WO2022178672A1 - 一种充电控制方法、装置和电源管理控制器 - Google Patents

一种充电控制方法、装置和电源管理控制器 Download PDF

Info

Publication number
WO2022178672A1
WO2022178672A1 PCT/CN2021/077496 CN2021077496W WO2022178672A1 WO 2022178672 A1 WO2022178672 A1 WO 2022178672A1 CN 2021077496 W CN2021077496 W CN 2021077496W WO 2022178672 A1 WO2022178672 A1 WO 2022178672A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
charging
remaining
battery cell
Prior art date
Application number
PCT/CN2021/077496
Other languages
English (en)
French (fr)
Inventor
徐广玉
李世超
赵微
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21762581.3A priority Critical patent/EP4080715A4/en
Priority to CN202180066182.0A priority patent/CN116325285A/zh
Priority to PCT/CN2021/077496 priority patent/WO2022178672A1/zh
Priority to US17/563,857 priority patent/US11762027B2/en
Publication of WO2022178672A1 publication Critical patent/WO2022178672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007186Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage obtained with the battery disconnected from the charge or discharge circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the present application relates to the technical field of lithium ion batteries, and in particular, to a charging control method, device and power management controller.
  • N/P negative electrode capacity per unit area/positive electrode capacity per unit area
  • the purpose of the embodiments of the present application is to provide a charging control method, device and power management controller, so as to ensure the service life of the lithium ion battery under the condition of reducing the N/P of the lithium ion battery.
  • the present invention provides a charging control method, the method includes: judging whether the battery state of the battery pack satisfies a preset condition, the battery pack includes a plurality of battery cells, and the preset condition is: The battery pack is left standing for a preset period of time, and the open-circuit voltage of each battery cell in the battery pack is within a preset range; according to the charging strategy corresponding to the judgment result, the battery pack is charged to The capacity of the battery cell with the maximum remaining capacity in the battery pack is made to reach the nominal capacity of the battery cell with the maximum remaining capacity.
  • the above-designed charging control method selects different charging strategies to charge the battery pack according to whether the battery state of the battery pack meets the preset conditions, which can make the capacity of the battery cell with the largest remaining capacity in the battery pack reach its corresponding standard. called capacity. Since the capacity difference between the battery cells in the battery pack is not too large, after the battery pack is charged, the capacities of all the battery cells are close to their respective nominal capacities, so that the lithium-ion battery basically has no capacity during the charging process. Attenuation, and then in the case of reducing the N/P of the lithium-ion battery, the service life of the lithium-ion battery is guaranteed.
  • the charging the battery pack according to the charging strategy corresponding to the judgment result includes: if the judgment result is that the preset condition is satisfied, charging the battery pack according to the charging strategy of each battery cell.
  • the open circuit voltage obtains the remaining capacity corresponding to each of the battery cells, and obtains the maximum remaining capacity among the remaining capacities of the plurality of battery cells; according to the nominal capacity of the battery cell with the maximum remaining capacity and the The maximum remaining capacity is determined, and the to-be-charged capacity of the battery pack is determined; the to-be-charged capacity is charged to the battery pack to complete the charging of the battery pack.
  • the to-be-charged capacity is calculated based on the nominal capacity and the maximum remaining capacity of the battery cell with the maximum remaining capacity, the to-be-charged capacity is used as the charging cut-off condition, and the battery pack is fully charged after the charging is completed.
  • the capacity of the battery cell with the maximum remaining capacity can reach the nominal capacity; since multiple battery cells in the battery pack are connected in series in sequence, the battery cells other than the battery cell with the maximum remaining capacity will also increase by the same amount.
  • the capacity of the battery cells in the battery pack will not be too large, so after the charging is completed, the capacities of all the battery cells in the battery pack will be relatively close to their respective nominal capacities, realizing the lithium-ion battery.
  • the ion battery basically has no attenuation during the charging process, thereby ensuring the service life of the lithium ion battery while reducing the N/P of the lithium ion battery.
  • the charging the battery pack according to the charging strategy corresponding to the judgment result includes: if the judgment result is that the preset condition is not satisfied, acquiring each stored The full charging voltage corresponding to the battery cell; the battery pack is charged until the charging voltage of any battery cell reaches the corresponding full charging voltage.
  • the acquiring the stored full charge voltage corresponding to each battery cell includes: acquiring the corresponding voltage of each battery cell determined in the charging cycle in which the preset condition was satisfied last time full charge voltage.
  • the full charge voltage determined by the charging cycle that satisfies the preset condition last time is used as the charge cut-off condition, so that the cut-off condition of this charge is the same as the last time the preset condition was met.
  • the cut-off conditions of the set conditions are the same, that is, after the charging is completed, the capacity presented by the battery pack is the same as the capacity presented by the last time the preset conditions were met. Therefore, basically no attenuation of the lithium-ion battery is realized during the charging process, and the service life of the lithium-ion battery is guaranteed under the condition of reducing the N/P of the lithium-ion battery.
  • the acquiring the stored full-charge voltage corresponding to each battery cell includes: acquiring a preset full-charge voltage corresponding to each battery cell.
  • the method further includes: acquiring a battery cell with a maximum remaining capacity obtain the full charge voltage of the battery cell with the largest remaining capacity; obtain the remaining rechargeable capacity of each remaining battery cell in the plurality of remaining battery cells at the end of charging, wherein, the plurality of remaining battery cells include all battery cells in the plurality of battery cells except the battery cell with the largest remaining capacity; according to each remaining rechargeable capacity, the corresponding value of each remaining battery cell is determined The full charge voltage is obtained, and then the full charge voltage corresponding to each battery cell in the plurality of battery cells is obtained; the full charge voltage corresponding to each battery cell in the plurality of battery cells is stored.
  • the acquiring the remaining rechargeable capacity of each remaining battery cell in the plurality of remaining battery cells when charging is terminated includes: calculating the nominal capacity and the maximum the first difference of the remaining capacity; calculating the second difference between the first difference and the remaining capacity of each remaining battery cell in the plurality of remaining battery cells, and the second difference corresponding to each remaining battery cell The value is its corresponding remaining rechargeable capacity.
  • the determining the full charge voltage corresponding to each remaining battery cell according to each remaining chargeable capacity includes: obtaining according to the remaining power of each remaining battery cell when charging is terminated The first dynamic voltage value of each remaining battery cell; the second dynamic voltage value of each remaining battery cell is obtained according to each remaining rechargeable capacity; the sum of the first dynamic voltage value and the second dynamic voltage value is calculated , wherein the second full charge voltage of each remaining battery cell is the sum of the corresponding first dynamic voltage value and the second dynamic voltage value.
  • the judging whether the battery state of the battery pack satisfies the preset condition includes: when the battery pack enters the charging state, judging whether the battery state of the battery pack satisfies the preset condition.
  • the present invention provides a charging control device, the device includes: a judgment module for judging whether the battery state of the battery pack satisfies a preset condition, the battery pack includes a plurality of battery cells, the The preset conditions are: the battery pack has been left standing for a preset period of time, and the open circuit voltage of each battery cell in the battery pack is within a preset range; the charging module is configured to, according to the charging strategy corresponding to the judgment result, The battery pack is charged so that the capacity of the battery cell with the highest remaining capacity in the battery pack reaches the nominal capacity of the battery cell with the highest remaining capacity.
  • different charging strategies are selected to charge the battery pack according to whether the battery state of the battery pack satisfies the preset conditions, so that the capacity of the battery cell with the largest remaining capacity in the battery pack can reach the maximum remaining capacity. Since the capacity difference between the battery cells in the battery pack is not too large, the capacities of all battery cells are close to their respective nominal capacities after the battery pack is charged, so that the lithium ion The battery is basically not attenuated during the charging process, thereby ensuring the service life of the lithium-ion battery while reducing the N/P of the lithium-ion battery.
  • the charging module is specifically configured to obtain, according to the open circuit voltage of each battery cell, the corresponding battery cell if the judgment result is that the preset condition is satisfied.
  • the remaining capacity is obtained, and the maximum remaining capacity among the remaining capacities of the plurality of battery cells is obtained; according to the nominal capacity of the battery cell with the maximum remaining capacity and the maximum remaining capacity, the to-be-charged battery pack is determined charging capacity; charging the battery pack with the to-be-charged capacity to complete the charging of the battery pack.
  • the charging module is further specifically configured to obtain the stored full charge voltage corresponding to each battery cell if the judgment result is that the preset condition is not satisfied; The battery pack is charged until the charging voltage of any battery cell reaches the corresponding full charging voltage.
  • the apparatus further includes an acquisition module configured to acquire the charging voltage of the battery cell with the maximum remaining capacity when charging is terminated, so as to obtain the full capacity of the battery cell with the maximum remaining capacity. charging voltage; and obtaining the remaining rechargeable capacity of each remaining battery cell in the plurality of remaining battery cells when the charge is terminated, wherein the plurality of remaining battery cells include the removal of the remaining battery cells from the plurality of battery cells All battery cells except the battery cell with the largest remaining capacity; the determining module is used to determine the full charge voltage corresponding to each remaining battery cell according to each remaining rechargeable capacity, and then obtain the the full charge voltage corresponding to each battery cell; the storage module is used for storing the full charge voltage corresponding to each battery cell in the plurality of battery cells.
  • the obtaining module is specifically configured to calculate a first difference between the nominal capacity and the maximum remaining capacity; calculate the first difference and the remaining battery cells
  • the second difference value of the remaining capacity of each battery cell, the second difference value corresponding to each remaining battery cell is its corresponding remaining rechargeable capacity.
  • the determining module is specifically configured to obtain the first dynamic voltage value of each remaining battery cell when charging is terminated; and obtain each remaining battery cell according to each remaining rechargeable capacity Calculate the sum of the first dynamic voltage value and the second dynamic voltage value, wherein the second full charge voltage of each remaining battery cell is the corresponding first dynamic voltage value and the second dynamic voltage value The sum of the dynamic voltage values.
  • the judging module is specifically configured to judge whether the battery state of the battery pack satisfies a preset condition when the battery pack enters a charging state.
  • the present invention provides a power management controller, the power management controller includes a chip, and instructions are solidified in the chip, and the instructions are executed by the chip to execute the first aspect and the first aspect.
  • the present application provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, executes the charging control described in the first aspect and any optional implementation manner of the first aspect method.
  • the present application provides a computer program product that, when running on a computer, enables the computer to execute the charging control method described in the first aspect and any optional implementation manner of the first aspect.
  • FIG. 1 is a first flowchart of a charging control method provided by an embodiment of the present application
  • FIG. 2 is a second flowchart of the charging control method provided by the embodiment of the present application.
  • FIG. 3 is a third flowchart of the charging control method provided by the embodiment of the present application.
  • FIG. 4 is a fourth flowchart of the charging control method provided by the embodiment of the present application.
  • FIG. 5 is a fifth flowchart of the charging control method provided by the embodiment of the present application.
  • FIG. 6 is a sixth flowchart of the charging control method provided by the embodiment of the present application.
  • FIG. 7 is a seventh flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a charging control device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Label description 800-judging module; 801-charging module; 802-acquiring module; 803-determining module; 804-storage module; 9-chip; 901-processor; 902-memory; 903-communication bus.
  • the embodiment of the present application provides a charging control method. After using the method to charge a lithium-ion battery with a low N/P, the capacity of the lithium-ion battery can be made close to the nominal capacity, so as to achieve substantially no attenuation of charging, and ensure that the lithium-ion battery is fully charged.
  • the method can be executed by a power management controller of a vehicle, or executed by a chip integrated with a power control function.
  • the power management controller is used as an example for description below.
  • the method as shown in Figure 1, includes the following steps:
  • Step S100 Determine whether the battery state of the battery pack satisfies a preset condition.
  • the battery pack refers to a lithium-ion battery pack containing a production-designed lithium-ion battery cell with a low N/P value, specifically a lithium-ion battery pack with N/P ⁇ 1, a lithium-ion battery pack
  • the pack contains a plurality of battery cells connected in series.
  • the preset condition refers to that the battery pack has been left standing for a preset period of time, and the open circuit voltage of each battery cell in the battery pack is within a preset range.
  • the battery pack standing for a preset period of time may be the battery pack dormancy time for a preset period of time; as another possible implementation manner, the battery pack standing for a preset period of time may also be the battery pack The duration of the charging and discharging current being less than the preset current reaches the preset duration.
  • the power management controller may collect the open-circuit voltage of each battery cell in the battery pack, the duration of the charging and discharging current less than the preset current, etc., and then determine whether the battery pack is static or not according to the collected parameters Whether the battery state meets the preset condition is determined after reaching the preset duration and whether the open-circuit voltage of each battery cell in the battery pack is within the preset range.
  • the power management controller may perform a judgment process when the battery pack enters the charging state, and the battery pack entering the charging state can be understood as being in a state to be charged, for example, the battery pack has been connected to the power source, However, at this time, the power supply has not been connected to the battery pack for charging. In this case, the state can be regarded as the battery pack entering the charging state.
  • the power management controller can detect whether the battery pack is connected to the power supply, and can Control whether the connection between the power supply and the battery pack is controlled; as another possible implementation manner, the power management controller may also perform the judgment of step S100 during the charging process of the battery pack.
  • Step S110 Charge the battery pack according to the charging strategy corresponding to the judgment result, so that the capacity of the battery cell with the maximum remaining capacity in the battery pack reaches the nominal capacity of the battery cell with the maximum remaining capacity.
  • step S110 the power management controller selects different charging strategies to charge the battery pack according to different judgment results.
  • the judgment result is that the preset condition is satisfied or the preset condition is not met, and the charging strategies corresponding to different judgment results are different.
  • the purpose to be achieved is to make the capacity of the battery cell with the largest remaining capacity in the battery pack reach its corresponding nominal capacity, and reduce the size of each battery cell in the battery pack. difference in capacity.
  • the power management controller may turn to the charging strategy of the following steps to charge the battery pack, as shown in FIG. 2 . display, including:
  • Step S200 Obtain the remaining capacity corresponding to each battery cell according to the open-circuit voltage of each battery cell, and obtain the largest remaining capacity among the remaining capacities of the plurality of battery cells.
  • step S200 referring to the description of step S100, the power management controller can obtain the open-circuit voltage of each battery cell, and the power management controller can obtain the corresponding residual voltage of each battery cell according to the open-circuit voltage of each battery cell capacity.
  • Step S210 Determine the to-be-charged capacity of the battery pack according to the nominal capacity and the maximum remaining capacity of the battery cell with the maximum remaining capacity.
  • Step S220 Charge the battery pack with the to-be-charged capacity to complete the charging of the battery pack.
  • step S220 charges the battery pack with the Q difference of the to-be-charged capacity.
  • the Q difference of the to-be-charged capacity can be converted into the electric power required for the corresponding charging, and then the electric power required for the battery is charged. Realize the charging of the Q difference of the capacity to be charged.
  • the Q difference of the to-be-charged capacity is calculated based on the nominal capacity and the maximum remaining capacity
  • the Q- difference of the to-be-charged capacity is used as the charging cut-off condition.
  • the battery cells can reach the nominal capacity; since multiple battery cells in the battery pack are connected in series in sequence, the battery cells other than the battery cells with the largest remaining capacity will also increase the capacity of the Q difference .
  • the remaining capacity of the remaining battery cells is relatively low relative to the battery cell with the largest remaining capacity, the remaining battery cells may not reach their respective nominal capacities after increasing the capacity of the Q difference , but due to the fact that each battery in the battery pack The difference in capacity value between cells is not too large.
  • the capacity of all battery cells in the battery pack will be relatively close to their respective nominal capacities after charging, thus realizing basically no attenuation of lithium-ion batteries during the charging process. . Since the above method is aimed at the lithium ion battery with N/P ⁇ 1, under the condition of reducing the N/P of the lithium ion battery, the basically non-attenuating charging of the battery pack is realized, and the service life of the lithium ion battery is guaranteed.
  • the power management controller may also perform the following steps to record the respective full charge voltages of each battery cell under the condition that the charging is completed under a preset condition: As shown in Figure 3, it includes the following steps:
  • Step S300 Obtain the charging voltage of the battery cell with the maximum remaining capacity when the charging is terminated.
  • step S300 after the battery pack is charged with the to-be-charged capacity, the charging is terminated, and the power management controller can obtain the charging voltage of the battery cell with the maximum remaining capacity when the charging is terminated, and record the battery cell with the maximum remaining capacity while charging The charging voltage at the cut-off time is then used as the full charging voltage of the battery cell with the maximum remaining capacity.
  • Step S310 Obtain the remaining rechargeable capacity of each remaining battery cell in the plurality of remaining battery cells when the charging is terminated.
  • the plurality of remaining battery cells represent all the battery cells in the battery pack except the battery cell with the largest remaining capacity. As described above, except for the battery cell with the largest remaining capacity The battery cells other than the battery cells may not reach the nominal capacity when the charging is completed. Therefore, there will still be a certain remaining rechargeable capacity of the remaining battery cells.
  • the power management controller can obtain each remaining battery cell when performing step S310. The remaining rechargeable capacity of the battery cell at the end of charging, and then step S320 is executed, wherein the remaining rechargeable capacity of each remaining battery cell is calculated. As shown in FIG. 4 , the process may include the following steps:
  • Step S400 Calculate the first difference between the nominal capacity and the maximum remaining capacity.
  • Step S410 Calculate the second difference between the first difference and the remaining capacity of each remaining battery cell in the plurality of remaining battery cells to obtain the remaining rechargeable capacity of each remaining battery cell.
  • step S410 the power management controller determines the corresponding remaining rechargeable capacity by calculating the second difference between the first difference Q difference and the remaining capacity of each remaining battery cell.
  • each remaining rechargeable capacity can be obtained by the following formula
  • the remaining rechargeable capacity Q of the battery cell remains [1,2,3,...,n]:
  • Step S320 Determine the full charge voltage corresponding to each remaining battery cell according to each remaining rechargeable capacity.
  • the power management controller may determine the full charge voltage of each remaining battery cell based on the remaining rechargeable capacity of each remaining battery cell. As a possible implementation, as shown in FIG. 5, It can be determined by the following steps:
  • Step S500 Obtain the first dynamic voltage value of each remaining battery cell when charging is terminated.
  • step S500 when the charging of the battery pack is terminated, the power management controller may obtain the first dynamic voltage value of each remaining battery cell when the charging is terminated, and the first dynamic voltage value may be The voltage value of the remaining battery cells at the end of charging is assumed to be represented by V[1,2,3,...,n].
  • Step S510 Obtain a second dynamic voltage value of each remaining battery cell according to each remaining rechargeable capacity.
  • the power management controller may determine the corresponding second dynamic voltage value according to the remaining rechargeable capacity of each remaining battery cell.
  • the power management control The controller can estimate the second dynamic voltage value of each remaining battery cell based on the dynamic voltage-capacity (OCV_Q) curve at the end of charging of the battery pack (charging end) and the remaining rechargeable capacity of each remaining battery cell, Assuming that the second dynamic voltage value is represented by ⁇ V, then the second dynamic voltage value of each remaining battery cell is:
  • ⁇ V Q remain [1,2,3,...,n](OCV_Q);
  • Q remain [1,2,3,...,n](OCV_Q) represents the dynamic voltage value estimated based on the OCV_Q curve at the end of charging and the remaining rechargeable capacity of each remaining battery cell.
  • Step S520 Calculate the sum of the first dynamic voltage value and the second dynamic voltage value to obtain the full charge voltage of each remaining battery cell.
  • the power management controller adds the first dynamic voltage value and the second dynamic voltage value of each remaining battery cell to obtain the full charge voltage of each remaining battery cell, assuming that the full charge voltage is V fullchrg means, then the full charge voltage of each remaining battery cell is:
  • V fullchrg V[1,2,3,...,n]+ ⁇ V.
  • Step S330 Store the fully charged voltage corresponding to each battery cell in the plurality of battery cells.
  • step S330 through the aforementioned steps S300 to S320, the full charging voltage of the battery cell with the maximum remaining capacity and the full charging voltage of the remaining battery cells can be obtained, that is, the full charging voltage of each battery cell in the battery pack can be obtained. voltage, and then the fully charged voltage of each battery cell can be stored.
  • the power management controller may switch to the charging strategy of the following steps to charge the battery pack, as shown in FIG. 6 shown, including:
  • Step S600 Obtain the full charge voltage corresponding to each battery cell.
  • step S600 includes the following two possible implementations:
  • step S600 is specifically The following steps are possible:
  • Step S700 Acquire the full charging voltage corresponding to each battery cell determined in the charging cycle in which the last preset condition is satisfied.
  • step S700 since the obtained full charge voltage is the charging cycle that satisfies the last preset condition and the stored full charge voltage V fullchrg , the power management controller uses the full charge voltage V fullchrg corresponding to each battery cell as the
  • the charging cut-off condition that does not meet the preset condition can make the cut-off condition of this charge the same as the cut-off condition that met the preset condition last time, that is, after the charging is completed, the capacity presented by the battery pack is the same as the last time that met the preset condition.
  • the capacity presented by the conditions is the same, and both are close to the nominal capacity. Therefore, the basic non-fading charging of the battery pack is realized, and the service life of the lithium-ion battery is guaranteed under the condition of reducing the N/P of the lithium-ion battery.
  • the second embodiment is: the charging history of the battery pack does not meet the preset condition. For example, the battery pack has just been produced or has not been left to meet the preset time period. Then, the battery management controller will not store the estimated battery cell.
  • the full charge voltage V fullchrg In this case, the full charge voltage corresponding to each battery cell obtained in step S600 may be the preset full charge voltage of each battery cell.
  • An initial full charge voltage is set for a battery cell, and the initial full charge voltage can be set by the experience of the staff; it should be noted here that after the battery pack meets the preset conditions in the subsequent charging cycle, steps S300 to S300 to Step S330 stores the estimated full-charge voltage of each battery cell to update the set initial full-charge voltage, which is then used as a charging cut-off condition for the next charging cycle that does not meet the preset condition.
  • Step S610 Charge the battery pack until the charging voltage of any battery cell reaches the corresponding full charging voltage.
  • the power management controller can obtain the storage Each battery cell corresponds to the full charge voltage, and then the battery pack is charged until the charging voltage of a certain battery cell reaches the corresponding full charge voltage.
  • FIG. 8 shows a schematic structural block diagram of a charging control device provided by the present application. It should be understood that the device corresponds to the method embodiments executed by the power management controller in the above-mentioned FIG. 1 to FIG. Steps involved in a method performed by a power management controller.
  • the device includes at least one software function module that can be stored in a memory in the form of software or firmware or fixed in an operating system (OS) of the device.
  • OS operating system
  • the device includes: a judging module 800 for judging whether the battery state of the battery pack satisfies a preset condition, the battery pack includes a plurality of battery cells, and the preset condition is: the battery pack has been left standing for a preset period of time, and the battery pack The open-circuit voltage of each battery cell is in a preset range; the charging module 801 is used to charge the battery pack according to the charging strategy corresponding to the judgment result, so that the capacity of the battery cell with the largest remaining capacity in the battery pack reaches The nominal capacity of the battery cell with the maximum remaining capacity.
  • different charging strategies are selected to charge the battery pack according to whether the battery state of the battery pack satisfies the preset conditions, so that the capacity of the battery cell with the largest remaining capacity in the battery pack can reach its corresponding capacity. Since the capacity difference between the battery cells in the battery pack is not too large, the capacities of all battery cells are close to their respective nominal capacities after the battery pack is charged, so that the lithium-ion battery is charged during charging. There is basically no attenuation in the process, thereby ensuring the service life of the lithium-ion battery while reducing the N/P of the lithium-ion battery.
  • the charging module 801 is specifically configured to obtain the remaining capacity corresponding to each battery cell according to the open circuit voltage of each battery cell if the judgment result is that the preset condition is satisfied, and obtain The maximum remaining capacity among the remaining capacities of multiple battery cells; the to-be-charged capacity of the battery pack is determined according to the nominal capacity and the maximum remaining capacity of the battery cell with the largest remaining capacity; the to-be-charged capacity of the battery pack is charged to Complete charging of the battery pack.
  • the charging module 801 is further specifically configured to obtain the stored full charge voltage corresponding to each battery cell if the judgment result is that the preset condition is not satisfied; charge the battery pack until The charging voltage of any battery cell reaches the corresponding full charging voltage.
  • the apparatus further includes an obtaining module 802, configured to obtain the charging voltage of the battery cell with the maximum remaining capacity when charging is terminated, so as to obtain the full charging voltage of the battery cell with the maximum remaining capacity ; and, acquiring the remaining rechargeable capacity of each remaining battery cell in the plurality of remaining battery cells when charging is terminated, wherein the plurality of remaining battery cells include a battery with the largest remaining capacity among the plurality of remaining battery cells All battery cells other than the cell; the determining module 803 is used to determine the full charge voltage corresponding to each remaining battery cell according to each remaining rechargeable capacity, and then obtain the corresponding full charge voltage of each battery cell in the plurality of battery cells The storage module 804 is used for storing the full charge voltage corresponding to each battery cell in the plurality of battery cells.
  • the obtaining module 802 is specifically configured to calculate the first difference between the nominal capacity and the maximum remaining capacity;
  • the second difference value of the remaining capacity, the second difference value corresponding to each remaining battery cell is its corresponding remaining rechargeable capacity.
  • the determination module 803 is specifically configured to obtain the first dynamic voltage value of each remaining battery cell when charging is terminated; and obtain each remaining battery cell according to each remaining rechargeable capacity Calculate the sum of the first dynamic voltage value and the second dynamic voltage value, wherein the second full charge voltage of each remaining battery cell is the corresponding first dynamic voltage value and the second dynamic voltage value and value.
  • the judgment module 800 is specifically configured to judge whether the battery state of the battery pack satisfies the preset condition when the battery pack enters the charging state.
  • the present application provides a power management controller.
  • the power management controller includes a chip 9 , and instructions are solidified in the chip 9 , and the instructions, when executed by the chip, execute the first aspect,
  • the processor 901 executes the computer program, so as to execute any of the aforementioned implementations when executed.
  • the method process such as step S100 to step S110: judging whether the battery state of the battery pack satisfies the preset condition; according to the charging strategy corresponding to the judgment result, the battery pack is charged, so that the battery cell with the largest remaining capacity in the battery pack is fully charged.
  • the nominal capacity of the battery cell whose capacity reaches this maximum remaining capacity.
  • the present application provides a storage medium, where a computer program is stored on the storage medium, and when the computer program is run by a processor, the steps in any of the foregoing charging control methods are executed.
  • the storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, SRAM for short), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, referred to as EEPROM), Erasable Programmable Read Only Memory (Erasable Programmable Read Only Memory, referred to as EPROM), Programmable Read-Only Memory (Programmable Red-Only Memory, referred to as PROM), read-only Memory (Read-Only Memory, referred to as ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • static random access memory Static Random Access Memory, SRAM for short
  • EEPROM Electrically erasable programmable read-only memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read-Only Memory
  • ROM Read-Only Memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the present application provides a computer program product, which, when running on a computer, enables the computer to execute the charging control method in any of the foregoing implementations.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some communication interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM) random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例提供一种充电控制方法、装置和电源管理控制器,该充电控制方法包括:判断电池包的电池状态是否满足预设条件,该电池包包括多个电池单体,预设条件为:该电池包静置达到预设时长,并且电池包中的每一电池单体的开路电压均位于预设区间;根据判断结果所对应的充电策略,对电池包进行充电,以使电池包中最大剩余容量的电池单体的容量达到该最大剩余容量的电池单体的标称容量。

Description

一种充电控制方法、装置和电源管理控制器 技术领域
本申请涉及锂离子电池技术领域,具体而言,涉及一种充电控制方法、装置和电源管理控制器。
背景技术
目前锂离子电池的设计,为了提升锂离子电池的能量密度,会减少锂离子电池负极的涂布重量,即降低N/P(N/P为单位面积负极容量/单位面积正极容量),但降低N/P会恶化锂离子电池的使用寿命。因此,如何在降低N/P的同时,保证锂离子电池的使用寿命是目前亟待解决的问题。
发明内容
本申请实施例的目的在于提供一种充电控制方法、装置和电源管理控制器,用以在降低锂离子电池N/P的情况下,保证锂离子电池的使用寿命。
第一方面,本发明提供一种充电控制方法,所述方法包括:判断所述电池包的电池状态是否满足预设条件,所述电池包包括多个电池单体,所述预设条件为:所述电池包静置达到预设时长,并且所述电池包中的每一电池单体的开路电压均位于预设区间;根据判断结果所对应的充电策略,对所述电池包进行充电,以使所述电池包中最大剩余容量的电池单体的容量达到所述最大剩余容量的电池单体的标称容量。
上述设计的充电控制方法,根据电池包的电池状态是否满足预设条 件来选择不同的充电策略对电池包进行充电,均能使得电池包中最大剩余容量的电池单体的容量达到其对应的标称容量。由于电池包内各个电池单体间的容量相差不会太大,因此,电池包充电完成后,所有电池单体的容量均接近于各自的标称容量,使得锂离子电池在充电过程中基本无衰减,进而在降低锂离子电池N/P的情况下,保证了锂离子电池的使用寿命。
在第一方面的可选实施方式中,所述根据判断结果所对应的充电策略对所述电池包进行充电,包括:若判断结果为所述预设条件满足,则根据每一电池单体的开路电压获取每一所述电池单体对应的剩余容量,并获取所述多个电池单体的剩余容量中的最大剩余容量;根据所述最大剩余容量的电池单体的标称容量和所述最大剩余容量,确定所述电池包的待充入容量;对所述电池包充入所述待充入容量,以完成所述电池包的充电。
在上述设计的实施方式中,由于待充入容量是基于最大剩余容量的电池单体的标称容量和最大剩余容量计算得到,因此,将待充入容量作为充电截止条件,电池包在充电完成时,最大剩余容量的电池单体的容量能够达到标称容量;由于电池包中多个电池单体是依次串联的,因此,除最大剩余容量的电池单体以外的电池单体也会增加相同的容量;由于电池包内各个电池单体间的容量值差距不会太大,因此,在充电完成后,电池包内所有电池单体的容量均会比较接近各自的标称容量,实现了锂离子电池在充电过程中的基本无衰减,进而在降低锂离子电池N/P的情况下,保证了锂离子电池的使用寿命。
在第一方面的可选实施方式中,所述根据判断结果所对应的充电策略,对所述电池包进行充电,包括:若判断结果为所述预设条件不满足,则获取存储的每一电池单体对应的满充电压;对所述电池包进行充电直至任一电池单体的充电电压达到对应的满充电压。
在第一方面的可选实施方式中,所述获取存储的每一电池单体对应的满充电压,包括:获取上一次所述预设条件满足的充电周期中确定的每一电池单体对应的满充电压。
在上述设计的实施方式中,在不满足预设条件时,采用满足上一次满足预设条件的充电周期确定的满充电压作为充电截止条件,可以使得此次充电的截止情况与上一次满足预设条件的截止情况相同,即,此次充电完成后,电池包所呈现的容量与上一次满足预设条件所呈现的容量相同,二者均在充电完成后,使得每一电池单体接近各自的标称容量,因此,实现了锂离子电池在充电过程中的基本无衰减,进而在降低锂离子电池N/P的情况下,保证了锂离子电池的使用寿命。
在第一方面的可选实施方式中,所述获取存储的每一电池单体对应的满充电压,包括:获取预先设置的每一电池单体对应的满充电压。
在第一方面的可选实施方式中,在所述对所述电池包充入所述待充入容量以完成所述电池包的充电之后,所述方法还包括:获取最大剩余容量的电池单体在充电截止时的充电电压,以获得所述最大剩余容量的电池单体的满充电压;获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量,其中,所述多个剩余电池单体包括所述多个电池单体中除最大剩余容量的电池单体以外的所有电池单体;根据每一剩余可充容量确定每一剩余电池单体对应的满充电压,进而获得所述多个电池单体中的每一电池单体对应的满充电压;将所述多个电池单体中的每一电池单体对应的满充电压进行存储。
在第一方面的可选实施方式中,所述获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量,包括:计算所述标称容量和所述最大剩余容量的第一差值;计算所述第一差值与多个剩余电池单体 中的每一剩余电池单体的剩余容量的第二差值,每一剩余电池单体对应的第二差值为其对应的剩余可充容量。
在第一方面的可选实施方式中,所述根据每一剩余可充容量确定每一剩余电池单体对应的满充电压,包括:根据每一剩余电池单体在充电截止时的剩余电量获得每一剩余电池单体的第一动态电压值;根据每一剩余可充容量获得每一剩余电池单体的第二动态电压值;计算所述第一动态电压值和第二动态电压值之和,其中,每一剩余电池单体的第二满充电压为对应的第一动态电压值和第二动态电压值的和值。
在第一方面的可选实施方式中,所述判断电池包的电池状态是否满足预设条件,包括:在电池包进入充电状态时,判断所述电池包的电池状态是否满足预设条件。
第二方面,本发明提供一种充电控制装置,所述装置包括:判断模块,用于判断所述电池包的电池状态是否满足预设条件,所述电池包包括多个电池单体,所述预设条件为:所述电池包静置达到预设时长,并且所述电池包中的每一电池单体的开路电压位于预设区间;充电模块,用于根据判断结果所对应的充电策略,对所述电池包进行充电,以使所述电池包中最大剩余容量的电池单体的容量达到所述最大剩余容量的电池单体的标称容量。
在上述设计的实施方式中,根据电池包的电池状态是否满足预设条件来选择不同的充电策略对电池包进行充电,均能使得电池包中最大剩余容量的电池单体的容量达到最大剩余容量的电池单体的标称容量,由于电池包内各个电池单体间的容量相差不会太大,因此,电池包充电完成后所有电池单体的容量均接近各自的标称容量,使得锂离子电池在充电过程中基本无衰减,进而在降低锂离子电池N/P的情况下,保证了锂离子电池的 使用寿命。
在第二方面的可选实施方式中,所述充电模块,具体用于若判断结果为所述预设条件满足,则根据每一电池单体的开路电压获取每一所述电池单体对应的剩余容量,并获取所述多个电池单体的剩余容量中的最大剩余容量;根据所述最大剩余容量的电池单体的标称容量和所述最大剩余容量,确定所述电池包的待充入容量;对所述电池包充入所述待充入容量,以完成所述电池包的充电。
在第二方面的可选实施方式中,所述充电模块,还具体用于若判断结果为所述预设条件不满足,则获取存储的每一电池单体对应的满充电压;对所述电池包进行充电直至任一电池单体的充电电压达到对应的满充电压。
在第二方面的可选实施方式中,所述装置还包括获取模块,用于获取最大剩余容量的电池单体在充电截止时的充电电压,以获得所述最大剩余容量的电池单体的满充电压;以及,获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量,其中,所述多个剩余电池单体包括所述多个电池单体中除最大剩余容量的电池单体以外的所有电池单体;确定模块,用于根据每一剩余可充容量确定每一剩余电池单体对应的满充电压,进而获得所述多个电池单体中的每一电池单体对应的满充电压;存储模块,用于将所述多个电池单体中的每一电池单体对应的满充电压进行存储。
在第二方面的可选实施方式中,所述获取模块,具体用于计算所述标称容量和所述最大剩余容量的第一差值;计算所述第一差值与剩余电池单体中的每一电池单体的剩余容量的第二差值,每一剩余电池单体对应的第二差值为其对应的剩余可充容量。
在第二方面的可选实施方式中,所述确定模块,具体用于获取每一 剩余电池单体在充电截止时的第一动态电压值;根据每一剩余可充容量获得每一剩余电池单体的第二动态电压值;计算所述第一动态电压值和第二动态电压值之和,其中,每一剩余电池单体的第二满充电压为对应的第一动态电压值和第二动态电压值的和值。
在第二方面的可选实施方式中,所述判断模块,具体用于在电池包进入充电状态时,判断所述电池包的电池状态是否满足预设条件。
第三方面,本发明提供一种电源管理控制器,所述电源管理控制器包括芯片,所述芯片中固化有指令,所述指令在被所述芯片执行时以执行第一方面、第一方面中的任一可选的实施方式中所述的充电控制方法。
第四方面,本申请提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时执行第一方面、第一方面的任一可选的实现方式中所述的充电控制方法。
第五方面,本申请提供一种计算机程序产品,所述计算机程序产品在计算机上运行时,使得计算机执行第一方面、第一方面的任一可选的实现方式中所述的充电控制方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例提供的充电控制方法的第一流程图;
图2为本申请实施例提供的充电控制方法的第二流程图;
图3为本申请实施例提供的充电控制方法的第三流程图;
图4为本申请实施例提供的充电控制方法的第四流程图;
图5为本申请实施例提供的充电控制方法的第五流程图;
图6为本申请实施例提供的充电控制方法的第六流程图;
图7为本申请实施例提供的充电控制方法的第七流程图;
图8为本申请实施例提供的充电控制装置的结构示意图;
图9为本申请实施例提供的芯片的结构示意图。
标记说明:800-判断模块;801-充电模块;802-获取模块;803-确定模块;804-存储模块;9-芯片;901-处理器;902-存储器;903-通信总线。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供一种充电控制方法,使用该方法对N/P较低的锂 离子电池进行充电后,可以让锂离子电池的容量接近标称容量,实现基本无衰减的充电,保证锂离子电池的使用寿命,其中,N/P为单位面积负极容量/单位面积正极容量,该基本无衰减表示电池在充电完成后的容量接近或等于其标称容量。该方法可由车辆的电源管理控制器执行,或者由集成有电源控制功能的芯片执行,以下以电源管理控制器为例进行说明。该方法如图1所示,包括如下步骤:
步骤S100:判断电池包的电池状态是否满足预设条件。在步骤S100中,电池包指的是包含有生产设计的N/P值较低的锂离子电池单体的锂离子电池包,具体可为N/P<1的锂离子电池包,锂离子电池包内包含有多个依次串联的电池单体。
在步骤S100中,预设条件指的是电池包静置达到预设时长,并且电池包中的每一电池单体的开路电压均位于预设区间。作为一种可能的实施方式,电池包静置达到预设时长可以是电池包休眠时间达到预设时长;作为另一种可能的实施方式,电池包静置达到预设时长还可以是电池包的充放电电流小于预设电流的持续时间达到预设时长。
在步骤S100中,电源管理控制器可采集到电池包中的每一电池单体的开路电压、充放电电流小于预设电流的持续时长等,进而根据采集的这些参数判定电池包静置有无达到预设时长,以及电池包中的每一电池单体的开路电压是否均位于预设区间,来判断电池状态是否满足预设条件。
作为一种可能的实施方式,电源管理控制器可以在电池包进入充电状态时执行判断过程,电池包进入充电状态可以理解为电池包处于将要进行充电的状态,例如,电池包已与电源连接,但此时电源还未与电池包接通充电,这样情况下的状态可认定为电池包进入充电状态,在上述这个过程中,电源管理控制器能够对电池包与电源是否连接进行检测,并且可对电源与电池包之间是否接通进行控制;作为另一种可能的实施方式,电源管理控制器还可以在电池包充电过程中进行步骤S100的判断。
步骤S110:根据判断结果所对应的充电策略,对电池包进行充电,以使电池包中最大剩余容量的电池单体的容量达到该最大剩余容量的电池单体的标称容量。
在步骤S110中,电源管理控制器根据不同的判断结果选择不同的充电策略对电池包进行充电。其中,判断结果为满足预设条件或不满足预设条件,不同的判断结果对应的充电策略不相同。但本申请方案不论选择的充电策略是哪一种,需达到的目的均是让电池包中最大剩余容量的电池单体的容量达到其对应的标称容量,减小电池包内各个电池单体间的容量差异。
下面对不同的判断结果对应的不同充电策略进行详细介绍。
作为一种可能的实施方式,在电源管理控制器执行步骤S100判断电池包的电池状态满足预设条件之后,电源管理控制器可转到如下步骤的充电策略对电池包进行充电,如图2所示,包括:
步骤S200:根据每一电池单体的开路电压获取每一电池单体对应的剩余容量,并获得多个电池单体的剩余容量中的最大剩余容量。
在步骤S200中,参照对步骤S100的描述,电源管理控制器可以获得每一电池单体的开路电压,电源管理控制器可根据每一电池单体的开路电压获取每一电池单体对应的剩余容量。
作为一种可能的实施方式,电源管理控制器可基于每一电池单体的开路电压和开路电压-剩余容量关系曲线查询各电池单体对应的剩余容量,其中,各电池单体的剩余容量用[Q 1,Q 2,Q 3,...,Q n]表示;在获得每一电池单体对应的剩余容量之后,即可确定出多个电池单体中所有剩余容量的最大值,获得最大剩余容量Q max,其中,Q max=max[Q 1,Q 2,Q 3,...,Q n]。
步骤S210:根据最大剩余容量的电池单体的标称容量和最大剩余容量确定电池包的待充入容量。
在步骤S210中,电源管理控制器基于步骤S200得到的最大剩余容量Q max和最大剩余容量的电池单体的标称容量Q cn计算待充入容量Q ,作为一种可能的实施方式,可通过标称容量减去最大剩余容量得到,即Q =Q cn-Q max
步骤S220:对电池包充入待充入容量,以完成电池包的充电。
作为一种可能的实施方式,步骤S220对电池包充入待充入容量Q 的方式,具体可以将待充入容量Q 转换为对应充电所需的电量,进而对电 池充电所需的电量实现待充入容量Q 的充入。
在上述实施方式中,由于待充入容量Q 是基于标称容量和最大剩余容量计算得到,因此,将待充入容量Q 作为充电截止条件,电池包在充电完成时,最大剩余容量的电池单体能够达到标称容量;由于电池包中多个电池单体是依次串联的,因此,除最大剩余容量的电池单体以外的电池单体也会增加Q 的容量。虽然其余电池单体相对于最大剩余容量的电池单体来说剩余容量较低,其余电池单体在增加Q 的容量之后,可能达不到各自的标称容量,但由于电池包内各个电池单体间的容量值差距不会太大,因此,电池包内所有电池单体的容量在充电完成后都会比较接近各自的标称容量,进而实现了锂离子电池在充电过程中的基本无衰减。由于上述方法针对N/P<1的锂离子电池,因此,在降低锂离子电池N/P的情况下,实现了电池包的基本无衰减充电,保证了锂离子电池的使用寿命。
由于每个电池单体的衰减不同和自放电不同,电池满充时无法判断哪个电池单体会优先满充,因此,需要计算每个电池单体的满充电压,进而可以作为不满足预设条件时的充电截止条件。作为一种可能的实施方式,电源管理控制器在执行步骤S220完成电池包的充电之后,还可以执行如下步骤来记录各个电池单体在满足预设条件完成充电的情况下各自的满充电压,如图3所示,包括如下步骤:
步骤S300:获取最大剩余容量的电池单体在充电截止时的充电电压。
在步骤S300中,在电池包充入待充入容量后充电截止,电源管理控制器可以获取最大剩余容量的电池单体在充电截止时的充电电压,记录该最大剩余容量的电池单体在充电截止时的充电电压,然后将其作为该最大剩余容量的电池单体的满充电压。
步骤S310:获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量。
在步骤S310中,多个剩余电池单体表示的是电池包的所有电池单体中除最大剩余容量的电池单体以外的所有电池单体,前面已经描述到,除最大剩余容量的电池单体以外的电池单体在充电完成时,可能达不到标称容量,因此,多个剩余电池单体还会存在一定的剩余可充容量,电源管 理控制器在执行步骤S310时可以获得每一剩余电池单体在充电截止时的剩余可充容量,进而执行步骤S320,其中,计算每一剩余电池单体的剩余可充容量,如图4所示,该过程可包括如下步骤:
步骤S400:计算标称容量和最大剩余容量的第一差值。
步骤S410:计算第一差值与多个剩余电池单体中的每一剩余电池单体的剩余容量的第二差值,得到每一剩余电池单体的剩余可充容量。
在步骤S400中,标称容量与最大剩余容量的第一差值即为前述的容量差Q ,即Q =Q cn-Q max
在步骤S410中,电源管理控制器通过计算第一差值Q 与每一剩余电池单体的剩余容量的第二差值来确定对应的剩余可充容量,具体可通过如下公式得到每一剩余电池单体的剩余可充容量Q remain[1,2,3,...,n]:
Q remain[1,2,3,...,n]=Q cn-Q max-[Q 1,Q 2,Q 3,...,Q n];
步骤S320:根据每一剩余可充容量确定每一剩余电池单体对应的满充电压。
在步骤S320中,电源管理控制器可以基于每一剩余电池单体的剩余可充容量,来确定每一剩余电池单体的满充电压,作为一种可能的实施方式,如图5所示,可通过如下步骤确定:
步骤S500:获取每一剩余电池单体在充电截止时的第一动态电压值。
作为一种可能的实施方式,在步骤S500中,在电池包充电截止时,电源管理控制器可获取每一剩余电池单体在充电截止时的第一动态电压值,第一动态电压值可为剩余电池单体在充电截止时的电压值,假设用V[1,2,3,...,n]来表示。
步骤S510:根据每一剩余可充容量获得每一剩余电池单体的第二动态电压值。
作为一种可能的实施方式,在步骤S510中,电源管理控制器可根据每一剩余电池单体的剩余可充容量确定对应的第二动态电压值,作为一种可能的实施方式,电源管理控制器可基于在电池包充电截止时(充电末端)的动态电压-容量(OCV_Q)曲线,以及每一剩余电池单体的剩余可充容量估算出每一剩余电池单体的第二动态电压值,假设第二动态电压值用 ΔV表示,那么每一剩余电池单体的第二动态电压值即为:
ΔV=Q remain[1,2,3,...,n](OCV_Q);
其中,Q remain[1,2,3,...,n](OCV_Q)表示的是基于充电末端的OCV_Q曲线和每一剩余电池单体的剩余可充容量估算的动态电压值。
步骤S520:计算第一动态电压值和第二动态电压值之和,以获得每一剩余电池单体的满充电压。在步骤S520中,电源管理控制器将每一剩余电池单体的第一动态电压值和第二动态电压值相加,得到每一剩余电池单体的满充电压,假设满充电压用V fullchrg表示,那么每一剩余电池单体的满充电压即为:
V fullchrg=V[1,2,3,...,n]+ΔV。
步骤S330:将多个电池单体中的每一电池单体对应的满充电压进行存储。
在步骤S330中,通过前述步骤S300到步骤S320可以得到最大剩余容量的电池单体的满充电压,以及剩余电池单体的满充电压,即得到了电池包中每一电池单体的满充电压,进而可将每一电池单体的满充电压进行存储。
前述介绍的基于电池状态满足预设条件时的场景,在此对电池包的电池状态不满足预设条件的场景进行介绍。
作为一种可能的实施方式,在电源管理控制器执行步骤S100判断电池包的电池状态不满足预设条件之后,电源管理控制器可转到如下步骤的充电策略对电池包进行充电,如图6所示,包括:
步骤S600:获取每一电池单体对应的满充电压。
上述步骤S600包含如下可能的两种实施方式:
实施方式一为:电池包在以往的充电周期中满足过预设条件,并且执行步骤S300到步骤S330存储了估算的每一电池单体的满充电压后,如图7所示,步骤S600具体可为如下步骤:
步骤S700:获取上一次预设条件满足的充电周期中确定的每一电池单体对应的满充电压。
在步骤S700中,由于获取的满充电压为上一次预设条件满足的充 电周期,存储的满充电压V fullchrg,因此,电源管理控制器将每一电池单体对应的满充电压V fullchrg作为不满足预设条件的充电截止条件,可以使得此次充电的截止情况与上一次满足预设条件的截止情况相同,即,此次充电完成后,电池包所呈现的容量与上一次满足预设条件所呈现的容量相同,二者均接近标称容量,因此,实现了电池包的基本无衰减充电,在降低锂离子电池N/P的情况下,保证了锂离子电池的使用寿命。
实施方式二为:电池包的充电历史均没有满足预设条件,例如,电池包刚生产或静置始终没有满足预设时长,那么,电池管理控制器不会存储估算得到的每一电池单体的满充电压V fullchrg。在这样的情况下,步骤S600获取的每一电池单体对应的满充电压,可为预先设置的每一电池单体的满充电压,例如,在电池包生产出厂阶段,给电池包的每一电池单体设置一个初始的满充电压,该初始的满充电压可工作人员的经验设定;这里需要说明的是,电池包在后续充电周期中满足预设条件后,可执行步骤S300到步骤S330存储估算的每一电池单体的满充电压,来对设置的初始的满充电压进行更新,进而作为下一不满足预设条件的充电周期的充电截止条件。
步骤S610:对电池包进行充电直至任一电池单体的充电电压达到对应的满充电压。
在上述步骤中,当电池包的电池状态不满足预设条件,即静置没有达到预设时长和/或任一电池单体的开路电压没有位于预设区间时,电源管理控制器可以获取存储的每一电池单体对应的满充电压,然后对电池包进行充电,直至某一个电池单体的充电电压达到对应的满充电压。
图8示出了本申请提供的一种充电控制装置的示意性结构框图,应理解,该装置与上述图1至图7中电源管理控制器执行的方法实施例对应,能够执行前述实施方式中电源管理控制器执行的方法涉及的步骤。该装置包括至少一个能以软件或固件(firmware)的形式存储于存储器中或固化在装置的操作系统(operating system,OS)中的软件功能模块。该装置包括:判断模块800,用于判断电池包的电池状态是否满足预设条件,电池包包括多个电池单体,该预设条件为:该电池包静置达到预设时长,并且 电池包中的每一电池单体的开路电压位于预设区间;充电模块801,用于根据判断结果对应的充电策略,对电池包进行充电,以使电池包中最大剩余容量的电池单体的容量达到最大剩余容量的电池单体的标称容量。
在上述设计的充电控制装置中,根据电池包的电池状态是否满足预设条件来选择不同的充电策略对电池包进行充电,均能使得电池包中最大剩余容量的电池单体的容量达到其对应的标称容量,由于电池包内各个电池单体间的容量相差不会太大,因此,电池包充电完成后所有电池单体的容量均接近于各自的标称容量,使得锂离子电池在充电过程中基本无衰减,进而在降低锂离子电池N/P的情况下,保证了锂离子电池的使用寿命。
在本实施例的可选实施方式中,充电模块801,具体用于若判断结果为预设条件满足,则根据每一电池单体的开路电压获取每一电池单体对应的剩余容量,并获得多个电池单体的剩余容量中的最大剩余容量;根据最大剩余容量的电池单体的标称容量和最大剩余容量确定电池包的待充入容量;对电池包充入待充入容量,以完成电池包的充电。
在本实施例的可选实施方式中,充电模块801,还具体用于若判断结果为预设条件不满足,则获取存储的每一电池单体对应的满充电压;对电池包进行充电直至任一电池单体的充电电压达到对应的满充电压。
在本实施例的可选实施方式中,该装置还包括获取模块802,用于获取最大剩余容量的电池单体在充电截止时的充电电压,以获得最大剩余容量的电池单体的满充电压;以及,获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量,其中,该多个剩余电池单体包括多个电池单体中除最大剩余容量的电池单体以外的所有电池单体;确定模块803,用于根据每一剩余可充容量确定每一剩余电池单体对应的满充电压,进而获得多个电池单体中的每一电池单体对应的满充电压;存储模块804,用于将多个电池单体中的每一电池单体对应的满充电压进行存储。
在本实施例的可选实施方式中,获取模块802,具体用于计算标称容量和最大剩余容量的第一差值;计算第一差值与剩余电池单体中的每一电池单体的剩余容量的第二差值,每一剩余电池单体对应的第二差值为其对应的剩余可充容量。
在本实施例的可选实施方式中,确定模块803,具体用于获取每一剩余电池单体在充电截止时的第一动态电压值;根据每一剩余可充容量获得每一剩余电池单体的第二动态电压值;计算第一动态电压值和第二动态电压值之和,其中,每一剩余电池单体的第二满充电压为对应的第一动态电压值和第二动态电压值的和值。
在本实施例的可选实施方式中,判断模块800具体用于在电池包进入充电状态时,判断电池包的电池状态是否满足预设条件。
如图9所示,本申请提供一种电源管理控制器,该电源管理控制器内有芯片9,该芯片9中固化有指令,所述指令在被所述芯片执行时以执行第一方面、第一方面的任一可选的实现方式中所述的充电控制方法,具体的该芯片9包括:处理器901和存储器902,处理器901和存储器902通过通信总线903和/或其他形式的连接机构(未标出)互连并相互通讯,存储器902存储有处理器901可执行的计算机程序,当计算设备运行时,处理器901执行该计算机程序,以执行时执行前述任一实现方式中的方法过程,例如步骤S100至步骤S110:判断电池包的电池状态是否满足预设条件;根据判断结果所对应的充电策略,对电池包进行充电,以使电池包中最大剩余容量的电池单体的容量达到该最大剩余容量的电池单体的标称容量。
本申请提供一种存储介质,该存储介质上存储有计算机程序,该计算机程序被处理器运行时执行前述充电控制方法中任一实现方式中的步骤。
其中,存储介质可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,简称EPROM),可编程只读存储器(Programmable Red-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。
本申请提供一种计算机程序产品,该计算机程序产品在计算机上运行时,使得计算机执行前述任一实现方式中的充电控制方法。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
需要说明的是,功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包 含在本申请的保护范围之内。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种充电控制方法,所述方法包括:
    判断电池包的电池状态是否满足预设条件,所述电池包包括多个电池单体,所述预设条件为:所述电池包静置达到预设时长,并且所述电池包中的每一电池单体的开路电压均位于预设区间;
    根据判断结果所对应的充电策略,对所述电池包进行充电,以使所述电池包中最大剩余容量的电池单体的容量达到所述最大剩余容量的电池单体的标称容量。
  2. 根据权利要求1所述的方法,其中,所述根据判断结果所对应的充电策略,对所述电池包进行充电,包括:
    若判断结果为满足所述预设条件,则根据所述电池包中的每一电池单体的开路电压,获取每一所述电池单体对应的剩余容量,并获取所述多个电池单体的剩余容量中的最大剩余容量;
    根据最大剩余容量的电池单体的标称容量和所述最大剩余容量,确定所述电池包的待充入容量;
    对所述电池包充入所述待充入容量,以完成所述电池包的充电。
  3. 根据权利要求1所述的方法,其中,所述根据判断结果所对应的充电策略,对所述电池包进行充电,包括:
    若判断结果为不满足所述预设条件,则获取每一电池单体对应的满充电压;
    对所述电池包进行充电,直至任一电池单体的充电电压达到对应的满充电压。
  4. 根据权利要求3所述的方法,其中,所述获取存储的每一电池单体对应的满充电压,包括:
    获取上一次满足所述预设条件的充电周期中确定的每一电池单体对应的满充电压。
  5. 根据权利要求3所述的方法,其中,所述获取存储的每一电池单体对应的满充电压,包括:
    获取预先设置的每一电池单体对应的满充电压。
  6. 根据权利要求2所述的方法,其中,在所述对所述电池包充入所述待充入容量,以完成所述电池包的充电之后,所述方法还包括:
    获取最大剩余容量的电池单体在充电截止时的充电电压,以获得所述最大剩余容量的电池单体的满充电压;
    获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量,其中,所述多个剩余电池单体包括所述多个电池单体中除最大剩余容量的电池单体以外的所有电池单体;
    根据每一剩余可充容量确定每一剩余电池单体对应的满充电压,获得所述多个电池单体中的每一电池单体对应的满充电压;
    将所述多个电池单体中的每一电池单体对应的满充电压进行存储。
  7. 根据权利要求6所述的方法,其中,所述获取多个剩余电池单体中的每一剩余电池单体在充电截止时的剩余可充容量,包括:
    计算所述标称容量和所述最大剩余容量的第一差值;
    计算所述第一差值与多个剩余电池单体中的每一剩余电池单体的剩余容量的第二差值,每一剩余电池单体对应的第二差值为其对应的剩余可充容量。
  8. 根据权利要求6所述的方法,其中,所述根据每一剩余可充容量确定每一剩余电池单体对应的满充电压,包括:
    获取每一剩余电池单体在充电截止时的第一动态电压值;
    根据每一剩余可充容量获得每一剩余电池单体的第二动态电压值;
    计算所述第一动态电压值和第二动态电压值之和,其中,每一剩余电池单体的满充电压为对应的第一动态电压值和第二动态电压值的和值。
  9. 根据权利要求1所述的方法,其中,所述判断电池包的电池状态是否满足预设条件,包括:
    在电池包进入充电状态时,判断所述电池包的电池状态是否满足预设条件。
  10. 一种充电控制装置,所述装置包括:
    判断模块,用于判断所述电池包的电池状态是否满足预设条件,所述电池包包括多个电池单体,所述预设条件为:所述电池包静置达到预设时长,并且所述电池包中的每一电池单体的开路电压位于预设区间;
    充电模块,用于根据判断结果所对应的充电策略,对所述电池包进行充电,以使所述电池包中最大剩余容量的电池单体的容量达到所述最大剩余容量的电池单体的标称容量。
  11. 一种电源管理控制器,所述电源管理控制器包括芯片,所述芯片中固化有指令,所述指令在被所述芯片执行时以执行如权利要求1-9中任一项所述的充电控制方法。
PCT/CN2021/077496 2021-02-23 2021-02-23 一种充电控制方法、装置和电源管理控制器 WO2022178672A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21762581.3A EP4080715A4 (en) 2021-02-23 2021-02-23 METHOD AND DEVICE FOR CHARGE CONTROL AND POWER MANAGEMENT CONTROL
CN202180066182.0A CN116325285A (zh) 2021-02-23 2021-02-23 一种充电控制方法、装置和电源管理控制器
PCT/CN2021/077496 WO2022178672A1 (zh) 2021-02-23 2021-02-23 一种充电控制方法、装置和电源管理控制器
US17/563,857 US11762027B2 (en) 2021-02-23 2021-12-28 Charging control method and device, and power management controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077496 WO2022178672A1 (zh) 2021-02-23 2021-02-23 一种充电控制方法、装置和电源管理控制器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,857 Continuation US11762027B2 (en) 2021-02-23 2021-12-28 Charging control method and device, and power management controller

Publications (1)

Publication Number Publication Date
WO2022178672A1 true WO2022178672A1 (zh) 2022-09-01

Family

ID=82900578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077496 WO2022178672A1 (zh) 2021-02-23 2021-02-23 一种充电控制方法、装置和电源管理控制器

Country Status (4)

Country Link
US (1) US11762027B2 (zh)
EP (1) EP4080715A4 (zh)
CN (1) CN116325285A (zh)
WO (1) WO2022178672A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427459A (zh) * 2013-07-29 2013-12-04 清华大学 电池组容量均衡方法
CN103616645A (zh) * 2013-12-02 2014-03-05 惠州市亿能电子有限公司 一种超大型电池组荷电状态的测量方法
DK2800195T3 (en) * 2013-04-30 2016-12-05 Zhuhai Zhi Li Battery Co Ltd Intelligent charging algorithm for a lithium-ion battery
JP2016214058A (ja) * 2015-05-07 2016-12-15 株式会社リコー 充電制御装置、移動体及び充電制御方法
CN106291390A (zh) * 2016-10-13 2017-01-04 宁德时代新能源科技股份有限公司 一种电池充电时的剩余电量计算方法、装置与电池包
CN107492917A (zh) * 2016-09-28 2017-12-19 宝沃汽车(中国)有限公司 动力电池的电量均衡方法、电池管理系统及动力电车

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606242A (en) * 1994-10-04 1997-02-25 Duracell, Inc. Smart battery algorithm for reporting battery parameters to an external device
JP4068275B2 (ja) * 1999-12-08 2008-03-26 インターナショナル・ビジネス・マシーンズ・コーポレーション 充電制御方法及びコンピュータ
JP4346881B2 (ja) * 2002-09-25 2009-10-21 パナソニック株式会社 電源装置
CN101431250A (zh) * 2007-11-06 2009-05-13 上海辰蕊微电子科技有限公司 用于电池充电器的充电管理控制电路及其控制方法
JPWO2013008409A1 (ja) * 2011-07-08 2015-02-23 Necエナジーデバイス株式会社 電池パックの製造方法および電池パック
KR20130040575A (ko) * 2011-10-14 2013-04-24 삼성에스디아이 주식회사 배터리의 고장 검출 장치 및 방법
JP6187692B2 (ja) * 2014-06-13 2017-09-06 日産自動車株式会社 充電制御装置及び充電制御方法
US10046652B2 (en) 2015-05-07 2018-08-14 Ricoh Company, Ltd. Charge control apparatus, movable body, and charge control method
CN105270190A (zh) * 2015-10-21 2016-01-27 佛山职业技术学院 带光伏车顶的多能源电动汽车及其充电控制方法
EP3411262B1 (en) * 2016-02-02 2020-12-30 Toyota Motor Europe Control device and method for charging a rechargeable battery
CN106329642A (zh) * 2016-09-12 2017-01-11 珠海格力电器股份有限公司 一种伙伴充电控制方法、系统和移动设备
CN109103953B (zh) * 2018-08-23 2021-07-20 广州市香港科大霍英东研究院 一种电池组主动均衡控制方法、系统及装置
CN112448434B (zh) * 2019-09-03 2024-01-30 华为技术有限公司 一种充电控制方法及充电控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2800195T3 (en) * 2013-04-30 2016-12-05 Zhuhai Zhi Li Battery Co Ltd Intelligent charging algorithm for a lithium-ion battery
CN103427459A (zh) * 2013-07-29 2013-12-04 清华大学 电池组容量均衡方法
CN103616645A (zh) * 2013-12-02 2014-03-05 惠州市亿能电子有限公司 一种超大型电池组荷电状态的测量方法
JP2016214058A (ja) * 2015-05-07 2016-12-15 株式会社リコー 充電制御装置、移動体及び充電制御方法
CN107492917A (zh) * 2016-09-28 2017-12-19 宝沃汽车(中国)有限公司 动力电池的电量均衡方法、电池管理系统及动力电车
CN106291390A (zh) * 2016-10-13 2017-01-04 宁德时代新能源科技股份有限公司 一种电池充电时的剩余电量计算方法、装置与电池包

Also Published As

Publication number Publication date
US11762027B2 (en) 2023-09-19
EP4080715A1 (en) 2022-10-26
US20220268845A1 (en) 2022-08-25
EP4080715A4 (en) 2022-10-26
CN116325285A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
KR102082866B1 (ko) 배터리 관리 시스템 및 그 구동방법
US10073145B2 (en) Method and system for estimating state of charge of battery
KR20170056301A (ko) 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
US20200348364A1 (en) Method for evaluating consistency of battery pack and strategy for balancing battery pack
KR20180064220A (ko) 배터리 관리 장치 및 방법
KR20190056743A (ko) 배터리 저항 추정 장치 및 방법
CN105762869A (zh) 一种电池组均衡控制方法及系统
CN107294163B (zh) 具有蓄电池单体均衡功能的蓄电池状态巡检方法及装置
WO2022178672A1 (zh) 一种充电控制方法、装置和电源管理控制器
WO2023123767A1 (zh) 电池充电剩余时间的确定方法和系统
WO2023159708A1 (zh) 一种电池常带电自保养的控制方法及常带电自保养的电池
WO2022141292A1 (zh) 电池模组的均衡方法、装置、电池模组和电源管理控制器
CN115173511A (zh) 一种动力电池均衡方法及装置
KR101352841B1 (ko) 전지 soc 추정 방법 및 시스템
CN117318252B (zh) 一种电池包充放电保护方法及装置
US20230335822A1 (en) Method for charging power battery and battery management system
EP4236006A1 (en) Method for charging power battery and battery management system
WO2023092414A1 (zh) 动力电池充电的方法和电池管理系统
US20230204672A1 (en) Method and system for determining remaining charging time of battery
CN111064261B (zh) 考虑温度和soh的被动均衡策略、装置及存储介质
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
WO2023234395A1 (ja) 電源装置、診断装置および診断方法
EP4231412A1 (en) Power battery charging method and battery management system
US20230219451A1 (en) Method, device and system for vehicle power battery auxiliary equilibrium
KR20240058619A (ko) 충방전 용량 비율을 이용한 배터리 이상 감지장치 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021762581

Country of ref document: EP

Effective date: 20210908

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21762581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE