WO2023206266A1 - 电池系统的充电控制方法和充电控制装置 - Google Patents

电池系统的充电控制方法和充电控制装置 Download PDF

Info

Publication number
WO2023206266A1
WO2023206266A1 PCT/CN2022/090000 CN2022090000W WO2023206266A1 WO 2023206266 A1 WO2023206266 A1 WO 2023206266A1 CN 2022090000 W CN2022090000 W CN 2022090000W WO 2023206266 A1 WO2023206266 A1 WO 2023206266A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
batteries
voltage
parallel
soc
Prior art date
Application number
PCT/CN2022/090000
Other languages
English (en)
French (fr)
Inventor
叶炜
谢吉海
李永超
崔兆蕾
张世昌
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/090000 priority Critical patent/WO2023206266A1/zh
Priority to CN202280033029.2A priority patent/CN117242621A/zh
Priority to EP22920995.2A priority patent/EP4290648A1/en
Publication of WO2023206266A1 publication Critical patent/WO2023206266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the field of charging, and more specifically, to a charging control method and a charging control device of a battery system.
  • embodiments of the present application provide a charging control method and a charging control device for a battery system, which are beneficial to improving the safety of a battery system with multiple batteries connected in parallel.
  • a charging control method of a battery system includes N batteries, and N is a positive integer greater than 1.
  • the charging control method includes: the battery with the smallest SOC among the N batteries has been connected in parallel to the battery.
  • the first battery is any battery among the M batteries
  • the second battery is the battery with the smallest SOC among the K batteries, or the battery with the smallest SOC among the N batteries
  • the battery system is charged according to the difference between the voltage of the third battery among the M batteries and the voltage of the fourth battery among the K batteries.
  • the battery is any battery among the M batteries, and the fourth battery is the battery with the smallest voltage among the K batteries; where M and K are both positive integers, and
  • the battery system when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system, based on the difference in SOC of the battery that is not connected in parallel to the battery system and the battery with the smallest SOC that is connected in parallel to the battery system, The battery system performs charge control; or when the battery with the smallest SOC among the N parallel-connected batteries is not connected in parallel to the battery system, based on the voltage difference between the battery that is not connected in parallel to the battery system and the battery with the smallest voltage that is connected in parallel to the battery system. , to control the charging of the battery system.
  • the embodiment of the present application adopts different charging control strategies based on whether the battery with the smallest SOC among N parallel-connected batteries has been connected in parallel to the battery system, which is helpful to avoid charging the battery system with multiple batteries in parallel due to the battery voltage between the batteries.
  • the phenomenon of current imbalance caused by differences in parameters such as internal resistance and self-discharge rate appears, which is beneficial to improving the life and performance of the battery system.
  • the embodiment of the present application also considers the charging control based on the voltage difference between the batteries that are not connected in parallel to the battery system.
  • the difference in SOC between the batteries of the battery system and the batteries connected in parallel to the battery system is used to control the charging of the battery system, which can be better applied to open circuit voltage (OCV) and has a relatively wide voltage platform area (the In batteries where the SOC of the cell in the voltage plateau area changes significantly but the voltage does not change significantly), such as lithium iron phosphate batteries.
  • the first of the M batteries among the N batteries that is not connected in parallel to the battery system is The difference between the SOC of the battery and the SOC of the second battery among the K batteries connected in parallel to the battery system.
  • Charging control of the battery system includes: the battery with the smallest SOC among the N batteries has been connected in parallel to the battery.
  • charging the battery system is controlled based on the difference between the voltage of the third battery among the M batteries and the voltage of the fourth battery among the K batteries, including: in the N If the battery with the smallest SOC among the batteries is not connected in parallel to the battery system, it is determined based on the difference between the voltage of the third battery and the voltage of the fourth battery whether to connect the third battery to the battery system in parallel.
  • the battery with the smallest SOC among the N batteries when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system, based on the difference in SOC of the battery that is not connected in parallel to the battery system and the battery with the smallest SOC that is connected in parallel to the battery system, or , when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the difference in voltage between the battery that is not connected in parallel to the battery system and the battery that is connected in parallel to the battery system with the smallest voltage, determine whether to connect the battery that is not connected in parallel to the battery system.
  • the batteries of the system are connected in parallel to the battery system. Determine whether batteries that are not connected in parallel to the battery system are connected in parallel to the battery system.
  • the embodiment of this application adopts different charging control strategies according to whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, which can avoid charging the battery system with multiple batteries in parallel due to the battery voltage, internal resistance, and The phenomenon of current imbalance caused by differences in parameters such as self-discharge rate occurs, which can improve the life and performance of the battery system.
  • the charging control method is applied before the battery system is supplied with high voltage.
  • the charging control method also includes: when the battery with the smallest voltage among the N batteries has been connected in parallel to the battery system, determine N Whether the battery with the smallest SOC among the parallel-connected batteries has been connected in parallel to the battery system.
  • the battery with the smallest SOC among the N batteries when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system, it is determined whether to control the first battery based on the difference between the SOC of the first battery and the SOC of the second battery.
  • the battery is connected in parallel to the battery system, including: when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system, determining whether the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold; in the first When the difference between the SOC of the battery and the SOC of the second battery is not greater than the first threshold, it is determined whether to connect the first battery to the battery system in parallel based on the difference between the voltage of the first battery and the voltage of the fourth battery.
  • the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system and the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, based on the voltage of the first battery and The difference in voltage of the battery with the smallest voltage in the battery system that has been connected in parallel determines whether to control the first battery to be connected in parallel to the battery system, which is helpful to avoid the impact of the circulating current on the relay due to the excessive voltage difference when the battery is connected in parallel to the battery system. Adhesion, shortened life or damage to the battery core.
  • Whether to connect the first battery in parallel to the battery system includes: determining the difference between the voltage of the first battery and the voltage of the fourth battery when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. whether the value is greater than the second threshold; when the difference between the voltage of the first battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the first battery is connected in parallel to the battery system.
  • the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold and the difference between the voltages of the first battery and the fourth battery is not greater than the second threshold.
  • Connecting the first battery to the battery system in parallel takes into account both the SOC difference and the voltage difference when there is asymmetry between SOC and voltage, which can avoid problems caused by excessive voltage differences when batteries are connected in parallel to the battery system.
  • the impact of circulating current on the relay can lead to adhesion, shortened life, or damage to the battery core.
  • Whether to connect the first battery in parallel to the battery system includes: determining the difference between the voltage of the first battery and the voltage of the fourth battery when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. whether the value is greater than the second threshold; if the difference between the voltage of the first battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to connect the first battery to the battery system in parallel.
  • Connecting the battery to the battery system in parallel also includes: when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, determining whether the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold; When the difference between the SOC of one battery and the SOC of the second battery is greater than the first threshold, it is determined not to connect the first battery to the battery system in parallel.
  • the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, it is determined not to connect the first battery to the battery system in parallel, which can avoid the impact of circulating current values when the batteries are connected in parallel to the battery system. Impact on the relay causes adhesion, shortened life, or damage to the battery core.
  • the first battery is the battery with the smallest SOC among the M batteries
  • charging the battery system further includes: when the difference between the SOC of the first battery and the SOC of the second battery is greater than the SOC of the second battery.
  • a threshold it is determined not to connect (M-1) batteries among the M batteries except the first battery in parallel to the battery system, and M is greater than 1.
  • Connecting the third battery to the battery system in parallel includes: determining whether the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system; When the difference between the voltage of the third battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the third battery is connected in parallel to the battery system.
  • the battery with the smallest SOC when the battery with the smallest SOC is not connected in parallel to the battery system, if the difference in voltage between the third battery and the fourth battery is not greater than the second threshold, it is determined that the third battery is connected in parallel to the battery system, It can avoid the problem that the circulating current value when the battery is integrated will impact the relay due to the excessive difference between the voltage of the closed battery and the voltage of the closed battery, leading to adhesion, shortened life, or damage to the battery core.
  • the battery is incorporated into the battery system for charging to improve charging efficiency.
  • Connecting the third battery to the battery system in parallel includes: determining whether the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system; If the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to connect the third battery to the battery system in parallel.
  • the third battery is the battery with the smallest voltage among the M batteries
  • the charging control of the battery system further includes: when the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second In the case of the threshold, it is determined not to connect (M-1) batteries except the third battery among the M batteries in parallel to the battery system, and M is greater than 1.
  • controlling the charging of the battery system further includes: controlling the high voltage on the battery system.
  • the M batteries that are not connected in parallel to the battery system do not meet the static closing conditions, the high voltage on the battery system is controlled so that the SOC and voltage of the K batteries change dynamically, which is beneficial to determining the charging process.
  • the M batteries are connected in parallel to the battery system so that all fault-free batteries can be incorporated into the battery system for charging as much as possible to improve charging efficiency.
  • the battery with the smallest voltage among the N batteries is connected in parallel to the battery system as much as possible, so as to avoid being connected in parallel to the battery system.
  • determining to connect the fifth battery in parallel to the battery system includes: when the voltage of the fifth battery is less than the voltage of the sixth battery, If the difference between the voltage of the fifth battery and the voltage of the sixth battery is not greater than the second threshold, it is determined whether the difference between the voltage of the fifth battery and the voltage of the sixth battery is not greater than the second threshold.
  • a fifth battery is connected in parallel to the battery system.
  • the difference in voltage from the battery with the smallest voltage among the batteries that have been connected in parallel to the battery system can be considered to avoid the problem due to the connection with the closed battery. If the voltage difference is too large, the circulating current value when the battery is integrated will impact the relay, leading to adhesion, shortened life, or damage to the battery core.
  • the fifth battery has the smallest voltage among the L batteries.
  • the battery with the smallest voltage among the N batteries has been connected in parallel to the battery system; or, once it is determined that the fifth battery is connected in parallel to the battery system, it can be considered that when the fifth battery is connected in parallel to In the case of a battery system, the battery with the smallest voltage among the N batteries has also been connected in parallel to the battery system. At this time, it is no longer necessary to judge other batteries, thereby reducing the judgment time before charging, which is beneficial to improving charging efficiency.
  • the charging control method is applied after high voltage is completed on the battery system.
  • the battery with the smallest SOC among the N batteries when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, it is determined whether to connect the first battery in parallel based on the difference between the SOC of the first battery and the SOC of the second battery.
  • the battery system including: when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, perform power reduction control charging on the K batteries based on the difference between the SOC of the first battery and the SOC of the second battery; In the case of performing power reduction control charging on K batteries, based on the difference between the voltage of the K batteries and the voltage of the first battery, it is determined whether to connect the first battery to the battery system in parallel.
  • the K batteries are charged under power reduction control based on the difference between the SOC of the first battery and the SOC of the second battery. And in the case of power reduction control charging, based on the difference between the voltage of K batteries and the voltage of the first battery, it is determined whether to connect the first battery in parallel to the battery system, which is helpful to avoid serious impact and damage caused by excessive voltage difference.
  • the battery cells may cause problems such as relay adhesion, and problems such as charging overcurrent due to circulating current when directly incorporated into the battery during high current charging.
  • the system includes: in the case of power reduction control charging of K batteries, determining whether the difference between the voltage of the K batteries and the voltage of the first battery is greater than a second threshold; When the difference between the voltages of the batteries is not greater than the second threshold, it is determined that the first battery is connected in parallel to the battery system.
  • the system includes: when K batteries are charged under power reduction control, determining whether the difference between the voltage of the K batteries and the voltage of the first battery is greater than a second threshold; subtracting the voltage of the K batteries from the voltage of the first battery. When the voltage difference of one battery is greater than the second threshold, it is determined not to connect the first battery to the battery system in parallel.
  • K batteries are charged under power reduction control according to the difference between the SOC of the first battery and the SOC of the second battery, including: When the difference is not greater than the first threshold, the K batteries are charged under power reduction control.
  • the K batteries can be directly charged under power reduction control, which can reduce the voltage overcharge of the batteries connected in parallel to the battery system. This leads to the risk that the battery system cannot be connected in parallel even after the requested current is successfully adjusted.
  • K batteries are charged under power reduction control according to the difference between the SOC of the first battery and the SOC of the second battery, including: When the difference is greater than the first threshold, the K batteries are charged under power reduction control according to the difference between the open circuit voltage OCV corresponding to the voltage of the K batteries and the voltage of the first battery.
  • the method is further based on the difference between the open circuit voltage corresponding to the voltage of the K batteries and the voltage of the first battery. , performing reduced-power control charging of K batteries can prevent batteries that have a large SOC difference but a small voltage difference from batteries that have been connected in parallel to the battery system from missing the closing opportunity.
  • performing power reduction control charging on the K batteries according to the difference between the open circuit voltage OCV corresponding to the voltage of the K batteries and the voltage of the first battery includes: subtracting the first battery from the open circuit voltage OCV.
  • the difference in battery voltage is greater than or equal to the third threshold, the K batteries are charged under power reduction control.
  • the K batteries are charged under power reduction control, which is beneficial to charging the K batteries according to the conditions of the batteries that have been connected in parallel to the battery system.
  • the difference between the real voltage and the voltage of the battery that is not connected in parallel to the battery system can accurately control whether the battery that is not connected in parallel to the battery system is connected in parallel or not to the battery system, so as to avoid excessive voltage difference with the closed battery.
  • the circulating current value when the battery is incorporated will impact the relay, causing adhesion, shortened life, or damage to the battery core.
  • the fault-free battery should be connected in parallel to the battery system as much as possible.
  • performing charging control on the battery system further includes: in the case of performing power reduction control charging on K batteries, determining the difference between the voltage of the first battery minus the voltage of the K batteries. Whether it is greater than the second threshold; when the difference between the voltage of the first battery minus the voltages of the K batteries is greater than the second threshold, request to charge the K batteries based on the table lookup value of the charging current of the K batteries.
  • the system includes: when K batteries are charged under power reduction control, determining whether the first sampling current of the K batteries is greater than a fourth threshold; when the first sampling current of the K batteries is not greater than the fourth threshold , based on the difference between the voltages of the K batteries and the voltage of the first battery, it is determined whether to connect the first battery to the battery system in parallel.
  • the access situation of the first battery is controlled to prevent charging polarization from causing the voltage of the batteries connected in parallel to the battery system to appear falsely high. disappears, resulting in misjudgment when subsequently controlling the access state of the first battery based on the difference between the voltages of the K batteries and the voltage of the first battery.
  • performing power reduction control charging on K batteries includes: performing power reduction control charging on K batteries when the second sampling current of the K batteries is greater than the fourth threshold.
  • the K batteries are charged under power reduction control, which is helpful to avoid serious impact caused by excessive voltage difference, damaging the battery core or causing the relay to Adhesion and other problems, as well as problems such as charging overcurrent due to circulating current when directly incorporated into the battery during high current charging.
  • the voltage of the K batteries is the maximum voltage among the K voltages of the K batteries.
  • the maximum voltage among K batteries is used to make the judgment in order to prevent the voltage of the batteries connected in parallel to the battery system from being inconsistent when there is a circulating current.
  • the voltage of the high-voltage battery is charged higher, which is greater than the second threshold of the battery that is not connected in parallel to the battery system, causing the battery that is not connected in parallel to the battery system to miss the closing opportunity.
  • Connecting the third battery to the battery system in parallel includes: when it is determined that the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the difference between the voltage of the third battery and the voltage of the fourth battery, the K batteries are Carry out reduced power control charging; in the case of performing reduced power control charging of K batteries, based on the difference between the voltage of the K batteries and the voltage of the third battery, it is determined whether to connect the third battery in parallel to the battery system.
  • the battery when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, the battery is charged under power reduction control based on the voltage difference between the third battery and the fourth battery, and further, Based on the difference between the voltage of K batteries and the voltage of the third battery, determining whether to connect the third battery in parallel to the battery system will help avoid serious impact caused by excessive voltage difference, damage to the battery core or cause relay adhesion and other problems, as well as in large During the current charging process, directly incorporating the battery into the battery will easily cause charging overcurrent and other problems due to circulating current.
  • performing power reduction control charging on K batteries according to the difference between the voltage of the third battery and the voltage of the fourth battery includes: When the difference is within the preset range, the K batteries are charged under power reduction control.
  • the power reduction control charging of the K batteries can avoid serious impact caused by excessive voltage difference. Problems such as damaging the battery core or causing relay adhesion, as well as problems such as charging overcurrent easily caused by circulating current when directly incorporated into the battery during high current charging.
  • determining whether to connect the third battery to the battery system in parallel includes: comparing the voltage of the third battery with the voltage of the fourth battery. When the voltage difference is within the preset range, the third battery is indeed connected in parallel to the battery system.
  • the third battery is the battery with the smallest voltage among the M batteries.
  • a charging control device for a battery system includes N batteries, where N is a positive integer greater than 1.
  • the charging control device includes: a control unit configured to minimize SOC among the N batteries.
  • a control unit configured to minimize SOC among the N batteries.
  • the difference in SOC of the battery is used to control the charging of the battery system.
  • the first battery is any battery among the M batteries
  • the second battery is the battery with the smallest SOC among the K batteries, or the battery with the smallest SOC among the N batteries.
  • control unit includes: a determination subunit, configured to determine whether the battery with the smallest SOC among the N batteries is connected in parallel to the battery system according to the SOC of the first battery and the The difference in SOC of the two batteries determines whether to connect the first battery in parallel to the battery system, or if the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the voltage and sum of the third battery The difference in voltage of the fourth battery determines whether to connect the third battery in parallel to the battery system.
  • the charging control device before the charging control device is applied to the battery system and the high voltage is applied to the battery system, the charging control device further includes: a determining unit configured to connect the battery with the smallest voltage among the N batteries in parallel to the battery system. In the case of a battery system, determine whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • the determination subunit is specifically used to determine the SOC of the first battery and the SOC of the second battery when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system. Whether the difference in SOC is greater than the first threshold; in the case that the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold, according to the voltage of the first battery and the voltage of the fourth battery The difference in voltage determines whether to connect the first battery in parallel to the battery system.
  • the determination subunit is specifically configured to: determine the SOC of the first battery when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. Whether the difference between the voltage of the first battery and the voltage of the fourth battery is greater than the second threshold; when the difference between the voltage of the first battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the first battery connected in parallel to this battery system.
  • the determination subunit is specifically configured to: determine the SOC of the first battery when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. Whether the difference between the voltage of the first battery and the voltage of the fourth battery is greater than the second threshold; when the difference between the voltage of the first battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to use the first battery connected in parallel to this battery system.
  • the determination subunit is specifically used to: determine the SOC of the first battery and the second battery when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system. Whether the difference in SOC of the battery is greater than the first threshold; if the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, it is determined not to connect the first battery in parallel to the battery system .
  • the determining subunit is further configured to: determine not to use the M batteries when the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold.
  • (M-1) batteries except the first battery are connected in parallel to the battery system, and M is greater than 1.
  • the determination subunit is specifically used to: determine the voltage of the third battery and the voltage of the fourth battery when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system. Whether the difference in voltage is greater than the second threshold; if the difference between the voltage of the third battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the third battery is connected in parallel to the battery system.
  • the determination subunit is specifically used to: determine the voltage of the third battery and the voltage of the fourth battery when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system. Whether the difference in voltage is greater than the second threshold; if the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to connect the third battery in parallel to the battery system.
  • the determining subunit is further configured to: determine not to use the M batteries when the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold. (M-1) batteries except the third battery are connected in parallel to the battery system, and M is greater than 1.
  • control unit further includes: a control subunit, used to control the high voltage on the battery system.
  • the determining unit is specifically configured to: when the voltage of the fifth battery is less than the voltage of the sixth battery, determine the difference between the voltage of the fifth battery and the voltage of the sixth battery. whether the value is greater than the second threshold; when the difference between the voltage of the fifth battery and the voltage of the sixth battery is not greater than the second threshold, the control controls the fifth battery to be connected in parallel to the battery system.
  • the fifth battery has the smallest voltage among the L batteries.
  • the charging control device is applied after high voltage is completed on the battery system.
  • control unit further includes: a control subunit, configured to control the first battery according to the SOC of the first battery and the battery when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system.
  • the difference in SOC of the second battery is used to perform power reduction control charging on the K batteries; the determination subunit is specifically used to: determine whether to charge the first battery under power reduction control when charging the K batteries under power reduction control. connected in parallel to this battery system.
  • the determination subunit is specifically configured to: when performing reduced power control charging of the K batteries, based on the difference between the voltage of the K batteries and the voltage of the first battery. value to determine whether to connect the first battery in parallel to the battery system.
  • the determination subunit is specifically configured to: determine the difference between the voltage of the K batteries and the voltage of the first battery when the K batteries are charged under power reduction control. whether the value is greater than the second threshold; if the difference between the voltages of the K batteries and the voltage of the first battery is not greater than the second threshold, it is determined that the first battery is connected in parallel to the battery system.
  • the determination subunit is specifically configured to: determine the difference between the voltage of the K batteries and the voltage of the first battery when the K batteries are charged under power reduction control. whether the value is greater than the second threshold; if the difference between the voltages of the K batteries minus the voltage of the first battery is greater than the second threshold, it is determined not to connect the first battery to the battery system in parallel.
  • control subunit is specifically configured to: when the difference between the SOC of the first battery and the SOC of the second battery is not greater than a first threshold, reduce the K batteries. Power controlled charging.
  • control subunit is specifically configured to: when the difference between the SOC of the first battery and the SOC of the second battery is greater than a first threshold, corresponding to the voltages of the K batteries The difference between the open circuit voltage OCV and the voltage of the first battery is used to charge the K batteries under power reduction control.
  • control subunit is specifically configured to: when the difference between the open circuit voltage OCV minus the voltage of the first battery is greater than or equal to a third threshold, reduce the voltage of the K batteries. Power controlled charging.
  • the determination subunit is also used to: determine the difference between the voltage of the first battery minus the voltage of the K batteries when the K batteries are charged under power reduction control. Whether it is greater than the second threshold; the control unit also includes: a request subunit, configured to use the K batteries when the difference between the voltage of the first battery minus the voltage of the K batteries is greater than the second threshold; The battery charging current lookup table value requests charging of the K batteries.
  • the determination subunit is specifically configured to: determine whether the first sampling currents of the K batteries are greater than the fourth threshold when the K batteries are charged under power reduction control; When the first sampling currents of the K batteries are not greater than the fourth threshold, determine whether to connect the first battery to the battery system in parallel based on the difference between the voltage of the K batteries and the voltage of the first battery. .
  • control subunit is also configured to: perform power reduction control charging of the K batteries when the second sampling current of the K batteries is greater than the fourth threshold.
  • the voltage of the K batteries is the maximum voltage among the K voltages of the K batteries.
  • the determination subunit is specifically configured to: when it is determined that the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the voltage of the third battery and the voltage of the fourth battery The voltage difference of the K batteries is charged under power reduction control; when the K batteries are charged under power reduction control, it is determined whether the third battery is connected in parallel to the battery system.
  • the determination subunit is specifically configured to: when performing power reduction control charging on the K batteries, based on the difference between the voltage of the K batteries and the voltage of the third battery. value to determine whether to connect the third battery in parallel to the battery system.
  • control subunit is specifically configured to: when the difference between the voltage of the third battery and the voltage of the fourth battery is within a preset range, reduce the voltage of the K batteries. Power controlled charging.
  • the determination subunit is specifically configured to: determine to connect the third battery in parallel when the difference between the voltage of the third battery and the voltage of the fourth battery is within a preset range. to the battery system.
  • the third battery is the battery with the smallest voltage among the M batteries.
  • a charging control device for a battery system includes N batteries, where N is a positive integer greater than 1; the charging control device includes a memory and a processor, and the memory is used to store instructions.
  • the processor is configured to read the instruction and execute the method in the first aspect and any possible implementation manner of the first aspect based on the instruction.
  • a chip including a processor for calling and running a computer program from a memory, so that a device equipped with the chip executes the first aspect and any of the possible implementations of the first aspect. Methods.
  • a fifth aspect provides a computer program, characterized in that the computer program causes a computer to execute the method of the first aspect and any possible implementation manner of the first aspect.
  • a computer-readable storage medium which is characterized in that it is used to store a computer program, and the computer program causes the computer to execute the method of the first aspect and any possible implementation of the first aspect. .
  • a seventh aspect provides a computer program product, which is characterized by including computer program instructions that enable a computer to execute the method of the first aspect and any possible implementation of the first aspect.
  • Figure 1 is a schematic diagram of an application scenario disclosed in the embodiment of the present application.
  • FIG. 2 is a schematic block diagram of the battery system disclosed in the embodiment of the present application.
  • FIG. 3 is a schematic block diagram of the charging control method of the battery system disclosed in the embodiment of the present application.
  • Figure 4 is a schematic flow chart of the charging control method of the battery system disclosed in the embodiment of the present application.
  • FIG. 5 is another schematic flow chart of the charging control method of the battery system disclosed in the embodiment of the present application.
  • FIG. 6 is a schematic block diagram of the charging control device of the battery system disclosed in the embodiment of the present application.
  • FIG. 7 is another schematic block diagram of the charging control device of the battery system disclosed in the embodiment of the present application.
  • power batteries can be used as the main power source for electrical devices (such as vehicles, ships or spacecrafts, etc.), while energy storage batteries can be used as charging sources for electrical devices.
  • energy storage batteries can be used as charging sources for electrical devices.
  • the power battery may be a battery in a power-consuming device
  • the energy storage battery may be a battery in a charging device.
  • both power batteries and energy storage batteries may be collectively referred to as batteries.
  • batteries in energy storage systems and electric vehicles mostly use multiple batteries connected in parallel to meet the capacity and performance requirements of energy storage systems and electric vehicles.
  • embodiments of the present application provide a charging control method for a battery system. Based on the difference between the battery that is not connected to the working circuit and the battery that is connected to the working circuit and has the smallest SOC or the smallest voltage, it is determined whether to control Batteries that are not connected to the working circuit are connected to the working circuit, which is helpful to avoid current imbalance caused by differences in battery voltage, internal resistance, self-discharge rate and other parameters between batteries when charging a battery system with multiple batteries connected in parallel. phenomenon occurs, thereby helping to improve the life and performance of the battery system.
  • Figure 1 shows an architectural diagram of a charging system applicable to the embodiment of the present application.
  • the charging system 100 may include: a charging device 110 and a battery system 120 .
  • the battery system 120 may be an electric vehicle (including a pure electric vehicle and a plug-in hybrid electric vehicle). Battery system or battery system in other application scenarios.
  • the battery system 120 may be provided with at least one battery pack, and the entirety of the at least one battery may be collectively referred to as the battery 121.
  • the battery 121 can be any type of battery, including but not limited to: lithium ion battery, lithium metal battery, lithium sulfur battery, lead-acid battery, nickel separator battery, lithium iron phosphate battery, nickel hydrogen battery , or lithium-air battery, etc.
  • the battery 121 in the embodiment of the present application can be a battery cell/cell, or a battery module or battery pack.
  • the battery module or battery pack can be composed of multiple batteries connected in series and parallel. Therefore, in the embodiment of the present application, the specific type and scale of the battery 121 are not specifically limited.
  • the battery system 120 is generally equipped with a battery management system (battery management system, BMS) 122 for monitoring.
  • BMS battery management system
  • the status of the battery 121 can be integrated with the battery 121 and provided in the same equipment/device, or the BMS 122 can also be provided outside the battery 121 as an independent equipment/device.
  • the charging device 110 is a device that replenishes electric energy for the battery 121 in the battery system 120 .
  • the charging device 110 in the embodiment of the present application can be an ordinary charging pile, a super charging pile, or a charging pile that supports vehicle to grid (V2G) mode.
  • V2G vehicle to grid
  • the embodiment of the present application does not limit the specific type and specific application scenarios of the charging device 110 .
  • the charging device 110 can be connected to the battery 121 through the wire 130, and connected to the BMS 122 through the communication line 140, where the communication line 140 is used to realize information exchange between the charging device 110 and the BMS. .
  • the communication line 140 includes, but is not limited to, a controller area network (CAN) communication bus or a daisy chain communication bus.
  • CAN controller area network
  • the charging device 110 can also communicate with the BMS 122 through a wireless network.
  • the embodiment of this application does not specifically limit the wired communication type or wireless communication type between the charging device and the BMS 122.
  • Figure 2 shows a high-voltage architecture topology diagram of a battery system applicable to the embodiment of the present application.
  • the battery system 200 may correspond to the battery system 120 shown in FIG. 1 .
  • the battery system 200 may include: multiple batteries 210 connected in parallel, for example, batteries 2101,..., batteries 210N.
  • a negative relay 211 may be provided in each battery 210, for example, negative relays 2111,..., negative relays 2111N.
  • the negative electrode relay 211 is connected in series with the negative electrode of the battery in the battery 210 . The negative relay 211 is used to control the high-voltage connection and disconnection between the battery 210 and the vehicle system.
  • the battery 210 may also be provided with a direct current/direct current (DC/DC) converter 212, for example, a DC/DC converter 2121,..., a DC/DC converter 212N.
  • the DC/DC converter 212 is used to convert the high voltage in the battery 210 into a low voltage to provide low voltage for power supply devices and hardware.
  • the battery 210 is also provided with a cell supervisory control (CSC) unit 213, which is used to collect the cell voltage and cell temperature of the battery 210.
  • CSC 2131, ..., CSC 213N a current sampling unit may be provided inside the battery 210 for collecting the current of the battery 210 .
  • the battery system 200 may also include: a main positive relay 220, which is provided on the bus after multiple batteries 210 are connected in parallel, and is used to control the high voltage of the battery system 200 and the vehicle system or the high voltage of the battery system 200 and the vehicle system as shown in FIG. 1
  • the charging device 110 shown is connected and disconnected.
  • the battery system 200 also includes a precharge relay 230 and a precharge resistor 240 for performing high-voltage precharge.
  • the battery system 200 is also provided with a master battery management unit 250 (masterbattery management unit, MBMU).
  • the battery 210 is provided with a slave battery management unit 214 (slave battery management unit, SBMU), for example, SBMU 2141,..., SBMU 214N.
  • SBMU and SBMU communicate with each other.
  • MBMU 250 can obtain the current value, cell voltage, relay status, power and other status of battery 210 from SBMU 214.
  • the communication methods between MBMU 250 and SBMU 214 are not limited to wireless Bluetooth, CAN bus, Ethernet, 5G network communication and other methods.
  • the SBMU 214 can be implemented using the battery management system (Battery Management System, BMS) corresponding to the battery 210; the MBMU 250 can be implemented through the control module of the battery disconnect unit (Battery Disconnect Unit, BDU), or through One of the battery 210 BMS is implemented.
  • BMS Battery Management System
  • BDU Battery Disconnect Unit
  • FIG. 3 shows a schematic block diagram of a charging control method 300 for a battery system according to an embodiment of the present application.
  • the battery system includes N batteries, where N is a positive integer greater than 1.
  • the charging control method 300 may include part or all of the following content.
  • the difference in SOC of the second battery among the K batteries is used to control the charging of the battery system.
  • the first battery is any battery among the M batteries
  • the second battery is the battery with the smallest SOC among the K batteries, or,
  • the battery system is charged according to the difference between the voltage of the third battery and the voltage of the fourth battery among the M batteries.
  • the third battery is any battery among M batteries.
  • the fourth battery is the battery with the smallest voltage among the K batteries.
  • charging the battery system may specifically include controlling the relay 211 in the battery 210 shown in Figure 2 to close or open, and the main positive relay 220 provided in the battery system 200 shown in Figure 2 closed or opened. It may also include the determination of the closing timing of the relay 211 and the main positive relay 220.
  • charging control of the battery system includes: the slave battery management unit SBMU shown in Figure 2 controls each of the N batteries connected in parallel to the battery system, and the master battery management unit MBMU shown in Figure 2 controls the N batteries on the high voltage, and the MBMU controls whether the battery is connected in parallel to the battery system. That is to say, the charging control method 300 in the embodiment of the present application can be executed by the MBMU and SBMU shown in FIG. 2 .
  • Battery SOC usually refers to the real SOC of the battery estimated through various methods.
  • the voltage of the battery can be the accumulated sum of the cell voltages, or it can be the terminal voltage of the battery collected by a voltage acquisition unit (for example, CSC213 shown in Figure 2).
  • the difference between A and B in the embodiment of the present application may be A-B or B-A.
  • the difference between the SOC of the first battery and the SOC of the second battery may be the SOC of the first battery minus the SOC of the second battery, or it may be the SOC of the second battery minus the SOC of the first battery. difference.
  • the difference between the voltage of the third battery and the voltage of the fourth battery may be the voltage of the third battery minus the voltage of the fourth battery, or it may be the voltage of the fourth battery minus the voltage of the third battery. voltage difference.
  • the battery system when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system, based on the difference in SOC of the battery that is not connected in parallel to the battery system and the battery with the smallest SOC that is connected in parallel to the battery system, The battery system performs charging control; or when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the voltage difference between the battery that is not connected in parallel to the battery system and the battery with the smallest voltage connected in parallel to the battery system, the The battery system performs charge control.
  • the embodiment of the present application adopts different charging control strategies according to whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, which is helpful to avoid charging the battery system with multiple batteries in parallel due to the battery voltage and internal resistance between the batteries.
  • the phenomenon of current imbalance caused by differences in parameters such as self-discharge rate and self-discharge rate appears, which is beneficial to improving the life and performance of the battery system.
  • this application implements The example also considers the difference in SOC between the battery that is not connected in parallel to the battery system and the battery that is connected in parallel to the battery system to determine whether connecting the battery that is not connected in parallel to the battery system in parallel to the battery system can better apply to the open circuit voltage.
  • OCV open circuit voltage
  • the battery with the smallest SOC among the N batteries when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, according to the M batteries among the N batteries that have not been connected in parallel to the battery system, The difference between the SOC of the first battery and the SOC of the second battery among the K batteries connected in parallel to the battery system is used to control the charging of the battery system, including: the battery with the smallest SOC among the N batteries is connected in parallel to In the case of the battery system, it is determined whether to connect the first battery to the battery system in parallel according to the difference between the SOC of the first battery and the SOC of the second battery; or the battery with the smallest SOC among the N batteries In the case where the battery system is not connected in parallel, the battery system is charged according to the difference between the voltage of the third battery among the M batteries and the voltage of the fourth battery among the K batteries, including: If the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, it is determined based on the difference between the voltage of
  • the battery with the smallest SOC among the N batteries when the battery with the smallest SOC among the N batteries is connected in parallel to the battery system, based on the difference in SOC of the battery that is not connected in parallel to the battery system and the battery with the smallest SOC that is connected in parallel to the battery system, or , when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the difference in voltage between the battery that is not connected in parallel to the battery system and the battery that is connected in parallel to the battery system with the smallest voltage, determine whether to connect the battery that is not connected in parallel to the battery system.
  • the batteries of the system are connected in parallel to the battery system. Determine whether batteries that are not connected in parallel to the battery system are connected in parallel to the battery system.
  • the embodiment of this application adopts different charging control strategies according to whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, which can avoid charging the battery system with multiple batteries in parallel due to the battery voltage, internal resistance, and The phenomenon of current imbalance caused by differences in parameters such as self-discharge rate occurs, which can improve the life and performance of the battery system.
  • the charging control method 300 is applied to the battery system before the high voltage is completed.
  • the charging control method 300 also includes: the battery with the smallest voltage among the N batteries has been connected in parallel to the battery system. In this case, determine whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • the charging control method 300 can be applied before the high voltage on the battery system is completed, that is, the charging control method 300 can be executed before the main positive relay 220 shown in FIG. 2 is closed. Specifically, before determining whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, it can be determined whether the battery with the smallest voltage among the N batteries has been connected in parallel to the battery system. Optionally, when it is determined that the battery with the smallest voltage among the N batteries is not connected in parallel to the battery system, the battery with the smallest voltage can be connected in parallel to the battery system. When the battery with the smallest voltage has been connected in parallel to the battery system, it is further determined whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • the battery with the smallest voltage among the N batteries when the battery with the smallest voltage among the N batteries has been connected in parallel to the battery system, it is determined whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • the voltage and SOC are asymmetrical, (That is, the battery with the smallest voltage is not the battery with the smallest SOC.)
  • This can prevent batteries with a lower voltage than the battery with the smallest voltage in the battery that has been connected in parallel to the battery system from missing the opportunity to be connected in parallel to the battery system and being unable to be connected in parallel to the battery system. This can Improve charging efficiency.
  • S310 may specifically include: when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, determine whether the difference between the SOC of the first battery and the SOC of the second battery is is greater than the first threshold; when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold, it is determined whether to use the first battery based on the difference between the voltage of the first battery and the voltage of the third battery.
  • the batteries are connected in parallel to the battery system.
  • the setting of the first threshold may take into account, but is not limited to, the following factors: errors in SOC estimation and a rise in voltage when the battery is charged to the SOC of the first threshold. That is to say, the first threshold is based on the SOC estimation error and the SOC rise value corresponding to the voltage of the battery rising to the voltage threshold during charging. The circulation current value corresponding to this voltage threshold is within a safe circulation value range.
  • the first threshold may be a fixed value, for example, 5%; the first threshold may also be dynamically adjusted based on various parameters of the battery.
  • the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, based on the voltage of the first battery and The difference in voltage of the third battery determines whether to connect the first battery in parallel to the battery system, which is helpful to avoid the impact of circulating current on the relay caused by excessive pressure difference when the battery is connected in parallel to the battery system, resulting in adhesion, shortened life, or damage to the battery. Core damage problem.
  • the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold
  • determining whether to connect the first battery in parallel to the battery system including: determining the voltage of the first battery and the voltage of the fourth battery when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. whether the difference is greater than the second threshold; when the difference between the voltage of the first battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the first battery is connected in parallel to the battery system.
  • the setting of the second threshold can take into account the circulating current value after the batteries are connected in parallel.
  • the second threshold is determined based on the circulating current value after the batteries are connected in parallel.
  • the second threshold can be set as follows: the circulation value corresponding to the second threshold is within a safe circulation value interval.
  • the second threshold may be a fixed value, for example, 5V; the second threshold may also be dynamically adjusted based on various parameters of the battery.
  • the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold and the difference between the voltages of the first battery and the fourth battery is not greater than the second threshold.
  • Connecting the first battery to the battery system in parallel takes into account both the SOC difference and the voltage difference when there is asymmetry between SOC and voltage, which can avoid problems caused by excessive voltage differences when batteries are connected in parallel to the battery system.
  • the impact of circulating current on the relay can lead to adhesion, shortened life, or damage to the battery core.
  • the second threshold raised above can also be adjusted dynamically.
  • ⁇ V is the second threshold
  • Ri and Rj are the internal resistance of the battery connected in parallel to the battery system and the internal resistance of the battery not connected in parallel to the battery system respectively.
  • Ix is the allowable charging current of the battery, whichever is smaller between Y(x)map and F(x)map.
  • Y(x)map is the allowable charging under the current temperature and SOC value obtained from the charging current map.
  • Current, F(x)map is the maximum circulating current value that allows the relay to close without damaging the capacitive life of the relay. Therefore, by obtaining the maximum safe circulating current value generated by the battery that is allowed to be incorporated in real time through Ix, the second threshold ⁇ V that is allowed to be incorporated into the battery can be calculated.
  • the battery can be allowed to be connected in parallel to the battery system as much as possible on the premise that the battery is connected in parallel to the battery system to generate a safe circulating current value, thereby reducing the number of batteries that cannot be connected in parallel to the battery system.
  • the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold
  • determining whether to connect the first battery in parallel to the battery system including: determining the voltage of the first battery and the voltage of the fourth battery when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. whether the difference is greater than the second threshold; if the difference between the voltage of the first battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to connect the first battery to the battery system in parallel.
  • the difference between the SOC and the SOC of the second battery among the K batteries that have been connected in parallel in the battery system determines whether to connect the first battery in parallel to the battery system, and also includes: the battery with the smallest SOC among the N batteries has been connected in parallel to the battery In the case of a system, determine whether the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold; when the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, determine Do not connect the first battery in parallel to the battery system.
  • the first battery is connected in parallel to the battery system, that is, the relay in the first battery is not closed. Then, it can be sequentially determined whether the other batteries, except the first battery, among the M batteries that are not connected in parallel to the battery system, are suitable for being connected in parallel to the battery system.
  • the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, it is determined not to connect the first battery to the battery system in parallel, which can avoid the impact of circulating current values when the batteries are connected in parallel to the battery system. Impact on the relay causes adhesion, shortened life, or damage to the battery core.
  • the first battery is the battery with the smallest SOC among the M batteries.
  • the charge control of the battery system further includes: when the difference between the SOC of the first battery and the SOC of the second battery is greater than In the case of the first threshold, it is determined that (M-1) batteries except the first battery among the M batteries are controlled not to be connected in parallel to the battery system, and M is greater than 1.
  • Determining whether to connect the third battery in parallel to the battery system includes: when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, determining whether the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second Threshold; when the difference between the voltage of the third battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the third battery is connected in parallel to the battery system.
  • Determining whether to connect the third battery in parallel to the battery system includes: when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, determining whether the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second Threshold; when the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to connect the third battery in parallel to the battery system.
  • the battery with the smallest SOC when the battery with the smallest SOC is not connected in parallel to the battery system, if the difference in voltage between the third battery and the fourth battery is greater than the second threshold, it is determined not to connect the third battery in parallel to the battery system, This can avoid problems such as adhesion, shortened life, or damage to the battery core caused by the impact of the circulating current value on the relay when the battery is connected in parallel to the battery system due to an excessive voltage difference with the battery that has been connected in parallel.
  • the third battery is the battery with the smallest voltage among the M batteries.
  • the charging control of the battery system further includes: when the difference between the voltage of the third battery and the voltage of the fourth battery is greater than In the case of the second threshold, it is determined not to connect (M-1) batteries except the third battery among the M batteries in parallel to the battery system, and M is greater than 1.
  • the battery with the smallest SOC among the N batteries if the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, it can first be determined whether the difference between the SOC of the battery with the smallest SOC among the N batteries and the second battery is greater than the first threshold. If the difference between the SOC of the battery with the smallest SOC among the N batteries and the second battery is not greater than the first threshold, the battery with the smallest SOC among the N batteries can be connected in parallel to the battery system first. Then continue to judge the remaining batteries that are not connected in parallel to the battery system according to the embodiment of the present application in which the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • controlling the charging of the battery system further includes: controlling the high voltage on the battery system.
  • the charging device actually charges K batteries connected in parallel to the battery system.
  • the charging of the K batteries is controlled so that the SOC and voltage of the K batteries change dynamically, which is beneficial to determining the charging process.
  • M batteries are connected in parallel to the battery system, all fault-free batteries can be incorporated into the battery system for charging as much as possible to improve charging efficiency.
  • the battery that is not connected in parallel to the battery system can be sequentially determined whether the voltage of the batteries that are not connected in parallel to the battery system is lower than the voltage of the battery with the lowest voltage among the batteries that are connected in parallel to the battery system. If it is lower, the battery that is not connected in parallel to the battery system is connected in parallel. to the battery system. After comparing the voltages of all the batteries that are not connected in parallel to the battery system with the voltage of the battery with the lowest voltage among the batteries that are connected in parallel to the battery system, it can be ensured that the battery with the lowest voltage among the N batteries is connected in parallel to the battery system.
  • the battery with the smallest voltage among the N batteries is connected in parallel to the battery system as much as possible, so as to avoid being connected in parallel to the battery system.
  • determining to connect the fifth battery to the battery system in parallel includes: when the voltage of the fifth battery is less than the voltage of the sixth battery. In the case of voltage, determine whether the difference between the voltage of the fifth battery and the voltage of the sixth battery is greater than the second threshold; when the difference between the voltage of the fifth battery and the voltage of the sixth battery is not greater than the second threshold, Make sure to connect the fifth battery in parallel to the battery system.
  • the difference between the voltage of the fifth battery and the voltage of the sixth voltage is greater than the second threshold, it may be determined not to connect the fifth battery in parallel to the battery system.
  • the difference between the voltage of the battery with the smallest voltage among the batteries already connected in parallel to the battery system can be considered to avoid the problem due to the battery being connected in parallel to the battery. If the voltage difference between the batteries in the system is too large, the circulating current value when the battery is integrated will impact the relay, leading to adhesion, shortened life, or damage to the battery core.
  • the fifth battery is the battery with the smallest voltage among the L batteries.
  • the battery with the smallest voltage among the N batteries has been connected in parallel to the battery system; or, once it is determined that the fifth battery is connected in parallel to the battery system, it can be considered that when the fifth battery is connected in parallel to In the case of a battery system, the battery with the smallest voltage among the N batteries has also been connected in parallel to the battery system. At this time, it is no longer necessary to judge other batteries, thereby reducing the judgment time before charging, which is beneficial to improving charging efficiency.
  • the battery with the smallest voltage among the N batteries can be connected in parallel to the battery system.
  • the cells of each battery have not yet completed the process of static depolarization. During this process, the battery is immediately plugged in and charged, and each battery is depolarized due to differences in temperature and other factors. The voltage will fluctuate to a certain extent due to inconsistent charging speed. Therefore, before determining whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, it can also be judged again whether any of the batteries that are not connected in parallel to the battery system is smaller than the battery connected in parallel. The voltage of the battery with the smallest voltage among the batteries in the battery system is still low, which is beneficial to connecting the battery with the smallest voltage among the N batteries in parallel to the battery system.
  • the charging control method 300 is applied after the high voltage on the battery system is completed.
  • the charging control method 300 may be executed after the main positive relay 220 shown in FIG. 2 is closed.
  • the difference between the SOC and the SOC of the second battery among the K batteries that have been connected in parallel to the battery system determines whether to connect the first battery to the battery system in parallel, including: the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system
  • the K batteries are charged under power reduction control; when the K batteries are charged under power reduction control, based on the voltage of the K batteries
  • the difference with the voltage of the first battery determines whether to connect the first battery in parallel to the battery system.
  • reduced power control charging refers to charging the battery system by requesting a charging device with a reduced required current. For example, when charging a battery that has been connected in parallel to the battery system at the beginning, charging can be requested based on the charging current table value of the battery that has been connected in parallel to the battery system. Further, charging can be requested based on the SOC of the first battery and the SOC of the second battery. For the SOC difference, a request current lower than the charging current table value can be used to request charging. For example, a request current that is 0.1 times the charging current table value can be used to request charging.
  • the voltage of the battery connected in parallel to the battery system appears falsely high due to charging polarization caused by the charging current. That is, the voltage of the battery during charging is a dynamic voltage rather than a real voltage. If the judgment is made directly based on the dynamic voltage of the battery connected in parallel to the battery system and the static voltage of the battery not connected in parallel to the battery system, the voltage difference may be too large, causing serious impact, damaging the battery core or causing relay adhesion, etc., and in During the high-current charging process, directly incorporating the battery into the battery may easily cause problems such as charging overcurrent due to circulating current.
  • the battery system when K batteries are charged under power reduction control, it is determined whether to connect the first battery in parallel based on the difference between the voltage of the K batteries and the voltage of the first battery. to the battery system, including: in the case of power reduction control charging of K batteries, determining whether the difference between the voltage of the K batteries and the voltage of the first battery is greater than the second threshold; If the difference between the voltages of the first batteries is not greater than the second threshold, it is determined that the first battery is connected in parallel to the battery system.
  • the battery system when K batteries are charged under power reduction control, it is determined whether to control the first battery to be connected in parallel based on the difference between the voltage of the K batteries and the voltage of the first battery. to the battery system, including: when K batteries are charged under power reduction control, determining whether the difference between the voltage of the K batteries and the voltage of the first battery is greater than the second threshold; when the voltage of the K batteries is reduced When the difference between the voltages of the first battery is greater than the second threshold, it is determined not to connect the first battery to the battery system in parallel.
  • the K batteries are charged under power reduction control according to the difference between the SOC of the first battery and the SOC of the second battery, including: When the difference in SOC is not greater than the first threshold, the K batteries are charged under power reduction control.
  • the K batteries can be directly charged under power reduction control, which can reduce the voltage overcharge of the batteries connected in parallel to the battery system. This leads to the risk that the battery system cannot be connected in parallel even after the requested current is successfully adjusted.
  • the K batteries are charged under power reduction control according to the difference between the SOC of the first battery and the SOC of the second battery, including: When the difference in SOC is greater than the first threshold, the K batteries are charged under power reduction control based on the difference between the open circuit voltage (OCV) corresponding to the voltage of the K batteries and the voltage of the first battery.
  • OCV open circuit voltage
  • the voltage of the battery connected in parallel to the battery system is usually a dynamic voltage, that is, a changeable voltage. Therefore, the voltage of K batteries actually refers to the dynamic voltage of K batteries.
  • the dynamic voltage of the K batteries may be the dynamic voltage of any one of the K batteries.
  • the method is further based on the difference between the open circuit voltage corresponding to the voltage of the K batteries and the voltage of the first battery. , performing power reduction control charging on K batteries can prevent batteries that have a large SOC difference but a small voltage difference from the closed batteries from missing the closing opportunity.
  • performing power reduction control charging on the K batteries according to the difference between the open circuit voltage OCV corresponding to the voltage of the K batteries and the voltage of the first battery includes: subtracting the open circuit voltage OCV from When the difference in voltage of the first battery is greater than or equal to the third threshold, the K batteries are charged under power reduction control.
  • the setting of the third threshold mainly considers the following factors: overcharge and the voltage difference that the relay is allowed to close; and possible errors in the polarization of the internal resistance of the cell. That is to say, the third threshold can be determined based on overcharging and the voltage difference that the relay is allowed to close and/or the possible error in the polarization of the internal resistance of the cell. Similar to the first threshold and the second threshold, the third threshold may be fixed, for example, 4.5V; the third threshold may also be dynamically adjusted, which is not limited in the embodiments of the present application.
  • the K batteries are charged under power reduction control, which is beneficial to charging the K batteries according to the conditions of the batteries that have been connected in parallel to the battery system.
  • the difference between the real voltage and the voltage of the battery that is not connected in parallel to the battery system. Accurately connect the battery that is not connected in parallel to the battery system in parallel or not in parallel to the battery system, so as to avoid the error caused by the voltage difference with the closed battery being too large.
  • the circulating current value when the battery is incorporated will impact the relay, causing adhesion, shortened life, or damage to the battery core.
  • the fault-free battery should be connected in parallel to the battery system as much as possible.
  • the charging control of the battery system further includes: in the case of performing power reduction control charging on K batteries, determining the difference between the voltage of the first battery minus the voltage of the K batteries. Whether the value is greater than the second threshold; when the difference between the voltage of the first battery minus the voltages of the K batteries is greater than the second threshold, request to charge the K batteries based on the charging current table value of the K batteries.
  • the charging current lookup table value of the K batteries is usually determined based on various factors such as SOC, temperature, and voltage of the K batteries. That is to say, after high voltage is applied to the system, the battery system needs to obtain the charging current table value based on the current SOC, temperature and/or voltage of the K batteries, and request charging from the charging device based on the charging current table value. After that, after performing the power reduction control charging described in the above various embodiments, for example, requesting charging from the charging device at 0.1 times the charging current table value, if it is determined that the voltage of the first battery minus the voltage of K batteries When the difference is greater than the second threshold, the charging restriction is released again, that is, charging is requested from the charging device based on the charging current table lookup value.
  • the battery system when K batteries are charged under power reduction control, it is determined whether to connect the first battery in parallel based on the difference between the voltage of the K batteries and the voltage of the first battery. to the battery system, including: when K batteries are charged under power reduction control, determining whether the first sampling current of the K batteries is greater than the fourth threshold; when the first sampling current of the K batteries is not greater than the fourth threshold In this case, based on the difference between the voltage of the K batteries and the voltage of the first battery, it is determined whether to connect the first battery to the battery system in parallel.
  • the setting of the fourth threshold requires comprehensive consideration of the impact of charging polarization on voltage and charging time.
  • the fourth threshold may be a fixed value, for example, 0.1C, which is 0.1 times the corresponding charging current at the nominal capacity.
  • the fourth threshold can also be dynamically adjusted.
  • K batteries when K batteries are charged under power reduction control, it can first be determined whether the current sampling current is greater than the fourth threshold. If the sampling current of the K batteries is not greater than the fourth threshold, it can be directly based on K
  • the difference between the voltage of the first battery and the voltage of the first battery controls the access of the first battery to prevent charging polarization from causing the voltage of the batteries connected in parallel to the battery system to appear falsely high, which has not completely disappeared. This leads to misjudgment when subsequently controlling the access state of the first battery based on the difference between the voltages of the K batteries and the voltage of the first battery.
  • the charging control of the battery system further includes: in the case of performing power reduction control charging on K batteries, determining the second sampling current of the K batteries minus the target adjustment current. Whether the difference is greater than the fifth threshold; when the difference between the second sampling current of the K batteries minus the target regulation current is greater than the fifth threshold, it is determined not to connect the first battery in parallel to the battery system, and the target regulation current is K
  • the charging current of the battery is A times the value in the table. A is greater than 0 and less than 1.
  • the fifth threshold may be a fixed value, for example, 5A.
  • the fifth threshold can also be dynamically adjusted.
  • the target regulation current is A times the table value of the charging current of K batteries.
  • A is 0.1.
  • the first sampling current here is similar to the second sampling current below, and both refer to the sampling currents of K batteries at different times.
  • the second sampling current may refer to the sampling current of the K batteries collected after the K batteries are charged under power reduction control.
  • the first sampling current below may refer to the sampling current of the K batteries collected before the K batteries are charged under power reduction control.
  • the second sampling currents of the K batteries are greater than a certain value of the target regulation current, it means that the first battery has not yet reached the conditions for judging whether to be connected in parallel to the battery system. Therefore, it is determined not to connect the first battery to the battery system in parallel at this time. Connecting the battery in parallel to the battery system can avoid problems such as adhesion, shortened life, or damage to the battery core caused by the impact of the circulating current value on the relay when the battery is incorporated due to an excessive difference in voltage from the closed battery.
  • performing power reduction control charging on K batteries includes: performing power reduction control charging on K batteries when the first sampling current of the K batteries is greater than the fourth threshold.
  • the K batteries are charged under power reduction control, which is helpful to avoid serious impact caused by excessive voltage difference, damage to the battery core or cause the relay to Adhesion and other problems, as well as problems such as charging overcurrent due to circulating current when directly incorporated into the battery during high current charging.
  • the voltage of the K batteries is the maximum voltage among the K voltages of the K batteries.
  • the voltages of the batteries connected in parallel to the battery system should be equal.
  • the maximum voltage among K batteries is used to determine the voltage between the batteries connected in parallel to the battery system when there is circulating current. When they are inconsistent, it prevents the battery with a higher voltage among the batteries that have been connected in parallel to the battery system from being charged higher, thereby exceeding the second threshold of the battery that is not connected in parallel to the battery system, causing the battery that is not connected in parallel to the battery system to miss the charge. Closing time.
  • Determining whether to connect the third battery in parallel to the battery system includes: when it is determined that the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the difference between the voltage of the third battery and the voltage of the fourth battery, calculate K Batteries are charged under power reduction control; when K batteries are charged under power reduction control, it is determined whether to connect the third battery in parallel to the battery system based on the difference between the voltage of the K batteries and the voltage of the third battery. .
  • the battery when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, the battery is charged under power reduction control based on the voltage difference between the third battery and the fourth battery, and further, Based on the difference between the voltage of K batteries and the voltage of the third battery, determining whether to connect the third battery in parallel to the battery system will help avoid serious impact caused by excessive voltage difference, damage to the battery core or cause relay adhesion and other problems, as well as in large During the current charging process, directly incorporating the battery into the battery will easily cause charging overcurrent and other problems due to circulating current.
  • performing power reduction control charging on K batteries according to the difference between the voltage of the third battery and the voltage of the fourth battery includes: When the voltage difference is within the preset range, the K batteries are charged under power reduction control.
  • this preset range needs to consider the existence of polarization voltage. That is to say, because the battery that has been connected in parallel to the battery system has a polarization voltage, that is, the voltage is falsely high, if the voltage of the battery that has been connected in parallel to the battery system is lower than the voltage of the battery that is not connected in parallel to the battery system, then the voltage after the current is reduced lower, therefore, this preset range has a minimum value.
  • the preset range has a maximum value.
  • the preset range may be 0.5 ⁇ 5V.
  • the power reduction control charging of the K batteries can avoid serious impact caused by excessive voltage difference. Problems such as damaging the battery core or causing relay adhesion, as well as problems such as charging overcurrent easily caused by circulating current when directly incorporated into the battery during high current charging.
  • determining whether to connect the third battery in parallel to the battery system includes: between the voltage of the third battery and the voltage of the third battery.
  • the voltage difference between the four batteries is within a preset range, it is determined that the third battery is connected in parallel to the battery system.
  • the third battery is the battery with the smallest voltage among the M batteries.
  • the charging control method 300 in the embodiment of the present application can be applied to the charging control process of the battery system under static conditions, it can also be applied to the charging control process of the battery system under dynamic conditions. That is to say, the charging control process of the battery system under static conditions may adopt the charging control method 300, but the charging control process of the battery system under dynamic conditions may not adopt the charging control method 300. Alternatively, the charging control process of the battery system under static conditions may not adopt the charging control method 300, but the charging control process of the battery system under dynamic conditions may adopt the charging control method 300.
  • the charging control method 300 may also be used for the charging control process of the battery system in a static state, and the charging control method 300 may also be used in the charging control process of the battery system in a dynamic state.
  • the battery with the smallest SOC among the batteries that are not connected in parallel to the battery system is called a
  • the battery with the smallest SOC among the batteries that are connected in parallel to the battery system is called b
  • the battery that is not connected in parallel to the battery system is called b.
  • the battery with the smallest voltage among the batteries connected in parallel to the battery system is called c
  • the battery with the smallest voltage among the batteries connected in parallel to the battery system is called d.
  • the battery with the smallest voltage among the batteries that are not connected in parallel to the battery system before determining the battery with the smallest SOC among the N batteries is called e and the battery with the smallest voltage among the closed batteries is called f.
  • the charging control process 400 of the static battery system may include some or all of the following contents.
  • S402 Determine whether the minimum voltage of the unclosed battery is smaller than the minimum voltage of the closed battery. That is, it is determined whether the voltage of battery e in the unclosed battery is smaller than the voltage of battery f in the closed battery.
  • step S402 may be returned to execution.
  • step S405 is entered.
  • step S405 is entered.
  • S405 Determine whether the battery with the smallest SOC among the N batteries is closed.
  • S406 if the judgment result of S405 is yes, continue to determine whether the SOC of the battery with the smallest SOC among the unclosed batteries is within 5% higher than the SOC of the battery with the smallest SOC among the closed batteries, that is, determine whether the SOC of battery a is higher than that of battery b. SOC is within 5% higher.
  • step 410 if the determination result in S406 is no, proceed to step 410.
  • step S407 if the determination result in S407 is no, return to step S405.
  • step S409 determine whether all unclosed batteries have been determined.
  • step S410 is entered.
  • step S409 if the determination result in S409 is no, return to step S406.
  • step S410 is executed.
  • step S409 may be entered.
  • the battery requesting closure among the unclosed batteries is called g
  • the battery with the smallest SOC among the closed batteries is called h
  • the battery with the largest dynamic voltage among the closed batteries is called h. called j
  • the battery with the smallest voltage among the closed batteries is called k
  • the battery with the smallest voltage among the unclosed batteries is called l.
  • the charging control process 500 of the dynamic battery system may include some or all of the following contents.
  • step S503 If the determination result in step S502 is yes, determine whether the battery with the smallest SOC among the N batteries is closed.
  • step S504 if the determination result in step S502 is no, it is determined that all batteries that can be closed have been closed.
  • step S505 if the determination result in step S503 is yes, continue to determine whether the difference between the SOC of the battery with the smallest SOC among the closed batteries and the SOC of the battery requested to be closed is within 5%. That is, it is determined whether the difference between the SOC of battery h and the SOC of battery g is within 5%.
  • step S506 if the judgment result in step S505 is no, continue to determine whether the OCV voltage converted from the voltage of the battery with the largest dynamic voltage among the closed batteries is greater than or equal to the voltage of the battery requested to be closed + 4.5V, and determine the dynamic voltage of battery j Whether the converted OCV voltage is greater than or equal to the voltage of battery g +4.5V.
  • step S506 determines whether the determination result in step S506 is no. If the determination result in step S506 is no, then return to step S502.
  • step S507 if the judgment result of step S505 or step S506 is yes, enter SOC adjustment. For example, adjust the request current from the charging current look-up table value to 0.1 times the charging current look-up table value.
  • S508 determine whether the adjustment is successful. For example, determine whether the collected current of a closed battery is greater than 0.1C charging current. If the collected current is not greater than 0.1C charging current, the SOC adjustment is successful.
  • step S508 if the determination result in step S508 is no, return to step S502.
  • step S509 if the determination result in step S508 is yes, further determine whether the difference between the voltage of the battery requested to be closed and the voltage of the battery with the highest voltage among the closed batteries is within plus or minus 5V. That is, it is judged whether the difference between the voltage of battery g and the voltage of battery j is within plus or minus 5V.
  • step S510 if the judgment result in step S509 is yes, it is considered that the adjustment is successful and the battery g is closed.
  • step S511 if the determination result in step S509 is no, then further determine whether the voltage of the battery with the highest voltage among the closed batteries minus the voltage of the battery requested to be closed is greater than 5V, that is, it is determined whether the voltage of j - g is greater than 5V.
  • step S512 if the determination result in step S511 is yes, further determine whether the voltage of j - g is greater than 8V.
  • step S510 is executed.
  • step S512 determines whether the determination result in step S512 is no. If the determination result in step S512 is no, return to step S502.
  • step S511 reuse the charging current table value to continue charging
  • step S513 if the determination result in step S503 is no, further determine whether the difference between the minimum voltage of the closed battery and the voltage of the unclosed battery is within 0.5-5V, that is, determine whether the voltage difference between battery k and battery l is within 0.5-5V.
  • step S513 if the determination result of step S513 is yes, then enter the voltage adjustment based on battery 1.
  • step S515. it is determined whether the voltage difference between battery k and battery l is within 0.5 to 5V.
  • step S515 if the judgment result of step S515 is yes, close the battery 1.
  • step S515 if the determination result in step S515 is no, charging is resumed, and S514 is continued after certain conditions are met.
  • step S513 if the determination result in step S513 is no, return to step 502.
  • steps S507 to S513 may specifically include the following content:
  • Step:0 After the high voltage on the system is completed, charge the closed battery with the current charging current table value of the closed battery. Determine whether the sampling current of the currently closed battery is greater than the 0.1C charging current. If the sampling current of the currently closed battery is greater than the 0.1C charging current, jump to step 1 after 1s. If the sampling current of the currently closed battery is less than or equal to 0.1C charging current, it can be further determined whether the voltage difference between the voltage of the closed battery and the battery requested to be closed is within -5V ⁇ 5V.
  • step 1 If the voltage difference is within -5V ⁇ 5V, the battery that is requested to be closed is closed; if the difference between the voltage of the closed battery minus the voltage of the battery that is requested to be closed is greater than 5V, it is judged not to close the battery that is requested to be closed. And record the identification of the battery with which the belt is requested to be closed. If you jump from step 1 to step 0 and recharge with the charging current lookup table value, you can jump to step 1 for current reduction as long as any of the following conditions are met: 1. It is judged that the SOC of the closed battery is required to be charged higher than 2%. ; 2. It is judged that the closed battery triggers the pre-overcharge condition of the unclosed battery (that is, the OCV converted voltage of the closed battery is greater than the voltage of the battery requested to be closed +4.5V). In this adjustment, this condition is only triggered once.
  • Step 1 Adjust the request current to 0.1 times the charging current table value. After charging with the adjusted request current for 180 seconds, or after the sampling current of the currently closed battery is less than the adjusted request current + 3A for 3 seconds, you can further Determine whether the sampling current of the currently closed battery is greater than 0.1C charging current. If the sampling current of the currently closed battery is less than or equal to 0.1C charging current, continue to determine whether the voltage difference between the voltage of the closed battery and the battery requested to be closed is within -5V ⁇ 5V.
  • the battery that is requested to be closed is closed; if the difference between the voltage of the closed battery minus the voltage of the battery that is requested to be closed is greater than 5V, it is judged not to close the battery that is requested to be closed. And the identification of the battery requesting closure is recorded. Similarly, if the difference between the voltage of the closed battery and the voltage of the battery requested to be closed is less than -5V, return to step 0 to continue charging. If the sampling current of the currently closed battery is greater than the adjusted request current + 5A, it is judged that the battery that is requested to be closed is not closed, and the identification of the battery that is requested to be closed is recorded.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the charging control method of the battery system according to the embodiment of the present application is described in detail above.
  • the charging control device according to the embodiment of the present application will be described in detail below with reference to FIG. 6 .
  • the technical features described in the method embodiments are applicable to the following device embodiments.
  • FIG. 6 shows a schematic block diagram of the charging control device 600 of the battery system according to the embodiment of the present application.
  • the battery system includes N batteries, where N is a positive integer greater than 1; as shown in FIG. 6 , the charging control device 600 includes some or all of the following contents.
  • the control unit 610 is configured to, when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system, according to the SOC and The difference in SOC of the second battery among the K batteries connected in parallel to the battery system is used to control the charging of the battery system.
  • the first battery is any battery among the M batteries
  • the second battery is The battery with the smallest SOC among the K batteries, or if the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, according to the voltage of the third battery among the M batteries and the voltage of the third battery among the K batteries
  • the difference between the voltages in the four batteries is used to control the charging of the battery system.
  • the third battery is any battery among the M batteries
  • control unit includes: a determination subunit, configured to determine the SOC of the first battery according to the SOC of the first battery and the battery with the smallest SOC among the N batteries.
  • the difference in SOC of the second battery determines whether to connect the first battery in parallel to the battery system, or if the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the SOC of the third battery
  • the difference between the voltage and the voltage of the fourth battery determines whether to connect the third battery in parallel to the battery system.
  • the charging control device before the application of the charging control device to the battery system is completed, the charging control device further includes: a determining unit for determining that the battery with the smallest voltage among the N batteries has been connected in parallel to In the case of this battery system, determine whether the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • the determination subunit is specifically used to: determine the SOC of the first battery and the second battery when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system. Whether the difference in SOC of the battery is greater than the first threshold; in the case where the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold, according to the voltage of the first battery and the fourth The difference in battery voltage determines whether to connect the first battery in parallel to the battery system.
  • the determination subunit is specifically configured to: determine that the first battery has an SOC that is not larger than the first threshold when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. Whether the difference between the voltage of the battery and the voltage of the fourth battery is greater than the second threshold; when the difference between the voltage of the first battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the voltage of the third battery is A battery is connected in parallel to the battery system.
  • the determination subunit is specifically configured to: determine that the first battery has an SOC that is not larger than the first threshold when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold. Whether the difference between the voltage of the battery and the voltage of the fourth battery is greater than the second threshold; in the case where the difference between the voltage of the first battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to use the voltage of the fourth battery.
  • a battery is connected in parallel to the battery system.
  • the determination subunit is specifically used to: determine the SOC of the first battery and the SOC of the first battery when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system. Whether the difference between the SOC of the second battery is greater than the first threshold; when the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, it is determined not to connect the first battery in parallel to the first threshold. battery system.
  • the determination subunit is further configured to: determine not to convert the M Among the batteries, (M-1) batteries except the first battery are connected in parallel to the battery system, and M is greater than 1.
  • the determination subunit is specifically used to: determine the voltage of the third battery and the voltage of the fourth battery when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system. Whether the difference in voltage of the battery is greater than the second threshold; if the difference between the voltage of the third battery and the voltage of the fourth battery is not greater than the second threshold, it is determined that the third battery is connected in parallel to the battery system .
  • the determination subunit is specifically used to: determine the voltage of the third battery and the voltage of the fourth battery when the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system. Whether the difference in voltage of the battery is greater than the second threshold; if the difference between the voltage of the third battery and the voltage of the fourth battery is greater than the second threshold, it is determined not to connect the third battery in parallel to the battery system .
  • the determination subunit is further configured to: determine not to convert the M Among the batteries, (M-1) batteries except the third battery are connected in parallel to the battery system, and M is greater than 1.
  • control unit further includes: a control subunit, used to control the high voltage on the battery system.
  • the determination unit is specifically configured to: determine the voltage of the fifth battery and the voltage of the sixth battery when the voltage of the fifth battery is less than the voltage of the sixth battery. whether the difference is greater than the second threshold; when the difference between the voltage of the fifth battery and the voltage of the sixth battery is not greater than the second threshold, the control controls the fifth battery to be connected in parallel to the battery system.
  • the fifth battery is the battery with the smallest voltage among the L batteries.
  • the charging control device is applied after the high voltage on the battery system is completed.
  • control unit also includes: a control subunit, configured to control the first battery according to the SOC of the first battery when the battery with the smallest SOC among the N batteries has been connected in parallel to the battery system.
  • the difference between the SOC of the K batteries and the SOC of the second battery is used to perform power reduction control charging on the K batteries; the determination subunit is specifically used to determine whether to charge the K batteries under power reduction control.
  • a battery is connected in parallel to the battery system.
  • the determination subunit is specifically configured to: in the case of performing power reduction control charging on the K batteries, based on the difference between the voltage of the K batteries and the voltage of the first battery. difference to determine whether to connect the first battery in parallel to the battery system.
  • the determination subunit is specifically configured to: determine the difference between the voltage of the K batteries and the voltage of the first battery when the K batteries are charged under power reduction control. whether the difference is greater than the second threshold; if the difference between the voltages of the K batteries and the voltage of the first battery is not greater than the second threshold, it is determined that the first battery is connected in parallel to the battery system.
  • the determination subunit is specifically configured to: determine the difference between the voltage of the K batteries and the voltage of the first battery when the K batteries are charged under power reduction control. whether the difference is greater than the second threshold; if the difference between the voltages of the K batteries minus the voltage of the first battery is greater than the second threshold, it is determined not to connect the first battery to the battery system in parallel.
  • control subunit is specifically configured to: when the difference between the SOC of the first battery and the SOC of the second battery is not greater than the first threshold, control the K batteries. Carry out power reduction control charging.
  • control subunit is specifically configured to: when the difference between the SOC of the first battery and the SOC of the second battery is greater than the first threshold, according to the SOC of the K batteries
  • the K batteries are charged under power reduction control based on the difference between the open circuit voltage OCV corresponding to the voltage and the voltage of the first battery.
  • control subunit is specifically configured to: when the difference between the open circuit voltage OCV minus the voltage of the first battery is greater than or equal to a third threshold, the K batteries Carry out power reduction control charging.
  • the determination subunit is also used to: determine the voltage of the first battery minus the voltage of the K batteries when the K batteries are charged under power reduction control. Whether the difference is greater than the second threshold; the control unit also includes: a request subunit, configured to: when the difference between the voltage of the first battery minus the voltages of the K batteries is greater than the second threshold, use the The charging current lookup table values of K batteries require charging of the K batteries.
  • the determination subunit is specifically configured to: determine whether the first sampling currents of the K batteries are greater than the fourth threshold when the K batteries are charged under power reduction control; When the first sampling currents of the K batteries are not greater than the fourth threshold, it is determined based on the difference between the voltage of the K batteries and the voltage of the first battery whether to connect the first battery in parallel to the battery system.
  • control subunit is also configured to: perform power reduction control charging of the K batteries when the second sampling current of the K batteries is greater than the fourth threshold.
  • the voltage of the K batteries is the maximum voltage among the K voltages of the K batteries.
  • the determination subunit is specifically configured to: when it is determined that the battery with the smallest SOC among the N batteries is not connected in parallel to the battery system, based on the voltage of the third battery and the voltage of the third battery, Based on the voltage difference between the four batteries, the K batteries are charged under power reduction control; when the K batteries are charged under power reduction control, it is determined whether to connect the third battery in parallel to the battery system.
  • the determination subunit is specifically configured to: in the case of performing power reduction control charging on the K batteries, based on the difference between the voltage of the K batteries and the voltage of the third battery. difference to determine whether to connect the third battery in parallel to the battery system.
  • control subunit is specifically configured to: when the difference between the voltage of the third battery and the voltage of the fourth battery is within a preset range, control the K batteries. Carry out power reduction control charging.
  • the determination subunit is specifically configured to: determine whether the third battery is to be used if the difference between the voltage of the third battery and the voltage of the fourth battery is within a preset range. Batteries are connected in parallel to this battery system.
  • the third battery is the battery with the smallest voltage among the M batteries.
  • each module in the charging control device 600 is in order to implement the corresponding processes in the respective methods of FIG. 3 to FIG. 5 , and for the sake of simplicity, they will not be described again here.
  • FIG. 7 shows a schematic block diagram of the charging control device 700 according to the embodiment of the present application.
  • the charging control device 700 includes a processor 710 and a memory 720 , where the memory 720 is used to store instructions, and the processor 710 is used to read instructions and execute the aforementioned methods of various embodiments of the present application based on the instructions.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the charging control device 700 may also include a transceiver 730 , and the processor 710 may control the transceiver 730 to communicate with other devices. Specifically, you can send information or data to other devices, or receive information or data sent by other devices.
  • Embodiments of the present application also provide a computer storage medium for storing a computer program, and the computer program is used to execute the foregoing methods of various embodiments of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the charging control device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the charging control device in the various methods of the embodiment of the present application.
  • I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the charging control device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the charging control device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the charging control device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the charging control device in each method of the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the charging control device in each method of the embodiment of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供了一种电池系统的充电控制方法和充电控制装置,该充电控制方法包括:在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据未并联到该电池系统的第一电池的SOC与已并联到该电池系统的第二电池的SOC的差值,对该电池系统进行充电控制,或者在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据第三电池的电压和该第四电池中的电压的差值,对该电池系统进行充电控制。本申请实施例的充电控制方法和充电控制装置,有利于提高多电池并联的电池系统的安全性。

Description

电池系统的充电控制方法和充电控制装置 技术领域
本申请涉及充电领域,并且更具体地,涉及一种电池系统的充电控制方法和充电控制装置。
背景技术
目前,储能系统和电动汽车中的电池系统大多采用多电池并联的形式,来满足储能系统和用电装置的容量和性能要求。随着系统规模的增大,并联的电池越来越多,并联后的电池之间由于各种参数差异,会产生电流不均衡的现象,严重时会产生电流环流,影响储能系统的寿命和性能,并存在安全隐患。
因此,在对多电池并联的电池系统进行充电时,如何控制各个电池接入电池系统,对于解决上述安全隐患具有重要的意义。
发明内容
有鉴于此,本申请实施例提供了一种电池系统的充电控制方法和充电控制装置,有利于提高多电池并联的电池系统的安全性。
第一方面,提供了一种电池系统的充电控制方法,电池系统包括N个电池,N为大于1的正整数,该充电控制方法包括:在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该N个电池中未并联到该电池系统的M个电池中的第一电池的SOC与已并联到该电池系统的K个电池中的第二电池的SOC的差值,对该电池系统进行充电控制,该第一电池为该M个电池中的任一电池,该第二电池为该K个电池中SOC最小的电池,或者在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该M个电池中第三电池的电压和该K个电池中的该第四电池中的电压的差值,对该电池系统进行充电控制,该第三电池为该M个电池中的任一电池,该第四电池为该K个电池中电压最小的电池;其中,M和K均为正整数,且N=M+K。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于未并联到电池系统的电池与已并联到电池系统的SOC最小的电池的SOC的差值,对电池系统进行充电控制;或者在N个并联的电池中SOC最小的电池未并联到电池系统的情况下,基于未并联到电池系统的电池与并联到电池系统的电压最小的电池的电压的差值,对电池系统进行充电控制。本申请实施例根据N个并联的电池中SOC最小的电池是否已并联到电池系统采用不同的充电控制策略,有利于避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而有利于提高电池系统的寿命和性能。
另外,相比于只基于未并联到电池系统的电池与已并联到电池系统的电池之间的电压之差来对电池系统进行充电控制的技术方案,本申请实施例还考虑了基于未并联到电池系统的电池与已并联到电池系统的电池之间的SOC之差来对电池系统进行充电控制,能够更好地应用于开路电压(open circuit voltage,OCV)具有比较广的电压平台区(该电压平台区电芯的SOC变化明显但电压变化不明显)的电池中,例如磷酸铁锂电池。
在一种可能的实现方式中,该在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该N个电池中未并联到该电池系统的M个电池中的第一电池的SOC与已并联到该电池系统的K个电池中的第二电池的SOC的差值,对该电池系统进行充电控制,包括:在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该第一电池的SOC与该第二电池的SOC的差值,确定是否将该第一电池并联到该电池系统;或者该在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该M个电池中第三电池的电压和该K个电池中的该第四电池中的电压的差值,对该电池系统进行充电控制,包括:在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该第三电池的电压和该第四电池的电压的差值,确定是否将该第三电池并联到该电池系统。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于未并联到电池系统的电池与已并联到电池系统的SOC最小的电池的SOC的差值,或者,在N个电池中SOC最小的电池未并联到电池系统的情况下,基于未并联到电池系统的电池与并联到电池系统的电压最小的电池的电压的差值,确定是否将未并联到电池系统的电池并联到电池系统,确定是否将未并联到电池系统的电池并联到电池系统。本申请实施例根据N个电池中SOC最小的电池是否已并联到电池系统采用不同的充电控制策略,可以避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而可以提高电池系统的寿命和性能。
在一种可能的实现方式中,该充电控制方法应用于电池系统未上高压完成之前,该充电控制方法还包括:在N个电池中电压最小的电池已并联到电池系统的情况下,确定N个并联的电池中SOC最小的电池是否已并联到电池系统。
在该实施例中,在N个电池中电压最小的电池已并联到电池系统的情况下,确定N个电池中SOC最小的电池是否已并联到电池系统,可以在电压与SOC不对称的情况下(即电压最小的电池不是SOC最小的电池),避免比已并联到电池系统的电池内电压最小的电池的电压还低的电池错失并联到电池系统的时机而无法并联到电池系统,从而可以提高充电效率。
在一种可能的实现方式中,在N个的电池中SOC最小的电池已并联到电池系统的情况下,基于第一电池的SOC与已第二电池的SOC的差值,确定是否控制第一电池并联到电池系统,包括:在N个电池中SOC最小的电池已并联到电池系统的情况下,确定第一电池的SOC与第二电池的SOC的差值是否大于第一阈值;在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,根据第一电池的电压与第四电池的电压的差值,确定是否将第一电池并联到电池系统。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统并且第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,基于第一电池的电压与已并联到电池系统中电压最小的电池的电压的差值,确定是否控制第一电池并联到电池系统,有利于避免由于电池并联到电池系统时的压差过大产生的环流对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,根据第一电池的电压与第四电池的电压的差值,确定是否将第一电池并联到电池系统,包括:在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,确定第一电池的电压与第四电池的电压的差值是否大于第二阈值;在第一电池的电压与第四电池的电压的差值不大于第二阈值的情况下,确定将第一电池并联到电池系统。
在该实施例中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值且第一电池与第四电池的电压的差值不大于第二阈值的情况下,才确定将第一电池并联到电池系统,这对于存在SOC与电压不对称的问题,既考虑了SOC差值,又考虑了电压差值,能够避免由于电池并联到电池系统时的压差过大产生的环流对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,根据第一电池的电压与第四电池的电压的差值,确定是否将第一电池并联到电池系统,包括:在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,确定第一电池的电压与第四电池的电压的差值是否大于第二阈值;在第一电池的电压与第四电池的电压的差值大于第二阈值的情况下,确定不将第一电池并联到电池系统。
在该实施例中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,若第一电池与第四电池的电压的差值大于第二阈值,则确定不将第一电池并联到电池系统,可以避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,在N个并联的电池中SOC最小的电池已并联到电池系统的情况下,基于第一电池的SOC与第二电池的SOC的差值,确定是否将第一电池并联到电池系统,还包括:在N个电池中SOC最小的电池已并联到电池系统的情况下,确定第一电池的SOC与第二电池的SOC的差值是否大于第一阈值;在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,确定不将第一电池并联到电池系统。
在该实施例中,一旦第一电池的SOC与第二电池的SOC的差值大于第一阈值,就确定不将第一电池并联到电池系统,可以避免电池并联到电池系统时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,第一电池为M个电池中SOC最小的电池,对该电池系统进行充电控制,还包括:在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,确定不将M个电池中除第一电池之外的(M-1)个电池并联到电池系统,M大于1。
在该实施例中,通过比较未并联到电池系统中的M个电池中SOC最小的第一电池的SOC与并联到电池系统中的K个电池中SOC最小的第二电池的SOC,一旦确定不将该第一电池并联到电池系统的情况下,就可以不再对其他电池进行判断,从而可以减少在充电之前所进行的判断时间,有利于提高充电效率。
在一种可能的实现方式中,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,确定是否将第三电池并联到电池系统,包括:在N个电池中SOC最小的电池未并联到电池系统的情况下,确定第三电池的电压和第四电池的电压的差值是否大于第二阈值;在第三电池的电压和第四电池的电压的差值不大于第二阈值的情况下,确定将第三电池并联到电池系统。
在该实施例中,在SOC最小的电池未并联到电池系统的情况下,若第三电池与第四电池的电压的差值不大于第二阈值,则确定将第三电池并联到电池系统,可以在避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题的同时,尽可能地让未闭合的电池并入电池系统进行充电,以提高充电效率。
在一种可能的实现方式中,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,确定是否将第三电池并联到电池系统,包括:在N个电池中SOC最小的电池未并联到电池系统的情况下,确定第三电池的电压和第四电池的电压的差值是否大于第二阈值;在第三电池的电压和第四电池的电压的差值大于第二阈值的情况下,确定不将第三电池并联到电池系统。
在该实施例中,在SOC最小的电池未并联到电池系统的情况下,若第三电池与第四电池的电压的差值大于第二阈值,则确定不将第三电池并联到电池系统,可以避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,第三电池为M个电池中电压最小的电池,对电池系统进行充电控制,还包括:在第三电池的电压与第四电池的电压的差值大于第二阈值的情况下,确定不将M个电池中除第三电池之外的(M-1)个电池并联到电池系统,M大于1。
在该实施例中,通过比较未并联到电池系统中的M个电池中电压最小的第三电池的电压与并联到电池系统中的K个电池中电压最小的第四电池的电压,一旦确定控制该第三电池不并联到电池系统的情况下,就可以不再对其他电池进行判断,从而可以减少在充电之前所进行的判断时间,有利于提高充电效率。
在一种可能的实现方式中,对该电池系统进行充电控制还包括:控制该电池系统上高压。
在该实施例中,由于未并联到电池系统的M个电池并不满足静态闭合条件,控制该电池系统上高压,使得该K个电池的SOC和电压均动态变化,有利于在充电过程中确定该M个电池并联到电池系统的时机,从而能够尽可能地让无故障的电池都能并入电池系统进行充电,以提高充电效率。
在一种可能的实现方式中,在确定N个电池中SOC最小的电池是否已经并联到电池系统之前,该充电控制方法还包括:确定N个电池中未并联到电池系统的L个电池中的第五电池的电压是否小于已并联到电池系统的Q个电池中的第六电池的电压;在第五电池的电压小于第六电池的电压的情况下,确定将第五电池并联到电池系统;其中,第五电池为L个电池中的任一电池,第六电池为Q个电池中电压最小的电池,L和Q为正整数,且N=L+Q,L大于或等于M。
在该实施例中,在确定N个电池中SOC最小的电池是否已并联到电池系统之前,尽可能地将该N个电池中的电压最小的电池并联到电池系统,从而可以避免比已并联到电池系统的电池内电压最小的电池的电压还低的电池错失并联到电池系统的时机而无法并联到电池系统。
在一种可能的实现方式中,在第五电池的电压小于第六电池的电压的情况下,确定将第五电池并联到电池系统,包括:在第五电池的电压小于第六电池的电压的情况下,确定第五电池的电压与第六电池的电压的差值是否大于第二阈值;在第五电池的电压与第六电池的电压的差值不大于第二阈值的情况下,确定将第五电池并联到电池系统。
在该实施例中,在将N个电池中电压最小的电池并联到电池系统时,考虑与已并联到电池系统的电池中电压最小的电池的电压的差值,可以避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,该第五电池为该L个电池中电压最小的电池。
在该实施例中,通过比较未并联到电池系统中的L个电池中电压最小的第五电池的电压与并联到电池系统中的Q个电池中电压最小的第六电池的电压,一旦确定不将该第五电池并联到电池系统,就可以认为N个电池中电压最小的电池已并联到电池系统;或者,一旦确定将该第五电池并联到电池系统,则可以认为在第五电池并联到电池系统的情况下,该N个电池中电压最小的电池也已并联到电池系统。此时,可以不再对其他电池进行判断,从而可以减少在充电之前所进行的判断时间,有利于提高充电效率。
在一种可能的实现方式中,该充电控制方法应用于电池系统上高压完成之后。
在该实施例中,在充电过程中,基于N个电池中SOC最小的电池是否并联到电池系统,采用不同的充电控制策略,有利于避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而有利于提高电池系统的寿命和性能。
在一种可能的实现方式中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于第一电池的SOC与第二电池的SOC的差值,确定是否将第一电池并联到电池系统,包括:在N个电池中SOC最小的电池已并联到电池系统的情况下,根据第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电;在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电,并且在降功率控制充电的情况下,再基于K个电池的电压与第一电池的电压的差值,确定是否将第一电池并联到电池系统,有利于避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接并入电池容易因环流产生充电过流等问题。
在一种可能的实现方式中,在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统,包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的电压与第一电池的电压之间的差值是否大于第二阈值;在K个电池的电压与第一电池的电压之间的差值不大于第二阈值的情况下,确定将第一电池并联到电池系统。
在该实施例中,在基于第一电池的SOC与第二电池的SOC的差值对K个电池进行降功率控制充电的情况下,若K个电池的电压与第一电池的电压的差值不大于第二阈值,则确定将第一电池并联到电池系统,可以在避免由于与已并联到电池系统的电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题的同时,尽可能地将无故障的电池并联到电池系统。
在一种可能的实现方式中,在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统,包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的电压与第一电池的电压之间的差值是否大于第二阈值;在K个电池的电压减去第一电池的电压的差值大于第二阈值的情况下,确定不将第一电池并联到电池系统。
在该实施例中,在基于第一电池的SOC与第二电池的SOC的差值对K个电池进行降功率控制充电的情况下,若K个电池的电压减去第一电池的电压的差值大于第二阈值,则确定不将第一电池并联到电池系统,可以避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
在一种可能的实现方式中,根据第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电,包括:在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,对K个电池进行降功率控制充电。
在该实施例中,若第一电池与第二电池的SOC之差不大于第一阈值,则可以直接对K个电池进行降功率控制充电,能够降低已并联到电池系统的电池的电压过充从而导致在对请求电流调节成功之后仍无法并联到电池系统的风险。
在一种可能的实现方式中,根据第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电,包括:在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,根据K个电池的电压对应的开路电压OCV与第一电池的电压的差值,对K个电池进行降功率控制充电。
在该实施例中,在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,进一步再基于K个电池的电压对应的开路电压与第一电池的电压的差值,对K个电池进行降功率控制充电,能够避免与已并联到电池系统的电池之间的SOC之差较大但压差较小的电池错过闭合时机。
在一种可能的实现方式中,根据K个电池的电压对应的开路电压OCV与第一电池的电压的差值,对K个电池进行降功率控制充电,包括:在开路电压OCV减去第一电池的电压的差值大于或等于第三阈值的情况下,对K个电池进行降功率控制充电。
在该实施例中,在开路电压减去第一电池的电压的差值大于或等于第三阈值的情况下,对K个电池进行降功率控制充电,有利于根据已并联到电池系统的电池的真实电压与未并联到电池系统的电池的电压之差,准确控制未并联到电池系统的电池并联或不并联到电池系统,从而可以在避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题的同时,尽可能地将无故障的电池并联到电池系统。
在一种可能的实现方式中,对该电池系统进行充电控制,还包括:在对K个电池进行降功率控制充电的情况下,确定第一电池的电压减去K个电池的电压的差值是否大于第二阈值;在第一电池的电压减去K个电池的电压的差值大于第二阈值的情况下,以K个电池的充电电流查表值请求对K个电池充电。
在该实施例中,在第一电池的电压减去K个电池的电压的差值大于第二阈值的情况下,释放充电限制,可以避免长时间对电池系统进行降功率控制充电所导致的充电效率不高的问题。
在一种可能的实现方式中,在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统,包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的第一采样电流是否大于第四阈值;在K个电池的第一采样电流不大于第四阈值的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统。
在该实施例中,在对K个电池进行降功率控制充电的情况下,可以先判断当前的采样电流是否大于第四阈值,若该K个电池的采样电流不大于第四阈值,就可以直接基于K个电池的电压与第一电池的电压之间的差值,控制第一电池的接入情况,以防止充电极化导致已并联到电池系统的电池的电压出现虚高的现象并未完全消失,从而导致在后续基于K个电池的电压与第一电池的电压之间的差值,控制第一电池的接入状态时存在误判的情况。
在一种可能的实现方式中,对K个电池进行降功率控制充电,包括:在K个电池的第二采样电流大于第四阈值的情况下,对K个电池进行降功率控制充电。
在该实施例中,在K个电池的第二采样电流大于第四阈值的情况下,对K个电池进行降功率控制充电,有利于避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接将并入电池容易因环流产生充电过流等问题。
在一种可能的实现方式中,K个电池的电压为K个电池的K个电压中的最大电压。
在该实施例中,采用K个电池中的最大电压去做判断是为了存在环流时,已并联到电池系统中的电池之间的电压不一致时,防止已并联到电池系统中的电池中电压较高的电池的电压充的更高,从而大于未并联到电池系统中的电池第二阈值以上,从而导致未并联到电池系统的电池错过闭合时机。
在一种可能的实现方式中,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,确定是否将第三电池并联到电池系统,包括:在确定N个电池中SOC最小的电池未并联到电池系统的情况下,根据第三电池的电压与第四电池的电压的差值,对K个电池进行降功率控制充电;在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第三电池的电压之间的差值,确定是否将第三电池并联到电池系统。
在该实施例中,在N个电池中SOC最小的电池未并联到电池系统的情况下,基于第三电池与第四电池之间的压差,对电池进行降功率控制充电,并进一步地,基于K个电池的电压与第三电池的电压之差,确定是否将第三电池并联到电池系统,有利于避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接将并入电池容易因环流产生充电过流等问题。
在一种可能的实现方式中,根据第三电池的电压与第四电池的电压的差值,对K个电池进行降功率控制充电,包括:在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,对K个电池进行降功率控制充电。
在该实施例中,在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,对K个电池进行降功率控制充电,能够避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接并入电池容易因环流产生充电过流等问题。
在一种可能的实现方式中,基于K个电池的电压与第三电池的电压之间的差值,确定是否将第三电池并联到电池系统,包括:在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,确将第三电池并联到电池系统。
在该实施例中,在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,确定将第三电池并联到电池系统,能够避免压差过大形成严重冲击,损坏电芯或导致继电器粘连的问题。
在一种可能的实现方式中,第三电池为M个电池中电压最小的电池。
在该实施例中,通过将未并联到电池系统中的M个电池中电压最小的电池的电压与已并联到电池系统中的K个电池中电压最小的电池的低压进行比较,一旦在该M个电池中电压最小的电池满足不了闭合条件的情况下,不再依次判断其他未闭合的电池,而是继续对K个电池进行充电再找时机判断,从而可以降低算法的复杂度。
第二方面,提供了一种电池系统的充电控制装置,该电池系统包括N个电池,N为大于1的正整数,该充电控制装置包括:控制单元,用于在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该N个电池中未并联到该电池系统的M个电池中的第一电池的SOC与已并联到该电池系统的K个电池中的第二电池的SOC的差值,对该电池系统进行充电控制,该第一电池为该M个电池中的任一电池,该第 二电池为该K个电池中SOC最小的电池,或者在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该M个电池中第三电池的电压和该K个电池中的该第四电池中的电压的差值,对该电池系统进行充电控制,该第三电池为该M个电池中的任一电池,该第四电池为该K个电池中电压最小的电池;其中,M和K均为正整数,且N=M+K。
在一种可能的实现方式中,该控制单元包括:确定子单元,用于在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该第一电池的SOC与该第二电池的SOC的差值,确定是否将该第一电池并联到该电池系统,或者在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该第三电池的电压和该第四电池的电压的差值,确定是否将该第三电池并联到该电池系统。
在一种可能的实现方式中,该充电控制装置应用于该电池系统未上高压完成之前,该充电控制装置还包括:确定单元,用于在该N个电池中电压最小的电池已并联到该电池系统的情况下,确定该N个电池中SOC最小的电池是否已并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在该N个电池中SOC最小的电池已并联到该电池系统的情况下,确定该第一电池的SOC与该第二电池的SOC的差值是否大于第一阈值;在该第一电池的SOC与该第二电池的SOC的差值不大于该第一阈值的情况下,根据该第一电池的电压与该第四电池的电压的差值,确定是否将该第一电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值不大于该第一阈值的情况下,确定该第一电池的电压与该第四电池的电压的差值是否大于第二阈值;在该第一电池的电压与该第四电池的电压的差值不大于该第二阈值的情况下,确定将该第一电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值不大于该第一阈值的情况下,确定该第一电池的电压与该第四电池的电压的差值是否大于第二阈值;在该第一电池的电压与该第四电池的电压的差值大于该第二阈值的情况下,确定不将该第一电池并联到该电池系统。
在一种可能的实现方式中,该该确定子单元具体用于::在该N个电池中SOC最小的电池已并联到该电池系统的情况下,确定该第一电池的SOC与该第二电池的SOC的差值是否大于第一阈值;在该第一电池的SOC与该第二电池的SOC的差值大于该第一阈值的情况下,确定不将该第一电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元还用于:在该第一电池的SOC与该第二电池的SOC的差值大于该第一阈值的情况下,确定不将该M个电池中除该第一电池之外的(M-1)个电池并联到该电池系统,M大于1。
在一种可能的实现方式中,该确定子单元具体用于:在该N个电池中SOC最小的电池未并联到该电池系统的情况下,确定该第三电池的电压和该第四电池的电压的差值是否大于第二阈值;在该第三电池的电压和该第四电池的电压的差值不大于该第二阈值的情况下,确定将该第三电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在该N个电池中SOC最小的电池未并联到该电池系统的情况下,确定该第三电池的电压和该第四电池的电压的差值是否大于第二阈值;在该第三电池的电压和该第四电池的电压的差值大于该第二阈值的情况下,确定不将该第三电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元还用于:在该第三电池的电压与该第四电池的电压的差值大于该第二阈值的情况下,确定不将该M个电池中除该第三电池之外的(M-1)个电池并联到该电池系统,M大于1。
在一种可能的实现方式中,该控制单元还包括:控制子单元,用于控制该电池系统上高压。
在一种可能的实现方式中,该确定单元还用于:在确定该N个电池中SOC最小的电池是否已经并联到该电池系统之前,确定该N个电池中未并联到该电池系统的L个电池中的第五电池的电压是否小于已并联到该电池系统的Q个电池中的第六电池的电压;在该第五电池的电压小于该第六电池的电压的情况下,确定是否将该第五电池并联到该电池系统;其中,该第五电池为该L个电池中的任一电池,该第六电池为该Q个电池中电压最小的电池,L和Q为正整数,且N=L+Q,L大于或等于M。
在一种可能的实现方式中,该确定单元具体用于:在该第五电池的电压小于该第六电池的电压的情况下,确定该第五电池的电压与该第六电池的电压的差值是否大于第二阈值;在该第五电池的电压与该第六电池的电压的差值不大于该第二阈值的情况下,控制控制该第五电池并联到该电池系统。
在一种可能的实现方式中,该第五电池为该L个电池中电压最小的电池。
在一种可能的实现方式中,该充电控制装置应用于该电池系统上高压完成之后。
在一种可能的实现方式中,该控制单元还包括:控制子单元,用于在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该第一电池的SOC与该第二电池的SOC的差值,对该K个电池进行降功率控制充电;该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定是否将该第一电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,根据该K个电池的电压与该第一电池的电压之间的差值,确定是否将该第一电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定该K个电池的电压与该第一电池的电压之间的差值是否大于第二阈值;在该K个电池的电压与该第一电池的电压之间的差值不大于该第二阈值的情况下,确定将该第一电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定该K个电池的电压与该第一电池的电压之间的差值是否大于第二阈值;在该K个电池的电压减去该第一电池的电压的差值大于该第二阈值的情况下,确定不将该第一电池并联到该电池系统。
在一种可能的实现方式中,该控制子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值不大于第一阈值的情况下,对该K个电池进行降功率控制充电。
在一种可能的实现方式中,该控制子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值大于第一阈值的情况下,根据该K个电池的电压对应的开路电压OCV与该第一电池的电压的差值,对该K个电池进行降功率控制充电。
在一种可能的实现方式中,该控制子单元具体用于:在该开路电压OCV减去该第一电池的电压的差值大于或等于第三阈值的情况下,对该K个电池进行降功率控制充电。
在一种可能的实现方式中,该确定子单元还用于:在对该K个电池进行降功率控制充电的情况下,确定该第一电池的电压减去该K个电池的电压的差值是否大于该第二阈值;该控制单元还包括:请求子单元,用于在该第一电池的电压减去该K个电池的电压的差值大于该第二阈值的情况下,以该K个电池的充电电流查表值请求对该K个电池充电。
在一种可能的实现方式中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定该K个电池的第一采样电流是否大于第四阈值;在该K个电池的第一采样电流不大于该第四阈值的情况下,根据该K个电池的电压与该第一电池的电压之间的差值,确定是否将该第一电池并联到该电池系统。
在一种可能的实现方式中,该控制子单元还用于:在该K个电池的第二采样电流大于第四阈值的情况下,对该K个电池进行降功率控制充电。
在一种可能的实现方式中,该K个电池的电压为该K个电池的K个电压中的最大电压。
在一种可能的实现方式中,该确定子单元具体用于:在确定该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该第三电池的电压与该第四电池的电压的差值,对该K个电池进行降功率控制充电;在对该K个电池进行降功率控制充电的情况下,确定是否将该第三电池并联到该电池系统。
在一种可能的实现方式中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,根据该K个电池的电压与该第三电池的电压之间的差值,确定是否将该第三电池并联到该电池系统。
在一种可能的实现方式中,该控制子单元具体用于:在该第三电池的电压与该第四电池的电压的差值在预设范围内的情况下,对该K个电池进行降功率控制充电。
在一种可能的实现方式中,该确定子单元具体用于:在该第三电池的电压与该第四电池的电压的差值在预设范围内的情况下,确定将该第三电池并联到该电池系统。
在一种可能的实现方式中,该第三电池为该M个电池中电压最小的电池。
第三方面,提供了一种电池系统的充电控制装置,电池系统包括N个电池,N为大于1的正整数;该充电控制装置包括存储器和处理器,该存储器用于存储指令,
该处理器用于读取该指令并基于该指令执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第四方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第五方面,提供了一种计算机程序,其特征在于,所述计算机程序使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第六方面,提供了一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
第七方面,提供了一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行第一方面及其第一方面任一种可能的实现方式中该的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例公开的一种应用场景的示意图。
图2是本申请实施例公开的电池系统的示意性框图。
图3是本申请实施例公开的电池系统的充电控制方法的示意性框图。
图4是本申请实施例公开的电池系统的充电控制方法的示意性流程图。
图5是本申请实施例公开的电池系统的充电控制方法的另一示意性流程图。
图6是本申请实施例公开的电池系统的充电控制装置的示意性框图。
图7是本申请实施例公开的电池系统的充电控制装置的另一示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在新能源领域中,动力电池可作为用电装置(例如车辆、船舶或航天器等)的主要动力源,而储能电池可作为用电装置的充电来源,二者的重要性均不言而喻。作为示例而非限定,在一些应用场景中,动力电池可为用电装置中的电池,储能电池可为充电装置中的电池。为了便于描述,在下文中,动力电池和储能电池均可统称为电池。
目前,储能系统和电动汽车中的电池大多采用多电池并联的形式,来满足储能系统和电动汽车的容量和性能要求。随着系统规模的增大,并联的电池越来越多,并联后的电池之间由于电池电压、内阻、自放电率等参数差异,会产生电流不均衡的现象,严重时会产生电流环流,影响储能系统的寿命和性能,并存在安全隐患。因此,在对多电池并联的电池系统充电时,并不能直接闭合各个电池内部的继电器,而是需要寻找合适的时机闭合,以此来避免电流不均衡的现象出现。
有鉴于此,本申请实施例提供了一种电池系统的充电控制方法,基于未接入工作回路的电池与已接入工作回路的SOC最小或电压最小的电池之间的差值,确定是否控制未接入工作回路的电池接入工作回路,有利于避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而有利于提高电池系统的寿命和性能。
图1示出了本申请实施例适用的一种充电系统的架构图。
如图1所示,该充电系统100可包括:充电装置110和电池系统120,可选地,该电池系统120可为电动汽车(包含纯电动汽车和可插电的混合动力电动汽车)中的电池系统或者其它应用场景下的电池系统。
可选地,电池系统120中可设置有至少一个电池(battery pack),该至少一个电池的整体可统称为电池121。从电池的种类而言,该电池121可以是任意类型的电池,包括但不限于:锂离子电池、锂金属电池、锂硫电池、铅酸电池、镍隔电池、磷酸铁锂电池、镍氢电池、或者锂空气电池等等。从电池的规模而言,本申请实施例中的电池121可以是电芯/电池单体(cell),也可以是电池模组或电池包,电池模组或电池包均可由多个电池串并联形成,在本申请实施例中,电池121的具体类型和规模均不做具体限定。
此外,为了智能化管理及维护该电池121,防止电池出现过充电和过放电,延长电池的使用寿命,电池系统120中一般还设置有电池管理系统(battery management system,BMS)122,用于监控电池121的状态。可选地,该BMS 122可以与电池121集成设置于同一设备/装置中,或者,该BMS 122也可作为独立的设备/装置设置于电池121之外。
具体地,充电装置110是一种为电池系统120中的电池121补充电能的装置。
可选地,本申请实施例中的充电装置110可以为普通充电桩、超级充电桩、支持汽车对电网(vehicle to grid,V2G)模式的充电桩。本申请实施例对充电装置110的具体类型和具体应用场景不做限定。
可选地,如图1所示,充电装置110可通过电线130连接于电池121,且通过通信线140连接于BMS 122,其中,通信线140用于实现充电装置110以及BMS之间的信息交互。
作为示例,该通信线140包括但不限于是控制器局域网(control area network,CAN)通信总线或者菊花链(daisy chain)通信总线。
可选地,充电装置110除了可通过通信线140与BMS 122进行通信以外,还可以通过无线网络与BMS 122进行通信。本申请实施例对充电装置与BMS 122的有线通信类型或无线通信类型均不做具体限定。
图2示出了本申请实施例适用的一种电池系统的高压架构拓扑图。
可选地,该电池系统200可以对应于图1所示的电池系统120。如图2所示,该电池系统200可以包括:多个并联的电池210,例如,电池2101,……,电池210N。可选地,每个电池210内可以设置一个负极继电器211,例如,负极继电器2111,……,负极继电器2111N。可选地,该负极继电器211与电池210内的电池的负极串联。负极继电器211用于控制电池210与整车系统的高压连接与断开。可选地,电池210还可以设置直流/直流(direct current/direct current,DC/DC)转换器212,例如,DC/DC转换器2121,……,DC/DC转换器212N。DC/DC转换器212用于将电池210内的高压转换为低压给电器件及硬件提供低电压。可选地,电池210还设置有电芯监控(cell supervisory control,CSC)单元213,用于采集电池210的电芯电压和电芯温度。例如,CSC 2131,……,CSC 213N。可选地,电池210内部还可以设置电流采样单元,用于采集电池210的电流。
可选地,该电池系统200还可以包括:主正继电器220,该主正继电器220设置在多个电池210并联之后的母线上,用于控制电池系统200与整车系统的高压或者图1所示的充电装置110连接与断开。
可选地,该电池系统200还包括预充继电器230和预充电阻240,用于进行上高压预充。
可选地,电池系统200内还设置有主电池管理单元250(masterbattery management unit,MBMU)。电池210内设置有从电池管理单元214(slave battery management unit,SBMU),例如,SBMU 2141,…..,SBMU 214N。MBMU与 SBMU相互通讯,MBMU 250可以从SBMU 214获取电池210的电流值、电芯电压、继电器状态以及功率等状态。其中,MBMU 250与SBMU 214之间的通讯方式不限于无线蓝牙、CAN总线、以太网、5G网络通讯等方式。
在一些实施例中,SBMU 214可利用对应电池210的电池管理系统(Battery Management System,BMS)来实现;MBMU 250可以通过电池断路单元(Battery Disconnect Unit,BDU)的控制模块来实现,也可以通过其中一个电池210的BMS来实现。
图3示出了本申请实施例的一种电池系统的充电控制方法300的示意性框图。该电池系统包括N个电池,N为大于1的正整数。如图3所示,该充电控制方法300可以包括如下部分或全部内容。
S310,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于N个电池中未并联到电池系统中的M个电池中的第一电池的SOC与已并联到电池系统中的K个电池中的第二电池的SOC的差值,对该电池系统进行充电控制,第一电池为M个电池中的任一电池,第二电池为K个电池中SOC最小的电池,或者,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,对该电池系统进行充电控制,第三电池为M个电池中的任一电池。第四电池为K个电池中电压最小的电池。其中,M和K均为正整数,且N=M+K。
首先,需要说明的是,对电池系统进行充电控制,具体可以包括控制如图2所示的电池210内的继电器211闭合或断开,图2所示的电池系统200内设置的主正继电器220闭合或断开。还可以包括对继电器211以及主正继电器220的闭合时机的判断等,只要是在充电过程中,由电池系统内部的控制单元所执行的动作,都可以认为是对电池系统进行充电控制。例如,对电池系统进行充电控制,包括:图2所示的从电池管理单元SBMU控制该N个电池中每个电池并联到电池系统,图2所示的主电池管理单元MBMU控制该N个电池上高压,以及MBMU控制电池是否并联到电池系统中等。也就是说,本申请实施例的充电控制方法300可以由图2所示的MBMU和SBMU执行。
电池SOC通常是指通过各种方法估算得到的电池的真实SOC。而电池的电压可以是单体电压的累加和电压,也可以是通过电压采集单元(例如,图2所示的CSC213)采集的电池的端电压。
应理解,本申请实施例中的A与B的差值,可以是A-B,也可以是B-A。例如,第一电池的SOC与第二电池的SOC的差值可以是第一电池的SOC减去第二电池的SOC的差值,也可以是第二电池的SOC减去第一电池的SOC的差值。再例如,第三电池的电压与第四电池的电压的差值,可以是第三电池的电压减去第四电池的电压的差值,也可以是第四电池的电压减去第三电池的电压的差值。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于未并联到电池系统的电池与已并联到电池系统的SOC最小的电池的SOC的差值,对电池系统进行充电控制;或者在N个电池中SOC最小的电池未并联到电池系统的情况下,基于未并联到电池系统的电池与并联到电池系统的电压最小的电池的电压的差值,对电池系统进行充电控制。本申请实施例根据N个电池中SOC最小的电池是否已并联到电池系统采用不同的充电控制策略,有利于避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而有利于提高电池系统的寿命和性能。
另外,相比于只基于未并联到电池系统的电池与已并联到电池系统的电池之间的电压之差来确定是否将未并联到电池系统的电池并联到电池系统的技术方案,本申 请实施例还考虑了基于未并联到电池系统的电池与已并联到电池系统的电池之间的SOC之差来确定是否将未并联到电池系统的电池并联到电池系统,能够更好地应用于开路电压(open circuit voltage,OCV)具有比较广的电压平台区(该电压平台区电芯的SOC变化明显但电压变化不明显)的电池中,例如磷酸铁锂电池。
可选地,在本申请实施例中,该在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该N个电池中未并联到该电池系统的M个电池中的第一电池的SOC与已并联到该电池系统的K个电池中的第二电池的SOC的差值,对该电池系统进行充电控制,包括:在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该第一电池的SOC与该第二电池的SOC的差值,确定是否将该第一电池并联到该电池系统;或者该在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该M个电池中第三电池的电压和该K个电池中的该第四电池中的电压的差值,对该电池系统进行充电控制,包括:在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该第三电池的电压和该第四电池的电压的差值,确定是否将该第三电池并联到该电池系统。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于未并联到电池系统的电池与已并联到电池系统的SOC最小的电池的SOC的差值,或者,在N个电池中SOC最小的电池未并联到电池系统的情况下,基于未并联到电池系统的电池与并联到电池系统的电压最小的电池的电压的差值,确定是否将未并联到电池系统的电池并联到电池系统,确定是否将未并联到电池系统的电池并联到电池系统。本申请实施例根据N个电池中SOC最小的电池是否已并联到电池系统采用不同的充电控制策略,可以避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而可以提高电池系统的寿命和性能。
可选地,在本申请实施例中,该充电控制方法300应用于电池系统未上高压完成之前,该充电控制方法300还包括:在该N个电池中电压最小的电池已并联到电池系统的情况下,确定该N个电池中SOC最小的电池是否已并联到电池系统。
应理解,该充电控制方法300可以应用于电池系统上高压完成前,也就是说,该充电控制方法300可以在图2所示的主正继电器220闭合之前执行。具体地,可以在判断N个电池中SOC最小的电池是否已并联到电池系统之前,判断N个电池中电压最小的电池是否已并联到电池系统。可选地,在确定N个电池中电压最小的电池未并联到电池系统的情况下,可以将电压最小的电池并联到电池系统。在电压最小的电池已并联到电池系统的情况下,再进一步判断N个电池中SOC最小的电池是否已并联到电池系统。
在该实施例中,在N个电池中电压最小的电池已并联到电池系统的情况下,确定N个电池中SOC最小的电池是否已并联到电池系统,可以在电压与SOC不对称的情况下(即电压最小的电池不是SOC最小的电池),可以避免比已并联到电池系统的电池内电压最小的电池的电压还低的电池错失并联到电池系统的时机而无法并联到电池系统,从而可以提高充电效率。
可选地,在本申请实施例中,S310具体可以包括:在N个电池中SOC最小的电池已并联到电池系统的情况下,确定第一电池的SOC与第二电池的SOC的差值是否大于第一阈值;在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,根据第一电池的电压与第三电池的电压的差值,确定是否将第一电池并联到电池系统。
第一阈值的设置可以考虑但不限于以下因素:SOC估算的误差和电池充电至第一阈值的SOC时电压的上升值。也就是说,该第一阈值是基于SOC估算的误差和电池 在充电时电压上升到电压阈值所对应的SOC上升值。该电压阈值对应的环流值在安全的环流值区间内。该第一阈值可以是固定值,例如,5%;该第一阈值也可以基于电池的各种参数动态调整。
在该实施例中,在N个电池中SOC最小的电池已并联到电池系统并且第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,基于第一电池的电压与第三电池的电压的差值,确定是否将第一电池并联到电池系统,有利于避免由于电池并联到电池系统时的压差过大产生的环流对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在本申请实施例中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,根据第一电池的电压与第四电池的电压的差值,确定是否将第一电池并联到电池系统,包括:在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,确定第一电池的电压与第四电池的电压的差值是否大于第二阈值;在第一电池的电压与第四电池的电压的差值不大于第二阈值的情况下,确定将第一电池并联到电池系统。
第二阈值的设置可以考虑电池并联之后的环流值大小。也就是说,第二阈值是基于电池并联之后的环流值大小确定的。可选地,第二阈值可以进行如下设置:第二阈值对应的环流值在安全的环流值区间内。该第二阈值可以是固定值,例如,5V;该第二阈值也可以是基于电池的各种参数动态调整。
在该实施例中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值且第一电池与第四电池的电压的差值不大于第二阈值的情况下,才确定将第一电池并联到电池系统,这对于存在SOC与电压不对称的问题,既考虑了SOC差值,又考虑了电压差值,能够避免由于电池并联到电池系统时的压差过大产生的环流对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
上文提高第二阈值还可以动态调整。例如,该第二阈值可以通过以下公式计算获得:ΔV=(Ri+Rj)×Ix;Ix=Min(Y(x)map,F(x)map)。其中,ΔV为第二阈值,Ri、Rj分别为已并联到电池系统的电池的内阻和未并联到电池系统的电池的内阻。内阻的计算公式可以为R=f(x)=(αT,βSOC,δSOH),即电池的内阻通过温度T、荷电状态(state of charge,SOC)和健康状态(state of health,SOH)的数学模型实时计算获得。Ix为电池的允许充电电流,取其Y(x)map和F(x)map中的较小值,Y(x)map为从充电电流map中获取的在当前温度和SOC值下的允许充电电流,F(x)map为允许继电器闭合且不损害继电器容性寿命的最大环流值。因此,通过Ix实时获取允许并入电池产生的最大安全环流值,则可计算出允许并入电池的第二阈值ΔV。
在该实施例中,通过动态调整第二阈值,使得电池能够在并联到电池系统产生安全环流值的前提下,尽可能地允许该电池并联到电池系统,减少无法并联到电池系统的电池数量。
可选地,在本申请实施例中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,根据第一电池的电压与第四电池的电压的差值,确定是否将第一电池并联到电池系统,包括:在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,确定第一电池的电压与第四电池的电压的差值是否大于第二阈值;在第一电池的电压与第四电池的电压的差值大于第二阈值的情况下,确定不将第一电池并联到电池系统。
在该实施例中,在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,若第一电池与第四电池的电压的差值大于第二阈值,则确定不将第一电池 并联到电池系统,可以避免由于与已并联到电池系统的电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在本申请实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于N个电池中未并联到电池系统中的M个电池中的第一电池的SOC与已并联到电池系统中的K个电池中的第二电池的SOC的差值,确定是否将第一电池并联到电池系统,还包括:在N个电池中SOC最小的电池已并联到电池系统的情况下,确定第一电池的SOC与第二电池的SOC的差值是否大于第一阈值;在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,确定不将第一电池并联到电池系统。
也就是说,一旦确定第一电池的SOC与第二电池的SOC之间的差值大于第一阈值,则可以认为第一电池并联到电池系统可能会导致环流值过大,故此时可以暂时不将第一电池并联到电池系统,也就是说,不闭合第一电池内的继电器。接着,可以依次判断未并联到电池系统的M个电池中除第一电池之外的其他电池,是否适合并联到电池系统。
在该实施例中,一旦第一电池的SOC与第二电池的SOC的差值大于第一阈值,就确定不将第一电池并联到电池系统,可以避免电池并联到电池系统时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在本申请实施例中,第一电池为M个电池中SOC最小的电池,该对电池系统进行充电控制还包括:在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,确定控制M个电池中除第一电池之外的(M-1)个电池不并联到电池系统,M大于1。
在该实施例中,通过比较未并联到电池系统中的M个电池中SOC最小的第一电池的SOC与并联到电池系统中的K个电池中SOC最小的第二电池的SOC,一旦确定不将该第一电池并联到电池系统的情况下,就可以不再对其他电池进行判断,从而可以减少在充电之前所进行的判断时间,有利于提高充电效率。
可选地,在本申请实施例中,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,确定是否将第三电池并联到电池系统,包括:在N个电池中SOC最小的电池未并联到电池系统的情况下,确定第三电池的电压和第四电池的电压的差值是否大于第二阈值;在第三电池的电压和第四电池的电压的差值不大于第二阈值的情况下,确定将第三电池并联到电池系统。
在该实施例中,在SOC最小的电池未并联到电池系统的情况下,若第三电池与第四电池的电压的差值不大于第二阈值,则确定将第三电池并联到电池系统,可以在避免由于与已闭合电池的电压的差值过大而导致电池并联到电池系统时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题的同时,尽可能地让未并联到电池系统的电池并入电池系统进行充电,以提高充电效率。
可选地,在本申请实施例中,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,确定是否将第三电池并联到电池系统,包括:在N个电池中SOC最小的电池未并联到电池系统的情况下,确定第三电池的电压和第四电池的电压的差值是否大于第二阈值;在第三电池的电压和第四电池的电压的差值大于第二阈值的情况下,确定不将第三电池并联到电池系统。
也就是说,在N个电池中SOC最小的电池未并联到电池系统的情况下,一旦确定第三电池的电压与第四电池的电压之间的差值大于第二阈值,则可以认为第三电 池并联到电池系统可能会导致环流值过大,故此时可以暂时不将第三电池并联到电池系统,也就是说,不闭合第三电池内的继电器。接着,可以依次判断未并联到电池系统的M个电池中除第三电池之外的其他电池,是否适合并联到电池系统。
在该实施例中,在SOC最小的电池未并联到电池系统的情况下,若第三电池与第四电池的电压的差值大于第二阈值,则确定不将第三电池并联到电池系统,可以避免由于与已并联到电池系统的电池的电压的差值过大而导致电池并联电池系统时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在本申请实施例中,第三电池为M个电池中电压最小的电池,该对电池系统进行充电控制还包括:在第三电池的电压与第四电池的电压的差值大于第二阈值的情况下,确定不将M个电池中除第三电池之外的(M-1)个电池并联到电池系统,M大于1。
在该实施例中,通过比较未并联到电池系统中的M个电池中电压最小的第三电池的电压与并联到电池系统中的K个电池中电压最小的第四电池的电压,一旦确定不将该第三电池并联到电池系统的情况下,就可以不再对其他电池进行判断,从而可以减少在充电之前所进行的判断时间,有利于提高充电效率。
在其他实施例中,若N个电池中SOC最小的电池未并联到电池系统,可以先判断该N个电池中SOC最小的电池与第二电池的SOC之差是否大于第一阈值,若刚好该N个电池中SOC最小的电池与该第二电池的SOC之差不大于第一阈值,则可以先将该N个电池中SOC最小的电池并联到电池系统。然后再继续按照本申请N个电池中SOC最小的电池已并联到电池系统的实施例去判断其余未并联到电池系统中的电池。而若该N个电池中SOC最小的电池与第二电池的SOC之差大于第一阈值,则按照本申请N个电池中SOC最小的电池未并入工作回路的实施例去判断其余未并联到电池系统中的电池。
可选地,在本申请实施例中,该对电池系统进行充电控制还包括:控制电池系统上高压。
也就是说,一旦确定未并联到电池系统的M个电池中SOC最小的电池或者电压最小的电池不适合并联到电池系统,则可以认为该M个电池中的其余电池均不适合并联到电池系统,此时可以对该电池系统进行上高压,即闭合图2中的主正继电器220,使得充电装置对该电池系统进行充电,更确切地说,由于该N个电池中的M个电池并未并联到电池系统,该充电装置实际上是对并联到电池系统的K个电池进行充电。
在该实施例中,由于未并联到电池系统的M个电池并不满足静态闭合条件,控制K个电池充电,使得该K个电池的SOC和电压均动态变化,有利于在充电过程中确定该M个电池并联到电池系统的时机,从而能够尽可能地让无故障的电池都能并入电池系统进行充电,以提高充电效率。
可选地,在本申请实施例中,在确定N个电池中SOC最小的电池是否已经并联到电池系统之前,该充电控制方法300还包括:确定N个电池中未并联到电池系统的L个电池中的第五电池的电压是否小于已并联到电池系统的Q个电池中的第六电池的电压;在第五电池的电压小于第六电池的电压的情况下,确定将第五电池并联到电池系统;其中,第五电池为L个电池中的任一电池,第六电池为Q个电池中电压最小的电池,L和Q为正整数,且N=L+Q,L大于或等于M。
具体地,可以依次判断未并联到电池系统的电池的电压是否低于已并联到电池系统的电池中电压最低的电池的电压,若低于,则将所判断的未并联到电池系统的电池并联到电池系统。在将所有未并联到电池系统的电池的电压均与已并联到电池系统 的电池中电压最低的电池的电压比较之后,可以确保N个电池中电压最小的电池并联到电池系统。
在该实施例中,在确定N个电池中SOC最小的电池是否已并联到电池系统之前,尽可能地将该N个电池中的电压最小的电池并联到电池系统,从而可以避免比已并联到电池系统的电池内电压最小的电池的电压还低的电池错失并联到电池系统的时机而无法并联到电池系统。
可选地,在本申请实施例中,在第五电池的电压小于第六电池的电压的情况下,确定将第五电池并联到电池系统,包括:在第五电池的电压小于第六电池的电压的情况下,确定第五电池的电压与第六电池的电压的差值是否大于第二阈值;在第五电池的电压与第六电池的电压的差值不大于第二阈值的情况下,确定将第五电池并联到电池系统。
换句话说,若第五电池的电压与第六电压的电压的差值大于第二阈值,则可以确定不将该第五电池并联到电池系统。
在该实施例中,在将N个电池中电压最小的电池并联到电池系统时,考虑与已并联到电池系统的电池中电压最小的电池的电压的差值,可以避免由于与已并联到电池系统的电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在该实施例中,第五电池为L个电池中电压最小的电池。
在该实施例中,通过比较未并联到电池系统中的L个电池中电压最小的第五电池的电压与并联到电池系统中的Q个电池中电压最小的第六电池的电压,一旦确定不将该第五电池并联到电池系统,就可以认为N个电池中电压最小的电池已并联到电池系统;或者,一旦确定将该第五电池并联到电池系统,则可以认为在第五电池并联到电池系统的情况下,该N个电池中电压最小的电池也已并联到电池系统。此时,可以不再对其他电池进行判断,从而可以减少在充电之前所进行的判断时间,有利于提高充电效率。
需要说明的是,在电池系统上高压之前,可以先将N个电池中电压最小的电池并联到电池系统。但是由于电动汽车在长时间行驶之后立马去充电,各个电池的电芯还未完成静置退极化的过程,在这个过程中立马进行插枪充电,各电池因温度等因素的差异形成退极化速度不一致而导致的电压会有一定的波动,故在确定N个电池中SOC最小的电池是否已并联到电池系统之前,还可以再次判断未并联到电池系统中的电池中是否有比并联到电池系统中的电池中电压最小的电池的电压还低,从而有利于将该N个电池中真实的电压最小的电池并联到电池系统。
可选地,在本申请实施例中,该充电控制方法300应用于电池系统上高压完成之后。
也就是说,该充电控制方法300可以在图2所示的主正继电器220闭合之后执行。
在该实施例中,在充电过程中,基于N个电池中SOC最小的电池是否并联到电池系统,采用不同的充电控制策略,有利于避免在对多电池并联的电池系统充电时,由于电池之间的电池电压、内阻、自放电率等参数差异所产生的电流不均衡的现象出现,从而有利于提高电池系统的寿命和性能。
可选地,在本申请实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于N个电池中未并联到电池系统中的M个电池中的第一电池的SOC与已并联到电池系统中的K个电池中的第二电池的SOC的差值,确定是否将第一电池并联到电池系统,包括:在N个电池中SOC最小的电池已并联到电池系统的情况下, 根据第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电;在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统。
需要解释的是,降功率控制充电是指采用降低的请求电流请求充电装置对电池系统进行充电。例如,在一开始对已并联到电池系统的电池进行充电时,可以基于已并联到电池系统的电池的充电电流查表值请求充电,进一步地,可以根据第一电池的SOC和第二电池的SOC的差值,采用比该充电电流查表值低的请求电流请求充电,例如,可以采用该充电电流查表值的0.1倍的请求电流请求充电。
在充电过程中,已并联到电池系统的电池因充电电流引起的充电极化导致已并联到电池系统的电池的电压出现虚高,即充电过程中的电池的电压是动态电压而非真实电压,若直接以并联到电池系统的电池的动态电压与未并联到电池系统的电池的静态电压进行判断,则可能会出现压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,并且在大电流充电过程中直接将并入电池容易因环流产生充电过流等问题。
因此,在该实施例中,在N个电池中SOC最小的电池已并联到电池系统的情况下,基于第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电,并且在降功率控制充电的情况下,再基于K个电池的电压与第一电池的电压的差值,确定是否将第一电池并联到电池系统,有利于避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接将并入电池容易因环流产生充电过流等问题。
可选地,在本申请实施例中,在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统,包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的电压与第一电池的电压之间的差值是否大于第二阈值;在K个电池的电压与第一电池的电压之间的差值不大于第二阈值的情况下,确定将第一电池并联到电池系统。
在该实施例中,在基于第一电池的SOC与第二电池的SOC的差值对K个电池进行降功率控制充电的情况下,若K个电池的电压与第一电池的电压的差值不大于第二阈值,则确定将第一电池并联到电池系统,可以在避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题的同时,尽可能地将无故障的电池并联到电池系统。
可选地,在本申请实施例中,在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否控制第一电池并联到电池系统,包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的电压与第一电池的电压之间的差值是否大于第二阈值;在K个电池的电压减去第一电池的电压的差值大于第二阈值的情况下,确定不将第一电池并联到电池系统。
在该实施例中,在基于第一电池的SOC与第二电池的SOC的差值对K个电池进行降功率控制充电的情况下,若K个电池的电压减去第一电池的电压的差值大于第二阈值,则确定不将第一电池、并联到电池系统,可以避免由于与已并联到电池系统的电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在本申请实施例中,根据第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电,包括:在第一电池的SOC与第二电池的SOC的差值不大于第一阈值的情况下,对K个电池进行降功率控制充电。
在该实施例中,若第一电池与第二电池的SOC之差不大于第一阈值,则可以直接对K个电池进行降功率控制充电,能够降低已并联到电池系统的电池的电压过充从而导致在对请求电流调节成功之后仍无法并联到电池系统的风险。
可选地,在本申请实施例中,根据第一电池的SOC与第二电池的SOC的差值,对K个电池进行降功率控制充电,包括:在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,根据K个电池的电压对应的开路电压(open circuit voltage,OCV)与第一电池的电压的差值,对K个电池进行降功率控制充电。
需要说明的是,当该充电控制方法300应用于充电过程中时,已并联到电池系统的电池的电压通常是动态电压,也就是说,可变化的电压。故K个电池的电压实际上是指K个电池的动态电压。可选地,该K个电池的动态电压可以是K个电池中任一电池的动态电压。例如,K个电池中动态电压最大的电池中的动态电压。动态电压对应的开路电压可以通过公式U 0=U-IR计算获得,其中,U 0表示开路电压,U表示单体累加和电压,I表示该对应电池的当前电流,R表示1s直流内阻。
在该实施例中,在第一电池的SOC与第二电池的SOC的差值大于第一阈值的情况下,进一步再基于K个电池的电压对应的开路电压与第一电池的电压的差值,对K个电池进行降功率控制充电,能够避免与已闭合的电池之间的SOC之差较大但压差较小的电池错过闭合时机。
可选地,在本申请实施例中,根据K个电池的电压对应的开路电压OCV与第一电池的电压的差值,对K个电池进行降功率控制充电,包括:在开路电压OCV减去第一电池的电压的差值大于或等于第三阈值的情况下,对K个电池进行降功率控制充电。
第三阈值的设置主要考虑以下因素:过充和继电器允许闭合的压差;以及电芯内阻极化可能存在的误差。也就是说,第三阈值可以基于过充和继电器允许闭合的压差和/或电芯内阻极化可能存在的误差确定的。与第一阈值和第二阈值类似,第三阈值可以是固定的,例如,4.5V;第三阈值也可以是动态调整的,本申请实施例对此不作限定。
在该实施例中,在开路电压减去第一电池的电压的差值大于或等于第三阈值的情况下,对K个电池进行降功率控制充电,有利于根据已并联到电池系统的电池的真实电压与未并联到电池系统的电池的电压之差,准确将未并联到电池系统的电池并联或不并联到电池系统,从而可以在避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题的同时,尽可能地将无故障的电池并联到电池系统。
可选地,在本申请实施例中,该对电池系统进行充电控制还包括:在对K个电池进行降功率控制充电的情况下,确定第一电池的电压减去K个电池的电压的差值是否大于第二阈值;在第一电池的电压减去K个电池的电压的差值大于第二阈值的情况下,以K个电池的充电电流查表值请求对K个电池充电。
该K个电池的充电电流查表值通常是基于K个电池的SOC、温度以及电压等各种因素确定的。也就是说,在系统上高压之后,电池系统需要根据K个电池当前的SOC、温度和/或电压获取充电电流查表值,并基于该充电电流查表值向充电装置请求充电。之后,在执行上述各种实施例所述的降功率控制充电之后,例如,以充电电流查表值的0.1倍向充电装置请求充电,若判断出第一电池的电压减去K个电池的电压的差值大于第二阈值的情况下,再次释放充电限制,即有一次基于充电电流查表值向充电装置请求充电。
在该实施例中,在第一电池的电压减去K个电池的电压的差值大于第二阈值的情况下,释放充电限制,可以避免长时间对电池系统进行降功率控制充电所导致的充电效率不高的问题。
可选地,在本申请实施例中,在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统,包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的第一采样电流是否大于第四阈值;在K个电池的第一采样电流不大于第四阈值的情况下,基于K个电池的电压与第一电池的电压之间的差值,确定是否将第一电池并联到电池系统。
第四阈值的设置需要综合考虑充电极化对电压的影响以及充电时间这两方面的因素。第四阈值可以是固定值,例如,0.1C,即按标称容量下对应的0.1倍的充电电流。该第四阈值也可以是动态调整的。
也就是说,在对K个电池进行降功率控制充电的情况下,可以先判断当前的采样电流是否大于第四阈值,若该K个电池的采样电流不大于第四阈值,就可以直接基于K个电池的电压与第一电池的电压之间的差值,控制第一电池的接入情况,以防止充电极化导致已并联到电池系统的电池的电压出现虚高的现象并未完全消失,从而导致在后续基于K个电池的电压与第一电池的电压之间的差值,控制第一电池的接入状态时存在误判的情况。
可选地,在本申请实施例中,该对电池系统进行充电控制还包括:在对K个电池进行降功率控制充电的情况下,确定K个电池的第二采样电流减去目标调节电流的差值是否大于第五阈值;在K个电池的第二采样电流减去目标调节电流的差值大于第五阈值的情况下,确定不将第一电池并联到电池系统,目标调节电流为K个电池的充电电流查表值的A倍,A大于0且小于1。
类似地,该第五阈值可以是固定值,例如,5A。该第五阈值也可以是动态调整的。目标调节电流为K个电池的充电电流查表值的A倍,例如,A为0.1。需要说明的是,此处的第一采样电流与下文中的第二采样电流类似,都是指在不同时刻下的K个电池的采样电流。例如,第二采样电流可以是指在对K个电池进行降功率控制充电之后所采集的K个电池的采样电流。而下文中的第一采样电流可以是指对K个电池进行降功率控制充电之前所采集的K个电池的采样电流。
在该实施例中,若K个电池的第二采样电流大于目标调节电流一定值之后,就说明此时第一电池还没有达到判断是否并联到电池系统的条件,故此时确定不将该第一电池并联到电池系统,可以避免由于与已闭合电池的电压的差值过大而导致电池并入时的环流值对继电器形成冲击导致粘连、寿命缩短或对电芯造成损害的问题。
可选地,在本申请实施例中,对K个电池进行降功率控制充电,包括:在K个电池的第一采样电流大于第四阈值的情况下,对K个电池进行降功率控制充电。
在该实施例中,在K个电池的第一采样电流大于第四阈值的情况下,对K个电池进行降功率控制充电,有利于避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接将并入电池容易因环流产生充电过流等问题。
可选地,在本申请实施例中,K个电池的电压为K个电池的K个电压中的最大电压。
理论上,电池系统中已并联到电池系统的电池的电压应该都是相等的,采用K个电池中的最大电压去做判断是为了存在环流时,已并联到电池系统中的电池之间的电压不一致时,防止已并联到电池系统中的电池中电压较高的电池的电压充的更高, 从而大于未并联到电池系统中的电池第二阈值以上,从而导致未并联到电池系统的电池错过闭合时机。
可选地,在本申请实施例中,在N个电池中SOC最小的电池未并联到电池系统的情况下,根据M个电池中第三电池的电压和第四电池中的电压的差值,确定是否将第三电池并联到电池系统,包括:在确定N个电池中SOC最小的电池未并联到电池系统的情况下,根据第三电池的电压与第四电池的电压的差值,对K个电池进行降功率控制充电;在对K个电池进行降功率控制充电的情况下,基于K个电池的电压与第三电池的电压之间的差值,确定是否将第三电池并联到电池系统。
在该实施例中,在N个电池中SOC最小的电池未并联到电池系统的情况下,基于第三电池与第四电池之间的压差,对电池进行降功率控制充电,并进一步地,基于K个电池的电压与第三电池的电压之差,确定是否将第三电池并联到电池系统,有利于避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接将并入电池容易因环流产生充电过流等问题。
可选地,在本申请实施例中,根据第三电池的电压与第四电池的电压的差值,对K个电池进行降功率控制充电,包括:在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,对K个电池进行降功率控制充电。
该预设范围的设置需要考虑极化电压的存在。也就是说,因为已并联到电池系统的电池存在极化电压,即电压虚高,若已并联到电池系统的电池的电压比未并联到电池系统的电池的电压还低,那降电流之后电压更低,因此,该预设范围有一个最低值。另外,为了防止已并联到电池系统的电池的真实电压充的过高,导致未并联到电池系统的电池闭合不了,故该预设范围有一个最高值。例如,该预设范围可以是0.5~5V。
在该实施例中,在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,对K个电池进行降功率控制充电,能够避免压差过大形成严重冲击,损坏电芯或导致继电器粘连等问题,以及在大电流充电过程中直接并入电池容易因环流产生充电过流等问题。
可选地,在本申请实施例中,基于K个电池的电压与第三电池的电压之间的差值,确定是否将第三电池并联到电池系统,包括:在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,确定将第三电池并联到电池系统。
在该实施例中,在第三电池的电压与第四电池的电压的差值在预设范围内的情况下,确定将第三电池并联到电池系统,能够避免压差过大形成严重冲击,损坏电芯或导致继电器粘连的问题。
可选地,在本申请实施例中,第三电池为M个电池中电压最小的电池。
在该实施例中,通过将未接入电池系统的M个电池中电压最小的电池的电压与已接入电池系统的K个电池中电压最小的电池的低压进行比较,一旦在该M个电池中电压最小的电池满足不了闭合条件的情况下,不再依次判断其他未闭合的电池,而是继续对K个电池进行充电再找时机判断,从而可以降低算法的复杂度。
需要说明的是,虽然本申请实施例的充电控制方法300既可以应用于静态下电池系统的充电控制流程,又可以应用于动态下电池系统的充电控制流程。也就是说,可以是静态下电池系统的充电控制流程可以采用该充电控制方法300,而动态下电池系统的充电控制流程不采用该充电控制方法300。或者,也可以是静态下电池系统的充电控制流程不采用该充电控制方法300,而动态下电池系统的充电控制流程采用该充电控制方法300。还可以是静态下电池系统的充电控制流程采用该充电控制方法300,并且动态下电池系统的充电控制流程也采用该充电控制方法300。
下面将分别结合图4和图5详细描述本申请实施例提供的静态下电池系统的充电控制流程和动态下电池系统的充电控制流程。
为了便于描述,在图4所描述的实施例中,将未并联到电池系统的电池中SOC最小的电池称为a,将已并联到电池系统的电池中SOC最小的电池称为b,将未并联到电池系统的电池中电压最小的电池称为c,将已并联到电池系统的电池中电压最小的电池称为d。将在确定N个电池中SOC最小的电池之前的未并联到电池系统的电池中电压最小的电池称为e并且已闭合电池中电压最小的电池称为f。
如图4所示,该静态下电池系统的充电控制流程400可以包括以下部分或全部内容。
S401,将N个电池中电压最小的电池闭合。
S402,判断是否存在未闭合电池的最小电压比已闭合电池的最小电压小。即判断未闭合电池中的电池e的电压是否比已闭合电池中的电池f的电压小。
S403,若S402判断结果为是,则继续判断电池e的电压是否比电池f的电压小5V以内。
S404,若S403判断结果为是,则闭合电池e。
可选地,在S404之后,可以返回执行步骤S402。
若S403判断结果为否,则进入步骤S405。
同样地,若S402的判断结果为否,则进入步骤S405。
S405,判断N个电池中SOC最小的电池是否闭合。
S406,若S405判断结果为是,则继续判断未闭合电池中SOC最小的电池的SOC是否比已闭合电池中SOC最小的电池的SOC高5%以内,即判断电池a的SOC是否比电池b的SOC高5%以内。
S407,若S406判断结果为是,则进一步判断电池a的电压是否与已闭合电池中电压最小的电池d的电压的差值在5V以内。
S408,若S407判断结果为是,则闭合电池a。
可选地,若S406判断结果为否,则进入步骤410。
可选地,若S407判断结果为否,则返回执行步骤S405。
S409,在步骤S408之后,判断是否所有未闭合电池均已判断完成。
可选地,若S409判断结果为是,则进入步骤S410。
可选地,若S409判断结果为否,则返回步骤S406。
S410,系统上高压。
S411,若S405判断结果为否,则判断未闭合电池中电压最小的电池的电压比已闭合电池中电压最小的电压是否高5V以内,即判断电池c的电压是否比电池d的电压高5V以内。
S412,若S411判断结果为是,则闭合电池c。
可选地,若S411判断结果为否,则执行步骤S410。
可选地,在步骤S412之后,可以进入步骤S409。
为了便于描述,在图5所描述的实施例中,将未闭合电池中请求闭合的电池称为g,将已闭合电池中SOC最小的电池称为h,将已闭合电池中动态电压最大的电池称为j。将已闭合电池中电压最小的电池称为k,将未闭合电池中电压最小的电池称为l。
如图5所示,该动态下电池系统的充电控制流程500可以包括以下部分或全部内容。
S501,系统上高压完成进行充电。
S502,判断是否存在未闭合的电池。
S503,若步骤S502判断结果为是,则判断N个电池中SOC最小的电池是否闭合。
S504,若步骤S502判断结果为否,则确定所有能够闭合的电池均闭合完成。
S505,若步骤S503判断结果为是,则继续判断已闭合电池中SOC最小的电池的SOC与请求闭合的电池的SOC的差值是否在5%以内。即判断电池h的SOC与电池g的SOC的差值是否在5%以内。
S506,若步骤S505判断结果为否,则继续已闭合电池中动态电压最大的电池的电压折算出来的OCV电压是否大于或等于请求闭合的电池的电压+4.5V,及即判断电池j的动态电压折算的OCV电压是否大于或等于电池g的电压+4.5V。
可选地,若步骤S506判断结果为否,则返回执行步骤S502。
S507,若步骤S505或步骤S506判断结果为是,进入SOC调节。例如,将请求电流从充电电流查表值调节至充电电流查表值的0.1倍。
S508,在S507之后,判断是否调节成功。例如,判断已闭合电池的采集电流是否大于0.1C充电电流,若该采集电流不大于0.1C充电电流,则SOC调节成功。
可选地,若步骤S508判断结果为否,则返回执行步骤S502。
S509,若步骤S508判断结果为是,则进一步判断请求闭合的电池的电压与已闭合电池中电压最大的电池的电压的差值是否在正负5V内。即判断电池g的电压与电池j的电压的差值是否在正负5V之内。
S510,若步骤S509判断结果为是,则认为调节成功,闭合电池g。
S511,若步骤S509判断结果为否,则进一步判断已闭合电池中电压最大的电池的电压减去请求闭合电池的电压是否大于5V,即判断j的电压-g的电压是否大于5V。
S512,若步骤S511判断结果为是,则进一步判断判断j的电压-g的电压是否大于8V。
可选地,若步骤S512判断结果为是,则执行步骤S510。
可选地,若步骤S512判断结果为否,则返回步骤S502。
可选地,若步骤S511判断结果为否,则重新使用充电电流查表值继续充电,
并在满足一定条件后执行步骤S507。
S513,若步骤S503判断结果为否,则进一步判断已闭合电池的最小电压与未闭合电池的电压的差值是否在0.5~5V以内,即判断电池k和电池l的压差是否在0.5~5V以内。
S514,若步骤S513判断结果为是,则以电池l为基准进入电压调节。
S515,在步骤S514之后,判断判断电池k和电池l的压差是否在0.5~5V以内。
S516,若步骤S515判断结果为是,则闭合电池l。
可选地,若步骤S515判断结果为否,则重新恢复充电,并在满足一定条件后继续执行S514。
可选地,若步骤S513判断结果为否,则返回步骤502。
可选地,步骤S507~S513具体可以包括以下内容:
Step:0:在系统上高压完成之后,以当前已闭合电池的充电电流查表值对已闭合电池进行充电。判断当前已闭合电池的采样电流是否大于0.1C充电电流,若当前已闭合电池的采样电流大于0.1C充电电流,在持续1s之后,跳转到step 1。若当前已闭合电池的采样电流小于或等于0.1C充电电流,则可以进一步判断已闭合电池的电压与请求闭合的电池的电压差值是否在-5V~5V以内。若电压差值在-5V~5V以内,则闭合该请求闭合的电池;若已闭合电池的电压减去请求闭合的电池的电压的差值大于5V, 则判断不闭合该待请求闭合的电池,并且记录该带请求闭合的电池的标识。若是从step 1跳转到step 0重新以充电电流查表值进行充电时,只要满足以下任一条件就可以跳转到step 1进行降流:1,判断请求闭合电池的SOC充高2%以后;2,判断已闭合电池触发未闭合电池预过充条件(即已闭合电池OCV折算电压大于请求闭合电池的电压+4.5V),本次调节,该条件只触发一次。
Step 1:调节请求电流为充电电流查表值的0.1倍,在采用调节后的请求电流充电180s之后,或者在当前已闭合电池的采样电流小于调节后的请求电流+3A持续3s之后,可以进一步判断当前已闭合电池的采样电流是否大于0.1C充电电流。若当前已闭合电池的采样电流小于或等于0.1C充电电流,则继续判断已闭合电池的电压与请求闭合的电池的电压差值是否在-5V~5V以内。若电压差值在-5V~5V以内,则闭合该请求闭合的电池;若已闭合电池的电压减去请求闭合的电池的电压的差值大于5V,则判断不闭合该待请求闭合的电池,并且记录该请求闭合的电池的标识。同样地,若已闭合电池的电压减去请求闭合的电池的电压的差值小于-5V,则返回step 0继续充电。若当前已闭合电池的采样电流大于调节后的请求电流+5A,则判断不闭合该请求闭合的电池,并且记录该请求闭合的电池的标识。
需要说明的是,本申请实施例中的“以内”是包括端点在内的。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文详细描述了本申请实施例的电池系统的充电控制方法,下面将结合图6详细描述本申请实施例的充电控制装置。方法实施例所描述的技术特征适用于以下装置实施例。
图6示出了本申请实施例的电池系统的充电控制装置600的示意性框图。电池系统包括N个电池,N为大于1的正整数;如图6所示,该充电控制装置600包括以下部分或全部内容。
控制单元610,用于在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该N个电池中未并联到该电池系统的M个电池中的第一电池的SOC与已并联到该电池系统的K个电池中的第二电池的SOC的差值,对该电池系统进行充电控制,该第一电池为该M个电池中的任一电池,该第二电池为该K个电池中SOC最小的电池,或者在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该M个电池中第三电池的电压和该K个电池中的该第四电池中的电压的差值,对该电池系统进行充电控制,该第三电池为该M个电池中的任一电池,该第四电池为该K个电池中电压最小的电池;其中,M和K均为正整数,且N=M+K。
可选地,在本申请实施例中,该控制单元包括:确定子单元,用于在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该第一电池的SOC与该第二电池的SOC的差值,确定是否将该第一电池并联到该电池系统,或者在该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该第三电池的电压和该第四电池的电压的差值,确定是否将该第三电池并联到该电池系统。
可选地,在本申请实施例中该充电控制装置应用于该电池系统未上高压完成之前,该充电控制装置还包括:确定单元,用于在该N个电池中电压最小的电池已并联到该电池系统的情况下,确定该N个电池中SOC最小的电池是否已并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在该N个电池中SOC最小的电池已并联到该电池系统的情况下,确定该第一电池的SOC与该第二电池的SOC的差值是否大于第一阈值;在该第一电池的SOC与该第二电池的SOC的差值不 大于该第一阈值的情况下,根据该第一电池的电压与该第四电池的电压的差值,确定是否将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值不大于该第一阈值的情况下,确定该第一电池的电压与该第四电池的电压的差值是否大于第二阈值;在该第一电池的电压与该第四电池的电压的差值不大于该第二阈值的情况下,确定将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值不大于该第一阈值的情况下,确定该第一电池的电压与该第四电池的电压的差值是否大于第二阈值;在该第一电池的电压与该第四电池的电压的差值大于该第二阈值的情况下,确定不将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该该确定子单元具体用于::在该N个电池中SOC最小的电池已并联到该电池系统的情况下,确定该第一电池的SOC与该第二电池的SOC的差值是否大于第一阈值;在该第一电池的SOC与该第二电池的SOC的差值大于该第一阈值的情况下,确定不将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元还用于:在该第一电池的SOC与该第二电池的SOC的差值大于该第一阈值的情况下,确定不将该M个电池中除该第一电池之外的(M-1)个电池并联到该电池系统,M大于1。
可选地,在本申请实施例中,该确定子单元具体用于:在该N个电池中SOC最小的电池未并联到该电池系统的情况下,确定该第三电池的电压和该第四电池的电压的差值是否大于第二阈值;在该第三电池的电压和该第四电池的电压的差值不大于该第二阈值的情况下,确定将该第三电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在该N个电池中SOC最小的电池未并联到该电池系统的情况下,确定该第三电池的电压和该第四电池的电压的差值是否大于第二阈值;在该第三电池的电压和该第四电池的电压的差值大于该第二阈值的情况下,确定不将该第三电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元还用于:在该第三电池的电压与该第四电池的电压的差值大于该第二阈值的情况下,确定不将该M个电池中除该第三电池之外的(M-1)个电池并联到该电池系统,M大于1。
可选地,在本申请实施例中,该控制单元还包括:控制子单元,用于控制该电池系统上高压。
可选地,在本申请实施例中,该确定单元还用于:在确定该N个电池中SOC最小的电池是否已经并联到该电池系统之前,确定该N个电池中未并联到该电池系统的L个电池中的第五电池的电压是否小于已并联到该电池系统的Q个电池中的第六电池的电压;在该第五电池的电压小于该第六电池的电压的情况下,确定是否将该第五电池并联到该电池系统;其中,该第五电池为该L个电池中的任一电池,该第六电池为该Q个电池中电压最小的电池,L和Q为正整数,且N=L+Q,L大于或等于M。
可选地,在本申请实施例中,该确定单元具体用于:在该第五电池的电压小于该第六电池的电压的情况下,确定该第五电池的电压与该第六电池的电压的差值是否大于第二阈值;在该第五电池的电压与该第六电池的电压的差值不大于该第二阈值的情况下,控制控制该第五电池并联到该电池系统。
可选地,在本申请实施例中,该第五电池为该L个电池中电压最小的电池。
可选地,在本申请实施例中,该充电控制装置应用于该电池系统上高压完成之后。
可选地,在本申请实施例中,该控制单元还包括:控制子单元,用于在该N个电池中SOC最小的电池已并联到该电池系统的情况下,根据该第一电池的SOC与该第二电池的SOC的差值,对该K个电池进行降功率控制充电;该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定是否将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,根据该K个电池的电压与该第一电池的电压之间的差值,确定是否将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定该K个电池的电压与该第一电池的电压之间的差值是否大于第二阈值;在该K个电池的电压与该第一电池的电压之间的差值不大于该第二阈值的情况下,确定将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定该K个电池的电压与该第一电池的电压之间的差值是否大于第二阈值;在该K个电池的电压减去该第一电池的电压的差值大于该第二阈值的情况下,确定不将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该控制子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值不大于第一阈值的情况下,对该K个电池进行降功率控制充电。
可选地,在本申请实施例中,该控制子单元具体用于:在该第一电池的SOC与该第二电池的SOC的差值大于第一阈值的情况下,根据该K个电池的电压对应的开路电压OCV与该第一电池的电压的差值,对该K个电池进行降功率控制充电。
可选地,在本申请实施例中,该控制子单元具体用于:在该开路电压OCV减去该第一电池的电压的差值大于或等于第三阈值的情况下,对该K个电池进行降功率控制充电。
可选地,在本申请实施例中,该确定子单元还用于:在对该K个电池进行降功率控制充电的情况下,确定该第一电池的电压减去该K个电池的电压的差值是否大于该第二阈值;该控制单元还包括:请求子单元,用于在该第一电池的电压减去该K个电池的电压的差值大于该第二阈值的情况下,以该K个电池的充电电流查表值请求对该K个电池充电。
可选地,在本申请实施例中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,确定该K个电池的第一采样电流是否大于第四阈值;在该K个电池的第一采样电流不大于该第四阈值的情况下,根据该K个电池的电压与该第一电池的电压之间的差值,确定是否将该第一电池并联到该电池系统。
可选地,在本申请实施例中,该控制子单元还用于:在该K个电池的第二采样电流大于第四阈值的情况下,对该K个电池进行降功率控制充电。
可选地,在本申请实施例中,该K个电池的电压为该K个电池的K个电压中的最大电压。
可选地,在本申请实施例中,该确定子单元具体用于:在确定该N个电池中SOC最小的电池未并联到该电池系统的情况下,根据该第三电池的电压与该第四电池的电压的差值,对该K个电池进行降功率控制充电;在对该K个电池进行降功率控制充电的情况下,确定是否将该第三电池并联到该电池系统。
可选地,在本申请实施例中,该确定子单元具体用于:在对该K个电池进行降功率控制充电的情况下,根据该K个电池的电压与该第三电池的电压之间的差值,确定是否将该第三电池并联到该电池系统。
可选地,在本申请实施例中,该控制子单元具体用于:在该第三电池的电压与该第四电池的电压的差值在预设范围内的情况下,对该K个电池进行降功率控制充电。
可选地,在本申请实施例中,该确定子单元具体用于:在该第三电池的电压与该第四电池的电压的差值在预设范围内的情况下,确定将该第三电池并联到该电池系统。
可选地,在本申请实施例中,该第三电池为该M个电池中电压最小的电池。
应理解,并且充电控制装置600中的各个模块的上述和其它操作和/或功能为了实现图3至图5的各个方法中的相应流程,为了简洁,在此不再赘述。
图7示出了本申请实施例的充电控制装置700的示意性框图。如图7所示,该充电控制装置700包括处理器710和存储器720,其中,存储器720用于存储指令,处理器710用于读取指令并基于指令执行前述本申请各种实施例的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,该充电控制装置700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信。具体地,可以向其他设备发送信息或数据,或者接收其他设备发送的信息或数据。
本申请实施例还提供了一种计算机存储介质,用于存储计算机程序,计算机程序用于执行前述本申请各种实施例的方法。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM) 和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的充电控制装置,并且该计算机程序使得计算机执行本申请实施例的各个方法中由充电控制装置实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的充电控制装置,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由充电控制装置实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的充电控制装置,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由充电控制装置实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换, 都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种电池系统的充电控制方法,其特征在于,所述电池系统包括N个电池,N为大于1的正整数,所述充电控制方法包括:
    在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述N个电池中未并联到所述电池系统的M个电池中的第一电池的SOC与已并联到所述电池系统的K个电池中的第二电池的SOC的差值,对所述电池系统进行充电控制,所述第一电池为所述M个电池中的任一电池,所述第二电池为所述K个电池中SOC最小的电池,或者
    在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述M个电池中第三电池的电压和所述K个电池中的所述第四电池中的电压的差值,对所述电池系统进行充电控制,所述第三电池为所述M个电池中的任一电池,所述第四电池为所述K个电池中电压最小的电池;
    其中,M和K均为正整数,且N=M+K。
  2. 根据权利要求1所述的充电控制方法,其特征在于,所述在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述N个电池中未并联到所述电池系统的M个电池中的第一电池的SOC与已并联到所述电池系统的K个电池中的第二电池的SOC的差值,对所述电池系统进行充电控制,包括:
    在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述第一电池的SOC与所述第二电池的SOC的差值,确定是否将所述第一电池并联到所述电池系统;
    或者
    所述在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述M个电池中第三电池的电压和所述K个电池中的所述第四电池中的电压的差值,对所述电池系统进行充电控制,包括:
    在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述第三电池的电压和所述第四电池的电压的差值,确定是否将所述第三电池并联到所述电池系统。
  3. 根据权利要求2所述的充电控制方法,其特征在于,所述充电控制方法应用于所述电池系统未上高压完成之前,所述充电控制方法还包括:
    在所述N个电池中电压最小的电池已并联到所述电池系统的情况下,确定所述N个电池中SOC最小的电池是否已并联到所述电池系统。
  4. 根据权利要求3所述的充电控制方法,其特征在于,所述在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述第一电池的SOC与所述第二电池的SOC的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,确定所述第一电池的SOC与所述第二电池的SOC的差值是否大于第一阈值;
    在所述第一电池的SOC与所述第二电池的SOC的差值不大于所述第一阈值的情况 下,根据所述第一电池的电压与所述第四电池的电压的差值,确定是否将所述第一电池并联到所述电池系统。
  5. 根据权利要求4所述的充电控制方法,其特征在于,所述在所述第一电池的SOC与所述第二电池的SOC的差值不大于所述第一阈值的情况下,根据所述第一电池的电压与所述第四电池的电压的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在所述第一电池的SOC与所述第二电池的SOC的差值不大于所述第一阈值的情况下,确定所述第一电池的电压与所述第四电池的电压的差值是否大于第二阈值;
    在所述第一电池的电压与所述第四电池的电压的差值不大于所述第二阈值的情况下,确定将所述第一电池并联到所述电池系统。
  6. 根据权利要求4所述的充电控制方法,其特征在于,所述在所述第一电池的SOC与所述第二电池的SOC的差值不大于所述第一阈值的情况下,根据所述第一电池的电压与所述第四电池的电压的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在所述第一电池的SOC与所述第二电池的SOC的差值不大于所述第一阈值的情况下,确定所述第一电池的电压与所述第四电池的电压的差值是否大于第二阈值;
    在所述第一电池的电压与所述第四电池的电压的差值大于所述第二阈值的情况下,确定不将所述第一电池并联到所述电池系统。
  7. 根据权利要求3所述的充电控制方法,其特征在于,所述在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述N个电池中未并联到所述电池系统中的M个电池中的第一电池的SOC与已并联到所述电池系统中的K个电池中的第二电池的SOC的差值,确定是否将所述第一电池并联到所述电池系统,还包括:
    在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,确定所述第一电池的SOC与所述第二电池的SOC的差值是否大于第一阈值;
    在所述第一电池的SOC与所述第二电池的SOC的差值大于所述第一阈值的情况下,确定不将所述第一电池并联到所述电池系统。
  8. 根据权利要求7所述的充电控制方法,其特征在于,所述第一电池为所述M个电池中SOC最小的电池,所述对所述电池系统进行充电控制,还包括:
    在所述第一电池的SOC与所述第二电池的SOC的差值大于所述第一阈值的情况下,确定不将所述M个电池中除所述第一电池之外的(M-1)个电池并联到所述电池系统,M大于1。
  9. 根据权利要求3所述的充电控制方法,其特征在于,所述在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述M个电池中第三电池的电压和所述第四电池中的电压的差值,确定是否将所述第三电池并联到所述电池系统,包括:
    在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,确定所述第三电池的电压和所述第四电池的电压的差值是否大于第二阈值;
    在所述第三电池的电压和所述第四电池的电压的差值不大于所述第二阈值的情况 下,确定将所述第三电池并联到所述电池系统。
  10. 根据权利要求3所述的充电控制方法,其特征在于,所述在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述M个电池中第三电池的电压和所述第四电池中的电压的差值,确定是否将所述第三电池并联到所述电池系统,包括:
    在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,确定所述第三电池的电压和所述第四电池的电压的差值是否大于第二阈值;
    在所述第三电池的电压和所述第四电池的电压的差值大于所述第二阈值的情况下,确定不将所述第三电池并联到所述电池系统。
  11. 根据权利要求10所述的充电控制方法,其特征在于,所述第三电池为所述M个电池中电压最小的电池,所述对所述电池系统进行充电控制,还包括:
    在所述第三电池的电压与所述第四电池的电压的差值大于所述第二阈值的情况下,确定不将所述M个电池中除所述第三电池之外的(M-1)个电池并联到所述电池系统,M大于1。
  12. 根据权利要求8或11所述充电控制方法,其特征在于,所述对所述电池系统进行充电控制,还包括:
    控制所述电池系统上高压。
  13. 根据权利要求3至12中任一项所述的充电控制方法,其特征在于,在确定所述N个电池中SOC最小的电池是否已经并联到所述电池系统之前,所述充电控制方法还包括:
    确定所述N个电池中未并联到所述电池系统的L个电池中的第五电池的电压是否小于已并联到所述电池系统的Q个电池中的第六电池的电压;
    在所述第五电池的电压小于所述第六电池的电压的情况下,确定是否将所述第五电池并联到所述电池系统;
    其中,所述第五电池为所述L个电池中的任一电池,所述第六电池为所述Q个电池中电压最小的电池,L和Q为正整数,且N=L+Q,L大于或等于M。
  14. 根据权利要求13所述的充电控制方法,其特征在于,所述在所述第五电池的电压小于所述第六电池的电压的情况下,确定是否将所述第五电池并联到所述电池系统,包括:
    在所述第五电池的电压小于所述第六电池的电压的情况下,确定所述第五电池的电压与所述第六电池的电压的差值是否大于第二阈值;
    在所述第五电池的电压与所述第六电池的电压的差值不大于所述第二阈值的情况下,确定将所述第五电池并联到所述电池系统。
  15. 根据权利要求13或14所述的充电控制方法,其特征在于,所述第五电池为所述L个电池中电压最小的电池。
  16. 根据权利要求2所述的充电控制方法,其特征在于,所述充电控制方法应用于所述电池系统上高压完成之后。
  17. 根据权利要求16所述的充电控制方法,其特征在于,所述在所述N个电池中 SOC最小的电池已并联到所述电池系统的情况下,根据所述N个电池中未并联到所述电池系统中的M个电池中的第一电池的SOC与已并联到所述电池系统中的K个电池中的第二电池的SOC的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述第一电池的SOC与所述第二电池的SOC的差值,对所述K个电池进行降功率控制充电;
    在对所述K个电池进行降功率控制充电的情况下,确定是否将所述第一电池并联到所述电池系统。
  18. 根据权利要求17所述的充电控制方法,其特征在于,所述在对所述K个电池进行降功率控制充电的情况下,确定是否将所述第一电池并联到所述电池系统,包括:
    在对所述K个电池进行降功率控制充电的情况下,根据所述K个电池的电压与所述第一电池的电压之间的差值,确定是否将所述第一电池并联到所述电池系统。
  19. 根据权利要求18所述的充电控制方法,其特征在于,所述在对所述K个电池进行降功率控制充电的情况下,根据所述K个电池的电压与所述第一电池的电压之间的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在对所述K个电池进行降功率控制充电的情况下,确定所述K个电池的电压与所述第一电池的电压之间的差值是否大于第二阈值;
    在所述K个电池的电压与所述第一电池的电压之间的差值不大于所述第二阈值的情况下,确定将所述第一电池并联到所述电池系统。
  20. 根据权利要求18所述的充电控制方法,其特征在于,所述在对所述K个电池进行降功率控制充电的情况下,根据所述K个电池的电压与所述第一电池的电压之间的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在对所述K个电池进行降功率控制充电的情况下,确定所述K个电池的电压与所述第一电池的电压之间的差值是否大于第二阈值;
    在所述K个电池的电压减去所述第一电池的电压的差值大于所述第二阈值的情况下,确定不将所述第一电池并联到所述电池系统。
  21. 根据权利要求17至20中任一项所述的充电控制方法,其特征在于,所述根据所述第一电池的SOC与所述第二电池的SOC的差值,对所述K个电池进行降功率控制充电,包括:
    在所述第一电池的SOC与所述第二电池的SOC的差值不大于第一阈值的情况下,对所述K个电池进行降功率控制充电。
  22. 根据权利要求17至20中任一项所述的充电控制方法,其特征在于,所述根据所述第一电池的SOC与所述第二电池的SOC的差值,对所述K个电池进行降功率控制充电,包括:
    在所述第一电池的SOC与所述第二电池的SOC的差值大于第一阈值的情况下,根据所述K个电池的电压对应的开路电压OCV与所述第一电池的电压的差值,对所述K个电池进行降功率控制充电。
  23. 根据权利要求22所述的充电控制方法,其特征在于,所述根据所述K个电池的电压对应的开路电压OCV与所述第一电池的电压的差值,对所述K个电池进行降功 率控制充电,包括:
    在所述开路电压OCV减去所述第一电池的电压的差值大于或等于第三阈值的情况下,对所述K个电池进行降功率控制充电。
  24. 根据权利要求17至23中任一项所述的充电控制方法,其特征在于,所述对所述电池系统进行充电控制,还包括:
    在对所述K个电池进行降功率控制充电的情况下,确定所述第一电池的电压减去所述K个电池的电压的差值是否大于所述第二阈值;
    在所述第一电池的电压减去所述K个电池的电压的差值大于所述第二阈值的情况下,以所述K个电池的充电电流查表值请求对所述K个电池充电。
  25. 根据权利要求17至24中任一项所述的充电控制方法,其特征在于,所述在对所述K个电池进行降功率控制充电的情况下,根据所述K个电池的电压与所述第一电池的电压之间的差值,确定是否将所述第一电池并联到所述电池系统,包括:
    在对所述K个电池进行降功率控制充电的情况下,确定所述K个电池的第一采样电流是否大于第四阈值;
    在所述K个电池的第一采样电流不大于所述第四阈值的情况下,根据所述K个电池的电压与所述第一电池的电压之间的差值,确定是否将所述第一电池并联到所述电池系统。
  26. 根据权利要求17至25中任一项所述的充电控制方法,其特征在于,所述对所述K个电池进行降功率控制充电,包括:
    在所述K个电池的第二采样电流大于第四阈值的情况下,对所述K个电池进行降功率控制充电。
  27. 根据权利要求17至26中任一项所述的充电控制方法,其特征在于,所述K个电池的电压为所述K个电池的K个电压中的最大电压。
  28. 根据权利要求16所述的充电控制方法,其特征在于,所述在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述M个电池中第三电池的电压和所述K个电池中的第四电池中的电压的差值,确定是否将所述第三电池并联到所述电池系统,包括:
    在确定所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述第三电池的电压与所述第四电池的电压的差值,对所述K个电池进行降功率控制充电;
    在对所述K个电池进行降功率控制充电的情况下,确定是否将所述第三电池并联到所述电池系统。
  29. 根据权利要求28所述的充电控制方法,其特征在于,所述在对所述K个电池进行降功率控制充电的情况下,确定是否将所述第三电池并联到所述电池系统,包括:
    在对所述K个电池进行降功率控制充电的情况下,根据所述K个电池的电压与所述第三电池的电压之间的差值,确定是否将所述第三电池并联到所述电池系统。
  30. 根据权利要求29所述的充电控制方法,其特征在于,所述根据所述第三电池的电压与所述第四电池的电压的差值,对所述K个电池进行降功率控制充电,包括:
    在所述第三电池的电压与所述第四电池的电压的差值在预设范围内的情况下,对所述K个电池进行降功率控制充电。
  31. 根据权利要求29或30所述的充电控制方法,其特征在于,所述根据所述K个电池的电压与所述第三电池的电压之间的差值,确定是否将所述第三电池并联到所述电池系统,包括:
    在所述第三电池的电压与所述第四电池的电压的差值在预设范围内的情况下,确定将所述第三电池并联到所述电池系统。
  32. 根据权利要求28至31中任一项所述的充电控制方法,其特征在于,所述第三电池为所述M个电池中电压最小的电池。
  33. 一种电池系统的充电控制装置,其特征在于,所述电池系统包括N个电池,N为大于1的正整数,所述充电控制装置包括:
    控制单元,用于在所述N个电池中SOC最小的电池已并联到所述电池系统的情况下,根据所述N个电池中未并联到所述电池系统的M个电池中的第一电池的SOC与已并联到所述电池系统的K个电池中的第二电池的SOC的差值,对所述电池系统进行充电控制,所述第一电池为所述M个电池中的任一电池,所述第二电池为所述K个电池中SOC最小的电池,或者
    在所述N个电池中SOC最小的电池未并联到所述电池系统的情况下,根据所述M个电池中第三电池的电压和所述K个电池中的所述第四电池中的电压的差值,对所述电池系统进行充电控制,所述第三电池为所述M个电池中的任一电池,所述第四电池为所述K个电池中电压最小的电池;
    其中,M和K均为正整数,且N=M+K。
  34. 一种电池系统的充电控制装置,其特征在于,所述电池系统包括N个电池,N为大于1的正整数,所述充电控制装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并根据所述指令执行如权利要求1至32中任一项所述的方法。
  35. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至32中任一项所述的方法。
  36. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至32中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至32中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至32中任一项所述的方法。
PCT/CN2022/090000 2022-04-28 2022-04-28 电池系统的充电控制方法和充电控制装置 WO2023206266A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/090000 WO2023206266A1 (zh) 2022-04-28 2022-04-28 电池系统的充电控制方法和充电控制装置
CN202280033029.2A CN117242621A (zh) 2022-04-28 2022-04-28 电池系统的充电控制方法和充电控制装置
EP22920995.2A EP4290648A1 (en) 2022-04-28 2022-04-28 Charging control method and charging control apparatus for battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090000 WO2023206266A1 (zh) 2022-04-28 2022-04-28 电池系统的充电控制方法和充电控制装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,901 Continuation US20240136828A1 (en) 2024-01-05 Charging control method for battery system and charging control apparatus

Publications (1)

Publication Number Publication Date
WO2023206266A1 true WO2023206266A1 (zh) 2023-11-02

Family

ID=88516796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090000 WO2023206266A1 (zh) 2022-04-28 2022-04-28 电池系统的充电控制方法和充电控制装置

Country Status (3)

Country Link
EP (1) EP4290648A1 (zh)
CN (1) CN117242621A (zh)
WO (1) WO2023206266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200401A (zh) * 2023-11-07 2023-12-08 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293739B (zh) * 2018-12-10 2022-05-17 华为技术有限公司 一种充电方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130988A (ja) * 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 充電制御装置
CN108583347A (zh) * 2018-06-06 2018-09-28 昆明理工大学 一种并联充电和选择性单体电池放电均衡的均衡电路及其控制方法
CN111431228A (zh) * 2020-03-27 2020-07-17 东莞新能安科技有限公司 并联电池组充放电管理方法及电子装置
CN112039157A (zh) * 2020-09-01 2020-12-04 桑顿新能源科技(长沙)有限公司 一种多电池子系统并联的控制系统、方法及装置
CN112533788A (zh) * 2018-10-26 2021-03-19 康明斯公司 处于不同荷电状态(soc)的多个电池组的电池充电和放电

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130988A (ja) * 1995-10-30 1997-05-16 Matsushita Electric Ind Co Ltd 充電制御装置
CN108583347A (zh) * 2018-06-06 2018-09-28 昆明理工大学 一种并联充电和选择性单体电池放电均衡的均衡电路及其控制方法
CN112533788A (zh) * 2018-10-26 2021-03-19 康明斯公司 处于不同荷电状态(soc)的多个电池组的电池充电和放电
CN111431228A (zh) * 2020-03-27 2020-07-17 东莞新能安科技有限公司 并联电池组充放电管理方法及电子装置
CN112039157A (zh) * 2020-09-01 2020-12-04 桑顿新能源科技(长沙)有限公司 一种多电池子系统并联的控制系统、方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117200401A (zh) * 2023-11-07 2023-12-08 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、设备和存储介质
CN117200401B (zh) * 2023-11-07 2024-03-29 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
EP4290648A1 (en) 2023-12-13
EP4290648A8 (en) 2024-03-06
CN117242621A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
WO2023206266A1 (zh) 电池系统的充电控制方法和充电控制装置
CN110797595A (zh) 一种电池组并联充放电控制方法和系统
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
JP7374231B2 (ja) 充放電装置、電池の充電及び放電方法、並びに充放電システム
CN109638906B (zh) 一种电池管理方法、系统及存储介质
WO2023123767A1 (zh) 电池充电剩余时间的确定方法和系统
US20220239140A1 (en) Charging method and power conversion apparatus
US20240136828A1 (en) Charging control method for battery system and charging control apparatus
US20230204672A1 (en) Method and system for determining remaining charging time of battery
JP2024519641A (ja) 電池システムの充電制御方法と充電制御装置
US20240092211A1 (en) Method and device for charging secondary battery, computer storage medium, and electronic equipment
US20230076134A1 (en) Charging method, battery management system of traction battery and charging pile
WO2023004712A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023035162A1 (zh) 动力电池充电的方法和电池管理系统
KR102625180B1 (ko) 파워 배터리 충전 방법 및 배터리 관리 시스템
JP7461385B2 (ja) 充放電装置、バッテリー充電方法及び充放電システム
WO2022178672A1 (zh) 一种充电控制方法、装置和电源管理控制器
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
EP4231412A1 (en) Power battery charging method and battery management system
EP4152552A1 (en) Battery charging method and charging and discharging apparatus
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
CN116365073A (zh) 一种锂电池的阶梯充电方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023549668

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022920995

Country of ref document: EP

Effective date: 20230904

WWE Wipo information: entry into national phase

Ref document number: 202280033029.2

Country of ref document: CN