WO2023141919A1 - 一种视窗系统 - Google Patents

一种视窗系统 Download PDF

Info

Publication number
WO2023141919A1
WO2023141919A1 PCT/CN2022/074519 CN2022074519W WO2023141919A1 WO 2023141919 A1 WO2023141919 A1 WO 2023141919A1 CN 2022074519 W CN2022074519 W CN 2022074519W WO 2023141919 A1 WO2023141919 A1 WO 2023141919A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wires
slit
window system
sub
Prior art date
Application number
PCT/CN2022/074519
Other languages
English (en)
French (fr)
Inventor
冯春楠
李勇
金允男
鲍思慧
张志锋
马永生
侯智
车春城
曲峰
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000093.0A priority Critical patent/CN117121301A/zh
Priority to PCT/CN2022/074519 priority patent/WO2023141919A1/zh
Publication of WO2023141919A1 publication Critical patent/WO2023141919A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas

Definitions

  • the disclosure belongs to the technical field of windows, and in particular relates to a window system.
  • the car antenna in addition to the traditional radio, navigation and other electronic devices, it also includes the Internet of Vehicles era.
  • Demand for multi-frequency communication, tire pressure monitoring, and remote data processing will gradually increase the demand for vehicle-mounted antennas.
  • the dimming structure is more and more widely used in the fields of construction and transportation.
  • the purpose of the present disclosure is to solve at least one of the technical problems in the prior art, to provide a window system, which has the functions of sending and receiving radio frequency signals and dimming, and the radiation structure and the dimming structure are stacked to save space.
  • the technical solution adopted to solve the technical problems of the present disclosure is a window system, which includes a first transparent base and a second transparent base that are oppositely arranged, and are sequentially arranged on the side of the first transparent base that is close to the second transparent base.
  • a radiating structure and a light-adjusting structure wherein the orthographic projection of the light-adjusting structure on the first transparent substrate at least partially overlaps the orthographic projection of the radiating structure on the first transparent substrate.
  • the radiating structure includes:
  • the first substrate and the second substrate are arranged oppositely, the first substrate is arranged on the side of the first transparent substrate close to the light-adjusting structure, and the second substrate is arranged on the side of the light-adjusting structure close to the first transparent substrate.
  • a feed structure disposed on a side of the first substrate close to the second substrate
  • a radiation coupling layer is disposed on a side of the second substrate close to the first substrate; there is a first distance between the feeding structure and the radiation coupling layer.
  • the radiation coupling layer is provided with a slit, and the orthographic projection of the slit on the second substrate at least partially overlaps with the orthographic projection of the feeding structure on the second substrate.
  • the arrangement direction of the feed structure is at least partially different from the arrangement direction of the slits.
  • the slit includes a first sub-slit and second and third sub-slits connected to both ends of the first sub-slit, wherein the first sub-slit is extending in one direction, the second sub-slit and the third sub-slit extending in a second direction, the first direction intersecting the second direction;
  • the extension direction of the feed structure is substantially the same as the first direction and intersects the second direction, and the orthographic projection of the feed structure on the second substrate is the same as that of the first sub-substrate
  • the orthographic projections of the slits on the second substrate do not overlap.
  • the radiation coupling layer is formed by a plurality of first conductive wires arranged crosswise, and the plurality of first conductive wires are disconnected at the slit.
  • the first wire includes a plurality of first sub-wires, and the first sub-wires are disconnected at the position of the slit;
  • the first sub-wires of different first wires are disconnected at the slit, or the first sub-wires of different first wires are shorted to each other at the slit.
  • the feeding structure is formed by a plurality of second wires arranged crosswise.
  • the second wire includes a plurality of second sub-wires; the second sub-wires that are different from the second wire are disconnected at the edge of the feed structure, or different from the second sub-wire The second sub-wires of the wire are short-circuited to each other at edge positions of the feed structure.
  • the radiation coupling layer is composed of a plurality of first wires arranged crosswise, and the plurality of first wires are disconnected at the slit;
  • the feeding structure is composed of a plurality of first wires arranged crosswise. Consisting of two wires; among them,
  • Orthographic projections of the hollows formed by the plurality of first conductive wires on the second substrate substantially coincide with the hollowed portions formed by the plurality of second conductive wires.
  • the radiation coupling layer is composed of a plurality of first wires arranged crosswise, and the plurality of first wires are disconnected at the slit; wherein, the feeding structure is in the second
  • the unit area of the orthographic projection on the substrate is larger than the unit area of the orthographic projection of the radiation coupling layer on the second substrate.
  • the dimming structure includes at least one glass module, and each of the glass modules includes a first substrate, a second substrate and a dimming layer oppositely arranged; wherein the dimming layer is configured as The light transmittance is adjusted according to the electric field generated between the first substrate and the second substrate; the second substrate is closer to the second transparent base than the first substrate.
  • the first substrate includes a third substrate, and a first electrode layer disposed on a side of the third substrate close to the second substrate;
  • the second substrate includes a fourth substrate, and is disposed on The second electrode layer on the side of the fourth substrate close to the first substrate;
  • the dimming layer is a dye liquid crystal layer.
  • the radiating structure includes: a first base and a second base oppositely disposed, the first base is disposed on a side of the first transparent base close to the dimming structure, and the second base
  • the third substrate of the glass module set closest to the first transparent substrate is disposed on a side close to the first transparent substrate; the feed structure is disposed on the first substrate close to the second substrate a side of the first substrate; a radiation coupling layer disposed on a side of the second substrate close to the first substrate; wherein, the third substrate is multiplexed as the second substrate.
  • the first transparent substrate is multiplexed as the first substrate.
  • the radiating structure further includes: a reference electrode layer; the window system is applied to windows of automobiles, and the casing of the automobile is multiplexed as the reference electrode layer.
  • the window system provided by the present disclosure integrates the radiation structure and the dimming structure, so that the window system has the functions of transmitting and receiving radio frequency signals and dimming at the same time, without having to set up an antenna and a dimming structure separately, and, by integrating the radiation structure Laminated with the dimming structure, it can save space.
  • FIG. 1 is a schematic diagram of the overall structure of a window system provided by the present disclosure applied to a vehicle window.
  • FIG. 2 is an exemplary cross-sectional view of the window system provided by the present disclosure, taken along the A-B direction of FIG. 1 .
  • FIG. 3 is another exemplary cross-sectional view of the window system provided by the present disclosure, taken along the A-B direction of FIG. 1 .
  • FIG. 4 is a schematic plan view of the radiation coupling layer of the window system provided by the present disclosure.
  • FIG. 5 is a schematic diagram of a partial structure of a radiation coupling layer of the window system provided by the present disclosure.
  • FIG. 6 is a schematic plan view of the feed structure (metal grid) of the window system provided by the present disclosure.
  • FIG. 7 is a schematic plan view of the feed structure (metal wires) of the window system provided by the present disclosure.
  • FIG. 8 is a vertical/horizontal polarization pattern of a conventional radiation structure.
  • Fig. 9 is a return loss curve diagram of a conventional radiating structure.
  • FIG. 10 is a vertical polarization/horizontal polarization direction diagram of the radiation structure in the window system provided by the present disclosure.
  • FIG. 11 is a graph of the return loss of the radiation structure in the window system provided by the present disclosure.
  • FIG. 12 is a structural schematic diagram of a dimming structure of a window system provided by the present disclosure (block electrodes).
  • FIG. 13 is a structural schematic diagram (strip electrodes) of the dimming structure of the window system provided by the present disclosure.
  • the two structures "set in the same layer” means that the two structures are formed by the same material layer, so they are in the same layer in the layered relationship, but it does not mean that they are connected to the substrate. The same distance does not mean that they are exactly the same as other layer structures between the substrates.
  • first direction X, the second direction Y and the third direction Z intersect in pairs.
  • first direction X and the second direction Y intersect on the plane where the window system is located Vertically
  • third direction Y is perpendicular to the plane where the window system is located as an example for illustration.
  • the embodiment of the present disclosure provides a window system, which can be applied in various buildings, mobile tools and other scenarios.
  • the window system in FIG. In the frame as a window of a car, of course, the window system provided by the present disclosure is not limited to the application scenario shown in FIG. 1 , but for the convenience of description, the following will take the window system as a car window as an example for illustration.
  • Fig. 2 and Fig. 3 are respectively two embodiments of cross-sectional views of the window system cut along the A-B direction of Fig. 1 .
  • the window system provided by the disclosed system includes a first transparent substrate 1 and a second transparent substrate 2 oppositely arranged, and a radiation structure 3 and a dimming structure 4 sequentially arranged on the side of the first transparent substrate 1 close to the second transparent substrate 2 .
  • the first transparent substrate 1 and the second transparent substrate 2 are the outermost glass of the window system, and the radiation structure 3 and the dimming structure 4 are sandwiched between the first transparent substrate 1 and the second transparent substrate 2 to ensure The window system has good thermal insulation and noise reduction performance.
  • the light-adjusting structure 4 and the radiating structure 3 are stacked. In other words, the orthographic projection of the light-adjusting structure 4 on the first transparent substrate 1 and the orthographic projection of the radiating structure 3 on the first transparent substrate 1 at least partially overlap.
  • the window system since the radiation structure 3 and the dimming structure 4 are integrated, the window system has the functions of transmitting and receiving radio frequency signals and dimming at the same time, without separately setting the radiation structure and the dimming structure, and , by stacking the radiation structure 3 and the dimming structure 4, space can be saved, and the radiation structure 3 is placed along the plane where the window is located, so that it has a larger coupling surface and the gain effect of the radiation structure is better.
  • the radiation structure 3 includes a first substrate 31 and a second substrate 32 oppositely disposed, a feeding structure 33 and a radiation coupling layer 34 .
  • the first substrate 31 is arranged on the side of the first transparent substrate 1 close to the light-adjusting structure 4
  • the second substrate 32 is arranged on the side of the light-adjusting structure 4 close to the first transparent substrate 1
  • the feeding structure 33 is arranged on the first transparent substrate 1.
  • the side of the substrate 31 close to the second substrate 32, the radiation coupling layer 34 is arranged on the side of the second substrate 32 close to the first substrate 31, and there is a first distance between the feeding structure 33 and the radiation coupling layer 34 to prevent The feed structure 33 and the radiation coupling layer 34 are short-circuited.
  • a first adhesive layer 01 can be provided between the radiation coupling layer 34 and the feed structure 33, the first adhesive layer 01 has a certain thickness and can be insulated, and can connect the radiation coupling layer 34 and the feed structure 33 is bonded as a whole, and can support the two to provide a certain gap.
  • the first adhesive layer 01 may use polyvinyl butyral (polyvinyl butyral, PVB) glue.
  • the radiation structure 3 can adopt various types of structures, such as patch antennas, slot antennas, etc.
  • the slot antenna is taken as an example.
  • the radiation coupling layer 34 is provided with a narrow slit k1, the orthographic projection of the slit k1 on the second substrate 32 at least partially overlaps the orthographic projection of the feeding structure 33 on the second substrate 32, and the orthographic projection of the feeding structure 33 on the second substrate 32 runs through the slit The orthographic projection of the slit k1 on the second substrate 32.
  • the feed structure 33 is coupled with the radiation coupling layer 34 to form a new resonant structure, and the feed structure 33 and the radiation coupling layer 34 arranged along the plane of the window have a larger coupling surface, and the radio frequency signal can be radiated through the slit k1 Go out to realize signal transmission or couple to the feed structure 33 through the slit k1 to realize signal reception.
  • the radiation coupling layer 34 and the feed structure 33 form a ring coupling , can change the radiation performance of the radio frequency signal in the required frequency band in the horizontal direction, and thus can improve the gain and return loss of the radiation structure 3 in the horizontal direction.
  • the specific shape and arrangement direction of the feeding structure 33 and the slit k1 on the radiation coupling layer 34 have various realization directions, for example, the feeding structure 33 It may include a plurality of linearly arranged feeder lines, and the plurality of feeder lines are arranged side by side; or, the feeder structure 33 may include two linearly arranged feeder lines, and the feeder ends of the two linearly arranged feeder lines are opposite to each other. and arranged at intervals; or, the feeding structure 33 includes a feeding line arranged in a serpentine or linear arrangement. Specifically, it can be set according to needs, and there is no limitation here. In this specification, the feeding structure 33 is a linearly arranged feeding line as an example for illustration, but this disclosure does not constitute a limitation.
  • the specific shape and arrangement direction of the slit k1 on the radiation coupling layer 34 can also be implemented in a variety of specific directions.
  • the arrangement direction is the length direction of the rectangle; or the slit k1 If it is a circular slit, the arrangement direction is multiple directions along the circular direction; or if the slit k1 is a rectangular slit or a U-shaped slit, then the arrangement direction is multiple directions according to the U-shaped bending part.
  • the arrangement direction of the feed structure 33 is at least partly different from the arrangement direction of the slit k1.
  • One of the arrangement directions intersects.
  • the slit k1 on the radiation coupling layer 34 includes a first sub-slit k11 and a second sub-slit k12 and a third sub-slit k13 connected to both ends of the first sub-slit k11, wherein, the first sub-slit k11 extends along the first direction X, and the second sub-slit k12 and the third sub-slit k13 extend along the second direction Y, wherein the first direction X intersects the second direction Y.
  • the extension direction of the feed structure 33 is substantially the same as the first direction X, and the extension direction of the feed structure 33 intersects the second direction Y, and the orthographic projection of the feed structure 33 on the second substrate 32 is consistent with the first sub-direction
  • the orthographic projections of the slit k11 on the second substrate 32 do not overlap, and the orthographic projection of the feed structure 33 on the second substrate 32 runs through the orthographic projections of the second sub-slit k12 and the third sub-slit k13 on the second substrate 32
  • the radiation coupling layer 34 and the feed structure 33 form a ring coupling, which can change the radiation performance of the radio frequency signal in the required frequency band in the horizontal direction, so the gain and return of the radiation structure 3 in the horizontal direction can be improved. wave loss.
  • the extension of the first sub-slit k11 along the first direction X does not mean that the shape of the first sub-slit k11 is strictly parallel to the first direction X, as long as the extension trend of the first sub-slit kl1 is roughly along the first direction X. Just one direction X.
  • a traditional radiating structure includes a first base and a feeding structure arranged on the first base
  • Fig. 8 is a vertical polarization/horizontal polarization simulated with a traditional radiating structure Polarization pattern
  • Figure 9 is the return loss curve simulated with the traditional radiation structure, it can be seen that the gain effect in the horizontal direction is not good, and the return loss is about -1.86dB.
  • the radiation structure in the window system provided by the present disclosure is used as an example for simulation, in which the slit k1 is a U-shaped slit, and the feed structure 33 is a feeder line arranged in a straight line
  • the radiation structure 3 further includes a reference electrode layer (not shown in the figure), and the reference electrode layer serves as a ground to raise a reference potential for the feeding structure 33 .
  • the housing 001 of the automobile is multiplexed as the reference electrode layer of the radiation structure 3 .
  • the car shell 001 itself is a metal conductive material, it can be used as the reference electrode layer of the vehicle radiation structure, and the feed structure 33 can be coupled with the car shell to form an electromagnetic signal loop to convert electrical signals into electromagnetic wave signals.
  • the radiation coupling layer 34 can adopt a metal grid (mesh metal) process, that is, the radiation coupling layer 34 can be formed by a plurality of first wires arranged crosswise, and the plurality of first wires are disconnected at the slit k1. , to form slit k1.
  • a plurality of cross-arranged first wires form a whole layer of metal conductive film on the side of the second substrate 32 close to the first transparent substrate 1, and then attach the metal conductive film on the side of the second substrate 32 close to the first transparent substrate 1.
  • the metal conductive film of the radiation coupling layer 34 includes a substrate layer, and a metal grid layer formed on the side of the substrate layer close to the first transparent substrate 1, specifically, the substrate layer can be made of polyethylene terephthalate Polyethylene glycol terephthalate (PET) film material, and then form a metal material layer on the PET film layer, form a metal grid layer by photolithography or embossing, and finally form a metal conductive film.
  • PET Polyethylene glycol terephthalate
  • the material of the first wire that is, the material of the metal material layer
  • the material of the metal material layer can be made of various conductive materials, such as copper, silver, aluminum and other metal materials, which are not limited here.
  • FIG. 5 shows a partial area of the metal grid of the radiation coupling layer 34, which includes a plurality of parallel first conducting wires 341a extending along the first direction X, and a plurality of parallel first conducting wires 341a extending along the second direction Y.
  • the vertical second wires 341b, the multiple parallel first wires 341a and the multiple vertical second wires 341b are intersected, and the intersections of the two define the hollow part p1.
  • the first wires of the radiation coupling layer 34 may have various extension directions, which are only illustrated here as examples and do not limit the present application.
  • the line width of the first wires is 2 microns to 30 microns; among the first wires extending in the same direction, the distance between adjacent first wires is 50 microns to 200 microns; the thickness of the first wires The thickness of the entire radiation coupling layer 34 (ie, the metal conductive film) is 55 microns to 155 microns.
  • the width of the first wires is such that the gaps between the multiple first wires intersecting are large enough, so that a transparent film layer can be formed to prevent the first wires from blocking the light, thereby ensuring the radiation coupling layer formed by the first wires 34 has good light transmission properties. Therefore, it can be ensured that the window system integrated with the radiation structure 3 has a good light transmission effect.
  • the first conducting wire includes a plurality of first sub-conducting wires, and the first sub-conducting wires are disconnected at the position of the slit k1 to form the slit k1.
  • the first sub-wires of different first wires are disconnected at the slit to form an open structure; or the first sub-wires of different first wires are shorted to each other at the slit to form a closed structure. Do limit.
  • the feeding structure 33 may also adopt a metal mesh (mesh metal) process, that is, the feeding structure 33 may be composed of a plurality of second wires arranged crosswise. Among them, a plurality of cross-arranged first wires form a whole layer of metal conductive film on the side of the first substrate 31 close to the second transparent substrate 2, and the metal conductive film has an opening c1, and the opening c1 divides the feeder on the metal conductive film. structure33. Then attach the metal conductive film on the side of the first substrate 31 close to the second transparent substrate 2 .
  • the metal conductive film of the feed structure 33 includes a substrate layer, and a metal grid layer formed on the side of the substrate layer close to the second transparent substrate 2.
  • the substrate layer can be made of polyethylene terephthalate (polyethylene glycol terephthalate, PET) film material, and then form a layer of metal material layer on the PET film layer, form a metal grid layer by photolithography or embossing, and finally form a metal conductive film.
  • the material of the second wire (that is, the material of the metal material layer) can be made of various conductive materials, such as copper, silver, aluminum and other metal materials, which are not limited here.
  • the line width of the second wires is 2 microns to 30 microns; among the second wires extending in the same direction, the distance between adjacent second wires is 50 microns to 200 microns; the thickness of the second wires 1 micron to 10 microns, and the thickness of the entire feed structure 33 (that is, the metal conductive film) is 55 microns to 155 microns.
  • the size line width of the second conductive wires, the distance between adjacent second conductive wires, and the thickness of the second conductive wires are all on the order of microns, human eyes cannot recognize them, and the distance between adjacent second conductive wires is much larger than
  • the width of the second wires is such that the gaps between the multiple second wires intersected are large enough, so that a transparent film layer can be formed to prevent the second wires from blocking the light, thereby ensuring the feeding structure formed by the second wires 33 has good light transmission properties. Therefore, it can be ensured that the window system integrated with the radiation structure 3 has a good light transmission effect.
  • the second wire includes a plurality of second sub-wires.
  • the second sub-wires of different second wires are disconnected at the edge of the feed structure 33 to form an open structure; or the second sub-wires of different second wires are shorted to each other at the edge of the feed structure 33, A closed structure is formed, which is not limited here.
  • both the radiation coupling layer 34 and the feeding structure 33 adopt a metal grid structure, that is, the radiation coupling layer 34 is composed of a plurality of first wires arranged crosswise, and the plurality of first wires are disconnected at the slit k1 ;
  • the feed structure 33 is made up of a plurality of second wires arranged crosswise; wherein, the hollow part formed by a plurality of first wires (such as shown in p1 of FIG. 5 ) and the hollow part formed by a plurality of second wires (similar to FIG. 5
  • the orthographic projections of p1) on the second substrate 32 are approximately coincident, in other words, the extending direction of the plurality of first conducting wires is approximately the same as the extending direction of the plurality of second conducting wires.
  • the feeding structure 33 can also be formed by using a whole metal wire instead of a metal grid, that is, there is no hollow part on the feeding structure 33.
  • the radiation coupling layer 34 is arranged by crossing A plurality of first wires are formed, and the plurality of first wires are disconnected at the slit k1.
  • the unit area of the orthographic projection of the feeding structure 33 on the second substrate 32 is greater than the unit area of the orthographic projection of the radiation coupling layer 34 on the second substrate 32 .
  • the dimming structure 4 includes at least one glass module, as shown in Figure 2 and Figure 3.
  • the glass module is the dimming structure.
  • Each glass module includes a first substrate 41, a second substrate 42, and a dimming layer 43 arranged between the first substrate 41 and the second substrate 42, and the second substrate 42 is close to the second substrate 41 relative to the first substrate 41.
  • Transparent base2 the light-adjusting layer 43 is configured to adjust the light transmittance according to the electric field generated between the first substrate 41 and the second substrate 42 , for example, the light transmittance varies within a range from 0% to 100%.
  • the first substrate 41 includes a third base 411 , and a first electrode layer 412 disposed on a side of the third base 411 close to the second substrate 42 .
  • the second substrate 42 includes a fourth base 421 and a second electrode layer 422 disposed on a side of the fourth base 421 close to the first substrate 41 .
  • the transmittance of the optical layer 43 is a first DC voltage to the electrodes in the first electrode layer 412, and apply a second DC voltage to the second electrode layer 422, so that an electric field is generated between the first electrode layer 412 and the second electrode layer 422 to adjust the tuning.
  • the light-adjusting layer 43 includes various types of light-adjusting media, for example, the light-adjusting layer 43 may be a dye liquid crystal layer.
  • the material of the dye liquid crystal layer includes liquid crystal molecules and dichroic dye molecules.
  • An electric field is generated between the first electrode layer 412 and the second electrode layer 422 to control the deflection direction of the liquid crystal molecules, so that the transparency of the dimming layer 43 can be adjusted. Overrate.
  • the dimming structure 4 may include a plurality of glass modules, for example, referring to the dimming structure 4 shown in FIG. 12 and FIG. 13 , the dimming structure 4 includes a first glass module 4A and a second glass module 4B, the first glass module 4A includes a first substrate 41, a second substrate 42, and a dimming layer 43 arranged between the first substrate 41 and the second substrate 42, wherein the first substrate 41 includes a third a base 411 , and a first electrode layer 412 disposed on a side of the third base 411 close to the second substrate 42 .
  • the second substrate 42 includes a fourth base 421 and a second electrode layer 422 disposed on a side of the fourth base 421 close to the first substrate 41 .
  • the second glass module 4B includes a first substrate 51, a second substrate 52, and a dimming layer 53 disposed between the first substrate 51 and the second substrate 52, wherein the first substrate 51 includes a second Three bases 511 , and a first electrode layer 512 disposed on a side of the third base 511 close to the second substrate 52 .
  • the second substrate 52 includes a fourth base 521 and a second electrode layer 522 disposed on a side of the fourth base 521 close to the first substrate 51 .
  • the first dimming module 4A is arranged closer to the first transparent substrate 1 than the second dimming module 4B, and the second substrate 42 of the first dimming module 4A and the first substrate of the second dimming module 4B 51 are bonded together through the second adhesive layer 03 to form the dimming structure 4 .
  • the second adhesive layer 03 may use PVB glue.
  • the second substrate 42 of the first dimming module 4A can also be shared with the first substrate 51 of the second dimming module 4B.
  • the multiple electrode blocks are equivalent to dividing the liquid crystal molecules in the dimming layer into multiple regions, and each electrode block It is controlled by a separate drive circuit.
  • different voltages can be applied to different electrode blocks to generate different electric fields between each electrode block and the second electrode layer opposite to it, so that The deflection angle of the liquid crystal molecules in the liquid crystal layer corresponding to each electrode block is different, so that the transmittance of the area corresponding to each electrode block of the liquid crystal cell is different, that is, the transmittance of different areas of the light-adjusting structure is different.
  • the second electrode layer in a glass module includes a plurality of electrode blocks.
  • both the first electrode layer and the second electrode layer in a glass module can include multiple electrode blocks.
  • the electrode blocks between the electrode blocks in the first electrode layer and the second electrode layer At least partially overlapping, at this time, according to the above method, different transmittances in different regions of the light-adjusting structure can also be realized.
  • At least one of the first electrode layer and the second electrode layer of each of the multiple glass modules may include multiple electrode blocks, and each electrode block is driven by a different driving circuit. At this time, the transmittance of different areas of a glass module is different. Through the cooperation of multiple glass modules, the transmittance of different areas of the dimming structure can be achieved more accurately. control.
  • one of the first electrode layer or the second electrode layer can be a surface electrode, such as Fig. 12, Fig. 13
  • the first electrode layer 41 of the first glass module 4A in the center, the other can include a plurality of electrode blocks, and the plurality of electrode blocks can be a plurality of block electrodes distributed in an array (for example, the first glass module in Fig. 12 shown in the first electrode layer 41 of 4A), or a plurality of strip electrodes arranged side by side (such as shown in the first electrode layer 41 of the first glass module 4A in FIG. and drive mode settings, there is no limit here.
  • spacers are arranged between the first substrate and the second substrate of a glass module, and the spacers prop up a certain distance between the first substrate and the second substrate to form A space for liquid crystal molecules.
  • spacers such as ball spacers or resin spacers, which are not limited here.
  • first electrode layer and the second electrode layer of a glass module includes a plurality of electrode blocks, and each electrode block passes through a separate driving circuit, different areas of the light-adjusting structure can be realized at this time. different transmittance.
  • first electrode layer and the second electrode layer in each glass module include a plurality of electrode blocks, and each electrode block can achieve different transmittances in different regions of the dimming structure through an independent driving circuit.
  • the working principle is the same as the above-mentioned principle, so it will not be repeated here.
  • light-adjusting structure may also include a first alignment layer (not shown in the figure) disposed on the side of the first electrode layer 41 of the first glass module 4A close to the light-adjusting layer 43,
  • the second electrode layer 422 disposed on the first glass module 4A is close to the second alignment layer (not shown) on the side of the dimming layer 43;
  • the first electrode layer 512 disposed on the second glass module 4B is close to the dimming layer 43.
  • the pretilt angles of the first alignment layer and the second alignment layer are the same
  • the pretilt angles of the third alignment layer and the fourth alignment layer are the same, and differ from the pretilt angles of the first alignment layer and the second alignment layer by 90°.
  • the first glass module 4A and the second glass module 4B are orthogonally superimposed, and at this time, the light absorbed by the liquid crystal molecules in the first glass module 4A and the second glass module 4B
  • the directions of are orthogonal to each other, according to Marius's law, the incident light is absorbed almost completely, showing a dark state.
  • the dimming structure 4 can be pasted on the side of the second transparent substrate 2 close to the first transparent substrate 1 through the third adhesive layer 03, specifically, the third adhesive layer 03 is arranged on the side closest to the second transparent substrate 2 between the side of the fourth substrate of the glass module 2 facing away from the first transparent substrate 1 and the side of the second transparent substrate 2 close to the first transparent substrate 1 .
  • the radiating structure 3 includes a first substrate 31 and a second substrate 32 oppositely arranged, the first substrate 31 is arranged on the side of the first transparent substrate 1 close to the light-adjusting structure 4 , and the second substrate 32
  • the third substrate 411 of the glass module closest to the first transparent substrate 1 is arranged on the side close to the first transparent substrate 1;
  • the feed structure 33 is arranged on the side of the first substrate 31 close to the second substrate 32;
  • the radiation coupling layer 34 is disposed on a side of the second base 32 close to the first base 31 .
  • the third substrate 411 of the glass module closest to the first transparent substrate 1 is multiplexed as the second substrate 32 of the radiation structure 3, in this case, the radiation coupling layer 34 of the radiation structure 3
  • the third substrate 411 of the glass module closest to the first transparent substrate 1 is directly formed on the side close to the first transparent substrate 1 .
  • the radiation coupling layer 34 adopts a metal grid structure
  • the metal conductive film forming the metal grid is bonded to the first glass module of the first transparent substrate 1 through the fourth adhesive layer (not shown in FIG. 3 ).
  • the three substrates 411 are close to one side of the first transparent substrate 1, so that the thickness of the window system can be reduced.
  • the first transparent substrate 1 of the window system provided by the present disclosure is reused as the first substrate 31 of the radiation structure 3 , so that the thickness of the window system can be reduced.
  • the window system provided by the present disclosure can be applied to windows of various buildings and mobile tools, and the radiation structure 3 can be hidden in the interlayer of the first transparent substrate 1 and the second transparent substrate 2, and has a relatively Good gain without compromising the light transmission of the window system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本公开提供一种视窗系统(002),属于视窗技术领域。本公开提供的一种视窗系统(002)包括相对设置的第一透明基底(1)和第二透明基底(2),依次设置在第一透明基底(1)靠近第二透明基底(2)一侧的辐射结构(3)和调光结构(4),其中,调光结构(4)在第一透明基底(1)上的正投影与辐射结构(3)在第一透明基底(1)上的正投影至少部分重叠。本公开提供的视窗系统(002)能够同时具有收发射频信号和调光的功能,且将辐射结构和调光结构叠层设置以节约空间。

Description

一种视窗系统 技术领域
本公开属于视窗技术领域,具体涉及一种视窗系统。
背景技术
随着当前家庭、汽车的智能化程度趋深,对天线的类型的需求越来越多,例如,在车载天线中,除了传统的收音机、导航等功能的电子装置外,还包括车联网时代的多频通信、胎压监测、远程数据处理等需求,对车载天线的需求将逐步扩大。且调光结构在建筑、交通领域的应用越来越广泛。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种视窗系统,具体收发射频信号和调光的功能,且将辐射结构和调光结构叠层设置以节约空间。
解决本公开技术问题所采用的技术方案是一种视窗系统,其包括相对设置的第一透明基底和第二透明基底,依次设置在所述第一透明基底靠近所述第二透明基底一侧的辐射结构和调光结构,其中,所述调光结构在所述第一透明基底上的正投影与所述辐射结构在所述第一透明基底上的正投影至少部分重叠。
在一些示例中,所述辐射结构包括:
相对设置的第一基底和第二基底,所述第一基底设置在所述第一透明基底靠近所述调光结构的一侧,所述第二基底设置在所述调光结构靠近所述第一透明基底的一侧;
馈电结构,设置在所述第一基底靠近所述第二基底的一侧;
辐射耦合层,设置在所述第二基底靠近所述第一基底的一侧;所述馈电结构与所述辐射耦合层之间具有第一间距。
在一些示例中,所述辐射耦合层设置有狭缝,所述狭缝在所述第二基底上的正投影与所述馈电结构在所述第二基底上的正投影至少部分重叠。
在一些示例中,所述馈电结构的排布方向与所述狭缝的排布走向至少部分不同。
在一些示例中,所述狭缝包括第一子狭缝和连接在所述第一子狭缝两端的第二子狭缝和第三子狭缝,其中,所述第一子狭缝沿第一方向延伸,所述第二子狭缝和所述第三子狭缝沿第二方向延伸,所述第一方向与所述第二方向相交;
所述馈电结构的延伸方向与所述第一方向大致相同,且与所述第二方向相交,并且,所述馈电结构在所述第二基底上的正投影,与所述第一子狭缝在所述第二基底上的正投影不重叠。
在一些示例中,所述辐射耦合层由交叉设置的多条第一导线构成,多条所述第一导线在所述狭缝处断开设置。
在一些示例中,所述第一导线包括多条第一子导线,所述第一子导线在所述狭缝位置断开设置;
不同所述第一导线的所述第一子导线在所述狭缝位置断开设置,或者不同所述第一导线的所述第一子导线在所述狭缝位置相互短接。
在一些示例中,所述馈电结构由交叉设置的多条第二导线构成。
在一些示例中,所述第二导线包括多条第二子导线;不同所述第二导线的所述第二子导线在所述馈电结构的边缘位置断开设置,或者不同所述第二导线的所述第二子导线在所述馈电结构的边缘位置相互短接。
在一些示例中,所述辐射耦合层由交叉设置的多条第一导线构成,多条所述第一导线在所述狭缝处断开设置;所述馈电结构由交叉设置的多条第二 导线构成;其中,
多条所述第一导线形成的镂空部与多条所述第二导线形成的镂空部在所述第二基底上的正投影大致重合。
在一些示例中,所述辐射耦合层由交叉设置的多条第一导线构成,多条所述第一导线在所述狭缝处断开设置;其中,所述馈电结构在所述第二基底上的正投影的单位面积,大于所述辐射耦合层在所述第二基底上的正投影的单位面积。
在一些示例中,所述调光结构包括至少一个玻璃模组,每个所述玻璃模组包括相对设置的第一基板、第二基板和调光层;其中,所述调光层被配置为根据所述第一基板和所述第二基板之间所产生的电场,以调节光线透过率;所述第二基板相对所述第一基板靠近所述第二透明基底。
在一些示例中,所述第一基板包括第三基底,和设置在所述第三基底靠近所述第二基板一侧的第一电极层;所述第二基板包括第四基底,和设置在所述第四基底靠近所述第一基板一侧的第二电极层;所述调光层为染料液晶层。
在一些示例中,所述辐射结构包括:相对设置的第一基底和第二基底,所述第一基底设置在所述第一透明基底靠近所述调光结构的一侧,所述第二基底设置在最靠近所述第一透明基底的所述玻璃模组的所述第三基底靠近所述第一透明基底的一侧;馈电结构,设置在所述第一基底靠近所述第二基底的一侧;辐射耦合层,设置在所述第二基底靠近所述第一基底的一侧;其中,所述第三基底复用为所述第二基底。
在一些示例中,所述第一透明基底复用为所述第一基底。
在一些示例中,所述辐射结构还包括:参考电极层;所述视窗系统应用于汽车的车窗,所述汽车的壳体复用为所述参考电极层。
本公开提供的视窗系统,由于将辐射结构和调光结构集成为一体,因此 使视窗系统同时具有收发射频信号和调光的功能,而不用单独设置天线和调光结构,并且,通过将辐射结构和调光结构叠层设置,能够节约空间。
附图说明
图1为本公开提供的视窗系统应用在车窗上的整体结构示意图。
图2为沿图1的A-B方向剖切的本公开提供的视窗系统的一种示例性的剖面图。
图3为沿图1的A-B方向剖切的本公开提供的视窗系统的另一种示例性的剖面图。
图4为本公开提供的视窗系统的辐射耦合层的平面结构示意图。
图5为本公开提供的视窗系统的辐射耦合层的局部结构示意图。
图6为本公开提供的视窗系统的馈电结构的平面结构示意图(金属网格)。
图7为本公开提供的视窗系统的馈电结构的平面结构示意图(金属线)。
图8为传统辐射结构的垂直极化/水平极化的方向图。
图9为传统辐射结构的回波损耗曲线图。
图10为本公开提供的视窗系统中辐射结构的垂直极化/水平极化的方向图。
图11为本公开提供的视窗系统中辐射结构的回波损耗曲线图。
图12为本公开提供的视窗系统的调光结构的结构示意图(块状电极)。
图13为本公开提供的视窗系统的调光结构的结构示意图(条形电极)。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属 领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要说明的是,在本公开中,两结构“同层设置”是指二者是由同一个材料层形成的,故它们在层叠关系上处于相同层中,但并不代表它们与基底间的距离相等,也不代表它们与基底间的其它层结构完全相同。
以下将参照附图更详细地描述本公开。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。
需要说明的是,本公开中,第一方向X、第二方向Y和第三方向Z三者两两相交,在本公开中,以第一方向X和第二方向Y在视窗系统所在平面互相垂直,第三方向Y垂直于视窗系统所在平面为例进行说明。
本公开实施例提供一种视窗系统,该视窗系统可以应用在各类建筑、移动工具等场景,例如,图1中视窗系统应用在汽车上,即视窗系统002安装在汽车壳体001上的窗框中,作为汽车的车窗,当然,本公开提供的视窗系统不限于图1所示的应用场景,但为了便于说明,以下皆以视窗系统作为车窗为例进行说明。
参见图1-图3,其中,图2、图3分别为沿图1的A-B方向剖切的视窗系统的剖面图的两种实施例。本公开系统提供到的视窗系统包括相对设置的 第一透明基底1和第二透明基底2,依次设置在第一透明基底1靠近第二透明基底2一侧的辐射结构3和调光结构4。
其中,第一透明基底1和第二透明基底2为视窗系统最外侧的玻璃,将辐射结构3和调光结构4夹设在第一透明基底1和第二透明基底2之中,用以保证视窗系统具有良好的保温和降噪性能。调光结构4与辐射结构3叠层设置,换言之,调光结构4在第一透明基底1上的正投影与辐射结构3在第一透明基底1上的正投影至少部分重叠。在本公开提供的视窗系统中,由于将辐射结构3和调光结构4集成为一体,因此使视窗系统同时具有收发射频信号和调光的功能,而不用单独设置辐射结构和调光结构,并且,通过将辐射结构3和调光结构4叠层设置,能够节约空间,并且沿窗体所在平面放置辐射结构3,能够使其具有较大的耦合面,使其辐射结构增益效果更佳。
在一些示例中,参见图2-图7,辐射结构3包括相对设置的第一基底31和第二基底32、馈电结构33和辐射耦合层34。其中,第一基底31设置在第一透明基底1靠近调光结构4的一侧,第二基底32设置在调光结构4靠近第一透明基底1的一侧,馈电结构33设置在第一基底31靠近第二基底32的一侧,辐射耦合层34设置在第二基底32靠近第一基底31的一侧,并且,馈电结构33与辐射耦合层34之间具有第一间距,以防止馈电结构33和辐射耦合层34短接。
在一些示例中,可以在辐射耦合层34和馈电结构33之间设置第一粘接层01,第一粘接层01具有一定厚度且能够绝缘,其能够将辐射耦合层34和馈电结构33粘接为一体,并且能够给二者支撑以提供一定间隙。具体地,第一粘接层01可以采用聚乙烯醇缩丁醛(polyvinyl butyral,PVB)胶。
在一些示例中,辐射结构3可以采用多种类型的结构,例如贴片天线、缝隙天线等,在此以缝隙天线为例,参见图4,在辐射结构3中,辐射耦合层34设置有狭缝k1,狭缝k1在第二基底32上的正投影与馈电结构33在第 二基底32上的正投影至少部分重叠,且馈电结构33在第二基底32上的正投影,贯穿狭缝k1在第二基底32上的正投影。馈电结构33与辐射耦合层34相耦合,形成新的谐振结构,且沿窗体的平面设置的馈电结构33和辐射耦合层34具有较大的耦合面,射频信号能够通过狭缝k1辐射出去以实现信号发射或通过狭缝k1耦合至馈电结构33上以实现信号接收,通过改变狭缝k1的形状,例如设置为环形狭缝,则辐射耦合层34与馈电结构33形成环形耦合,能够改变所需频段的射频信号在水平方向上的辐射性能,因此能够提高辐射结构3在水平方向上的增益和回波损耗。
在一些示例中,本公开提供的视窗系统的辐射结构3中,馈电结构33与辐射耦合层34上的狭缝k1的具体形状和排布方向具有多种实现方向,例如,馈电结构33可以包括多条直线排布的馈电线,且多条馈电线并排设置;或者,馈电结构33可以包括两条直线排布的馈电线,且两条直线排布的馈电线的馈电端相对且间隔设置;又或者,馈电结构33包括一条蛇形排布或直线形排布的馈电线。具体地可以根据需要设置,在此不做限定,本说明书中皆以馈电结构33为一条直线形排布的馈电线为例进行说明,但不对本公开构成限制。
进一步地,辐射耦合层34上的狭缝k1的具体形状和排布方向也可以具体多种实现方向,例如狭缝k1为矩形狭缝,则排布方向为矩形的长度方向;或者狭缝k1为环形狭缝,则排布方向为沿环形的走向的多个方向;又或者狭缝k1为矩形狭缝为U形狭缝,则排布方向根据U形的弯折部分为多个方向。
其中,馈电结构33的排布方向与狭缝k1的排布走向至少部分不同,换言之,馈电结构33的各部分的排布方向中,至少存在一个排布方向与狭缝k1的各部分排布方向中的一个排布方向相交。
在一些示例中,参见图4,辐射耦合层34上的狭缝k1包括第一子狭缝k11和连接在第一子狭缝k11两端的第二子狭缝k12和第三子狭缝k13,其中, 第一子狭缝k11沿第一方向X延伸,第二子狭缝k12和第三子狭缝k13沿第二方向Y延伸,其中,第一方向X与第二方向Y相交。馈电结构33的延伸方向与第一方向X大致相同,且馈电结构33的延伸方向与第二方向Y相交,并且,馈电结构33在第二基底32上的正投影,与第一子狭缝k11在第二基底32上的正投影不重叠,馈电结构33在第二基底32上的正投影贯穿第二子狭缝k12和第三子狭缝k13在第二基底32上的正投影,通过这样的设置,辐射耦合层34与馈电结构33形成环形耦合,能够改变所需频段的射频信号在水平方向上的辐射性能,因此能够提高辐射结构3在水平方向上的增益和回波损耗。
需要说明的是,第一子狭缝k11沿第一方向X延伸,并非指第一子狭缝k11的形状严格地平行于第一方向X,只要第一子狭缝kl1的延伸走势大致沿第一方向X即可。
具体地,参见图8、图9,在相关技术中,传统的辐射结构包括第一基底和设置在第一基底上的馈电结构,图8为以传统辐射结构进行仿真的垂直极化/水平极化方向图,图9为以传统辐射结构进行仿真的回波损耗曲线,可以看到水平方向的增益效果不佳,回波损耗在-1.86dB左右。参见图10、图11,以本公开提供的视窗系统中的辐射结构为例进行仿真,其中狭缝k1为U形狭缝,馈电结构33为直线排布的馈电线,图10为本公开提供的视窗系统中的辐射结构的垂直极化/水平极化方向图,可以看到,相比较图8的传统辐射结构,水平方向的增益有效提高,图11为本公开提供的视窗系统中的辐射结构的回波损耗曲线,可以看到相较于传统辐射结构,回波损耗提高至-2.50dB。综上可知,本公开提供的视窗系统中的辐射结构有效提升了辐射结构的辐射性能。
在一些示例中,辐射结构3还包括参考电极层(图中为示出),参考电极层作为地为馈电结构33提高参考电位。参见图1,在视窗系统应用于汽车 的车窗的情况下,汽车的壳体001复用为辐射结构3的参考电极层。由于汽车壳体001本身为金属导电材料,可以作为车载辐射结构的参考电极层,馈电结构33能够与汽车壳体之间进行耦合,形成电磁信号回路,以将电信号转换为电磁波信号。
在一些示例中,辐射耦合层34可以采用金属网格(mesh metal)工艺,即辐射耦合层34可以由交叉设置的多条第一导线构成,多条第一导线在狭缝k1处断开设置,以形成狭缝k1。其中,多条交叉设置的第一导线在第二基底32靠近第一透明基底1一侧形成一整层金属导电膜,再将金属导电膜贴附在第二基底32靠近第一透明基底1的一侧,辐射耦合层34的金属导电膜包括基材层,和形成于基材层靠近第一透明基底1一侧的金属网格层,具体地,基材层可以采用聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)膜材,再在PET膜层上形成一层金属材料层,通过光刻或压印的形成金属网格层,最终形成金属导电膜。其中,第一导线的材料(也即金属材料层的材料)可以采用多种导电材料制成,例如铜、银、铝等金属材料,在此不做限制。
具体地,参见图5,图5示出辐射耦合层34的金属网格的部分区域,其中包含沿第一方向X延伸的多条平行第一导线341a,和沿第二方向Y延伸的多条竖直第二导线341b,多条平行第一导线341a和多条竖直第二导线341b交叉设置,二者的交叉处限定出镂空部p1。需要说明的是,辐射耦合层34的第一导线可以具有多种延伸方向,在此仅举例说明,不对本申请构成限制。
在一些示例中,第一导线的线宽为2微米至30微米;沿同一方向延伸的第一导线中,相邻的第一导线之间的间距为50微米至200微米;第一导线的厚度为1微米至10微米,整个辐射耦合层34(即金属导电膜)的厚度为55微米至155微米。由于第一导线的尺寸线宽、相邻第一导线之间的距离、以及第一导线的厚度均为微米级别,人眼无法识别,并且相邻的第一导线之 间的距离要远远大于第一导线都线宽,使得交叉设置的多条第一导线之间的空隙足够大,因此能够形成透明膜层,避免第一导线对光线的遮挡,从而可以保证第一导线形成的辐射耦合层34具有良好的透光性能。从而,可以保证集成了辐射结构3的视窗系统具有良好的透光效果。
在一些示例中,第一导线包括多条第一子导线,第一子导线在狭缝k1位置断开设置,以形成狭缝k1。并且,不同第一导线的第一子导线在狭缝位置断开设置,形成开放性结构;或者不同第一导线的第一子导线在狭缝位置相互短接,形成封闭性结构,在此不做限制。
在一些示例中,参见图6,馈电结构33也可以采用金属网格(mesh metal)工艺,即馈电结构33可以由交叉设置的多条第二导线构成。其中,多条交叉设置的第一导线在第一基底31靠近第二透明基底2一侧形成一整层金属导电膜,金属导电膜上具有开口c1,开口c1在金属导电膜上分割出馈电结构33。再将金属导电膜贴附在第一基底31靠近第二透明基底2的一侧。馈电结构33的金属导电膜包括基材层,和形成于基材层靠近第二透明基底2一侧的金属网格层,具体地,基材层可以采用聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)膜材,再在PET膜层上形成一层金属材料层,通过光刻或压印的形成金属网格层,最终形成金属导电膜。其中,第二导线的材料(也即金属材料层的材料)可以采用多种导电材料制成,例如铜、银、铝等金属材料,在此不做限制。
在一些示例中,第二导线的线宽为2微米至30微米;沿同一方向延伸的第二导线中,相邻的第二导线之间的间距为50微米至200微米;第二导线的厚度为1微米至10微米,整个馈电结构33(即金属导电膜)的厚度为55微米至155微米。由于第二导线的尺寸线宽、相邻第二导线之间的距离、以及第二导线的厚度均为微米级别,人眼无法识别,并且相邻的第二导线之间的距离要远远大于第二导线都线宽,使得交叉设置的多条第二导线之间的空 隙足够大,因此能够形成透明膜层,避免第二导线对光线的遮挡,从而可以保证第二导线形成的馈电结构33具有良好的透光性能。从而,可以保证集成了辐射结构3的视窗系统具有良好的透光效果。
在一些示例中,第二导线包括多条第二子导线。并且,不同第二导线的第二子导线在馈电结构33的边缘位置断开设置,形成开放性结构;或者不同第二导线的第二子导线在馈电结构33的边缘位置相互短接,形成封闭性结构,在此不做限制。
在一些示例中,辐射耦合层34和馈电结构33均采用金属网格结构,即辐射耦合层34由交叉设置的多条第一导线构成,多条第一导线在狭缝k1处断开设置;馈电结构33由交叉设置的多条第二导线构成;其中,多条第一导线形成的镂空部(例如图5的p1所示)与多条第二导线形成的镂空部(类似图5的p1)在第二基底32上的正投影大致重合,换言之,多条第一导线的延伸方向与多条第二导线的延伸方向大致相同。
在一些示例中,馈电结构33也可以不采用金属网格设置,而采用整根金属丝形成,即馈电结构33上不具有镂空部,在这种情况下,辐射耦合层34由交叉设置的多条第一导线构成,多条第一导线在狭缝k1处断开设置。其中,馈电结构33在第二基底32上的正投影的单位面积,大于辐射耦合层34在第二基底32上的正投影的单位面积。
在一些示例中,调光结构4包括至少一个玻璃模组,参见图2、图3,需要说明的是,图2、图3均以调光结构4包括一个玻璃模组为例进行说明,因此玻璃模组即为调光结构。每个玻璃模组包括相对设置的第一基板41、第二基板42和设置在第一基板41和第二基板42之间的调光层43,第二基板42相对第一基板41靠近第二透明基底2。其中,调光层43被配置为根据第一基板41和第二基板42之间所产生的电场,以调节光线透过率,例如透光率在0%至100%的范围内变化。
在一些示例中,对于一个玻璃模组,第一基板41包括第三基底411,和设置在第三基底411靠近第二基板42一侧的第一电极层412。第二基板42包括第四基底421,和设置在第四基底421靠近第一基板41一侧的第二电极层422。在第一电极层412中的电极上施加第一直流电压,在第二电极层422上施加第二直流电压,是的第一电极层412和第二电极层422之间产生电场,以调节调光层43的透过率。
在一些示例中,调光层43包括多种类型的调光介质,例如,调光层43可以为染料液晶层。染料液晶层的材料包括液晶分子和二向色性染料分子,通过第一电极层412和第二电极层422之间产生电场,以控制液晶分子的偏转方向,从而能够调节调光层43的透过率。
在一些示例中,调光结构4可以包括多个玻璃模组,例如,参见图12和图13所示的调光结构4,调光结构4包括第一玻璃模组4A和第二玻璃模组4B,第一玻璃模组4A包括相对设置的第一基板41、第二基板42和设置在第一基板41和第二基板42之间的调光层43,其中,第一基板41包括第三基底411,和设置在第三基底411靠近第二基板42一侧的第一电极层412。第二基板42包括第四基底421,和设置在第四基底421靠近第一基板41一侧的第二电极层422。同理,第二玻璃模组4B包括相对设置的第一基板51、第二基板52和设置在第一基板51和第二基板52之间的调光层53,其中,第一基板51包括第三基底511,和设置在第三基底511靠近第二基板52一侧的第一电极层512。第二基板52包括第四基底521,和设置在第四基底521靠近第一基板51一侧的第二电极层522。其中,第一调光模组4A相较第二调光模组4B靠近第一透明基底1设置,第一调光模组4A的第二基底42与第二调光模组4B的第一基底51通过第二粘接层03粘接在一起形成调光结构4。其中,第二粘接层03可以采用PVB胶。在一些示例中,第一调光模组4A的第二基底42也可以与第二调光模组4B的第一基底51共用。
具体的,假若其中一个玻璃模组中的第一电极层包括多个电极块,此时多个电极块则相当于将该调光层中的液晶分子划分为多个区域,而每个电极块是通过单独的驱动电路进行控制的,这样一来,可以通过控制不同的电极块上施加不同的电压,以使各个电极块和与之相对设置的第二电极层之间产生不同的电场,从而使得每个电极块所对应的液晶层中的液晶分子的偏转角度不同,进而使得液晶盒对应每个电极块的区域的透过率不同,也即使得调光结构不同区域的透过率是不同的。同理,一个玻璃模组中的第二电极层包括多个电极块,此时可以通过控制不同的电极块上施加不同的电压,以使各个电极块和与之相对设置的第一电极层之间产生不同的电场,以实现调光结构不同区域的透过率不同。当然,一个玻璃模组中的第一电极层和第二电极层均可以包括多个电极块,此时应当注意的是,第一电极层中的电极块与第二电极层之间的电极块至少部分重叠,此时按照上述方法,也可以实现调光结构不同区域的透过率不同。
当然,在本实施例中也可以是多个玻璃模组中的每个的第一电极层和第二电极层中的至少一者包括多个电极块,且每个电极块通过不同的驱动电路进行控制,此时,对于一个玻璃模组中的而言其不同区域的透过率均是不同,通过多个玻璃模组的配合,可以实现调光结构的不同区域的透过率更精准的控制。
需要说明的是,对于一个玻璃模组(例如第一玻璃模组4A或第二玻璃模组4B),第一电极层或第二电极层中一者可以为面电极,例如图12、图13中第一玻璃模组4A的第一电极层41,另一者可以包括多个电极块,而多个电极块可以为阵列分布的多个块状电极(例如图12中的第一玻璃模组4A的第一电极层41所示),也可以为并排设置的多个条形电极(例如图13中的第一玻璃模组4A的第一电极层41所示),具体地可以根据分区需要和驱动方式设置,在此不做限制。
进一步地,对于一个玻璃模组第一基板与第二基板之间设置有隔垫物(图中未示出),隔垫物在第一基板与第二基板之间撑起一定距离,以形成容纳液晶分子的空间。隔垫物的类型可以为多种,例如间隔球(ball spacer)或树脂隔垫物等,在此不做限定。
在此需要说明是,以上只是给出几种具体调光结构的实现结构。实际上,只要有一个玻璃模组的第一电极层和第二电极层中的一者包括多个电极块,且每个电极块通过单独的驱动电路,此时都可以实现调光结构不同区域不同的透过率。当然,每个玻璃模组中的第一电极层和第二电极层均包括多个电极块,且每个电极块通过单独的驱动电路,也是可以实现调光结构不同区域不同的透过率。工作原理与上述原理相同,故在此不再一一赘述。
当然,无论上述的哪一种调光结构,均还可以包括设置在第一玻璃模组4A的第一电极层41靠近调光层43侧面上的第一取向层(图中未示出),设置在第一玻璃模组4A的第二电极层422靠近调光层43侧面上的第二取向层(图中未示出);设置在第二玻璃模组4B的第一电极层512靠近调光层53侧面上的第三取向层(图中未示出),设置在第二玻璃模组4B的第二电极层522靠近调光层53侧面上的第四取向层(图中未示出);其中,第一取向层和第二取向层的预倾角相同,第三取向层和第四取向层的预倾角相同,且与第一取向层和第二取向层的预倾角相差90°。这样一来,在未施加电压时,第一玻璃模组4A和第二玻璃模组4B正交叠加,此时,第一玻璃模组4A和第二玻璃模组4B中的液晶分子的吸收光的方向相互正交,根据马吕斯定律,入射光被基本全部吸收,呈现暗态。
在一些示例中,调光结构4可通过第三粘接层03粘贴在第二透明基底2靠近第一透明基底1一侧,具体地,第三粘接层03设置在最靠近第二透明基底2的玻璃模组的第四基底背离第一透明基底1的一侧与第二透明基底2靠近第一透明基底1的一侧之间。
在一些示例中,参见图3,辐射结构3包括相对设置的第一基底31和第二基底32,第一基底31设置在第一透明基底1靠近调光结构4的一侧,第二基底32设置在最靠近第一透明基底1的玻璃模组的第三基底411靠近第一透明基底1的一侧;馈电结构33设置在第一基底31靠近第二基底32的一侧;辐射耦合层34设置在第二基底32靠近第一基底31的一侧。其中,对于调光结构4,最靠近第一透明基底1的玻璃模组的第三基底411复用为辐射结构3的第二基底32,在这种情况下,辐射结构3的辐射耦合层34直接形成在最靠近第一透明基底1的玻璃模组的第三基底411靠近第一透明基底1的一侧。若辐射耦合层34采用金属网格结构,则形成金属网格的金属导电膜通过第四粘接层(图3中未示出)粘接在最靠近第一透明基底1的玻璃模组的第三基底411靠近第一透明基底1的一侧,从而能够减少视窗系统的厚度。
在一些示例中,继续参见图3,本公开提供的视窗系统的第一透明基底1复用为辐射结构3的第一基底31,从而能够减少视窗系统的厚度。
综上所述,本公开提供的视窗系统,能够应用在各种建筑、移动工具的窗户上,且辐射结构3可以隐藏在第一透明基底1和第二透明基底2的夹层中,并具有较好的增益,并且不影响视窗系统的透光性。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种视窗系统,其包括相对设置的第一透明基底和第二透明基底,依次设置在所述第一透明基底靠近所述第二透明基底一侧的辐射结构和调光结构,其中,所述调光结构在所述第一透明基底上的正投影与所述辐射结构在所述第一透明基底上的正投影至少部分重叠。
  2. 根据权利要求1所述的视窗系统,其中,所述辐射结构包括:
    相对设置的第一基底和第二基底,所述第一基底设置在所述第一透明基底靠近所述调光结构的一侧,所述第二基底设置在所述调光结构靠近所述第一透明基底的一侧;
    馈电结构,设置在所述第一基底靠近所述第二基底的一侧;
    辐射耦合层,设置在所述第二基底靠近所述第一基底的一侧;所述馈电结构与所述辐射耦合层之间具有第一间距。
  3. 根据权利要求2所述的视窗系统,其中,所述辐射耦合层设置有狭缝,所述狭缝在所述第二基底上的正投影与所述馈电结构在所述第二基底上的正投影至少部分重叠。
  4. 根据权利要求3所述的视窗系统,其中,所述馈电结构的排布方向与所述狭缝的排布走向至少部分不同。
  5. 根据权利要求4所述的视窗系统,其中,所述狭缝包括第一子狭缝和连接在所述第一子狭缝两端的第二子狭缝和第三子狭缝,其中,所述第一子狭缝沿第一方向延伸,所述第二子狭缝和所述第三子狭缝沿第二方向延伸,所述第一方向与所述第二方向相交;
    所述馈电结构的延伸方向与所述第一方向大致相同,且与所述第二方向相交,并且,所述馈电结构在所述第二基底上的正投影,与所述第一子狭缝在所述第二基底上的正投影不重叠。
  6. 根据权利要求3所述的视窗系统,其中,所述辐射耦合层由交叉设置的多条第一导线构成,多条所述第一导线在所述狭缝处断开设置。
  7. 根据权利要求6所述的视窗系统,其中,所述第一导线包括多条第一子导线,所述第一子导线在所述狭缝位置断开设置;
    不同所述第一导线的所述第一子导线在所述狭缝位置断开设置,或者不同所述第一导线的所述第一子导线在所述狭缝位置相互短接。
  8. 根据权利要求3所述的视窗系统,其中,所述馈电结构由交叉设置的多条第二导线构成。
  9. 根据权利要求8所述的视窗系统,其中,所述第二导线包括多条第二子导线;不同所述第二导线的所述第二子导线在所述馈电结构的边缘位置断开设置,或者不同所述第二导线的所述第二子导线在所述馈电结构的边缘位置相互短接。
  10. 根据权利要求3所述的视窗系统,其中,所述辐射耦合层由交叉设置的多条第一导线构成,多条所述第一导线在所述狭缝处断开设置;所述馈电结构由交叉设置的多条第二导线构成;其中,
    多条所述第一导线形成的镂空部与多条所述第二导线形成的镂空部在所述第二基底上的正投影大致重合。
  11. 根据权利要求3所述的视窗系统,其中,所述辐射耦合层由交叉设置的多条第一导线构成,多条所述第一导线在所述狭缝处断开设置;其中,所述馈电结构在所述第二基底上的正投影的单位面积,大于所述辐射耦合层在所述第二基底上的正投影的单位面积。
  12. 根据权利要求1-11任一所述的视窗系统,其中,所述调光结构包括至少一个玻璃模组,每个所述玻璃模组包括相对设置的第一基板、第二基板和调光层;其中,所述调光层被配置为根据所述第一基板和所述第二基板之间所产生的电场,以调节光线透过率;所述第二基板相对所述第一基板靠近所述第二透明基底。
  13. 根据权利要求12所述的视窗系统,其中,所述第一基板包括第三基底,和设置在所述第三基底靠近所述第二基板一侧的第一电极层;所述第二 基板包括第四基底,和设置在所述第四基底靠近所述第一基板一侧的第二电极层;所述调光层为染料液晶层。
  14. 根据权利要求13所述的视窗系统,其中,所述辐射结构包括:相对设置的第一基底和第二基底,所述第一基底设置在所述第一透明基底靠近所述调光结构的一侧,所述第二基底设置在最靠近所述第一透明基底的所述玻璃模组的所述第三基底靠近所述第一透明基底的一侧;馈电结构,设置在所述第一基底靠近所述第二基底的一侧;辐射耦合层,设置在所述第二基底靠近所述第一基底的一侧;其中,所述第三基底复用为所述第二基底。
  15. 根据权利要求14所述的视窗系统,其中,所述第一透明基底复用为所述第一基底。
  16. 根据权利要求1-11任一所述的视窗系统,其中,所述辐射结构还包括:参考电极层;所述视窗系统应用于汽车的车窗,所述汽车的壳体复用为所述参考电极层。
PCT/CN2022/074519 2022-01-28 2022-01-28 一种视窗系统 WO2023141919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000093.0A CN117121301A (zh) 2022-01-28 2022-01-28 一种视窗系统
PCT/CN2022/074519 WO2023141919A1 (zh) 2022-01-28 2022-01-28 一种视窗系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074519 WO2023141919A1 (zh) 2022-01-28 2022-01-28 一种视窗系统

Publications (1)

Publication Number Publication Date
WO2023141919A1 true WO2023141919A1 (zh) 2023-08-03

Family

ID=87469937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074519 WO2023141919A1 (zh) 2022-01-28 2022-01-28 一种视窗系统

Country Status (2)

Country Link
CN (1) CN117121301A (zh)
WO (1) WO2023141919A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459285A (zh) * 2007-12-03 2009-06-17 索尼株式会社 用于毫米波信号的缝隙天线
CN104241865A (zh) * 2013-06-11 2014-12-24 深圳富泰宏精密工业有限公司 天线组件
JP2017106984A (ja) * 2015-12-07 2017-06-15 大日本印刷株式会社 調光パネル及び調光パネルを備えた窓
CN111845820A (zh) * 2020-08-25 2020-10-30 江苏铁锚玻璃股份有限公司 智能透明oled车窗系统
CN112736407A (zh) * 2020-12-20 2021-04-30 英特睿达(山东)电子科技有限公司 用于汽车智能玻璃的透明天线
CN113054437A (zh) * 2021-05-26 2021-06-29 南京迪钛飞光电科技有限公司 一种多功能多波段电磁调控装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459285A (zh) * 2007-12-03 2009-06-17 索尼株式会社 用于毫米波信号的缝隙天线
CN104241865A (zh) * 2013-06-11 2014-12-24 深圳富泰宏精密工业有限公司 天线组件
JP2017106984A (ja) * 2015-12-07 2017-06-15 大日本印刷株式会社 調光パネル及び調光パネルを備えた窓
CN111845820A (zh) * 2020-08-25 2020-10-30 江苏铁锚玻璃股份有限公司 智能透明oled车窗系统
CN112736407A (zh) * 2020-12-20 2021-04-30 英特睿达(山东)电子科技有限公司 用于汽车智能玻璃的透明天线
CN113054437A (zh) * 2021-05-26 2021-06-29 南京迪钛飞光电科技有限公司 一种多功能多波段电磁调控装置

Also Published As

Publication number Publication date
CN117121301A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN213845498U (zh) 天线及天线系统
WO2020230819A1 (ja) 平面アンテナ、アンテナ積層体及び車両用窓ガラス
CN112072293B (zh) 天线结构、天线玻璃组件及交通工具
WO2012153663A1 (ja) ガラスアンテナ及び窓ガラス
CN111987409B (zh) 天线玻璃及车辆
WO2022004559A1 (ja) 車両用窓ガラス及び車両構造
WO2019185924A1 (en) Laminated glazing panel having an antenna
CN111562860A (zh) 触控显示屏及电子设备
CN110943300B (zh) 扫描天线及tft基板
KR20060112656A (ko) 안테나 장치와, 상기 안테나 장치가 설치된 창문
WO2022088714A1 (zh) 天线及通信系统
WO2023141919A1 (zh) 一种视窗系统
CN111987408B (zh) 天线结构、天线玻璃组件及交通工具
CN114006163A (zh) 液晶天线及其制作方法
JP2022117929A (ja) 車両用窓ガラス及び車両用窓ガラス装置
CN111987424B (zh) 天线结构、天线玻璃组件及交通工具
US20210021051A1 (en) Slot array antenna
WO2023283756A1 (zh) 透明天线及通信系统
TWI769421B (zh) 掃描天線及掃描天線的製造方法
CN114069190A (zh) 一种圆极化微带天线及obu装置及车辆玻璃
WO2023026949A1 (ja) 車両用アンテナ装置
CN111987425B (zh) 天线组件、天线玻璃及车辆
WO2023216217A1 (zh) 天线及电子设备
WO2024111469A1 (ja) 車両用窓ガラス
WO2023137740A1 (zh) 天线及通信系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18018978

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922764

Country of ref document: EP

Kind code of ref document: A1