WO2022088714A1 - 天线及通信系统 - Google Patents

天线及通信系统 Download PDF

Info

Publication number
WO2022088714A1
WO2022088714A1 PCT/CN2021/102350 CN2021102350W WO2022088714A1 WO 2022088714 A1 WO2022088714 A1 WO 2022088714A1 CN 2021102350 W CN2021102350 W CN 2021102350W WO 2022088714 A1 WO2022088714 A1 WO 2022088714A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
radiation unit
unit
radiation
antenna
Prior art date
Application number
PCT/CN2021/102350
Other languages
English (en)
French (fr)
Inventor
冯春楠
张志锋
李勇
张昊阳
车春城
杜景军
王甲强
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/772,841 priority Critical patent/US20240162616A1/en
Priority to CN202180001656.3A priority patent/CN114698405A/zh
Priority to EP21884455.3A priority patent/EP4187716A1/en
Publication of WO2022088714A1 publication Critical patent/WO2022088714A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the invention belongs to the field of communication, and in particular relates to an antenna and a communication system.
  • the antenna usually includes a first substrate, the first substrate includes a first substrate, a first radiating element disposed on one side of the first substrate, and a feeding structure disposed on the same layer as the first radiating element and electrically connected to the first radiating element, the first A reference electrode layer is provided on the side of the substrate away from the first radiating element and the feeding structure.
  • the radio frequency signal is input into the feeding structure, and then transmitted to the first radiating element through the feeding structure. Since the radiation area of the first radiating element is small, so Radiation efficiency is low.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides an antenna capable of improving radiation efficiency.
  • an embodiment of the present disclosure provides an antenna, including: a first substrate;
  • the first substrate includes:
  • At least one first radiation unit disposed on one side of the first substrate
  • a first electrode layer disposed on a side of the first substrate away from the at least one first radiation unit
  • At least one second radiation unit disposed on the side of the at least one first radiation unit away from the first electrode layer;
  • the orthographic projection of at least one of the first radiation units on the first substrate is located within the orthographic projection of the first electrode layer on the first substrate.
  • the radio frequency signal is radiated by the cooperation of the first radiation unit and the second radiation unit. Compared with the antenna provided only with the first radiation unit , which effectively increases the headroom of the antenna, thus improving the radiation efficiency.
  • it further includes: a second electrode layer, which is disposed in the same layer as at least one of the first radiation units, and the orthographic projection of at least one of the first radiation units on the first substrate is the same as that of all the first radiation units.
  • the orthographic projections of the second electrode layer on the first substrate do not overlap.
  • the first substrate includes a first side extending along a first direction;
  • the second electrode layer includes at least one second sub-electrode; one of the second sub-electrodes is disposed on one of the a side of the first radiation unit close to the first side;
  • each of at least one of the second sub-electrodes includes a first structure and a second structure; the first structure extends in the first direction, and the second structure extends in the second direction;
  • the first direction intersects the second direction.
  • the second structure is connected to a midpoint of the first structure in the first direction, and the first direction is perpendicular to the second direction; wherein the first structure The width of a structure is smaller than the width of the second structure.
  • it further includes: a first feeding unit, disposed on the same layer as at least one of the first radiating units; the first feeding unit includes a plurality of first feeding lines, at least one of the first radiating units The feeder is electrically connected to one of the first radiating elements.
  • every two of the first feed lines are electrically connected to one of the first radiation units, and for each of the first radiation units, one of the second sub-electrodes is disposed between one of the first radiation units and one of the first radiation units.
  • the unit is electrically connected between the two first feed lines to isolate signals between the two first feed lines.
  • it further includes: a third electrode layer, which is disposed in the same layer as at least one of the second radiation units, and the orthographic projection of at least one of the second radiation units on the first substrate is the same as that of all the second radiation units.
  • the orthographic projections of the third electrode layer on the first substrate do not overlap.
  • the first substrate further includes a second side extending along the first direction; the orthographic projection of the third electrode layer on the first substrate is located on the first substrate close to the first substrate. one of the two sides;
  • the third electrode layer includes a main structure and a first extension structure and a second extension structure respectively connected on both sides of the main structure, the main structure extends along the first direction, the first extension structure and the The second extension structures all extend along a second direction; wherein, the first direction and the second direction intersect.
  • first direction and the second direction are perpendicular; the length of the main structure in the first direction is less than or equal to the length of the second side.
  • it further includes: a first feeding unit, which is disposed on the same layer as at least one of the first radiating units; the first feeding unit includes a plurality of first feeding lines, each of which is two of the first radiating units.
  • the feeder is electrically connected to one of the first radiating elements.
  • each of the first radiating units is a center-symmetrical figure with a center of symmetry; for each of the first radiating units, one of the two first feed lines is connected to the The connection position of the first radiation unit is called the first connection point, and the connection position of the other one with the first radiation unit is called the second connection point;
  • the extension direction of the line connecting the first connection point and the symmetry center intersects with the extension direction of the line connecting the second connection point and the symmetry center.
  • the extension direction of the line connecting the first connection point and the symmetry center is the same as the second connection point and the symmetry center.
  • the extension direction of the connection line is perpendicular.
  • it further includes: a second substrate; the second substrate includes a second substrate, and a second feeding unit disposed on one side of the second substrate, the second feeding unit is connected to The first feeding unit is electrically connected.
  • the second substrate is provided integrally with the first substrate, and the second feed unit is provided in the same layer as at least one of the first radiation units.
  • At least one of the first radiation units adopts a grid structure; wherein, the unit area of the orthographic projection of the second feed unit on the second substrate is larger than that of the first radiation unit where the first radiation unit is located. The unit area of the orthographic projection on the first substrate.
  • the second feeding unit includes a first feeding unit and a second feeding unit, and the first feeding unit and the second feeding unit each include a first port and at least one a second port;
  • one of the two first feed lines that are electrically connected to the first radiating element is electrically connected to one of the second ports of one of the first sub-feeding elements, and Different first feeders are connected to the second ports of different first feeder units; the other of the two first feeders electrically connected to the first radiating unit is connected to one of the second feeders One of the second ports of the electronic unit is electrically connected, and different first feed lines are connected to the second ports of different second feed units.
  • the area of each of at least one of the first radiating elements is larger than the area of each of at least one of the second radiating elements, and each of the second radiating elements is located in an orthographic projection thereof
  • the overlapping first radiation elements are in an orthographic projection on the first substrate.
  • each of at least one of the first radiating elements has an area smaller than an area of each of at least one of the second radiating elements, and each of the first radiating elements is located in an orthographic projection thereof The overlapping second radiating elements are in an orthographic projection on the first substrate.
  • At least one of at least one of the first radiation units, at least one of the second radiation units, and the first electrode layer adopts a grid structure.
  • At least one of the first radiation units and at least one of the second radiation units adopt a grid structure; wherein, the metal wires constituting the grid structure are located between the first radiation unit and/or the first radiation unit. Or the edge positions of the second radiation unit are not connected to each other; or, the metal wires forming the grid structure are short-circuited to each other at the edge positions of the first radiation unit and/or the second radiation unit.
  • At least one of the first radiation units, at least one of the second radiation units, and the first electrode layer all adopt a grid structure; the hollow parts of the grid structure of each layer are on the first substrate The projections on are roughly overlapping.
  • a ratio of an area of an orthographic projection of one of the first radiation units on the first substrate to an area of an orthographic projection of one of the second radiation units on the first substrate is 0.45 :1 ⁇ 1.54:1.
  • it further includes: a third substrate disposed on a side of the first substrate away from the first electrode layer; the third substrate includes a third base; wherein the at least one second substrate The radiation unit is arranged on one side of the third substrate.
  • it further includes: a fourth substrate disposed on a side of the first substrate away from at least one of the first radiation units; the fourth substrate includes a fourth base; wherein the first substrate The electrode layer is disposed on a side of the fourth substrate close to the first substrate.
  • the first substrate further includes: a first metal mesh layer disposed on a side of the first substrate away from the first electrode layer; the first metal mesh layer includes the at least one of the first radiation units; wherein, the first metal mesh layer has at least one first opening, and one of the first openings divides one of the first radiation units.
  • it further includes: a third substrate disposed on a side of the first substrate away from the first electrode layer; the third substrate includes a third base and a second metal mesh layer, the The second metal mesh layer is disposed on the side of the third base away from the first base; the second metal mesh layer includes the at least one second radiation unit; wherein the second The metal layer has at least one second opening, and one of the second openings divides one of the second radiation units.
  • At least one first groove is provided on the side of the first substrate away from at least one of the first radiation units, and an orthographic projection of the first groove on the first substrate, Covering an orthographic projection of the first radiation element on the first substrate.
  • it further includes: a first feeding unit, which is disposed on the same layer as at least one of the first radiating units; the first feeding unit includes a plurality of first feed lines, and every two first feed lines are connected to each other. one of the first radiation units; wherein,
  • the orthographic projection of one of the first grooves on the first substrate covers the orthographic projection of the two first feed lines connected to one first radiating element on the first substrate.
  • the ratio of the area of the orthographic projection of the first groove on the first substrate to the area of the orthographic projection of the first radiating element on the first substrate is 5 :1 ⁇ 2:1;
  • An axis of symmetry of the first radiation unit in the first direction substantially coincides with the axis of symmetry of the first groove in the first direction overlapping with the orthographic projection of the first radiation unit on the first substrate.
  • the second substrate divides the first substrate into a first region and a second region along a length direction of the first substrate
  • the width of the first region in the direction perpendicular to the length direction of the first substrate is smaller than the width of the second region in the direction perpendicular to the length direction of the first substrate.
  • it further includes: a third substrate disposed on a side of the first substrate away from the first electrode layer; the third substrate includes a third base and is disposed obliquely on the third base an edge enclosure; wherein the at least one second radiation unit is disposed on a side of the third substrate away from the at least one first radiation unit;
  • It also includes: a fourth substrate disposed on a side of the first substrate away from at least one of the first radiation units; the fourth substrate includes a fourth base; wherein the first electrode layer is disposed on the first substrate The four bases are close to one side of the first substrate;
  • the second base, the part of the third base corresponding to the first area, the enclosure on the side closest to the second base, and the part of the third base corresponding to the first area define an accommodating space .
  • an embodiment of the present disclosure provides a communication system, which includes the above-mentioned antenna.
  • FIG. 1 is a schematic structural diagram of an antenna provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram (top view) of an antenna provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram (side view) of an antenna provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a bottom plate of an antenna according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a substrate of an antenna provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an isolation structure of an antenna according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a top plate of an antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram (top view) of a top plate of an antenna according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a first circuit board of an antenna according to an embodiment of the present disclosure.
  • FIG. 10a is a cross-sectional view taken along the direction G1-G2 in FIG. 9 .
  • FIG. 10b is a top view of the first metal mesh layer of the antenna provided by the embodiment of the present disclosure.
  • FIG. 10c is a top view of the second metal mesh layer of the antenna provided by the embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of beam directions of two polarization directions of an antenna according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of standing wave ratios of two polarization directions of an antenna according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an isolation degree of an antenna provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of cross-polarization ratios in different directions of an antenna according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a coaxial line of an antenna provided by an embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 17 is a top view (first substrate) of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 18 is a top view (third substrate) of an embodiment of an antenna provided by an embodiment of the present disclosure.
  • FIG. 19 is a top view (first substrate) of another embodiment of the antenna provided by the embodiment of the present disclosure.
  • FIG. 20 is a top view (third substrate) of another embodiment of the antenna provided by the embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of an embodiment of an antenna supporting frame according to an embodiment of the present disclosure.
  • FIG. 22 is a top view of an embodiment of a support frame for an antenna provided by an embodiment of the present disclosure.
  • FIG. 23 is a side view of an embodiment of a support frame for an antenna according to an embodiment of the present disclosure.
  • FIG. 24 is a top view of an embodiment of an antenna provided by an embodiment of the present disclosure (the openings are arranged on the opposite side).
  • FIG. 25 is a schematic structural diagram of another embodiment of a support frame for an antenna provided by an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of an embodiment of a first connector of an antenna provided by an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of an embodiment of a first fixing plate of an antenna according to an embodiment of the present disclosure.
  • FIG. 28 is one of the schematic diagrams of the connection of the first connector of the antenna, the first fixing plate, and the support frame according to an embodiment of the present disclosure.
  • FIG. 29 is the second schematic diagram of the connection between the first connector of the antenna, the first fixing plate and the support frame according to the embodiment of the present disclosure.
  • FIG. 30 is the third schematic diagram of connection of the first connector of the antenna, the first fixing plate and the support frame according to the embodiment of the present disclosure.
  • FIG. 31 is the fourth schematic diagram of connection of the first connector of the antenna, the first fixing plate and the support frame according to the embodiment of the present disclosure.
  • FIG. 32 is a side view of an embodiment of a dielectric substrate of an antenna provided by an embodiment of the present disclosure.
  • FIG. 33 is a top view of an embodiment of a dielectric substrate of an antenna provided by an embodiment of the present disclosure.
  • FIG. 34 is a top view of another embodiment of a dielectric substrate of an antenna provided by an embodiment of the present disclosure.
  • FIG. 35 is a schematic structural diagram of an embodiment in which the first radiation unit of the antenna according to an embodiment of the present disclosure adopts a grid structure.
  • FIG. 36 is a schematic structural diagram of another embodiment in which the first radiation unit of the antenna according to the embodiment of the present disclosure adopts a grid structure.
  • FIG. 37 is a system architecture diagram of an embodiment of an antenna system provided by an embodiment of the present disclosure.
  • the shape of the antenna is not limited, for example, it may be a rectangle, a circle, a hexagon, etc., of course, other shapes are also possible, and the following will take the antenna as a rectangle as an example for description.
  • the antenna is rectangular, circular, hexagonal, etc.
  • the first substrate is a rectangular, circular, hexagonal, etc. suitable for the antenna, and the following descriptions are made by taking a rectangular first substrate as an example.
  • the first substrate has opposite first and second sides, and opposite third and fourth sides, wherein the first and second sides are The sides all extend along the first direction S1, the third side and the fourth extend along the second manner S2, wherein the first direction S1 is the length direction of the long side of the first substrate, and the second direction S2 is the first direction S2.
  • the length direction of the short side of the substrate, the first direction S1 and the second direction S2 intersect, and the specific angle can be changed according to the shape of the first substrate.
  • the first direction S1 and the second direction S2 is perpendicular, and the following descriptions are given by taking an example that the first direction S1 and the second direction S2 are perpendicular to each other.
  • Embodiments of the present disclosure are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on manufacturing processes.
  • the regions illustrated in the figures have schematic properties and the shapes of regions illustrated in the figures are illustrative of the specific shapes of regions of elements and are not intended to be limiting.
  • Embodiments of the present disclosure provide an antenna including a first substrate, the first substrate including a first substrate, one or more first radiating elements disposed on one side of the first substrate, and one or more first radiating elements disposed on the first substrate away from a first electrode layer on one side of the first radiation unit.
  • the antenna further includes one or more second radiating elements, and the one or more second radiating elements are arranged on a side of the one or more first radiating elements away from the first electrode layer.
  • an orthographic projection of a second radiation unit and a first radiation unit on the first substrate at least partially overlaps.
  • the first radiation unit and the second radiation unit may be in a one-to-one correspondence, that is, a second radiation unit and an orthographic projection of a first radiation unit on the first substrate at least partially overlap, and different second radiation units
  • the orthographic projection on the first substrate at least partially overlaps the orthographic projection of the different first radiation units on the first substrate.
  • the orthographic projection of the at least one first radiation unit on the first substrate is located within the orthographic projection of the first electrode layer on the first substrate.
  • the first electrode layer is the electrode layer used to provide the reference voltage.
  • the first electrode layer includes the first reference electrode layer 1012.
  • FIG. 16- In the embodiment of the antenna shown in FIG.
  • the first electrode layer includes the reference electrode layer 23 . Since the first radiation unit and the second radiation unit are provided, the radio frequency signal is radiated by the cooperation of the first radiation unit and the second radiation unit. Compared with the antenna with only the first radiation unit, the clearance height of the antenna is effectively increased. , thus improving the radiation efficiency.
  • an embodiment of the present disclosure provides an antenna.
  • the antenna may include a first substrate 102 , the first substrate 102 includes a first base 21 , and at least one side of the first base 21 is provided with at least one The first radiation unit 12 .
  • the first electrode layer includes a first reference electrode layer 1021 , and the first reference electrode layer 1021 is disposed on a side of the first substrate 21 away from the first radiation unit 12 .
  • the antenna may further include a fourth substrate 101 and a third substrate 103 opposite to the box, the first substrate 102 is disposed on the fourth substrate 101 and the third substrate 103 , and may also include an inclined configuration on the first substrate 102 the second substrate 104 .
  • the fourth substrate 101 includes a fourth base 11 , at least one side plate 1011 and a first reference electrode layer 1012 .
  • at least one side plate 1011 is connected in the length direction of the fourth base 11 (for example, shown in the first direction S1 in the figure), and the side plate 1011 and the fourth base 11 have a certain angle, and the range of the angle can be in the range of (0°, 180°), in the following embodiments, the side plate 1011 and the fourth base 11 are perpendicular to each other (the included angle is 90°) as an example for description.
  • the first reference electrode layer 1012 is disposed on the side of the fourth base 11 close to the first substrate 102 .
  • the first substrate 102 is disposed on the fourth substrate 11 of the fourth substrate 101 , and the first substrate 102 includes the first substrate 21 , at least one first radiating element 12 and at least one first feeder 1021 .
  • the first base 21 is disposed on the side of the fourth base 11 close to the third substrate 103 , and one side portion 21 a of the first base 21 along the length direction (for example, shown in the first direction S1 in the figure) and the fourth base One side plate 1011 of 101 abuts against each other.
  • the at least one first radiation unit 12 is disposed on the side of the first substrate 21 facing away from the fourth substrate 101 , and the at least one first radiation unit 12 and the orthographic projection of the first reference electrode layer 1012 on the first substrate 21 at least partially overlap.
  • the antenna further includes a first feeding unit, and the first feeding unit is disposed on the same layer as the at least one first radiating unit 12 , and the first feeding unit may include a plurality of first feeding lines 1021 , wherein at least one first feeding unit 1021 A feeder 1021 is electrically connected to one first radiating element 12.
  • a feeder 1021 is electrically connected to one first radiating element 12.
  • every two first feeders 1021 is electrically connected to one first radiating element 12.
  • one first feeder 1021 can also be electrically connected to one The first radiating unit 12 is electrically connected, or four first feeding lines 1021 may be electrically connected to one first radiating unit 12, etc., which is not limited here.
  • every two first feeding lines 1021 and one The electrical connection of a radiation unit 12 is described as an example.
  • the first end of each first feed line 1021 is connected to a first radiation element 12
  • the second end of the first feed line 1021 extends to the edge of the first substrate 21 , that is, the edge of the first substrate 21 is close to the side of the first substrate 21 .
  • the edge of the side portion 21a where the plates 1011 abut against, in the antenna of the embodiment of the present disclosure, the first feeder lines 1021 are all drawn out toward the same side (close to the edge of the side portion 21a), so the feeder for the access signal can be set on only one side. electrical structure.
  • the antenna further includes a plurality of impedance matching structures 6 , and the impedance matching structures 6 are electrically connected to the first feeding unit for matching the first feeding unit and the second feeding unit.
  • the impedance matching structures 6 are in one-to-one correspondence with the first feeders, and each first feeder is connected with one impedance matching structure 6 .
  • the fourth substrate 101 including two side plates 1011, namely the first side plate 1011a and the second side plate 1011b as an example.
  • the first side plate 1011a and the second side plate 1011b are The longitudinal directions of the four bases 11 are disposed on opposite sides, wherein, for the convenience of description, the following description is given by taking the side portion 21 a of the first base 21 of the first substrate 102 abutting against the first side plate 1011 a as an example.
  • the antenna may further include a second substrate 104 , the second substrate 104 includes a second substrate 1041 , and a second feeding unit 1042 disposed on one side of the second substrate 1041 .
  • the second feeding unit 1042 is electrically connected to the first feeding unit, and feeds the first radiating unit 12 through the first feeding unit.
  • the second substrate 1041 and the first substrate 102 are disposed obliquely, that is, there is a certain angle between the second substrate 1041 and the first substrate 102 , and the second substrate 1041 is arranged on the side of the side portion 21a of the first substrate 102, the second feeding unit 1042 is arranged on the side of the second substrate 1041 away from the side portion 21a, and the first feeding unit (specifically, feed the first feeder).
  • the second substrate 1041 is integrally provided with the first substrate 21 , that is, the second feeding unit 1042 is on the same layer as the first feeding unit
  • the second feeder unit 1042 and the first radiation unit 12 are arranged on the same layer.
  • the antenna of the embodiment of the present disclosure further includes a second substrate 104 .
  • 104 is provided on the side of the first side plate 1011a facing away from the side portion 21a of the first substrate 21 .
  • the second substrate 104 includes a second base 1041 , at least one second feeding unit 1042 and a second reference electrode layer 1043 .
  • At least one second feeding unit 1042 is disposed on the side of the second base 1041 facing away from the side portion 21a of the first base 21, and the at least one second feeding unit 1042 is configured to feed the first radiating element through at least one first feeding line 1021 12 for feeding, for example, the second feeding unit 1042 includes a first port and at least one second port, and a second port of the second feeding unit 1042 is electrically connected to a first radiating unit 12 through a first feeding line 1021. connect.
  • the second reference electrode layer 1043 is disposed on the side of the second substrate 1041 close to the side portion 21 a of the first substrate 21 , and the orthographic projection of the second reference electrode layer 1043 on the second substrate 1041 covers at least one second feeding unit 1042 Orthographic projection on the second substrate 1041 .
  • the second substrate 104 including the second feeding unit 1042 is disposed on the first side plate 1011 a, and the first feeding line 1021 connected to the first radiating unit 12 faces the same side of the first substrate 21 . Therefore, the second feeding unit 1042 can be prevented from occupying the plane wiring space, and the transmission ports (such as the first port and the second port) of the feeding structure can be prevented from being coupled due to being too close to cause signal interference.
  • One side of 21 is connected to a radio frequency signal, which simplifies the manufacturing process.
  • At least one first radiating unit 12 adopts a grid structure; wherein the second feeding unit 1042 is in the The unit area of the orthographic projection on the second substrate 1041 is larger than the unit area of the orthographic projection of the first radiation unit 12 on the first substrate 21 . That is, the second feeding unit 1042 on the second substrate 1041 can use a whole layer to form a metal wire structure, and the metal wire structure may not be provided with a hollow part (ie, no metal mesh), so as to ensure the stability of the feeding and the The carrying power of the second feeding unit 1042 is increased.
  • the third substrate 103 includes a third base 1031 and at least one second radiation unit 22 .
  • at least one second radiation unit 22 is located on one side of the third substrate 1031 and is opposite to the first radiation unit 12.
  • at least one second radiation unit 22 is arranged on the third substrate 1031 close to the first radiation unit 12.
  • On one side of the substrate 102 in some embodiments, at least one second radiation unit 22 is disposed on the side of the third substrate 1031 away from the first substrate 102, which is not limited herein.
  • the orthographic projections of a second radiation unit 22 and a first radiation unit 12 on the third substrate 1031 at least partially overlap, and the orthographic projections of different second radiation units 22 and different first radiation units 12 on the third substrate 1031 The projections overlap at least partially.
  • the antenna in the embodiment of the present disclosure may be a receiving antenna or a transmitting antenna, and may transmit signals and receive signals at the same time.
  • the number of the first radiation unit 12 and the second radiation unit 22 included in the antenna disclosed in this embodiment may be N, where N is any integer greater than 0.
  • the numbers of the first radiation units 12 and the second radiation units 22 may be different, as long as one second radiation unit 22 is provided corresponding to one first radiation unit 12 .
  • the first substrate 21 is provided with four first radiation units 1212 at intervals along the first direction S1
  • the third substrate 1031 is provided with four second radiation units 22 at intervals along the first direction as an example The present invention is described, but is not limited to the present invention.
  • first reference electrode layer 1012 and the second reference electrode layer 1043 include but are not limited to ground electrode layers. In the embodiment of the present disclosure, the first reference electrode layer 1012 and the second reference electrode layer 1043 are both grounded The electrode layer will be described as an example.
  • the first direction S1 is the length direction of the long sides of the fourth substrate 11, the first substrate 21, and the third substrate 1031
  • the second direction S2 is the fourth substrate 11, the first substrate 21,
  • the length direction of the short side of the third substrate 1031, and the first direction S1 and the second direction S2 have a certain angle, and the following descriptions are given by taking the first direction S1 and the second direction S2 being perpendicular as an example.
  • the first port of the second feeding unit 1042 receives the radio frequency signal, and the second feeding unit 1042 divides the radio frequency signal into a plurality of sub-signals, and each sub-signal is output from a second port to the second port
  • the connected first feeder 1021 is then output by the first feeder 1021 to the connected first radiating element 12, and the first radiating element 12 feeds the sub-signal to the second radiating element 22 facing it;
  • the first radiation unit 12 then transmits the radio frequency signal through the radio frequency signal.
  • the first feeder 1021 connected to the first radiation unit 12 is transmitted to the second port of the second feeder unit 1042, and the second port transmits the radio frequency signal to the first port.
  • the antenna provided in the embodiment of the present disclosure since the first radiation unit 12 and the second radiation unit 22 are provided, the first radiation unit 12 and the second radiation unit 22 cooperate to radiate the radio frequency signal.
  • the clearance height of the antenna is effectively increased, thus improving the radiation efficiency.
  • the antenna of the embodiment of the present disclosure is an antenna, which is helpful for the beautification of the antenna.
  • the shape of the first radiation unit 12 and the shape of the second radiation unit 22 are both center-symmetrical figures.
  • the shape of the first radiation unit 12 and the shape of the second radiation unit 22 The shape can be square, cross, equilateral rhombus, etc. It should be noted that the above square, cross, equilateral rhombus may not be square, cross, equilateral rhombus in the strict sense, and the shape of the first radiation unit 12 and The shape of the second radiation unit 22 may be approximately a square, a cross, or an equilateral rhombus. In the following description, the first radiation unit 12 and the second radiation unit 22 are square as an example for description.
  • first radiation unit 12 and the second radiation unit 22 may be disposed facing each other, that is, the orthographic projection of the symmetry center of the first radiation unit 12 on the third substrate 1031 , and the second radiation unit 12 corresponding to the first radiation unit 12 .
  • the orthographic projections of the center of symmetry of the radiation unit 22 on the third substrate 1031 coincide.
  • the center of symmetry of the second radiation unit 22 of the square radiation unit is the intersection of two diagonal lines of the square radiation unit, It is called the second center of symmetry O2.
  • the symmetry center of the first radiation unit 12 which is a square radiation unit is the intersection of two diagonals of the square radiation unit, which is called the first symmetry center O1 .
  • the first radiation units 12 are respectively disposed directly opposite to their corresponding second radiation units 22 , so the orthographic projection of the first symmetry center O1 of each first radiation unit 12 on the third substrate 1031 corresponds to the first radiation unit 12
  • the orthographic projections of the second symmetry center O2 of the second radiating element 22 on the third substrate 1031 coincide, thereby ensuring that the first radiating element 12 can receive the radiation energy of the signals fed by all the second radiating elements 22 as much as possible. , thereby improving the radiation efficiency of the antenna.
  • a second radiation unit 22 receives a signal fed by a second radiation unit 22 , it means that the first radiation unit 12 corresponds to the second radiation unit 22 .
  • the first base of the first substrate 102 is provided with at least one first radiating element 12 and includes at least two first feeders 1021
  • the first feeding unit of the The first feeder in the group is called the first feeder 1021a
  • the first feeder in the second group of the first feeder is called the first feeder 1021b.
  • the second substrate 104 includes at least one second feed unit 1042 , and the at least one second feed unit 1042 includes a first feed sub The unit 1042a and the second sub-feed unit 1042b, the first sub-feed unit 1042a includes a first port p11 and at least one second port p12.
  • the second sub-feed unit 1042b includes one first port p21 and at least one second port p22.
  • the first port p11 of the first sub-feed unit 1042a is connected to an external connector, so as to receive a radio frequency signal, and divide the radio frequency signal into at least one sub-signal equally, and each sub-signal is transmitted to a second port p12;
  • a second port p12 of the first feeder unit 1042a is connected to the second end of a first feeder 1021a in the first group of first feeders, and the second ports p11 of different first feeder units 1042a are connected to different first feeders.
  • the first port p21 of the second feeder unit 1042b is connected to an external connector, receives another radio frequency signal, and divides the radio frequency signal into at least one sub-signal equally, and each sub-signal is transmitted to a second port p22;
  • a second port p21 of the two-feeder unit 1042b is connected to the second end of a first feeder 1021b in the second group of first feeders, and a second port p21 of a different second feeder unit 1042b is connected to a different first feeder The second end of a feeder 1021b.
  • the substrate 103 includes four first radiating elements 12 and eight first feeders 1021 as an example for illustration.
  • the eight first feeders 1021 are divided into two groups, and the first group includes four first feeders 1021.
  • the second substrate 104 includes a first sub-feeding unit 1042a and a second sub-feeding unit 1042b, and both of them are a one-to-four-power-division feeding structure as an example, that is, the first sub-feed unit 1042a includes a first port p11 and four second ports p12.
  • the second sub-feed unit 1042b includes one first port p21 and four second ports p22.
  • each first feeder 1021a in the first group of first feeders is connected to a second port p12 of the first feeder unit 1042a, and the first The end is connected to a first radiating element 12, and the connection position between the first end of the first feeder 1021a and the first radiating element 12 is called the first connection point k1, wherein the first ends of different first feeders 1021a are connected to different The first radiation unit 12 .
  • each first feeder 1021b in the second group of first feeders is connected to a second port p22 of the second feeder unit 1042b, the first end of the first feeder 1021b is connected to a first radiation unit 12, and
  • the connection position between the first end of the first feeder 1021b and the first radiating element 12 is called a second connection point k2 , wherein the first ends of different first feeders 1021b are connected to different first radiating elements 12 .
  • the extension direction of the line connecting the first connection point k1 on the first radiation unit 12 and the center of symmetry ie, the first center of symmetry 01 ) is the same as the second connection point on the first radiation unit 12 .
  • the extension direction of the line connecting k2 and the center of symmetry (ie, the first center of symmetry O1 ) has a certain angle, so as to ensure that the second port p12 of the first sub-feeding unit 1042a - the first feeding line 1021 a - the first radiating unit 12 is formed
  • the first polarization direction of the first path of the radio frequency signal, and the second polarization direction of the second path of the radio frequency signal formed by the second port p22 of the second feeding unit 1042b - the first feeding line 1021 b - the first radiating unit 12 The directions are different, so the RF signals sent or received by the first channel and the second channel can be isolated from each other.
  • the transmitted signal can be fed from one of the first channel and the second channel.
  • the first radiation unit 12 and the signal received by the second radiation unit 22 can be fed to the first radiation unit 12, and the first radiation unit 12 receives through the other of the first channel and the second channel, so that the first channel can be guaranteed.
  • the signals between it and the second channel do not interfere with each other, forming a dual-polarized antenna.
  • the specific directions of the first polarization direction and the second polarization direction may include various forms.
  • the first polarization direction may be +45°
  • the second polarization direction may be +45°
  • the polarization direction can be -45°.
  • the first connection point k1 of the first radiation unit 12 and the center of symmetry The extension direction of the connection line (ie the first symmetry center 01 ) is perpendicular to the extension direction of the connection line between the second connection point k2 of the first radiation unit 12 and the symmetry center (ie the first symmetry center 01 ), thereby ensuring that The polarization direction formed by the second port p12 of the first feeder unit 1042a, the first feeder 1021a and the first radiation unit 12 is +45°, and the second port p22 of the second feeder unit 1042b, the first feeder 1021b and the The polarization direction formed by a radiating element 12 is -45°, and the polarization orthogonality of ⁇ 45° can ensure the isolation between the +45° and -45° antennas to meet the requirements of intermodulation on the isolation between the antennas ( ⁇ 30dB).
  • the polarization direction can be regarded as the angle between the microwave signal radiated by the first radiation unit 12 or the second radiation unit 22 and the angle between the ground plane.
  • the second polarization direction is perpendicular, that is, the angle between the first polarization direction and the second polarization direction is 90°, and the angle between the first polarization direction and the ground plane is 45°, and the second polarization direction is 45°.
  • the angle between the polarization direction and the ground plane is also 45°, so one of the first polarization direction and the second polarization direction is defined as +45°, and the other is -45°. is +45°, and the second polarization direction is -45° as an example for description.
  • the two polarization directions may also be other angles, which are not limited here.
  • each of the first radiation units 12 is a square radiation unit, and correspondingly, the second radiation units 12 are also square radiation units.
  • the first connection point k1 on it and the second connection point k2 thereon are located on two adjacent sides of the first radiation unit 12 , respectively.
  • the first connection point k1 may be at the midpoint of the length of one side of the first radiation unit 12 ;
  • the second connection point k2 may be at the length of the side of the first radiation unit 12 adjacent to the above-mentioned side. at the midpoint. Since any two adjacent sides of the first radiation unit 12 which is a square radiation unit are perpendicular, the extension direction of the line from k1 to o1 and the extension direction of the line from k2 to o1 are also perpendicular.
  • the second base 1041 of the second substrate 104 can be made of a microwave plate, and there are metal layers on both sides of the second base 1041 , that is, the metal layer forming the second reference electrode layer 1041 and the second feeding unit.
  • the metal layer 1042 is usually a copper layer as the metal layer, and the second substrate 104 is vertically placed on the side plate 1011, so as to prevent the second substrate 104 from affecting the light transmittance of the antenna.
  • the second port of the feeding structure 1041 on the second substrate 104 is electrically connected to the first feeding line 1021 by soldering, so as to ensure the reliability of the electrical connection.
  • the energy carried by the antenna is mainly determined by the relatively thin position of the feeding line of the feeding structure 1041, the energy on the feeding structure 1041 is relatively strong, the line width is relatively narrow, and the carrying power is relatively low.
  • the microwave board is copper-clad on both sides, so the carrying power of the antenna is greatly improved, reaching a power capacity of 20 watts.
  • each first feeder line 1021a in the first group of first feeder lines is the same as the length of each first feeder line 1021a in the second group of first feeder lines, and the shapes of the two are also the same, for A first radiating element 12, a first feeder line 1021a of the first group and a first feeder line 1021b of the second group connected to it, are mirror-symmetrical along its center line in the first direction S1, so that the number of first feeder lines can be reduced 1021a and the transmission difference of the first feeder 1021b.
  • the first radiation unit 12 and the second radiation unit 22 are arranged in a one-to-one correspondence, that is, in the antenna disclosed in this embodiment, the first radiation unit 12 and the second radiation unit
  • the number of units 22 is the same, the first radiation unit 12 and the second radiation unit 22 are arranged one-to-one, and the area of each first radiation unit 12 may be slightly larger than that of the second radiation unit 22 corresponding to the first radiation unit 12
  • the area, that is, the area of the orthographic projection of the first radiation unit 12 on the third substrate 1031 is greater than the area of the orthographic projection of the second radiation unit 22 on the third substrate 1031, and each first radiation unit 12 is associated with a
  • the second radiation units 22 are disposed opposite to each other, that is, the orthographic projection of the second radiation unit 22 on the third substrate 1031 is located in the orthographic projection of the first radiation unit 12 corresponding to the second radiation unit 22 on the third substrate 1031,
  • the area of the first radiation unit 12 may also be equal to or smaller than
  • the ratio of the area of the orthographic projection of one first radiation unit 12 on the first substrate 21 to the area of the orthographic projection of one second radiation unit 22 on the first substrate 21 is 0.45:1 to 1.54 : 1, further, the ratio may be between 0.55: 1 and 1.44: 1. Specifically, in the embodiment shown in Figures 1-10, the ratio may be 1.44: 1. In Figures 16-34 In the illustrated implementation, the ratio may be 0.55:1, which is not limited herein.
  • the size of the first radiating element 121 and/or the second radiating element 22 may be set according to the wavelength of the microwave signal transmitted by the antenna, for example, the first radiating element 12 and the /or the second radiation unit 22 may be a square radiation unit, and the side length of the square radiation unit may be one-half or one-quarter of the wavelength of the microwave signal, etc.
  • the first radiation unit 121 and/or the second radiation unit The size of the unit 22 may also adopt other sizes, which are not limited here.
  • the size of the first radiation unit 12 may be slightly larger than that of the second radiation unit 22. Specifically, the size relationship between the first radiation unit 12 and the second radiation unit 22 may be set according to the wavelength of the microwave signal.
  • a radiation unit 12 and a second radiation unit 22 may be square radiation units, and the side length of the first radiation unit 12 may be longer than that of the second radiation unit 22 by one-eighth of the wavelength of the microwave signal.
  • the size relationship between the unit 12 and the second radiation unit 22 may also adopt other methods, which are not limited herein.
  • the first substrate 102 includes a plurality of first radiation units 12 , and N adjacent first radiation units 12 form a group.
  • the antennas in FIGS. 1 and 2 are
  • the distance between any two adjacent first radiation units 12 is the first distance z1; for any adjacent two groups of first radiation units 12, the distance between any two adjacent first radiation units 12 is the first distance z1;
  • the distance between the first radiation units 12 of the two groups and the first radiation unit 12 of the second group closest to the first group is the second distance z2, where the second distance z2 is greater than the first distance z1, where N ⁇ 2.
  • the fourth substrate 101 may include a first side plate 1011a and a second side plate 1012b, which are connected on opposite sides of the fourth substrate 11 along the first direction S1, and the second substrate 104 is disposed On the side of the first side plate 1011a facing away from the second side plate 1011b.
  • the fourth substrate 101 further includes a fourth reference electrode layer 1014, the fourth reference electrode layer 1014 is disposed on the side of the second side plate 1011b close to the first side plate 1011a, and the fourth reference electrode layer 1014 is connected to the first reference electrode layer 1012 , that is, the two have a common potential. Referring to FIG. 7 and FIG.
  • the third substrate 103 may further include a third electrode layer 1032, the reference electrode structure 1032 is disposed on the side of the third substrate 1031 close to the first substrate 102, and the reference electrode structure 1032 is close to the side of the second side plate 1011b along the third substrate 1031 Setting, there is a certain distance between the third electrode layer 1032 and the fourth reference electrode layer 1014 inside the second side plate 1011b, and the distance between the third electrode layer 1032 and the fourth reference electrode layer 1014 satisfies the distance between the two Coupling can occur during signal transmission, so that the third electrode layer 1032 can receive the reference voltage on the fourth reference electrode layer 1014 through coupling, which is equivalent to the third electrode layer 1032 serving as an extension structure of the fourth reference electrode layer 1014.
  • the four reference electrode layers 1014 are extended to the third substrate 1031 to adjust the center frequency of the antenna.
  • the third substrate 1031 includes a first side 1031a and a second side 1031b and a third side 1031c respectively located on both sides of the first side 1031a, wherein the first side 1031a is along the The length direction of the third base 1031 extends (ie, the first direction S1 ), and both the second side 1031 b and the third side 1031 c extend along the width direction of the third base 1031 (ie, the second direction S2 ).
  • the third electrode layer 1032 may have various forms.
  • the third electrode layer 1032 includes a main body structure 1032a and a first extension structure 1032b and a second extension structure 1032c respectively connected on both sides of the main body structure 1032a.
  • One side edge 1031a extends and is conformal to the first side edge 1031a; the first extension structure 1032b extends along the second side edge 1031b and is conformal to the second side edge 1031b; the second extension structure 1032c extends along the third side edge 1031c, Conformal to the third side edge 1031c, wherein the length of the main structure 1032a is approximately the same as the length of the first side edge 1031a; the length of the first extension structure 1032b is smaller than the length of the second side edge 1031b; the length of the second extension structure 1032c less than the length of the third side 1031c.
  • At least one first groove 1023 is provided on the side of the first substrate 21 away from the at least one first radiation unit 12 , and one first groove 1023 is on the first substrate 21 .
  • the orthographic projection on the first radiation unit 12 covers the orthographic projection of one first radiation unit 12 on the first substrate 21 , and different first grooves 1023 cover the orthographic projection of different first radiation units 12 on the first substrate 21 .
  • the first groove 1023 is equivalent to hollowing out a part of the lower side of the first substrate 21 as an air cavity, and the air cavity is located directly under the first radiation unit 12. Therefore, the dielectric layer under the first radiation unit 12 is formed by the first substrate.
  • the depth of the first groove 1023 is smaller than the thickness of the second base 21 .
  • the orthographic projection of one first groove 1023 on the first substrate 21 covers the orthographic projection of at least one first feed line 1021 connected to one first radiating element 12 on the first substrate 21 .
  • the first groove may extend from the position of the first radiating element 12 to the edge of the first feeder 1021, that is, the edge close to the side portion 21a, so that both the first radiating element 12 and the dielectric layer under the first feeder 1021 become Air and a small portion of the first substrate 21 further increase the efficiency of the antenna and reduce the weight of the first substrate 21 .
  • the orthographic projection of one first groove 1023 on the first substrate 21 covers the orthographic projection of the two first feed lines connected to one first radiating element 12 on the first substrate 21 .
  • the ratio of the area of the orthographic projection of a first groove 1023 on the first substrate 21 to the area of the orthographic projection of a first radiation unit 12 on the first substrate 21 is 5:1 to 2:1. Specifically, the The ratio can be 3.68:1.
  • the distance between any two adjacent first grooves 1023 may be different, for example, the distance may be 4mm-12mm, specifically, the distance may be 5mm-10mm, This is not limited.
  • an axis of symmetry of a first radiating element 12 in the first direction S1 intersects with an orthographic projection of the first radiating element 12 on the first substrate 21
  • the axis of symmetry of the stacked first grooves 1023 in the first direction S1 substantially coincides, that is, the first radiation unit 12 and the first radiation unit 12 on the first substrate 21
  • the first grooves 1023 whose orthographic projections overlap with each other may be disposed directly opposite to each other.
  • the first substrate 102 may include at least one first radiating element 12 and at least two first feed lines 1021, at least two The first feeder line 1021 is divided into two groups, namely the first group of first feeder lines and the second group of first feeder lines.
  • the first feeder in a feeder is referred to as the first feeder 1021b.
  • the second end of each first feeder 1021a in the first group of first feeders is connected to a second port p12 of the first feeder unit 1042a, the first end of the first feeder 1021a is connected to a first radiation unit 12, and
  • the first ends of different first feed lines 1021a are connected to different first radiation units 12 .
  • each first feeder 1021b in the second group of first feeders is connected to a second port p22 of the second feeder unit 1042b, the first end of the first feeder 1021b is connected to a first radiation unit 12, and The first ends of different first feed lines 1021b are connected to different first radiation units 12 .
  • the first substrate 102 may further include at least one second sub-electrode 1022 disposed on the side of the first substrate 21 away from the fourth substrate 101 .
  • a second sub-electrode 1022 is disposed on the side of the first radiating element 12 close to the side portion 21 a , and is located on the first feeder 1021 a and the second feeding line 1021 a of the first group connected to the first radiating element 12 . between the first feeders 1021b of the group to isolate the signals between the first feeders 1021a of the first group and the first feeders 1021b of the second group to avoid coupling between the two.
  • At least one isolation electrode 1022 is a conductive material, such as metals such as copper, aluminum, and the like.
  • FIG. 6 is a schematic structural diagram of the second sub-electrodes 1022 , and each of the second sub-electrodes 1022 includes a first structure 1022 a and a second structure 1022 b.
  • the first structure 1022a extends along the side of the first substrate 21 close to the side portion 21a, that is, extends along the length direction of the first substrate 21 (ie, the first direction S1), and the second structure 1022b extends along the width direction of the first substrate 21 (ie, the first direction S1).
  • the second structure 1022b is connected to the midpoint of the extending direction of the first structure 1022a (ie, the first direction S1), and the extending direction of the second structure 1022b is the same as the extending direction of the first structure 1022a vertical.
  • the width D1 of the first structure 1022a is smaller than the width D2 of the second structure 1022b; the length L1 of the first structure 1022a is greater than the length L2 of the second structure 1022b.
  • the antenna further includes a plurality of connection structures (not shown in the figure).
  • the fourth substrate 101 further includes a third reference electrode layer 1013 , and the third reference electrode layer 1013 is disposed on the first side plate 1011 a
  • the third reference electrode layer 1013 is connected to the first reference electrode layer 1012 on the side away from the second substrate 104 , that is, the two have a common potential.
  • the first reference electrode layer 1012 receives a reference voltage (eg, ground voltage GND) through a connecting line.
  • the first side plate 1011a is further provided with a plurality of first through holes 001, and a connection structure penetrates through one of the first through holes 001 to electrically connect the third reference electrode layer 1013 and the second reference electrode layer 1043, so as to connect the third reference electrode layer 1013 to the second reference electrode layer 1043.
  • the reference voltage on the electrode layer 1013 is transmitted to the second reference electrode layer 1043 on the second substrate 104 .
  • connection structure may adopt a variety of connection structures, for example, see FIG. 15 , each connection structure is a coaxial line 400, and the coaxial line 400 includes a core probe 4001 for transmitting radio frequency signals and a reference voltage transmitting
  • the outer wire 4002 further includes a first insulating layer 4004 wrapped around the outside of the outer wire, and a second insulating layer 4003 disposed between the outer wire 4002 and the core probe 4001 .
  • the outer wire 4002 wraps at least part of the core probe 4001, and the core probe 4001 is partially exposed. Referring to FIG.
  • At least one second through hole 002 is disposed on the second base 1041 of the second substrate 104 , one second through hole 002 is disposed at the first port of a second feeding unit 1042 , and one first through hole 001 coincides with the orthographic projection of a second through hole 002 on the second substrate 1041 .
  • the outer wire 4002 runs through a first through hole 001 and is electrically connected to the third reference electrode layer 1013 and the second reference electrode layer 1043, so as to transmit the reference voltage of the third reference electrode layer 1013 to the second reference electrode
  • the electrode layer 1043, the part of the core probe 4001 wrapped by the outer wire 4002 passes through a first through hole 001 along with the outer wire 4002, and the exposed part of the core probe 4001 passes through a second through hole 002 and a feeding unit
  • the first port of 1042 is electrically connected to transmit radio frequency signals to the first port, or receive radio frequency signals input from the first port.
  • the second substrate 104 includes a first sub-feeding unit 1042a and a second sub-feeding unit 1042b, and the second substrate 1041 is provided with two second through holes 002, which are respectively located on the first side of the first sub-feeding unit 1042a.
  • the first side plate 1011a of the fourth substrate 101 is provided with two first through holes 001, and the core pole of one of the two coaxial lines 400
  • the probes 4001 are respectively inserted into the first through hole 001 and the second through hole 002 on the left to be electrically connected to the first port p11 of the first sub-feeding unit 1042a, and the core probe 4001 of the other is inserted into the first through hole on the right.
  • the hole 001 and the second through hole 002 are electrically connected to the first port p21 of the second sub-feeding unit 1042b.
  • the second substrate 1041 has a plurality of third through holes 003 arranged at intervals.
  • the side plate 1011 eg, the first side plate 1011 a
  • the antenna may further include a plurality of fixing members (not shown in the figure), one fixing member passing through a third through hole 003 and a fourth through hole 004 to fix the second substrate 104 on the first side plate 1011a.
  • the fixing member may be a screw, and the inner sides of the third through hole 003 and the fourth through hole 004 may have internal threads adapted to the screws.
  • the antenna provided by the embodiment of the present disclosure may be a transparent antenna, which may be applied in glass window systems including but not limited to automobiles, trains (including high-speed rail), airplanes, buildings, and the like.
  • the antenna can be fixed on the inside of the glass window (the side close to the room). Since the optical transmittance of the antenna is relatively high, it has little effect on the transmittance of the glass window while realizing the communication function, and this kind of antenna will also become a trend of beautifying the antenna.
  • the glass window in the embodiment of the present disclosure includes but is not limited to double-layer glass, and the type of glass window may also be single-layer glass, laminated glass, thin glass, thick glass, and the like.
  • the application of the glass window with the antenna attached to the subway window system is taken as an example for description.
  • the fourth substrate 11 may include a first substrate and a first fixing plate arranged in a laminate; the first reference electrode layer 1012 is disposed on a side of the first substrate away from the first fixing plate, wherein the first The reference electrode layer 1012 can be fixedly connected to the first substrate through the first transparent adhesive layer.
  • the first base 21 includes a second base material and a second fixed plate arranged in layers, at least one first radiating element 12 and at least one feeder 1021 can be disposed on the side of the second base material away from the second fixed plate, Wherein, at least one first radiating element 12 and at least one feeding line 1021 may be fixedly connected to the second substrate through the second transparent adhesive layer.
  • the third base 1031 may include a third base material and a third fixing plate arranged in layers, at least one second radiation unit 22 is disposed on the side of the third base material facing away from the second fixing plate, wherein at least one first The two radiation units 22 can be fixedly connected to the third substrate through the third transparent adhesive layer.
  • the materials of the first substrate, the second substrate, and the third substrate may be the same or different; for example, the first substrate, the second substrate, and the third substrate are all made of flexible films, and then the flexible films may be used.
  • a metal layer is formed on the thin film, and the metal layer can be patterned into the first radiating element 12, the first feeding line 1021, the second radiating element 22, the first reference electrode layer 1012, etc. to form a conductive thin film.
  • the material of the flexible film includes, but is not limited to, polyethylene terephthalate (Polyethylene Terephthalate; PET) or polyimide (PI).
  • PET Polyethylene Terephthalate
  • PI polyimide
  • the first substrate, the second substrate, and the third substrate are all made of PET as an example for description.
  • the thickness of the first substrate, the second substrate, and the third substrate is about 50-250 ⁇ m. Since the materials of the first substrate, the second substrate and the third substrate are soft, they cannot provide good support for the first radiation unit 12, the second radiation unit 22 and the first reference electrode layer 1012.
  • the hardness of the fourth base 11 is maintained, the hardness of the first base 21 is maintained by the second fixing plate, the hardness of the third base 1031 is maintained by the third fixing plate, the first fixing plate, the second fixing plate, the third fixing plate
  • the material includes but not limited to polycarbonate plastic (Polycarbonate; PC), cycloolefin polymer plastic (Copolymers of Cycloolefin; COP) or acrylic/plexiglass (Polymethyl Methacrylate; PMMA), to ensure the transparency of the fourth substrate 11.
  • the thickness of any one of the first fixing plate, the second fixing plate and the third fixing plate is about 1-3 mm.
  • the materials of the first adhesive layer and the second adhesive layer may be the same or different.
  • the materials of the first adhesive layer and the second adhesive layer are both made of transparent optical adhesive (Optically Clear Adhesive, OCA).
  • OCA Optically Clear Adhesive
  • the opposite sides of the fourth substrate 11 in the length direction are connected with a first side plate 1011a and a second side plate 1011b, and the first side plate 1011a and the second side plate 1011b
  • the substrate layer of film material is used to cover the inner side of the fourth substrate 11, the first side plate 1011a, and the second side plate 1011b, and then form a conductive layer thereon.
  • a conductive film is made, and the first reference electrode layer 1012, the third reference electrode layer 1013 and the fourth reference electrode layer 1014 are formed by etching.
  • the side plate 1011 provided with the second substrate 104 (ie, the first side plate 1011 a ) is arranged along the length direction of the fourth base 11 (ie, the first direction S1 ), and the first base 21 (which also divides the fourth substrate 11) into a first region N1 and a second region N2.
  • the second substrate 104 is disposed on the side of the first side plate 1011a close to the first region N1.
  • the width of the first region N1 in the direction perpendicular to the length direction of the fourth substrate 11 is smaller than the width of the second region N2 in the direction perpendicular to the length direction of the fourth substrate 11 (ie the second direction S2 ) ) on the width.
  • the orthographic projection of the first substrate 21 on the fourth substrate 11 is located in the second region N2 of the fourth substrate 11 .
  • the third substrate 103 further includes a surrounding plate 1033 disposed along the edge of the third substrate 1031 and disposed on the side of the third substrate 1031 close to the bottom, 101 , on the third substrate 103 and the fourth
  • the enclosure plate 1033 and the third base 1031 form a cover, and the fourth substrate 101 is covered therein.
  • the side plate 1011 of the second substrate 104 (ie the first side plate 1011a), the part of the fourth base 11 of the fourth substrate 101 located in the first region N1
  • the enclosure plate 1033 of the third substrate 103 on the side closest to the first side plate 1011a and the portion of the third base 1031 of the third substrate 103 corresponding to the first region N1 define an accommodating space Y1.
  • 1011a is attached to the glass window in the direction of the bottom surface and the second side plate 1011b facing the sky. If rainwater enters the antenna, it will be accumulated in the accommodation space Y1 to prevent the antenna from being affected by rainwater, and the second substrate 104 is arranged on the first side. On the plate 1011a, it can be prevented from coming into contact with rainwater.
  • the first radiation unit 12, the second radiation unit 22, the first feed line 1021, the first reference electrode layer 1012, the second reference electrode layer 1043, the third reference electrode layer 1013, the At least one of at least one of the four reference electrode layers 1014 can use a plurality of first conductive wires and a plurality of second conductive wires to intersect to form a grid structure, wherein the extension direction of the first conductive wires is the same as that of the second conductive wires. direction of extension is different.
  • the second radiation unit 22 is used for illustration.
  • the second radiation unit 22 may adopt a grid structure formed by intersecting a plurality of first conductive wires 2211 and a plurality of second conductive wires 2212 , wherein, The first conductive wire 2211 extends along the fourth direction S4, the second conductive wire 2212 extends along the fifth direction, and the fourth direction S4 and the fifth direction S5 are not parallel.
  • the directions of the fourth direction S4 and the fifth direction S5 may be In various forms, for example, referring to FIG.
  • the extending direction (fourth direction S4 ) of the first conductive wire 2211 and the extending direction (fifth direction S5 ) of the second conductive wire 2212 may be in accordance with the polarization direction of the second radiating element 22 (that is, the direction of the current generated by the signal input by the power division feeding structure 3).
  • the plurality of first conductive wires 2211 and the plurality of second conductive wires 2212 have the same line width, line thickness and line spacing.
  • the line widths of the plurality of first conductive wires 2211 and the plurality of second conductive wires 2212 are both 2-30 ⁇ m, the line spacing is 50-250 ⁇ m; the line thickness is 1-10 ⁇ m, and the transmittance can reach 70%-80% .
  • the first radiation unit 12 adopts a metal mesh
  • the first radiation unit 12 may be formed on the surface of the second substrate away from the second fixing plate by a process including but not limited to embossing or etching, and other structures are the same.
  • the mesh structure may be made of various conductive materials, such as copper, silver, aluminum and other metal materials, which are not limited herein.
  • At least one first radiating unit 12 and at least one second radiating unit 22 may adopt a grid structure; wherein, metal wires (eg, a plurality of first conductive wires 2211 and a plurality of The second conductive wire 2212) may adopt an open structure in the first radiation unit 12 and/or the second radiation unit 22, that is, the edge positions of the first radiation unit 12 and/or the second radiation unit 22 are not connected to each other;
  • the metal wires of the mesh structure (for example, the plurality of first conductive wires 2211 and the plurality of second conductive wires 2212 ) may adopt a closed structure in the first radiation unit 12 and/or the second radiation unit 22 , that is, the first radiation unit 12 And/or the edge positions of the second radiation unit 22 are short-circuited with each other, which is not limited herein.
  • the at least one first radiation unit 12 , the at least one second radiation unit 22 , and the first electrode layer all adopt a grid structure, and the projections of the hollow parts of the grid structure of each layer on the first substrate 21 Substantially overlapping, that is, the extending directions of the wires of the grid structure of each layer may be parallel.
  • the first substrate 21 further includes a first metal mesh layer, and the first metal mesh layer is disposed on a side of the first substrate 21 away from the first electrode layer.
  • the first metal mesh layer includes at least one first radiating unit 12, and may also include a first feeding unit connected to the first radiating unit 12.
  • the first feeding unit may include a plurality of first feeding lines 1021, the first feeding line 1021 every day Impedance matching structure 6 can be connected to it.
  • the first metal mesh layer has at least one first opening 0121, and one first opening 0121 divides a first radiation unit 12 on the first metal mesh layer, that is, on the first metal mesh layer along the The shape of a radiating element 12 removes part of the metal mesh to form a first opening 0121 to separate a first radiating element 12.
  • the first feeder 1021 and the impedance matching structure 6 can be divided.
  • the first metal mesh layer forms part of the first radiation unit 12, the first feeding unit, the impedance matching structure 6, and the rest of the parts are provided with metal meshes, so that each part of the first metal mesh layer Specifically, the more uniform reflectance.
  • the third substrate 103 may further include a third base 1031 and a second metal mesh layer, and the second metal mesh layer is disposed on the side of the third base 1031 away from the first base 21 .
  • the second metal mesh layer has at least one second opening 0221, and one second opening 0221 divides a second radiation unit 22 on the second metal mesh layer, that is, on the second metal mesh layer along the first The shape of the two radiation units 22 removes part of the metal mesh to form a second opening 0221 to separate a second radiation unit 22 .
  • the second metal mesh layer forms part of the second radiation unit 22, and the rest of the metal mesh is provided with metal meshes, so that each part of the second metal mesh layer has relatively uniform reflectivity.
  • FIG. 11 is a beam pattern diagram of two polarization directions of an antenna according to an embodiment of the present disclosure, and it can be seen from the figure that the antenna can realize beam directions of various angles.
  • FIG. 12 is a schematic diagram of a standing wave ratio of an antenna according to an embodiment of the disclosure. As can be seen from FIG. 12 , the antenna of the embodiment of the present disclosure obtains an excellent matching characteristic with a standing wave ratio of less than 1.36 in the working frequency through optimization.
  • FIG. 13 is a schematic diagram of isolation of an antenna according to an embodiment of the disclosure. The isolation degree of the antenna of the embodiment of the present disclosure is greater than 19.5 dB within the working frequency.
  • FIG. 14 is a schematic diagram of cross-polarization in different directions of the antenna according to the embodiment of the present disclosure. The antenna according to the embodiment of the present disclosure can realize cross-polarization in all directions.
  • an embodiment of the present disclosure provides a glass window system (that is, a communication system), which includes the above-mentioned antenna, and the antenna can be fixed on the inner side of the glass window.
  • the glazing systems in the embodiments of the present disclosure can be used in glazing systems of automobiles, trains (including high-speed rail), airplanes, buildings, and the like.
  • the antenna can be fixed on the inside of the glass window (the side close to the room). Since the optical transmittance of the antenna is relatively high, it has little effect on the transmittance of the glass window while realizing the communication function, and this kind of antenna will also become a trend of beautifying the antenna.
  • the glass window in the embodiment of the present disclosure includes but is not limited to double-layer glass, and the type of glass window may also be single-layer glass, laminated glass, thin glass, thick glass, and the like.
  • An embodiment of the present disclosure provides an antenna, and the antenna includes a first substrate 102 and a third substrate 103 that are disposed opposite to each other.
  • FIG. 16 is an exemplary cross-sectional view of an antenna provided by an embodiment of the present disclosure
  • FIG. 17 is an exemplary first substrate 102 of an antenna provided by an embodiment of the present disclosure.
  • Top view is an exemplary top view of the third substrate 103 for providing an antenna according to an embodiment of the present disclosure.
  • the third substrate 103 may include a third substrate 1031 and at least one second radiation unit 22 , and the second radiation units 22 are all located on the side of the third substrate 1031 away from the first substrate 102 .
  • the first substrate 102 may include a first base 21 , at least one first radiation unit 12 and at least one power division feeding structure 3 .
  • at least one first radiation unit 12 is located on the side of the first substrate 21 close to the third substrate 103, and one first radiation unit 12 is disposed corresponding to one second radiation unit 22, and each first radiation unit 12 is on the first substrate
  • the orthographic projection on the substrate 21 at least partially overlaps with the orthographic projection of the second radiation unit 22 corresponding to the first radiation unit 12 on the substrate. That is to say, the second radiation unit 22 and the first radiation unit 12 are disposed opposite to each other, and the radio frequency signal is first fed into the first radiation unit 12, and then fed into the second radiation unit 22 by the first radiation unit 12.
  • the first radiation unit 12 and Corresponding to the second radiation unit 22 that is, the radio frequency signal emitted by the first radiation unit 12 is fed into the second radiation unit 22 .
  • each power division feeding structure 3 on the first base 21 is disposed on the side of the first base 21 close to the third substrate 103, and each power division feeding structure 3 has a first port (for example, 31a in FIG. 17 ). and 32a) and a plurality of second ports (for example, 31b and 32b in FIG. 17 ), one second port of each power division feeding structure 3 is connected to one first radiating element 12 correspondingly, and the antenna provided by the embodiment of the present disclosure can be used as The receiving antenna can also be used as a transmitting antenna, and can transmit signals and receive signals at the same time. When the antenna transmits signals, the first port of each power division feeding structure 3 receives the radio frequency signal, and the power division feeding structure 3 transmits the radio frequency signal.
  • the signal is divided into a plurality of sub-signals, each sub-signal is output from a second port to the first radiating unit 12 connected to the second port, and the first radiating unit 12 then feeds the sub-signal to the first radiating unit 12 opposite to the first radiating unit 12.
  • Two radiation units 22 when the antenna is receiving signals, after any second radiation unit 22 receives the radio frequency signal, it feeds the radio frequency signal to the first radiation unit 12 facing the second radiation unit 22, and the first radiation unit 22 and then transmit the radio frequency signal to the first port through the second port connected with the first radiation unit 12 .
  • the second base 1041 of the second substrate 104 and the first base 21 of the first substrate 102 are integrally formed, so the first feeding unit and the second feeding unit are integrally formed.
  • the structure formed by the first power feeding unit and the second power feeding unit is called the power division feeding unit 3 .
  • the number of the second radiation units 22 and the first radiation units 12 included in the antenna disclosed in this embodiment may be N, where N is any integer greater than 0.
  • the numbers of the second radiation units 22 and the first radiation units 12 may be different, as long as one first radiation unit 12 is arranged corresponding to one second radiation unit 22 .
  • four second radiation units 22 are provided on the first substrate 1 and four first radiation units 12 are provided on the second substrate 2 as an example for description, but the present invention is not limited.
  • the second radiation unit 22 and the first radiation unit 12 are provided, and the second radiation unit 22 and the first radiation unit 12 are arranged opposite to each other, signals (such as radio frequency signals) pass through the first radiation unit 12
  • the second radiating element 22 is fed to the second radiating element 22. Therefore, compared with the case where only one radiating element is provided, the opposing second radiating element 22 and the first radiating element 12 increase the radiating area of the radiating element, thereby effectively improving the radiation efficiency.
  • the first substrate 102 of the antenna may further include a reference electrode layer 23 , and the reference electrode layer 23 is disposed on the side of the first substrate 21 away from the first radiation unit 12 , and inputs the reference electrode layer 23 to the reference electrode layer 23 . reference voltage, thereby providing a reference potential to the antenna.
  • the reference electrode layer 23 can be a one-sided electrode, covering the entire surface of the first substrate 21 away from the first radiation unit 12; the reference electrode layer 23 can also be patterned, as long as the orthographic projection of the reference electrode layer 23 on the first substrate 21 , which can cover the orthographic projection of each first radiation unit 12 and/or second radiation unit 22 on the first substrate 21 , which is not limited here.
  • the thickness of the first base 21 of the first substrate 102 may be between 100 ⁇ m and 1000 ⁇ m, and the thickness of the third base 1031 may be between 100 ⁇ m and 1000 ⁇ m.
  • the thickness of the first substrate 21 can be set to a larger thickness value, such as 1000 ⁇ m, so that by increasing the thickness of the first substrate 21 , the gap between the first radiation unit 12 and the reference electrode layer 23 can be increased.
  • the distance between the second radiation unit 22 and the reference electrode layer 23 can also be increased, so that the capacitance to ground between the first radiation unit 12 and the reference electrode layer 23 is very small.
  • the thickness of the third substrate 1031 may be the same as or different from that of the first substrate 21.
  • the thickness of the third substrate 1031 may be set at 250 microns, which is not limited herein.
  • the distance between the third substrate 103 and the first substrate 102 defines the thickness of the dielectric layer of the antenna provided by the embodiment of the present disclosure, and the microwave signal emitted by the first radiation unit 12 is fed to the second radiation During the process of the unit 22, the microwave signal passes through the dielectric layer between the third substrate 103 and the first substrate 102, and the dielectric layer may include various types of media, such as glass media, air media, and the like. The thickness of the dielectric layer affects the transmission loss, phase, etc. of the microwave signal.
  • the antenna provided in this embodiment of the present disclosure uses an air medium as the dielectric layer, that is, air is between the third substrate 103 and the first substrate 102 , the first radiation unit 12
  • the emitted microwave signal is fed to the second radiating unit 22 after passing through the air medium, and the distance between the third substrate 103 and the first substrate 102 defines the size of the clearance area of the antenna. If the distance between them is larger, the clearance area of the antenna is larger, which can effectively increase the bandwidth of the antenna and weaken the resonance, thereby increasing the radiation efficiency of the antenna.
  • the distance between the third substrate 103 and the first substrate 102 of the antenna provided in this embodiment of the present disclosure may be between 5 and 50 mm, for example, the distance between the third substrate 103 and the first substrate 102 may be 8 mm, specifically It is not limited here according to settings such as the type of medium and the frequency of the microwave signal.
  • the second radiating elements 22 and the first radiating elements 12 are arranged in a one-to-one correspondence, that is, in the antenna disclosed in this embodiment, the second radiating elements 22 and the first radiating elements
  • the number of units 12 is the same, the second radiation units 22 and the first radiation units 12 are arranged one-to-one, and the area of each second radiation unit 22 may be slightly larger than that of the first radiation unit 12 corresponding to the second radiation unit 22
  • the area, that is, the area of the orthographic projection of the second radiation unit 22 on the first substrate 21, is greater than the area of the orthographic projection of the first radiation unit 12 on the first substrate 21, and each second radiation unit 22 is associated with a
  • the first radiation units 12 are disposed opposite to each other, that is, the orthographic projection of the first radiation unit 12 on the first substrate 21 is located in the orthographic projection of the second radiation unit 22 corresponding to the first radiation unit 12 on the first substrate 21, Therefore, it is ensured that each second radiation unit 22 completely covers the first radiation unit
  • the size of the first radiating element 1 and/or the first radiating element 12 may be set according to the wavelength of the microwave signal transmitted by the antenna, for example, the second radiating element 22 and /or the first radiation unit 12 may be a square radiation unit, and the side length of the square radiation unit may be one-half or one-quarter of the wavelength of the microwave signal, etc.
  • the first radiation unit 1 and/or the first radiation unit The size of the unit 12 may also adopt other sizes, which are not limited here.
  • the size of the second radiation unit 22 may be slightly larger than that of the first radiation unit 12. Specifically, the size relationship between the second radiation unit 22 and the first radiation unit 12 may be set according to the wavelength of the microwave signal.
  • the second radiation unit 22 and the first radiation unit 12 may be square radiation units, and the side length of the second radiation unit 22 may be longer than that of the first radiation unit 12 by one-eighth of the wavelength of the microwave signal.
  • the second radiation unit The size relationship between the unit 22 and the first radiation unit 12 may also be in other manners, which are not limited herein.
  • the distance between any two adjacent second radiation elements 22 may be determined according to The wavelength of the microwave signal transmitted by the antenna is set, for example, the distance between any two adjacent second radiating elements 22 is half of the wavelength of the microwave signal.
  • the distance between any two adjacent first radiation units 12 can be set according to the wavelength of the microwave signal transmitted by the antenna. For example, the distance between any two adjacent first radiation units 12 is the microwave half the wavelength of the signal.
  • the spacing between the adjacent second radiation units 22 or the first radiation units 12 may also be set in other manners, which are not limited herein.
  • the antenna provided by the embodiment of the present disclosure can transmit signals and receive signals at the same time, that is, the antenna provided by the embodiment of the present disclosure can work in the transmit-receive duplex mode. Therefore, the second radiation unit 22 and the first radiation unit The element 12 has two polarized directions, so that the antenna is a dual polarized antenna. If the antenna is a dual-polarized antenna, the shape of the second radiating element 22 and the shape of the first radiating element 12 are both center-symmetrical figures. Specifically, the shape of the second radiating element 22 and the shape of the first radiating element 12 can be square. , cross, equilateral rhombus, etc.
  • the above-mentioned square, cross, equilateral rhombus may not be square, cross, equilateral rhombus in the strict sense, and the shape of the second radiation unit 22 and the first radiation unit
  • the shape of 12 can approximate a square, a cross, or an equilateral rhombus. The following descriptions are given by taking the second radiation unit 22 and the first radiation unit 12 as square as an example.
  • the shape of the second radiation unit 22 and the shape of the first radiation unit 12 are both center-symmetrical figures, and the second radiation unit 22 and the first radiation unit 12 may be disposed opposite to each other, that is, The orthographic projection of the symmetry center of the second radiation unit 22 on the first substrate 21 coincides with the orthographic projection of the symmetry center of the first radiation unit 12 corresponding to the second radiation unit 22 on the first substrate 21 .
  • the center of symmetry of the first radiation unit 12 of the square radiation unit is the intersection of two diagonal lines of the square radiation unit, It is called the first center of symmetry O1. Taking the second radiation unit 22 in FIG.
  • the second radiation unit 22 is a square radiation unit.
  • the center of symmetry of the second radiation unit 22 is the intersection of the two diagonals of the square radiation unit, which is called the second center of symmetry O2 .
  • the second radiation units 22 are respectively disposed directly opposite to their corresponding first radiation units 12 , so the orthographic projection of the first symmetry center O1 of each second radiation unit 22 on the first substrate 21 corresponds to the second radiation unit 22
  • the orthographic projections of the second symmetry center O2 of the first radiating element 12 on the first substrate 21 coincide, thereby ensuring that the second radiating element 22 can receive the radiation energy of all the signals fed by the second radiating element 22 as much as possible. , thereby improving the radiation efficiency of the antenna.
  • a second radiation unit 12 receives a signal fed by a second radiation unit 22 , it means that the second radiation unit 22 corresponds to the first radiation unit 12 .
  • the antenna provided by the embodiment of the present disclosure may be a dual-polarized antenna. Therefore, the shape of the second radiating element 22 and the shape of the first radiating element 12 are both center-symmetrical figures. The following For example, the shape of the second radiation unit 22 and the shape of the first radiation unit 12 are both square.
  • two signals can be input to the first radiating element 12, so that the antenna can include two power division feeding structures 3, which are the first power division feeding structure 31 and the second power division feeding structure 31 respectively. Power division feeding structure 31 .
  • the first power division feeding structure 31 may have a first port 31a and a plurality of second ports 31b, each second port 31b of the first power division feeding structure 31 is connected to a first radiation unit 12, and the first power
  • the connection position between the second port 31b of the sub-feed structure 31 and the first radiating element 12 corresponding to the second port 31b is the first connection point a1;
  • the second power-sub-feed structure 32 may have a first port 32a and A plurality of second ports 32b, each second port 32b of the second power division feeding structure 32 is connected to a first radiating element 12, and the second port 32b of the second power division feeding structure 32 is connected to the second port
  • the connection position of the first radiation unit 12 corresponding to 32b is the second connection point b1, that is to say, each first radiation unit 12 is connected to a second port 31b of the first power splitting structure 31 and a second power splitter
  • the center of symmetry of the first radiation unit 12 is the first center of symmetry O1, the first connection point a1 of each first radiation unit 12 and the center of symmetry of the first radiation unit 12 (that is, the first The extension direction of the line connecting the symmetry center O1 ) intersects with the extension direction of the line connecting the second connection point b1 of the first radiation unit 12 and the symmetry center (ie, the first symmetry center O1 ) of the first radiation unit 12 .
  • FIG. 17 the extension direction of the line connecting the first connection point a1 of each first radiation unit 12 and the center of symmetry (ie, the first center of symmetry O1 ) of the first radiation unit 12 in FIG.
  • 17 is the sixth direction In the direction shown by S6, the extension direction of the line connecting the second connection point b1 of the same first radiation unit 12 and the symmetry center of the first radiation unit 12 (ie, the first symmetry center O1) is shown in the third direction S3
  • the sixth direction S6 is not parallel to the third direction S3, and the sixth direction S6 intersects the third direction S3, so as to ensure that the pole formed by the second port 31b of the first power division feeding structure 31 and the first radiating element 12
  • the polarization direction is different from the polarization direction formed by the second port 32b of the second power division feeding structure 32 and the first radiating element 12.
  • the second port 31b of the first power division feeding structure 31 and the first radiating element 12 The first path of the transmission signal formed between them and the second port 32b of the second power division feeding structure 32 and the second path of the transmission signal formed by the first radiating element 12 are isolated from each other. If the antenna transmits and receives signals at the same time , the transmitted signal can be fed to the second radiation unit 22 from one of the first channel and the second channel, while the signal received by the second radiation unit 22 can be fed to the first radiation unit 12, and the first radiation unit 12 can pass through the first radiation unit 12. The other one of the first channel and the second channel receives, so that the signals between the first channel and the second channel can be guaranteed not to interfere with each other, and a dual-polarized antenna is formed.
  • the specific direction of the polarization direction formed by the second port 31b of the first power division feeding structure 31 and the first radiating element 12 may include various forms.
  • the polarization direction may be +45°
  • the polarization direction formed by the second port 32b of the second power division feeding structure 32 and the first radiating element 12 may be ⁇ 45°.
  • the polarization direction formed by the second port 31b of the structure 31 and the first radiation element 12 is +45°, and the polarization direction formed by the second port 32b of the second power division feeding structure 32 and the first radiation element 12 is -45° °, the extension direction (for example, the first direction S2) of the line connecting the first connection point a1 of each first radiation unit 12 and the symmetry center of the first radiation unit 12 (ie, the first symmetry center O1), and the same first
  • the extension direction (for example, the third direction S3) of the connection line between the second connection point b1 of the radiation unit 12 and the symmetry center of the first radiation unit 12 (that is, the first symmetry center O1) can be perpendicular, so as to ensure the first power division
  • the polarization direction formed by the second port 31b of the feeding structure 31 and the first radiating element 12 is +45°, and the polarization direction formed by the second port 32b of the second power division feeding structure 32 and the first radiating element 12
  • the polarization direction can be regarded as the angle of the angle between the microwave signal emitted by the second radiation unit 22 or the first radiation unit 12 and the ground plane.
  • the polarization direction (hereinafter referred to as the first polarization direction) formed by the second port 31b of the structure 31 and the first radiating element 12 and the pole formed by the second port 32b of the second power division feeding structure 32 and the first radiating element 12
  • the polarization direction (hereinafter referred to as the second polarization direction) is vertical, that is, the angle between the first polarization direction and the second polarization direction is 90°, and the angle between the first polarization direction and the ground plane is 45° °, and the angle between the second polarization direction and the ground plane is also 45°.
  • one of the first polarization direction and the second polarization direction is defined as +45°, and the other is -45°.
  • the above The first polarization direction is +45° and the second polarization direction is -45° as an example for description.
  • the two polarization directions may also be other angles, which are not limited here.
  • the power division feed structure 3 may include various types of power division feed structures.
  • the power division feed structure 3 may be a transmission line structure or a waveguide power division structure.
  • the power division feeding structure 3 eg, the first power division feeding structure 31 and the second power division feeding structure 32
  • the transmission line structure for description is used as an example for the transmission line structure for description.
  • the power division feed structure 3 is composed of a main line segment and four sub-line segments, and the position of the midpoint in the length direction of the main line segment can be
  • the first port for example 31a
  • the two ends of the main line end are respectively connected to the first ends of the two sub-line segments
  • the second ends of the two sub-line segments are respectively connected to the second port (for example 31b)
  • the second end of each sub-line segment extends to the first port.
  • a radiation unit 12 is connected to the first radiation unit 12 .
  • the power splitting and feeding structure 3 may also be other structures, which are merely illustrative and do not limit the present invention.
  • the formation of the second radiation unit 22 and the shape of the first radiation unit 12 are both center-symmetrical figures.
  • the shapes of the second radiation unit 22 and the first radiation unit 12 may be various shapes, for example, Referring to FIGS. 17 and 18 , both the second radiating element 22 and the first radiating element 12 are square radiating elements.
  • the antenna is a dual-polarized antenna, the antenna includes a first power division feeding structure 31 and a second power division feeding structure 32 , then the second port 31b of the first power division feeding structure 31 and the second port 32b of the second power division feeding structure 32 are respectively connected to two adjacent sides of the first radiating element 12.
  • the second port 31b of the sub-feed structure 31 is connected to the midpoint of the length of one side of the first radiating element 12, that is, the first connection point a1 is on the midpoint of the length of one side of the first radiating element 12;
  • the second port 32b of the second power division feeding structure 32 is connected to the midpoint of the length of the side of the first radiating element 12 adjacent to the above-mentioned side, that is, the second connection point b1 is connected to the first radiating element 12 and the side. On the midpoint of the length of the side adjacent to the aforementioned side.
  • the first connection point a1 of each first radiation unit 12 is The extension direction (for example, the first direction S2) of the line connecting the center of symmetry O1), and the difference between the second connection point b1 of the same first radiation unit 12 and the center of symmetry (ie, the first center of symmetry O1) of the first radiation unit 12
  • the extension direction of the connection line (for example, the third direction S3) is also perpendicular, so that the polarization direction formed by the second port 31b of the first power division feeding structure 31 and the first radiating element 12 is +45°, and the second power division The polarization direction formed by the second port 32b of the feeding structure 32 and the first radiating element 12 is -45°.
  • the second radiation unit 22 may include a first sub-radiation unit 121 and a second sub-radiation unit 122 , the extension direction of the first sub-radiation unit 121 and the second sub-radiation unit 121
  • the extension directions of the radiation units 122 intersect, and the intersection of the first sub-radiation unit 121 and the second sub-radiation unit 122 is the center of symmetry of the second radiation unit 22 .
  • the first radiation unit 12 includes a third sub-radiation unit 221 and a fourth sub-radiation unit 222.
  • the extension direction of the third sub-radiation unit 221 intersects with the extension direction of the fourth sub-radiation unit 222.
  • the intersection of the radiation unit 221 and the fourth sub-radiation unit 222 is the center of symmetry of the first radiation unit 12 .
  • the first sub-radiation unit 121, the second sub-radiation unit 122, the third sub-radiation unit 221, and the fourth sub-radiation unit 222 are all rectangular radiation units.
  • the first sub-radiation unit 121, The length and width of the second sub-radiation unit 122 are the same, so the midpoint of the length of the first sub-radiation unit 121 in the extension direction intersects with the midpoint of the length of the second sub-radiation unit 122 in the extension direction, and the intersection point is
  • the center of symmetry of the second radiation unit 22 is called the fourth center of symmetry O4, and the extension direction of the first sub-radiation unit 121 (for example, the direction shown by S4) and the extension direction of the second sub-radiation unit 122 (for example, the direction shown by S5) ) are perpendicular to each other, forming a cross-shaped first sub-radiation unit 12; the length and width of the third sub-radiation unit 221 and the fourth sub-radiation unit 222 are the same, so that the middle of the length of the third sub-radiation unit 221 in the extending direction The point intersects with the midpoint of the length in the extending direction of the fourth sub-radiation unit 222, and the
  • the extension direction of the first sub-radiation unit 121 of the second radiation unit 22 is the same as the extension direction of the third sub-radiation unit 221 of the first radiation unit 12 (for example, both are in the direction indicated by S4), and the extension direction of the second radiation unit 22
  • the extending direction of the second sub-radiation unit 122 is the same as the extending direction of the fourth sub-radiation unit 222 of the first radiation unit 12 (for example, both are in the direction indicated by S5 ), so that the positive direction of the first radiation unit 12 on the first substrate 21 is
  • the projection can be located in the orthographic projection of the second radiation unit 22 on the first substrate 21 .
  • the antenna is a dual-polarized antenna
  • the antenna includes a first power division feeding structure 31 and a second power division feeding structure 32, and the second port 31b of the first power division feeding structure 31 is connected to the second port 31b corresponding to the second port 31b.
  • the third sub-radiation unit 221 of a radiation unit 12; the second port 32b of the second power division feeding structure 32 is connected to the fourth sub-radiation unit 222 of the first radiation unit 12 corresponding to the second port 32b.
  • the second port 31b of a power division feeding structure 31 is connected to one end of the third sub-radiation unit 221 of the first radiation unit 12 corresponding to the second port 31b, that is, the first connection point a1 is located at the midpoint of the end;
  • the second port 32b of the second power division feeding structure 32 is connected to one end of the fourth sub-radiation unit 222 of the first radiation unit 12 corresponding to the second port 32b, that is, the second connection point b1 is located at the midpoint of the end. .
  • the extension direction (for example, the direction shown by S5 ) of the connection line of the symmetry center (ie, the third symmetry center O3 ) of the first radiation element 12 is also perpendicular, so that the second port 31 b of the first power division feeding structure 31 is connected to the second port 31 b of the first power division feeding structure 31 .
  • the polarization direction formed by one radiation element 12 is +45°
  • the polarization direction formed by the second port 32b of the second power division feeding structure 32 and the first radiation element 12 is -45°.
  • the specific structures of the second radiation unit 22 and the first radiation unit 12 may also have various forms, which are not limited herein.
  • the antenna is a dual-polarized antenna with two polarization directions of ⁇ 45°
  • the third substrate 103 of the antenna may include Four second radiation units 22 are arranged along the first direction S1; the first substrate 102 of the antenna may include four first radiation units 12, and the four first radiation units 12 are arranged along the first direction S1;
  • the antenna includes two power division feeding structures 3, which are a first power division feeding structure 31 and a second power division feeding structure 32, respectively.
  • the first power division feeding structure 31 includes a first port 31a and four second power division feeding structures 31a.
  • each second port 31b is connected to a first radiation unit 12, and the connection position is the first connection point a1;
  • the second power division feeding structure 32 includes one first port 32a and four second ports 32b, each The second ports 32b are connected to one first radiation unit 12, and the connection position is the second connection point b1.
  • the second radiation unit 22 and the first radiation unit 12 are both center-symmetrical figures.
  • the extension direction of the connection line between the connection point a1 and the symmetry center of the first radiation unit 12, and the extension direction of the connection line between the second connection point b1 of the same first radiation unit 12 and the symmetry center of the first radiation unit 12 ( For example, the third direction S3) is also perpendicular to form two polarization directions of ⁇ 45°.
  • FIG. 21 is an exemplary schematic structural diagram of an antenna supporting frame provided by an embodiment of the present disclosure
  • FIG. 22 is provided by an embodiment of the present disclosure.
  • FIG. 23 is an exemplary side view of an antenna support frame provided by an embodiment of the present disclosure.
  • the antenna provided by the embodiment of the present disclosure has a radiation area and a peripheral area arranged around the radiation area.
  • the antenna provided by the embodiment of the present disclosure further includes a support frame 4 , and the support frame 4 may be disposed in a peripheral area and configured to support the third substrate 103 and the first substrate 102 .
  • a certain space is supported between the third substrate 103 and the first substrate 102, so that a hollow portion is formed between the first radiation unit 12 and the third substrate 1031, so that the signal radiated by the first radiation unit 12 can pass through the hollow portion.
  • the air medium is fed to the second radiation unit 22.
  • the dielectric constant of air is 1, and the medium loss of the signal propagating in the air is close to 0, so it can be Effectively reduce medium loss.
  • the support frame 3 supports a certain space between the third substrate 103 and the first substrate 102, and this space is used as the clearance area of the antenna, so that the clearance area of the antenna is increased, so the bandwidth of the antenna can be effectively increased, and the resonance can be weakened, and then Increase the radiation efficiency of the antenna.
  • the height of the support frame 4 can be increased to increase the clearance area of the antenna, and the support frame 4 is supported between the third substrate 103 and the first substrate 102, so that the height of the support frame 4 can also be limited
  • the distance between the third substrate 103 and the first substrate 102 is determined.
  • the height of the support frame 4 may be 5-50 mm, for example, may be 8 mm, so that the distance between the third substrate 103 and the first substrate 102 is 8 mm.
  • the width of the frame body of the support frame 4 can also be in various forms, as long as the second radiation unit 22 and the first radiation unit 12 are not blocked, for example, it can be 9.5 mm, which is not limited here.
  • the support frame 4 may also have a main structure 4a and a plurality of auxiliary support parts 4b, the main structure 4a is provided in the peripheral area, and the plurality of auxiliary support parts 4b are distributed in the radiation area, but the auxiliary support parts 4b It is not in contact with the second radiation unit 22 and the first radiation unit 12 , that is, the orthographic projection of the plurality of auxiliary supporting parts 4 b on the first substrate 21 is in contact with the plurality of second radiation units 22 and the plurality of first radiation units 12 .
  • the orthographic projections on the first base 21 have no overlapping area, and the support frame 3 composed of the main structure 4a and the plurality of auxiliary support parts 4b is configured to support the third substrate 103 and the first substrate 102, and the auxiliary support parts 4b can be increased The support force of the support frame 4.
  • the auxiliary support portion 4b may include various forms, for example, the auxiliary support portion 4b may be a plurality of support columns, and the support columns are distributed among the plurality of first radiation units 12 in the radiation area. For another example, see FIG.
  • the auxiliary support portion 4b It may include a first auxiliary support part 4b1 and a second auxiliary support part 4b2, the extension direction of the first auxiliary support part 4b1 and the extension direction of the second auxiliary support part 4b2 intersect, and both ends of the first auxiliary support part 4b1 extend to the support frame Two opposite sides of the main structure 4a of the support frame 4; both ends of the second auxiliary support portion 4b2 extend to the other two opposite sides of the main structure 4a of the support frame 4. As shown in FIG. 25 , the first auxiliary support portion 4b1 and the second auxiliary support portion 4b2 intersect and are combined with the main structure 4a to form a field-shaped support frame 4 .
  • auxiliary support structure 4b and the main structure 4a may be separate structures, and the two are not connected; the auxiliary support structure 4b may also be integrally formed with the main structure 4a, for example, in FIG. 25, the first auxiliary support portion 4b1 and the second auxiliary support portion 4b1
  • the support portion 4b2 is integrally formed with the main structure 4a to form a field-shaped support frame 4, which is not limited herein.
  • the support frame 4 may include various shapes, such as rectangle, circle, hexagon, etc. The following description will be given by taking the support frame 4 as a rectangular support frame as an example, but does not limit the present invention.
  • the antenna provided by the embodiments of the present disclosure may further include a first adhesive layer and a second adhesive layer, wherein the first adhesive layer is located between the support frame 4 and the third substrate 103 for fixing the support Frame 4 and the third substrate 103, the orthographic projection of the first adhesive layer on the third substrate 103 at least partially overlaps with the orthographic projection of the support frame 4 on the third substrate 103.
  • the pattern is formed between the support frame 4 and the third substrate 103 , the orthographic projection of the first adhesive layer on the third substrate 103 completely overlaps with the orthographic projection of the support frame 4 on the third substrate 103 .
  • the second adhesive layer is located between the support frame 4 and the first substrate 102 and is used to fix the support frame 4 and the first substrate 102.
  • the orthographic projection of the second adhesive layer on the first substrate 102 is on the first
  • the orthographic projections on a substrate 102 are at least partially overlapped. If the second adhesive layer is formed between the support frame 4 and the first substrate 102 according to the pattern of the support frame 4 , the orthographic projection of the second adhesive layer on the first substrate 102 The projection completely overlaps with the orthographic projection of the support frame 4 on the first substrate 102 .
  • Both the first adhesive layer and the second adhesive layer may include a variety of materials, for example, the first adhesive layer and the second adhesive layer may use transparent optical adhesive (Optically Clear Adhesive, OCA), of course, can also be other material, which is not limited here.
  • OCA Optically Clear Adhesive
  • the antenna provided by the embodiments of the present disclosure further includes at least one connecting line 5 , referring to FIGS. 17 and 19 , the at least one connecting line 5 is disposed on the first substrate 21 close to the third substrate 103
  • One side, that is, at least one connecting line 5 is disposed on the same layer as the power division feeding structure 3 and the first radiating element 12 .
  • the side of the support frame 4 has at least one opening 41 , one end of each connection wire 5 is connected to the first port of a power division feeding structure 3 , and the other end of the connection wire 5 extends to one of the sides of the support frame 4 .
  • the external signal line is connected to the connecting line 5 through the opening 41 , so as to transmit a signal (eg, a radio frequency signal) to the power division feeding structure 3 through the connecting line 5 .
  • a signal eg, a radio frequency signal
  • the power dividing and feeding structure 3 is a transmission line structure, the power dividing and feeding structure 3 can be integrally formed with the connecting wire 5 .
  • the antenna provided by the embodiment of the present disclosure further includes a first connector 7 and a first fixing plate 8 .
  • the first connector 7 is used to connect the external signal line and the connection line 5
  • the first fixing plate 8 is used to fix the first connector 7 to the side of the support frame 4 .
  • the first fixing plate 8 has a first through hole 001
  • the first connector 7 is fixed to the first fixing plate 8 through the first through hole 001 on the first fixing plate 8
  • the first fixing plate 8 is fixed with the side of the support frame 4 so as to fix the first connector 7 with the support frame 4 .
  • the first connector 7 may include various types of connectors, for example, the first connector 7 may be an SMA (Small A Type) connector, and the first connector 7 specifically the first end 71a and The second end 71b, the first end 71a is inserted into the opening 41 on the side of the support frame 4 to connect the connecting wire 5, and the second end 71b of the first connector 7 is connected to the external signal wire, so that the external signal wire passes through the first connector 7 Input connection line 5.
  • SMA Small A Type
  • connection structure 72 of the first connector 7 is located between the first end 71a and the second end 71b, the end of the first end 71a may have a conductive pin 71c, and the first end 71a is inserted into the opening on the side of the support frame 4
  • the hole 41 and the conductive pin 71c at the end of the first end 71a are connected to the connecting wire 5 so as to input a signal to the connecting wire 5 .
  • the conductive pins 71c and the connecting wires 5 can be fixed by solder 006, of course, other fixing methods can also be used, which are not limited here.
  • the antenna includes a plurality of first radiating elements 12 , and the plurality of first radiating elements 12 are arranged along the first direction S1 , and the antenna includes a first power division feeding structure 31 and the second power division feeding structure 32 as an example, then correspondingly, the frame of the support frame 4 can also be provided with two openings 41, which are the first opening 41a and the second opening 41b, and the first opening 41a and the second opening 41b can be arranged on the same side of the support frame 4, or can be arranged on different sides of the support frame 4, so that one opening 41a and the second opening 41b can be arranged on the same side of the support frame 4.
  • the first power division feeding structure 31 and the second power division feeding structure 32 are disposed opposite to each other along the arrangement direction (first direction S1) of the plurality of first radiating elements 12, and the first power division feeding structure 31 is close to the first opening 41a and the second opening 41b relative to the second power division feeding structure 32.
  • the antenna in this embodiment includes The first connection line 51 and the second connection line 52, one end of the first connection line 51 is connected to the first port 31a of the first power division feeding structure 31, and the other end of the first connection line 51 extends to the side of the support frame 4
  • the first opening 41a is connected to the first connector 7 (not shown in FIG.
  • the first connector 7 connected to the first connection line 51 and the second connection line 52 is a different first connector 7, and different first connectors 7 can be connected to different external signal lines, so the first The signal received by the connection line 51 may be different from the signal received by the second connector 52, so that the first port 31a of the first power division feeding structure 31 and the first port 32a of the second power division feeding structure 32 receive Signals are different.
  • first power division feeding structure 31 is closer to the first opening 41a and the second opening 41b than the second power division feeding structure 32, and the first opening 41a and the second opening 41b are disposed on the support
  • the length of the second connection line 52 connected between the second opening 41b and the second power division feeding structure 32 is greater than that between the first opening 41a and the first power division feeding structure
  • the openings 41 on the support frame 4 can also be arranged on different sides of the support frame 4 , so that the antenna includes a plurality of first radiating elements 12 , and the plurality of first radiating elements 12 along the Arranged in one direction S1, and the antenna includes the first power division feeding structure 31 and the second power division feeding structure 32 as an example, correspondingly, the frame of the support frame 4 can also be provided with two openings 41, which are the first An opening 41a and a second opening 41b, the first opening 41a and the second opening 41b can be provided on different sides of the support frame 4, for example, as shown in FIG.
  • the first opening 41a and the second opening 41b are respectively disposed on two opposite sides of the support frame 4, and the first power division feeding structure 31 and the second power division feeding structure 32 are arranged along the arrangement direction of the plurality of first radiating elements 12 (the first direction S1). Relatively arranged, the first power division feeding structure 31 is close to the first opening 41a, and the second power division feeding structure 32 is close to the second opening 41b, so it is connected to the second opening 41b and the second power division feeding structure
  • the length of the second connection line 52 between the 32 may be the same as the length of the first connection line 51 connected between the first opening 41 a and the first power division feeding structure 31 .
  • the openings 41 on the support frame 4 can be set in various ways, and can be set as required. If the openings 41 are set on the same side, the antenna can be set with openings when the antenna is installed outdoors. One side of 41 is installed away from the sky, so that rainwater can be prevented from flowing into the interior of the antenna through the opening 41, and the structure inside the antenna can be prevented from being damaged.
  • the first connector 7 has a main body (including 71a, 71b, 71c) and a connecting structure 72, and the main body is disposed through the connecting structure 72.
  • the main body can be a cylindrical interface
  • the connecting structure 72 can be a connecting plate
  • the extension direction of the main view of the cylindrical interface is perpendicular to the extending direction of the connecting structure 72 of the connecting plate. It is fixed with the first fixing plate 8 .
  • the first fixing plate 8 may have a bottom plate 81 and a side plate 82 , and the side plate 82 may be provided at an edge of one side of the bottom plate 81 , if the plane direction of the side plate 82 is the same as that of the bottom plate 81 The plane directions are perpendicular to each other, then an L-shaped first fixing plate 8 is formed.
  • the first fixing plate 8 is an L-shaped fixing plate as an example for description.
  • the first fixing plate 8 can also have other structures.
  • the side plate 82 of the first fixing plate 8 is used for fixing the first connector 7 and the side of the supporting frame 4
  • the bottom plate 81 of the first fixing plate 8 is used for connecting the first fixing plate 8 and the side of the supporting frame 4 . Edges are fixed.
  • the side plate 82 has a plurality of second through holes 002
  • the connection structure 72 of the first connector 7 has a plurality of third through holes 003
  • the second through holes 002 and the third through holes 003 are in one-to-one correspondence
  • the antenna also includes a plurality of third through holes 003.
  • Each of the first fixing members 011 is in one-to-one correspondence with the second through holes 002 on the side plate 82 .
  • the side plate 82 of the first fixing plate 8 fixes the first connector 7 to the side of the support frame 4, the first end 71a of the main body of the first connector 7 penetrates through the first through hole 001 on the side plate 82,
  • the connecting structure 72 of the first connector 7 is abutted against the side plate 82 of the first fixing plate 8, and the first end 71a of the main body of the first connector 7 is inserted into the opening 41 on the side of the support frame 4, and each A fixing member 011 passes through the second through hole 002 on the side plate 82 of the first fixing plate 8 and the third through hole 003 on the connecting structure 72 of the first connector 7 to connect the connecting structure 72 to the side plate 82 is fixed to fix the first connector 7 with the first fixing plate 8 .
  • connection structure 72 of the first connector 7 also has four third through holes 002 .
  • the positions of the holes 003 and the third through holes 003 are set according to the positions of the first through holes 001 .
  • the antenna also has four first fixing pieces 011 , and each first fixing piece 011 is respectively inserted into a first fixing piece 011 on the side plate 82 .
  • the second through hole 002 and the third through hole 003 on the connecting structure 72 overlapping the second through hole 002 fasten the first fixing plate 8 to the first connector 7 .
  • the first fixing member 011 may have various types of structures.
  • the first fixing member 011 is a screw as an example for illustration, and the outer side of the first fixing member 011 of the screw has The holes on the walls of the second through hole 002 and the third through hole 003 also have threads, respectively. Matching, the first fixing member 011 of the screw is screwed into the second through hole 002 and the third through hole 003 to fix the side plate 82 of the first fixing plate 8 and the connecting structure 72 of the first connector 7 .
  • the first fixing plate 8 is fixed on the side of the support frame 4 , and the connecting structure 72 of the first connector 7 and the side plate 82 of the first fixing plate 8 are away from the support.
  • One side of the sides of the frame 4 abuts against each other, and is fixed on the side plate 82 of the first fixing plate 8 by the first fixing member 011 .
  • the side of the support frame 4 with the opening 41 has a first surface A, a second surface B and a third surface C, the second surface B is connected between the first surface A and the third surface C, and the plane of the first surface A is The direction intersects the plane direction of the second plane B, and the plane direction of the third plane C intersects the plane direction of the second plane B, and the plane direction of the first plane A and the plane direction of the third plane C extend in the same direction, the following
  • the second surface B extends in a direction perpendicular to the ground, and the first surface A, the third surface C and the second surface B are perpendicular to each other for illustration.
  • the bottom plate 81 of the first fixing plate 8 is in contact with the third surface C of the side of the supporting frame 4
  • the side plate 82 of the first fixing plate 8 is in contact with the second surface B of the side of the supporting frame 4 .
  • the opening 41 on the side is arranged on the second surface B of the side of the support frame 4, and the first through hole 001 on the side plate 82 of the first fixing plate 8 is also arranged corresponding to the opening 41, so that the first connector
  • the first end 71a of the main body of 7 passes through the first through hole 001 and is inserted into the opening 41 to be connected with the connecting wire 5 .
  • the positions of the two fourth through holes 004 are opposite to the positions of the first through holes 001 on the side plate 82 and are respectively arranged on the side of the first through holes 001 . sides.
  • the side of the support frame 4 has two fifth through holes 005.
  • the orthographic projections of the two fifth through holes 005 on the third surface C are located on both sides of the opening 41, respectively.
  • the three faces C extend in the direction of the first face A, and the extending direction of the opening 41 is perpendicular to the extending direction of the fifth through hole 005 , see FIG. 29 , that is, the fifth through hole 005 is a vertical through hole, and the opening 41 It is an opening in a direction parallel to the first substrate 21 .
  • the orthographic projection of the fifth through hole 005 on the side on the bottom plate 81 of the first fixing plate 8 is the same as the first
  • the fourth through holes 004 on the bottom plate 81 of the fixing plate 8 have overlapping regions, that is, the fifth through holes 005 and the fourth through holes 004 are arranged in a one-to-one correspondence.
  • the bottom plate 81 has two fourth through holes 004
  • the third side C of the side has two fifth through holes 005
  • the antenna has two second fixing parts 021 .
  • each second fixing member 021 passes through the fourth through hole 004 on the bottom plate 81 of the first fixing plate 8 and the fourth through hole 004 on the side of the support frame 4 .
  • the fifth through holes 005 on the three sides C are used to fix the third side C of the side of the support frame 4 with the bottom plate 81 of the first fixing plate 8 , so as to connect the side of the supporting frame 4 to the first fixing plate 8 Since the first connector 7 is fixed to the side plate 82 of the first fixing plate 8 through the connecting structure 72, the side of the support frame 4 is fixed to the first fixing plate 8, which means that the first connector 7 is connected to the support The relative positions of the sides of the frame 4 are fixed.
  • the second fixing member 021 may have various types of structures.
  • the second fixing member 021 is a screw as an example for illustration, and the outer side of the second fixing member 021 of the screw has The holes on the walls of the fourth through hole 004 and the fifth through hole 005 also have threads, respectively. Matching, so that the second fixing member 021 of the screw is screwed into the fourth through hole 004 and the fifth through hole 005, and the bottom plate 81 of the first fixing plate 8 is fixed to the third surface A of the side of the support frame 4. .
  • the side plate 82 of the first fixing plate 8 is in contact with the second surface B of the side of the support frame 4 , and the second surface B is further provided with a first groove 007, the opening 41 on the side of the support frame 4 is located in the groove bottom of the first groove 007, referring to FIG.
  • the width D2 of the first groove 007 is not less than the width D1 of the side plate 82 of the first fixing plate 8 , that is, D2 ⁇ D1, then the side plate 82 of the first fixing plate 8 can be embedded in the first groove 007, and the first through hole 001 on the side plate 82 is opposite to the opening 41 at the bottom of the first groove 007 , the first end 71 a of the first connector 7 can be inserted into the opening 41 through the first through hole 001 .
  • the side plate 82 of the first fixing plate 8 can be embedded in the first groove 007, so that the first fixing plate 8 can be tightly combined with the side edge of the support frame 4, and the first fixing plate 8 will not affect the overall width of the antenna.
  • the side of the third base 1031 of the third substrate 103 close to the opening 41 on the side of the support frame 4 has the second groove
  • the side of the first base 21 of the first substrate 102 close to the support frame 4 One side of the opening 41 on the side has a third groove
  • the first groove, the second groove, and the third groove are connected to form a groove, that is, the first groove is on the first substrate 21.
  • the orthographic projection and the orthographic projection of the second groove on the first substrate 21 are at least partially coincident with the third groove.
  • the first groove is The orthographic projection of the first base 21 and the orthographic projection of the second groove on the first base 21 and the third groove can be completely coincident, so that the side plate of the first fixing plate 8 can be embedded in the first groove and the second groove.
  • the first fixing plate 8 can be tightly combined with the side of the support frame 4, and the first fixing plate 8 will not affect the overall width of the antenna.
  • connection line 5 on the first substrate 21 of the antenna may also be connected to external signal lines in other ways.
  • the antenna may include a first connector 7 and a connection cable (not shown in the figure).
  • the first The connector 7 can include various types of connectors, for example, the first connector 7 can be an SMA (Small A Type) connector, and the first end 71a of the first connector 7 can be an SMA connector with an inner hole,
  • the second end 71b of the first connector 7 also has a wiring port that can be connected to an external signal line, and the first end of the connection cable passes through the inner hole of the first end 71a of the first connector 7 and the first connector 7.
  • the second end of the connecting cable passes through the opening 41 on the side of the support frame 4 and is connected to the connecting line 5 extending to the opening 41, and the second end 71b of the first connector 7 is connected to the external signal line connected, then the external signal line transmits the radio frequency signal to the connecting cable through the first end 71a of the first connector 7, and the connecting cable then inputs the radio frequency signal into the connecting line 5, and the connecting line 5 then transmits the signal into the power division feeding structure 3 .
  • the first fixing plate 8 does not need to be provided, and the fifth through hole 005 does not need to be provided on the side of the support frame 4, and only the opening 41 is provided.
  • the antenna provided in the embodiment of the present disclosure may also have other connection manners, which are not limited herein.
  • the antenna provided by the embodiment of the present disclosure includes a dielectric layer, the dielectric layer is located between the third substrate 103 and the first substrate 102 , and the radio frequency signal output by the first radiation unit 12 passes through the dielectric layer
  • the dielectric layer may include a dielectric substrate 04, and the dielectric substrate 04 may be a thick plate, such as a glass substrate.
  • other materials may also be used to make the dielectric substrate 04.
  • the dielectric substrate 04 has At least one hollow part 041, one hollow part 041 corresponding to one second radiation unit 22, one hollow part 041 corresponding to one second radiation unit 022, that is to say, the radio frequency signal radiated by one first radiation unit 12
  • a second radiating unit 22 is fed through the air medium between the hollow parts 041 , and the hollow part 041 corresponds to the first radiating unit 12 and the second radiating unit 22 .
  • the orthographic projection of the second radiation unit 22 on the first substrate 21 is located in the orthographic projection of the hollow portion 041 corresponding to the second radiation unit 22 in the dielectric substrate 04 on the first substrate 21, and is consistent with the first substrate 21.
  • the orthographic projection of the first radiation unit 12 corresponding to the two radiation units 22 on the first substrate 21 is located in the orthographic projection of the hollow portion 041 corresponding to the first radiation unit 12 in the dielectric substrate 04 on the first substrate 21, and also That is to say, the hollow portion 041 in the dielectric substrate 04 covers at least the second radiation unit 22 and the first radiation unit 12 , so that the dielectric layer between the first radiation unit 12 and the second radiation unit 22 is still an air medium, and thus can Reduce the transmission loss of RF signal.
  • the shape of the cross-section of the hollow portion 041 may be the same as that of the second radiation unit 22 or the first radiation unit 12 , and the area of the cross-section of the hollow portion 041 is not smaller than that of the second radiation unit 22 or the first radiation unit 12 .
  • the area of the first radiation unit 12 As shown in FIG. 33 , the shape of the cross-section of the hollow part 041 can be different from the shape of the second radiation unit 22 or the first radiation unit 12, as long as the hollow part 041 can separate the second radiation unit 22 or the first radiation unit 12 Just cover.
  • the antenna provided by the embodiments of the present disclosure may further include a first adhesive layer and a second adhesive layer, wherein the first adhesive layer is located between the dielectric substrate 04 and the third substrate 103 for fixing the dielectric
  • the orthographic projection of the first adhesive layer on the third substrate 103 of the substrate 04 and the third substrate 103 at least partially overlaps with the orthographic projection of the portion of the dielectric substrate 04 excluding the hollow portion 041 on the third substrate 103 .
  • the bonding layer is formed between the dielectric substrate 04 and the third substrate 103 according to the pattern of the dielectric substrate 04 with the hollows 041 removed.
  • the orthographic projections of parts on the third substrate 103 are completely overlapped.
  • the second adhesive layer is located between the dielectric substrate 04 and the first substrate 102 , and is used to fix the dielectric substrate 04 and the first substrate 102 .
  • the orthographic projection of the second adhesive layer on the first substrate 102 is used to remove the hollow from the dielectric substrate 04 .
  • the orthographic projection of the part 041 on the first substrate 102 at least partially overlaps. If the second adhesive layer is formed between the dielectric substrate 04 and the first substrate 102 according to the pattern of the dielectric substrate 04 except the hollow part 041, the second adhesive layer will be formed between the dielectric substrate 04 and the first substrate 102.
  • the orthographic projection of the bonding layer on the first substrate 102 completely overlaps with the orthographic projection of the portion of the dielectric substrate 04 excluding the hollow portion 041 on the first substrate 102 .
  • Both the first adhesive layer and the second adhesive layer may include a variety of materials, for example, the first adhesive layer and the second adhesive layer may use transparent optical adhesive (Optically Clear Adhesive, OCA), of course, can also be other material
  • the dielectric substrate 04 has a plurality of hollow parts 041 , and each hollow plate 041 corresponds to a second radiation unit 22 .
  • the side of the dielectric substrate 04 has at least one opening 41 .
  • the first substrate 102 further includes at least one connecting wire 5 , and the at least one connecting wire 5 is disposed on the side of the first substrate 21 close to the third substrate 103 , and is on the same layer as the power division feeding structure 3 and the first radiating element 12 . It is arranged that one end of each connecting wire 5 is connected to a first port of a power division feeding structure 3 , and the other end of the connecting wire 5 extends to an opening 41 to connect an external signal line through the opening 41 .
  • the antenna provided by the embodiment of the present disclosure uses the dielectric substrate 04 as the dielectric layer, and the antenna may further include a first Connector 7 and first fixing plate 8 .
  • the first connector 7 is used to connect the external signal line and the connection line 5
  • the first fixing plate 8 is used to fix the first connector 7 to the side of the dielectric substrate 04 .
  • the first fixing plate 8 has a first through hole 001
  • the first connector 7 is fixed to the first fixing plate 8 through the first through hole 001 on the first fixing plate 8
  • the first fixing plate 8 is fixed to the side of the dielectric substrate 04 , so as to fix the first connector 7 to the dielectric substrate 04 .
  • the first end 71a of the first connector 7 is inserted into the opening 41 on the side of the dielectric substrate 04 to connect the connection line 5, and the second end 71b of the first connector 7 is connected to the external signal line, so that the external signal line is connected through the first connection 7 input connection line 5.
  • the connection wire 5 can be formed in the dielectric substrate 04 , but the end of the connection wire 4 extending to the opening 41 needs to be exposed at the opening 41 to connect with the first end 71 a of the first connector 7 .
  • the side of the dielectric substrate 04 may have The plurality of openings 41 may be provided on the same side of the dielectric substrate 04, or may be provided on different sides of the dielectric substrate 04, which is not limited herein.
  • the side plate 82 of the first fixing plate 8 fixes the first connector 7 to the side of the dielectric substrate 04 , the first end 71 a of the main body of the first connector 7 penetrates the first end 71 a on the side plate 82 .
  • a through hole 001 so that the connecting structure 72 of the first connector 7 abuts against the side plate 82 of the first fixing plate 8 , and the first end 71 a of the main body of the first connector 7 is inserted into the opening on the side of the dielectric substrate 04 41.
  • Each first fixing piece 011 passes through the second through hole 002 on the side plate 82 of the opposing first fixing plate 8 and the third through hole 003 on the connecting structure 72 of the first connector 7 to connect the The structure 72 is fixed with the side plate 82 so as to fix the first connector 7 and the first fixing plate 8 .
  • the first fixing plate 8 is fixed on the dielectric substrate
  • the connecting structure 72 of the first connector 7 is in contact with the side of the side plate 82 of the first fixing plate 8 away from the side of the dielectric substrate 04, and is fixed to the first fixing plate 8 by the first fixing member 011. on the side panel 82.
  • the side of the dielectric substrate 04 with the opening 41 has a first surface A, a second surface B and a third surface C, the second surface B is connected between the first surface A and the third surface C, and the plane of the first surface A is The direction intersects the plane direction of the second plane B, and the plane direction of the third plane C intersects the plane direction of the second plane B, and the plane direction of the first plane A and the plane direction of the third plane C extend in the same direction, the following
  • the second surface B extends in a direction perpendicular to the ground, and the first surface A, the third surface C and the second surface B are perpendicular to each other for illustration.
  • the bottom plate 81 of the first fixing plate 8 is in contact with the third surface C of the side of the dielectric substrate 04
  • the side plate 82 of the first fixing plate 8 is in contact with the second surface B of the side of the dielectric substrate 04 .
  • the opening 41 on the side is arranged on the second surface B of the side of the dielectric substrate 04
  • the first through hole 001 on the side plate 82 of the first fixing plate 8 is also arranged corresponding to the opening 41, so that the first connector
  • the first end 71a of the main body of 7 passes through the first through hole 001 and is inserted into the opening 41 to be connected with the connecting wire 5 .
  • the positions of the two fourth through holes 004 are opposite to the positions of the first through holes 001 on the side plate 82 and are respectively arranged on the side of the first through holes 001 . sides.
  • the side of the dielectric substrate 04 has two fifth through holes 005.
  • the orthographic projections of the two fifth through holes 005 on the third surface C are located on both sides of the opening 41, respectively.
  • the three faces C extend in the direction of the first face A, and the extending direction of the opening 41 is perpendicular to the extending direction of the fifth through hole 005 , see FIG. 29 , that is, the fifth through hole 005 is a vertical through hole, and the opening 41 It is an opening in a direction parallel to the first substrate 21 .
  • the orthographic projection of the fifth through hole 005 on the side on the bottom plate 81 of the first fixing plate 8 is the same as the first
  • the fourth through holes 004 on the bottom plate 81 of the fixing plate 8 have overlapping regions, that is, the fifth through holes 005 and the fourth through holes 004 are arranged in a one-to-one correspondence.
  • the bottom plate 81 has two fourth through holes 004
  • the third side C of the side has two fifth through holes 005
  • the antenna has two second fixing parts 021 .
  • each second fixing member 021 passes through the fourth through hole 004 on the bottom plate 81 of the first fixing plate 8 and the fourth through hole 004 on the side of the dielectric substrate 04 .
  • the fifth through holes 005 on the three sides C are used to fix the third side C of the side of the dielectric substrate 04 to the bottom plate 81 of the first fixing plate 8 , so as to fix the side of the dielectric substrate 04 to the first fixing plate 8 Since the first connector 7 is fixed to the side plate 82 of the first fixing plate 8 through the connecting structure 72, the side of the dielectric substrate 04 is fixed to the first fixing plate 8, that is, the first connector 7 is connected to the medium The relative positions of the sides of the substrate 04 are fixed.
  • the side plate 82 of the first fixing plate 8 Abutting against the second surface B of the side of the dielectric substrate 04, the second surface B is further provided with a first groove 007, and the opening 41 on the side of the dielectric substrate 04 is located in the groove bottom of the first groove 007, see 31, the width D2 of the first groove 007 is not less than the width D1 of the side plate 82 of the first fixing plate 8, that is, D2 ⁇ D1, then the side plate 82 of the first fixing plate 8 can be embedded in the first groove 007,
  • the first through hole 001 on the side plate 82 is opposite to the opening 41 at the bottom of the first groove 007 , and the first end 71 a of the first connector 7 can be inserted into the opening 41 through the first through hole 001 .
  • the connection on the first substrate 21 of the antenna is similar.
  • the line 5 can also be connected to external signal lines in other ways.
  • the antenna can include a first connector 7 and a connecting cable (not shown in the figure), and the first connector 7 can include various types of connectors, for example,
  • the first connector 7 can be an SMA (Small A Type) connector, the first end 71a of the first connector 7 can be an SMA connector with an inner hole, and the second end 71b of the first connector 7 can also be connected.
  • connection port of the external signal line, the first end of the connection cable is connected to the first end 71a of the first connector 7 through the inner hole of the first end 71a of the first connector 7, and the second end of the connection cable passes through the medium
  • the opening 41 on the side of the substrate 04 is connected to the connecting line 5 extending to the opening 41, and the second end 71b of the first connector 7 is connected to the external signal line, and the external signal line transmits the radio frequency signal through the first connector.
  • the first end 71a of 7 is transmitted to the connection cable, and the connection cable then inputs the radio frequency signal into the connection line 5, and the connection line 5 then transmits the signal into the power division feeding structure 3.
  • the first fixing plate 8 does not need to be provided, and the side edge of the dielectric substrate 04 does not need to be provided with the fifth through hole 005 , and only the opening 41 is provided.
  • the antenna provided in the embodiment of the present disclosure may also have other connection manners, which are not limited herein.
  • the antenna provided by the embodiment of the present disclosure may further include a plurality of impedance matching structures 6 , and each second port of each power division feeding structure 3 is connected to the second port.
  • An impedance matching structure 6 is connected between the first radiating elements 12, and the impedance matching structure 6 is used to match the impedance between the first radiating element 12 and the second port of the power division feeding structure 3, thereby reducing the transmission loss of the signal .
  • the impedance matching structure 6 can be of various types of structures.
  • the impedance matching structure 6 is a raised conductive structure, which is connected to each second of the power division feeding structure 3 for the transmission line.
  • the impedance matching structure 6 can also be a trapezoidal electrode, the long side of the trapezoidal electrode points to the direction of the short side, the cross section of the trapezoidal electrode gradually decreases, so that the impedance gradually increases, one of the long side and the short side of the trapezoidal electrode is
  • the second port of the power division feeding structure 3 is connected, and the other is connected to the first radiation unit 12, so that by adjusting the length ratio of the long side and the short side, the second port and the first radiation of the power division feeding structure 3 can be radiated.
  • Unit 12 performs impedance matching.
  • the impedance matching structure 6 can also be other structures, which are not limited here. It should be noted that, the impedance matching structure 6 can be made of the same material as the power split feeding structure 3 , and the impedance matching structure 6 can be integrally formed with the power split feeding structure 3 .
  • the antenna provided by the embodiment of the present disclosure can also be made as a transparent antenna. Therefore, in order to make the antenna transparent, at least one of the second radiation unit 22 and the first radiation unit 12 includes a mesh metal structure. To increase the transparency of the antenna, both the second radiating element 22 and the first radiating element 12 can adopt a grid structure, and the power division feeding is provided on the side of the first substrate 21 close to the third substrate 103 at the same layer as the first radiating element 12 .
  • the structure 3, the connecting line 5, the impedance matching structure 6, etc. can all adopt the grid structure.
  • the reference electrode layer 23 may also adopt a grid structure.
  • At least one of the second radiating unit 22 , the first radiating unit 12 , the power division feeding structure 3 , the connecting line 5 , the impedance matching structure 6 , and the reference electrode layer 23 in the grid structure can be used.
  • the plurality of first conductive wires and the plurality of second conductive wires intersect to form a grid structure, wherein the extending direction of the first conductive wires is different from the extending direction of the second conductive wires.
  • the first radiation unit 12 is used for illustration.
  • the first radiation unit 12 may adopt a grid structure formed by intersecting a plurality of first conductive wires 2211 and a plurality of second conductive wires 2212 , wherein, The first conductive wire 2211 extends along the fourth direction S4, the second conductive wire 2212 extends along the fifth direction, and the fourth direction S4 and the fifth direction S5 are not parallel.
  • the directions of the fourth direction S4 and the fifth direction S5 may be In various forms, for example, referring to FIG.
  • the extension direction of the first conductive wire 2211 (the fourth direction S4 ) and the extension direction of the second conductive wire 2212 (the fifth direction S5 ) can be in accordance with the polarization direction of the first radiation element 12 (that is, the direction of the current generated by the signal input by the power division feeding structure 3) setting, for example, take the antenna as a dual-polarized antenna with a polarization direction of +45° and a polarization direction of -45° as an example to illustrate 17, the first radiating element 12 has a polarization direction shown in the sixth direction S6, and a polarization direction shown in the third direction S3, the extension direction of the first resistance wire 2211 can be Parallel to the sixth direction S6, that is, the fourth direction S4 is parallel to the sixth direction S6; the extending direction of the second resistance wire 2212 may be parallel to the third direction S3, that is, the fifth direction S5 is parallel to the third direction S3.
  • the extending direction of the first conductive wire 2211 (the fourth direction S4 ) and the extending direction of the second conductive wire 2212 (the fifth direction S5 ) may be perpendicular to each other.
  • the extending direction of the first conductive wire 2211 (The fourth direction S4 ) and the extending direction (the fifth direction S5 ) of the second conductive wire 2212 can be arranged in various manners, which are not limited here.
  • the grid structure of the second radiating element 22 , the power division feeding structure 3 , the connecting line 5 , the impedance matching structure 6 , and the reference electrode layer 23 is the same as that of the first radiating element 12 , and the second radiating element 22
  • the grid structures among the first radiating element 12 , the power division feeding structure 3 , the connecting line 5 , the impedance matching structure 6 , and the reference electrode layer 23 may be the same or different, which are not limited here.
  • the conductive wires in the grid structure of the second radiation unit 22 , the first radiation unit 12 , the power division feeding structure 3 , the connection line 5 , the impedance matching structure 6 , and the reference electrode layer 23 may adopt various conductive wires. Made of materials, such as copper, silver, aluminum and other metal materials, which are not limited here. In the case where the width of the conductive wire in the grid structure is extremely small, the human eye cannot recognize the conductive wire, so the grid structure can be regarded as a transparent structure, so the second radiation unit 22 and the first radiation unit of the grid structure are adopted. 12.
  • the power division feeding structure 3, the connecting wire 5, the impedance matching structure 6, and the reference electrode layer 23 can all form a transparent antenna.
  • the third substrate 1031 and the first substrate 21 can both be made of transparent materials.
  • the materials of the third substrate 1031 and the first substrate 21 may use various types of transparent materials, for example, the materials of the third substrate 1031 and the first substrate 21 may include thermoplastic polyester (Polyethylene terephthalate, PET), At least one of copolymers of cycloolefin (COC).
  • the support frame 4 or the dielectric substrate 04 supported between the third substrate 103 and the first substrate 102 can be made of transparent materials, for example, the support frame 4 or the dielectric substrate 04 can be made of polymethyl methacrylate (polymethyl methacrylate). , PMMA) and other materials.
  • an embodiment of the present disclosure provides an antenna system (ie, a communication system), including at least one of the above-mentioned antennas.
  • the antenna system provided by the embodiments of the present disclosure further includes a transceiver unit, a radio frequency transceiver, a signal amplifier, a power amplifier, and a filter unit.
  • the antennas in the antenna system can be used as transmitting antennas or as receiving antennas.
  • the transceiver unit may include a baseband and a receiver, the baseband provides signals in at least one frequency band, such as 2G signals, 3G signals, 4G signals, 5G signals, etc., and transmits signals in at least one frequency band to the radio frequency transceiver.
  • the antenna in the antenna system After the antenna in the antenna system receives the signal, it can be processed by the filtering unit, power amplifier, signal amplifier, and radio frequency transceiver and then transmitted to the receiving end in the first launch unit.
  • the receiving end can be, for example, a smart gateway.
  • the radio frequency transceiver is connected to the transceiver unit, and is used for modulating the signal sent by the transceiver unit, or for demodulating the signal received by the antenna and then transmitting it to the transceiver unit.
  • the radio frequency transceiver may include a transmitter circuit, a receiver circuit, a modulation circuit, and a demodulation circuit. After the transmitter circuit receives various types of signals provided by the substrate, the modulation circuit may modulate the various types of signals provided by the baseband, and then sent to the antenna.
  • the antenna receives the signal and transmits it to the receiving circuit of the radio frequency transceiver, the receiving circuit transmits the signal to the demodulation circuit, and the demodulation circuit demodulates the signal and transmits it to the receiving end.
  • the radio frequency transceiver is connected to a signal amplifier and a power amplifier
  • the signal amplifier and the power amplifier are connected to a filtering unit
  • the filtering unit is connected to at least one antenna.
  • the signal amplifier is used to improve the signal-to-noise ratio of the signal output by the radio frequency transceiver and then transmit it to the filtering unit
  • the power amplifier is used to amplify the power of the signal output by the radio frequency transceiver and transmit it to the filtering unit
  • the filtering unit may specifically include a duplexer and a filtering circuit. The filtering unit combines the signals output by the signal amplifier and the power amplifier, filters out clutter, and transmits them to the antenna, which radiates the signal.
  • the antenna receives the signal and transmits it to the filtering unit.
  • the filtering unit filters the signal received by the antenna and transmits it to the signal amplifier and the power amplifier.
  • the signal amplifier gains the signal received by the antenna. Increase the signal-to-noise ratio of the signal; the power amplifier amplifies the power of the signal received by the antenna.
  • the signal received by the antenna is processed by the power amplifier and the signal amplifier and then transmitted to the radio frequency transceiver, which is then transmitted to the transceiver unit.
  • the signal amplifier may include various types of signal amplifiers, such as low noise amplifiers, without limitation.
  • the antenna system provided by the embodiments of the present disclosure further includes a power management unit, the power management unit is connected to the power amplifier, and provides the power amplifier with a voltage for amplifying the signal.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开实施例提供一种天线及通信系统,属于通信技术领域。本公开实施例提供的天线包括第一基板;第一基板包括:第一基底;至少一个第一辐射单元,设置在第一基底的一侧;第一电极层,设置在第一基底背离至少一个第一辐射单元的一侧;至少一个第二辐射单元,设置在至少一个第一辐射单元背离第一电极层的一侧;其中,一个第二辐射单元与一个第一辐射单元在第一基底上的正投影至少部分重叠;至少一个第一辐射单元在第一基底上的正投影位于第一电极层在第一基底上的正投影内。

Description

天线及通信系统
本申请要求申请日为2020年10月30日、申请号为“CN202011198060.0”、发明名称为“天线及天线系统”的优先权。
技术领域
本发明属于通信领域,具体涉及一种天线、通信系统。
背景技术
天线通常包括第一基板,第一基板包括第一基底和设置在第一基底一侧的第一辐射单元及与第一辐射单元同层设置且电连接第一辐射单元的馈电结构,第一基底背离第一辐射单元和馈电结构的一侧设置有参考电极层,射频信号输入馈电结构,再经过馈电结构传输至第一辐射单元,由于第一辐射单元的辐射面积较小,因此辐射效率低。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线,其能够提高辐射效率。
第一方面,本公开实施例提供一种天线,其中,包括:第一基板;
所述第一基板包括:
第一基底;
至少一个第一辐射单元,设置在所述第一基底的一侧;
第一电极层,设置在所述第一基底背离所述至少一个第一辐射单元的一侧;
至少一个第二辐射单元,设置在所述至少一个第一辐射单元背离所述第一电极层的一侧;其中,
一个所述第二辐射单元与一个所述第一辐射单元在所述第一基底上的正投影至少部分重叠;
至少一个所述第一辐射单元在所述第一基底上的正投影位于所述第一电极层在所述第一基底上的正投影内。
本公开实施例提供的天线,由于设置了第一辐射单元和第二辐射单元,通过第一辐射单元和第二辐射单元配合对射频信号进行辐射,相较仅设置第一辐射单元的天线而言,有效增高了天线的净空高度,因此提高了辐射效率。
在一些示例中,其中,还包括:第二电极层,与至少一个所述第一辐射单元同层设置,且至少一个所述第一辐射单元在所述第一基底上的正投影,与所述第二电极层在所述第一基底上的正投影无重叠。
在一些示例中,其中,所述第一基底包括沿第一方向延伸的第一侧边;所述第二电极层包括至少一个第二子电极;一个所述第二子电极设置在一个所述第一辐射单元靠近所述第一侧边的一侧;
至少一个所述第二子电极中的每个包括一个第一结构和一个第二结构;所述第一结构沿所述第一方向延伸,所述第二结构沿第二方向延伸;
所述第一方向与所述第二方向相交。
在一些示例中,其中,所述第二结构连接在所述第一结构在所述第一方向的中点上,且所述第一方向与所述第二方向相垂直;其中,所述第一结构的宽度,小于所述第二结构的宽度。
在一些示例中,,其中,还包括:第一馈电单元,与至少一个所述第一辐射单元同层设置;所述第一馈电单元包括多条第一馈线,至少一条所述第一馈线与一个所述第一辐射单元电连接。
在一些示例中,每两条所述第一馈线与一个所述第一辐射单元电连接,对于每个所述第一辐射单元,一个所述第二子电极设置在与一个所述第一辐射单元电连接的两条所述第一馈线之间,以隔离两条第一馈线之间的信号。
在一些示例中,其中,还包括:第三电极层,与至少一个所述第二辐射单元同层设置,且至少一个所述第二辐射单元在所述第一基底上的正投影,与所述第三电极层在所述第一基底上的正投影无重叠。
在一些示例中,其中,所述第一基底还包括沿第一方向延伸的第二侧边;所述第三电极层在所述第一基底的正投影位于所述第一基底靠近所述第二侧边的一侧;
所述第三电极层包括主体结构和分别连接在主体结构的两侧的第一延伸结构和第二延伸结构,所述主体结构沿所述第一方向延伸,所述第一延伸结构和所述第二延伸结构均沿第二方向延伸;其中,所述第一方向和所述第二方向相交。
在一些示例中,其中,所述第一方向和所述第二方向相垂直;所述主体结构的在所述第一方向上的长度小于或等于所述第二侧边的长度。
在一些示例中,其中,还包括:第一馈电单元,与至少一个所述第一辐射单元同层设置;所述第一馈电单元包括多条第一馈线,每两条所述第一馈线与一个所述第一辐射单元电连接。
在一些示例中,其中,每个所述第一辐射单元的形状为中心对称图形,具有一对称中心;对于每个所述第一辐射单元,两条所述第一馈线中的一者与所述第一辐射单元的连接位置称为第一连接点,另一者与所述第一辐射单元的连接位置称为第二连接点;其中,
对于每个所述第一辐射单元,其上的所述第一连接点与所述对称中心的连线的延伸方向,与其上的第二连接点与所述对称中心的连线的延伸方向相交。
在一些示例中,其中,对于每个所述第一辐射单元,其上的所述第一连接点与所述对称中心的连线的延伸方向,与其上的第二连接点与所述对称中心的连线的延伸方向相垂直。
在一些示例中,其中,还包括:第二基板;所述第二基板包括第二基底,和设置在所述第二基底的一侧的第二馈电单元,所述第二馈电单元与所述第一馈电单元电连接。
在一些示例中,其中,所述第二基底与所述第一基底一体设置,所述第二馈电单元与至少一个所述第一辐射单元同层设置。
在一些示例中,其中,所述第二基板与所述第一基板之间具有一定夹角。
在一些示例中,至少一个所述第一辐射单元采用网格结构;其中,所述第二馈电单元在所述第二基底上的正投影的单位面积,大于所述第一辐射单元在所述第一基底上的正投影的单位面积。
在一些示例中,其中,所述第二馈电单元包括第一馈电子单元和第二馈电子单元,所述第一馈电子单元和所述第二馈电子单元均包括一个第一端口和至少一个第二端口;
对于每个所述第一辐射单元,与所述第一辐射单元电连接的两条所述第一馈线中的一条与一个所述第一馈电子单元的一个所述第二端口电连接,且不同的第一馈线连接不同的所述第一馈电子单元的所述第二端口;与所述第一辐射单元电连接的两条所述第一馈线中的另一条与一个所述第二馈电子单元的一个所述第二端口电连接,且不同的第一馈线连接不同的所述第二馈电子单元的所述第二端口。
在一些示例中,其中,至少一个所述第一辐射单元中的每个的面积大于至少一个所述第二辐射单元中的每个的面积,且每个所述第二辐射单元位于与其正投影相重叠的所述第一辐射单元在所述第一基底上的正投影中。
在一些示例中,其中,至少一个所述第一辐射单元中的每个的面积小于至少一个所述第二辐射单元中的每个的面积,且每个所述第一辐射单元位于与其正投影相重叠的所述第二辐射单元在所述第一基底上的正投影中。
在一些示例中,其中,至少一个所述第一辐射单元、至少一个所述第二 辐射单元、所述第一电极层中的至少一者采用网格结构。
在一些示例中,其中,至少一个所述第一辐射单元、至少一个所述第二辐射单元均采用网格结构;其中,组成所述网格结构的金属线在所述第一辐射单元和/或所述第二辐射单元的边缘位置相互不连接;或者,组成所述网格结构的金属线在所述第一辐射单元和/或所述第二辐射单元的边缘位置相互短接。
在一些示例中,其中,至少一个所述第一辐射单元、至少一个所述第二辐射单元、所述第一电极层均采用网格结构;各个层的网格结构的镂空部在第一基底上的投影大致重叠。
在一些示例中,其中,一个所述第一辐射单元在所述第一基底上的正投影的面积和一个所述第二辐射单元在所述第一基底上的正投影的面积的比值为0.45:1~1.54:1。
在一些示例中,其中,还包括:第三基板,设置在所述第一基板背离所述第一电极层的一侧;所述第三基板包括第三基底;其中,所述至少一个第二辐射单元设置在所述第三基底的一侧。
在一些示例中,其中,还包括:第四基板,设置在所述第一基板背离至少一个所述第一辐射单元的一侧;所述第四基板包括第四基底;其中,所述第一电极层设置在所述第四基底靠近所述第一基板的一侧。
在一些示例中,其中,所述第一基板还包括:第一金属网格层,设置在所述第一基底背离所述第一电极层的一侧;所述第一金属网格层包括所述至少一个所述第一辐射单元;其中,所述第一金属网格层具有至少一个第一开口,一个所述第一开口分割出一个所述第一辐射单元。
在一些示例中,其中,还包括:第三基板,设置在所述第一基板背离所述第一电极层的一侧;所述第三基板包括第三基底和第二金属网格层,所述第二金属网格层设置在所述第三基底背离所述第一基底的一侧;所述第二金 属网格层包括所述至少一个所述第二辐射单元;其中,所述第二金属层具有至少一个第二开口,一个所述第二开口分割出一个所述第二辐射单元。
在一些示例中,其中,所述第一基底背离至少一个所述第一辐射单元一侧设置有至少一个第一凹槽,一个所述第一凹槽在所述第一基底上的正投影,覆盖一个所述第一辐射单元在所述第一基底上的正投影。
在一些示例中,其中,还包括:第一馈电单元,与至少一个所述第一辐射单元同层设置;所述第一馈电单元包括多条第一馈线,每两条第一馈线连接一个所述第一辐射单元;其中,
其中,一个所述第一凹槽在所述第一基底上的正投影,覆盖与一个第一辐射单元连接的两条所述第一馈线在所述第一基底上的正投影。
在一些示例中,其中,一个所述第一凹槽在所述第一基底上的正投影的面积和一个所述第一辐射单元在所述第一基底上的正投影的面积的比值为5:1~2:1;
一个所述第一辐射单元在第一方向上的对称轴,和与所述第一辐射单元在第一基底上的正投影相交叠的第一凹槽在第一方向上的对称轴大致重合。
在一些示例中,其中,所述第二基底沿所述第一基底的长度方向将所述第一基底划分为第一区域和第二区域;
所述第一区域在垂直于所述第一基底的长度方向的方向上的宽度,小于所述第二区域在垂直于所述第一基底的长度方向的方向上的宽度。
在一些示例中,其中,还包括:第三基板,设置在所述第一基板背离所述第一电极层的一侧;所述第三基板包括第三基底和倾斜设置在所述第三基底边缘的围板;其中,所述至少一个第二辐射单元设置在所述第三基底背离所述至少一个第一辐射单元的一侧;
还包括:第四基板,设置在所述第一基板背离至少一个所述第一辐射单元的一侧;所述第四基板包括第四基底;其中,所述第一电极层设置在所述 第四基底靠近所述第一基板的一侧;
所述第二基底、所述第三基底对应第一区域的部分、最靠近所述第二基底的一侧的围板、所述第三基底对应所述第一区域的部分限定出一个容纳空间。
第二方面,本公开实施例提供一种通信系统,其中,包括上述天线。
附图说明
图1为本公开实施例提供的天线的结构示意图。
图2为本公开实施例提供的天线的结构示意图(俯视图)。
图3为本公开实施例提供的天线的结构示意图(侧视图)。
图4为本公开实施例提供的天线的底板的结构示意图。
图5为本公开实施例提供的天线的基板的结构示意图。
图6为本公开实施例提供的天线的隔离结构的结构示意图。
图7为本公开实施例提供的天线的顶板的结构示意图。
图8为本公开实施例提供的天线的顶板的结构示意图(俯视图)。
图9为本公开实施例提供的天线的第一电路板的结构示意图。
图10a为沿图9中G1-G2方向剖切的剖面图。
图10b为本公开实施例提供的天线的第一金属网格层的俯视图。
图10c为本公开实施例提供的天线的第二金属网格层的俯视图。
图11为本公开实施例提供的天线的两个极化方向的波束方向示意图。
图12为本公开实施例提供的天线的两个极化方向的驻波比示意图。
图13为本公开实施例提供的天线的隔离度示意图。
图14为本公开实施例提供的天线的不同方向的交叉极化比示意图。
图15为本公开实施例提供的天线的同轴线结构示意图。
图16为本公开实施例提供的天线的一种实施例的剖面图。
图17为本公开实施例提供的天线的一种实施例的俯视图(第一基板)。
图18为本公开实施例提供的天线的一种实施例的俯视图(第三基板)。
图19为本公开实施例提供的天线的另一种实施例的俯视图(第一基板)。
图20为本公开实施例提供的天线的另一种实施例的俯视图(第三基板)。
图21为本公开实施例提供的天线的支撑框的一种实施例的结构示意图。
图22为本公开实施例提供的天线的支撑框的一种实施例的俯视图。
图23为本公开实施例提供的天线的支撑框的一种实施例的侧视图。
图24为本公开实施例提供的天线的一种实施例的俯视图(开孔设置在对侧)。
图25为本公开实施例提供的天线的支撑框的另一种实施例的结构示意图。
图26为本公开实施例提供的天线的第一连接器的一种实施例的结构示意图。
图27为本公开实施例提供的天线的第一固定板的一种实施例的结构示意图。
图28为本公开实施例提供的天线第一连接器、第一固定板与支撑框的连接示意图之一。
图29为本公开实施例提供的天线第一连接器、第一固定板与支撑框的连接示意图之二。
图30为本公开实施例提供的天线第一连接器、第一固定板与支撑框的连接示意图之三。
图31为本公开实施例提供的天线第一连接器、第一固定板与支撑框的连接示意图之四。
图32为本公开实施例提供的天线的介质基板的一种实施例的侧视图。
图33为本公开实施例提供的天线的介质基板的一种实施例的俯视图。
图34为本公开实施例提供的天线的介质基板的另一种实施例的俯视图。
图35为本公开实施例提供的天线的第一辐射单元采用网格结构的一种实施例的结构示意图。
图36为本公开实施例提供的天线的第一辐射单元采用网格结构的另一种实施例的结构示意图。
图37为本公开实施例提供的天线系统的一种实施例的系统架构图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅是本发明的部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
附图中各部件的形状和大小不反映真实比例,目的只是为了便于对本发明实施例的内容的理解。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所述领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要说明的是,本实施例中,对于天线的形状不做限制,例如可以为矩 形、圆形、六边形等,当然还可以为其他形状,以下均以天线为矩形为例进行说明。当天线为矩形、圆形、六边形等时,相应地,第一基板为与天线相适配的矩形、圆形、六边形等,以下皆以第一基板为矩形为例进行说明。在第一基板为矩形的实施例这,第一基板具有相对的第一侧边和第二侧边,以及相对的第三侧边和第四侧边,其中,第一侧边、第二侧边均沿第一方向S1延伸,第三侧边、第四均沿第二方式S2延伸,其中,第一方向S1即为第一基板的长边的长度方向,第二方向S2即为第一基板的短边的长度方向,第一方向S1和第二方向S2相交,具体的角度可以根据第一基板的形状改变,在第一基板为矩形的实施例这,第一方向S1和第二方向S2垂直,以下均以第一方向S1和第二方向S2相垂直为例进行说明。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
本公开实施例提供一种天线,包括第一基板,第一基板包括第一基底,设置在第一基底的一侧的一个或多个第一辐射单元,和设置在第一基底背离一个或多个第一辐射单元一侧的第一电极层。天线还包括一个或多个第二辐射单元,一个或多个第二辐射单元设置在一个或多个第一辐射单元背离第一电极层的一侧。其中,一个第二辐射单元与一个第一辐射单元在第一基底上的正投影至少部分重叠。在一些示例在,第一辐射单元和第二辐射单元可以一一对应,即一个第二辐射单元与一个第一辐射单元在第一基底上的正投影至少部分重叠,且不同的第二辐射单元在第一基底上的正投影,与不同的第一辐射单元在第一基底上的正投影至少部分重叠。并且,至少一个第一辐射单元在第一基底上的正投影位于所第一电极层在第一基底上的正投影内。其中,第一电极层即用于提供参考电压的电极层,例如,在图1-图10所示的天线的实施例中,第一电极层包括第一参考电极层1012,又例如,在图16- 图34所示的天线的实施例中,第一电极层包括参考电极层23。由于设置了第一辐射单元和第二辐射单元,通过第一辐射单元和第二辐射单元配合对射频信号进行辐射,相较仅设置第一辐射单元的天线而言,有效增高了天线的净空高度,因此提高了辐射效率。
以下对本公开实施例中的天线进行具体说明。
第一方面,参见图1-图10,本公开实施例提供一种天线,该天线可以包括第一基板102,第一基板102包括第一基底21,第一基底21的一侧设置有至少一个第一辐射单元12。本实施例中,第一电极层包括第一参考电极层1021,第一参考电极层1021设置在第一基底21背离第一辐射单元12的一侧。
在一些示例中,该天线还可以包括相对盒的第四基板101和第三基板103,第一基板102设置在第四基板101和第三基板103,还可以包括倾斜设置在第一基板102上的第二基板104。
具体地,参见图4,第四基板101包括第四基底11、至少一个侧板1011和第一参考电极层1012。其中,至少一个侧板1011连接在第四基底11的长度方向(例如,图中第一方向S1所示)上,且侧板1011与第四基底11具有一定夹角,夹角的范围可以在(0°,180°),以下实施例中,皆以侧板1011与第四基底11相垂直(夹角为90°)为例进行说明。第一参考电极层1012设置在第四基底11靠近第一基板102一侧。
进一步地,参见图5,第一基板102安置在第四基板101的第四基底11上,第一基板102包括第一基底21、至少一个第一辐射单元12和至少一条第一馈线1021。其中,第一基底21设置在第四基底11靠近第三基板103一侧,且第一基底21沿长度方向(例如,图中第一方向S1所示)上的一个侧部21a与第四基板101的一个侧板1011相抵。至少一个第一辐射单元12设置在第一基底21背离第四基板101一侧,且至少一个第一辐射单元12与第一参考电极层1012在第一基底21上的正投影至少部分重叠。
在一些示例中,天线还包括第一馈电单元,第一馈电单元与至少一个第一辐射单元12同层设置,第一馈电单元可以包括多条第一馈线1021,其中,至少一条第一馈线1021与一个第一辐射单元12电连接,例如,在双极化天线中,每两条第一馈线1021与一个第一辐射单元12电连接,当然,也可以一条第一馈线1021与一个第一辐射单元12电连接,或者可以四条第一馈线1021与一个第一辐射单元12电连接等,在此不做限制,在以下实施例中,均以每两条第一馈线1021与一个第一辐射单元12电连接为例进行说明。具体地,每条第一馈线1021的第一端连接一个第一辐射单元12,该第一馈线1021的第二端延伸至第一基底21的边缘,所述边缘即第一基底21靠近与侧板1011相抵的侧部21a的边缘,在本公开实施例的天线中,将第一馈线1021均朝向同一侧(靠近侧部21a的边缘)引出,因此能够只在一侧设置接入信号的馈电结构。
在一些示例中,参见图5所示,天线还包括多个阻抗匹配结构6,阻抗匹配结构6与第一馈电单元电连接,用于匹配第一馈电单元与第二馈电单元。在一些示例中,阻抗匹配结构6与第一馈线一一对应,每条第一馈线上连接有一个阻抗匹配结构6。
为了便于说明,以下皆以第四基板101包括两个侧板1011,分别为第一侧板1011a和第二侧板1011b为例进行说明,第一侧板1011a和第二侧板1011b分别沿第四基底11的长度方向设置在对侧,其中,为了便于说明,以下皆以第一基板102的第一基底21的侧部21a与第一侧板1011a相抵为例进行说明。
进一步地,天线还可以包括第二基板104,第二基板104包括第二基底1041,和设置在第二基底1041的一侧的第二馈电单元1042。第二馈电单元1042与第一馈电单元电连接,并通过第一馈电单元向第一辐射单元12馈电。在一些示例中,例如,在图1-图10所示的天线的实施例中,第二基底1041 与第一基底102倾斜设置,即第二基底1041与第一基底102之间具有一定夹角,且第二基底1041设置在第一基底102的侧部21a的一侧,第二馈电单元1042设置在第二基底1041背离侧部21a的一侧,通过侧面向第一馈电单元(具体为第一馈线)馈电。在一些示例中,例如,在图16-图34所示的天线的实施例中,第二基底1041,与第一基底21一体设置,即第二馈电单元1042与第一馈电单元同层设置且一体成型,第二馈线单元1042与第一辐射单元12同层设置。
具体地,在一些示例中,参见图9、图10,其中,图10为沿图9的G1-G2方向剖切的剖面图,本公开实施例的天线还包括第二基板104,第二基板104设置在第一侧板1011a背离第一基底21的侧部21a的一侧。其中,第二基板104包括第二基底1041、至少一个第二馈电单元1042和第二参考电极层1043。至少一个第二馈电单元1042设置在第二基底1041背离第一基底21的侧部21a的一侧,至少一个第二馈电单元1042被配置为通过至少一条第一馈线1021给第一辐射单元12进行馈电,例如,第二馈电单元1042包括一个第一端口和至少一个第二端口,第二馈电单元1042的一个第二端口通过一条第一馈线1021与一个第一辐射单元12电连接。第二参考电极层1043设置在第二基底1041靠近第一基底21的侧部21a一侧,第二参考电极层1043在第二基底1041上的正投影,至少覆盖至少一个第二馈电单元1042在第二基底1041上的正投影。
本公开实施例的天线,由于将包括第二馈电单元1042的第二基板104设置在第一侧板1011a上,且连接第一辐射单元12的第一馈线1021朝第一基底21的同一侧引出,因此能够避免第二馈电单元1042占用平面布线空间,避免馈电结构的传输端口(例如第一端口和第二端口)因距离太近发生耦合造成信号干扰,且能够只在第一基底21的一侧接入射频信号,简化制作工艺。
在一些示例中,例如在第二基底1041与第一基底102之间具有一定夹 角的实施例中,至少一个第一辐射单元12采用网格结构;其中,第二馈电单元1042在所述第二基底1041上的正投影的单位面积,大于第一辐射单元12在第一基底21上的正投影的单位面积。也即,第二基底1041上的第二馈电单元1042可以采用整层形成金属导线结构,金属导线结构上可以不设置镂空部(即不采用金属网格),从而保证馈电的稳定性和提高第二馈电单元1042的承载功率。
进一步地,参见图7,第三基板103包括第三基底1031和至少一个第二辐射单元22。其中,至少一个第二辐射单元22位于第三基底1031的一侧,且与第一辐射单元12对置,在一些实施例中,至少一个第二辐射单元22设置在第三基底1031靠近第一基板102的一侧,在一些实施例中,至少一个第二辐射单元22设置在第三基底1031背离第一基板102的一侧,在此不做限制。一个第二辐射单元22与一个第一辐射单元12在第三基底1031上的正投影至少部分重叠,且不同的第二辐射单元22与不同的第一辐射单元12在第三基底1031上的正投影至少部分重叠。
需要说明的是,本公开实施例中的天线可以是接收天线,也可以是发射天线,并且可以同时进行发送信号和接收信号。本实施例公开的天线包括的第一辐射单元12和第二辐射单元22的数量可以为N个,N为任意大于0的整数。第一辐射单元12和第二辐射单元22的数量可以不相同,只要一个第二辐射单元22与一个第一辐射单元12对应设置即可。在本公开实施例中,以第一基底21上沿第一方向S1间隔设置有四个第一辐射单元1212,第三基底1031上沿第一方向间隔设置有四个第二辐射单元22为例进行说明,但不对本发明构成限制。
需要说明的是,第一参考电极层1012和第二参考电极层1043包括但不限于接地电极层,在本公开实施例中,以第一参考电极层1012和第二参考电极层1043均为接地电极层为例进行说明。
需要说明的是,本说明书中第一方向S1即为第四基底11、第一基底21、第三基底1031的长边的长度方向,第二方向S2为第四基底11、第一基底21、第三基底1031的短边的长度方向,且第一方向S1与第二方向S2具有一定夹角,以下皆以第一方向S1与第二方向S2相垂直为例进行说明。
当天线进行发送信号时,第二馈电单元1042的第一端口接收射频信号,第二馈电单元1042将射频信号分为多个子信号,每个子信号由一个第二端口输出给该第二端口连接的第一馈线1021,再由该第一馈线1021输出到其连接的第一辐射单元12,第一辐射单元12再将子信号馈向与之正对的第二辐射单元22;在辐射天线进行接收信号时,任意一个第二辐射单元22接收到射频信号后,将射频信号馈向与该第二辐射单元22正对的第一辐射单元12,第一辐射单元12再将射频信号通过与该第一辐射单元12连接的第一馈线1021传输给第二馈电单元1042的第二端口,第二端口再将射频信号传输给第一端口。
本公开实施例中所提供的天线,由于设置了第一辐射单元12和第二辐射单元22,通过第一辐射单元12和第二辐射单元22配合对射频信号进行辐射,相较仅设置一个第一辐射单元12的天线而言,有效增高了天线的净空高度,因此提高了辐射效率。而且本公开实施例的天线为天线,有助于天线的美化。
在一些示例中,参见图1-图7,第一辐射单元12的形状和第二辐射单元22的形状均为中心对称图形,具体地,第一辐射单元12的形状和第二辐射单元22的形状可以采用正方形、十字形、等边菱形等,需要说明的是,上述正方形、十字形、等边菱形可以不是严格意义上的正方形、十字形、等边菱形,第一辐射单元12的形状和第二辐射单元22的形状可以近似正方形、十字形、等边菱形。以下皆以第一辐射单元12、第二辐射单元22为正方形为例进行说明。并且,第一辐射单元12和第二辐射单元22可以正对设置,也 即第一辐射单元12的对称中心在第三基底1031上的正投影,和与该第一辐射单元12对应的第二辐射单元22的对称中心在第三基底1031上的正投影重合。参见图5、图7,以图7中第二辐射单元22均为正方形辐射单元为例,为正方形辐射单元的第二辐射单元22的对称中心为正方形辐射单元的两个对角线的交点,称为第二对称中心O2。以图5中第一辐射单元12均为正方形辐射单元为例,为正方形辐射单元的第一辐射单元12的对称中心为正方形辐射单元的两个对角线的交点,称为第一对称中心O1。第一辐射单元12分别与其对应的第二辐射单元22正对设置,因此每个第一辐射单元12的第一对称中心O1在第三基底1031上的正投影,与该第一辐射单元12对应的第二辐射单元22的第二对称中心O2在第三基底1031上的正投影重合,从而能够保证第一辐射单元12能够尽可能地接受到全部第二辐射单元22馈入的信号的辐射能量,进而提高天线的辐射效率。需要说明的是,一个第二辐射单元22接收一个第二辐射单元22馈入的信号,即指该第一辐射单元12与该第二辐射单元22对应。
在一些示例中,参见图5,以本实施例的天线为双极化天线为例,第一基板102的第一基底上设置有至少一个第一辐射单元12和包括至少两条第一馈线1021的第一馈电单元,将第一馈电单元的至少两条第一馈线1021均分为两组,分别为第一组第一馈线和第二组第一馈线,将第一组第一馈线中的第一馈线称为第一馈线1021a,将第二组第一馈线中的第一馈线称为第一馈线1021b。
与上述双极化天线的实施例相适配的,在一些示例中,参见图9,第二基板104包括至少一个第二馈电单元1042,至少一个第二馈电单元1042包括第一馈电子单元1042a和第二馈电子单元1042b,第一馈电子单元1042a包括一个第一端口p11和至少一个第二端口p12。第二馈电子单元1042b包括一个第一端口p21和至少一个第二端口p22。第一馈电子单元1042a的第 一端口p11连接外部连接器,以形成接收一路射频信号,且将该射频信号等功分地分为至少一路子信号,每路子信号传输给一个第二端口p12;第一馈电子单元1042a的一个第二端口p12,连接第一组第一馈线中的一条第一馈线1021a的第二端,且不同的第一馈电子单元1042a的第二端口p11连接不同的第一馈线1021a的第二端。第二馈电子单元1042b的第一端口p21连接外部连接器,接收另一路射频信号,且将该射频信号等功分地分为至少一路子信号,每路子信号传输给一个第二端口p22;第二馈电子单元1042b的一个第二端口p21,连接第二组第一馈线中的一条第一馈线1021b的第二端,且不同的第二馈电子单元1042b的一个第二端口p21连接不同的第一馈线1021b的第二端。
为了便于说明,在本实施例中,以基板103包括四个第一辐射单元12和八条第一馈线1021为例进行说明,八条第一馈线1021均分为两组,第一组包括四条第一馈线1021a,第二组包括四条第一馈线1021b。以第二基板104包括第一馈电子单元1042a和第二馈电子单元1042b,且二者均为一分四功分馈电结构为例进行说明,即第一馈电子单元1042a包括一个第一端口p11和四个第二端口p12。第二馈电子单元1042b包括一个第一端口p21和四个第二端口p22。以下介绍第二馈电单元1042、第一馈线1021和第一辐射单元12的连接关系。
具体地,参见图5、图9,第一组第一馈线中的每条第一馈线1021a的第二端连接第一馈电子单元1042a的一个第二端口p12,该第一馈线1021a的第一端连接一个第一辐射单元12,且第一馈线1021a的第一端与第一辐射单元12的连接位置称为第一连接点k1,其中,不同的第一馈线1021a的第一端连接不同的第一辐射单元12。第二组第一馈线中的每条第一馈线1021b的第二端连接第二馈电子单元1042b的一个第二端口p22,该第一馈线1021b的第一端连接一个第一辐射单元12,且第一馈线1021b的第一端与第一辐射 单元12的连接位置称为第二连接点k2,其中,不同的第一馈线1021b的第一端连接不同的第一辐射单元12。对于一个第一辐射单元12,第一辐射单元12上的第一连接点k1与对称中心(即第一对称中心01)的连线的延伸方向,与第一辐射单元12上的第二连接点k2与对称中心(即第一对称中心01)的连线的延伸方向具有一定的夹角,从而可以保证第一馈电子单元1042a的第二端口p12-第一馈线1021a-第一辐射单元12形成的射频信号的第一通路的第一极化方向,与第二馈电单元1042b的第二端口p22-第一馈线1021b-第一辐射单元12形成的射频信号的第二通路的第二极化方向不同,因此能够使第一通路和第二通路发送或接收的射频信号互相隔离,若天线同时进行发送信号和接收信号,发送的信号可以从第一通路和第二通路中的一者馈向第一辐射单元12,同时第二辐射单元22接收的信号可以馈向第一辐射单元12,第一辐射单元12通过第一通路和第二通路中的另一者接收,从而能够保证第一通路和第二通路之间的信号互不干扰,形成双极化天线。
在一些示例中,继续参见图5、图9,上述的第一极化方向和第二极化方向的具体方向可以包括多种形式,例如,第一极化方向可以为+45°,第二极化方向可以为-45°,基于上述,为了第一、第二极化方向分别为±45°,对于一个第一辐射单元12,该第一辐射单元12的第一连接点k1与对称中心(即第一对称中心01)的连线的延伸方向,与第一辐射单元12的第二连接点k2与对称中心(即第一对称中心01)的连线的延伸方向相垂直,从而能够保证第一馈电子单元1042a的第二端口p12、第一馈线1021a与第一辐射单元12形成的极化方向为+45°,第二馈电子单元1042b的第二端口p22、第一馈线1021b与第一辐射单元12形成的极化方向为-45°,±45°的极化正交性可以保证+45°和-45°两副天线之间的隔离度满足互调对天线间隔离度的要求(≥30dB)。需要说明的是,极化方向可以视作第一辐射单元12或第二辐射单元22辐射的微波信号与地平面之间的夹角的角度,在本实 施例中,若第一极化方向与第二极化方向相垂直,也即第一极化方向与第二极化方向之间的夹角为90°,且第一极化方向与地平面的夹角为45°,而第二极化方向与地平面的夹角也为45°,因此定义第一极化方向与第二极化方向中的一者为+45°,另一者为-45°,上述以第一极化方向为+45°,第二极化方向为-45°为例进行说明。当然,两个极化方向也可以为其他角度,在此不做限制。
在一些示例中,每个第一辐射单元12为正方形辐射单元,相应地,第二辐射单元12也为正方形辐射单元。对于一个第一辐射单元12,其上的第一连接点k1和其上的第二连接点k2分别位于该第一辐射单元12相邻的两个侧边。具体地,第一连接点k1可以在第一辐射单元12的一个侧边的长度的中点;第二连接点k2可以在第一辐射单元12的、与上述侧边相邻的侧边的长度的中点上。由于为正方形辐射单元的第一辐射单元12的任意两个相邻的侧边均相垂直,因此,k1到o1的连线的延伸方向,和k2到o1的连线的延伸方向也相垂直。
在一些示例中,第二基板104的第二基底1041可以采用微波板材制作,第二基底1041的两侧均有金属层,即形成第二参考电极层1041的金属层和形成第二馈电单元1042的金属层,通常采用铜层作为金属层,该第二基板104垂直放置在侧板1011上,从而能够避免第二基板104影响天线的透光性。第二基板104上的馈电结构1041的第二端口处于第一馈线1021通过焊接的方式电连接,以保证电连接的可靠性。由于天线所承载的能量主要由馈电结构1041的馈电线路比较细的位置决定,馈电结构1041上的能量比较强,且线宽较窄,承载功率较低,但由于第二基板104采用微波板材且双面覆铜,因此极大提高了天线的承载功率,达到20瓦功率容量。
在一些示例中,第一组第一馈线中的每条第一馈线1021a的长度,与第二组第一馈线中的每条第一馈线1021a的长度相同,且二者的形状也相同, 对于一个第一辐射单元12,与其连接的一条第一组的第一馈线1021a和一条第二组的第一馈线1021b,沿其在第一方向S1上的中线镜像对称,从而,能够减少第一馈线1021a与第一馈线1021b的传输差异。
在一些示例中,继续参见图1-图9,其中,第一辐射单元12与第二辐射单元22一一对应设置,也即本实施例公开的天线中,第一辐射单元12和第二辐射单元22的数量相同,第一辐射单元12和第二辐射单元22一对一设置,并且,每个第一辐射单元12的面积可以略大于与该第一辐射单元12对应的第二辐射单元22的面积,即第一辐射单元12在第三基底1031上的正投影的面积,大于第二辐射单元22在第三基底1031上的正投影的面积,并且,每个第一辐射单元12与一个第二辐射单元22相对设置,即第二辐射单元22在第三基底1031上的正投影,位于与该第二辐射单元22对应的第一辐射单元12在第三基底1031上的正投影中,当然,第一辐射单元12的面积也可以与第二辐射单元22的面积相等,或小于第二辐射单元22的面积,在此仅为示例性的说明,不对本发明构成限制。在一些示例中,一个第一辐射单元12在第一基底21上的正投影的面积和一个第二辐射单元22在所述第一基底21上的正投影的面积的比值为0.45:1~1.54:1,进一步地,该比值可以在0.55:1~1.44:1之间,具体地,在图1-10所示的实施例中,该比值可以为1.44:1,在图16-图34所示的实施中,该比值可以为0.55:1,在此不做限制。
在一些示例中,继续参见图1-图9,其中,第一辐射单元121和/或第二辐射单元22的尺寸可以根据天线传输的微波信号的波长来设置,例如,第一辐射单元12和/或第二辐射单元22可以为正方形辐射单元,正方形辐射单元的边长可以为微波信号的波长的二分之一或四分之一等,当然,第一辐射单元121和/或第二辐射单元22的尺寸也可以采用其他尺寸,在此不做限制。而第一辐射单元12的尺寸可以略大于第二辐射单元22的尺寸,具体地,可以根据微波信号的波长来设置第一辐射单元12和第二辐射单元22之间的尺 寸关系,例如,第一辐射单元12和第二辐射单元22可以为正方形辐射单元,第一辐射单元12的边长可以比第二辐射单元22的边长大微波信号的波长的八分之一,当然,第一辐射单元12和第二辐射单元22的尺寸关系也可以采用其他方式,在此不做限制。
在一些示例中,参加图1、图2,第一基板102包括多个第一辐射单元12,相邻的N个第一辐射单元12组成一组,例如,以图1、图2的天线为例,第一基板102包括四个第一辐射单元12,N=2,第一、二个相邻的第一辐射单元12为第一组,第三、四个相邻的第一辐射单元12为第二组。对于一组第一辐射单元12,任意两个相邻的第一辐射单元12之间的间距为第一间距z1;对于任意相邻的两组第一辐射单元12,第一组中最靠近第二组的第一辐射单元12与第二组中最靠近第一组的第一辐射单元12之间的距离为第二间距z2,其中,第二间距z2大于第一间距z1,其中,N≥2。通过调节不同第一辐射单元12之间的第一间距z1,不同组第一辐射单元12之间的第二间距z2,能够改变水平方向的天线波束的宽度,使得中间区域的信号强度,大于位于中间区域的两侧信号强度。
在一些示例中,参见图4,以第四基板101可以包括第一侧板1011a和第二侧板1012b,二者沿第一方向S1连接在第四基底11的对侧,第二基板104设置在第一侧板1011a背离第二侧板1011b的一侧。第四基板101还包括第四参考电极层1014,第四参考电极层1014设置在第二侧板1011b靠近第一侧板1011a的一侧,第四参考电极层1014与第一参考电极层1012相连,即二者共电位。参见图7,图8,其中,图8为了示出第三电极层1032与第二侧板1011b的位置关系,仅示出部分结构。第三基板103还可以包括第三电极层1032,参考电极结构1032设置在第三基底1031靠近第一基板102一侧,且参考电极结构1032沿第三基底1031靠近第二侧板1011b的侧边设置,第三电极层1032与第二侧板1011b的内侧的第四参考电极层1014之间具有 一定距离,且第三电极层1032与第四参考电极层1014之间的距离满足二者之间传输信号时能发生耦合,从而第三电极层1032能够通过耦合的方式接收第四参考电极层1014上的参考电压,相当于第三电极层1032作为第四参考电极层1014的延伸结构,将第四参考电极层1014延伸至第三基底1031上,以调整天线的中心频率。
在一些示例中,参见图8,第三基底1031包括第一侧边1031a和分别位于第一侧边1031a的两侧的第二侧边1031b和第三侧边1031c,其中第一侧边1031a沿第三基底1031的长度方向延伸(即第一方向S1),第二侧边1031b和第三侧边1031c均沿第三基底1031的宽度方向延伸(即第二方向S2)。第三电极层1032可以具有多种形式,例如,第三电极层1032包括主体结构1032a和分别连接在主体结构1032a的两侧的第一延伸结构1032b和第二延伸结构1032c,主体结构1032a沿第一侧边1031a延伸,与第一侧边1031a共形;第一延伸结构1032b沿第二侧边1031b延伸,与第二侧边1031b共形;第二延伸结构1032c沿第三侧边1031c延伸,与第三侧边1031c共形,其中,主体结构1032a的长度与第一侧边1031a的长度大致相同;第一延伸结构1032b的长度小于第二侧边1031b的长度;第二延伸结构1032c的长度小于第三侧边1031c的长度。
在一些示例中,参见图1、图2、图5,第一基底21背离至少一个第一辐射单元12一侧设置有至少一个第一凹槽1023,一个第一凹槽1023在第一基底21上的正投影,覆盖一个第一辐射单元12在第一基底21上的正投影,且不同的第一凹槽1023覆盖不同的第一辐射单元12在第一基底21上的正投影。第一凹槽1023相当于在第一基底21的下侧挖空一部分作为一个空气腔,该空气腔位于第一辐射单元12正下方,因此第一辐射单元12下方的介质层,由第一基底21变为空气加少部分第一基底21,由于空气的传输损耗极小,因此极大地增大了天线的效率,并且,也减少了第一基底21的重量,进而减 少天线的重量。需要说明的是,第一凹槽1023的深度,小于第二基地21的厚度。
在一些示例中,一个第一凹槽1023在第一基底21上的正投影,覆盖与一个第一辐射单元12连接的至少一条第一馈线1021在第一基底21上的正投影。第一凹槽可以由第一辐射单元12所在位置延伸至第一馈线1021引出的边缘,即靠近侧部21a的边缘,从而使第一辐射单元12和第一馈线1021下方的介质层均变为空气以及少部分第一基底21,进一步增大了天线的效率,和减少了第一基底21的重量。
在一些示例中,一个第一凹槽1023在第一基底21上的正投影,覆盖与一个第一辐射单元12连接的两条所述第一馈线在第一基底21上的正投影。一个第一凹槽1023在第一基底21上的正投影的面积和一个第一辐射单元12在第一基底21上的正投影的面积的比值为5:1~2:1,具体地,该比值可以为3.68:1。多个第一凹槽1023中,任意相邻的两个第一凹槽1023之间的间距可以不同,例如,该间距可与为4mm-12mm,具体地,该间距可与为5mm-10mm,在此不做限定。
在一些示例中,一个第一辐射单元12在第一方向S1上的对称轴(该对称轴沿第二方向S2延伸),和与该第一辐射单元12在第一基底21上的正投影相交叠的第一凹槽1023在第一方向S1上的对称轴(该对称轴沿第二方向S2延伸)大致重合,即个第一辐射单元12和与该第一辐射单元12在第一基底21上的正投影相交叠的第一凹槽1023可以正对设置。
在一些示例中,基于上述第一基底21上设置第一凹槽1023的实施例,参见图5,第一基板102可以包括至少一个第一辐射单元12和至少两条第一馈线1021,至少两条第一馈线1021均分为两组分别为第一组第一馈线和第二组第一馈线,将第一组第一馈线中的第一馈线称为第一馈线1021a,将第二组第一馈线中的第一馈线称为第一馈线1021b。第一组第一馈线中的每条 第一馈线1021a的第二端连接第一馈电子单元1042a的一个第二端口p12,该第一馈线1021a的第一端连接一个第一辐射单元12,且不同的第一馈线1021a的第一端连接不同的第一辐射单元12。第二组第一馈线中的每条第一馈线1021b的第二端连接第二馈电子单元1042b的一个第二端口p22,该第一馈线1021b的第一端连接一个第一辐射单元12,且不同的第一馈线1021b的第一端连接不同的第一辐射单元12。由于每个第一辐射单元12连接了一条第一组的第一馈线1021a和一条第二组的第一馈线1021b,而第一凹槽1023位于第一辐射单元12、第一组的第一馈线1021a和第二组的第一馈线1021b正下方,因此第一组的第一馈线1021a与第二组的第一馈线1021b之间的介质变为空气和少部分第一基底21,从而二者易发生耦合,使信号串扰,因此,第一基板102还可以包括至少一个第二子电极1022,至少一个第二子电极1022设置在第一基底21背离第四基板101一侧。对于一个辐射单元12,一个第二子电极1022设置在该第一辐射单元12靠近侧部21a的一侧,且位于与该第一辐射单元12连接的第一组的第一馈线1021a与第二组的第一馈线1021b之间,以隔离第一组的第一馈线1021a与第二组的第一馈线1021b之间的信号,避免二者发生耦合。
在一些示例中,至少一个隔离电极1022采用导电材料,例如铜、铝等金属。参见图6,图6为第二子电极1022的结构示意图,每个第二子电极1022包括一个第一结构1022a和一个第二结构1022b。第一结构1022a沿第一基底21靠近侧部21a的侧边延伸,也即沿第一基底21的长度方向(即第一方向S1)延伸,第二结构1022b沿第一基底21的宽度方向(即第二方向S2)延伸,第二结构1022b连接在第一结构1022a的延伸方向(即第一方向S1)的中点上,且第二结构1022b的延伸方向与第一结构1022a的延伸方向相垂直。其中,第一结构1022a的宽度D1,小于第二结构1022b的宽度D2;第一结构1022a的长度L1,大于第二结构1022b的长度L2。
在一些示例中,天线还包括多个连接结构(图中未示出),参见图4,第四基板101还包括第三参考电极层1013,第三参考电极层1013设置在第一侧板1011a背离第二基板104一侧,且第三参考电极层1013与第一参考电极层1012相连,即二者共电位,第一参考电极层1012通过连接线接收参考电压(例如接地电压GND)。第一侧板1011a上还设置有多个第一通孔001,一个连接结构贯穿一个第一通孔001,将第三参考电极层1013和第二参考电极层1043电连接,以将第三参考电极层1013上的参考电压,传输至第二基板104上的第二参考电极层1043。
在一些示例中,连接结构可以采用多种连接结构,例如,参见图15,每个连接结构为一条同轴线400,同轴线400包括传输射频信号的芯极探针4001和传输参考电压的外导线4002,还包括包裹在外导线外侧的第一绝缘层4004,和设置在外导线4002和芯极探针4001之间的第二绝缘层4003。其中,外导线4002至少包裹部分芯极探针4001,芯极探针4001部分裸露在外。参见图9,第二基板104的第二基底1041上设置有至少一个第二通孔002,一个第二通孔002设置在一个第二馈电单元1042的第一端口处,一个第一通孔001与一个第二通孔002在第二基底1041上的正投影相重合。对于一条同轴线,外导线4002贯穿一个第一通孔001,与第三参考电极层1013和第二参考电极层1043电连接,以将第三参考电极层1013的参考电压传输至第二参考电极层1043,芯极探针4001被外导线4002包裹的部分,随外导线贯4002穿一个第一通孔001,芯极探针4001的裸露部分贯穿一个第二通孔002与一个馈电单元1042的第一端口电连接,以将射频信号传输至第一端口,或接收第一端口输入的射频信号。本实施例中,第二基板104包括第一馈电子单元1042a和第二馈电子单元1042b,第二基底1041上设置有两个第二通孔002,分别位于第一馈电子单元1042a的第一端口p11处和第二馈电子单元1042b的第一端口p12处,第四基板101的第一侧板1011a上设置有两个第一通孔 001,两条同轴线400的其中一条的芯极探针4001分别插入左侧的第一通孔001和第二通孔002与第一馈电子单元1042a的第一端口p11电连接,另一条的芯极探针4001分别插入右侧的第一通孔001和第二通孔002与第二馈电子单元1042b的第一端口p21电连接。
在一些示例中,参见图4、图9,第二基底1041上具有多个间隔设置的第三通孔003。设置有第二基板104的侧板1011(例如第一侧板1011a)上具有多个间隔设置的第四通孔004。天线还可以包括多个固定件(图中未示出),一个固定件贯穿一个第三通孔003及一个第四通孔004,以将第二基板104固定在第一侧板1011a上。固定件可以为螺丝,第三通孔003和第四通孔004的内侧可以具有与螺丝适配的内螺纹。
本公开实施例提供的天线可以为透明天线,其可应用在包括但不限于汽车、火车(包括高铁)、飞机、建筑物等的玻璃窗系统中。该天线可以固定在玻璃窗的内侧(靠近室内的一侧)。由于天线的光学透过率较高,故其在实现通信功能是同时对玻璃窗的透过率影响并不大,且该种天线也将成为一种美化天线的趋势。其中,本公开实施例中的玻璃窗包括但不限于双层玻璃,玻璃窗的类型还可以是单层玻璃、夹层玻璃、薄玻璃及厚玻璃等。本公开实施例中以该贴附有天线的玻璃窗应用在地铁车窗系统为例进行说明。
在一些示例中,第四基底11可以包括叠层设置的第一基材和第一固定板;第一参考电极层1012设置在第一基材背离第一固定板的一侧,其中,第一参考电极层1012可以通过第一透明粘合层与第一基材固定连接。和/或,第一基底21包括叠层设置的第二基材和第二固定板,至少一个第一辐射单元12和至少一条馈线1021可以设置在第二基材背离第二固定板一侧,其中,至少一个第一辐射单元12和至少一条馈线1021可以通过第二透明粘合层与第二基材固定连接。和/或,第三基底1031可以包括叠层设置的第三基材和第三固定板,至少一个第二辐射单元22设置在第三基材背离第二固定板一 侧,其中,至少一个第二辐射单元22可以通过第三透明粘合层与第三基材固定连接。
其中,第一基材、第二基材、第三基材的材料可以相同,也可以不同;例如,第一基材、第二基材、第三基材均采用柔性薄膜,接着可以在柔性薄膜上形成金属层,金属层可以图案化为第一辐射单元12、第一馈线1021、第二辐射单元22、第一参考电极层1012等,从而制成导电薄膜。该柔性薄膜的材料包括但不限于聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate;PET)或者聚酰亚胺(PI)等。在本公开实施例中,以第一基材、第二基材、第三基材均采用PET为例进行说明。其中,第一基材、第二基材、第三基材的厚度大约在50-250μm左右。由于第一基材、第二基材、第三基材材质柔软,无法为第一辐射单元12、第二辐射单元22和第一参考电极层1012提供良好的支撑,因此通过第一固定板来维持第四基底11的硬度,通过第二固定板来维持第一基底21的硬度,通过第三固定板来维持第三基底1031的硬度,第一固定板、第二固定板、第三固定板的材料包括但不限于聚碳酸酯塑料(Polycarbonate;PC)、环烯烃聚合物塑料(Copolymers of Cycloolefin;COP)或者亚克力/有机玻璃(Polymethyl Methacrylate;PMMA),以保证第四基底11的透明度。第一固定板、第二固定板、第三固定板中的任一者的厚度大约在1-3mm左右。第一粘合层和第二粘合层的材料可以相同,也可以不同,例如:第一粘合层和第二粘合层的材料均采用透明光学胶(Optically Clear Adhesive,OCA)。本文中第一基底12、第三基底1031均可采用如第四基底11同样的结构,以保证透明度,在此不再赘述。
需要说明的是,参见图4,在一些示例中,第四基底11在长度方向上的对侧连接有第一侧板1011a和第二侧板1011b,第一侧板1011a和第二侧板1011b也可以采用上述的固定板加基材叠层设置的结构,从而采用薄膜材料的基材层覆盖第四基底11、第一侧板1011a、第二侧板1011b的内侧,再在 其上形成导电层,制成导电薄膜,以刻蚀为第一参考电极层1012、第三参考电极层1013和第四参考电极层1014。
在一些示例中,参见图1、图4,设置有第二基板104的侧板1011(即第一侧板1011a)沿第四基底11的长度方向(即第一方向S1),将第一基底21(也将第四基底11)划分为第一区域N1和第二区域N2。第二基板104设置在第一侧板1011a靠近第一区域N1的一侧。第一区域N1在垂直于第四基底11的长度方向的方向(即第二方向S2)上的宽度,小于第二区域N2在垂直于第四基底11的长度方向的方向(即第二方向S2)上的宽度。第一基底21在第四基底11上的正投影,位于第四基底11的第二区域N2中。
在一些示例中,参见图3,第三基板103还包括沿第三基底1031的边缘设置、且设置在第三基底1031靠近底,101一侧的围板1033,在第三基板103和第四基板101对盒时,围板1033与第三基底1031形成外罩,将第四基板101罩在其中。
当第三基板103与第四基板101对盒后,设置有第二基板104的侧板1011(即第一侧板1011a)、第四基板101的第四基底11位于第一区域N1的部分、第三基板103的最靠第一侧板1011a的一侧的围板1033、第三基板103的第三基底1031对应第一区域N1的部分限定出一个容纳空间Y1,当天线以第一侧板1011a朝向底面、第二侧板1011b朝向天空的方向贴附在玻璃窗上,雨水若进入天线内部,会积攒在容纳空间Y1中,防止天线被雨水影响,并且第二基板104设置在第一侧板1011a上,能够避免其接触到雨水。
在一些示例中,第一辐射单元12、第二辐射单元22、第一馈线1021、第一参考电极层1012、第二参考电极层1043、第三参考电极层1013、第四参考电极层1014中的至少一者包括网格结构(mesh metal),从而能够保证天线的透光度。在一些示例中,为网格结构的,第一辐射单元12、第二辐射单元22、第一馈线1021、第一参考电极层1012、第二参考电极层1043、第 三参考电极层1013、第四参考电极层1014中的至少一者的至少一者,可采用多条第一导电丝和多条第二导电丝相交叉形成网格结构,其中第一导电丝的延伸方向与第二导电丝的延伸方向不同。例如,参见图35、图36,以第二辐射单元22进行说明,第二辐射单元22可以采用多条第一导电丝2211与多条第二导电丝2212相交叉形成的网格结构,其中,第一导电丝2211沿第四方向S4延伸,第二导电丝2212沿第五方向延伸,第四方向S4与第五方向S5不平行,具体地第四方向S4与第五方向S5的方向可以为多种形式,例如,参见图35,第一导电丝2211的延伸方向(第四方向S4)和第二导电丝2212的延伸方向(第五方向S5)可以按照第二辐射单元22的极化方向(也即功分馈电结构3输入的信号产生的电流的方向)设置。
在一些示例中,多条第一导电丝2211与多条第二导电丝2212的线宽、线厚度和线间距均相同。例如:多条第一导电丝2211与多条第二导电丝2212的线宽均为2-30μm、线间距为50-250μm;线厚度为1-10μm,透光度能达到70%-80%。当第一辐射单元12采用金属网格时,可以通过包括但不限于压印或者刻蚀工艺在第二基材背离第二固定板的表面形成第一辐射单元12,其他结构同理。
在一些示例中,网格结构可以采用多种导电材料制成,例如铜、银、铝等金属材料,在此不做限制。
在一些示例中,其中,至少一个第一辐射单元12、至少一个第二辐射单元22均可以采用网格结构;其中,组成网格结构的金属线(例如多条第一导电丝2211与多条第二导电丝2212)在第一辐射单元12和/或第二辐射单元22可以采用开放性结构,即第一辐射单元12和/或第二辐射单元22的边缘位置相互不连接;或者,组成网格结构的金属线(例如多条第一导电丝2211与多条第二导电丝2212)在第一辐射单元12和/或第二辐射单元22可以采用封闭性结构,即第一辐射单元12和/或第二辐射单元22的边缘位置相互短 接,在此不做限制。
在一些示例中,其中,至少一个第一辐射单元12、至少一个第二辐射单元22、第一电极层均采用网格结构,各层的网格结构的镂空部在第一基底21上的投影大致重叠,即各层的网格结构的金属丝的延伸方向可以相平行。
在一些示例中,其中,参见图10b,第一基板21还包括第一金属网格层,第一金属网格层设置在第一基底21背离第一电极层的一侧。第一金属网格层包括至少一个第一辐射单元12,还可以包括连接第一辐射单元12的第一馈电单元,第一馈电单元可以包括多条第一馈线1021,每天第一馈线1021上可以连接阻抗匹配结构6。其中,第一金属网格层具有至少一个第一开口0121,一个第一开口0121在第一金属网格层上分割出一个第一辐射单元12,也即在第一金属网格层上沿第一辐射单元12的形状去除部分金属网格,形成第一开口0121,以分割出一个第一辐射单元12,相应地,若沿第一馈电单元、阻抗匹配结构6的形状去除部分金属网格,即可分割出第一馈线1021和阻抗匹配结构6。采用上述方式,第一金属网格层形成第一辐射单元12、第一馈电单元、阻抗匹配结构6的部分,和其余部分均设置有金属网格,从而第一金属网格层的各部分具体较为均匀的反射率。
在一些示例中,其中,参见图10c,第三基板103还可以包括第三基底1031和第二金属网格层,第二金属网格层设置在第三基底1031背离第一基底21的一侧。其中,第二金属网格层具有至少一个第二开口0221,一个第二开口0221在第二金属网格层上分割出一个第二辐射单元22,也即在第二金属网格层上沿第二辐射单元22的形状去除部分金属网格,形成第二开口0221,以分割出一个第二辐射单元22。采用上述方式,第二金属网格层形成第二辐射单元22的部分,和其余部分均设置有金属网格,从而第二金属网格层的各部分具体较为均匀的反射率。
根据上述天线,发明人进行了仿真实验。图11为本公开实施例的天线 的两个极化方向的波束方向图,由图可知天线能实现各角度的波束方向。图12为本公开实施例的天线的驻波比示意图。由图12可知,本公开实施例的天线通过优化得到了工作频率内驻波比低于1.36的优秀匹配特性。图13为本公开实施例的天线的隔离度示意图。本公开实施例的天线在工作频率内隔离度大于19.5dB。图14为本公开实施例的天线在不同方向下的交叉极化示意图,本公开实施例的天线在各方向均可实现交叉极化。
第二方面,本公开实施例提供一种玻璃窗系统(也即通信系统),其中,包括上述天线,该天线可以固定在玻璃窗的内侧。
本公开实施例中的玻璃窗系统可用于汽车、火车(包括高铁)、飞机、建筑物等的玻璃窗系统中。该天线可以固定在玻璃窗的内侧(靠近室内的一侧)。由于天线的光学透过率较高,故其在实现通信功能是同时对玻璃窗的透过率影响并不大,且该种天线也将成为一种美化天线的趋势。其中,本公开实施例中的玻璃窗包括但不限于双层玻璃,玻璃窗的类型还可以是单层玻璃、夹层玻璃、薄玻璃及厚玻璃等。
本公开实施例提供一种天线,该天线包括相对设置的第一基板102和第三基板103。如图16-图18所示,图16为本公开实施例提供的天线的一种示例性的剖面图,图17为本公开实施例提供一种天线的第一基板102的一种示例性的俯视图,图18为本公开实施例提供一种天线的第三基板103的一种示例性的俯视图。其中,第三基板103可以包括第三基底1031和至少一个第二辐射单元22,第二辐射单元22均位于第三基底1031背离第一基板102一侧。第一基板102可以包括第一基底21、至少一个第一辐射单元12和至少一个功分馈电结构3。其中,至少一个第一辐射单元12位于第一基底21靠近第三基板103一侧,且一个第一辐射单元12与一个第二辐射单元22对应设置,每个第一辐射单元12在第一基底21上的正投影,和与该第一辐射单元12 对应的第二辐射单元22在基底上的正投影至少部分重叠。也就是说,第二辐射单元22和第一辐射单元12相对设置,射频信号先馈入第一辐射单元12,再由第一辐射单元12馈入第二辐射单元22,第一辐射单元12与第二辐射单元22相对应,即指该第一辐射单元12发出的射频信号馈入该第二辐射单元22中。
进一步地,第一基底21上的至少一个功分馈电结构3设置在第一基底21靠近第三基板103一侧,每个功分馈电结构3具有一个第一端口(例如图17中31a和32a)和多个第二端口(例如图17中31b和32b),每个功分馈电结构3的一个第二端口对应连接一个第一辐射单元12,本公开实施例提供的天线可以作为接收天线,也可以作为发送天线,并且可以同时进行发送信号和接收信号,在天线进行发送信号时,每个功分馈电结构3的第一端口接收射频信号,功分馈电结构3将射频信号分为多个子信号,每个子信号由一个第二端口输出给该第二端口连接的第一辐射单元12,第一辐射单元12再将子信号馈向该第一辐射单元12正对的第二辐射单元22;在天线进行接收信号时,任一个第二辐射单元22接收到射频信号后,将射频信号馈向与该第二辐射单元22正对的第一辐射单元12,第一辐射单元22再将射频信号通过与该第一辐射单元12连接的第二端口传输给第一端口。
需要说明的是,在本实施例中,第二基板104的第二基底1041与第一基板102的第一基底21一体设置,因此第一馈电单元和第二馈电单元一体成型,以下将第一馈电单元和第二馈电单元形成的结构称为功分馈电单元3。
需要说明的是,本实施例公开的天线包括的第二辐射单元22和第一辐射单元12的数量可以为N个,N为任意大于0的整数。第二辐射单元22和第一辐射单元12的数量可以不相同,只要一个第一辐射单元12与一个第二辐射单元22对应设置即可。在本公开实施例中,以第一基底1上设置有四个第二辐射单元22,第二基底2上设置有四个第一辐射单元12为例进行说明, 但不对本发明构成限制。
本公开实施例提供的天线,由于设置了第二辐射单元22与第一辐射单元12,且第二辐射单元22与第一辐射单元12相对设置,信号(例如射频信号)经由第一辐射单元12馈给第二辐射单元22,因此相较于仅设置一个辐射单元的情况,相对的第二辐射单元22和第一辐射单元12增加了辐射单元的辐射面积,从而有效提高了辐射效率。
在一些示例中,本公开实施例提供的天线的第一基板102还可以包括参考电极层23,参考电极层23设置在第一基底21背离第一辐射单元12一侧,向参考电极层23输入参考电压,从而给天线提供参考电位。参考电极层23可以为一面电极,整面覆盖第一基底21背离第一辐射单元12一侧;也可以对参考电极层23进行图案化,只要参考电极层23在第一基底21上的正投影,能够覆盖每个第一辐射单元12和/或第二辐射单元22在第一基底21上的正投影即可,在此不做限制。
在一些示例中,其中,第一基板102的第一基底21的厚度可以在100微米~1000微米之间,第三基底1031的厚度可以在100微米~1000微米之间。例如,第一基底21的厚度可以设置为较大的厚度值,例如可以为1000微米,从而通过将第一基底21的厚度增大,能够增大第一辐射单元12与参考电极层23之间的距离,同时也能够增大第二辐射单元22与参考电极层23之间的距离,进而第一辐射单元12与参考电极层23之间的对地电容很小,同理,第二辐射单元22与参考电极层23之间的对地电容也较小,因此能够有效减少对地电容对谐振的影响,使天线的带宽增大。第三基底1031的厚度可以与第一基底21相同,也可以不同,例如,第三基底1031的厚度可以设置在250微米,在此不做限制。
需要说明的是,第三基板103和第一基板102之间的间距即限定出本公开实施例提供的天线的介质层的厚度,在第一辐射单元12发出的微波信号馈 向至第二辐射单元22的过程中,微波信号经过第三基板103与第一基板102之间的介质层,介质层可以包括多种类型的介质,例如玻璃介质、空气介质等。介质层的厚度影响微波信号的传输损失、相位等,若本公开实施例提供的天线采用空气介质作为介质层,也即第三基板103和第一基板102之间为空气,第一辐射单元12发出的微波信号经过空气介质后馈向第二辐射单元22,则第三基板103和第一基板102之间的间距限定出天线的净空区的大小,若第三基板103与第一基板102之间的间距较大,则天线的净空区较大,从而能够有效增加天线的带宽,以及削弱谐振,进而增加天线的辐射效率。本公开实施例提供的天线的第三基板103和第一基板102之间的间距可以在5~50毫米之间,例如第三基板103和第一基板102的间距可以为8毫米,具体地可以根据介质的种类、微波信号的频率等设置,在此不做限制。
在一些示例中,继续参见图16-图18,其中,第二辐射单元22与第一辐射单元12一一对应设置,也即本实施例公开的天线中,第二辐射单元22和第一辐射单元12的数量相同,第二辐射单元22和第一辐射单元12一对一设置,并且,每个第二辐射单元22的面积可以略大于与该第二辐射单元22对应的第一辐射单元12的面积,即第二辐射单元22在第一基底21上的正投影的面积,大于第一辐射单元12在第一基底21上的正投影的面积,并且,每个第二辐射单元22与一个第一辐射单元12相对设置,即第一辐射单元12在第一基底21上的正投影,位于与该第一辐射单元12对应的第二辐射单元22在第一基底21上的正投影中,从而保证每个第二辐射单元22完全覆盖第一辐射单元12,进而保证第二辐射单元22向第一辐射单元12馈信号的过程中,第一辐射单元12能够最大限度地接收到第二辐射单元22馈入的信号(例如射频信号)的能量。当然,第二辐射单元22的面积也可以与第一辐射单元12的面积相等,或小于第一辐射单元12的面积,在此仅为示例性的说明,不对本发明构成限制。
在一些示例中,继续参见图16-图18,其中,第一辐射单元1和/或第一辐射单元12的尺寸可以根据天线传输的微波信号的波长来设置,例如,第二辐射单元22和/或第一辐射单元12可以为正方形辐射单元,正方形辐射单元的边长可以为微波信号的波长的二分之一或四分之一等,当然,第一辐射单元1和/或第一辐射单元12的尺寸也可以采用其他尺寸,在此不做限制。而第二辐射单元22的尺寸可以略大于第一辐射单元12的尺寸,具体地,可以根据微波信号的波长来设置第二辐射单元22和第一辐射单元12之间的尺寸关系,例如,第二辐射单元22和第一辐射单元12可以为正方形辐射单元,第二辐射单元22的边长可以比第一辐射单元12的边长大微波信号的波长的八分之一,当然,第二辐射单元22和第一辐射单元12的尺寸关系也可以采用其他方式,在此不做限制。
在一些示例中,继续参见图16-图18,其中,若天线包括多个第二辐射单元22和第一辐射单元12,任两个相邻的第二辐射单元22之间的间距,可以根据天线传输的微波信号的波长来设置,例如,任两个相邻的第二辐射单元22之间的间距为微波信号的波长的二分之一。相应地,任两个相邻的第一辐射单元12之间的间距,可以根据天线传输的微波信号的波长来设置,例如,任两个相邻的第一辐射单元12之间的间距为微波信号的波长的二分之一。当然,相邻的第二辐射单元22或第一辐射单元12之间的间距还可以采用其他设置方式,在此不做限制。
在一些示例中,本公开实施例提供的天线可以同时进行发送信号和接收信号,也即本公开实施例提供的天线可以工作在收发双工模式下,因此,第二辐射单元22和第一辐射单元12具有两副极化方向,从而天线为双极化天线。若天线为双极化天线,第二辐射单元22的形状和第一辐射单元12的形状均为中心对称图形,具体地,第二辐射单元22的形状和第一辐射单元12的形状可以采用正方形、十字形、等边菱形等,需要说明的是,上述正方形、 十字形、等边菱形可以不是严格意义上的正方形、十字形、等边菱形,第二辐射单元22的形状和第一辐射单元12的形状可以近似正方形、十字形、等边菱形。以下皆以第二辐射单元22、第一辐射单元12为正方形为例进行说明。
进一步地,参见图16-图18,第二辐射单元22的形状和第一辐射单元12的形状均为中心对称图形,且第二辐射单元22和第一辐射单元12可以正对设置,也即第二辐射单元22的对称中心在第一基底21上的正投影,和与该第二辐射单元22对应的第一辐射单元12的对称中心在第一基底21上的正投影重合。参见图17、图18,以图17中第一辐射单元12均为正方形辐射单元为例,为正方形辐射单元的第一辐射单元12的对称中心为正方形辐射单元的两个对角线的交点,称为第一对称中心O1。以图18中第二辐射单元22均为正方形辐射单元为例,为正方形辐射单元的第二辐射单元22的对称中心为正方形辐射单元的两个对角线的交点,称为第二对称中心O2。第二辐射单元22分别与其对应的第一辐射单元12正对设置,因此每个第二辐射单元22的第一对称中心O1在第一基底21上的正投影,与该第二辐射单元22对应的第一辐射单元12的第二对称中心O2在第一基底21上的正投影重合,从而能够保证第二辐射单元22能够尽可能地接受到全部第二辐射单元22馈入的信号的辐射能量,进而提高天线的辐射效率。需要说明的是,一个第二辐射单元12接收一个第二辐射单元22馈入的信号,即指该第二辐射单元22与该第一辐射单元12对应。
在一些示例中,继续参见图16-图18,本公开实施例提供的天线可以为双极化天线,因此第二辐射单元22的形状和第一辐射单元12的形状均为中心对称图形,以下以第二辐射单元22的形状和第一辐射单元12的形状均为正方形为例进行说明。为了使第一辐射单元12形成双极化,可以向第一辐射单元12输入两路信号,从而天线可以包括两个功分馈电结构3,分别为第一 功分馈电结构31和第二功分馈电结构31。第一功分馈电结构31可以具有一个第一端口31a和多个第二端口31b,第一功分馈电结构31的每个第二端口31b连接一个第一辐射单元12,且第一功分馈电结构31的第二端口31b和与该第二端口31b对应的第一辐射单元12的连接位置为第一连接点a1;第二功分馈电结构32可以具有一个第一端口32a和多个第二端口32b,第二功分馈电结构32的每个第二端口32b连接一个第一辐射单元12,且第二功分馈电结构32的第二端口32b和与该第二端口32b对应的第一辐射单元12的连接位置为第二连接点b1,也就是说,每个第一辐射单元12上连接有第一功分馈结构31的一个第二端口31b和第二功分馈电结构32的一个第二端口32b,第一功分馈电结构31的第二端口31b和第二功分馈电结构32的第二端口32b分别与第一辐射单元12形成两个极化方向,且第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向,与第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向不同,具体地,第一辐射单元12的对称中心为第一对称中心O1,每个第一辐射单元12的第一连接点a1与该第一辐射单元12的对称中心(即第一对称中心O1)的连线的延伸方向,和该第一辐射单元12的第二连接点b1与该第一辐射单元12的对称中心(即第一对称中心O1)的连线的延伸方向相交。以图17为例,图17中每个第一辐射单元12的第一连接点a1与该第一辐射单元12的对称中心(即第一对称中心O1)的连线的延伸方向为第六方向S6所示的方向,同一第一辐射单元12的第二连接点b1与该第一辐射单元12的对称中心(即第一对称中心O1)的连线的延伸方向为第三方向S3所示的方向,第六方向S6不平行于第三方向S3,第六方向S6与第三方向S3相交,从而可以保证第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向,与第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向不同,因此第一功分馈电结构31的第二端口31b与第一辐射单元12之间形成的传 输信号的第一通路与第二功分馈电结构32的第二端口32b与第一辐射单元12形成的传输信号的第二通路互相隔离,若天线同时进行发送信号和接收信号,发送的信号可以从第一通路和第二通路中的一者馈向第二辐射单元22,同时第二辐射单元22接收的信号可以馈向第一辐射单元12,第一辐射单元12通过第一通路和第二通路中的另一者接收,从而能够保证第一通路和第二通路之间的信号互不干扰,形成双极化天线。
在一些示例中,继续参见图16-图18,具体的,第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向的具体方向,第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向的具体方向可以包括多种形式,例如,第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向可以为+45°,第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向可以为-45°,基于上述,为了使第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向为+45°,第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向为-45°,每个第一辐射单元12的第一连接点a1与该第一辐射单元12的对称中心即第一对称中心O1)的连线的延伸方向(例如第一方向S2),和同一第一辐射单元12的第二连接点b1与该第一辐射单元12的对称中心即第一对称中心O1)的连线的延伸方向(例如第三方向S3)可以相垂直,从而能够保证第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向为+45°,第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向为-45°,±45°的极化正交性可以保证+45°和-45°两副天线之间的隔离度满足互调对天线间隔离度的要求(≥30dB)。需要说明的是,极化方向可以视作第二辐射单元22或第一辐射单元12发出的微波信号与地平面之间的夹角的角度,在本实施例中,若第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向(以下称第一极化方向)和第二功分馈电 结构32的第二端口32b与第一辐射单元12形成的极化方向(以下称第二极化方向)相垂直,也即第一极化方向与第二极化方向之间的夹角为90°,且第一极化方向与地平面的夹角为45°,而第二极化方向与地平面的夹角也为45°,因此定义第一极化方向与第二极化方向中的一者为+45°,另一者为-45°,上述以第一极化方向为+45°,第二极化方向为-45°为例进行说明。当然,两个极化方向也可以为其他角度,在此不做限制。
在一些示例中,参见图17,功分馈电结构3可以包括多种类型的功分馈电结构,例如功分馈电结构3可以为传输线结构,也可以为波导功分结构,在此不做限定,本实施例中,皆以功分馈电结构3(例如第一功分馈电结构31和第二功分馈电结构32)为传输线结构为例进行说明。以功分馈电结构3为一分四的功分馈电结构为例进行说明,功分馈电结构3由一个主线段和四个子线段组成,主线段的长度方向上的中点位置可以为第一端口(例如31a),主线端的两端分别连接两个子线段的第一端,两个子线段的第二端分别为第二端口(例如31b)连,每个子线段的第二端延伸至第一辐射单元12与第一辐射单元12连接。当然,功分馈结构3还可以为其他结构,在此仅为示例性的说明,不对本发明构成限制。
在一些示例中,第二辐射单元22的形成和第一辐射单元12的形状均为中心对称图形,具体的,第二辐射单元22和第一辐射单元12的形状可以为多种形状,例如,参见图17、图18,第二辐射单元22和第一辐射单元12均为正方形辐射单元,若天线为双极化天线,天线包括第一功分馈电结构31和第二功分馈结构32,则第一功分馈电结构31的第二端口31b和第二功分馈电结构32的第二端口32b分别连接第一辐射单元12相邻的两个侧边,具体地,第一功分馈电结构31的第二端口31b连接在第一辐射单元12的一个侧边的长度的中点,即第一连接点a1在第一辐射单元12的一个侧边的长度的中点上;第二功分馈电结构32的第二端口32b连接在第一辐射单元12的 与上述侧边相邻的侧边的长度的中点,即第二连接点b1在第一辐射单元12的与上述侧边相邻的侧边的长度的中点上。由于为正方形辐射单元的第一辐射单元12任意两个相邻的均相垂直,因此,每个第一辐射单元12的第一连接点a1与该第一辐射单元12的对称中心(即第一对称中心O1)的连线的延伸方向(例如第一方向S2),和同一第一辐射单元12的第二连接点b1与该第一辐射单元12的对称中心(即第一对称中心O1)的连线的延伸方向(例如第三方向S3)也相垂直,从而第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向为+45°,第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向为-45°。
又例如,参见图19,图20,如图20所示,第二辐射单元22可以包括第一子辐射单元121和第二子辐射单元122,第一子辐射单元121的延伸方向和第二子辐射单元122的延伸方向相交,第一子辐射单元121和第二子辐射单元122的相交处为第二辐射单元22的对称中心。如图19所示,第一辐射单元12包括第三子辐射单元221和第四子辐射单元222,第三子辐射单元221的延伸方向和第四子辐射单元222的延伸方向相交,第三子辐射单元221和第四子辐射单元222的相交处为第一辐射单元12的对称中心。以图19,图20中第一子辐射单元121、第二子辐射单元122、第三子辐射单元221、第四子辐射单元222的均为矩形辐射单元为例,第一子辐射单元121、第二子辐射单元122的长度、宽度均相同,从而第一子辐射单元121的延伸方向上的长度的中点与第二子辐射单元122的延伸方向上的长度的中点相交,相交点为第二辐射单元22的对称中心,称为第四对称中心O4,且第一子辐射单元121的延伸方向(例如S4所示方向)和第二子辐射单元122的延伸方向(例如S5所示方向)相垂直,形成十字形的第一子辐射单元12;第三子辐射单元221、第四子辐射单元222的长度、宽度均相同,从而第三子辐射单元221的延伸方向上的长度的中点与第四子辐射单元222的延伸方向上的 长度的中点相交,相交点为第一辐射单元12的对称中心,称为第三对称中心O3,且第三子辐射单元221的延伸方向(例如S4所示方向)和第四子辐射单元222的延伸方向(例如S5所示方向)相垂直,形成十字形的第一子辐射单元12。并且,第二辐射单元22的第一子辐射单元121的延伸方向与第一辐射单元12的第三子辐射单元221的延伸方向相同(例如均为S4所示方向),第二辐射单元22的第二子辐射单元122的延伸方向与第一辐射单元12的第四子辐射单元222的延伸方向相同(例如均为S5所示方向),从而第一辐射单元12在第一基底21上的正投影,能够位于第二辐射单元22在第一基底21上的正投影内。若天线为双极化天线,天线包括第一功分馈电结构31和第二功分馈结构32,第一功分馈电结构31的第二端口31b连接与该第二端口31b对应的第一辐射单元12的第三子辐射单元221;第二功分馈电结构32的第二端口32b连接与第二端口32b对应的第一辐射单元12的第四子辐射单元222,具体地,第一功分馈电结构31的第二端口31b连接与该第二端口31b对应的第一辐射单元12的第三子辐射单元221的一端,即第一连接点a1位于该端部的中点;第二功分馈电结构32的第二端口32b连接与该第二端口32b对应的第一辐射单元12的第四子辐射单元222的一端,即第二连接点b1位于该端部的中点。由于第三子辐射单元221的延伸方向(例如S4所示方向),与第四子辐射破222的延伸方向(例如S5所示方向)相垂直,因此,每个第一辐射单元12的第一连接点a1与该第一辐射单元12的对称中心(即第三对称中心O3)的连线的延伸方向(也即S4所示方向),和同一第一辐射单元12的第二连接点b1与该第一辐射单元12的对称中心(即第三对称中心O3)的连线的延伸方向(例如S5所示方向)也相垂直,从而第一功分馈电结构31的第二端口31b与第一辐射单元12形成的极化方向为+45°,第二功分馈电结构32的第二端口32b与第一辐射单元12形成的极化方向为-45°。当然,第二辐射单元22与第一辐射单元12的具体结构还可以有多种 形式,在此不做限制。
在一些示例中,如图16-图20所示,以一种示例性的天线为例,该天线为双极化天线,具有±45°两个极化方向,天线的第三基板103可以包括四个第二辐射单元22,四个第二辐射单元22沿第一方向S1排布设置;天线的第一基板102可以包括四个第一辐射单元12,四个第一辐射单元12沿第一方向S1排布设置。天线包括两个功分馈电结构3,分别为第一功分馈电结构31和第二功分馈电结构32,第一功分馈电结构31包括一个第一端口31a和四个第二端口31b,每个第二端口31b连接一个第一辐射单元12,且连接位置为第一连接点a1;第二功分馈电结构32包括一个第一端口32a和四个第二端口32b,每个第二端口32b连接一个第一辐射单元12,且连接位置为第二连接点b1,第二辐射单元22和第一辐射单元12均为中心对称图形,每个第一辐射单元12的第一连接点a1与该第一辐射单元12的对称中心的连线的延伸方向,和同一第一辐射单元12的第二连接点b1与该第一辐射单元12的对称中心的连线的延伸方向(例如第三方向S3)也相垂直,从而形成±45°两个极化方向。
在一些示例中,如图16、图21-图23所示,其中,图21为本公开实施例提供的天线的支撑框的一种示例性的结构示意图,图22为本公开实施例提供的天线的支撑框的一种示例性的主视图,图23为本公开实施例提供的天线的支撑框的一种示例性的侧视图。本公开实施例提供的天线具有辐射区域,和环绕辐射区域设置的周边区域,第二辐射单元22和第一辐射单元12均设置在辐射区域内,功分馈电结构3也设置在辐射区域。本公开实施例提供的天线还包括支撑框4,支撑框4可以设置在周边区域,且配置为对第三基板103和第一基板102进行支撑。将第三基板103和第一基板102之间支撑起一定空间,使第一辐射单元12到第三基底1031之间为中空部,从而第一辐射单元12辐射出的信号能够通过中空部中的空气介质馈向第二辐射单元22, 相较于信号通过固体介质或者液晶介质馈向第二辐射单元22,空气的介电常数为1,信号在空气中传播的介质损失接近于0,因此能够有效减少介质损失。且支撑框3在第三基板103和第一基板102之间支撑起一定空间,该空间作为天线的净空区,从而天线的净空区增大,因此能够有效增加天线的带宽,以及削弱谐振,进而增加天线的辐射效率。
在一些示例中,可以通过将支撑框4的高度增高,从而能够增大天线的净空区,支撑框4支撑在第三基板103与第一基板102之间,从而支撑框4的高度也可限定出第三基板103和第一基板102之间的间距。具体地,支撑框4的高度可以为5~50毫米,例如可以为8毫米,从而第三基板103和第一基板102之间的间距为8毫米。支撑框4的框体的宽度也可以为多种形式,只要不遮挡第二辐射单元22和第一辐射单元12即可,例如可以为9.5毫米,在此不做限制。
在一些示例中,参见图25,支撑框4还可以具有主体结构4a和多个辅助支撑部4b,主体结构4a设置在周边区域,多个辅助支撑部4b分布在辐射区域,但辅助支撑部4b与第二辐射单元22和第一辐射单元12均不接触,即多个辅助支撑部4b在第一基底21上的正投影,与多个第二辐射单元22和多个第一辐射单元12在第一基底21上的正投影均无重叠区域,主体结构4a和多个辅助支撑部4b组成的支撑框3被配置为对第三基板103和第一基板102进行支撑,辅助支撑部4b能够增加支撑框4的支撑力。辅助支撑部4b可以包括多种形式,例如辅助支撑部4b可以为多个支撑柱,支撑柱分布在辐射区域的多个第一辐射单元12之间,又例如,参见图25,辅助支撑部4b可以包括第一辅助支撑部4b1和第二辅助支撑部4b2,第一辅助支撑部4b1的延伸方向与第二辅助支撑部4b2的延伸方向相交,第一辅助支撑部4b1的两端延伸至支撑框4的主体结构4a相对的两个侧边;第二辅助支撑部4b2的两端延伸至支撑框4的主体结构4a的另外两个相对的侧边。如图25所示,第 一辅助支撑部4b1和第二辅助支撑部4b2相交叉,与主体结构4a相结合,组成一个田字形的支撑框4。进一步地,辅助支撑结构4b可以与主体结构4a为分体结构,二者不相连;辅助支撑结构4b也可以与主体结构4a一体成型,例如图25中,第一辅助支撑部4b1和第二辅助支撑部4b2与主体结构4a一体成型,形成一个田字形的支撑框4,在此不做限制。
需要说明的是,支撑框4可以包括多种形状,例如矩形、圆形、六边形等,以下皆以支撑框4为矩形支撑框为例进行说明,但不对本发明构成限制。
在一些示例中,本公开实施例提供的天线还可以包括第一粘接层和第二粘接层,其中,第一粘接层位于支撑框4与第三基板103之间,用于固定支撑框4与第三基板103,第一粘接层在第三基板103上的正投影,与支撑框4在第三基板103上的正投影至少部分重叠,若第一粘接层按照支撑框4的图案形成在支撑框4与第三基板103之间,则第一粘接层在第三基板103上的正投影,与支撑框4在第三基板103上的正投影完全重叠。第二粘接层位于支撑框4与第一基板102之间,用于固定支撑框4与第一基板102,第二粘接层在第一基板102上的正投影,与支撑框4在第一基板102上的正投影至少部分重叠,若第二粘接层按照支撑框4的图案形成在支撑框4与第一基板102之间,则第二粘接层在第一基板102上的正投影,与支撑框4在第一基板102上的正投影完全重叠。第一粘接层与第二粘接层均可以包括多种材料,例如,第一粘接层和第二粘接层可以采用透明光学胶(Optically Clear Adhesive,OCA),当然,也可以为其他材料,在此不做限制。
在一些示例中,参见图17-图23,本公开实施例提供的天线还包括至少一条连接线5,参见图17、图19,至少一条连接线5设置在第一基底21靠近第三基板103一侧,也即至少一条连接线5与功分馈电结构3、第一辐射单元12同层设置。支撑框4的侧边具有至少一个开孔41,每个连接线5的一端连接一个功分馈电结构3的第一端口,该连接线5的另一端延伸至支撑 框4的侧边的一个开孔41处,外部信号线通过该开孔41与连接线5相连,以通过连接线5向功分馈电结构3传输信号(例如射频信号)。若功分馈电结构3为传输线结构,则功分馈电结构3可以与连接线5一体成型。
在一些示例中,参见图26-图31,本公开实施例提供的天线还包括第一连接器7和第一固定板8。第一连接器7用于连接外部信号线与连接线5,第一固定板8用于将第一连接器7与支撑框4的侧边相固定。具体地,参见图27、图28,第一固定板8上具有第一通孔001,第一连接器7穿过第一固定板8上的第一通孔001与第一固定板8相固定,并且,第一固定板8与支撑框4的侧边相固定,从而将第一连接器7与支撑框4相固定。
具体地,参见图26,第一连接器7可以包括多种类型的连接器,例如,第一连接器7可以为SMA(Small A Type)连接器,第一连接器7具体第一端71a和第二端71b,第一端71a插入支撑框4侧边的开孔41以连接连接线5,第一连接器7的第二端71b连接外部信号线,从而外部信号线通过第一连接器7输入连接线5。
进一步地,第一连接器7连接结构72位于第一端71a和第二端71b之间,第一端71a的端部可以具有一个导电针71c,第一端71a插入支撑框4侧边的开孔41,第一端71a端部的导电针71c与连接线5相连接,从而向连接线5输入信号。导电针71c和连接线5可以通过焊锡006相固定,当然,也可以采用其他固定方式,在此不做限制。
在一些示例中,如图27、图29所示,以天线包括多个第一辐射单元12,多个第一辐射单元12沿第一方向S1排布设置,天线包括第一功分馈电结构31和第二功分馈电结构32为例,则相应地,支撑框4的边框也可以设置两个开孔41,分别为第一开孔41a和第二开孔41b,第一开孔41a和第二开孔41b可以设置在支撑框4的同一侧边上,也可以设置在支撑框4的不同侧边上,以一开孔41a和第二开孔41b可以设置在支撑框4的同一侧边上为例, 第一功分馈电结构31和第二功分馈电结构32沿多个第一辐射单元12的排列方向(第一方向S1)相对设置,第一功分馈电结构31相对第二功分馈电结构32靠近第一开孔41a和第二开孔41b,由于连接线5从每个开孔41连接至功分馈电结构31,因此,本实施例中天线包括第一连接线51和第二连接线52,第一连接线51的一端连接第一功分馈电结构31的第一端口31a,第一连接线51的另一端延伸至支撑框4的侧边上的第一开孔41a,与第一开孔41a处的第一连接器7(图17中未示出)连接,接收外部信号线通过第一连接器7输入的信号,第二连接线52的一端连接第二功分馈电结构32的第一端口32a,第二连接线52的另一端延伸至支撑框4的侧边上的第二开孔41b,接收外部信号线通过第一连接器7输入的信号,第一连接线51与第二连接线52连接的第一连接器7为不同的第一连接器7,不同的第一连接器7可以连接不同的外部信号线,因此第一连接线51接收到的信号可以与第二连接器52接受到的信号不同,从而第一功分馈电结构31的第一端口31a和第二功分馈电结构32的第一端口32a接收到信号不同。其中,由于第一功分馈电结构31相较于第二功分馈电结构32靠近第一开孔41a和第二开孔41b,而第一开孔41a和第二开孔41b设置在支撑框4的同一侧边,所以连接在第二开孔41b与第二功分馈电结构32之间的第二连接线52的长度大于连接在第一开孔41a与第一功分馈电结构31之间的第一连接线51的长度。
在一些示例中,参见图24,支撑框4上的开孔41也可以设置在支撑框4的不同侧边上,以天线包括多个第一辐射单元12,多个第一辐射单元12沿第一方向S1排布设置,天线包括第一功分馈电结构31和第二功分馈电结构32为例,则相应地,支撑框4的边框也可以设置两个开孔41,分别为第一开孔41a和第二开孔41b,第一开孔41a和第二开孔41b可以设置在支撑框4的不同侧边上,例如,如图24所述,第一开孔41a和第二开口41b分别设置在支撑框4相对的两个侧边上,第一功分馈电结构31和第二功分馈电结 构32沿多个第一辐射单元12的排列方向(第一方向S1)相对设置,第一功分馈电结构31相靠近第一开孔41a,第二功分馈电结构32靠近第二开孔41b,因此连接在第二开孔41b与第二功分馈电结构32之间的第二连接线52的长度可以与连接在第一开孔41a与第一功分馈电结构31之间的第一连接线51的长度相同。总之,支撑框4上的开口41的设置方式可以具有多种,具体可以根据需要设置,若开孔41设置在同一侧,则在将天线安装在户外的情景下,可以将天线设置有开孔41的一侧背离天空安装,从而能够防止雨水通过开孔41流入天线内部,避免天线内部的结构受损。
在一些示例中,参见图26,第一连接器7具有主体(包括71a、71b、71c)和连接结构72,主体贯穿连接结构72设置,如图26所述,主体可以为一个柱形接口,连接结构72可以为一连接板,柱形接口的主图延伸方向与连接板的连接结构72延伸方向相垂直,连接结构72用于与第一固定板8相固定,以将第一连接器7与第一固定板8相固定。
在一些示例中,参见图26-图31,第一固定板8可以具有底板81和侧板82,侧板82可以设置在底板81的一侧的边缘,若侧板82的平面方向与底板81的平面方向相垂直,则形成一个L形的第一固定板8,以下皆以第一固定板8为L形固定板为例进行说明,当然第一固定板8还可以为其他结构。具体地,第一固定板8的侧板82用于固定第一连接器7与支撑框4的侧边,第一固定板8的底板81用于将第一固定板8与支撑框4的侧边相固定。侧板82具有多个第二通孔002,第一连接器7的连接结构72上具有多个第三通孔003,第二通孔002和第三通孔003一一对应,天线还包括多个第一固定件011,第一固定件011与侧板82上的第二通孔002一一对应。若第一固定板8的侧板82将第一连接器7与支撑框4的侧边相固定,第一连接器7的主体的第一端71a贯穿侧板82上的第一通孔001,使第一连接器7的连接结构72与第一固定板8的侧板82相抵,且第一连接器7的主体的第一端71a插入支 撑框4的侧边的开孔41,每个第一固定件011穿过相抵的第一固定板8的侧板82上的第二通孔002和第一连接器7的连接结构72上的第三通孔003,以将连接结构72与侧板82相固定,从而将第一连接器7与第一固定板8相固定。以侧板82具有四个第二通孔002为例,四个第二通孔002分布在第一通孔001的周边,则第一连接器7的连接结构72上也具有四个第三通孔003,第三通孔003的位置按照第一通孔001的位置设置,相应地,天线也具有四个第一固定件011,每个第一固定件011分别插入侧板82上的一个第二通孔002和与该第二通孔002重叠的连接结构72上的第三通孔003,将第一固定板8与第一连接器7相固定。
在一些示例中,第一固定件011可以为多种类型的结构,在本公开实施例中,以第一固定件011为螺丝为例进行说明,则为螺丝的第一固定件011的外侧具有螺纹,而第二通孔002和第三通孔003的孔壁也分别具有螺纹,第一固定件011的外侧的螺纹和第二通孔002、第三通孔003的孔壁上的螺纹相匹配,以将为螺丝的第一固定件011拧入第二通孔002、第三通孔003中,将第一固定板8的侧板82与第一连接器7的连接结构72相固定。
在一些示例中,如图26-图31所示,第一固定板8固定在支撑框4的侧边上,第一连接器7的连接结构72与第一固定板8的侧板82背离支撑框4的侧边的一侧相抵,通过第一固定件011固定在第一固定板8的侧板82上。支撑框4具有开孔41的侧边具有第一面A、第二面B和第三面C,第二面B连接在第一面A与第三面C之间,第一面A的平面方向与第二面B的平面方向相交,且第三面C的平面方向与第二面B的平面方向相交,第一面A的平面方向与第三面C的平面方向沿同一方向延伸,以下以第二面B沿垂直于地的方向延伸,第一面A与第三面C与第二面B相垂直为例进行说明。第一固定板8的底板81与支撑框4的侧边的第三面C相抵,第一固定板8的侧板82与支撑框4的侧边的第二面B相抵,支撑框4的侧边的上的开孔 41设置在支撑框4的侧边的第二面B上,第一固定板8的侧板82上的第一通孔001也对应开孔41设置,从而第一连接器7的主体的第一端71a从第一通孔001穿出,再插入开孔41中,与连接线5相连。第一固定板8的底板81上具有两个第四通孔004,两个第四通孔004的位置相对第一通孔001在侧板82上的位置,分别设置在第一通孔001的两侧。支撑框4的侧边具有两个第五通孔005,两个第五通孔005在第三面C上的正投影分别位于开孔41的两侧,第五通孔005沿侧边的第三面C指向第一面A的方向延伸,开孔41的延伸方向与第五通孔005的延伸方向相垂直,参见图29,即第五通孔005为垂直方向的通孔,开孔41为平行于第一基底21方向上的开孔。若第一固定板8的底板81与支撑框4的侧边的第三面C相固定,则侧边的第五通孔005在第一固定板8的底板81上的正投影,与第一固定板8的底板81上的第四通孔004具有重合区域,也即第五通孔005与第四通孔004一一对应设置。相应地,底板81上具有两个第四通孔004,侧边的第三面C具有两个第五通孔005,则天线具有两个第二固定件021,若第一固定板8的底板81与支撑框4的侧边的第三面C相抵,每个第二固定件021穿过相抵的第一固定板8的底板81上的第四通孔004和支撑框4的侧边的第三面C上的第五通孔005,以将支撑框4的侧边的第三面C与第一固定板8的底板81相固定,从而将支撑框4的侧边与第一固定板8相固定,由于第一连接器7通过连接结构72与第一固定板8的侧板82相固定,因此支撑框4的侧边与第一固定板8相固定也即将第一连接器7与支撑框4的侧边的相对位置固定。
在一些示例中,第二固定件021可以为多种类型的结构,在本公开实施例中,以第二固定件021为螺丝为例进行说明,则为螺丝的第二固定件021的外侧具有螺纹,而第四通孔004和第五通孔005的孔壁也分别具有螺纹,第二固定件021的外侧的螺纹和第四通孔004、第五通孔005的孔壁上的螺纹相匹配,以将为螺丝的第二固定件021拧入第四通孔004、第五通孔005 中,将第一固定板8的底板81与支撑框4的侧边的第三面A相固定。
在一些示例中,参见图21-22、图28-31,第一固定板8的侧板82与支撑框4的侧边的第二面B相抵,第二面B还设置有一第一凹槽007,支撑框4的侧边上的开孔41位于第一凹槽007的槽底中,参见图31,第一凹槽007的宽度D2不小于第一固定板8的侧板82的宽度D1,即D2≥D1,则第一固定板8的侧板82能够嵌入第一凹槽007中,且侧板82上的第一通孔001与第一凹槽007的槽底的开孔41相对,第一连接器7的第一端71a能够穿过第一通孔001插入开孔41中。第一固定板8的侧板82能够嵌入第一凹槽007中,从而第一固定板8能够与支撑框4的侧边结合紧密,且第一固定板8不会影响天线整体的宽度。
在一些示例中,第三基板103的第三基底1031靠近支撑框4的侧边上的开孔41的一侧具有第二凹槽,第一基板102的第一基底21靠近支撑框4的侧边上的开孔41的一侧具有第三凹槽,第一凹槽、第二凹槽、第三凹槽相连形成一个凹槽,也就是说,第一凹槽在第一基底21上的正投影、第二凹槽在第一基底21上的正投影与第三凹槽至少部分重合,若第一凹槽、第二凹槽、第三凹槽的宽度一致,则第一凹槽在第一基底21上的正投影、第二凹槽在第一基底21上的正投影与第三凹槽可以完全重合,从而第一固定板8的侧板能够嵌入第一凹槽、第二凹槽、第三凹槽相连的形成的凹槽中,使第一固定板8能够与支撑框4的侧边结合紧密,且第一固定板8不会影响天线整体的宽度。
在一些示例中,天线的第一基底21上的连接线5还可以采用其他方式连接外部信号线,具体地,天线可以包括第一连接器7和连接电缆(图中未示出),第一连接器7可以包括多种类型的连接器,例如,第一连接器7可以为SMA(Small A Type)连接器,第一连接器7的第一端71a可以采用具有内孔的SMA连接器,第一连接器7的第二端71b也具有可以连接外部信号 线的接线口,则连接电缆的第一端通过第一连接器7的第一端71a的内孔与第一连接器7的第一端71a连接,连接电缆的第二端穿过支撑框4的侧边的开孔41与延伸至开孔41处的连接线5连接,第一连接器7的第二端71b与外部信号线相连,则外部信号线将射频信号通过第一连接器7的第一端71a传输给连接电缆,连接电缆再将射频信号输入连接线5,连接线5再将信号传入功分馈电结构3。在本实施例的连接方式中,无需设置第一固定板8,支撑框4的侧边也无需设置第五通孔005,仅设置开孔41即可。当然,本公开实施例提供的天线还可以具有其他连接方式,在此不做限制。
在一些示例中,参见图32-图34,本公开实施例提供的天线包括介质层,介质层位于第三基板103和第一基板102之间,第一辐射单元12输出的射频信号经过介质层馈向第二辐射单元22,介质层可以包括介质基板04,介质基板04可以为一块厚板,例如可以为玻璃基板,当然,也可以采用其他材料制作介质基板04,具体地,介质基板04具有至少一个镂空部041,一个镂空部041与一个第二辐射单元22对应设置,一个镂空部041也与一个第二辐射单元022对应设置,也就是说,一个第一辐射单元12辐射出的射频信号通过该镂空部041之间的空气介质馈向一个第二辐射单元22,则该镂空部041与该第一辐射单元12、第二辐射单元22对应。具体地,第二辐射单元22在第一基底21上的正投影,位于介质基板04中与该第二辐射单元22对应的镂空部041在第一基底21上的正投影中,且与该第二辐射单元22对应的第一辐射单元12在第一基底21上的正投影,位于介质基板04中与该第一辐射单元12对应的镂空部041在第一基底21上的正投影中,也就是说,介质基板04中的镂空部041至少将第二辐射单元22和第一辐射单元12覆盖,从而第一辐射单元12与第二辐射单元22之间的介质层仍为空气介质,进而能够减少射频信号的传输损失。
可选地,如图34所示,镂空部041的截面的形状可以与第二辐射单元 22或第一辐射单元12的形状相同,且镂空部041的截面的面积不小于第二辐射单元22或第一辐射单元12的面积。如图33所述,镂空部041的截面的形状可以与第二辐射单元22或第一辐射单元12的形状均不相同,只要镂空部041的能将第二辐射单元22或第一辐射单元12覆盖即可。
在一些示例中,本公开实施例提供的天线还可以包括第一粘接层和第二粘接层,其中,第一粘接层位于介质基板04与第三基板103之间,用于固定介质基板04与第三基板103,第一粘接层在第三基板103上的正投影,与介质基板04除去镂空部041的部分在第三基板103上的正投影至少部分重叠,若第一粘接层按照介质基板04除去镂空部041的图案形成在介质基板04与第三基板103之间,则第一粘接层在第三基板103上的正投影,与介质基板04除去镂空部041的部分在第三基板103上的正投影完全重叠。第二粘接层位于介质基板04与第一基板102之间,用于固定介质基板04与第一基板102,第二粘接层在第一基板102上的正投影,与介质基板04除去镂空部041的部分在第一基板102上的正投影至少部分重叠,若第二粘接层按照介质基板04除去镂空部041的图案形成在介质基板04与第一基板102之间,则第二粘接层在第一基板102上的正投影,与介质基板04除去镂空部041的部分在第一基板102上的正投影完全重叠。第一粘接层与第二粘接层均可以包括多种材料,例如,第一粘接层和第二粘接层可以采用透明光学胶(Optically Clear Adhesive,OCA),当然,也可以为其他材料,在此不做限制。
在一些示例中,若本实施例提供的天线采用介质基板04作为介质层,介质基板04中具有多个镂空部041,每个镂空板041对应一个第二辐射单元22。与上述同理,介质基板04的侧边具有至少一个开孔41。在天线中,第一基板102还包括至少一条连接线5,至少一条连接线5设置在第一基底21靠近第三基板103一侧,与功分馈电结构3、第一辐射单元12同层设置,每个连接线5的一端连接一个功分馈电结构3的第一端口,该连接线5的另一 端延伸至一个开孔41处,以通过开孔41连接外部信号线。
在一些示例中,同上述天线采用支撑框4支撑第三基板103与第一基板102的实施例同理,本公开实施例提供的天线中采用介质基板04作为介质层,天线还可以包括第一连接器7和第一固定板8。第一连接器7用于连接外部信号线与连接线5,第一固定板8用于将第一连接器7与介质基板04的侧边相固定。具体地,第一固定板8上具有第一通孔001,第一连接器7穿过第一固定板8上的第一通孔001与第一固定板8相固定,并且,第一固定板8与介质基板04的侧边相固定,从而将第一连接器7与介质基板04相固定。第一连接器7的第一端71a插入介质基板04的侧边的开孔41以连接连接线5,第一连接器7的第二端71b连接外部信号线,从而外部信号线通过第一连接器7输入连接线5。需要说明的是,连接线5可以形成在介质基板04中,但连接线4延伸至开孔41处的一端需裸露在开孔41处,以与第一连接器7的第一端71a连接。
在一些示例中,同上述天线采用支撑框4支撑第三基板103与第一基板102的实施例同理,在采用介质基板04作为介质层的实施例中,介质基板04的侧边上可以具有多个开孔41,多个开孔41可以设置在介质基板04的同一侧边,也可以设置在介质基板04的不同侧边,在此不做限定。与上述同理,若第一固定板8的侧板82将第一连接器7与介质基板04的侧边相固定,第一连接器7的主体的第一端71a贯穿侧板82上的第一通孔001,使第一连接器7的连接结构72与第一固定板8的侧板82相抵,且第一连接器7的主体的第一端71a插入介质基板04的侧边的开孔41,每个第一固定件011穿过相抵的第一固定板8的侧板82上的第二通孔002和第一连接器7的连接结构72上的第三通孔003,以将连接结构72与侧板82相固定,从而将第一连接器7与第一固定板8相固定。
在一些示例中,同上述天线采用支撑框4支撑第三基板103与第一基板 102的实施例同理,在采用介质基板04作为介质层的实施例中,第一固定板8固定在介质基板04的侧边上,第一连接器7的连接结构72与第一固定板8的侧板82背离介质基板04的侧边的一侧相抵,通过第一固定件011固定在第一固定板8的侧板82上。介质基板04具有开孔41的侧边具有第一面A、第二面B和第三面C,第二面B连接在第一面A与第三面C之间,第一面A的平面方向与第二面B的平面方向相交,且第三面C的平面方向与第二面B的平面方向相交,第一面A的平面方向与第三面C的平面方向沿同一方向延伸,以下以第二面B沿垂直于地的方向延伸,第一面A与第三面C与第二面B相垂直为例进行说明。第一固定板8的底板81与介质基板04的侧边的第三面C相抵,第一固定板8的侧板82与介质基板04的侧边的第二面B相抵,介质基板04的侧边的上的开孔41设置在介质基板04的侧边的第二面B上,第一固定板8的侧板82上的第一通孔001也对应开孔41设置,从而第一连接器7的主体的第一端71a从第一通孔001穿出,再插入开孔41中,与连接线5相连。第一固定板8的底板81上具有两个第四通孔004,两个第四通孔004的位置相对第一通孔001在侧板82上的位置,分别设置在第一通孔001的两侧。介质基板04的侧边具有两个第五通孔005,两个第五通孔005在第三面C上的正投影分别位于开孔41的两侧,第五通孔005沿侧边的第三面C指向第一面A的方向延伸,开孔41的延伸方向与第五通孔005的延伸方向相垂直,参见图29,即第五通孔005为垂直方向的通孔,开孔41为平行于第一基底21方向上的开孔。若第一固定板8的底板81与介质基板04的侧边的第三面C相固定,则侧边的第五通孔005在第一固定板8的底板81上的正投影,与第一固定板8的底板81上的第四通孔004具有重合区域,也即第五通孔005与第四通孔004一一对应设置。相应地,底板81上具有两个第四通孔004,侧边的第三面C具有两个第五通孔005,则天线具有两个第二固定件021,若第一固定板8的底板81与介质基板04的侧边的第三面C 相抵,每个第二固定件021穿过相抵的第一固定板8的底板81上的第四通孔004和介质基板04的侧边的第三面C上的第五通孔005,以将介质基板04的侧边的第三面C与第一固定板8的底板81相固定,从而将介质基板04的侧边与第一固定板8相固定,由于第一连接器7通过连接结构72与第一固定板8的侧板82相固定,因此介质基板04的侧边与第一固定板8相固定也即将第一连接器7与介质基板04的侧边的相对位置固定。
在一些示例中,同上述天线采用支撑框4支撑第三基板103与第一基板102的实施例同理,在采用介质基板04作为介质层的实施例中,第一固定板8的侧板82与介质基板04的侧边的第二面B相抵,第二面B还设置有一第一凹槽007,介质基板04的侧边上的开孔41位于第一凹槽007的槽底中,参见图31,第一凹槽007的宽度D2不小于第一固定板8的侧板82的宽度D1,即D2≥D1,则第一固定板8的侧板82能够嵌入第一凹槽007中,且侧板82上的第一通孔001与第一凹槽007的槽底的开孔41相对,第一连接器7的第一端71a能够穿过第一通孔001插入开孔41中。第一固定板8的侧板82能够嵌入第一凹槽007中,从而第一固定板8能够与介质基板04的侧边结合紧密,且第一固定板8不会影响天线整体的宽度。
在一些示例中,同上述天线采用支撑框4支撑第三基板103与第一基板102的实施例同理,在采用介质基板04作为介质层的实施例中,天线的第一基底21上的连接线5还可以采用其他方式连接外部信号线,具体地,天线可以包括第一连接器7和连接电缆(图中未示出),第一连接器7可以包括多种类型的连接器,例如,第一连接器7可以为SMA(Small A Type)连接器,第一连接器7的第一端71a可以采用具有内孔的SMA连接器,第一连接器7的第二端71b也具有可以连接外部信号线的接线口,则连接电缆的第一端通过第一连接器7的第一端71a的内孔与第一连接器7的第一端71a连接,连接电缆的第二端穿过介质基板04的侧边的开孔41与延伸至开孔41处的连接 线5连接,第一连接器7的第二端71b与外部信号线相连,则外部信号线将射频信号通过第一连接器7的第一端71a传输给连接电缆,连接电缆再将射频信号输入连接线5,连接线5再将信号传入功分馈电结构3。在本实施例的连接方式中,无需设置第一固定板8,介质基板04的侧边也无需设置第五通孔005,仅设置开孔41即可。当然,本公开实施例提供的天线还可以具有其他连接方式,在此不做限制。
在一些示例中,参见图17、图19,本公开实施例提供的天线还可以包括多个阻抗匹配结构6,每个功分馈电结构3的每个第二端口和与该第二端口连接的第一辐射单元12之间连接有阻抗匹配结构6,阻抗匹配结构6用于匹配第一辐射单元12与功分馈电结构3的第二端口之间的阻抗,从而减小信号的传输损耗。阻抗匹配结构6可以为多种类型的结构,例如,如图17、图19所示,阻抗匹配结构6为凸起的导电结构,连接在为传输线的功分馈电结构3的每个第二端口和与该第二端口连接的第一辐射单元12之间,从而能够改变传输线的横截面,进而能够调节传输线的阻抗。阻抗匹配结构6还可以为一梯形电极,梯形电极的长边指向短边的方向上,梯形电极的横截面逐渐减小,从而阻抗逐渐增大,梯形电极的长边和短边中的一者连接功分馈电结构3的第二端口,另一者连接第一辐射单元12,从而通过调节长边与短边的长度比例,能够对功分馈电结构3的第二端口和第一辐射单元12进行阻抗匹配。当然阻抗匹配结构6还可以为其他结构,在此不做限制。需要说明的是,阻抗匹配结构6可以采用与功分馈电结构3相同的材料制成,则阻抗匹配结构6可以与功分馈电结构3一体成型。
本公开实施例提供的天线,还可以制作为透明天线,从而,为了使天线透明化,第二辐射单元22、第一辐射单元12中的至少一者包括网格结构(mesh metal),若要增大天线的透明度,第二辐射单元22、第一辐射单元12均可采用网格结构,与第一辐射单元12同层设置在第一基底21靠近第三基板103 一侧的功分馈电结构3、连接线5、阻抗匹配结构6等均可以采用网格结构。同理,若天线的第一基板102中的第一基底21背离第一辐射单元12一侧设置有参考电极层24,参考电极层23也可以采用网格结构。
在一些示例中,为网格结构的第二辐射单元22、第一辐射单元12、功分馈电结构3、连接线5、阻抗匹配结构6、参考电极层23中的至少一者,可采用多条第一导电丝和多条第二导电丝相交叉形成网格结构,其中第一导电丝的延伸方向与第二导电丝的延伸方向不同。例如,参见图35、图36,以第一辐射单元12进行说明,第一辐射单元12可以采用多条第一导电丝2211与多条第二导电丝2212相交叉形成的网格结构,其中,第一导电丝2211沿第四方向S4延伸,第二导电丝2212沿第五方向延伸,第四方向S4与第五方向S5不平行,具体地第四方向S4与第五方向S5的方向可以为多种形式,例如,参见图35,第一导电丝2211的延伸方向(第四方向S4)和第二导电丝2212的延伸方向(第五方向S5)可以按照第一辐射单元12的极化方向(也即功分馈电结构3输入的信号产生的电流的方向)设置,例如,以天线为双极化天线,具有+45°的极化方向与-45°的极化方向为例进行说明,参见图17所示的天线,第一辐射单元12具有如第六方向S6所示的极化方向,与如第三方向S3所示的极化方向,则第一电阻丝2211的延伸方向可以平行于第六方向S6,即第四方向S4平行于第六方向S6;第二电阻丝2212的延伸方向可以平行于第三方向S3,即第五方向S5平行于第三方向S3。又例如,参见图36,第一导电丝2211的延伸方向(第四方向S4)和第二导电丝2212的延伸方向(第五方向S5)可以互相垂直,当然,第一导电丝2211的延伸方向(第四方向S4)和第二导电丝2212的延伸方向(第五方向S5)的设置方式还可以具体多种,在此不做限制。第二辐射单元22、功分馈电结构3、连接线5、阻抗匹配结构6、参考电极层23的网格结构与第一辐射单元12的网格结构同理,并且,第二辐射单元22、第一辐射单元12、功分馈电结构 3、连接线5、阻抗匹配结构6、参考电极层23之间的网格结构可以相同,也可以不同,在此不做限制。
在一些示例中,第二辐射单元22、第一辐射单元12、功分馈电结构3、连接线5、阻抗匹配结构6、参考电极层23的网格结构中的导电丝可以采用多种导电材料制成,例如铜、银、铝等金属材料,在此不做限制。在网格结构中的导电丝的宽度极小的情况下,人眼无法识别导电丝,因此网格结构可以视作透明的结构,从而采用网格结构的第二辐射单元22、第一辐射单元12、功分馈电结构3、连接线5、阻抗匹配结构6、参考电极层23均可形成透明的天线。
在一些示例中,基于上述,若本公开实施例提供的天线为透明天线,则第三基底1031、第一基底21均可采用透明材料。具体地,第三基底1031和第一基底21的材料可以采用多种类型的透明材料,例如,第三基底1031、第一基底21的材料均可包括热塑性聚酯(Polyethylene terephthalate,PET)、环烯烃共聚物(copolymers of cycloolefin,COC)中的至少一者。相应地,支撑在第三基板103与第一基板102之间的支撑框4或介质基板04均可采用透明材料,例如,支撑框4或介质基板04可以采用聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)等材料。
第二方面,参见图37,本公开实施例提供一种天线系统(也即通信系统),包括至少一个上述天线。
在一些示例中,本公开实施例提供的天线系统还包括收发单元、射频收发机、信号放大器、功率放大器、滤波单元。天线系统中的天线可以作为发送天线,也可以作为接收天线。其中,收发单元可以包括基带和接收端,基带提供至少一个频段的信号,例如提供2G信号、3G信号、4G信号、5G信号等,并将至少一个频段的信号发送给射频收发机。而天线系统中的天线接收到信号后,可以经过滤波单元、功率放大器、信号放大器、射频收发机的 处理后传输给首发单元中的接收端,接收端例如可以为智慧网关等。
进一步地,射频收发机与收发单元相连,用于调制收发单元发送的信号,或用于解调天线接收的信号后传输给收发单元。具体地,射频收发机可以包括发射电路、接收电路、调制电路、解调电路,发射电路接收基底提供的多种类型的信号后,调制电路可以对基带提供的多种类型的信号进行调制,再发送给天线。而天线接收信号传输给射频收发机的接收电路,接收电路将信号传输给解调电路,解调电路对信号进行解调后传输给接收端。
进一步地,射频收发机连接信号放大器和功率放大器,信号放大器和功率放大器再连接滤波单元,滤波单元连接至少一个天线。在天线系统进行发送信号的过程中,信号放大器用于提高射频收发机输出的信号的信噪比后传输给滤波单元;功率放大器用于放大射频收发机输出的信号的功率后传输给滤波单元;滤波单元具体可以包括双工器和滤波电路,滤波单元将信号放大器和功率放大器输出的信号进行合路且滤除杂波后传输给天线,天线将信号辐射出去。在天线系统进行接收信号的过程中,天线接收到信号后传输给滤波单元,滤波单元将天线接收的信号滤除杂波后传输给信号放大器和功率放大器,信号放大器将天线接收的信号进行增益,增加信号的信噪比;功率放大器将天线接收的信号的功率放大。天线接收的信号经过功率放大器、信号放大器处理后传输给射频收发机,射频收发机再传输给收发单元。
在一些示例中,信号放大器可以包括多种类型的信号放大器,例如低噪声放大器,在此不做限制。
在一些示例中,本公开实施例提供的天线系统还包括电源管理单元,电源管理单元连接功率放大器,为功率放大器提供用于放大信号的电压。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这 些变型和改进也视为本发明的保护范围。

Claims (33)

  1. 一种天线,其中,包括:第一基板;
    所述第一基板包括:
    第一基底;
    至少一个第一辐射单元,设置在所述第一基底的一侧;
    第一电极层,设置在所述第一基底背离所述至少一个第一辐射单元的一侧;
    至少一个第二辐射单元,设置在所述至少一个第一辐射单元背离所述第一电极层的一侧;其中,
    一个所述第二辐射单元与一个所述第一辐射单元在所述第一基底上的正投影至少部分重叠;
    至少一个所述第一辐射单元在所述第一基底上的正投影位于所述第一电极层在所述第一基底上的正投影内。
  2. 根据权利要求1所述的天线,其中,还包括:第二电极层,与至少一个所述第一辐射单元同层设置,且至少一个所述第一辐射单元在所述第一基底上的正投影,与所述第二电极层在所述第一基底上的正投影无重叠。
  3. 根据权利要求2所述的天线,其中,所述第一基底包括沿第一方向延伸的第一侧边;所述第二电极层包括至少一个第二子电极;一个所述第二子电极设置在一个所述第一辐射单元靠近所述第一侧边的一侧;
    至少一个所述第二子电极中的每个包括一个第一结构和一个第二结构;所述第一结构沿所述第一方向延伸,所述第二结构沿第二方向延伸;
    所述第一方向与所述第二方向相交。
  4. 根据权利要求3所述的天线,其中,所述第二结构连接在所述第一结 构在所述第一方向的中点上,且所述第一方向与所述第二方向相垂直;其中,所述第一结构的宽度,小于所述第二结构的宽度。
  5. 根据权利要求3所述的天线,其中,还包括:第一馈电单元,与至少一个所述第一辐射单元同层设置;所述第一馈电单元包括多条第一馈线,至少一条所述第一馈线与一个所述第一辐射单元电连接。
  6. 根据权利要求5所述的天线,其中,每两条所述第一馈线与一个所述第一辐射单元电连接,对于每个所述第一辐射单元,一个所述第二子电极设置在与一个所述第一辐射单元电连接的两条所述第一馈线之间,以隔离两条第一馈线之间的信号。
  7. 根据权利要求1所述的天线,其中,还包括:第三电极层,与至少一个所述第二辐射单元同层设置,且至少一个所述第二辐射单元在所述第一基底上的正投影,与所述第三电极层在所述第一基底上的正投影无重叠。
  8. 根据权利要求7所述的天线,其中,所述第一基底还包括沿第一方向延伸的第二侧边;所述第三电极层在所述第一基底的正投影位于所述第一基底靠近所述第二侧边的一侧;
    所述第三电极层包括主体结构和分别连接在主体结构的两侧的第一延伸结构和第二延伸结构,所述主体结构沿所述第一方向延伸,所述第一延伸结构和所述第二延伸结构均沿第二方向延伸;其中,所述第一方向和所述第二方向相交。
  9. 根据权利要求8所述的天线,其中,所述第一方向和所述第二方向相垂直;所述主体结构的在所述第一方向上的长度小于或等于所述第二侧边的长度。
  10. 根据权利要求1所述的天线,其中,还包括:第一馈电单元,与至少一个所述第一辐射单元同层设置;所述第一馈电单元包括多条第一馈线,每两条所述第一馈线与一个所述第一辐射单元电连接。
  11. 根据权利要求10所述的天线,其中,每个所述第一辐射单元的形状为中心对称图形,具有一对称中心;对于每个所述第一辐射单元,两条所述第一馈线中的一者与所述第一辐射单元的连接位置称为第一连接点,另一者与所述第一辐射单元的连接位置称为第二连接点;其中,
    对于每个所述第一辐射单元,其上的所述第一连接点与所述对称中心的连线的延伸方向,与其上的第二连接点与所述对称中心的连线的延伸方向相交。
  12. 根据权利要求11所述的天线,其中,对于每个所述第一辐射单元,其上的所述第一连接点与所述对称中心的连线的延伸方向,与其上的第二连接点与所述对称中心的连线的延伸方向相垂直。
  13. 根据权利要求10所述的天线,其中,还包括:第二基板;所述第二基板包括第二基底,和设置在所述第二基底的一侧的第二馈电单元,所述第二馈电单元与所述第一馈电单元电连接。
  14. 根据权利要求13所述的天线,其中,所述第二基底与所述第一基底一体设置,所述第二馈电单元与至少一个所述第一辐射单元同层设置。
  15. 根据权利要求13所述的天线,其中,所述第二基板与所述第一基板之间具有一定夹角。
  16. 根据权利要求15所述的天线,其中,至少一个所述第一辐射单元采用网格结构;其中,所述第二馈电单元在所述第二基底上的正投影的单位面积,大于所述第一辐射单元在所述第一基底上的正投影的单位面积。
  17. 根据权利要求13-16任一所述的天线,其中,所述第二馈电单元包括第一馈电子单元和第二馈电子单元,所述第一馈电子单元和所述第二馈电子单元均包括一个第一端口和至少一个第二端口;
    对于每个所述第一辐射单元,与所述第一辐射单元电连接的两条所述第一馈线中的一条与一个所述第一馈电子单元的一个所述第二端口电连接,且不同的第一馈线连接不同的所述第一馈电子单元的所述第二端口;与所述第一辐射单元电连接的两条所述第一馈线中的另一条与一个所述第二馈电子单元的一个所述第二端口电连接,且不同的第一馈线连接不同的所述第二馈电子单元的所述第二端口。
  18. 根据权利要求1-16任一所述的天线,其中,至少一个所述第一辐射单元中的每个的面积大于至少一个所述第二辐射单元中的每个的面积,且每个所述第二辐射单元位于与其正投影相重叠的所述第一辐射单元在所述第一基底上的正投影中。
  19. 根据权利要求1-16任一所述的天线,其中,至少一个所述第一辐射单元中的每个的面积小于至少一个所述第二辐射单元中的每个的面积,且每个所述第一辐射单元位于与其正投影相重叠的所述第二辐射单元在所述第一基底上的正投影中。
  20. 根据权利要求1-16任一所述的天线,其中,至少一个所述第一辐射单元、至少一个所述第二辐射单元、所述第一电极层中的至少一者采用网格结构。
  21. 根据权利要求20所述的天线,其中,至少一个所述第一辐射单元、至少一个所述第二辐射单元均采用网格结构;其中,组成所述网格结构的金属线在所述第一辐射单元和/或所述第二辐射单元的边缘位置相互不连接;或者,组成所述网格结构的金属线在所述第一辐射单元和/或所述第二辐射单元的边缘位置相互短接。
  22. 根据权利要求20所述的天线,其中,至少一个所述第一辐射单元、至少一个所述第二辐射单元、所述第一电极层均采用网格结构;各个层的网格结构的镂空部在第一基底上的投影大致重叠。
  23. 根据权利要求1-16任一所述的天线,其中,一个所述第一辐射单元在所述第一基底上的正投影的面积和一个所述第二辐射单元在所述第一基底上的正投影的面积的比值为0.45:1~1.54:1。
  24. 根据权利要求1-16任一所述的天线,其中,还包括:第三基板,设置在所述第一基板背离所述第一电极层的一侧;所述第三基板包括第三基底;其中,所述至少一个第二辐射单元设置在所述第三基底的一侧。
  25. 根据权利要求1-16任一所述的天线,其中,还包括:第四基板,设置在所述第一基板背离至少一个所述第一辐射单元的一侧;所述第四基板包括第四基底;其中,所述第一电极层设置在所述第四基底靠近所述第一基板的一侧。
  26. 根据权利要求1-16任一所述的天线,其中,所述第一基板还包括:第一金属网格层,设置在所述第一基底背离所述第一电极层的一侧;所述第一金属网格层包括所述至少一个所述第一辐射单元;其中,所述第一金属网 格层具有至少一个第一开口,一个所述第一开口分割出一个所述第一辐射单元。
  27. 根据权利要求1-16任一所述的天线,其中,还包括:第三基板,设置在所述第一基板背离所述第一电极层的一侧;所述第三基板包括第三基底和第二金属网格层,所述第二金属网格层设置在所述第三基底背离所述第一基底的一侧;所述第二金属网格层包括所述至少一个所述第二辐射单元;其中,所述第二金属层具有至少一个第二开口,一个所述第二开口分割出一个所述第二辐射单元。
  28. 根据权利要求1-16任一所述的天线,其中,所述第一基底背离至少一个所述第一辐射单元一侧设置有至少一个第一凹槽,一个所述第一凹槽在所述第一基底上的正投影,覆盖一个所述第一辐射单元在所述第一基底上的正投影。
  29. 根据权利要求28所述的天线,其中,还包括:第一馈电单元,与至少一个所述第一辐射单元同层设置;所述第一馈电单元包括多条第一馈线,每两条第一馈线连接一个所述第一辐射单元;其中,
    其中,一个所述第一凹槽在所述第一基底上的正投影,覆盖与一个第一辐射单元连接的两条所述第一馈线在所述第一基底上的正投影。
  30. 根据权利要求28所述的天线,其中,一个所述第一凹槽在所述第一基底上的正投影的面积和一个所述第一辐射单元在所述第一基底上的正投影的面积的比值为5:1~2:1;
    一个所述第一辐射单元在第一方向上的对称轴,和与所述第一辐射单元在第一基底上的正投影相交叠的第一凹槽在第一方向上的对称轴大致重合。
  31. 根据权利要求15所述的天线,其中,所述第二基底沿所述第一基底的长度方向将所述第一基底划分为第一区域和第二区域;
    所述第一区域在垂直于所述第一基底的长度方向的方向上的宽度,小于所述第二区域在垂直于所述第一基底的长度方向的方向上的宽度。
  32. 根据权利要求31所述的天线,其中,还包括:第三基板,设置在所述第一基板背离所述第一电极层的一侧;所述第三基板包括第三基底和倾斜设置在所述第三基底边缘的围板;其中,所述至少一个第二辐射单元设置在所述第三基底背离所述至少一个第一辐射单元的一侧;
    还包括:第四基板,设置在所述第一基板背离至少一个所述第一辐射单元的一侧;所述第四基板包括第四基底;其中,所述第一电极层设置在所述第四基底靠近所述第一基板的一侧;
    所述第二基底、所述第三基底对应第一区域的部分、最靠近所述第二基底的一侧的围板、所述第三基底对应所述第一区域的部分限定出一个容纳空间。
  33. 一种通信系统,其中,包括权利要求1-32任一所述的天线。
PCT/CN2021/102350 2020-10-30 2021-06-25 天线及通信系统 WO2022088714A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/772,841 US20240162616A1 (en) 2020-10-30 2021-06-25 Antenna and communication system
CN202180001656.3A CN114698405A (zh) 2020-10-30 2021-06-25 天线及通信系统
EP21884455.3A EP4187716A1 (en) 2020-10-30 2021-06-25 Antenna and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011198060.0A CN114447577A (zh) 2020-10-30 2020-10-30 天线及天线系统
CN202011198060.0 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022088714A1 true WO2022088714A1 (zh) 2022-05-05

Family

ID=81357506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102350 WO2022088714A1 (zh) 2020-10-30 2021-06-25 天线及通信系统

Country Status (4)

Country Link
US (1) US20240162616A1 (zh)
EP (1) EP4187716A1 (zh)
CN (2) CN114447577A (zh)
WO (1) WO2022088714A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060865A1 (zh) * 2022-09-23 2024-03-28 广东曼克维通信科技有限公司 探头天线及其探头

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216217A1 (zh) * 2022-05-13 2023-11-16 京东方科技集团股份有限公司 天线及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411589A2 (en) * 2002-10-18 2004-04-21 Hitachi Ltd. High-frequency transceiver apparatus and method of manufacturing the same
US20100060526A1 (en) * 2008-09-05 2010-03-11 Smartant Telecom Co., Ltd. Omnidirectional antenna
CN203521620U (zh) * 2013-10-28 2014-04-02 成都信息工程学院 具有阻带特性的微带天线
CN104160554A (zh) * 2012-03-30 2014-11-19 富士通株式会社 Rfid标签
US20200176863A1 (en) * 2017-06-20 2020-06-04 Viasat, Inc. Antenna array radiation shielding
CN210720940U (zh) * 2019-11-29 2020-06-09 京东方科技集团股份有限公司 一种液晶盒、液晶天线单元和液晶相控阵天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564374A (zh) * 2004-03-22 2005-01-12 北京磁纳数码科技研究院有限公司 一种压电声子电磁耦合晶体天线装置
FR2984613B1 (fr) * 2011-12-20 2015-05-15 Bouygues Telecom Sa Antenne imprimee optiquement transparente et reseau d'antennes optiquement transparentes
CN206340668U (zh) * 2016-08-31 2017-07-18 上海捷士太通讯技术有限公司 一种宽带高隔离2x2MIMO圆极化微带天线
JP2019091835A (ja) * 2017-11-16 2019-06-13 シャープ株式会社 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
CN110824735A (zh) * 2018-08-10 2020-02-21 京东方科技集团股份有限公司 液晶移相器及液晶天线
KR102190757B1 (ko) * 2018-10-04 2020-12-14 동우 화인켐 주식회사 터치 센서-안테나 모듈 및 이를 포함하는 디스플레이 장치
CN111129749B (zh) * 2018-10-31 2021-10-26 华为技术有限公司 一种双极化天线、天线阵列及通讯设备
KR102031203B1 (ko) * 2019-03-20 2019-10-11 동우 화인켐 주식회사 안테나 적층체 및 이를 포함하는 화상 표시 장치
CN209786182U (zh) * 2019-05-30 2019-12-13 深圳市深大唯同科技有限公司 一种天线辐射单元和基站天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411589A2 (en) * 2002-10-18 2004-04-21 Hitachi Ltd. High-frequency transceiver apparatus and method of manufacturing the same
US20100060526A1 (en) * 2008-09-05 2010-03-11 Smartant Telecom Co., Ltd. Omnidirectional antenna
CN104160554A (zh) * 2012-03-30 2014-11-19 富士通株式会社 Rfid标签
CN203521620U (zh) * 2013-10-28 2014-04-02 成都信息工程学院 具有阻带特性的微带天线
US20200176863A1 (en) * 2017-06-20 2020-06-04 Viasat, Inc. Antenna array radiation shielding
CN210720940U (zh) * 2019-11-29 2020-06-09 京东方科技集团股份有限公司 一种液晶盒、液晶天线单元和液晶相控阵天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060865A1 (zh) * 2022-09-23 2024-03-28 广东曼克维通信科技有限公司 探头天线及其探头

Also Published As

Publication number Publication date
EP4187716A1 (en) 2023-05-31
CN114698405A (zh) 2022-07-01
CN114447577A (zh) 2022-05-06
US20240162616A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2022088714A1 (zh) 天线及通信系统
CN113054425B (zh) 一种毫米波双频双极化滤波天线
WO2021083027A1 (zh) 天线模组及电子设备
CN213845498U (zh) 天线及天线系统
CN111293425A (zh) 一种液晶有源相控阵天线
CN107154531B (zh) 一种基片集成腔体毫米波阵列天线
US10910731B2 (en) High performance flat panel antennas for dual band, wide band and dual polarity operation
CN110783702A (zh) 天线模组及电子设备
CN111987435A (zh) 一种低剖面双极化天线、阵列天线及无线通信设备
CN111562860B (zh) 触控显示屏及电子设备
KR20170092731A (ko) 고효율 알에프 전송선로 구조 및 상기 구조를 이용한 이중 직교 편파를 갖는 송수신 배열 안테나 장치
CN111048879A (zh) 一种矩形波导至双端带状线的宽带等幅转换结构
WO2023283756A1 (zh) 透明天线及通信系统
CN110943294B (zh) 宽带低剖面双圆极化平板天线
CN107978831B (zh) 一种弱耦合电桥及基于该电桥的双频共轴阵列天线
CN114221122B (zh) 双端口同极化天线
CN212968049U (zh) 一种基于siw缝隙耦合天线
CN211655054U (zh) 一种液晶有源相控阵天线
CN111987448B (zh) 一种双极化Vivaldi天线
JP7363467B2 (ja) アンテナ
KR20220012362A (ko) 하우징 어셈블리, 안테나 어셈블리 및 전자 기기
WO2023216217A1 (zh) 天线及电子设备
WO2022246814A1 (zh) 透明天线及通信系统
WO2023123297A1 (zh) 透明天线及通信设备
WO2023184087A1 (zh) 天线及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17772841

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021884455

Country of ref document: EP

Effective date: 20230222

NENP Non-entry into the national phase

Ref country code: DE