬底和氧化硅层进行图形化刻蚀,能够得到复合衬底制作而成的透镜,从而强化芯片的投射结构。
请参照图2,本发明另一实施例提供了一种Micro LED光投射芯片,包括集成式芯片、焊接材料和驱动基底;
所述集成式芯片包括衬底以及位于所述衬底表面的多个子像素;
所述衬底远离所述子像素的一面为按照预设阵列图形刻蚀的透镜形状;
所述子像素按照预设阵列图形排列,所述衬底表面每一个子像素的位置上设置有焊接焊盘;
所述焊接焊盘通过焊接材料与驱动基底连接。
由上述描述可知,在晶圆的衬底远离金属电极的一面按照预设阵列图形将衬底制作成透镜,使得芯片能够集成透镜,而不需要使用外加的透镜或者光学组件;并且切割晶圆能够得到集成式芯片,通过集成式芯片上的多个子像素能够得到高集成度、高像素密度和小体积的芯片;芯片上的每一个像素与驱动基底相对应,便于通过驱动设计实现分辨率可调以及像素自由分区的效果。
进一步地,所述衬底远离所述子像素的一面沉积有氧化硅层,所述衬底远离所述子像素的一面为按照所述预设阵列图形刻蚀衬底和氧化硅层得到的透镜形状。
由上述描述可知,在衬底上沉积氧化硅层,并且同时对衬底和氧化硅层进行图形化刻蚀,能够得到复合衬底制作而成的透镜,从而强化芯片的投射结构。
进一步地,所述衬底远离所述子像素的一面的透镜形状上设置有表面为透镜形状的氧化硅层。
由上述描述可知,对透镜进行二次沉积和二次刻蚀,能够调整透镜的形貌,使其调整为预期的长宽比和尖端角度。
进一步地,所述透镜形状的底宽为10-200μm,高度为50-500μm。
进一步地,所述氧化硅层的厚度为10-300μm。
由上述描述可知,通过沉积氧化硅层能够调整透镜的形貌,从而提高透镜制作的灵活性。
本发明上述的一种Micro LED光投射芯片及其制造方法,适用于作为车用高清晰投影光源,以下通过具体的实施方式进行说明:
实施例一
请参照图1,一种Micro LED光投射芯片制造方法,包括步骤:
S1、根据驱动基底8的排列在晶圆上设置芯片的像素阵列1,将多个LED自发光像素按照所述像素阵列1的预设阵列图形集成在晶圆的芯片内。
其中,可以将9至100万个高亮度LED自发光像素集成在一颗芯片内,芯片体积依像素数量而定,像素密度可以达到1000ppi以上,对应的尺寸在20μm~2cm之间。
S2、按照预设阵列图形在晶圆上依次制备导电层、保护层并蒸镀金属电极。
S3、在所述晶圆的衬底4远离所述金属电极的一面,按照预设阵列图形将所述衬底4制作成透镜5。
其中,透镜5可以选择聚光的凸透镜或散射的凹透镜,制作透镜5包括以下三种方法:
1.使用衬底4制作成透镜5:
在所述晶圆的衬底4远离所述金属电极的一面进行研磨抛光,并按照预设阵列图形对所述衬底4进行刻蚀,基于所述衬底4制作一体式透镜5。
2.对衬底4制作的透镜5进行形貌调整:
在所述晶圆的衬底4远离所述金属电极的一面进行研磨抛光,并按照预设阵列图形对所述衬底4进行刻蚀,基于所述衬底4制作一体式透镜5;在所述一体式透镜5上沉积氧化硅层11,并对所述氧化硅层11进行刻蚀并调整透镜5的形貌。
3.使用衬底4和氧化硅层11制作透镜5:
在所述晶圆的衬底4远离所述金属电极的一面沉积氧化硅层11,并按照预设阵列图形对所述衬底4和所述氧化硅层11进行刻蚀,基于所述衬底4和所述氧化硅层11制作一体式透镜5。
S4、将刻蚀后的所述晶圆进行切割,得到带透镜5的集成式芯片6。
S5、通过焊接材料7将所述集成式芯片6的电极与驱动基底8焊接,得到光投射芯片。
实施例二
本实施例提供了Micro LED光投射芯片的具体制造方法,其中使用衬底4制作透镜5,具体的:
步骤11、使用MOCVD设备在蓝宝石衬底4上生长的GaN外延片作为基底,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀GaN表面制作N型层。
步骤12、在上述晶圆上蒸镀导电层,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀去除N型层上的电流扩展层薄膜。
步骤13、在上述晶圆上用ALD设备、PECVD设备沉积氧化铝、氧化硅保护层,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀去除保护层,预留金属电极位置。
步骤14、在上述晶圆上进行涂胶和光刻,再使用金属蒸镀的方式蒸镀金属电极,之后进行金属剥离,在预定位置留下金属电极。
步骤15、请参照图2,将上述晶圆的衬底4面进行研磨、抛光,使用光刻机及光刻胶等光刻设施、材料按照设计好的微透镜阵列图形在衬底4上进行图形转移,进行ICP刻蚀,制作出一体式透镜5,透镜5底宽范围为10-200μm,透镜5高度为50-300μm。
步骤16、将上述晶圆切割,制作成带透镜5的集成式Micro LED芯片。
步骤17、将上述芯片通过焊接材料7焊接到驱动基底8上,芯片的焊接面是芯片电极,焊接后芯片电极面在下方,与驱动基底8结合,透镜5在上方。
以上即车用Micro LED光投射芯片的制作方法,请参照图5,将上述驱动及芯片贴装在汽车等光投射芯片安装位置9,通过驱动进行供电及控制即可在投射区域10实现投影效果及对投影图形的控制。
实施例三
本实施例提供了Micro LED光投射芯片的具体制造方法,其中对衬底4制作的透镜5进行形貌调整,具体的:
步骤21、使用MOCVD设备在蓝宝石衬底4上生长的GaN外延片作为基底,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀GaN表面制作N型层。
步骤22、在上述晶圆上蒸镀导电层,导电层可以使氧化铟锡或NiAu合金金属或氧化钼,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀去除N型层上的电流扩展层薄膜,只在P-GaN上保留导电层。
步骤23、在上述晶圆上用DBR设备、PECVD设备沉积氧化钛、氧化硅保护层,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀或腐蚀在金属电极下方制作导电通孔,预留金属电极位置。
步骤24、在上述晶圆上进行涂胶和光刻,使用电子束蒸发金属或溅射金属的方式制作导电焊盘2,之后进行金属剥离,在预定位置留下金属电极。
步骤25、将上述晶圆的衬底4面进行研磨、抛光。在蓝宝石面继续加工,使用光刻机及光刻胶等光刻设施、材料按照设计好的微透镜阵列图形在衬底4上进行图形转移。
步骤26、根据步骤25制作好的图形,进行ICP刻蚀,制作出一体式透镜5,透镜5底宽范围为10-200μm,透镜5高度为50-500μm。
步骤27、使用ALD或PECVD设备在上述透镜5表面继续进行二次沉积,沉积SiO2材料,再使用光刻胶通过光刻机制作图形。
步骤28、请参照图3,对透镜5进行二次刻蚀,第二次刻蚀可以调整透镜5的形貌,使其获得期望的长宽比和尖端角度。
步骤29、将上述晶圆切割,制作成带透镜5的集成式Micro LED芯片,将上述芯片通过焊接材料7焊接到驱动基底8上,芯片的焊接面是芯片电极,焊接后芯片电极面在下方,与驱动基底8结合。
请参照图5,将上述驱动及芯片贴装在汽车等光投射芯片安装位置9,通过驱动进行供电及控制即可在投射区域10实现投影效果及对投影图形的控制。
实施例四
本实施例提供了Micro LED光投射芯片的具体制造方法,其中使用衬底4和氧化硅层11制作透镜5,具体的:
步骤31、使用MOCVD设备在蓝宝石衬底4上生长的GaN外延片作为基底,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀GaN表面制作N型层。
步骤32、在上述晶圆上蒸镀导电层,导电层可以使氧化铟锡或NiAu合金金属或氧化钼,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀去除N型层上的电流扩展层薄膜,只在P-GaN上保留导电层。
步骤33、在上述晶圆上用DBR设备、PECVD设备沉积氧化钛、氧化硅保护层,使用光刻机及光刻胶等光刻设施、材料按照设计好的芯片图形进行图形转移,通过刻蚀或腐蚀在金属电极下方制作导电通孔,预留金属电极位置。
步骤34、在上述晶圆上进行涂胶和光刻,使用电子束蒸发金属或溅射金属的方式制作导电焊盘2,之后进行金属剥离,在预定位置留下金属电极。
步骤35、请参照图4,将上述晶圆的衬底4面进行研磨、抛光。在蓝宝石面进行氧化硅沉积,厚度范围为10-300μm,使用光刻机及光刻胶等光刻设施、材料按照将设计好的微透镜阵列图形转移到氧化硅薄膜上,通过湿法腐蚀去除两个透镜图形之间的氧化硅薄膜。
步骤36、在上述图形上行ICP刻蚀,制作出一体式透镜5,透镜5底宽范围为10-200μm,透镜5高度为50-500μm。
步骤37、将上述晶圆切割,制作成带透镜5的集成式Micro LED芯片。
步骤38、将上述芯片通过焊接材料7焊接到驱动基底8上,芯片的焊接面是芯片电极,焊接后芯片电极面在下方,与驱动基底8结合。
请参照图5,将上述驱动及芯片贴装在汽车等光投射芯片安装位置9,通过驱动进行供电及控制即可在投射区域10实现投影效果及对投影图形的控制。
实施例五
请参照图2至图6,一种Micro LED光投射芯片,包括集成式芯片6、焊接材料7和驱动基底8;
集成式芯片6包括衬底4以及位于所述衬底4表面的多个子像素3;
衬底表面每一个子像素3的位置上设置有焊接焊盘2,焊盘2通过焊接材料7与驱动基底8连接。
请参照图2,衬底4远离子像素3的一面为按照预设阵列图形刻蚀的透镜5形状,可选地,请参照图3,衬底4远离子像素3的一面的透镜形状上沉积有表面为透镜形状的氧化硅层11;
在另一实施例中,请参照图4,衬底4远离所述子像素3的一面沉积有氧化硅层11,所述衬底4远离所述子像素3的一面为按照所述预设阵列图形刻蚀衬底4和氧化硅层11得到的透镜形状;
其中,透镜形状的底宽为10-200μm,透镜形状的高度为50-500μm,氧化硅层11的厚度为10-300μm。
将Micro LED光投射芯片置于汽车上的投影演示效果如图5所示,并且请参照图6,通过驱动设计实现分辨率可调及像素自由分区光源效果,实现单像素显示或者多像素显示。
综上所述,本发明提供的一种Micro LED光投射芯片及其制造方法,相较于传统的芯片结构,本发明的特点是在晶圆上进行半导体工艺加工,通过将多个子像素集成在芯片上,将投影光源压缩到了极小范围,且具备极高像素密度;结合驱动基底能够使投影光源形成的光斑大小和形状可控度更高,可以通过软件实时组合不依赖硬件条件。本发明的制造方法中使用的氮化镓及氧化铝、氧化硅材料都是对环境湿度、温度、酸碱等能力极强的材料,可以将本芯片直接置于汽车等基础物体外表面,无需其他材料保护或覆盖。并且本发明中的集成式矩阵芯片自带透镜,芯片与透镜集成在一个衬底上,其中透镜功能可以在芯片加工阶段定制,可实现聚光及散射,且透镜可由多重组分复合组成,可以通过两种或两种以上材料的组合形成投射强化结构,可以定制投射透镜的形状及投射效果。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种Micro LED光投射芯片制造方法,其特征在于,包括步骤:
    按照预设阵列图形在晶圆上依次制备导电层、保护层并蒸镀金属电极;
    在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜;
    将刻蚀后的所述晶圆进行切割,得到带透镜的集成式芯片;
    通过焊接材料将所述集成式芯片的电极与驱动基底焊接,得到光投射芯片。
  2. 根据权利要求1所述的一种Micro LED光投射芯片制造方法,其特征在于,所述按照预设阵列图形在晶圆上依次制备导电层、保护层并蒸镀金属电极之前包括:
    根据驱动基底的排列在晶圆上设置芯片的像素阵列,将多个LED自发光像素按照所述像素阵列的预设阵列图形集成在晶圆的芯片内。
  3. 根据权利要求1所述的一种Micro LED光投射芯片制造方法,其特征在于,在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜包括:
    在所述晶圆的衬底远离所述金属电极的一面进行研磨抛光,并按照预设阵列图形对所述衬底进行刻蚀,将所述衬底制作成透镜。
  4. 根据权利要求3所述的一种Micro LED光投射芯片制造方法,其特征在于,将所述衬底制作成透镜,之后还包括:
    在所述透镜上沉积氧化硅层,并对所述氧化硅层进行刻蚀并调整透镜的形貌。
  5. 根据权利要求1所述的一种Micro LED光投射芯片制造方法,其特征在于,在所述晶圆的衬底远离所述金属电极的一面,按照预设阵列图形将所述衬底制作成透镜还包括:
    在所述晶圆的衬底远离所述金属电极的一面沉积氧化硅层,并按照预设阵列图形对所述衬底和所述氧化硅层进行刻蚀,基于所述衬底和所述氧化硅层制作成透镜。
  6. 一种Micro LED光投射芯片,其特征在于,包括集成式芯片、焊接材料和驱动基底;
    所述集成式芯片包括衬底以及位于所述衬底表面的多个子像素;
    所述衬底远离所述子像素的一面为按照预设阵列图形刻蚀的透镜形状;
    所述子像素按照预设阵列图形排列,所述衬底表面每一个子像素的位置上设置有焊接焊盘;
    所述焊接焊盘通过焊接材料与驱动基底连接。
  7. 根据权利要求6所述的一种Micro LED光投射芯片,其特征在于,所述衬底远离所述子像素的一面沉积有氧化硅层,所述衬底远离所述子像素的一面为按照所述预设阵列图形刻蚀衬底和氧化硅层得到的透镜形状。
  8. 根据权利要求6所述的一种Micro LED光投射芯片,其特征在于,所述衬底远离所述子像素的一面的透镜形状上设置有表面为透镜形状的氧化硅层。
  9. 根据权利要求6所述的一种Micro LED光投射芯片,其特征在于,所述透镜形状的底宽为10-200μm,高度为50-500μm。
  10. 根据权利要求7或8所述的一种Micro LED光投射芯片,其特征在于,所述氧化硅层的厚度为10-300μm。
PCT/CN2022/097040 2022-04-29 2022-06-06 一种Micro LED光投射芯片及其制造方法 WO2023206713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22879668.6A EP4293734A1 (en) 2022-04-29 2022-06-06 Micro led light projection chip and method for manufacturing same
US18/142,044 US20230352616A1 (en) 2022-04-29 2023-05-02 Light projection chip for micro led and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210473461.5A CN114937731B (zh) 2022-04-29 2022-04-29 一种Micro LED光投射芯片及其制造方法
CN202210473461.5 2022-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/142,044 Continuation US20230352616A1 (en) 2022-04-29 2023-05-02 Light projection chip for micro led and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2023206713A1 true WO2023206713A1 (zh) 2023-11-02

Family

ID=82864251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097040 WO2023206713A1 (zh) 2022-04-29 2022-06-06 一种Micro LED光投射芯片及其制造方法

Country Status (2)

Country Link
CN (2) CN116504882A (zh)
WO (1) WO2023206713A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538514A (zh) * 2014-12-31 2015-04-22 杭州士兰微电子股份有限公司 倒装led芯片结构及其制作方法
CN104617121A (zh) * 2015-01-04 2015-05-13 中国电子科技集团公司第五十五研究所 一种提高有源矩阵微型led显示器光学性能的方法
CN106206605A (zh) * 2016-08-04 2016-12-07 上海君万微电子科技有限公司 一种led微显示阵列倒装芯片及制作方法
US20170069611A1 (en) * 2015-09-04 2017-03-09 Hong Kong Beida Jade Bird Display Limited Light-emitting diode display panel with micro lens array
CN107086260A (zh) * 2016-08-17 2017-08-22 中山大学 一种倒装led芯片结构及其制作方法
CN112289899A (zh) * 2020-09-29 2021-01-29 东莞市中麒光电技术有限公司 Micro LED晶圆结构及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449056A (zh) * 2015-12-30 2016-03-30 山东浪潮华光光电子股份有限公司 一种高光效可匀斑蓝宝石衬底led芯片及其制备方法
US9977152B2 (en) * 2016-02-24 2018-05-22 Hong Kong Beida Jade Bird Display Limited Display panels with integrated micro lens array
CN108281456B (zh) * 2018-01-19 2020-09-01 福州大学 Micro-LED器件结构及制作方法
US20210013367A1 (en) * 2019-04-04 2021-01-14 Bor-Jen Wu System and Method for Making Micro LED Display
CN210536818U (zh) * 2019-07-05 2020-05-15 华引芯(武汉)科技有限公司 一种Micro LED微投影装置
JP2022550240A (ja) * 2019-10-01 2022-12-01 ジェイド バード ディスプレイ(シャンハイ) リミテッド 一体化された微小レンズアレイを有するディスプレイパネル用のシステム及び製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538514A (zh) * 2014-12-31 2015-04-22 杭州士兰微电子股份有限公司 倒装led芯片结构及其制作方法
CN104617121A (zh) * 2015-01-04 2015-05-13 中国电子科技集团公司第五十五研究所 一种提高有源矩阵微型led显示器光学性能的方法
US20170069611A1 (en) * 2015-09-04 2017-03-09 Hong Kong Beida Jade Bird Display Limited Light-emitting diode display panel with micro lens array
CN106206605A (zh) * 2016-08-04 2016-12-07 上海君万微电子科技有限公司 一种led微显示阵列倒装芯片及制作方法
CN107086260A (zh) * 2016-08-17 2017-08-22 中山大学 一种倒装led芯片结构及其制作方法
CN112289899A (zh) * 2020-09-29 2021-01-29 东莞市中麒光电技术有限公司 Micro LED晶圆结构及其制备方法

Also Published As

Publication number Publication date
CN114937731A (zh) 2022-08-23
CN114937731B (zh) 2023-04-07
CN116504882A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
JP7248828B2 (ja) シリコン上のカラーiledディスプレイ
KR102037225B1 (ko) 표면 실장 발광 소자를 구비하는 디스플레이
US10685945B2 (en) Illuminated faceplate and method for producing such an illuminated faceplate
US20190006564A1 (en) Encapsulated Fluid Assembly Emissive Elements
US20100060553A1 (en) LED display utilizing freestanding epitaxial LEDs
US20200266318A1 (en) Method of transferring light emitting device for display and display apparatus
TWI750650B (zh) 用於表面貼裝微型led流體組裝的發光顯示基板及製備方法
CN113299803B (zh) 一种Micro LED芯片单体器件的制备方法、显示模块及显示装置
US20230387179A1 (en) Light emitting device for display and display apparatus having the same
US11482566B2 (en) Light emitting device for display and display apparatus having the same
US20200373348A1 (en) Light emitting device for display and display apparatus having the same
US20220238751A1 (en) Method of manufacturing a hybrid device
US10868217B2 (en) LED chips, method of manufacturing the same, and display panels
WO2021088125A1 (zh) 一种超高分辨率微显示屏及其制造工艺
WO2023206713A1 (zh) 一种Micro LED光投射芯片及其制造方法
WO2024031976A1 (zh) 一种超高分辨率micro-led显示器件及其金属薄膜键合方法
CN116153962B (zh) 像素单元及其制作方法、微显示屏、像素级分立器件
US20230352616A1 (en) Light projection chip for micro led and manufacturing method thereof
CN115911233A (zh) 发光芯片及其制备方法、微显示结构、投影设备及外延片
CN109300967A (zh) 一种显示基板的制作方法及显示基板、显示装置
US11756940B2 (en) Light emitting device for display and display apparatus having the same
US11437353B2 (en) Light emitting device for display and display apparatus having the same
WO2024021158A1 (zh) 一种全彩氮化物半导体Micro-LED阵列的单片集成制备方法
US11935987B2 (en) Light emitting diode arrays with a light-emitting pixel area
US11329188B2 (en) Optoelectronic device manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022879668

Country of ref document: EP

Effective date: 20230503