WO2023205985A1 - 天线及电子设备 - Google Patents

天线及电子设备 Download PDF

Info

Publication number
WO2023205985A1
WO2023205985A1 PCT/CN2022/088881 CN2022088881W WO2023205985A1 WO 2023205985 A1 WO2023205985 A1 WO 2023205985A1 CN 2022088881 W CN2022088881 W CN 2022088881W WO 2023205985 A1 WO2023205985 A1 WO 2023205985A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover plate
radiation
layer
antenna according
antenna
Prior art date
Application number
PCT/CN2022/088881
Other languages
English (en)
French (fr)
Inventor
杨硕
金允男
冯春楠
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/088881 priority Critical patent/WO2023205985A1/zh
Priority to CN202280000873.5A priority patent/CN117296203A/zh
Publication of WO2023205985A1 publication Critical patent/WO2023205985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present disclosure belongs to the field of communication technology, and specifically relates to an antenna and an electronic device.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provide an antenna and an electronic device.
  • an embodiment of the present disclosure provides an antenna, which includes a housing, a first radiation layer and a first reference electrode layer disposed in the housing; wherein,
  • the housing includes: a first cover plate and a second cover plate arranged oppositely, and a connecting side plate connected between the first cover plate and the second cover plate; the first cover plate, the second cover plate The board and the connecting side plate are connected to form an accommodation space;
  • the first radiation layer is disposed on a side of the first cover plate close to the second cover plate, and the first reference electrode layer is disposed on a side of the second cover plate close to the first cover plate. ;
  • the first radiation layer includes at least one radiation unit, the radiation unit includes a radiation portion and at least one feed line electrically connected to the radiation portion; and the radiation portion and the feed line are both connected to the first reference electrode layer. Orthographic projections on the first cover at least partially overlap.
  • the feeder in the radiation unit includes a first feeder and a second feeder, and the connection node between the first feeder and the radiation part is a first node, and the connection node between the second feeder and the radiation part
  • the connection node is the second node; for one of the radiating units, the extension direction of the line connecting the center of the radiating part and the first node is the same as the line connecting the center of the radiating part and the second node. The extension directions intersect.
  • the radiation unit further includes a first branch and a second branch, the first branch is connected to the first feeder, and the second branch is connected to the second feeder.
  • the first radiation layer is disposed on the first base material, and the first base material is connected to the first cover plate through a first adhesive layer.
  • the first reference electrode layer is disposed on the second base material, and the second base material is connected to the second cover plate through the second adhesive layer.
  • the first radiation layer and/or the first reference electrode layer includes a metal grid structure.
  • both the first radiation layer and the first reference electrode layer include a metal grid structure
  • the orthographic projections of the hollow portions of the two metal grid structures on the first cover plate overlap.
  • the line width of the metal grid structure is 2-30 ⁇ m; the line spacing is 50-200 ⁇ m; and the line thickness is 1-10 ⁇ m.
  • the first radiation layer further includes a redundant electrode, and the redundant electrode is disconnected from the radiation part and the feeder.
  • the connecting side panel includes a first sub-side panel connected to the first cover panel, and a second sub-side panel connected to the second cover panel, the first sub-side panel and the second sub-side panel Side panel plug-in.
  • the radiating part is a centrally symmetrical figure.
  • the thickness of the first cover plate and the second cover plate is both 1-3 mm.
  • an embodiment of the present disclosure provides an electronic device, which includes any of the above antennas.
  • Figure 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • Figure 2 is a cross-sectional view of an antenna according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a radiation unit of an antenna according to an embodiment of the present disclosure.
  • Figure 4 is a cross-sectional view of a first radiation layer provided on the first cover according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a first reference electrode layer disposed on the second cover plate according to an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of a metal mesh structure according to an embodiment of the present disclosure.
  • FIG. 7 is a top view of the first radiation layer according to the embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the standing wave ratio of the antenna according to the embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the isolation degree of the antenna according to the embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of the 0-degree plane direction diagram of the antenna according to the embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a 90-degree plane direction diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of the gain of the antenna as a function of frequency according to an embodiment of the present disclosure.
  • Figure 13 is a schematic diagram of the cross-polarization ratio of the antenna according to the embodiment of the present disclosure.
  • Figure 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view of an antenna according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of a radiating unit 100 of an antenna according to an embodiment of the present disclosure
  • Figure 1- As shown in 3, an embodiment of the present disclosure provides an antenna, which includes a housing, a first radiation layer 10 and a first reference electrode layer 20. Wherein, the first radiation layer 10 and the first reference electrode layer 20 are both arranged in the housing.
  • the housing includes a first cover plate 11 and a second cover plate 12 that are oppositely arranged, connected between the first cover plate 11 and the second cover plate 12, and connected with the first cover plate 11 and the second cover plate. 12 is connected to the connecting side plate 13 forming the accommodation space.
  • the first radiation layer 10 is disposed on the side of the first cover plate 11 close to the second cover plate 12
  • the first reference electrode layer 20 is disposed on the side of the second cover plate 12 close to the first cover plate 11 .
  • the first radiating layer 10 includes at least one radiating unit 100 .
  • the radiating unit 100 includes a radiating part 101 and at least one feed line electrically connected to the radiating part 101 .
  • the feed line is configured to feed the radiating part 101 .
  • both the radiation part 101 and the feed line overlap with the orthographic projection of the first reference electrode layer 20 on the first cover plate 11 .
  • the orthographic projection of the first reference electrode layer 20 on the first cover plate 11 covers the orthographic projection of the radiation part 101 and the feed line on the first cover plate 11 .
  • the first radiation layer 10 is provided on the first cover plate 11
  • the first reference layer is provided on the second cover plate 12
  • the medium layer 30 between the two can be an air medium.
  • inert gas can also be filled in the housing as a filling medium between the first radiation layer 10 and the second reference electrode layer.
  • one radiation unit 100 includes two feed lines as an example, and for convenience of description, the two feed lines are called the first feed line 102 and the second feed line 103 respectively.
  • the two feed lines are called the first feed line 102 and the second feed line 103 respectively.
  • only one feeder line may be provided in each radiating unit 100, and the radiating part 101 may be fed through one feeder line.
  • the first radiation layer 10 and the first reference electrode layer 20 in the antenna are respectively provided on the first cover plate 11 and the second cover plate 12, thereby realizing the first radiation layer 10 and the first reference electrode layer 10.
  • the integrated design of the electrode layer 20 and the shell, and this arrangement can omit the supporting structure in front of the first radiation layer 10 and the first reference electrode layer 20, reduces the number of antenna layers, and improves the light transmittance of the antenna.
  • the connection node between the first feeder 102 and the radiation part 101 in each radiation unit 100 is the first node
  • the connection node between the second feeder 103 and the radiation part 101 is the second node.
  • the line connecting the first node and the center of the radiating part 101 is a first line segment
  • the line connecting the second node and the center of the radiating part 101 is a second line segment
  • the extending directions of the first line segment and the second line segment intersect.
  • the extension directions of the first line segment and the second line segment are perpendicular. That is to say, the feeding directions of the first feeder line 102 and the second feeder line 103 are different.
  • the antenna can achieve a polarization direction of 0°/90° or ⁇ 45°.
  • the antenna of the embodiment of the present disclosure also includes a first feed structure and a second feed structure.
  • the first feed structure and the second feed structure can be provided on the connecting side plate 13.
  • the first feed structure and the second feed structure A feeder 102 is electrically connected, for example, using ACF glue (transparent optical conductive glue) to bind and connect.
  • the second feed structure is electrically connected to the second feeder 103, for example, using ACF glue to bind and connect.
  • both the first feeding structure and the second feeding structure may adopt a power division feeding network.
  • each radiating unit 100 further includes a first branch 104 and a second branch 105 , and the first branch 104 and the second branch 105 are electrically connected to the first feeder 102 and the second feeder 103 respectively.
  • the first branch 104 and the second branch 105 are provided for better impedance matching to improve the radiation efficiency of the radiating unit 100 .
  • FIG. 4 is a cross-sectional view of the first radiating layer 10 disposed on the first cover 11 according to an embodiment of the present disclosure; as shown in FIG. 4 , the first radiating layer 10 is disposed on the first substrate 13.
  • a base material 13 is connected to the first cover 11 through a first adhesive layer 14 .
  • the first base material 13 is a flexible base material, and its material includes but is not limited to polyimide (PI) or polyethylene terephthalate (PET).
  • the material of the first adhesive layer 14 is transparent optical glue, such as ACF glue.
  • the material of the first cover 11 includes but is not limited to polycarbonate plastic (Polycarbonate; PC), cycloolefin polymer plastic (Copolymers of Cycloolefin; COP) or acrylic/organic glass (Polymethyl Methacrylate; PMMA), etc.
  • the sum of the thicknesses of the first base material 13 and the first radiation layer 10 is about 50-250 ⁇ m.
  • the thickness of the first cover plate 11 is about 1-3 mm. Of course, the specific thickness of each film layer can be set according to product requirements.
  • FIG. 5 is a cross-sectional view of the first reference electrode layer 20 disposed on the second cover plate 12 according to an embodiment of the present disclosure; as shown in FIG. 5 , the first reference electrode layer 20 is disposed on the second substrate 15 , the second base material 15 is connected to the second cover 12 through the second adhesive layer 16 .
  • the material of the first base material 13 may be the same as the material of the first base material 13 , that is, the material of the first base material 13 also includes but is not limited to polyimide or polyethylene terephthalate.
  • the material of the second adhesive layer 16 can be the same as the material of the first adhesive layer 14, that is, the material of the second adhesive layer 16 can also be transparent optical glue, such as ACF glue.
  • the material of the second cover plate 12 may be the same as the material of the first cover plate 11 , that is, the material of the second cover plate 12 includes but is not limited to polycarbonate plastic, cycloolefin polymer plastic, or acrylic/plexiglass.
  • the total thickness of the second substrate 15 and the first reference electrode layer 20 is about 50-250 ⁇ m.
  • the thickness of the second cover plate 12 is about 1-3 mm. Of course, the specific thickness of each film layer can be set according to product requirements.
  • FIG. 6 is a schematic diagram of a metal grid structure according to an embodiment of the present disclosure; as shown in FIG. 6 , both the first radiation layer 10 and/or the first reference electrode layer 20 may adopt a metal grid structure.
  • the first radiation layer 10 and the first reference electrode layer 20 both adopt a metal mesh structure as an example for description.
  • the metal grid structure may include a plurality of first metal lines 201 and a plurality of second metal lines 202 arranged crosswise, for example, the extending directions of the first metal lines 201 and the second metal lines 202 may be perpendicular to each other, in this case, a Positive direction or rectangular hollow part.
  • the extension directions of the first metal line 201 and the second metal line 202 of the metal grid may be arranged non-vertically.
  • the angle between the extension directions of the first metal line 201 and the second metal line 202 is 45°.
  • a diamond-shaped hollow portion is formed.
  • the line width, line thickness, and line spacing of the first metal line 201 and the second metal line 202 of the metal grid structure are preferably the same, but of course they may be different.
  • the line width W1 of the first metal line 201 and the second metal line 202 is about 1-30 ⁇ m
  • the line spacing W2 is about 50-250 ⁇ m
  • the line thickness is about 0.5-10 ⁇ m.
  • the metal grid structure can be formed on the first substrate 13 or the second substrate 15 through processes including but not limited to imprinting or etching.
  • the orthographic projections of the hollow portions of the two metal grid structures on the first cover plate 11 overlap or substantially overlap.
  • substantially overlap in the embodiment of the present disclosure means that the width of the intersecting area of the orthographic projection of the hollow portion of the two-layer metal mesh structure is no more than 1 times the line width.
  • the material of the first metal line 201 and the second metal line 202 can be nano-silver paste, and of course, metal materials such as copper can also be used.
  • FIG. 7 is a top view of the first radiation layer 10 according to an embodiment of the present disclosure; as shown in FIG. 7 , the first radiation layer 10 not only includes the above-mentioned radiation portion 101 and feeder lines, but also includes redundant electrodes 106 .
  • the redundant electrode 106, the radiation part 101 and the feeder line are all disconnected.
  • the first radiation layer 10 adopts a metal grid structure, that is, it includes first metal lines 201 and second metal lines 202 arranged crosswise. At this time, the first metal lines and the second metal lines can be formed on the first cover 11. metal wires, and then disconnect the first metal wire 201 at the interface between the redundant electrode 106, the radiation part 101 and the feeder line, and also disconnect the second metal wire 202 at the same time.
  • the radiating part 101 and the redundant electrode 106 can be formed using one patterning process, and can be formed by forming an entire layer of intersecting first metal lines and second metal lines, and then by forming the first metal line 201 and the second metal line.
  • the two metal wires 202 are chopped to form the radiation part 101 and the redundant electrode 106.
  • the width of the disconnection position of the first metal line 201 and the second metal line 202 in the first radiation layer 10 is about 1-30um.
  • the width of the disconnection position can also be adjusted according to the radiation requirements of the antenna. The width is specifically limited.
  • the shape of the radiating part 101 includes, but is not limited to, quadrilateral, hexagonal, octagonal and other centrally symmetrical figures.
  • FIG. 1 it is only an example that the radiating part 101 is a quadrilateral, but it should be understood that this does not constitute a limitation on the scope of protection of the embodiments of the present disclosure.
  • the outline of the radiating portion 101 is a polygon, and each internal angle is greater than 90°.
  • the outline of the radiation part 101 is an octagon, which includes a first side, a second side, a third side, a fourth side, a fifth side, a sixth side, and a seventh side connected in sequence.
  • the extension direction of the first side is the same as the extension direction of the fifth side, and is perpendicular to the extension direction of the third side.
  • the first feeder line 102 and the second feeder line 103 are connected to the second side and the fourth side respectively.
  • the polygon is equivalent to cutting off the four right angles of the square to form flat chamfers. The reason why the flat chamfers are formed is to achieve impedance matching to reduce losses, which can reduce cross components and improve the cross-polarization ratio of the antenna.
  • the shell connection side panel 13 in the embodiment of the present disclosure includes a first sub-side panel connected to the first cover panel 11 and a second sub-side panel connected to the second cover panel 12.
  • the first sub-side panel is connected to the second cover panel 12.
  • the side panel and the second sub-side panel are plugged together.
  • the first sub-side plate and the first cover plate 11 are of an integrated structure
  • the second sub-side plate and the second cover plate 12 are of an integrated structure
  • a groove is provided on the side of the first sub-side plate facing the second sub-side plate. The end of the second sub-side plate facing the groove is inserted into the groove.
  • the connecting side plate 13 and the first cover plate 11 and the second cover plate 12 can also be fixedly connected by screws.
  • the antenna structure shown in Figure 1 is used to illustrate the effect diagram obtained by simulating the antenna.
  • the antenna includes a housing, a first radiation layer 10 and a first reference electrode layer 20 .
  • the first radiation layer 10 and the first reference electrode layer 20 are both arranged in the housing.
  • the housing includes a first cover plate 11 and a second cover plate 12 that are oppositely arranged, are connected between the first cover plate 11 and the second cover plate 12 , and are connected to the first cover plate 11 and the second cover plate 12
  • the connecting side panels 13 form the accommodation space.
  • the first radiation layer 10 is disposed on the side of the first cover plate 11 close to the second cover plate 12
  • the first reference electrode layer 20 is disposed on the side of the second cover plate 12 close to the first cover plate 11 .
  • the first radiating layer 10 includes at least one radiating unit 100 .
  • the radiating unit 100 includes a radiating part 101 and at least one feed line electrically connected to the radiating part 101 .
  • the feed line is configured to feed the radiating part 101 .
  • the orthographic projection of the first reference electrode layer 20 on the first cover plate 11 covers the orthographic projection of the radiation part 101 and the feed line on the first cover plate 11 .
  • the dielectric layer 30 between the first radiation layer 10 and the second reference electrode layer may be an air medium. Both the first radiating layer 10 and the second radiating layer adopt a metal grid structure.
  • Figure 8 is a schematic diagram of the standing wave ratio of the antenna according to the embodiment of the present disclosure. As shown in Figure 8, the antenna according to the embodiment of the present disclosure has excellent broadband characteristics and can cover the 2515MHz-2675MHz frequency band under the standard of less than 1.5 standing wave ratio, ensuring Wider application scenarios of antennas.
  • Figure 9 is a schematic diagram of the isolation of the antenna according to the embodiment of the present disclosure. As shown in Figure 9, the antenna according to the embodiment of the present disclosure can ensure excellent isolation of less than -17.5dB in the 2515MHz-2675MHz frequency band, reducing the signal between each radio frequency port. crosstalk, thereby improving communication quality.
  • Figure 10 is a schematic diagram of the 0-degree plane pattern of the antenna according to the embodiment of the present disclosure; as shown in Figure 10, the 3dB vertical beamwidth of the antenna is 45° ⁇ 5°, and the 3dB horizontal beamwidth is 63° ⁇ 1°.
  • the antenna of the embodiment of the present disclosure has large opening angle characteristics in the radiation horizontal plane and can effectively cover a wider area.
  • Figure 11 is a schematic diagram of a 90-degree plane pattern of an antenna according to an embodiment of the present disclosure; as shown in Figure 11, the 3dB vertical beamwidth of the antenna is 45° ⁇ 5°, and its 3dB horizontal beamwidth is 62° ⁇ 1°.
  • the antenna of the embodiment of the present disclosure has large opening angle characteristics in the radiation horizontal plane and can effectively cover a wider area.
  • Figure 12 is a schematic diagram of the gain of the antenna according to the embodiment of the present disclosure as the frequency changes; as shown in Figure 12, the antenna of the embodiment of the present disclosure can achieve high gain characteristics greater than 7.9dBi, and the gain is greater than 7.99dBi in the 2515MHz-2675MHz frequency band, which is greatly This ensures excellent signal transmitting and receiving capabilities of the antenna of the embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of the cross-polarization ratio of the antenna according to the embodiment of the present disclosure; as shown in FIG. 13 , the antenna according to the embodiment of the present disclosure has excellent cross-polarization ratio characteristics.
  • the axial (0° radiation direction) cross-polarization ratio is greater than 15dB, ensuring that the signals received by dual polarization are independent of each other.
  • an embodiment of the present disclosure provides an electronic device, which may include the above-mentioned antenna, and the antenna may be fixed on the inside of a glass window.
  • the glass window system in the embodiment of the present disclosure can be used in glass window systems of cars, trains (including high-speed rail), aircraft, buildings, etc.
  • the antenna can be fixed on the inside of the glass window (the side closer to the room). Since the optical transmittance of the antenna is high, it has little impact on the transmittance of the glass window while realizing the communication function, and this type of antenna will also become a trend to beautify the antenna.
  • the glass window in the embodiment of the present disclosure includes but is not limited to double-layer glass.
  • the type of glass window can also be single-layer glass, laminated glass, thin glass, thick glass, etc.
  • the electronic device provided by the embodiments of the present disclosure also includes a transceiver unit, a radio frequency transceiver, a signal amplifier, a power amplifier, and a filtering unit.
  • Antennas in electronic devices can be used as transmitting antennas or as receiving antennas.
  • the transceiver unit may include a baseband and a receiving end.
  • the baseband provides signals in at least one frequency band, such as 2G signals, 3G signals, 4G signals, 5G signals, etc., and sends signals in at least one frequency band to the radio frequency transceiver.
  • the transparent antenna in the communication system After the transparent antenna in the communication system receives the signal, it can be processed by the filtering unit, power amplifier, signal amplifier, and radio frequency transceiver (not shown in the figure) and then transmitted to the receiving end in the transceiver unit.
  • the receiving end can be a smart device, for example. Gateway etc.
  • the radio frequency transceiver is connected to the transceiver unit and is used to modulate the signal sent by the transceiver unit, or to demodulate the signal received by the transparent antenna and then transmit it to the transceiver unit.
  • the radio frequency transceiver can include a transmitting circuit, a receiving circuit, a modulating circuit, and a demodulating circuit. After the transmitting circuit receives multiple types of signals provided by the baseband, the modulating circuit can modulate the multiple types of signals provided by the baseband, and then sent to the antenna.
  • the transparent antenna receives the signal and transmits it to the receiving circuit of the radio frequency transceiver.
  • the receiving circuit transmits the signal to the demodulation circuit.
  • the demodulation circuit demodulates the signal and transmits it to the receiving end.
  • the radio frequency transceiver is connected to a signal amplifier and a power amplifier, the signal amplifier and the power amplifier are connected to a filtering unit, and the filtering unit is connected to at least one antenna.
  • the signal amplifier is used to improve the signal-to-noise ratio of the signal output by the radio frequency transceiver and then transmitted to the filtering unit;
  • the power amplifier is used to amplify the power of the signal output by the radio frequency transceiver and then transmits it to the filtering unit;
  • the filter unit may specifically include a duplexer and a filter circuit.
  • the filter unit combines the signals output by the signal amplifier and the power amplifier, filters out clutter, and then transmits the signals to the transparent antenna, and the antenna radiates the signal.
  • the antenna receives the signal and transmits it to the filtering unit.
  • the filtering unit filters out the clutter from the signal received by the antenna and transmits it to the signal amplifier and power amplifier.
  • the signal amplifier gains the signal received by the antenna. Increase the signal-to-noise ratio of the signal; the power amplifier amplifies the power of the signal received by the antenna.
  • the signal received by the antenna is processed by the power amplifier and signal amplifier and then transmitted to the radio frequency transceiver, and then the radio frequency transceiver transmits it to the transceiver unit.
  • the signal amplifier may include multiple types of signal amplifiers, such as low noise amplifiers, which are not limited here.
  • the electronic device provided by embodiments of the present disclosure further includes a power management unit, which is connected to the power amplifier and provides the power amplifier with a voltage for amplifying the signal.

Landscapes

  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)
  • Details Of Aerials (AREA)

Abstract

本公开提供一种天线及电子设备,属于通信技术领域。本公开的天线,其包括壳体,设置在壳体内的第一辐射层和第一参考电极层;其中,所述壳体包括:相对设置的第一盖板和第二盖板,以及连接在第一盖板和第二盖板之间的连接侧板;所述第一盖板、所述第二盖板和所述连接侧板连接形成容置空间;所述第一辐射层设置在所述第一盖板靠近所述第二盖板的一侧,所述第一参考电极层设置在所述第二盖板靠近所述第一盖板的一侧;所述第一辐射层包括至少一个辐射单元,所述辐射单元包括辐射部和与所述辐射部电连接的至少一条馈线;且所述辐射部和所述馈线均与所述第一参考电极层在所述第一盖板上的正投影至少部分重叠。

Description

天线及电子设备 技术领域
本公开属于通信技术领域,具体涉及一种天线及电子设备。
背景技术
随着5G基站数量日益激增的同时,过密的5G基站布局无疑很大程度影响了环境的美化。因此,具备透明美化特性的基站天线成为了一种新方案。同时,小型化作为天线设计的关键需求之一,如何同时解决天线透明化及低剖面问题也成了如今5G基站天线端的一大趋势及课题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线及电子设备。
第一方面,本公开实施例提供一种天线,其包括壳体,设置在壳体内的第一辐射层和第一参考电极层;其中,
所述壳体包括:相对设置的第一盖板和第二盖板,以及连接在第一盖板和第二盖板之间的连接侧板;所述第一盖板、所述第二盖板和所述连接侧板连接形成容置空间;
所述第一辐射层设置在所述第一盖板靠近所述第二盖板的一侧,所述第一参考电极层设置在所述第二盖板靠近所述第一盖板的一侧;
所述第一辐射层包括至少一个辐射单元,所述辐射单元包括辐射部和与所述辐射部电连接的至少一条馈线;且所述辐射部和所述馈线均与所述第一参考电极层在所述第一盖板上的正投影至少部分重叠。
其中,所述辐射单元中的所述馈线包括第一馈线和第二馈线,且所述第一馈线与所述辐射部的连接节点为第一节点,所述第二馈线与所述辐射部的连接节点为第二节点;对于一个所述辐射单元中,所述辐射部的中心与所述第一节点的连线的延伸方向,与所述辐射部的中心与所述第二节点的连线的 延伸方向相交。
其中,所述辐射单元还包括第一分支和第二分支,所述第一分支连接所述第一馈线,所述第二分支连接第二馈线。
其中,所述第一辐射层设置在第一基材上,且所述第一基材通过第一粘结层与所述第一盖板连接。
其中,所述第一参考电极层设置在所述第二基材上,且所述第二基材通过所述第二粘结层与所述第二盖板连接。
其中,所述第一辐射层和/或所述第一参考电极层包括金属网格结构。
其中,当所述第一辐射层和所述第一参考电极层均包括金属网格结构时,二者的金属网格结构的镂空部在所述第一盖板上的正投影重叠。
其中,所述金属网格结构的线宽为2-30μm;线间距为50-200μm;线厚度为1-10μm。
其中,所述第一辐射层还包括冗余电极,且所述冗余电极和所述辐射部、所述馈线均断开设置。
其中,所述连接侧板包括与第一盖板连接的第一子侧板,以及与所述第二盖板连接的第二子侧板,所述第一子侧板和所述第二子侧板插接。
其中,所述辐射部为中心对称图形。
其中,所述第一盖板和所述第二盖板的厚度均在1-3mm。
第二方面,本公开实施例提供一种电子设备,其包括上述任一所述的天线。
附图说明
图1为本公开实施例的天线的结构示意图。
图2为本公开实施例的天线的截面图。
图3为本公开实施例的天线的辐射单元的示意图。
图4为本公开实施例的第一盖板上设置第一辐射层的截面图。
图5为本公开实施例的第二盖板上设置第一参考电极层的截面图。
图6为本公开实施例的金属网格结构的示意图。
图7为本公开实施例的第一辐射层的俯视图。
图8为本公开实施例的天线的驻波比示意图。
图9为本公开实施例的天线的隔离度示意图。
图10为本公开实施例的天线的0度面方向图示意图。
图11为本公开实施例的天线的90度面方向图示意图。
图12为本公开实施例的天线随频率变化的增益示意图。
图13为本公开实施例的天线的交叉极化比示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,图1为本公开实施例的天线的结构示意图;图2为本公开实施例的天线的截面图;图3为本公开实施例的天线的辐射单元100的示意图;如图1-3所示,本公开实施例提供一种天线,该天线包括壳体、第一辐射层10和第一参考电极层20。其中,第一辐射层10和第一参考电极层20均设 置在壳体内。
具体的,壳体包括相对设置的第一盖板11和第二盖板12,以及连接在第一盖板11和第二盖板12之间,且与第一盖板11和第二盖板12连接形成容置空间的连接侧板13。第一辐射层10设置在第一盖板11靠近第二盖板12的一侧,第一参考电极层20设置在第二盖板12靠近第一盖板11的一侧。其中,第一辐射层10包括至少一个辐射单元100,该辐射单元100包括辐射部101和与辐射部101电连接的至少一条馈线,馈线被配置为给辐射部101进行馈电。而且辐射部101和馈线均与第一参考电极层20在第一盖板11上的正投影存在交叠。例如:第一参考电极层20在第一盖板11上的正投影覆盖辐射部101和馈线在第一盖板11上的正投影。在该种情况下,第一辐射层10设置在第一盖板11上,第一参考层设置在第二盖板12上,第一辐射层10和第二参考电极层之间存在一定间隙,也即二者之间的介质层30可以为空气介质。当然,根据需要在壳体内也可以填充惰性气体作为第一辐射层10和第二参考电极层之间的填充介质。
需要说明的是,图1中以一个辐射单元100中包括两条馈线为例,且为了便于描述将两条馈线分别称之为第一馈线102和第二馈线103。当然,对于每个辐射单元100中也可以仅设置一条馈线,通过一条馈线为辐射部101进行馈电。
在本公开实施例中,将天线中的第一辐射层10和第一参考电极层20分别设置在第一盖板11和第二盖板12上,实现了第一辐射层10和第一参考电极层20与壳体的一体化设计,而且该种设置方式可以省略第一辐射层10和第一参考电极层20之前的支撑结构,减少了天线层数,提高了天线的光线透过率。
继续参照图3,每个辐射单元100中的第一馈线102与辐射部101的连接节点为第一节点,第二馈线103与辐射部101的连接节点为第二节点。第一节点与辐射部101的中心的连线为第一线段,第二节点与辐射部101的中心的连线为第二线段,第一线段和第二线段的延伸方向相交。例如:第一线段和第二线段的延伸方向垂直。也就是说,第一馈线102和第二馈线103的 馈电方向不同。当第一线段和第二线段的延伸方向垂直时,该天线则可实现0°/90°或者±45°的极化方向。
当然,本公开实施例的天线中还包括第一馈电结构和第二馈电结构,第一馈电结构和第二馈电结构可以设置在连接侧板13上,第一馈电结构与第一馈线102电连接,例如采用ACF胶(透明光学导电胶)绑定连接。相应的,第二馈电结构与第二馈线103电联,例如采用ACF胶绑定连接。当辐射单元100的数量为多个时,第一馈电结构和第二馈电结构均可以采用功分馈电网络。
在一些示例中,继续参照图3,每个辐射单元100中还包括第一分支104和第二分支105,第一分支104和第二分支105分别与第一馈线102和第二馈线103电连接。之所以设置,第一分支104和第二分支105是为了更好阻抗匹配,以提高辐射单元100的辐射效率。
在一些示例中,图4为本公开实施例的第一盖板11上设置第一辐射层10的截面图;如图4所示,第一辐射层10设置在第一基材13上,第一基材13通过第一粘结层14与第一盖板11连接。其中,第一基材13采用柔性基材,其材料包括但不限于聚酰亚胺(PI)或者聚对苯二甲酸乙二醇酯(PET)材质。第一粘结层14的材料采用透明光学胶,例如:ACF胶。第一盖板11的材料包括但不限于聚碳酸酯塑料(Polycarbonate;PC)、环烯烃聚合物塑料(Copolymers of Cycloolefin;COP)或者亚克力/有机玻璃(Polymethyl Methacrylate;PMMA)等。其中,第一基材13和第一辐射层10的厚和在50-250μm左右。第一盖板11的厚度在1-3mm左右。当然,对于各膜层的具体厚度可以根据产品需求进行具体设定。
在一些示例中,图5为本公开实施例的第二盖板12上设置第一参考电极层20的截面图;如图5所示,第一参考电极层20设置在第二基材15上,第二基材15通过第二粘结层16与第二盖板12连接。其中,第一基材13的材料与第一基材13的材料可以相同,也即,第一基材13的材料同样包括但不限于聚酰亚胺或者聚对苯二甲酸乙二醇酯材质。第二粘结层16的材料与第一粘结层14的材料可以相同,也即第二粘结层16的材料同样可以采用透 明光学胶,例如:ACF胶。第二盖板12的材料与第一盖板11的材料可以相同,也即第二盖板12的材料包括但不限于聚碳酸酯塑料、环烯烃聚合物塑料或者亚克力/有机玻璃等。第二基材15和第一参考电极层20的厚和在50-250μm左右。第二盖板12的厚度在1-3mm左右。当然,对于各膜层的具体厚度可以根据产品需求进行具体设定。
在一些示例中,图6为本公开实施例的金属网格结构的示意图;如图6所示,第一辐射层10和/或第一参考电极层20均可以采用金属网格结构。在本公开实施例中,以第一辐射层10和第一参考电极层20均采用金属网格结构为例进行描述。当金属网格结构可以包括交叉设置的多条第一金属线201和多条第二金属线202,例如:第一金属线201和第二金属线202的延伸方向可以相互垂直,此时则形成正方向或者矩形镂空部。当然,金属网格的第一金属线201和第二金属线202的延伸方向可以非垂直设置,例如:第一金属线201和第二金属线202的延伸方向的夹角为45°,此时则形成菱形镂空部。在一些示例中,金属网格结构的第一金属线201和第二金属线202的线宽、线厚度和线间距优选均相同,当然也可以不相同。例如:第一金属线201和第二金属线202的线宽W1均为1-30μm左右、线间距W2为50-250μm左右;线厚度为0.5-10μm左右。在本公开实施例中金属网格结构可以通过包括但不限于压印或者刻蚀工艺形成第一基材13或者第二基材15上。
进一步的,当当第一辐射层10和所述第一参考电极层20均包括金属网格结构时,二者的金属网格结构的镂空部在第一盖板11上的正投影叠或者大致重叠。需要说明的是,本公开实施例中的大致重叠是指,两层金属网格结构的镂空部正投影的交错区域的宽度不大于1倍的线宽。通过该种设置方式,可以有效的提高天线的光学透过率。在本公开实施例中,所采用的各层金属网格结构的光线透过率在70%-88%左右。
进一步的,第一金属线201和第二金属线202的材料可以采用纳米银浆,当然也可以采用铜等金属材料。
在一些实施例中,图7为本公开实施例的第一辐射层10的俯视图;如 图7所示,该第一辐射层10不仅包括上述辐射部101和馈线,而且还包括冗余电极106。冗余电极106和辐射部101和馈线均断开设置。例如:第一辐射层10采用金属网格结构,也即其包括交叉设置的第一金属线201和第二金属线202,此时可以在第一盖板11上形成第一金属线和第二金属线,之后在冗余电极106和辐射部101和馈线交界位置将第一金属线201断开,同时也将第二金属线202断开。该种情况下,辐射部101和冗余电极106可以采用一次构图工艺形成,而且可以通过形成整层的交叉设置的第一金属线和第二金属线,之后通过对第一金属线201和第二金属线202进行切碎处理形成辐射部101和冗余电极106。在一些示例中,第一辐射层10中的第一金属线201和第二金属线202的断开位置的宽度均在1-30um左右,当然,也可以根据天线的辐射要求对断开位置的宽度进行具体限定。
在一些示例中,辐射部101的形状包括但不限于四边形、六边形、八边形等中心对称图形。图1中仅以辐射部101为四边形为例行,但应该理解这并不构成对本公开实施例保护范围的限制。在一些示例中,辐射部101的轮廓为多边形,且每个内角均大于90°。例如:辐射部101的轮廓为八边形,其包括依次连接第一侧边、第二侧边、第三侧边、第四侧边、第五侧边、第六侧边、第七侧边和第八侧边;第一侧边的延伸方向和第五侧边的延伸方向相同,且与第三侧边的延伸方向垂直。第一馈线102和第二馈线103分别连接在第二侧边和第四侧边上。此时,该多边形相当于将正方形的四个直角切除,形成平倒角,之所以形成平倒角的是为了实现阻抗匹配,以降低损耗,可以减少交叉分量,提高天线的交叉极化比。
在一些示例中,本公开实施例中的壳体连接侧板13包括与第一盖板11连接的第一子侧板,以及与第二盖板12连接的第二子侧板,第一子侧板和第二子侧板插接。例如:第一子侧板和第一盖板11为一体结构,第二子侧板和第二盖板12为一体结构、第一子侧板朝向第二子侧板的侧面设置有凹槽,第二子侧板朝向凹槽的端部与凹槽插接。当然,连接侧板13与第一盖板11和第二盖板12也可以通过螺丝固定连接。
为了更清楚本公开实施例的天线的结构和效果,以图1所示的天线结构 对该天线进行仿真得到的效果图进行说明。
参照图1天线,该天线包括壳体、第一辐射层10和第一参考电极层20。其中,第一辐射层10和第一参考电极层20均设置在壳体内。该壳体包括相对设置的第一盖板11和第二盖板12,以及连接在第一盖板11和第二盖板12之间,且与第一盖板11和第二盖板12连接形成容置空间的连接侧板13。第一辐射层10设置在第一盖板11靠近第二盖板12的一侧,第一参考电极层20设置在第二盖板12靠近第一盖板11的一侧。其中,第一辐射层10包括至少一个辐射单元100,该辐射单元100包括辐射部101和与辐射部101电连接的至少一条馈线,馈线被配置为给辐射部101进行馈电。第一参考电极层20在第一盖板11上的正投影覆盖辐射部101和馈线在第一盖板11上的正投影。第一辐射层10和第二参考电极层之间介质层30可以为空气介质。第一辐射层10和第二辐射层均采用金属网格结构。
图8为本公开实施例的天线的驻波比示意图;如图8所示,本公开实施例天线具备优秀的宽频特性,在驻波比小于1.5的标准下能覆盖2515MHz-2675MHz频段,保证了天线的较广泛的应用场景。
图9为本公开实施例的天线的隔离度示意图;如图9所示,本公开实施例天线在2515MHz-2675MHz频段内能保证小于-17.5dB的优秀隔离度,降低了各射频端口间的信号串扰,从而提高通信质量。
图10为本公开实施例的天线的0度面方向图示意图;如图10所示,该天线3dB垂直波束宽度为45°±5°,3dB水平波束宽度为63°±1°。本公开实施例的天线在辐射水平面具备大张角特性,可以有效覆盖更广的面积。
图11为本公开实施例的天线的90度面方向图示意图;如图11所示,该天线3dB垂直波束宽度为45°±5°,其3dB水平波束宽度为62°±1°。本公开实施例的天线在辐射水平面具备大张角特性,可以有效覆盖更广的面积。
图12为本公开实施例的天线随频率变化的增益示意图;如图12所示,本公开实施例的天线可实现大于7.9dBi的高增益特性,在2515MHz-2675MHz频段内增益大于7.99dBi,大大保证了本公开实施例的天 线优秀的信号收发能力。
图13为本公开实施例的天线的交叉极化比示意图;如图13所示,本公开实施例的天线具备优秀的交叉极化比特性。轴向(0°辐射方向)交叉极化比大于15dB,保证了双极化接收到的信号互不相关。
第二方面,本公开实施例中提供一种电子设备,其可以包括上述的天线,该天线可以固定在玻璃窗的内侧。
本公开实施例中的玻璃窗系统可用于汽车、火车(包括高铁)、飞机、建筑物等的玻璃窗系统中。该天线可以固定在玻璃窗的内侧(靠近室内的一侧)。由于天线的光学透过率较高,故其在实现通信功能是同时对玻璃窗的透过率影响并不大,且该种天线也将成为一种美化天线的趋势。其中,本公开实施例中的玻璃窗包括但不限于双层玻璃,玻璃窗的类型还可以是单层玻璃、夹层玻璃、薄玻璃及厚玻璃等。
在一些示例中,本公开实施例提供的电子设备还包括收发单元、射频收发机、信号放大器、功率放大器、滤波单元。电子设备中的天线可以作为发送天线,也可以作为接收天线。其中,收发单元可以包括基带和接收端,基带提供至少一个频段的信号,例如提供2G信号、3G信号、4G信号、5G信号等,并将至少一个频段的信号发送给射频收发机。而通信系统中的透明天线接收到信号后,可以经过滤波单元、功率放大器、信号放大器、射频收发机(图中未示)的处理后传输给收发单元中的接收端,接收端例如可以为智慧网关等。
进一步地,射频收发机与收发单元相连,用于调制收发单元发送的信号,或用于解调透明天线接收的信号后传输给收发单元。具体地,射频收发机可以包括发射电路、接收电路、调制电路、解调电路,发射电路接收基底提供的多种类型的信号后,调制电路可以对基带提供的多种类型的信号进行调制,再发送给天线。而透明天线接收信号传输给射频收发机的接收电路,接收电路将信号传输给解调电路,解调电路对信号进行解调后传输给接收端。
进一步地,射频收发机连接信号放大器和功率放大器,信号放大器和功 率放大器再连接滤波单元,滤波单元连接至少一个天线。在通信系统进行发送信号的过程中,信号放大器用于提高射频收发机输出的信号的信噪比后传输给滤波单元;功率放大器用于放大射频收发机输出的信号的功率后传输给滤波单元;滤波单元具体可以包括双工器和滤波电路,滤波单元将信号放大器和功率放大器输出的信号进行合路且滤除杂波后传输给透明天线,天线将信号辐射出去。在通信系统进行接收信号的过程中,天线接收到信号后传输给滤波单元,滤波单元将天线接收的信号滤除杂波后传输给信号放大器和功率放大器,信号放大器将天线接收的信号进行增益,增加信号的信噪比;功率放大器将天线接收的信号的功率放大。天线接收的信号经过功率放大器、信号放大器处理后传输给射频收发机,射频收发机再传输给收发单元。
在一些示例中,信号放大器可以包括多种类型的信号放大器,例如低噪声放大器,在此不做限制。
在一些示例中,本公开实施例提供的电子设备还包括电源管理单元,电源管理单元连接功率放大器,为功率放大器提供用于放大信号的电压。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种天线,其包括壳体,设置在壳体内的第一辐射层和第一参考电极层;其中,
    所述壳体包括:相对设置的第一盖板和第二盖板,以及连接在第一盖板和第二盖板之间的连接侧板;所述第一盖板、所述第二盖板和所述连接侧板连接形成容置空间;
    所述第一辐射层设置在所述第一盖板靠近所述第二盖板的一侧,所述第一参考电极层设置在所述第二盖板靠近所述第一盖板的一侧;
    所述第一辐射层包括至少一个辐射单元,所述辐射单元包括辐射部和与所述辐射部电连接的至少一条馈线;且所述辐射部和所述馈线均与所述第一参考电极层在所述第一盖板上的正投影至少部分重叠。
  2. 根据权利要求1所述的天线,其中,所述辐射单元中的所述馈线包括第一馈线和第二馈线,且所述第一馈线与所述辐射部的连接节点为第一节点,所述第二馈线与所述辐射部的连接节点为第二节点;对于一个所述辐射单元中,所述辐射部的中心与所述第一节点的连线的延伸方向,与所述辐射部的中心与所述第二节点的连线的延伸方向相交。
  3. 根据权利要求2所述的天线,其中,所述辐射单元还包括第一分支和第二分支,所述第一分支连接所述第一馈线,所述第二分支连接第二馈线。
  4. 根据权利要求1-3中任一项所述的天线,其中,所述第一辐射层设置在第一基材上,且所述第一基材通过第一粘结层与所述第一盖板连接。
  5. 根据权利要求1-3中任一项所述的天线,其中,所述第一参考电极层设置在所述第二基材上,且所述第二基材通过所述第二粘结层与所述第二盖板连接。
  6. 根据权利要求1-5中任一项所述的天线,其中,所述第一辐射层和/或所述第一参考电极层包括金属网格结构。
  7. 根据权利要求6所述的天线,其中,当所述第一辐射层和所述第一参考电极层均包括金属网格结构时,二者的金属网格结构的镂空部在所述第 一盖板上的正投影重叠。
  8. 根据权利要求6所述的天线,其中,所述金属网格结构的线宽为2-30μm;线间距为50-200μm;线厚度为1-10μm。
  9. 根据权利要求1-8中任一项所述的天线,其中,所述第一辐射层还包括冗余电极,且所述冗余电极和所述辐射部、所述馈线均断开设置。
  10. 根据权利要求1-8中任一项所述的天线,其中,所述连接侧板包括与第一盖板连接的第一子侧板,以及与所述第二盖板连接的第二子侧板,所述第一子侧板和所述第二子侧板插接。
  11. 根据权利要求1-8中任一项所述的天线,其中,所述辐射部为中心对称图形。
  12. 根据权利要求1-8中任一项所述的天线,其中,所述第一盖板和所述第二盖板的厚度均在1-3mm。
  13. 一种电子设备,其包括权利要求1-12中任一项所述的天线。
PCT/CN2022/088881 2022-04-25 2022-04-25 天线及电子设备 WO2023205985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088881 WO2023205985A1 (zh) 2022-04-25 2022-04-25 天线及电子设备
CN202280000873.5A CN117296203A (zh) 2022-04-25 2022-04-25 天线及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088881 WO2023205985A1 (zh) 2022-04-25 2022-04-25 天线及电子设备

Publications (1)

Publication Number Publication Date
WO2023205985A1 true WO2023205985A1 (zh) 2023-11-02

Family

ID=88516668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088881 WO2023205985A1 (zh) 2022-04-25 2022-04-25 天线及电子设备

Country Status (2)

Country Link
CN (1) CN117296203A (zh)
WO (1) WO2023205985A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183788A1 (en) * 2003-01-30 2004-09-23 Fujitsu Component Limited Touch panel, and input device and electronic apparatus each equipped with the touch panel
CN106354007A (zh) * 2015-07-16 2017-01-25 卡西欧计算机株式会社 天线以及钟表
CN110365422A (zh) * 2018-04-04 2019-10-22 京东方科技集团股份有限公司 一种信号处理装置及其制备方法
WO2021164038A1 (zh) * 2020-02-22 2021-08-26 华为技术有限公司 毫米波封装天线及终端设备
CN216055157U (zh) * 2021-07-20 2022-03-15 京东方科技集团股份有限公司 天线及通讯系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183788A1 (en) * 2003-01-30 2004-09-23 Fujitsu Component Limited Touch panel, and input device and electronic apparatus each equipped with the touch panel
CN106354007A (zh) * 2015-07-16 2017-01-25 卡西欧计算机株式会社 天线以及钟表
CN110365422A (zh) * 2018-04-04 2019-10-22 京东方科技集团股份有限公司 一种信号处理装置及其制备方法
WO2021164038A1 (zh) * 2020-02-22 2021-08-26 华为技术有限公司 毫米波封装天线及终端设备
CN216055157U (zh) * 2021-07-20 2022-03-15 京东方科技集团股份有限公司 天线及通讯系统

Also Published As

Publication number Publication date
CN117296203A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN110061349B (zh) 一种基于正交模式对的宽带5g mimo手机天线
CN102694237B (zh) 一种双极化天线单元及基站天线
WO2020135524A1 (zh) 高频辐射体、多频阵列天线和基站
CN106299668B (zh) 一种差分馈电宽带双极化平面基站天线
CN106711595A (zh) 一种低剖面的c波段双极化多层微带贴片天线单元
CN109830802A (zh) 一种毫米波双极化贴片天线
US20190053379A1 (en) Flexible circuit board
WO2020233518A1 (zh) 天线单元和电子设备
CN209217203U (zh) 一种毫米波双极化贴片天线
WO2022088714A1 (zh) 天线及通信系统
WO2023205985A1 (zh) 天线及电子设备
WO2021083222A1 (zh) 天线单元及电子设备
WO2023283756A1 (zh) 透明天线及通信系统
WO2023216217A1 (zh) 天线及电子设备
WO2021000138A1 (zh) 辐射体、天线和基站
CN215933813U (zh) 天线装置及智能电视机
CN107394391A (zh) 一种宽带方向图分集贴片天线
WO2010037277A1 (zh) 一种功分网络装置
WO2023123297A1 (zh) 透明天线及通信设备
WO2023184087A1 (zh) 天线及电子设备
CN104681970B (zh) 一种多层陶瓷天线及采用该陶瓷天线的陶瓷pifa天线和其适用的cpw板
WO2023206314A1 (zh) 天线及电子设备
WO2022252170A1 (zh) 天线及其制备方法、通信系统
CN103531903A (zh) 一种小型化多频北斗天线
WO2023137740A1 (zh) 天线及通信系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000873.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938844

Country of ref document: EP

Kind code of ref document: A1