WO2023206220A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2023206220A1
WO2023206220A1 PCT/CN2022/089826 CN2022089826W WO2023206220A1 WO 2023206220 A1 WO2023206220 A1 WO 2023206220A1 CN 2022089826 W CN2022089826 W CN 2022089826W WO 2023206220 A1 WO2023206220 A1 WO 2023206220A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
substrate
area
orthographic projection
Prior art date
Application number
PCT/CN2022/089826
Other languages
English (en)
French (fr)
Inventor
丁爱宇
谢建云
徐敬义
张永强
常熙泽
陈婉芝
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001001.0A priority Critical patent/CN117321494A/zh
Priority to PCT/CN2022/089826 priority patent/WO2023206220A1/zh
Publication of WO2023206220A1 publication Critical patent/WO2023206220A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, and in particular, to a display substrate and a display device.
  • each sub-pixel included in each pixel of a liquid crystal display device is usually arranged in a row along a specific direction. Since a support structure is required between the array substrate and the color filter substrate of the liquid crystal display device, the arrangement of the support structure will take up space. A certain opening area affects the display effect of the display device.
  • an embodiment of the present disclosure provides a display substrate, including a plurality of pixel areas, each of the pixel areas corresponding to one pixel, wherein each of the pixel areas includes at least two rows of sub-regions, each row The sub-regions include at least two columns of sub-regions. Among the plurality of sub-regions included in each pixel region, some of the sub-regions correspond to each sub-pixel included in the pixel, and at least one of the sub-regions is different. Translucent area.
  • the pixel area is composed of four sub-areas, three of the four sub-areas correspond to sub-pixels of different colors, and the other is an opaque area, and the four sub-areas are arranged in two rows. Arranged in two columns.
  • three of the four sub-regions correspond to red sub-pixels, blue sub-pixels and green sub-pixels respectively;
  • the sub-region corresponding to the red sub-pixel and the sub-region corresponding to the green sub-pixel are located in the same row, and the sub-region corresponding to the red sub-pixel and the sub-region corresponding to the blue sub-pixel are located in the same column, so The opaque area and the sub-area corresponding to the green sub-pixel are located in the same column.
  • the relative positions of sub-regions corresponding to sub-pixels of the same color in each of the pixel regions are the same, and the relative positions of the opaque regions in each of the pixel regions are the same.
  • each sub-region in each pixel region is the same.
  • the display substrate is a color filter substrate.
  • the color filter substrate includes a first substrate and a black matrix and a color filter layer disposed on the first substrate.
  • the black matrix is disposed on the first substrate.
  • the orthographic projection on the first substrate covers the orthographic projection of the opaque area on the first substrate, and the orthographic projection of the color filter layer on the first substrate covers the sub-pixel. The orthographic projection of the corresponding sub-region on the first substrate.
  • the display substrate is an array substrate
  • the array substrate includes a second substrate and a driving circuit layer, a color filter layer and a black matrix sequentially disposed on the second substrate.
  • the orthographic projection of the matrix on the second substrate covers the orthographic projection of the opaque area on the second substrate
  • the orthographic projection of the color filter layer on the second substrate covers the orthographic projection of the opaque area on the second substrate.
  • the display substrate includes a substrate and a support structure disposed on the substrate, and the orthographic projection of the support structure on the substrate is located in the opaque area on the substrate. Within the range of the orthographic projection on the bottom.
  • the support structure is provided in the light-opaque area of part or all of the pixel area.
  • the display substrate is an array substrate, and the support structure is disposed on the array substrate;
  • the display substrate is a color filter substrate, and the support structure is provided on the color filter substrate.
  • the display substrate is an array substrate, and the array substrate includes a second substrate and a plurality of scan lines, a plurality of data lines and a pixel driving circuit located on the second substrate;
  • the plurality of scan lines extend along the first direction on the second substrate and are arranged along the second direction.
  • the plurality of data lines extend along the second direction on the second substrate and are arranged along the second direction.
  • the first direction is arranged, and the first direction and the second direction are directions that cross each other;
  • the pixel driving circuit is electrically connected to the scan line and the data line, the pixel driving circuit includes a sub-pixel driving circuit corresponding to the sub-pixel, and the sub-pixel driving circuit is used to drive the corresponding sub-pixel, At least one of the scanning lines and data lines connected to the sub-pixel driving circuits corresponding to the sub-pixels of different colors included in each pixel is different.
  • each sub-pixel included in each pixel corresponds to the same scan line, and each sub-pixel included in each pixel corresponds to a different data line.
  • the pixel area corresponding to each pixel includes four sub-areas arranged in two rows and two columns, and three of the four sub-areas are respectively associated with sub-pixels of different colors.
  • the other is an opaque area;
  • the number of data lines corresponding to each pixel is three, and the three data lines include a first data line, a second data line and a third data line;
  • the first data line is located at an edge of the pixel area away from the opaque area along the first direction
  • the second data line is located at an edge of the pixel area close to the opaque area along the first direction.
  • the third data line is located on the side of the center of the pixel area along the first direction close to the light-impermeable area.
  • the orthographic projection of the opaque region on the second substrate is the same as the orthographic projection of the second data line and the third data line on the second substrate. Overlap, the orthographic projection of the opaque area on the second substrate intersects the orthographic projection of the first data line on the second substrate of the next column of pixel areas along the first direction. Stack.
  • the number of scanning lines corresponding to each pixel is one, and along the second direction, the scanning line is located in the center of the pixel area on one side of the opaque area.
  • the scan line includes a first part extending along the first direction, the scan line further includes a second part, one end of the second part is connected to the first part, and the third part The other end of the two parts extends along the second direction toward the side of the pixel area close to the light-impermeable area, and the second part is used to be located along the first direction with the light-impermeable area. Gates of thin film transistors of sub-pixels in the same row.
  • the orthographic projection of the opaque region on the second substrate is the same as the orthographic projection of the first part on the second substrate and the second part on the second substrate.
  • the orthographic projections on the two substrates overlap respectively.
  • At least some of the sub-pixels included in each pixel correspond to the same scan line, and the sub-pixels corresponding to the same scan line correspond to different data lines;
  • At least some of the sub-pixels included in each pixel correspond to the same data line, and the sub-pixels corresponding to the same data line correspond to different scan lines.
  • each of the pixels includes a first color sub-pixel, a second color sub-pixel and a third color sub-pixel;
  • the first color sub-pixel and the second color sub-pixel correspond to the same scan line, and the first color sub-pixel and the second color sub-pixel correspond to different data lines;
  • the first color sub-pixel and the third color sub-pixel correspond to the same data line, and the first color sub-pixel and the third color sub-pixel correspond to different scan lines.
  • the first color sub-pixel is a red sub-pixel
  • the second color sub-pixel is a green sub-pixel
  • the third color sub-pixel is a blue sub-pixel
  • the pixel area corresponding to each pixel includes four sub-areas arranged in two rows and two columns, and three of the four sub-areas are respectively associated with sub-pixels of different colors.
  • the other is an opaque area;
  • the data line includes a fourth data line corresponding to the first color sub-pixel and the third color sub-pixel, and the data line further includes a fifth data line corresponding to the second color sub-pixel,
  • the fourth data line is located on a side of the pixel area away from the light-impermeable area, and the fifth data line is located in a central area of the pixel area.
  • the orthographic projection of the opaque area on the second substrate overlaps the orthographic projection of the fourth data line on the second substrate, and the opaque area overlaps with the orthographic projection of the fourth data line on the second substrate.
  • the orthographic projection of the area on the second substrate overlaps the orthographic projection of the fifth data line on the second substrate of the next column of pixel areas along the first direction.
  • the scan line includes a first scan line corresponding to the first color sub-pixel and the second color sub-pixel, and the scan line further includes a first scan line corresponding to the third color sub-pixel. the second scan line;
  • the first scan line is located in the center of the pixel area on one side of the opaque area, and the second scan line is located on the side of the pixel area close to the opaque area. at the edge.
  • the orthographic projection of the opaque area on the second substrate overlaps the orthographic projection of the second scan line on the second substrate, and the opaque area overlaps with the orthographic projection of the second scan line on the second substrate.
  • the orthographic projection of the region on the second substrate does not overlap with the orthographic projection on the second substrate of the first scan line of the next row of pixel regions in the second direction.
  • an embodiment of the present disclosure provides a display device, including the display substrate according to any one of the first aspects, and the display device further includes an opposite substrate corresponding to the display substrate.
  • Figure 1 is a schematic diagram of the pixel arrangement of a display substrate provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of pixel circuit connections of a display substrate provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a scan line of a display substrate provided by an embodiment of the present disclosure
  • Figure 5 is a driving timing diagram of the pixel circuit shown in Figure 2;
  • Figure 6 is a schematic diagram of pixel circuit connections of yet another display substrate provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a driving timing diagram of the pixel circuit shown in FIG. 6 .
  • first”, “second”, etc. in the embodiments of the present disclosure are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusions, e.g., a process, method, system, product, or apparatus that encompasses a series of steps or units and need not be limited to those explicitly listed. Those steps or elements may instead include other steps or elements not expressly listed or inherent to the process, method, product or apparatus.
  • Embodiments of the present disclosure provide a display substrate.
  • the display substrate includes a plurality of pixel areas, and each pixel area corresponds to a pixel.
  • Each pixel region includes at least two rows of sub-regions, and each row of sub-regions includes at least two columns of sub-regions.
  • each pixel region may include two rows of sub-regions, three rows of sub-regions or more rows of sub-regions.
  • Each row of sub-regions may include two columns of sub-regions, three columns of sub-regions or more columns of sub-regions.
  • each sub-region can be set as needed. For example, it can be a rectangle, a rhombus, a square, etc.
  • each sub-region is set to a rectangle to fully utilize the space on the display panel.
  • Each pixel includes multiple sub-pixels. Generally speaking, the color of each sub-pixel is different.
  • a pixel may include a red sub-pixel, a green sub-pixel and a blue sub-pixel.
  • the number and color of sub-pixels can be adjusted as needed, and are not further limited here.
  • some sub-regions correspond to each sub-pixel included in the pixel, and at least one sub-region is an opaque region.
  • the opaque area is used to set up a support structure (Photo Spacer, abbreviated as PS) 303.
  • PS Photo Spacer
  • the support structure 303 can reduce the area occupied by the opening area, thereby helping to reduce the display effect. possible adverse effects.
  • the display substrate includes a substrate and a support structure 303 disposed on the substrate, and the orthographic projection of the support structure 303 on the substrate is within the range of the orthographic projection of the opaque area on the substrate, This is to prevent the support structure 303 from occupying the area of the opening area and reduce possible adverse effects on the display effect.
  • the substrate in this embodiment refers to the first substrate of the color filter substrate or the second substrate of the array substrate, because the first substrate and the second substrate are parallel to each other. , so the relative positions of the orthographic projections of each structure on the first substrate and the second substrate are consistent.
  • a support structure 303 is provided in the opaque area of part or all of the pixel area.
  • the number of supporting structures 303 can be set as needed.
  • the support structure 303 can be provided in each pixel area, or the support structure 303 can be provided at certain periodic intervals.
  • Each support structure 303 may be a support structure 303 of the same structure, or may be a different support structure 303.
  • multiple pixel areas can be grouped as a group, and a main support structure and multiple auxiliary support structures are provided in the opaque area of each group of pixel areas.
  • the support structure 303 is roughly in the shape of a regular octagon. Obviously, the shape of the support structure 303 can also be adjusted, such as a circle, a square, an ellipse, etc. shape.
  • the display substrate is an array substrate, and the support structure 303 is disposed on the array substrate; or the display substrate is a color filter substrate, and the support structure 303 is disposed on the color filter substrate. In other embodiments, it is obvious that a certain number of support structures 303 can be provided on both sides of the color filter substrate and the array substrate.
  • each pixel area includes two rows and two columns, totaling four sub-areas.
  • Each of the four sub-regions of each pixel region correspond to sub-pixels of different colors, and the other one is an opaque region.
  • a pixel includes a red sub-pixel, a green sub-pixel and a blue sub-pixel
  • three of the four sub-regions correspond to the red sub-pixel, blue sub-pixel and green sub-pixel respectively, and the other sub-region It is an opaque area.
  • R represents the approximate area corresponding to the sub-region corresponding to the red sub-pixel
  • G represents the approximate area corresponding to the sub-region corresponding to the green sub-pixel
  • the approximate area, B represents the approximate area corresponding to the sub-region corresponding to the blue sub-pixel
  • PS represents the approximate area corresponding to the supporting structure 303 and the opaque area.
  • R represents the sub-pixel driving circuit corresponding to the red sub-pixel
  • G represents the sub-pixel driving circuit corresponding to the green sub-pixel
  • B represents the sub-pixel driving circuit corresponding to the blue sub-pixel.
  • Sub-pixel drive circuit in the circuit diagram, R represents the sub-pixel driving circuit corresponding to the red sub-pixel, G represents the sub-pixel driving circuit corresponding to the green sub-pixel, and B represents the sub-pixel driving circuit corresponding to the blue sub-pixel.
  • each sub-region and the opaque area can be located at the upper left of the pixel area. Corner, lower left corner, upper right corner, lower right corner. In this way, there are a total of 24 different arrangements of the four sub-areas.
  • the sub-region corresponding to the red sub-pixel and the sub-region corresponding to the green sub-pixel are located in the same row, and the sub-region corresponding to the red sub-pixel and the sub-region corresponding to the blue sub-pixel are located in the same row.
  • the sub-regions are located in the same column, and the opaque region and the sub-region corresponding to the green sub-pixel are located in the same column.
  • the sub-region corresponding to the red sub-pixel is located in the upper left corner
  • the sub-region corresponding to the green sub-pixel is located in the upper right corner
  • the sub-region corresponding to the blue sub-pixel is located in the upper left corner.
  • the corresponding sub-area is in the lower left corner
  • the opaque area is in the lower right corner.
  • each structure can be adaptively adjusted accordingly.
  • the relative positions of sub-regions corresponding to sub-pixels of the same color in each pixel region are the same, and the relative positions of the opaque regions in each pixel region are the same.
  • the relative position of the sub-region in each pixel region refers to the position of the corresponding sub-region in each pixel region.
  • the sub-region corresponding to the red sub-pixel is located at the upper left as shown in Figure 1
  • the sub-regions corresponding to the red sub-pixels in each pixel region are located in the upper left corner, thereby ensuring the uniformity of the entire display device.
  • each sub-region in each pixel region has the same shape and size. As shown in FIG. 1 , in this embodiment, each sub-region is configured as a rectangle and has the same size.
  • the display substrate also includes a black matrix 302.
  • the non-opening areas of each sub-region corresponding to the sub-pixel are covered by the black matrix 302.
  • the black matrix 302 also covers each sub-pixel. An opaque area among multiple sub-areas included in a pixel area.
  • the display substrate is a color filter substrate.
  • the color filter substrate includes a first substrate and a black matrix 302 and a color filter layer disposed on the first substrate.
  • the black matrix 302 is on the front side of the first substrate.
  • the projection covers the orthographic projection of the opaque area on the first substrate, and the orthographic projection of the color filter layer on the first substrate covers the orthographic projection of the sub-region on the first substrate.
  • the color filter layer specifically includes color filters of different colors corresponding to different color sub-pixels.
  • it may include a red color film, a green color film and a blue color film.
  • the positions of the color filters of different colors correspond to The sub-regions of the colors correspond to form the opening area 301 of the display substrate, and the black matrix 302 covers the opaque area to form the non-opening area of the display substrate.
  • the display substrate is an array substrate, and the array substrate is specifically a color filter array substrate provided with a color filter layer.
  • the array substrate includes a second substrate, a driving circuit layer, and a color filter layer sequentially disposed on the second substrate.
  • the film layer and the black matrix 302, the orthographic projection of the black matrix 302 on the second substrate coincides with the orthographic projection of the opaque area on the second substrate, and the orthographic projection of the color filter layer on the second substrate covers the sub-region Orthographic projection on the second substrate.
  • the positions of the color filters of different colors correspond to the sub-regions of the corresponding colors.
  • Each sub-region corresponding to a sub-pixel includes an opening region 301 and a non-opening region.
  • the non-opening region is the part outside the opening region 301 of each sub-region.
  • different The filling modes respectively show the opening areas 301 corresponding to sub-pixels of different colors.
  • the black matrix 302 also covers the opaque area to form at least part of the non-opening area of the display substrate.
  • all non-opening areas of the display substrate include non-opening areas and opaque areas of sub-areas corresponding to sub-pixels.
  • the black matrix 302 covers the entire area except the opening area 301.
  • the display substrate is an array substrate
  • the array substrate includes a second substrate and a plurality of scan lines, a plurality of data lines and a pixel driving circuit located on the second substrate.
  • a plurality of scan lines extend along the first direction and are arranged along the second direction on the second substrate.
  • a plurality of data lines extend along the second direction and are arranged along the first direction on the second substrate.
  • the first direction and the second direction The directions are those that cross each other.
  • the first direction may be the transverse direction shown in FIG. 1 , also called the row direction; the second direction may be the longitudinal direction shown in FIG. 1 , also called the column direction. It should be understood that the first direction and the second direction are not limited thereto, and are only used as examples in this embodiment.
  • the pixel drive circuit is electrically connected to the scan line and the data line.
  • the pixel drive circuit includes a sub-pixel drive circuit corresponding to the sub-pixel.
  • the sub-pixel drive circuit is used to drive the corresponding sub-pixel.
  • Each pixel includes sub-pixels corresponding to different color sub-pixels. At least one of the scanning lines and data lines connected to the pixel driving circuit is different to avoid crosstalk between scanning signals or data signals of different sub-pixels.
  • the structure of the sub-pixel driving circuit itself in this embodiment can be set as needed, and will not be further limited or described in this embodiment.
  • the connection method of the sub-pixel driving circuit to the data lines and scanning lines has also been adjusted.
  • each sub-pixel included in each pixel corresponds to the same scan line G0, and each sub-pixel included in each pixel corresponds to a different data line.
  • the sub-pixels and scan lines G0 Or the corresponding data line specifically refers to the sub-pixel driving circuit of the sub-pixel being connected to the scan line G0 or the data line to obtain a scan signal or a data signal.
  • each pixel area includes four sub-regions as shown in the figure, the number of scan lines G0 corresponding to each pixel is one, and the number of data lines corresponding to each pixel is three.
  • each row of pixels includes two rows of sub-pixels, and the sub-pixel driving circuits of these two rows of sub-pixels are connected to the same scan line G0.
  • Each column of pixels includes two columns of sub-pixels, and the sub-pixel driving circuits of these two columns of sub-pixels are connected to three pieces of data. wire connection.
  • the three data lines corresponding to the same pixel include a first data line D1, a second data line D2, and a third data line D3.
  • the first data line D1 is located at the edge of the pixel area away from the light-impermeable area along the first direction
  • the second data line D2 is located at the edge of the pixel area close to the light-impermeable area along the first direction
  • the third The data line D3 is located on the side of the center of the pixel area along the first direction close to the light-impermeable area.
  • first data line D1 and the second data line D2 corresponding to the same pixel are respectively located on the left and right sides of the pixel area of the pixel, and the third data line D3 is located near the center of the pixel area. .
  • the same color sub-pixels in the same column of pixels are connected to the same data line.
  • the red sub-pixel and the blue sub-pixel are located in the same column.
  • the sub-pixel driving circuit of the red sub-pixel is connected to the first data line D1
  • the sub-pixel driving circuit of the blue sub-pixel is connected to the first data line D1.
  • the sub-pixel driving circuit of the green sub-pixel is connected to the second data line D2.
  • the second data line D2 is located approximately on the right side of the sub-pixel column where the green sub-pixel and the light-impermeable sub-region are located.
  • the orthographic projection of the opaque area on the second substrate overlaps with the orthographic projections of the second data line D2 and the third data line D3 on the second substrate, and the opaque area is The orthographic projection on the second substrate overlaps with the orthographic projection on the second substrate of the first data line D1' of the next column of pixel areas along the first direction.
  • first data lines labeled D1 and D1' respectively correspond to pixels in different columns.
  • second data lines labeled D2 and D2' respectively correspond to pixels in different columns, and the third data lines labeled D3 and D3' respectively. They respectively correspond to different columns of pixels, and the scan lines labeled G0 and G0' correspond to different rows of pixels.
  • the number of scanning lines corresponding to each pixel is one, and along the second direction, the scanning line is located in the center of the pixel area on one side close to the opaque area.
  • the wiring position of each scan line or data line is controlled to overlap with the opaque area as much as possible, which helps to improve the light transmittance of the display substrate and improves the display effect.
  • the scan line includes a first part 401 extending along the first direction, the scan line also includes a second part 402, one end of the second part 402 is connected to the first part 401, and the second part The other end of 402 extends along the second direction toward the side of the pixel area close to the light-impermeable area.
  • the second portion 402 is used as a gate for a thin film transistor of a sub-pixel located in the same row as the light-impermeable area along the first direction. pole.
  • the portion of the scan line corresponding to each pixel is generally T-shaped, and the first portion 401 extending along the first direction can be understood as the main part of the scan line.
  • the pixel driving circuit of the red sub-pixel and the green sub-pixel directly uses the first part 401 as the gate electrode (control electrode) of the thin film transistor.
  • the second portion 402 extending in the second direction of the scan line can be understood as a protruding branch portion of the scan line.
  • This second portion 402 serves as the gate electrode of the thin film transistor of the blue sub-pixel located in the same row as the opaque sub-region.
  • the orthographic projection of the opaque region on the second substrate overlaps with the orthographic projection of the first portion 401 on the substrate and the orthographic projection of the second portion 402 on the second substrate, respectively.
  • the light transmittance of the display substrate can be improved, which helps To improve the display effect.
  • the driving timing of the display substrate is also adjusted accordingly.
  • the scan line signal is maintained for 1H after being pulled high, and the red sub-pixel, blue sub-pixel and green sub-pixel respectively correspond to different data lines. Therefore, The switches of the red sub-pixel, blue sub-pixel and green sub-pixel are all turned on.
  • the data signal of the red sub-pixel and green sub-pixel is GND, corresponding to 0 gray level voltage.
  • the data signal of the blue sub-pixel is +5V, corresponding to 255 gray. step voltage. That is to say, since the red sub-pixel, blue sub-pixel and green sub-pixel correspond to the same scan line and correspond to different data lines respectively, during the driving process, each sub-pixel can be charged at the same time.
  • At least some of the sub-pixels included in each pixel correspond to the same scan line, and the sub-pixels corresponding to the same scan line correspond to different data lines; at least some of the sub-pixels included in each pixel Corresponding to the same data line, the sub-pixels corresponding to the same data line correspond to different scan lines.
  • each pixel includes a first color sub-pixel, a second color sub-pixel and a third color sub-pixel; in some of the embodiments, the first color sub-pixel is a red sub-pixel, and the second color sub-pixel is a red sub-pixel.
  • the pixel is a green sub-pixel, and the third color sub-pixel is a blue sub-pixel. Obviously, the setting is not limited to this.
  • the first color subpixel and the second color subpixel correspond to the same scan line, and the first color subpixel and the second color subpixel correspond to different data lines;
  • the first color sub-pixel and the third color sub-pixel correspond to the same data line, and the first color sub-pixel and the third color sub-pixel correspond to different scan lines.
  • the data line when the pixel area corresponding to each pixel includes the above four sub-areas, the data line includes a third color sub-pixel corresponding to the first color sub-pixel and the third color sub-pixel.
  • the data lines also include a fifth data line D5 corresponding to the second color sub-pixel.
  • the sub-pixel driving circuits of the red sub-pixels and the blue sub-pixels located in the same column are connected to the fourth data line D4, and the sub-pixel driving circuit of the green sub-pixel with the light-impermeable sub-region located in the same column is connected to the fourth data line D4.
  • the circuit is connected to the fifth data line D5.
  • the fourth data line D4 is located on a side of the pixel area away from the opaque area, and the fifth data line D5 is located in the central area of the pixel area.
  • the orthographic projection of the opaque region on the second substrate overlaps the orthographic projection of the fourth data line D4 on the second substrate, and the orthographic projection of the opaque region on the second substrate The projection overlaps with the orthographic projection of the fifth data line D5' on the second substrate along the next column of pixel areas in the first direction.
  • labels D4 and D4' respectively correspond to fourth data lines of pixels in different columns
  • labels D5 and D5' respectively correspond to fifth data lines of pixels in different columns.
  • the scan line includes a first scan line G1 corresponding to the first color sub-pixel and the second color sub-pixel, and the scan line further includes a second scan line G2 corresponding to the third color sub-pixel.
  • the sub-pixel driving circuits of the red sub-pixels and the green sub-pixels located in the same row are connected to the first scanning line G1
  • the sub-pixel driving circuit of the blue sub-pixel located in the same row as the light-impermeable sub-region is connected to the first scanning line G1.
  • the two scan lines G2 are connected.
  • the blue subpixel corresponds to the second scan line G2 and the green subpixel corresponds to the first scan line G1. Therefore, the subpixel driving circuit of the blue subpixel can be connected to the fourth data line D4 or to the fourth data line D4.
  • the fifth data line D5 is connected.
  • some of the sub-pixel driving circuits of the blue sub-pixels are connected to the fourth data line D4, and some of the sub-pixel driving circuits of the blue sub-pixels are connected to the fifth data line D5.
  • the sub-pixel driving circuit of each blue sub-pixel is alternately connected to the fourth data line D4 and the fifth data line D5.
  • the first scanning line G1 is located at the center of the pixel area on one side of the opaque area, and the second scanning line G2 is located on the edge of the pixel area close to the opaque area.
  • the orthographic projection of the opaque area on the second substrate overlaps with the orthographic projection of the second scan line G2 on the second substrate, and the orthographic projection of the opaque area on the second substrate The projection does not overlap with the orthographic projection on the second substrate along the first scan line G1' of the next row of pixel areas in the second direction.
  • the labels D1 and D1' respectively correspond to the first scanning lines of pixels in different rows
  • the labels D2 and D2' respectively correspond to the second scanning lines of pixels in different rows.
  • the blue sub-pixel corresponds to the fourth data line D4, and the signal of the first scan line G1 is first pulled high for 1/2H.
  • the switches of the red sub-pixel and the green sub-pixel corresponding to the first scan line G1 are turned on, the switch of the blue sub-pixel is turned off, the fourth data line D4 charges the red sub-pixel, and the fifth data line D5 charges the green sub-pixel.
  • the signal Both are GND, corresponding to 0 grayscale voltage.
  • the second scan line G2 signal is pulled high, and the pull-up time is also 1/2H.
  • the switches of the red sub-pixel and green sub-pixel are turned off, and the switch of the blue sub-pixel is turned on.
  • the fourth data line D4 signal does not work, just keep the GND signal.
  • the fifth data line D5 signal charges the blue sub-pixel.
  • the signal is +5V, corresponding to the 255 gray scale voltage.
  • An embodiment of the present disclosure provides a display device, including any of the above display substrates, and the display device further includes an opposite substrate corresponding to the display substrate.
  • one of the display substrate and the opposite substrate is a color filter substrate, and the other is an array substrate; a liquid crystal layer is further included between the display substrate and the opposite substrate.
  • the display device may also include a backlight module. Group etc.
  • the display device of this embodiment includes all the technical solutions of the above-mentioned display substrate embodiment, it can at least achieve all the above-mentioned technical effects, which will not be described again here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供一种显示基板和显示装置。显示基板包括多个像素区域,每一所述像素区域与一个像素相对应,其中,每一所述像素区域包括至少两行子区域,每一行子区域包括至少两列子区域,在每一所述像素区域包括的多个所述子区域中,部分所述子区域与所述像素包括的各子像素对应,且至少一个所述子区域为不透光区域。

Description

显示基板和显示装置 技术领域
本公开实施例涉及显示技术领域,尤其涉及一种显示基板和显示装置。
背景技术
相关技术中,液晶显示装置每一像素包括的各子像素通常沿着特定的方向排列成一行,由于液晶显示装置的阵列基板和彩膜基板之间需要支撑结构支撑,而支撑结构的设置会占用一定的开口面积,对显示装置的显示效果造成影响。
发明内容
第一方面,本公开实施例提供了一种显示基板,包括多个像素区域,每一所述像素区域与一个像素相对应,其中,每一所述像素区域包括至少两行子区域,每一行子区域包括至少两列子区域,在每一所述像素区域包括的多个所述子区域中,部分所述子区域与所述像素包括的各子像素对应,且至少一个所述子区域为不透光区域。
在其中一些实施例中,所述像素区域由四个子区域组成,所述四个子区域中的三个分别与不同颜色子像素对应,另外一个为不透光区域,所述四个子区域呈两行两列排布。
在其中一些实施例中,所述四个子区域中的三个分别与红色子像素、蓝色子像素和绿色子像素相对应;
其中,与红色子像素相对应的子区域和与绿色子像素相对应的子区域位于同一行,与红色子像素相对应的子区域和与蓝色子像素相对应的子区域位于同一列,所述不透光区域和与绿色子像素相对应的子区域位于同一列。
在其中一些实施例中,对应相同颜色子像素的子区域在各所述像素区域中的相对位置相同,所述不透光区域在各所述像素区域中的相对位置相同。
在其中一些实施例中,每一所述像素区域中的各所述子区域的形状和尺寸均相同。
在其中一些实施例中,所述显示基板为彩膜基板,所述彩膜基板包括第一衬底以及设置于所述第一衬底上的黑矩阵和彩膜层,所述黑矩阵在所述第一衬底上的正投影覆盖所述不透光区域在所述第一衬底上的正投影,所述彩膜层在所述第一衬底上的正投影覆盖与所述子像素对应的所述子区域在所述第一衬底上的正投影。
在其中一些实施例中,所述显示基板为阵列基板,所述阵列基板包括第二衬底以及依次设置于所述第二衬底上的驱动电路层、彩膜层和黑矩阵,所述黑矩阵在所述第二衬底上的正投影覆盖所述不透光区域在所述第二衬底上的正投影,所述彩膜层在所述第二衬底上的正投影覆盖与所述子像素对应的所述子区域在所述第二衬底上的正投影。
在其中一些实施例中,所述显示基板包括衬底以及设置于所述衬底上的支撑结构,所述支撑结构在所述衬底上的正投影位于所述不透光区域在所述衬底上的正投影的范围之内。
在其中一些实施例中,部分或全部所述像素区域的不透光区域内设置有所述支撑结构。
在其中一些实施例中,所述显示基板为阵列基板,所述支撑结构设置于所述阵列基板上;或者
所述显示基板为彩膜基板,所述支撑结构设置于所述彩膜基板上。
在其中一些实施例中,所述显示基板为阵列基板,所述阵列基板包括第二衬底以及位于所述第二衬底上的多条扫描线、多条数据线和像素驱动电路;
所述多条扫描线在所述第二衬底上沿第一方向延伸且沿第二方向排列,所述多条数据线在所述第二衬底上沿所述第二方向延伸且沿所述第一方向排列,所述第一方向和所述第二方向为相互交叉的方向;
所述像素驱动电路与所述扫描线和所述数据线电连接,所述像素驱动电路包括与所述子像素对应的子像素驱动电路,所述子像素驱动电路用于驱动相应的子像素,每一像素包括的不同颜色子像素对应的子像素驱动电路所连接的扫描线和数据线中的至少一者不相同。
在其中一些实施例中,每一所述像素包括的各子像素对应同一所述扫描线,每一所述像素包括的各子像素分别对应不同的数据线。
在其中一些实施例中,与每一所述像素对应的所述像素区域包括四个呈两行两列排布的四个子区域,所述四个子区域中的三个分别与不同颜色的子像素相对应,另外一个为不透光区域;
与每一所述像素对应的数据线的数量为三条,三条所述数据线包括第一数据线、第二数据线和第三数据线;
所述第一数据线位于所述像素区域沿所述第一方向远离所述不透光区域的边缘处,所述第二数据线位于所述像素区域沿所述第一方向靠近所述不透光区域的边缘处,所述第三数据线位于所述像素区域沿所述第一方向的中央靠近所述不透光区域的一侧。
在其中一些实施例中,所述不透光区域在所述第二衬底上的正投影与所述第二数据线和所述第三数据线在所述第二衬底上的正投影均交叠,所述不透光区域在所述第二衬底上的正投影与沿所述第一方向上的下一列像素区域的第一数据线在所述第二衬底上的正投影交叠。
在其中一些实施例中,与每一所述像素对应的扫描线的数量为一条,沿所述第二方向上,扫描线位于所述像素区域的中央靠近所述不透光区域的一侧。
在其中一些实施例中,所述扫描线包括沿所述第一方向延伸的第一部分,所述扫描线还包括第二部分,所述第二部分的一端与所述第一部分连接,所述第二部分的另一端沿第二方向向所述像素区域靠近所述不透光区域的一侧延伸,所述第二部分用于作为沿所述第一方向上,与所述不透光区域位于同一行的子像素的薄膜晶体管的栅极。
在其中一些实施例中,所述不透光区域在所述第二衬底上的正投影与所述第一部分在所述第二衬底上的正投影和所述第二部分在所述第二衬底上的正投影分别交叠。
在其中一些实施例中,每一所述像素包括的至少部分子像素对应同一所述扫描线,且对应同一所述扫描线的子像素对应不同的数据线;
每一所述像素包括的至少部分子像素对应同一所述数据线,且对应同一所述数据线的子像素对应不同的扫描线。
在其中一些实施例中,每一所述像素包括第一颜色子像素、第二颜色子 像素和第三颜色子像素;
所述第一颜色子像素和所述第二颜色子像素对应同一所述扫描线,且所述第一颜色子像素和所述第二颜色子像素对应不同的数据线;
所述第一颜色子像素和所述第三颜色子像素对应同一所述数据线,且所述第一颜色子像素和所述第三颜色子像素对应不同的扫描线。
在其中一些实施例中,所述第一颜色子像素为红色子像素,所述第二颜色子像素为绿色子像素,所述第三颜色子像素为蓝色子像素。
在其中一些实施例中,与每一所述像素对应的所述像素区域包括四个呈两行两列排布的四个子区域,所述四个子区域中的三个分别与不同颜色的子像素相对应,另外一个为不透光区域;
所述数据线包括与所述第一颜色子像素和所述第三颜色子像素对应的第四数据线,所述数据线还包括与所述第二颜色子像素对应的第五数据线,
沿所述第一方向上,所述第四数据线位于所述像素区域远离所述不透光区域的一侧,所述第五数据线位于所述像素区域的中央区域。
在其中一些实施例中,所述不透光区域在所述第二衬底上的正投影与所述第四数据线在所述第二衬底上的正投影交叠,所述不透光区域在所述第二衬底上的正投影与沿所述第一方向上的下一列像素区域的第五数据线在所述第二衬底上的正投影交叠。
在其中一些实施例中,所述扫描线包括与所述第一颜色子像素和所述第二颜色子像素对应的第一扫描线,所述扫描线还包括与所述第三颜色子像素对应的第二扫描线;
沿所述第二方向上,所述第一扫描线位于所述像素区域的中央靠近所述不透光区域的一侧,所述第二扫描线位于所述像素区域靠近所述不透光区域的边缘处。
在其中一些实施例中,所述不透光区域在所述第二衬底上的正投影与所述第二扫描线在所述第二衬底上的正投影交叠,所述不透光区域在所述第二衬底上的正投影与沿所述第二方向上的下一行像素区域的第一扫描线所述第二衬底上的正投影不交叠。
第二方面,本公开实施例提供了一种显示装置,包括第一方面中任一项 所述的显示基板,所述显示装置还包括与所述显示基板对应的对置基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以如这些附图获得其他的附图。
图1是本公开实施例提供的显示基板的像素排布示意图;
图2是本公开实施例提供的显示基板的像素电路连接示意图;
图3是本公开实施例提供的显示基板的结构示意图;
图4是本公开实施例提供的显示基板的扫描线的结构示意图;
图5是图2所示像素电路的驱动时序图;
图6是本公开实施例提供的又一显示基板的像素电路连接示意图;
图7是本公开实施例提供的又一显示基板的结构示意图;
图8是图6所示像素电路的驱动时序图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,本申请中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种 情况。
本公开实施例提供了一种显示基板。
如图1所示,在一个实施例中,该显示基板包括多个像素区域,每一像素区域与一个像素相对应。
每一像素区域包括至少两行子区域,每一行子区域包括至少两列子区域,示例性的,每一像素区域可以包括两行子区域、三行子区域或者更多行子区域,进一步的,每一行子区域中,可以包括两列子区域、三列子区域或者更多列子区域。
各子区域的形状可以根据需要设置,示例性的,可以是长方形、菱形、正方形等。
在一个示例性的实施例中,各子区域的形状均设置为矩形,以充分利用显示面板上的空间。
每一像素包括多个子像素,一般来说,各子像素的颜色是不同的,在一个示例性的实施例中,一个像素可以包括一个红色子像素、一个绿色子像素和一个蓝色子像素,实施时,可以根据需要调整子像素的数量和颜色,此处不做进一步限定。
在每一像素区域包括的多个子区域中,部分子区域与该像素包括的各子像素对应,且至少一个子区域为不透光区域。
本实施例的技术方案中,不透光区域用于设置支撑结构(Photo Spacer,缩写为PS)303,这样,支撑结构303能够减少对于开口区域的面积的占用,从而有助于降低对于显示效果可能造成的不利影响。
在其中一些实施例中,显示基板包括衬底以及设置于衬底上的支撑结构303,支撑结构303在衬底上的正投影位于不透光区域在衬底上的正投影的范围之内,以避免支撑结构303占用开口区域的面积,降低对于显示效果可能造成的不利影响。
需要理解的是,本实施例中的衬底指的可以是彩膜基板的第一衬底,也可以是阵列基板的第二衬底,由于第一衬底和第二衬底是相互平行的,所以各结构在第一衬底和第二衬底上的正投影的相对位置是一致的。
在其中一些实施例中,部分或全部像素区域的不透光区域内设置有支撑 结构303。
本实施例中,支撑结构303的数量可以根据需要设置。示例性的,可以在每一像素区域内均设置支撑结构303,也可以按照一定的周期性间隔设置支撑结构303。
各支撑结构303可以为相同结构的支撑结构303,也可以为不同的支撑结构303。示例性的,可以多个像素区域作为一组,每一组像素区域的不透光区域中,设置一个主支撑结构和多个副支撑结构。
如图3和图7所示,在一个示例性的实施例中,支撑结构303大致呈正八边形,显然,支撑结构303的形状也可以做出调整,例如圆形、方形、椭圆形等不同的形状。
在其中一些实施例中,显示基板为阵列基板,支撑结构303设置于阵列基板上;或者显示基板为彩膜基板,支撑结构303设置于彩膜基板上。在另外一些实施例中,显然还可以在彩膜基板和阵列基板侧均设置一定数量的支撑结构303。
通过调整支撑结构303的设置位置和设置方式,有助于提高支撑结构303设置的均匀性,有助于提高显示效果的一致性。
在一些示例性的实施例中,每一像素区域包括两行两列,共计四个子区域,
每一像素区域的四个子区域其中的三个分别与不同颜色子像素对应,另外一个为不透光区域。
在一个像素包括一个红色子像素、一个绿色子像素和一个蓝色子像素的情况下,四个子区域中的三个分别与红色子像素、蓝色子像素和绿色子像素对应,另外一个子区域为不透光区域。
如图1、图3、图4和图6所示,本实施例中,以R代表与红色子像素相对应的子区域对应的大致区域,G代表与绿色子像素相对应的子区域对应的大致区域、B代表与蓝色子像素相对应的子区域对应的大致区域、PS代表设置支撑结构303及不透光区域对应的大致区域。
进一步的,如图2和图5所示,在电路图中,则以R代表红色子像素对应的子像素驱动电路,G代表绿色子像素对应的子像素驱动电路,B代表蓝 色子像素对应的子像素驱动电路。
需要理解的是,在显示基板的放置方式一定的情况下,各子区域的相对位置是可以做出调整的,具体而言,每一子区域以及不透光区域可以分别位于该像素区域的左上角、左下角、右上角、右下角,这样,四个子区域共计有24种不同的排布方式。
在一个示例性的实施例中,与红色子像素相对应的子区域和与绿色子像素相对应的子区域位于同一行,与红色子像素相对应的子区域和与蓝色子像素相对应的子区域位于同一列,不透光区域和与绿色子像素相对应的子区域位于同一列。
更为具体的,本实施例中,在图1所示的方向下,与红色子像素相对应的子区域位于左上角、与绿色子像素相对应的子区域位于右上角、与蓝色子像素相对应的子区域位于左下角,不透光区域位于右下角。
本实施例中仅以此做示例性说明,当各子区域的位置做出调整时,各结构可以相应的做出适应性调整即可。
在其中一些实施例中,对应相同颜色子像素的子区域在各像素区域中的相对位置相同,不透光区域在各像素区域中的相对位置相同。
本实施例中,子区域在各像素区域中的相对位置指的是每一像素区域中,相应子区域的位置,示例性的,在与红色子像素相对应的子区域位于图1所示左上角位置的情况下,各像素区域中的与红色子像素相对应的子区域均位于左上角,从而确保显示装置整体的均一性。
在其中一些实施例中,每一像素区域中的各子区域的形状和尺寸均相同,如图1所示,本实施例中,各子区域均设置为矩形,且其尺寸均相同。
在一些实施例中,如图3和图7所示,显示基板还包括黑矩阵302,子像素对应的各子区域的非开口区域均被黑矩阵302覆盖,进一步的,黑矩阵302还覆盖每一像素区域包括的多个子区域中的不透光区域。
在其中一些实施例中,显示基板为彩膜基板,彩膜基板包括第一衬底以及设置于第一衬底上的黑矩阵302和彩膜层,黑矩阵302在第一衬底上的正投影覆盖不透光区域在第一衬底上的正投影,彩膜层在第一衬底上的正投影覆盖子区域在第一衬底上的正投影。
本实施例中,彩膜层具体包括与不同颜色子像素对应的不同颜色的彩膜,示例性的,可以包括红色彩膜、绿色彩膜和蓝色彩膜,不同颜色的彩膜的位置与相应颜色的子区域相对应,以形成显示基板的开口区域301,而黑矩阵302覆盖不透光区域,以形成显示基板的非开口区。
在另外一些实施例中,显示基板为阵列基板,阵列基板具体为设置有彩膜层的彩膜阵列基板,阵列基板包括第二衬底以及依次设置于第二衬底上的驱动电路层、彩膜层和黑矩阵302,黑矩阵302在第二衬底上的正投影与不透光区域在第二衬底上的正投影重合,彩膜层在第二衬底上的正投影覆盖子区域在第二衬底上的正投影。
与上述彩膜基板的设置方式类似,本实施例中,不同颜色的彩膜的位置与相应颜色的子区域相对应。
请继续参阅图3和图7,与子像素对应的各子区域包括开口区域301和非开口区域,非开口区域为每一子区域的开口区域301之外的部分,本实施例中,以不同的填充方式分别示出不同颜色子像素对应的开口区域301。
黑矩阵302还覆盖不透光区域,以形成显示基板的至少部分非开口区。
在一些实施例中,显示基板的全部非开口区域包括与子像素对应的子区域的非开口区域以及不透光区域。换句话说,黑矩阵302覆盖除开口区域301之外的全部区域。
在其中一些实施例中,显示基板为阵列基板,阵列基板包括第二衬底以及位于第二衬底上的多条扫描线、多条数据线和像素驱动电路。
多条扫描线在第二衬底上沿第一方向延伸且沿第二方向排列,多条数据线在第二衬底上沿第二方向延伸且沿第一方向排列,第一方向和第二方向为相互交叉的方向。
本实施例中,第一方向可以为图1所示的横向,也称行方向;第二方向可以为图1所示的纵向,或称列方向。需要理解的是,第一方向和第二方向并不局限于此,本实施例中仅以此做示例性说明。
像素驱动电路与扫描线和数据线电连接,像素驱动电路包括与子像素对应的子像素驱动电路,子像素驱动电路用于驱动相应的子像素,每一像素包括的不同颜色子像素对应的子像素驱动电路所连接的扫描线和数据线中的至 少一者不相同,以避免不同子像素的扫描信号或数据信号发生串扰。
需要理解的是,本实施例中子像素驱动电路本身的结构可以根据需要设置,本实施例中不做进一步限定和描述。与相关技术相比,由于本实施例中子像素的排布方式发生了调整,相应的,子像素驱动电路与数据线和扫描线的连接方式也做出了调整。
如图2所示,在其中一些实施例中,每一像素包括的各子像素对应同一扫描线G0,每一像素包括的各子像素分别对应不同的数据线,这里,子像素与扫描线G0或数据线相对应具体指的是该子像素的子像素驱动电路与该扫描线G0或数据线连接,以获取扫描信号或数据信号。
在其中一些实施例中,在每一像素区域包括图所示四个子区域的情况下,与每一像素对应的扫描线G0的数量为一条,与每一像素对应的数据线的数量为三条。
可以理解为,每一行像素包括两行子像素,这两行子像素的子像素驱动电路与同一扫描线G0连接,每一列像素包括两列子像素,这两列子像素的子像素驱动电路与三条数据线连接。
如图2和图3所示,更为具体的,与同一像素对应的三条数据线包括第一数据线D1、第二数据线D2和第三数据线D3。
如图3所示,第一数据线D1位于像素区域沿第一方向远离不透光区域的边缘处,第二数据线D2位于像素区域沿第一方向靠近不透光区域的边缘处,第三数据线D3位于像素区域沿第一方向的中央靠近不透光区域的一侧。
本实施例中,可以理解为,与同一像素对应的第一数据线D1和第二数据线D2分别位于该像素的像素区域的左右两侧,而第三数据线D3位于像素区域的中央位置附近。
同一列像素中的相同颜色子像素均与同一数据线连接。
请同时参阅图3,本实施例中,红色子像素和蓝色子像素位于同一列,其中,红色子像素的子像素驱动电路与第一数据线D1连接,蓝色子像素的子像素驱动电路与第二数据线D2连接,其中,第一数据线D1大致位于红色子像素和蓝色子像素所在的子像素列的左侧,第三数据线D3大致位于红色子像素和蓝色子像素所在的子像素列的右侧。
绿色子像素的子像素驱动电路与第二数据线D2连接,第二数据线D2大致位于绿色子像素和不透光子区域所在的子像素列的右侧。
在其中一些实施例中,不透光区域在第二衬底上的正投影与第二数据线D2和第三数据线D3在第二衬底上的正投影均交叠,不透光区域在第二衬底上的正投影与沿第一方向上的下一列像素区域的第一数据线D1’在第二衬底上的正投影交叠。
需要理解的是,标号D1和D1’的第一数据线分别对应不同列像素,类似的,标号D2和D2’的第二数据线分别对应不同列像素、标号D3和D3’的第三数据线分别对应不同列像素,标号G0和G0’的扫描线对应不同行像素。
在其中一些实施例中,与每一像素对应的扫描线的数量为一条,沿第二方向上,扫描线位于像素区域的中央靠近不透光区域的一侧。
本实施例中,尽量控制各扫描线或数据线的走线位置与不透光区域重叠,有助于提高显示基板的透光率,有助于提高显示效果。
如图4所示,在其中一些实施例中,扫描线包括沿第一方向延伸的第一部分401,扫描线还包括第二部分402,第二部分402的一端与第一部分401连接,第二部分402的另一端沿第二方向向像素区域靠近不透光区域的一侧延伸,第二部分402用于作为沿第一方向上,与不透光区域位于同一行的子像素的薄膜晶体管的栅极。
本实施例中,扫描线与每一像素对应的部分大致呈T型,其中,沿第一方向延伸的第一部分401可以理解为扫描线的主体部分。
红色子像素和绿色子像素的像素驱动电路直接以该第一部分401作为薄膜晶体管的栅极(控制极)。
扫描线第二方向延伸的第二部分402可以理解为扫描线凸出的分支部分,该第二部分402作为与不透光子区域位于同一行的蓝色子像素的薄膜晶体管的栅极。
在其中一些实施例中,不透光区域在第二衬底上的正投影与第一部分401在衬底上的正投影和第二部分402在第二衬底上的正投影分别交叠。
通过控制扫描线的第一部分401和第二部分402在第二衬底上的正投影 与不透光区域在第二衬底上的正投影交叠,能够提高显示基板的透光率,有助于提高显示效果。
像素驱动电路的连接方式作出了调整后,该显示基板的驱动时序也相应作出调整。
如图5所示,以显示蓝色的单色画面为例,其中,扫描线信号拉高后保持1H时间,红色子像素、蓝色子像素和绿色子像素分别对应不同的数据线,因此,红色子像素、蓝色子像素和绿色子像素的开关全部打开,红色子像素和绿色子像素的数据信号为GND,对应0灰阶电压,蓝色子像素的数据信号为+5V,对应255灰阶电压。也就是说,由于红色子像素、蓝色子像素和绿色子像素对应同一扫描线且分别对应不同的数据线,因此,驱动过程中,各子像素可以同时充电。
如图6所示,在其中一些实施例中,每一像素包括的至少部分子像素对应同一扫描线,且对应同一扫描线的子像素对应不同的数据线;每一像素包括的至少部分子像素对应同一数据线,且对应同一数据线的子像素对应不同的扫描线。
可以理解为,对于一个像素来说,如果其中的某些子像素对应同一扫描线,则这些子像素对应不同的数据线;如果某些子像素对应同一数据线,则这些子像素对应不同的扫描线,以避免扫描线提供的扫描信号和数据线提供的数据信号串扰。
在其中一些实施例中,每一像素包括第一颜色子像素、第二颜色子像素和第三颜色子像素;在其中一些实施例中,第一颜色子像素为红色子像素,第二颜色子像素为绿色子像素,第三颜色子像素为蓝色子像素,显然,其设置并不局限于此。
在一些实施例中,第一颜色子像素和第二颜色子像素对应同一扫描线,且第一颜色子像素和第二颜色子像素对应不同的数据线;
第一颜色子像素和第三颜色子像素对应同一数据线,且第一颜色子像素和第三颜色子像素对应不同的扫描线。
如图6和图7所示,在其中一些实施例中,每一像素对应的像素区域包括上述四个子区域的情况下,数据线包括与第一颜色子像素和第三颜色子像 素对应的第四数据线D4,数据线还包括与第二颜色子像素对应的第五数据线D5。
本实施例中,具体的,位于同一列的红色子像素和蓝色子像素的子像素驱动电路与第四数据线D4连接,和不透光子区域位于同一列的绿色子像素的子像素驱动电路与第五数据线D5连接。
沿第一方向上,第四数据线D4位于像素区域远离不透光区域的一侧,第五数据线D5位于像素区域的中央区域。
在其中一些实施例中,不透光区域在第二衬底上的正投影与第四数据线D4在第二衬底上的正投影交叠,不透光区域在第二衬底上的正投影与沿第一方向上的下一列像素区域的第五数据线D5’在第二衬底上的正投影交叠。
类似的,标号D4和D4’分别对应不同列像素的第四数据线,标号D5和D5’分别对应不同列像素的第五数据线。
本实施例中,通过控制第四数据线D4和第五数据线D5在第二衬底上的正投影均与本像素或其他像素的不透光区域在第二衬底上的正投影交叠,以提高显示基板的透光率。
在其中一些实施例中,扫描线包括与第一颜色子像素和第二颜色子像素对应的第一扫描线G1,扫描线还包括与第三颜色子像素对应的第二扫描线G2。
本实施例中,位于同一行的红色子像素和绿色子像素的子像素驱动电路与第一扫描线G1连接,和不透光子区域位于同一行的蓝色子像素的子像素驱动电路与第二扫描线G2连接。
需要理解的是,蓝色子像素对应第二扫描线G2,绿色子像素对应第一扫描线G1,因此,蓝色子像素的子像素驱动电路即可以与第四数据线D4连接,也可以与第五数据线D5连接。
进一步的,在一些实施例中,部分蓝色子像素的子像素驱动电路与第四数据线D4连接,部分蓝色子像素的子像素驱动电路与第五数据线D5连接。
如图6所示,在一个示例性的实施例中,沿第二方向上,各蓝色子像素的子像素驱动电路交替与第四数据线D4和第五数据线D5连接。
沿第二方向上,第一扫描线G1位于像素区域的中央靠近不透光区域的 一侧,第二扫描线G2位于像素区域靠近不透光区域的边缘处。
在其中一些实施例中,不透光区域在第二衬底上的正投影与第二扫描线G2在第二衬底上的正投影交叠,不透光区域在第二衬底上的正投影与沿第二方向上的下一行像素区域的第一扫描线G1’第二衬底上的正投影不交叠。
类似的,标号D1和D1’分别对应不同行像素的第一扫描线,标号D2和D2’分别对应不同行像素的第二扫描线。
如图8所示,仍以显示蓝色单色画面为例,蓝色子像素对应第四数据线D4,第一扫描线G1的信号首先拉高,拉高的时间为1/2H,此时与第一扫描线G1对应的红色子像素和绿色子像素的开关打开,蓝色子像素的开关关闭,第四数据线D4为红色子像素充电,第五数据线D5为绿色子像素充电,信号均为GND,对应0灰阶电压。第一扫描线G1信号拉高结束后,第二扫描线G2信号拉高,拉高时间同样为1/2H,此时红色子像素和绿色子像素的开关关闭,蓝色子像素的开关打开,第四数据线D4信号不工作,继续保持GND信号即可,第五数据线D5信号给蓝色子像素充电,信号为+5V,对应255灰阶电压。
需要理解的是,对于与第五数据线D5连接的蓝色子像素来说,其驱动时序相应调整即可。
需要理解的是,本公开中的各实施例的技术方案在不矛盾的情况下,是可以相互结合的并能实现相应的技术效果,此处不再赘述。
本公开实施例提供了一种显示装置,包括以上任一项的显示基板,显示装置还包括与显示基板对应的对置基板。
示例性的,显示基板和对置基板中的一者为彩膜基板,另一者为阵列基板;显示基板和对置基板之间还包括液晶层,进一步的,该显示装置还可以包括背光模组等。
由于本实施例的显示装置包括上述显示基板实施例的全部技术方案,因此至少能够实现上述全部技术效果,此处不再赘述。
以上所述是本公开实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (25)

  1. 一种显示基板,包括多个像素区域,每一所述像素区域与一个像素相对应,其中,每一所述像素区域包括至少两行子区域,每一行子区域包括至少两列子区域,在每一所述像素区域包括的多个所述子区域中,部分所述子区域与所述像素包括的各子像素对应,且至少一个所述子区域为不透光区域。
  2. 根据权利要求1所述的显示基板,其中,所述像素区域由四个子区域组成,所述四个子区域中的三个分别与不同颜色子像素对应,另外一个为不透光区域,所述四个子区域呈两行两列排布。
  3. 根据权利要求2所述的显示基板,其中,所述四个子区域中的三个分别与红色子像素、蓝色子像素和绿色子像素相对应;
    其中,与红色子像素相对应的子区域和与绿色子像素相对应的子区域位于同一行,与红色子像素相对应的子区域和与蓝色子像素相对应的子区域位于同一列,所述不透光区域和与绿色子像素相对应的子区域位于同一列。
  4. 根据权利要求1至3中任一项所述的显示基板,其中,对应相同颜色子像素的子区域在各所述像素区域中的相对位置相同,所述不透光区域在各所述像素区域中的相对位置相同。
  5. 根据权利要求1至3中任一项所述的显示基板,其中,每一所述像素区域中的各所述子区域的形状和尺寸均相同。
  6. 根据权利要求1至3中任一项所述的显示基板,其中,所述显示基板为彩膜基板,所述彩膜基板包括第一衬底以及设置于所述第一衬底上的黑矩阵和彩膜层,所述黑矩阵在所述第一衬底上的正投影覆盖所述不透光区域在所述第一衬底上的正投影,所述彩膜层在所述第一衬底上的正投影覆盖与所述子像素对应的所述子区域在所述第一衬底上的正投影。
  7. 根据权利要求1至3中任一项所述的显示基板,其中,所述显示基板为阵列基板,所述阵列基板包括第二衬底以及依次设置于所述第二衬底上的驱动电路层、彩膜层和黑矩阵,所述黑矩阵在所述第二衬底上的正投影覆盖所述不透光区域在所述第二衬底上的正投影,所述彩膜层在所述第二衬底上的正投影覆盖与所述子像素对应的所述子区域在所述第二衬底上的正投影。
  8. 根据权利要求1所述的显示基板,其中,所述显示基板包括衬底以及设置于所述衬底上的支撑结构,所述支撑结构在所述衬底上的正投影位于所述不透光区域在所述衬底上的正投影的范围之内。
  9. 根据权利要求8所述的显示基板,其中,部分或全部所述像素区域的不透光区域内设置有所述支撑结构。
  10. 根据权利要求8或9所述的显示基板,其中,所述显示基板为阵列基板,所述支撑结构设置于所述阵列基板上;或者
    所述显示基板为彩膜基板,所述支撑结构设置于所述彩膜基板上。
  11. 如权利要求1至3中任一项所述的显示基板,其中,所述显示基板为阵列基板,所述阵列基板包括第二衬底以及位于所述第二衬底上的多条扫描线、多条数据线和像素驱动电路;
    所述多条扫描线在所述第二衬底上沿第一方向延伸且沿第二方向排列,所述多条数据线在所述第二衬底上沿所述第二方向延伸且沿所述第一方向排列,所述第一方向和所述第二方向为相互交叉的方向;
    所述像素驱动电路与所述扫描线和所述数据线电连接,所述像素驱动电路包括与所述子像素对应的子像素驱动电路,所述子像素驱动电路用于驱动相应的子像素,每一像素包括的不同颜色子像素对应的子像素驱动电路所连接的扫描线和数据线中的至少一者不相同。
  12. 如权利要求11所述的显示基板,其中,每一所述像素包括的各子像素对应同一所述扫描线,每一所述像素包括的各子像素分别对应不同的数据线。
  13. 如权利要求12所述的显示基板,其中,与每一所述像素对应的所述像素区域包括四个呈两行两列排布的四个子区域,所述四个子区域中的三个分别与不同颜色的子像素相对应,另外一个为不透光区域;
    与每一所述像素对应的数据线的数量为三条,三条所述数据线包括第一数据线、第二数据线和第三数据线;
    所述第一数据线位于所述像素区域沿所述第一方向远离所述不透光区域的边缘处,所述第二数据线位于所述像素区域沿所述第一方向靠近所述不透光区域的边缘处,所述第三数据线位于所述像素区域沿所述第一方向的中央 靠近所述不透光区域的一侧。
  14. 如权利要求13所述的显示基板,其中,所述不透光区域在所述第二衬底上的正投影与所述第二数据线和所述第三数据线在所述衬底上的正投影均交叠,所述不透光区域在所述第二衬底上的正投影与沿所述第一方向上的下一列像素区域的第一数据线在所述第二衬底上的正投影交叠。
  15. 如权利要求14所述的显示基板,其中,与每一所述像素对应的扫描线的数量为一条,沿所述第二方向上,扫描线位于所述像素区域的中央靠近所述不透光区域的一侧。
  16. 如权利要求14所述的显示基板,其中,所述扫描线包括沿所述第一方向延伸的第一部分,所述扫描线还包括第二部分,所述第二部分的一端与所述第一部分连接,所述第二部分的另一端沿第二方向向所述像素区域靠近所述不透光区域的一侧延伸,所述第二部分用于作为沿所述第一方向上,与所述不透光区域位于同一行的子像素的薄膜晶体管的栅极。
  17. 如权利要求16所述的显示基板,其中,所述不透光区域在所述第二衬底上的正投影与所述第一部分在所述第二衬底上的正投影和所述第二部分在所述第二衬底上的正投影分别交叠。
  18. 如权利要求11所述的显示基板,其中,每一所述像素包括的至少部分子像素对应同一所述扫描线,且对应同一所述扫描线的子像素对应不同的数据线;
    每一所述像素包括的至少部分子像素对应同一所述数据线,且对应同一所述数据线的子像素对应不同的扫描线。
  19. 如权利要求18所述的显示基板,其中,每一所述像素包括第一颜色子像素、第二颜色子像素和第三颜色子像素;
    所述第一颜色子像素和所述第二颜色子像素对应同一所述扫描线,且所述第一颜色子像素和所述第二颜色子像素对应不同的数据线;
    所述第一颜色子像素和所述第三颜色子像素对应同一所述数据线,且所述第一颜色子像素和所述第三颜色子像素对应不同的扫描线。
  20. 如权利要求19所述的显示基板,其中,所述第一颜色子像素为红色子像素,所述第二颜色子像素为绿色子像素,所述第三颜色子像素为蓝色子 像素。
  21. 如权利要求19所述的显示基板,其中,与每一所述像素对应的所述像素区域包括四个呈两行两列排布的四个子区域,所述四个子区域中的三个分别与不同颜色的子像素相对应,另外一个为不透光区域;
    所述数据线包括与所述第一颜色子像素和所述第三颜色子像素对应的第四数据线,所述数据线还包括与所述第二颜色子像素对应的第五数据线,
    沿所述第一方向上,所述第四数据线位于所述像素区域远离所述不透光区域的一侧,所述第五数据线位于所述像素区域的中央区域。
  22. 如权利要求21所述的显示基板,其中,所述不透光区域在所述第二衬底上的正投影与所述第四数据线在所述第二衬底上的正投影交叠,所述不透光区域在所述第二衬底上的正投影与沿所述第一方向上的下一列像素区域的第五数据线在所述第二衬底上的正投影交叠。
  23. 如权利要求21所述的显示基板,其中,所述扫描线包括与所述第一颜色子像素和所述第二颜色子像素对应的第一扫描线,所述扫描线还包括与所述第三颜色子像素对应的第二扫描线;
    沿所述第二方向上,所述第一扫描线位于所述像素区域的中央靠近所述不透光区域的一侧,所述第二扫描线位于所述像素区域靠近所述不透光区域的边缘处。
  24. 如权利要求23所述的显示基板,其中,所述不透光区域在所述第二衬底上的正投影与所述第二扫描线在所述第二衬底上的正投影交叠,所述不透光区域在所述第二衬底上的正投影与沿所述第二方向上的下一行像素区域的第一扫描线所述第二衬底上的正投影不交叠。
  25. 一种显示装置,包括权利要求1至24中任一项所述的显示基板,所述显示装置还包括与所述显示基板对应的对置基板。
PCT/CN2022/089826 2022-04-28 2022-04-28 显示基板和显示装置 WO2023206220A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001001.0A CN117321494A (zh) 2022-04-28 2022-04-28 显示基板和显示装置
PCT/CN2022/089826 WO2023206220A1 (zh) 2022-04-28 2022-04-28 显示基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089826 WO2023206220A1 (zh) 2022-04-28 2022-04-28 显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2023206220A1 true WO2023206220A1 (zh) 2023-11-02

Family

ID=88516739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089826 WO2023206220A1 (zh) 2022-04-28 2022-04-28 显示基板和显示装置

Country Status (2)

Country Link
CN (1) CN117321494A (zh)
WO (1) WO2023206220A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286524A (ja) * 2009-06-09 2010-12-24 Ulvac Japan Ltd スペーサ配置方法、スペーサ除去装置
CN203117614U (zh) * 2010-06-28 2013-08-07 夏普株式会社 显示面板和显示装置
CN103426369A (zh) * 2013-08-27 2013-12-04 京东方科技集团股份有限公司 显示屏
CN106681062A (zh) * 2017-03-29 2017-05-17 京东方科技集团股份有限公司 一种像素结构、显示面板及显示装置
CN107219700A (zh) * 2017-06-22 2017-09-29 上海天马微电子有限公司 一种液晶显示面板及显示装置
CN111443514A (zh) * 2020-05-11 2020-07-24 京东方科技集团股份有限公司 显示面板、指纹识别方法和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286524A (ja) * 2009-06-09 2010-12-24 Ulvac Japan Ltd スペーサ配置方法、スペーサ除去装置
CN203117614U (zh) * 2010-06-28 2013-08-07 夏普株式会社 显示面板和显示装置
CN103426369A (zh) * 2013-08-27 2013-12-04 京东方科技集团股份有限公司 显示屏
CN106681062A (zh) * 2017-03-29 2017-05-17 京东方科技集团股份有限公司 一种像素结构、显示面板及显示装置
CN107219700A (zh) * 2017-06-22 2017-09-29 上海天马微电子有限公司 一种液晶显示面板及显示装置
CN111443514A (zh) * 2020-05-11 2020-07-24 京东方科技集团股份有限公司 显示面板、指纹识别方法和显示装置

Also Published As

Publication number Publication date
CN117321494A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
JP3349935B2 (ja) アクティブマトリクス型液晶表示装置
JP5024110B2 (ja) 電気光学装置及び電子機器
US9501960B2 (en) Display panel
US20090102824A1 (en) Active matrix substrate and display device using the same
US9064472B2 (en) Liquid crystal display and method thereof
US8436805B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display unit, liquid crystal display device, and television receiver
US20170255074A1 (en) Active matrix substrate and display panel
US10304397B2 (en) Display device
WO2011048843A1 (ja) 表示装置
US8035767B2 (en) Liquid crystal display
JP2008186019A (ja) アレイ基板及びそれを用いた表示装置
EP2757411B1 (en) Array substrate and liquid crystal display panel
CN112509509A (zh) 显示面板及其驱动方法、显示装置
US11893952B2 (en) Simplifying substrate for display panel with waveguide display region and driving of two display regions by one driving system
JP3256810B2 (ja) 液晶表示装置
KR100648141B1 (ko) 표시 장치 및 상기 표시 장치의 구동 방법
KR20060041022A (ko) 박막 트랜지스터 표시판
JP5299224B2 (ja) 電気光学装置及び電子機器
US20190114981A1 (en) Display device
US6411272B1 (en) Active matrix liquid crystal display devices
JP2001281626A (ja) 液晶表示装置
WO2023206220A1 (zh) 显示基板和显示装置
US11531241B2 (en) Array substrate and display device
JP6531219B2 (ja) 液晶表示パネル
JP5338606B2 (ja) 表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001001.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18021943

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939072

Country of ref document: EP

Kind code of ref document: A1