WO2023205976A1 - 用于电池单体的外壳、电池单体、电池及用电装置 - Google Patents

用于电池单体的外壳、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023205976A1
WO2023205976A1 PCT/CN2022/088855 CN2022088855W WO2023205976A1 WO 2023205976 A1 WO2023205976 A1 WO 2023205976A1 CN 2022088855 W CN2022088855 W CN 2022088855W WO 2023205976 A1 WO2023205976 A1 WO 2023205976A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
projection
groove
housing
weak
Prior art date
Application number
PCT/CN2022/088855
Other languages
English (en)
French (fr)
Inventor
陈小波
顾明光
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/088855 priority Critical patent/WO2023205976A1/zh
Priority to CN202280034250.XA priority patent/CN117337512A/zh
Publication of WO2023205976A1 publication Critical patent/WO2023205976A1/zh
Priority to US18/604,186 priority patent/US20240222822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the field of battery technology, and in particular to a casing for a battery cell, a battery cell, a battery and an electrical device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of this application is to propose a casing for a battery cell, a battery cell, a battery and a power device, so as to improve the safety of the battery.
  • the pressure relief mechanism includes: a body; a first weak part, which is provided on the body.
  • the first weak part has two first free ends.
  • the connection line of the two first free ends does not completely overlap with the first weak part and jointly defines a The pressure relief part;
  • the second weak part provided on the body, the first projection of the first weak part on the plane perpendicular to the first direction and the second projection of the second weak part on the plane do not intersect, the first direction is The thickness direction of the pressure relief portion, wherein the pressure relief portion is configured to open with the first weak portion as a boundary and flip toward the side where the second weak portion is located when the pressure or temperature inside the battery cell reaches a threshold value.
  • two weak parts are provided in the pressure relief mechanism, so that when the pressure or temperature inside the battery cell reaches a threshold value, the pressure relief part opens along one of the weak parts and moves toward the location of the other weak part.
  • the above-mentioned pressure relief mechanism limits the valve opening direction of the pressure relief mechanism along the direction in which one of the weak parts (i.e., the first weak part) cracks, so that countermeasures can be taken in advance, thereby improving battery safety.
  • the provision of the other weak portion ie, the second weak portion
  • the second weak part can cause the pressure relief part to turn over a larger angle (turn over faster) in the same time, thereby promoting rapid and effective discharge of the battery cells. pressure.
  • the projections of the first weak part and the second weak part on the plane perpendicular to the first direction do not intersect, which can avoid stress concentration in the intersection area of each weak part, thereby reducing the pressure of the pressure relief mechanism on the battery cell.
  • the risk of pressure relief starting before the internal pressure reaches the detonation pressure is avoided, and the pressure relief mechanism is prevented from cracking in the intersection area, resulting in inaccurate valve opening direction, thereby improving the anti-destruction capability of the pressure relief mechanism and promoting the effective pressure relief of the battery cells. , and improve the service life of the battery cells.
  • the casing provided by this application can improve the anti-destruction ability of the pressure relief mechanism, promote the effective pressure relief of the battery cells, and increase the service life of the battery cells, thereby improving the safety of the battery.
  • a first pressure relief groove and a second pressure relief groove are formed on the body, the first weak portion is the bottom wall of the first pressure relief groove, and the second weak portion is the bottom wall of the second pressure relief groove.
  • the weak part is set as the bottom of the pressure relief groove to form a position where the strength of the pressure relief mechanism is weak, which facilitates the manufacturing and processing of the weak part.
  • the first pressure relief groove is located on the first surface of the body, and the second pressure relief groove is located on the second surface of the body opposite to the first surface.
  • the first surface is an outer surface of the body and the second surface is an inner surface of the body.
  • the depth of the first pressure relief groove is greater than the depth of the second pressure relief groove, and the thickness of the first weak portion is less than the thickness of the second weak portion.
  • the first pressure relief groove includes a plurality of first groove parts, and the plurality of first groove parts are sequentially arranged along the depth direction of the first pressure relief groove. Along the depth direction of the first pressure relief groove, a plurality of first groove parts are arranged in sequence. The width of a groove portion gradually decreases.
  • the first pressure relief groove adopts a multi-stage groove structure, which can reduce the forming force on the body when forming each stage of groove, reduce the risk of cracks in the body during the forming of the first pressure relief groove, and improve the long-term reliability of the pressure relief mechanism. sex.
  • the second pressure relief groove includes a plurality of second groove parts.
  • the plurality of second groove parts are sequentially arranged along the depth direction of the second pressure relief groove.
  • a plurality of second groove parts are arranged in sequence.
  • the width of the second groove portion gradually decreases.
  • the second pressure relief groove adopts a multi-stage groove structure, which can reduce the molding force on the pressure relief body when forming each stage of the groove, reduce the risk of cracks in the pressure relief body during the forming of the second pressure relief groove, and improve pressure relief. Long-term reliability of the organization.
  • a line connecting the two first free ends has a third projection on the plane, and the extension direction of the second projection is consistent with the extension direction of the third projection.
  • the second projection at least partially overlaps the third projection in a direction perpendicular to an extension direction of the second projection.
  • the above embodiments can further cause the pressure relief portion to flip toward the side where the second weak portion is located faster, thereby promoting rapid and effective pressure relief of the battery cells.
  • the second projection is located on a side of the third projection close to the first projection and is spaced apart from the third projection.
  • the second projection is located on a side of the third projection away from the first projection and is spaced apart from the third projection.
  • the mid-perpendicular line of the third projection coincides with the mid-perpendicular line of the second projection.
  • the above embodiment can realize symmetry of the second weak part with respect to the mid-perpendicular line connecting the two ends of the first weak part, and can make the pressure relief part better flip toward the side where the second weak part is located, so as to ensure that the pressure relief part The turning direction and valve opening direction are more accurate and safer.
  • the first projection is symmetrical about the mid-perpendicular of the third projection.
  • the second projection has two second free ends, and the minimum gap between one of the second free ends and the first projection is no greater than one third of the length of the third projection, and/or another The minimum gap between a second free end and the first projection is not greater than one third of the length of the third projection.
  • the minimum gap between one of the second free ends and the first projection is less than 10 mm, and/or the minimum gap between the other second free end and the first projection is less than 10 mm.
  • the first projection is an arc, a polyline, or a combination of arcs and polylines.
  • the shape of the pressure relief portion is defined as needed to increase the valve opening area of the pressure relief mechanism, quickly relieve pressure, and further improve safety.
  • the casing includes a casing with an opening and an end cover covering the opening, a receiving cavity for accommodating battery cells is formed between the casing and the end cover, and at least one side wall of the casing is provided with A pressure relief mechanism, and/or a pressure relief mechanism is provided on the end cover.
  • the pressure relief mechanism can be integrated into the casing or end cover that can accommodate the battery cells, so that the pressure relief mechanism integrates the accommodation function and the pressure relief function into one.
  • a groove is formed on the housing, and the body of the pressure relief mechanism is the bottom of the groove.
  • the thickness of the bottom wall of the groove can be made smaller than the wall thickness of other parts of the housing.
  • using the bottom wall of the thinner groove as the body of the pressure relief mechanism can help the pressure relief mechanism open the valve.
  • the groove is recessed from the surface of the casing, so that the pressure relief mechanism can be far away from the surface of the casing, so that the pressure relief mechanism is not easy to contact other objects and cause damage.
  • the side walls of the groove include opposite first side walls and second side walls, the extension direction of the projection of the first side wall on the plane is consistent with the extension direction of the first projection, and the second side wall The extension direction of the projection on the plane is consistent with the extension direction of the second projection.
  • the thickness of the body is less than the thickness of the portion of the housing other than the pressure relief mechanism.
  • the above embodiments can facilitate the opening and flipping of the pressure relief part, and prevent other parts of the casing from cracking in advance when the internal pressure or temperature of the battery cell exceeds the threshold.
  • An embodiment of the second aspect of the present application provides a battery cell, which includes the casing in the above embodiment.
  • a third embodiment of the present application provides a battery, which includes the battery cell in the above embodiment.
  • a fourth embodiment of the present application provides an electrical device, which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 2 is an exploded structural diagram of a battery according to some embodiments of the present application.
  • Figure 3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • Figure 4 is a schematic diagram of a battery cell according to other embodiments of the present application.
  • FIG. 5 is a partial enlarged view of the end cap portion of the battery cell in FIG. 4 .
  • FIG. 6 is a schematic diagram of the end cover of the battery cell in FIG. 4 .
  • FIG. 7 is another schematic diagram of the end cover of the battery cell in FIG. 4 .
  • FIG. 8 is another schematic diagram of the end cover of the battery cell in FIG. 4 .
  • FIG. 9 is a cross-sectional view of the end cap of FIG. 8 .
  • FIG. 10 is a partial enlarged view of the pressure relief mechanism part of the end cover of FIG. 9 .
  • Figure 11 is a schematic diagram of a first weak portion according to some embodiments of the present application.
  • Figure 12 is a schematic diagram of a second weak portion according to some embodiments of the present application.
  • Figure 13 is a schematic diagram of an end cap including a pressure relief mechanism according to other embodiments of the present application.
  • Figure 14 is a schematic diagram of an end cap including a pressure relief mechanism according to other embodiments of the present application.
  • Figure 15 is a schematic diagram of an end cap including a pressure relief mechanism according to other embodiments of the present application.
  • Battery cell 20 end cap 21, electrode terminal 21a, case 22, battery core assembly 23, tab 23a;
  • Shell 40 housing 410, end cover 420, pressure relief mechanism 430, body 431, first weak part 432, first free ends 432a, 432b, pressure relief part 4311, second weak part 433, first direction z, plane P, first projection 4321, second projection 4331, third projection 4323, first pressure relief groove 4322, second pressure relief groove 4332, first groove part 4322a, second groove part 4332a, second free end 4331a, 4331b , through holes 421, 422, first side wall 441, second side wall 442.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • protective measures include at least switching elements, selection of appropriate isolation diaphragm materials, and pressure relief mechanisms.
  • a switching element refers to an element that can stop charging or discharging the battery when the temperature or resistance within the battery cell reaches a certain threshold.
  • the isolation membrane is used to isolate the positive electrode piece and the negative electrode piece. When the temperature rises to a certain value, it can automatically dissolve the micron-level (or even nano-level) micropores attached to it, so that metal ions cannot pass through the isolation membrane. Terminate the internal reactions of the battery cells.
  • the pressure relief mechanism refers to an element or component that is activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • This threshold design varies based on design requirements. The threshold may depend on one or more materials of the positive electrode plate, negative electrode plate, electrolyte and separator in the battery cell.
  • the "actuation" mentioned in this application means that the pressure relief mechanism acts or is activated to a certain state, so that the internal pressure and temperature of the battery cell can be released.
  • the actions generated by the pressure relief mechanism may include, but are not limited to: at least a portion of the pressure relief mechanism is ruptured, broken, torn or opened, etc.
  • the high-temperature and high-pressure substances inside the battery cells will be discharged outward from the actuated part as emissions.
  • the battery cells can be depressurized under controlled pressure or temperature, thereby avoiding potentially more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when short circuit, overcharge, etc. occur, thermal runaway may occur inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released outward through the activation of the pressure relief mechanism to prevent the battery cells from exploding and catching fire.
  • the pressure relief mechanism can take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive or temperature-sensitive component or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold When the pressure relief mechanism takes action or the weak structure provided in the pressure relief mechanism is destroyed, a through-hole or channel is formed for the internal pressure or temperature to be released.
  • the pressure relief mechanism after a battery cell has been used for a period of time, it is easy for the pressure relief mechanism to start to release pressure before the internal pressure of the battery cell reaches the detonation pressure or to crack in an unexpected place, causing the battery cell to open its valve abnormally. It may even cause the entire battery cell to fail, affecting the service life and safety of the battery cell.
  • inventions of the present application provide a housing for a battery cell, including a pressure relief mechanism.
  • the pressure relief mechanism includes a body, a first weak part and a second weak part.
  • the first weak part is provided on the body and has two first free ends.
  • the connection line of the two first free ends does not completely overlap with the first weak part and jointly defines a pressure relief part.
  • the second weak portion is provided on the body and the first projection on the plane perpendicular to the first direction does not intersect with the second projection of the second weak portion on the plane.
  • the first direction is the thickness direction of the pressure relief portion.
  • the pressure relief portion is configured to open with the first weak portion as a boundary and flip toward the side where the second weak portion is located when the pressure or temperature inside the battery cell reaches a threshold value.
  • the pressure relief part By arranging the first weak part and the second weak part in the pressure relief mechanism, when the pressure or temperature inside the battery cell reaches the threshold value, the pressure relief part opens along the first weak part and faces the side where the second weak part is located. Flip.
  • the extension direction of the first weak part limits the valve opening direction of the pressure relief mechanism, so that countermeasures can be taken in advance, thereby improving battery safety.
  • the provision of the second weak part can make the pressure relief part turn over faster, thereby promoting the pressure relief part to turn over to quickly relieve pressure after splitting, and avoid it being completely broken open to form multiple fragments.
  • the projections of the first weak part and the second weak part on the plane perpendicular to the first direction do not intersect, which can avoid stress concentration in the intersection area of each weak part, thereby reducing the pressure of the pressure relief mechanism on the battery cell.
  • the risk of pressure relief starting before the internal pressure reaches the detonation pressure and the risk of incorrect valve opening direction caused by the pressure relief mechanism cracking in the intersection area are avoided, thereby improving the anti-destruction capability of the pressure relief mechanism and promoting the effectiveness of the battery cells. Relieve pressure and extend the service life of the battery cells.
  • the casing disclosed in the embodiment of the present application can be used for, but is not limited to, battery cells.
  • the battery cell may include lithium ion, secondary battery, lithium ion primary battery, lithium sulfur battery, sodium lithium ion battery, sodium ion battery or magnesium ion battery, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • a power supply system including the battery cells, batteries, etc. disclosed in this application can be used to form the electrical device.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 3 is an exploded structural diagram of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery.
  • the battery cell 20 includes an end cover 21 , a housing 22 , a cell assembly 23 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the case 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 21 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 21 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 21 may be provided with functional components such as electrode terminals 21a.
  • the electrode terminal 21a can be used to electrically connect with the battery cell assembly 23 for outputting or inputting electric energy of the battery cell 20 .
  • the end cap 21 may also be provided with a pressure relief mechanism for releasing the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the end cap 21 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating member may also be provided inside the end cover 21 , and the insulating member may be used to isolate the electrical connection components in the housing 22 from the end cover 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 22 is a component used to cooperate with the end cover 21 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the battery core assembly 23 , electrolyte and other components.
  • the housing 22 and the end cover 21 may be independent components, and an opening may be provided on the housing 22.
  • the end cover 21 covers the opening at the opening to form the internal environment of the battery cell 20.
  • the end cover 21 and the housing 22 can also be integrated.
  • the end cover 21 and the housing 22 can form a common connection surface before other components are put into the housing. When it is necessary to encapsulate the inside of the housing 22 At this time, the end cover 21 covers the housing 22 again.
  • the housing 22 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the battery core assembly 23 .
  • the housing 22 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the battery cell assembly 23 is a component in the battery cell 20 that undergoes electrochemical reactions.
  • One or more battery core assemblies 23 may be contained within the housing 22 .
  • the cell assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the battery cell assembly, and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute the tab 23a.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the tabs 23a are connected to the electrode terminals to form a current loop.
  • the present application provides a housing 40 for a battery cell, including a pressure relief mechanism 430 .
  • the pressure relief mechanism 430 includes a body 431 , a first weak portion 432 and a second weak portion 433 .
  • the first weak portion 432 is provided on the body 431 and has two first free ends 432a and 432b.
  • the connection line of the two first free ends 432a and 432b does not completely overlap with the first weak portion 432 and together defines the pressure relief portion 4311. .
  • the second weak portion 433 is provided on the body 431, and the first projection 4321 of the second weak portion 433 on the plane perpendicular to the first direction z and the second projection 4331 of the second weak portion 433 on the plane do not intersect.
  • One direction z is the thickness direction of the pressure relief portion 4311.
  • the pressure relief portion 4311 is configured to open with the first weak portion 432 as a boundary and flip toward the side where the second weak portion 433 is located when the pressure or temperature inside the battery cell reaches a threshold value.
  • Housing 40 may include end cap 420 and housing 410 .
  • the features of the end cover 420 and the housing 410 are basically the same as the features of the end cover 21 and the housing 22 described in FIG. 3 above, and will not be described in detail here.
  • the body 431 of the pressure relief mechanism 430 may be an independent component installed on the housing 410 or the end cover 420.
  • the body 431 may be a plate-like structure installed on the end cover 420 or the housing 410, specifically an explosion-proof disc.
  • the body 431 can be integrally formed with the end cover 420 or the housing 410 , that is, a part of the end cover 420 or the housing 410 itself serves as the body 431 .
  • the first weak portion 432 and the second weak portion 433 may be parts with a smaller thickness on the body 431, or may be parts with a lower material strength on the body 431. This application is not limited to the above examples.
  • the first weak portion 432 is used to define the priority destruction position of the pressure relief mechanism 430. When the internal pressure or temperature of the battery cell reaches a threshold, the pressure relief mechanism 430 will preferentially break from the first weak portion 432. When the internal pressure or temperature of the battery cell reaches a threshold value, the pressure relief mechanism 430 splits from the first weak portion 432 and then flips toward the side where the second weak portion 433 is located.
  • the first direction z is the thickness direction of the pressure relief portion 3411 .
  • the first direction z is also the thickness direction of the end cap 420 .
  • the first direction z is also the thickness direction of the corresponding wall of the housing 410 .
  • the thickness directions of the first weak portion 432 and the second weak portion 433 are along the first direction z, that is, the thickness direction of the pressure relief portion 3411 .
  • the plane perpendicular to the first direction z may be the surface of the body 431 facing the inside of the battery cell, such as the plane P shown in FIG. 8 , or it may be the surface of the body 431 facing away from the inside of the battery cell, or it may be with the Any plane perpendicular to direction z.
  • the first projection 4321 of the first weak portion 432 on the plane perpendicular to the first direction z and the second projection 4333 of the second weak portion 433 on the same plane do not intersect, indicating that the first projection 4321 and the second projection 4331 are not connected together.
  • the first weak portion 432 and the second weak portion 433 may be formed on the same surface of the housing 40 , or may be formed on two opposite surfaces of the housing 40 .
  • the first projection 4321 and the second projection 4331 do not intersect, which may mean that the first weak portion 432 and the second weak portion 433 are not connected together, and the second weak portion 432 and the second weak portion 433 are not connected together.
  • There is a gap between an end of the weak portion 433 close to the first weak portion 432 and the first weak portion 432 and there is no overlapping portion between the first weak portion 432 and the second weak portion 433 .
  • connection line between the two first free ends 432a, 432b of the first weak portion 432 does not completely overlap with the first weak portion 432, which means that the first weak portion 432 does not extend in a straight line, and will bend during the extension process, that is, It is said that a line connecting the first weak portion 432 and its two first free ends 432a and 432b can enclose a region.
  • the pressure relief portion 4311 is an area on the body 431 that is jointly defined by the first weak portion 432 and its two first free ends 432a and 432b.
  • the pressure relief portion 4311 will preferentially crack from the first weak portion 432 and partially separate from the body 431 . Then, the pressure relief portion 4311 will flip toward the side where the second weak portion 433 is located under the impact of the internal discharge of the battery cell, so that the pressure relief portion 4311 opens outward.
  • the body 431 will form a pressure relief port at a position corresponding to the pressure relief part 4311.
  • the emissions (gas, electrolyte, etc.) inside the battery cell can be discharged through the pressure relief port to release the battery. pressure inside the monomer.
  • the casing in FIGS. 4 and 5 is cylindrical. It is not limited to the casing used for battery cells being only cylindrical. For example, it can also be rectangular, hexagonal prism, etc.
  • the first weak portion used to rupture when the internal pressure or temperature of the battery cell exceeds the threshold can limit the valve opening direction of the pressure relief mechanism 430 so that countermeasures can be taken in advance, thereby improving battery safety.
  • the second weak portion 433 can cause the pressure relief portion 4311 to flip faster, thereby promoting rapid and effective pressure relief of the battery cells.
  • the projections of the first weak portion 432 and the second weak portion 433 on the plane perpendicular to the first direction do not intersect, which can avoid stress concentration in the intersection area of each weak portion, thereby reducing the pressure of the pressure relief mechanism 430 inside the battery cell.
  • a first pressure relief groove 4322 and a second pressure relief groove 4332 are formed on the body 431, and the first weak portion 432 is the bottom of the first pressure relief groove 4322.
  • the second weak portion 433 is the bottom wall of the second pressure relief groove 4332 .
  • the first pressure relief groove 4322 is formed by a surface of the housing 40 (for example, the end cover 420 or the housing 410) being recessed along the thickness direction, that is, the first direction z.
  • the first pressure relief groove 4322 reduces the thickness of the wall of the housing 40 , thereby forming a first weak portion 432 .
  • the first pressure relief groove 4322 may be a score provided on the surface of the body 431, may also be formed by processing on the body 431, or may be integrally formed with the housing 40 (for example, the end cap 420 or the housing 410).
  • the processing methods for forming the first pressure relief groove 4322 may include engraving, stamping, milling, etc., and the present application is not limited thereto.
  • the second pressure relief groove 4332 is formed by a surface of the housing 40 (eg, the end cover 420 or the housing 410) being recessed along the thickness direction, that is, the first direction z.
  • the second pressure relief groove 4332 reduces the thickness of the wall of the housing 40 , thereby forming a second weak portion 433 .
  • the second pressure relief groove 4332 may be a score provided on the surface of the body 431, may also be formed by processing on the body 431, or may be integrally formed with the housing 40 (for example, the end cap 420 or the housing 410).
  • the processing methods for forming the second pressure relief groove 4332 may include engraving, stamping, milling, etc., and the present application is not limited thereto.
  • the first pressure relief groove 4322 and the second pressure relief groove 4332 may be formed on the same surface of the housing 40 (eg, the end cover 420 or the housing 410), or on surfaces of the housing 40 that are opposite to each other.
  • the weak part is set as the bottom of the pressure relief groove to form a weak position of the pressure relief mechanism 430, which can facilitate the manufacturing and processing of the weak part.
  • the first pressure relief groove 4322 is located on the first surface of the body 431
  • the second pressure relief groove 4332 is located on the second surface of the body 431 opposite to the first surface.
  • the first pressure relief groove 4322 and the second pressure relief groove 4332 are respectively located on two opposite surfaces of the body 431 .
  • the first pressure relief groove 4322 may be located on a surface of the end cover 420 facing away from the interior of the battery cell
  • the second pressure relief groove 4332 may be located on a surface of the end cover 420 facing toward the end cover 420 .
  • the surface inside a battery cell may also be located on a surface of the end cover 420 facing the interior of the battery cell
  • the second pressure relief groove 4332 may be located on a surface of the end cover 420 facing away from the interior of the battery cell.
  • the first pressure relief groove 4322 can be located on a surface of a certain wall of the casing 410 away from the interior of the battery cell, and the second pressure relief groove 4332 can be located on The surface of the same wall of the housing 410 facing the inside of the battery cell.
  • the first pressure relief groove 4322 may also be located on a surface of a certain wall of the housing 410 facing the interior of the battery cell, and the second pressure relief groove 4332 may be located on a surface of the same wall of the housing 410 facing away from the interior of the battery cell. surface.
  • the second pressure relief groove 4332 is located on the inner surface of the body 431, which is more conducive to promoting the rapid turnover of the pressure relief portion toward the outside of the housing.
  • the above embodiment can avoid the extrusion phenomenon when manufacturing the two pressure relief grooves, thereby avoiding the flatness of the body surface caused by extrusion. Impact.
  • forming the two pressure relief grooves on different surfaces of the body can further reduce the structural strength of the body, thereby promoting the opening and flipping of the pressure relief portion.
  • the first surface is the outer surface of the body 431
  • the second surface is the inner surface of the body 431 .
  • the outer surface of the body 431 is also the surface of the body 431 facing away from the inside of the battery cell.
  • the inner surface of the body 431 is also the surface of the body 431 facing the inside of the battery cell. That is, the first pressure relief groove 4322 may be located on a surface of the housing 40 (eg, the housing 410 or the end cover 420) facing away from the interior of the battery cell, and the second pressure relief groove 4332 may be located on a surface of the housing 40 facing the battery cell. internal surface.
  • Mechanism 430 opens the valve accurately and efficiently as required.
  • arranging the second pressure relief groove 4332 on the inner surface of the body 431 is more conducive to promoting the pressure relief portion 4311 to turn toward the outside of the housing.
  • the depth of the first pressure relief groove 4322 is greater than the depth of the second pressure relief groove 4332, and the thickness of the first weak portion 432 is less than the thickness of the second weak portion 431.
  • the depth of the first pressure relief groove 4322 is greater than the depth of the second pressure relief groove 4332, which can make the thickness of the body 431 thinner at the first pressure relief groove 4322.
  • the thickness of the first weak portion 432 formed on the bottom wall of the first pressure relief groove 4322 can be made smaller than the thickness of the second weak portion formed on the bottom wall of the second pressure relief groove 4332 433 thickness.
  • the above embodiment can make the structural strength of the body 431 at the first weak portion 432 lower than the second weak portion 433, so that the pressure relief portion 4311 cracks preferentially at the first weak portion when the internal pressure or temperature of the battery cell reaches a threshold. And turn it toward the side where the second weak part 433 is located, thereby ensuring that the valve opening direction of the pressure relief mechanism is accurate and ensuring the safety of the battery.
  • the first pressure relief groove 4322 includes a plurality of first groove portions 4322a.
  • the plurality of first groove portions 4322a are sequentially arranged along the depth direction of the first pressure relief groove 4322. In the depth direction of the first pressure relief groove 4322, the widths of the plurality of first groove portions 4322a gradually decrease.
  • Each first groove portion 4322a in the first pressure relief groove 4322 extends in the same direction.
  • the depth of each first groove portion 4322a may be equal or unequal. For example, along the depth direction of the first pressure relief groove 4322 (ie, the first direction z), the depth of each first groove portion 4322a gradually decreases.
  • the number of first groove portions 4322a in the first pressure relief groove 4322 may be two, three, four or more.
  • the width of the first first groove portion 4322a may be greater than the width of the second first groove portion 4322a
  • the width of the second first groove portion 4322a may be greater than the width of the third first groove portion 4322a.
  • the above-mentioned first pressure relief groove 4322 adopts a multi-stage groove structure, which can reduce the molding force experienced by the body 431 when each stage of groove is formed, reduce the risk of cracks in the body 431 during the process of forming the first pressure relief groove 4322, and improve the pressure relief. long-term reliability of the pressing mechanism 430.
  • the second pressure relief groove 4332 includes a plurality of second groove portions 4332a.
  • the plurality of second groove portions 4332a are sequentially arranged along the depth direction of the second pressure relief groove 4332. In the depth direction of the second pressure relief groove 4332, the widths of the plurality of second groove portions 4332a gradually decrease.
  • Each second groove portion 4332a in the second pressure relief groove 4332 extends in the same direction.
  • the depth of each second groove portion 4332a may be equal or unequal. For example, along the depth direction of the second pressure relief groove 4332 (ie, the first direction z), the depth of each second groove portion 4332a gradually decreases.
  • the number of second groove portions 4332a in the second pressure relief groove 4332 may be two, three, four or more.
  • the second pressure relief groove 4332 is formed in the same manner as the first pressure relief groove, and will not be described again here.
  • the above-mentioned second pressure relief groove 4332 adopts a multi-stage groove structure, which can reduce the molding force experienced by the body 431 when each stage of groove is formed, reduce the risk of cracks in the body 431 during the process of forming the second pressure relief groove 4332, and improve the pressure relief. long-term reliability of the pressing mechanism 430.
  • the line connecting the two first free ends 432a and 432b has a third projection 4323 on the plane, and the extension direction of the second projection 4331 is consistent with the extension direction of the third projection 4323. consistent.
  • the above-mentioned plane is a plane perpendicular to the first direction z. It can be the surface of the body 431 facing the inside of the battery cell, such as the plane P shown in FIG. 8 , or it can be the surface of the body 431 facing away from the battery cell. The surface inside the body, or it can be any plane perpendicular to the first direction z.
  • the extension direction of the second projection 4331 and the extension direction of the third projection 4323 may be consistent including the second projection 4331 and the third projection 4323 being parallel (that is, there is a gap in the vertical direction of the extension direction) and the second projection 4331 and the third projection 4323 on a straight line (including whether they completely overlap, partially overlap, or do not overlap).
  • the second projection 4331 and the third projection 4323 are parallel may include that the mid-perpendicular lines of the second projection 4331 and the third projection 4323 coincide, the mid-perpendicular lines of the second projection 4331 and the third projection 4323 do not coincide, and the second projection 4331 Parallel when the third projection 4323 is at least partially opposite, or the mid-perpendiculars of the second projection 4331 and the third projection 4323 do not coincide with each other, and the second projection 4331 and the third projection 4323 are not opposite at all (that is, they are completely deviated from each other), etc.
  • the application is not limited to the above examples.
  • “the extension directions are consistent” mentioned herein may mean that the extension directions of the two projections are 0° or 180°, or that the extension directions of the two projections are approximately 0° or 180°.
  • the turning direction of the pressure relief portion 4311 can be made more accurate, thereby Promote effective pressure relief of battery cells.
  • the second projection 4331 at least partially overlaps the third projection 4323 in a direction perpendicular to the extending direction of the second projection 4331 .
  • the second projection 4331 and the third projection 4323 are parallel, the second projection 4331 and the third projection 4323 are at least partially opposite, or when the second projection 4331 and the third projection 4323 are on a straight line, The second projection 4331 and the third projection 4323 at least partially overlap.
  • the second projection 4331 and the third projection 4323 are parallel, the second projection 4331 and the third projection 4323 are at least partially opposite to each other.
  • the perpendicular lines of the third projection 4323 do not coincide with each other and the second projection 4331 and the third projection 4323 are at least partially opposite.
  • the at least partial overlap of the second projection 4331 and the third projection 4323 may include the second projection 4331 and the third projection 4323 completely coinciding (including the shorter projection completely overlapping). Located within a longer projection or the same two projections completely overlap), or the second projection 4331 and the third projection 4323 partially overlap.
  • the above embodiment can further cause the pressure relief portion 4311 to flip toward the side where the second weak portion is located faster, thereby promoting rapid and effective pressure relief of the battery cells.
  • the second projection 4331 is located on a side of the third projection 4323 close to the first projection 4321 and is spaced apart from the third projection 4323 .
  • the second projection 4331 is located in the pressure relief portion 4311 defined by the line connecting the first weak portion 432 and its two first free ends 432a and 432b, and is close to the third projection 4323.
  • the above embodiments can allow the flipping force to be transmitted to the vicinity of the second weak portion faster, thereby making the pressure relief portion flip faster to achieve rapid and effective pressure relief of the battery cells.
  • the second projection 4331 is located on the side of the third projection 4323 away from the first projection 4321 and is spaced apart from the third projection 4323 .
  • the second projection 4331 is located outside the pressure relief portion 4311 defined by the line connecting the first weak portion 432 and its two first free ends 432a and 432b, and is close to the third projection 4323.
  • the above embodiments can make the valve opening area of the pressure relief part larger, thereby promoting rapid and effective pressure relief of the battery cells.
  • the mid-perpendicular line of the third projection 4323 coincides with the mid-perpendicular line of the second projection 4331 .
  • the above embodiment can achieve symmetry of the second weak portion 433 with respect to the mid-perpendicular line of the two first free ends 432a, 432b of the first weak portion 432, thereby allowing the pressure relief portion 4311 to better face the location of the second weak portion.
  • One side is flipped, so that the flipping direction of the pressure relief part and the valve opening direction are more accurate and safer.
  • the first projection 4321 is symmetrical with respect to the mid-perpendicular of the third projection 4323 .
  • the first weak portion 432 is symmetrical with respect to the mid-perpendicular line connecting its two first free ends 432a and 432b.
  • the above embodiment can realize that the structural strength of the first weak portion 432 on both sides of the vertical line is consistent and the stress bearing capacity is consistent, ensuring that both sides of the first weak portion 432 open synchronously when the internal pressure of the battery cell reaches the threshold, thereby making The valve opening direction of the pressure relief mechanism 430 is more accurate and safer.
  • the second projection 4331 has two second free ends 4331a, 4331b, and the minimum gap M1 between one of the second free ends 4331a and the first projection 4321 is not greater than One-third of the length L of the third projection 4323, and/or the minimum gap M2 between the other second free end 4331b and the first projection 4321 is not greater than one-third of the length L of the third projection 4323.
  • the minimum gap M1 between the second free end 4331a and the first projection 4321 is the vertical distance from the second free end 4331a to the first projection 4321.
  • the minimum gap M2 between the second free end 4331b and the first projection is the vertical distance from the second free end 4331b to the first projection 4321.
  • the above embodiment can ensure that the pressure relief part quickly and accurately moves toward the second weak part 433 after splitting along the first weak part 432 Flip on one side.
  • the minimum gap M1 between one second free end 4331a and the first projection 4321 is less than 10 mm, and/or the other second free end 4331b and the first projection 4321 The minimum gap M2 between them is less than 10mm.
  • the distance between the second weak part 433 and the first weak part 432 in the vertical direction and the first direction z cannot be too large.
  • An excessive distance between the two may make the second weak part 433 unable to increase the pressure relief part 4311 The effect of flip speed.
  • the above-mentioned embodiment can promote the pressure relief portion 4311 to quickly and accurately flip toward the side where the second weak portion 433 is located, thereby promoting the pressure relief mechanism 430 to quickly and effectively relieve pressure.
  • the first projection 4321 is an arc shape, a polyline shape, or a combination of arc lines and polyline shapes.
  • the first weak portion 432 extends along an arc shape, a polygonal line shape, or a combination of an arc line and a polygonal line.
  • the shape of the pressure relief portion 4311 can be set to increase the valve opening area of the pressure relief mechanism 430, quickly relieve pressure, and further improve safety.
  • the valve opening area defined by the arc shape is larger than the valve opening area defined by the zigzag shape, so safety can be further improved.
  • the connection line between the two first free ends of the arc-shaped first weak portion 432 is shorter, thereby having less impact on the structural strength of the housing 40 .
  • the second projection 4331 (ie, the second weak portion 433) may be linear, that is, extend along a linear trajectory, thereby facilitating the flipping of the pressure relief portion 4311.
  • the housing 40 includes a housing 410 with an opening and an end cover 420 covering the opening.
  • An accommodation cavity for accommodating battery cells is formed between the housing 410 and the end cover 420, and the housing 410
  • a pressure relief mechanism 430 is provided on at least one of the side walls, and/or a pressure relief mechanism 430 is provided on the end cover 420 .
  • the characteristics of the battery cell in the above embodiment are basically the same as the battery cell 20 described in FIGS. 2 and 3 , and will not be described in detail here.
  • the features of the end cover 420 and the housing 410 are basically the same as the features of the end cover 21 and the housing 22 described in FIG. 3 above, and will not be described in detail here.
  • the pressure relief mechanism 430 can be provided on the housing 410 or on the end cover 420. It can be understood that when the pressure relief mechanism 430 is provided on the housing 410, the pressure relief mechanism 430 may be provided on only one wall, or the pressure relief mechanism 430 may be provided on multiple walls.
  • the housing 40 may include a plurality of pressure relief mechanisms 430 , and the plurality of pressure relief mechanisms 430 may be entirely provided on the housing 410 , or entirely provided on the end cover 420 , or partially provided on the housing 410 and partially provided on the end cover 420 .
  • the end cap 420 On the end cap 420.
  • the pressure relief mechanism 430 can be integrated into the housing 410 or the end cover 420 that can accommodate the battery cells, so that the pressure relief mechanism integrates the accommodation function and the pressure relief function into one.
  • a groove 440 is formed on the housing 40 , and the body 431 of the pressure relief mechanism 430 is the bottom of the groove 440 .
  • Groove 440 may be provided on end cap 420, as shown in Figure 15. Additionally or alternatively, groove 440 may also be provided on housing 410 . In the case where the groove 440 is provided on the end cap 420 , the groove 440 is formed by a surface of the end cap 420 being recessed along the thickness direction. The groove 440 may be provided on the inner surface or the outer surface of the end cap 420. In the case where the groove 440 is provided in the housing 410 , the groove 440 is formed by being recessed along the thickness direction of the outer surface or the inner surface of the housing 410 . The groove 440 can be formed on the housing 40 by cutting, stamping, etc., or it can be integrally cast with the housing 40 .
  • the thickness of the body 431 can be made smaller than the wall thickness of other parts of the housing 40, thus facilitating the pressure relief mechanism. 430 valve opening.
  • the groove 440 is recessed from the surface of the housing 40, so that the pressure relief mechanism 430 formed on the bottom wall of the groove 440 can be away from the surface of the housing 40, so that the pressure relief mechanism 430 is not likely to contact other objects and cause damage. .
  • the side walls of the groove 440 include opposite first side walls 441 and second side walls 442 , and the extension direction of the projection of the first side wall 441 on the plane is consistent with that of the first side wall 441 and the second side wall 442 .
  • the extension direction of a projection 4321 is consistent, and the extension direction of the projection of the second side wall 442 on the plane is consistent with the extension direction of the second projection 4331 .
  • the plane can be the surface of the body 431 facing the inside of the battery cell, such as the plane P shown in FIG. 8 , or it can be the surface of the body 431 facing away from the inside of the battery cell, or it can be anything perpendicular to the first direction z. flat.
  • the extension direction of the projection of the first side wall 441 on the plane and the extension direction of the first projection 4321 may be completely consistent, that is, completely parallel, or parallel with a certain deviation.
  • the extension direction of the projection of the second side wall 442 on the plane and the extension direction of the second projection 4331 may be completely consistent, that is, completely parallel, or parallel with a certain deviation.
  • the above embodiments allow the weak portion to be processed based on the corresponding side wall of the groove 440, thereby facilitating the processing of the weak portion.
  • the thickness of the body 431 is smaller than the thickness of the portion of the housing 40 except for the pressure relief mechanism 430 .
  • the thickness of the part of the housing 40 where the body 431 is located is smaller than the wall thickness of other parts of the housing 40 .
  • the above-mentioned embodiment can promote the smooth opening and turning of the pressure relief portion 4311 and prevent other parts of the casing from cracking in advance when the internal pressure or temperature of the battery cell exceeds the threshold.
  • the end cap 420 may further include two through holes 421, 422 for installing electrode terminals.
  • the second weak portion 433 can be parallel to the line connecting the two through holes 421, 422, and the first weak portion 432 can be parallel to the line connecting the two through holes 421, 422.
  • the vertical lines of the connecting lines intersect. This is because when the internal pressure of the battery cell increases, the end cover 420 expands and deforms.
  • the vertical line connecting the two through holes 421 and 422 is the stress deformation center line of the end cover 420. On the stress deformation center line, the end cover 420 expands and deforms. The stress is relatively concentrated.
  • first weak part 432 of the pressure relief mechanism 430 By arranging the first weak part 432 of the pressure relief mechanism 430 to intersect with the mid-perpendicular line connecting the two through holes 421 and 422, when the internal pressure of the battery cell reaches the threshold value, a certain pressure inside the first weak part can be The first position is preferentially cracked and continues to crack on both sides, further increasing the valve opening area, thereby achieving effective pressure relief.
  • the thickness of the first weak portion 432 is on one side or both sides of the perpendicular line connecting the two through holes 421 and 422 away from the center of the connecting line of the two through holes 421 and 422 .
  • the direction of the vertical line gradually increases.
  • the first weak portion 432 is symmetrical about a mid-perpendicular line connecting the two through holes 421 and 422 . This can make the force on both sides of the center vertical line of the first weak part 432 consistent, ensuring that the pressure relief mechanism 430 splits from the middle to both sides along the first weak part 432, thereby further controlling the valve opening direction of the pressure relief mechanism 430. Improve security. Additionally, the second weak portion 433 may also be symmetrical about a mid-perpendicular line connecting the two through holes 421 and 422 .
  • the present application provides a housing 40 for a battery cell, including a housing 410 including an opening, and an end cap 420 covering the opening. and a pressure relief mechanism 430.
  • the pressure relief mechanism 430 includes a body 431 , a first weak portion 432 and a second weak portion 433 .
  • a groove 440 is formed on the end cap 420 , and the body 431 of the pressure relief mechanism 430 is the bottom of the groove 440 .
  • the first weak portion 432 is provided on the body 431 and has two first free ends 432a and 432b.
  • the connection line of the two first free ends 432a and 432b and the first weak portion 432 jointly define a pressure relief portion 4311.
  • the first weak portion 432 extends along an arc-shaped trajectory.
  • the second weak portion 433 is provided on the body 431 and extends along a linear trajectory.
  • the first weak portion 432 is provided on the outer surface of the body 431
  • the second weak portion 433 is provided on the inner surface of the body 431 .
  • the first projection 4321 of the second weak portion 433 on the plane perpendicular to the first direction z and the second projection 4331 of the second weak portion 433 on the plane do not intersect.
  • the first direction z is the thickness direction of the pressure relief portion 4311 .
  • the pressure relief portion 4311 is configured to open with the first weak portion 432 as a boundary and flip toward the side where the second weak portion 433 is located when the pressure or temperature inside the battery cell reaches a threshold value.
  • the above embodiments can improve the anti-destruction capability of the pressure relief mechanism, promote the effective pressure relief of the battery cells, and increase the service life of the battery cells, thereby improving the safety of the battery.
  • a battery cell which includes the housing 40 in the above embodiment.
  • the above embodiments can improve the anti-destruction capability of the pressure relief mechanism, promote the effective pressure relief of the battery cells, and increase the service life of the battery cells, thereby improving the safety of the battery.
  • a battery which includes the battery cells in the above embodiments.
  • the above embodiments can improve the anti-destruction capability of the pressure relief mechanism, promote the effective pressure relief of the battery cells, and increase the service life of the battery cells, thereby improving the safety of the battery.
  • an electrical device which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • the above embodiments can improve the anti-destruction capability of the pressure relief mechanism, promote the effective pressure relief of the battery cells, and increase the service life of the battery cells, thereby improving the safety of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供一种用于电池单体的外壳、电池单体、电池及用电装置。外壳包括泄压机构。其中,泄压机构包括:本体;第一薄弱部,设置于本体,第一薄弱部具有两个第一自由端,两个第一自由端的连线与第一薄弱部不完全重叠并且共同界定出泄压部;以及第二薄弱部,设置于本体,第一薄弱部在与第一方向垂直的平面上的第一投影和第二薄弱部在平面上的第二投影不相交,第一方向为泄压部的厚度方向,其中,泄压部被配置为在电池单体内部的压力或温度达到阈值时,以第一薄弱部为边界打开并朝向第二薄弱部所在的一侧翻转。本申请实施例方案可以提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命,从而提高电池的安全性。

Description

用于电池单体的外壳、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,尤其涉及一种用于电池单体的外壳、电池单体、电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池在充放电以及使用过程中,若电池内部出现压力或温度异常升高容易出现安全问题,这不仅会影响电池的使用寿命,甚至会影响到使用者的人身安全。因此,如何提高电池的安全性是重要的研发方向。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种用于电池单体的外壳、电池单体、电池及用电装置,以提高电池的安全性。
本申请第一方面的实施例提供一种用于电池单体的外壳,包括泄压机构。其中,泄压机构包括:本体;第一薄弱部,设置于本体,第一薄弱部具有两个第一自由端,两个第一自由端的连线与第一薄弱部不完全重叠并且共同界定出泄压部;以及第二薄弱部,设置于本体,第一薄弱部在与第一方向垂直的平面上的第一投影和第二薄弱部在平面上的第二投影不相交,第一方向为泄压部的厚度方向,其中,泄压部被配置为在电池单体内部的压力或温度达到阈值时,以第一薄弱部为边界打开并朝向第二薄弱部所在的一侧翻转。
本申请实施例的技术方案中,在泄压机构中设置两个薄弱部,使得在电池单体内部的压力或温度达到阈值时,泄压部沿其中一个薄弱部打开并朝向另一个薄弱部所在的一侧翻转。上述泄压机构沿其中一个薄弱部(即第一薄弱部)裂开的方向限定了泄压机构的开阀方向,以便提前做好应对措施,从而提高电池安全性。上述另一薄弱部(即,第二薄弱部)的设置能够促进泄压部更快地朝向该薄弱部所在的一侧翻转。换言之,相比于 没有设置第二薄弱部的技术方案,第二薄弱部可以使得泄压部在相同的时间内翻转更大的角度(翻转更快),从而促进电池单体的快速且有效泄压。
此外,上述技术方案中,第一薄弱部与第二薄弱部在与第一方向垂直的平面上的投影不相交,可以避免各薄弱部在相交区域产生应力集中,以降低泄压机构在电池单体内部的压力未达到起爆压力就开始泄压的风险并且避免泄压机构在相交区域裂开而导致开阀方向不准确,从而提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命。
因此,本申请提供的外壳可以提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命,从而提高电池的安全性。
在一些实施例中,本体上形成有第一泄压槽和第二泄压槽,第一薄弱部为第一泄压槽的底壁,第二薄弱部为第二泄压槽的底壁。上述将薄弱部设置为泄压槽的底部以形成泄压机构强度较弱的位置,这样可以便于薄弱部的制造加工。
在一些实施例中,第一泄压槽位于本体的第一表面,第二泄压槽位于本体的与第一表面相对的第二表面。通过将限定薄弱部的两个泄压槽形成在本体的不同表面上,可以避免在制造两个泄压槽时发生挤料现象,从而避免由于挤料造成的本体表面的平面度的影响。此外,相对于两个泄压槽设置在同一表面的方案,将两个泄压槽形成在本体的不同表面上可以进一步降低本体的结构强度,从而促进泄压部的打开和翻转。
在一些实施例中,第一表面为本体的外表面,第二表面为本体的内表面。上述通过将用于打开的第一薄弱部设置在本体的外表面上,可以便于第一薄弱部的制造加工,提高第一薄弱部的制造质量,从而促进泄压机构按要求准确且有效地开阀。此外,将第二泄压槽设置在本体的内表面上更有利于促进泄压部朝向外壳的外部翻转。
在一些实施例中,第一泄压槽的深度大于第二泄压槽的深度,且第一薄弱部的厚度小于第二薄弱部的厚度。上述实施例方案可以确保泄压部在电池单体内部压力或温度达到阈值时在第一薄弱部处打开并朝向第二薄弱部所在的一侧翻转,从而确保泄压机构的开阀方向,保证电池的安全性。
在一些实施例中,第一泄压槽包括多个第一槽部,多个第一槽部沿第一泄压槽的深度方向依次设置,沿第一泄压槽的深度方向,多个第一槽部的宽度逐渐减小。第一泄压槽采用多级槽结构,可以降低在每级槽成型时本体所受到的成型力,降低本体在成型第一泄压槽的过程中产生裂纹的风险,提高泄压机构的长期可靠性。
在一些实施例中,第二泄压槽包括多个第二槽部,多个第二槽部沿第二泄压槽的深度方向依次设置,沿第二泄压槽的深度方向,多个第二槽部的宽度逐渐减小。第二泄压槽采用多级槽结构,可以降低在成型每级槽时泄压本体所受到的成型力,降低泄压本体在成型第二泄压槽的过程中产生裂纹的风险,提高泄压机构的长期可靠性。
在一些实施例中,两个第一自由端的连线在平面上具有第三投影,第二投影的延伸方向与第三投影的延伸方向一致。通过将第一薄弱部的两个自由端的连线的延伸方向设置为与第二薄弱部的延伸方向一致,从而可以使得泄压部翻转方向更准确,以促进电池单体的快速且有效泄压。
在一些实施例中,在与第二投影的延伸方向垂直的方向上,第二投影与第三投影至少部分重叠。上述实施例方案可以进一步使得泄压部朝向第二薄弱部所在的一侧翻转更快,从而促进电池单体的快速且有效泄压。
在一些实施例中,第二投影位于第三投影靠近第一投影的一侧,并与第三投影间隔设置。上述通过将第二薄弱部设置在由第一薄弱部界定的泄压部内,可以使得翻转力更快地传递到第二薄弱部附近,从而使得泄压部的翻转速度更快,以实现电池单体的快速且有效泄压。
在一些实施例中,第二投影位于第三投影背离第一投影的一侧,并与第三投影间隔设置。上述通过将第二薄弱部设置在由第一薄弱部界面的泄压部的外侧,可以使得泄压部的开阀面积更大,从而促进电池单体的快速且有效泄压。
在一些实施例中,第三投影的中垂线与第二投影的中垂线重合。上述实施例方案可以实现第二薄弱部相对于第一薄弱部两端连线的中垂线对称,可以使得泄压部更好地朝向第二薄弱部所在的一侧翻转,以确保泄压部的翻转方向和开阀方向更准确,安全性更高。
在一些实施例中,第一投影相对于第三投影的中垂线对称。上述实施例方案可以实现第一薄弱部在其自身中垂线两侧的结构强度一致,应力承受能力一致,保证第一薄弱部在电池单体的内压达到阈值时两侧同步开启,从而使得泄压机构的开阀方向更准确,安全性更高。
在一些实施例中,第二投影具有两个第二自由端,并且其中一个第二自由端与第一投影之间的最小间隙不大于第三投影的长度的三分之一,和/或另一个第二自由端与第一投影之间的最小间隙不大于第三投影的长度的三分之一。上述实施例方案通过将第一薄 弱部与第二薄弱部的间隙设置在合理范围内,可以确保泄压部沿第一薄弱部裂开后快速且准确地朝向第二薄弱部所在的一侧翻转。
在一些实施例中,其中一个第二自由端与第一投影之间的最小间隙小于10mm,和/或另一个第二自由端与第一投影之间的最小间隙小于10mm。上述实施例方案能够促进泄压部快速且准确地朝向第二薄弱部所在的一侧翻转,以促进泄压机构快速且有效地泄压。
在一些实施例中,第一投影为弧形、折线形或者弧线和折线的结合。通过将第一薄弱部设置为弧形、折线或弧线和折线的结合,从而根据需要限定泄压部的形状,以增大泄压机构的开阀面积,快速泄压,进一步提高安全性。
在一些实施例中,外壳包括具有开口的壳体和盖合开口的端盖,壳体和端盖之间形成有用于容纳电池单体的容纳腔,并且壳体的至少一个侧壁上设置有泄压机构,和/或端盖上设置有泄压机构。这样可以使得泄压机构集成在能够容纳电池单体的壳体或端盖上,从而使得泄压机构集容纳功能和泄压功能为一体。
在一些实施例中,外壳上形成有凹槽,泄压机构的本体为凹槽的槽底。在上述技术方案中,可以使得凹槽的底壁的厚度比外壳的其他部分的壁厚更小。此时将厚度较薄的凹槽的底壁作为泄压机构的本体,可以有助于泄压机构开阀。并且凹槽从外壳的表面凹陷成型,这样泄压机构可以远离外壳的表面,使得泄压机构不容易接触其他物体而导致损坏。
在一些实施例中,凹槽的侧壁包括相对的第一侧壁和第二侧壁,第一侧壁在平面上的投影的延伸方向与第一投影的延伸方向一致,并且第二侧壁在平面上的投影的延伸方向与第二投影的延伸方向一致。上述实施例方案可以使得薄弱部以凹槽的相应的侧壁为基准进行加工,从而方便薄弱部加工。
在一些实施例中,本体的厚度小于外壳的除泄压机构外的部分的厚度。上述实施例方案可以促进泄压部的打开与翻转,并且避免在电池单体内压或温度超过阈值时外壳的其他部分预先裂开。
本申请第二方面的实施例提供一种电池单体,其包括上述实施例中的外壳。
本申请第三方面的实施例提供一种电池,其包括上述实施例中的电池单体。
本申请第四方面的实施例提供一种用电装置,其包括上述实施例中的电池,电池用于提供电能。
上述电池单体、电池以及用电装置的技术效果与上述实施例中的外壳的技术效果相同,在此不再赘述。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1为本申请一些实施例的车辆的结构示意图。
图2为本申请一些实施例的电池的分解结构示意图。
图3为本申请一些实施例的电池单体的分解结构示意图。
图4为本申请另一些实施例的电池单体的示意图。
图5为图4的电池单体的端盖部分的局部放大图。
图6为图4的电池单体的端盖的一个示意图。
图7为图4中电池单体的端盖的另一示意图。
图8为图4中电池单体的端盖的另一示意图。
图9为图8的端盖的截面图。
图10为图9的端盖的泄压机构部分的局部放大图。
图11为根据本申请一些实施例的第一薄弱部的示意图。
图12为根据本申请一些实施例的第二薄弱部的示意图。
图13为包括根据本申请另一些实施例的泄压机构的端盖的示意图。
图14为包括根据本申请另一些实施例的泄压机构的端盖的示意图。
图15为包括根据本申请另一些实施例的泄压机构的端盖的示意图。
附图标记说明:
车辆1000;
电池100,控制器200,马达300;
箱体10,第一部分11,第二部分12;
电池单体20,端盖21,电极端子21a,壳体22,电芯组件23,极耳23a;
外壳40,壳体410,端盖420,泄压机构430,本体431,第一薄弱部432,第一自由端432a、432b,泄压部4311,第二薄弱部433,第一方向z,平面P,第一投影4321,第二投影4331,第三投影4323,第一泄压槽4322,第二泄压槽4332,第一槽部4322a,第二槽部4332a,第二自由端4331a、4331b,通孔421、422,第一侧壁441,第二侧壁442。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度。为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离膜上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。阈值可以取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体的排放 物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的贯通口或通道。
发明人注意到,对于一般的泄压机构而言,整个防爆阀容易被完全冲开并形成脱离顶盖板的多个碎片,这些碎片容易对其他零部件造成损坏,影响动力电池安全性。此外,电池单体在使用一段时间后,容易出现泄压机构在电池单体的内部压力未达到起爆压力就开始泄压或者在不期望的地方裂开,从而导致电池单体不正常开阀,甚至导致电池单体整个失效,影响电池单体的使用寿命和安全性。
鉴于此,本申请实施例提供一种用于电池单体的外壳,包括泄压机构。泄压机构包括本体、第一薄弱部以及第二薄弱部。第一薄弱部设置于本体并具有两个第一自由端,两个第一自由端的连线与第一薄弱部不完全重叠并且共同界定出泄压部。第二薄弱部设置于本体且在与第一方向垂直的平面上的第一投影和第二薄弱部在平面上的第二投影不相交,第一方向为泄压部的厚度方向。泄压部被配置为在电池单体内部的压力或温度达到阈值时,以第一薄弱部为边界打开并朝向第二薄弱部所在的一侧翻转。
通过在泄压机构中设置第一薄弱部和第二薄弱部,使得在电池单体内部的压力或温度达到阈值时,泄压部沿第一薄弱部打开并朝向第二薄弱部所在的一侧翻转。第一薄弱部的延伸方向限定了泄压机构的开阀方向,以便提前做好应对措施,从而提高电池安全性。第二薄弱部的设置可以使得泄压部翻转的速度更快,从而促进泄压部在裂开后翻转以快速泄压,避免其被完全冲开形成多个碎片。
此外,上述技术方案中,第一薄弱部与第二薄弱部在与第一方向垂直的平面上的投影不相交,可以避免各薄弱部在相交区域产生应力集中,以降低泄压机构在电池单体内部的压力未达到起爆压力就开始泄压的风险并且避免泄压机构在相交区域裂开而导致的开阀方向错误的风险,从而提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命。
本申请实施例公开的外壳可以但不限于用于电池单体。电池单体可以包括锂离子、二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧 开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、电芯组件23以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子21a等的功能性部件。电极端子21a可以用于与电芯组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力或温度的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时, 再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电芯组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电芯组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电芯组件23。电芯组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳23a。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳23a连接电极端子以形成电流回路。
根据本申请的一些实施例,如图4至图8所示,本申请提供了一种用于电池单体的外壳40,包括泄压机构430。泄压机构430包括本体431、第一薄弱部432以及第二薄弱部433。第一薄弱部432设置于本体431并具有两个第一自由端432a、432b,两个第一自由端432a、432b的连线与第一薄弱部432不完全重叠并且共同界定出泄压部4311。第二薄弱部433设置于本体431,并且第二薄弱部433在与第一方向z垂直的平面上的第一投影4321和第二薄弱部433在该平面上的第二投影4331不相交,第一方向z为泄压部4311的厚度方向。泄压部4311被配置为在电池单体内部的压力或温度达到阈值时,以第一薄弱部432为边界打开并朝向第二薄弱部433所在的一侧翻转。
上述实施方案中的电池单体与以上图2和图3中所描述的电池单体20的特征基本相同,在此不再详述。外壳40可包括端盖420和壳体410。这里,端盖420与壳体410的特征与以上图3中所描述的端盖21和壳体22的特征基本相同,在此不再详述。泄压机构430的本体431可以是安装于壳体410或端盖420上的独立部件,例如,本体431可以是安装于端盖420或壳体410上的板状结构,具体地为防爆片。又例如,本体431可以与端盖420或壳体410一体成型,即端盖420或壳体410本身的一部分作为本体431。
第一薄弱部432和第二薄弱部433可以是本体431上的厚度较小的部分,也可以是本体431上的材料强度较低的部分,本申请不限于上述示例。第一薄弱部432用于限定泄压机构430的优先破坏位置,在电池单体的内部压力或温度达到阈值时,泄压机构430将会优先从第一薄弱部432处裂开。在电池单体的内部压力或温度达到阈值时,泄压机构430从第一薄弱部432处裂开后朝向第二薄弱部433所在的一侧翻转。
如图7所示,第一方向z为泄压部3411的厚度方向。此时,第一方向z也为端盖420的厚度方向。替代地,在泄压机构430设置在壳体410上时,第一方向z也是壳体410相应的壁的厚度方向。此外,第一薄弱部432和第二薄弱部433的厚度方向均沿着第一方向z,即泄压部3411的厚度方向。
与第一方向z垂直的平面可以是本体431的朝向电池单体内部的表面,如图8中所示的平面P,也可以是本体431的背离电池单体内部的表面,或者可以是与第一方向z垂直的任一平面。第一薄弱部432在与第一方向z垂直的平面上的第一投影4321和第二薄弱部433在同一平面上第二投影4331不相交表示第一投影4321和第二投影4331未连接在一起,第二投影4331的靠近第一投影4321的一端与第一投影4321之间存在间隙,并且第一投影4321和第二投影4331不存在重叠的部分。第一薄弱部432和第二薄弱部433可形成在外壳40的同一表面上,也可以形成在外壳40的彼此相对的两个表面上。在第一薄弱部432和第二薄弱部433形成在同一表面上时,第一投影4321和第二投影4331不相交可以指第一薄弱部432和第二薄弱部433未连接在一起,第二薄弱部433的靠近第一薄弱部432的一端与第一薄弱部432之间存在间隙,并且第一薄弱部432和第二薄弱部433不存在重叠的部分。
第一薄弱部432的两个第一自由端432a、432b的连线与第一薄弱部432不完全重叠表示第一薄弱部432并非呈直线延伸,其在延伸过程中会出现弯折,也就是说第一薄弱部432和其两个第一自由端432a和432b的连线可以围合出一个区域。
泄压部4311为本体431上由第一薄弱部432与其两个第一自由端432a、432b共同界定出来的区域。在电池单体的内部压力或温度达到阈值时,泄压部4311将会优先从第一薄弱部432处裂开,从而与本体431部分地分离。然后,泄压部4311在电池单体的内部排出物等的冲击下会朝向第二薄弱部433所在的一侧翻转,以使得泄压部4311向外打开。泄压部4311打开后,本体431在与泄压部4311相对应的位置将形成泄压口,电池单体内部的排放物(气体、电解液等)可以通过该泄压口排出,以释放电池单体内部的压力。
需要说明的,图4和图5中的外壳为圆柱体形,并非限定用于电池单体的外壳仅能为圆柱体形,例如也可以为长方体形、六棱柱形等。
上述实施例方案中,用于在电池单体的内压或温度超过阈值时裂开的第一薄弱部可以限定泄压机构430开阀方向,以便提前做好应对措施,从而提高电池安全性。第二薄弱部433可以使得泄压部4311翻转得更快,从而促进电池单体的快速且有效地泄压。 此外,第一薄弱部432与第二薄弱部433在与第一方向垂直的平面上的投影不相交,可以避免各薄弱部在相交区域产生应力集中,以降低泄压机构430在电池单体内部的压力未达到起爆压力就开始泄压的风险并且避免泄压机构在相交区域裂开而导致开阀方向错误的情况,从而提高泄压机构430的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命。
根据本申请的一些实施例,如图9和图10所示,本体431上形成有第一泄压槽4322和第二泄压槽4332,第一薄弱部432为第一泄压槽4322的底壁,第二薄弱部433为第二泄压槽4332的底壁。
第一泄压槽4322由外壳40(例如,端盖420或壳体410)的表面沿厚度方向、即第一方向z凹陷形成。第一泄压槽4322减薄了外壳40的壁的厚度,由此形成了第一薄弱部432。第一泄压槽4322可以是在本体431的表面上设置的刻痕,也可以通过在本体431上加工形成,或者与外壳40(例如,端盖420或壳体410)一体成型。形成第一泄压槽4322的加工方式可包括雕刻成型、冲压成型、铣削加工成型等,本申请不限于此。
第二泄压槽4332由外壳40(例如,端盖420或壳体410)的表面沿厚度方向、即第一方向z凹陷形成。第二泄压槽4332减薄了外壳40的壁的厚度,由此形成了第二薄弱部433。第二泄压槽4332可以是在本体431的表面上设置的刻痕,也可以通过在本体431上加工形成,或者与外壳40(例如,端盖420或壳体410)一体成型。形成第二泄压槽4332的加工方式可包括雕刻成型、冲压成型、铣削加工成型等,本申请不限于此。
第一泄压槽4322和第二泄压槽4332可以形成在外壳40(例如,端盖420或壳体410)的同一表面上,或者外壳40的彼此相对的表面上。
上述将薄弱部设置为泄压槽的底部以形成泄压机构430强度较弱的位置,这样可以便于薄弱部的制造加工。
根据本申请的一些实施例,如图9和10所示,第一泄压槽4322位于本体431的第一表面,第二泄压槽4332位于本体431的与第一表面相对的第二表面。
也就是说,第一泄压槽4322与第二泄压槽4332分别位于本体431的彼此相对的两个表面上。例如,当泄压机构430设在的端盖420上时,第一泄压槽4322可位于端盖420的背离电池单体内部的表面,而第二泄压槽4332可位于端盖420的朝向电池单体内部的表面。替代地,第一泄压槽4322也可位于端盖420的朝向电池单体内部的表面,而第二泄压槽4332可位于端盖420的背离电池单体内部的表面。又例如,当泄压机构430设在的壳体410上时,第一泄压槽4322可位于壳体410的某个壁的背离电池单体内部的 表面,而第二泄压槽4332可位于壳体410的同一个壁的朝向电池单体内部的表面。替代地,第一泄压槽4322也可位于壳体410某个壁的朝向电池单体内部的表面,而第二泄压槽4332可位于壳体410的同一个壁的背离电池单体内部的表面。
可选的,第二泄压槽4332位于本体431的内侧表面上,更加有利于促进泄压部朝向外壳外部的快速翻转。
上述实施例方案通过将限定薄弱部的两个泄压槽形成在本体的不同表面上,可以避免在制造两个泄压槽时发生挤料现象,从而避免由于挤料造成的本体表面的平面度的影响。此外,相对于两个泄压槽设置在同一表面的方案,将两个泄压槽形成在本体的不同表面上可以进一步降低本体的结构强度,从而促进泄压部的打开和翻转。
根据本申请的一些实施例,如图9和图10所示,第一表面为本体431的外表面,第二表面为本体431的内表面。
本体431的外表面也即本体431的背离电池单体内部的表面。本体431的内表面也即本体431的朝向电池单体内部的表面。也就是说,第一泄压槽4322可位于外壳40(例如,壳体410或端盖420)的背离电池单体内部的表面,而第二泄压槽4332可位于外壳40的朝向电池单体内部的表面。
上述实施例方案通过将用于打开的第一薄弱部432设置在本体431的外表面上,可以便于第一泄压槽4322的制造加工,提高第一薄弱部432的制造质量,从而促进泄压机构430按要求准确且有效地开阀。此外,将第二泄压槽4332设置在本体431的内表面上更有利于促进泄压部4311朝向外壳的外部翻转。
根据本申请的一些实施例,第一泄压槽4322的深度大于第二泄压槽4332的深度,且第一薄弱部432的厚度小于第二薄弱部431的厚度。
第一泄压槽4322的深度大于第二泄压槽4332的深度可以使得本体431在第一泄压槽4322处的厚度更薄。在本体431的厚度相同的情况下,可以使得形成在第一泄压槽4322的底壁上的第一薄弱部432的厚度小于形成在第二泄压槽4332的底壁上的第二薄弱部433的厚度。
上述实施例方案可以使得本体431在第一薄弱部432的结构强度低于第二薄弱部433,以实现泄压部4311在电池单体内部压力或温度达到阈值时在第一薄弱部处优先开裂并朝向第二薄弱部433所在的一侧翻转,从而确保泄压机构的开阀方向准确,保证电池的安全性。
根据本申请的一些实施例,如图11所示,第一泄压槽4322包括多个第一槽部4322a,多个第一槽部4322a沿第一泄压槽4322的深度方向依次设置,沿第一泄压槽4322的深度方向,多个第一槽部4322a的宽度逐渐减小。
第一泄压槽4322中的各个第一槽部4322a的延伸方向相同。各个第一槽部4322a的深度可以相等,也可以不等,比如,沿第一泄压槽4322的深度方向(即,第一方向z),各个第一槽部4322a的深度逐渐减小。
第一泄压槽4322中的第一槽部4322a的个数可以是两个、三个、四个或者更多。示例性的,在图11中,第一泄压槽4322中的第一槽部4322a为三个。以下以第一泄压槽4322采用冲压的方式成型为例描述第一泄压槽4322的加工方式:可以先在本体431的表面冲压出第一个第一槽部4322a,然后,在第一个第一槽部4322a的底面上冲压出第二个第一槽部4322a,最后,在第二个第一槽部4322a的底面上冲压出第三个第一槽部4322a。可理解的,第一个第一槽部4322a的宽度可大于第二个第一槽部4322a的宽度,第二个第一槽部4322a的宽度可大于第三个第一槽部4322a的宽度。
上述第一泄压槽4322采用多级槽结构,可以降低在每级槽成型时本体431所受到的成型力,降低本体431在成型第一泄压槽4322的过程中产生裂纹的风险,提高泄压机构430的长期可靠性。
根据本申请的一些实施例,如图12所示,第二泄压槽4332包括多个第二槽部4332a,多个第二槽部4332a沿第二泄压槽4332的深度方向依次设置,沿第二泄压槽4332的深度方向,多个第二槽部4332a的宽度逐渐减小。
第二泄压槽4332中的各个第二槽部4332a的延伸方向相同。各个第二槽部4332a的深度可以相等,也可以不等,比如,沿第二泄压槽4332的深度方向(即,第一方向z),各个第二槽部4332a的深度逐渐减小。
第二泄压槽4332中的第二槽部4332a的个数可以是两个、三个、四个或者更多。示例性的,在图12中,第二泄压槽4332中的第二槽部4332a为三个。第二泄压槽4332成型方式与第一泄压槽相同,在此不再赘述。
上述第二泄压槽4332采用多级槽结构,可以降低在每级槽成型时本体431所受到的成型力,降低本体431在成型第二泄压槽4332的过程中产生裂纹的风险,提高泄压机构430的长期可靠性。
根据本申请的一些实施例,如图13所示,两个第一自由端432a、432b的连线在平面上具有第三投影4323,第二投影4331的延伸方向与第三投影4323的延伸方向一致。
如前所述,上述平面是与第一方向z垂直的平面,其可以是本体431的朝向电池单体内部的表面,如图8中所示的平面P,也可以是本体431的背离电池单体内部的表面,或者可以是与第一方向z垂直的任一平面。第二投影4331的延伸方向与第三投影4323的延伸方向一致可包括第二投影4331与第三投影4323平行(即在该延伸方向的垂直方向上存在间隔)以及第二投影4331与第三投影4323在一条直线上(包括两者完全重合、部分重合或者不重合)。其中,第二投影4331与第三投影4323平行可以包括在第二投影4331与第三投影4323的中垂线重合、第二投影4331与第三投影4323的中垂线不重合且第二投影4331与第三投影4323至少部分相对、或者第二投影4331与第三投影4323的中垂线不重合且第二投影4331与第三投影4323完全不相对(即彼此完全偏离)等情况下的平行,本申请不限于上述示例。在此应注意,本文中所说的“延伸方向一致”可以指两个投影的延伸方向成0°或180°,或者两个投影的延伸方向成近似0°或180°。
上述实施例方案通过将第一薄弱部432的两个自由端432a、432b的连线的延伸方向设置为与第二薄弱部433的延伸方向一致,可以使得泄压部4311翻转方向更准确,从而促进电池单体的有效泄压。
根据本申请的一些实施例,如图8、图13和图14所示,在与第二投影4331的延伸方向垂直的方向上,第二投影4331与第三投影4323至少部分重叠。
具体地,在第二投影4331与第三投影4323平行的情况下,第二投影4331与第三投影4323至少部分相对,或者在第二投影4331与第三投影4323在一条直线上的情况下,第二投影4331与第三投影4323至少部分重叠。在第二投影4331与第三投影4323平行的情况下,第二投影4331与第三投影4323至少部分相对可包括第二投影4331与第三投影4323的中垂线重合、以及第二投影4331与第三投影4323的中垂线不重合且第二投影4331与第三投影4323至少部分相对等情况。在第二投影4331与第三投影4323在一条直线上的情况下,第二投影4331与第三投影4323至少部分重叠可包括第二投影4331与第三投影4323完全重合(包括较短的投影完全位于较长的投影内或相同的两个投影完全重合)、或者第二投影4331与第三投影4323部分重合。
上述实施例方案可以进一步使得泄压部4311朝向第二薄弱部所在的一侧翻转更快,从而促进电池单体的快速且有效泄压。
根据本申请的一些实施例,如图13所示,第二投影4331位于第三投影4323靠近第一投影4321的一侧,并与第三投影4323间隔设置。
也就是说,第二投影4331位于第一薄弱部432与其两个第一自由端432a、432b的连线界定的泄压部4311内,且靠近第三投影4323。
上述实施例方案可以使得翻转力更快地传递到第二薄弱部附近,从而使得泄压部的翻转速度更快,以实现电池单体的快速且有效泄压。
根据本申请的一些实施例,如图14所示,第二投影4331位于第三投影4323背离第一投影4321的一侧,并与第三投影4323间隔设置。
也就是说,如图14所示,第二投影4331位于第一薄弱部432与其两个第一自由端432a、432b的连线界定的泄压部4311外,且靠近第三投影4323。
上述实施例方案可以使得泄压部的开阀面积更大,从而促进电池单体的快速且有效泄压。
根据本申请的一些实施例,如图8、图13和图14所示,第三投影4323的中垂线与第二投影4331的中垂线重合。
具体地,如图8所示,在第三投影4323与第二投影4331位于同一直线上时,第三投影4323与第二投影4331完全重合,且沿中垂线对称;如图13和图14所示,在第三投影4323与第二投影4331平行时,第三投影4323与第二投影4331完全相对,且沿中垂线对称。
上述实施例方案可以实现第二薄弱部433相对于第一薄弱部432的两个第一自由端432a、432b的中垂线对称,从而使得泄压部4311更好地朝向第二薄弱部所在的一侧翻转,从而使得泄压部的翻转方向和开阀方向更准确,安全性更高。
根据本申请的一些实施例,如图8、图13和图14所示,第一投影4321相对于第三投影4323的中垂线对称。
也就是说,第一薄弱部432相对于其两个第一自由端432a、432b的连线的中垂线对称。
上述实施例方案可以实现第一薄弱部432在其中垂线两侧的结构强度一致,应力承受能力一致,保证第一薄弱部432在电池单体的内压达到阈值时两侧同步开启,从而使得泄压机构430的开阀方向更准确,安全性更高。
根据本申请的一些实施例,如图14所示,第二投影4331具有两个第二自由端4331a、4331b,并且其中一个第二自由端4331a与第一投影4321之间的最小间隙M1不大于第三投影4323的长度L的三分之一,和/或另一个第二自由端4331b与第一投影4321之间的最小间隙M2不大于第三投影4323的长度L的三分之一。
第二自由端4331a与第一投影4321之间的最小间隙M1为第二自由端4331a到第一投影4321的垂直距离。第二自由端4331b与第一投影之间的最小间隙M2为第二自由端4331b到第一投影4321的垂直距离。
上述实施例方案通过将第一薄弱部432与第二薄弱部433的间隙设置在合理范围内,可以确保泄压部沿第一薄弱部432裂开后快速且准确地朝向第二薄弱部433所在的一侧翻转。
根据本申请的一些实施例,如图14所示,其中一个第二自由端4331a与第一投影4321之间的最小间隙M1小于10mm,和/或另一个第二自由端4331b与第一投影4321之间的最小间隙M2小于10mm。
也就是说,第二薄弱部433与第一薄弱部432在垂直与第一方向z上的距离不可过大,两者过大的距离可能使得第二薄弱部433无法起到增加泄压部4311的翻转速度的效果。
上述实施例方案可以促进泄压部4311快速且准确地朝向第二薄弱部433所在的一侧翻转,从而促进泄压机构430快速且有效地泄压。
根据本申请的一些实施例,第一投影4321为弧形、折线形或者弧线和折线的结合。
也就是说,第一薄弱部432沿弧形、折线形或者弧线和折线的结合的轨迹延伸。
上述实施例方案通过设置第一薄弱部432的延伸轨迹的形状,由此可以设置泄压部4311的形状,以便增大泄压机构430的开阀面积,快速泄压,进一步提高安全性。在第一薄弱部432限定的泄压部4311的长度和宽度一定的情况下,弧形限定的开阀面积大于折线形限定的开阀面积,因而可以进一步提高安全性。此外,在开阀面积一定的情况下,弧形的第一薄弱部432的两个第一自由端的连线更短,由此对于外壳40的结构强度影响更小。
根据本申请的一些实施例,第二投影4331(即第二薄弱部433)可以为直线形,即沿直线形轨迹延伸,从而便于泄压部4311的翻转。
根据本申请的一些实施例,外壳40包括具有开口的壳体410和盖合开口的端盖420,壳体410和端盖420之间形成有用于容纳电池单体的容纳腔,并且壳体410的至少一个侧壁上设置有泄压机构430,和/或端盖420上设置有泄压机构430。
上述实施方案中的电池单体与图2和图3中所描述的电池单体20的特征基本相同,在此不再详述。端盖420与壳体410的特征与以上图3中所描述的端盖21和壳体22的特征基本相同,在此不再详述。泄压机构430可设置在壳体410上,也可以设置在端 盖420上。可以理解的是,当泄压机构430设置在壳体410上时,可以是只有一个壁上设置有泄压机构430,也可以是多个壁上均设置有泄压机构430。此外,外壳40中可包括多个泄压机构430,多个泄压机构430可全部设置在壳体410上,或者全部设置在端盖420上,或者部分设置在壳体410上且部分设置在端盖420上。
这样可以使得泄压机构430集成在能够容纳电池单体的壳体410或端盖420上,从而使得泄压机构集容纳功能和泄压功能为一体。
根据本申请的一些实施例,如图15所示,外壳40上形成有凹槽440,泄压机构430的本体431为凹槽440的槽底。
凹槽440可以设置在端盖420上,如图15所示。附加或替代地,凹槽440也可设置在壳体410上。在凹槽440设置于端盖420的情况下,凹槽440由端盖420的表面沿厚度方向凹陷形成的。凹槽440可以设置在端盖420的内表面或者外表面上。在凹槽440设置于壳体410的情况下,凹槽440由壳体410的外表面或内表面沿厚度方向凹陷形成。凹槽440可以在外壳40上通过切削、冲压等方式加工成型,也可以是与外壳40一体铸造成型。
上述通过在外壳40上设置凹槽440,并将本体431形成在凹槽440的底壁上,可以使得本体431的厚度比外壳40的其他部分的壁厚更小,从而有助于泄压机构430的开阀。此外,凹槽440从外壳40的表面凹陷成型,由此形成在凹槽440的底壁上的泄压机构430可以远离外壳40的表面,从而使得泄压机构430不容易接触其他物体而导致损坏。
根据本申请的一些实施例,如图15所示,凹槽440的侧壁包括相对的第一侧壁441和第二侧壁442,第一侧壁441在平面上的投影的延伸方向与第一投影4321的延伸方向一致,并且第二侧壁442在平面上的投影的延伸方向与第二投影4331的延伸方向一致。
平面可以是本体431的朝向电池单体内部的表面,如图8中所示的平面P,也可以是本体431的背离电池单体内部的表面,或者可以是与第一方向z垂直的任一平面。第一侧壁441在平面上的投影的延伸方向与第一投影4321的延伸方向一致可以是完全一致、即完全平行,或者具有一定偏差地平行。第二侧壁442在平面上的投影的延伸方向与第二投影4331的延伸方向一致可以是完全一致、即完全平行,或者具有一定偏差地平行。
上述实施例方案可以使得薄弱部以凹槽440的相应的侧壁为基准进行加工,从而方便薄弱部的加工。
根据本申请的一些实施例,本体431的厚度小于外壳40的除泄压机构430外的部分的厚度。
也就是说,外壳40中的本体431所在的部分的厚度小于外壳40的其他部分的壁厚。
上述实施例方案可以促进泄压部4311的顺利打开与翻转,并且避免在电池单体内压或温度超过阈值时外壳的其他地方预先裂开。
根据本申请的一些实施例,如图15所示,端盖420还可包括用于安装电极端子的两个通孔421、422。此时,当泄压机构430设置在端盖420上时,第二薄弱部433可以与两个通孔421、422的连线平行,并且第一薄弱部432与两个通孔421、422的连线的中垂线相交。这是由于电池单体的内部压力增大时,端盖420膨胀变形,两个通孔421、422的连线的中垂线为端盖420的应力变形中心线,在应力变形中心线上端盖的应力相对集中。通过将泄压机构430的第一薄弱部432设置为与两个通孔421、422连线的中垂线相交,可以使得在电池单体的内部压力达到阈值时,在第一薄弱部内部某一位置优先裂开并向两侧继续开裂,进一步增加开阀面积,从而实现有效泄压。
根据本申请的一些实施例,第一薄弱部432的厚度在两个通孔421、422的连线的中垂线的一侧或两侧沿远离两个通孔421、422的连线的中垂线的方向逐渐增大。通过将泄压机构430的第一薄弱部432的厚度最小的位置设置在两个通孔421、422连线的中垂线上,可以使得在电池单体的内部压力达到阈值时,端盖420的受到的最大应力作用在第一薄弱部的厚度最小的位置,以确保泄压机构430的第一薄弱部432在厚度最小的位置处优先裂开。随后,在电池单体的内部压力作用下,泄压机构430易于沿第一薄弱部432继续裂开,进一步增加开阀面积,从而实现有效泄压,保证电池安全性。
根据本申请的一些实施例,第一薄弱部432关于两个通孔421、422的连线的中垂线对称。这样可以使得第一薄弱部432在中垂线两侧的受力一致,保证泄压机构430沿第一薄弱部432由中部向两侧裂开,从而进一步控制泄压机构430的开阀方向,提高安全性。附加地,第二薄弱部433也可以关于两个通孔421、422的连线的中垂线对称。
根据本申请的一些实施例,如图4至图15所示,本申请提供了一种用于电池单体的外壳40,包括包含开口的壳体410、盖合在该开口上的端盖420以及泄压机构430。泄压机构430包括本体431、第一薄弱部432以及第二薄弱部433。端盖420上形成有凹槽440,泄压机构430的本体431为凹槽440的槽底。第一薄弱部432设置于本体431并具有两个第一自由端432a、432b,两个第一自由端432a、432b的连线与第一薄弱部432共 同界定出泄压部4311。第一薄弱部432沿弧形轨迹延伸。第二薄弱部433设置于本体431且沿直线形轨迹延伸。第一薄弱部432设置在本体431的外表面,且第二薄弱部433设置在本体431的内表面上。第二薄弱部433在与第一方向z垂直的平面上的第一投影4321和第二薄弱部433在该平面上的第二投影4331不相交,第一方向z为泄压部4311的厚度方向。泄压部4311被配置为在电池单体内部的压力或温度达到阈值时,以第一薄弱部432为边界打开并朝向第二薄弱部433所在的一侧翻转。
上述实施例方案可以提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命,从而提高电池的安全性。
根据本申请的一些实施例,提供了一种电池单体,其包括上述实施例中的外壳40。
上述实施例方案可以提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命,从而提高电池的安全性。
根据本申请的一些实施例,提供一种电池,其包括上述实施例中的电池单体。
上述实施例方案可以提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命,从而提高电池的安全性。
根据本申请的一些实施例,提供了一种用电装置,其包括上述实施例中的电池,电池用于提供电能。
上述实施例方案可以提高泄压机构的抗破坏能力,促进电池单体的有效泄压,并且提高电池单体的使用寿命,从而提高电池的安全性。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (23)

  1. 一种用于电池单体的外壳,包括泄压机构,其中,所述泄压机构包括:
    本体;
    第一薄弱部,设置于所述本体,所述第一薄弱部具有两个第一自由端,所述两个第一自由端的连线与所述第一薄弱部不完全重叠并且共同界定出泄压部;以及
    第二薄弱部,设置于所述本体,所述第一薄弱部在与第一方向垂直的平面上的第一投影和所述第二薄弱部在所述平面上的第二投影不相交,所述第一方向为所述泄压部的厚度方向,
    其中,所述泄压部被配置为在所述电池单体内部的压力或温度达到阈值时,以所述第一薄弱部为边界打开并朝向所述第二薄弱部所在的一侧翻转。
  2. 根据权利要求1所述的外壳,其中,所述本体上形成有第一泄压槽和第二泄压槽,所述第一薄弱部为所述第一泄压槽的底壁,所述第二薄弱部为所述第二泄压槽的底壁。
  3. 根据权利要求2所述的外壳,其中,所述第一泄压槽位于所述本体的第一表面,所述第二泄压槽位于所述本体的与所述第一表面相对的第二表面。
  4. 根据权利要求2所述的外壳,其中,所述第一表面为所述本体的外表面,所述第二表面为所述本体的内表面。
  5. 根据权利要求2所述的外壳,其中,所述第一泄压槽的深度大于所述第二泄压槽的深度,且所述第一薄弱部的厚度小于所述第二薄弱部的厚度。
  6. 根据权利要求2-5中任一项所述的外壳,其中,所述第一泄压槽包括多个第一槽部,多个第一槽部沿所述第一泄压槽的深度方向依次设置,沿所述第一泄压槽的深度方向,所述多个第一槽部的宽度逐渐减小。
  7. 根据权利要求2-5中任一项所述的外壳,其中,所述第二泄压槽包括多个第二槽部,多个第二槽部沿所述第二泄压槽的深度方向依次设置,沿所述第二泄压槽的深度方向,所述多个第二槽部的宽度逐渐减小。
  8. 根据权利要求1-7所述的外壳,其中,所述两个第一自由端的连线在所述平面上具有第三投影,所述第二投影的延伸方向与所述第三投影的延伸方向一致。
  9. 根据权利要求8所述的外壳,其中,在与所述第二投影的延伸方向垂直的方向上,所述第二投影与所述第三投影至少部分重叠。
  10. 根据权利要求8或9所述的外壳,其中,所述第二投影位于所述第三投影靠近所述第一投影的一侧,并与所述第三投影间隔设置。
  11. 根据权利要求8或9所述的外壳,其中,所述第二投影位于所述第三投影背离所述第一投影的一侧,并与所述第三投影间隔设置。
  12. 根据权利要求8所述的外壳,其中,所述第三投影的中垂线与所述第二投影的中垂线重合。
  13. 根据权利要求8所述的外壳,其中,所述第一投影相对于所述第三投影的中垂线对称。
  14. 根据权利要求8-13中任一项所述的外壳,其中,所述第二投影具有两个第二自由端,并且其中一个第二自由端与所述第一投影之间的最小间隙不大于所述第三投影的长度的三分之一,和/或
    另一个第二自由端与所述第一投影之间的最小间隙不大于所述第三投影的长度的三分之一。
  15. 根据权利要求14所述的外壳,其中,其中一个所述第二自由端与所述第一投影之间的最小间隙小于10mm,和/或
    另一个所述第二自由端与所述第一投影之间的最小间隙小于10mm。
  16. 根据权利要求1-15中任一项所述的外壳,其中,所述第一投影为弧形、折线形或者弧线和折线的结合。
  17. 根据权利要求1-16中任一项所述的外壳,其中,所述外壳包括具有开口的壳体和盖合所述开口的端盖,所述壳体和所述端盖之间形成有用于容纳所述电池单体的容纳腔,并且所述壳体的至少一个侧壁上设置有所述泄压机构,和/或所述端盖上设置有所述泄压机构。
  18. 根据权利要求1-17中任一项所述的外壳,其中,所述外壳上形成有凹槽,所述泄压机构的本体为所述凹槽的槽底。
  19. 根据权利要求18所述的外壳,其中,所述凹槽的侧壁包括相对的第一侧壁和第二侧壁,所述第一侧壁在所述平面上的投影的延伸方向与所述第一投影的延伸方向一致,并且所述第二侧壁在所述平面上的投影的延伸方向与所述第二投影的延伸方向一致。
  20. 根据权利要求1-19中任一项所述的外壳,其中,所述本体的厚度小于所述外壳的除所述泄压机构外的部分的厚度。
  21. 一种电池单体,其中,包括:
    根据权利要求1-20中任一项所述的外壳。
  22. 一种电池,其中,包括如权利要求21所述的电池单体。
  23. 一种用电装置,其中,所述用电装置包括如权利要求22所述的电池,所述电池用于提供电能。
PCT/CN2022/088855 2022-04-24 2022-04-24 用于电池单体的外壳、电池单体、电池及用电装置 WO2023205976A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/088855 WO2023205976A1 (zh) 2022-04-24 2022-04-24 用于电池单体的外壳、电池单体、电池及用电装置
CN202280034250.XA CN117337512A (zh) 2022-04-24 2022-04-24 用于电池单体的外壳、电池单体、电池及用电装置
US18/604,186 US20240222822A1 (en) 2022-04-24 2024-03-13 Shell for battery cell, battery cell, battery, and power consuming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088855 WO2023205976A1 (zh) 2022-04-24 2022-04-24 用于电池单体的外壳、电池单体、电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/604,186 Continuation US20240222822A1 (en) 2022-04-24 2024-03-13 Shell for battery cell, battery cell, battery, and power consuming device

Publications (1)

Publication Number Publication Date
WO2023205976A1 true WO2023205976A1 (zh) 2023-11-02

Family

ID=88516612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088855 WO2023205976A1 (zh) 2022-04-24 2022-04-24 用于电池单体的外壳、电池单体、电池及用电装置

Country Status (3)

Country Link
US (1) US20240222822A1 (zh)
CN (1) CN117337512A (zh)
WO (1) WO2023205976A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099301A (ja) * 2007-10-15 2009-05-07 Sony Corp 電池パック及びその製造方法
CN113544890A (zh) * 2020-08-11 2021-10-22 宁德新能源科技有限公司 一种电化学装置及电子设备
CN215578755U (zh) * 2021-09-24 2022-01-18 宁德时代新能源科技股份有限公司 一种端盖、端盖组件、电池单体、电池及用电设备
CN216354617U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099301A (ja) * 2007-10-15 2009-05-07 Sony Corp 電池パック及びその製造方法
CN113544890A (zh) * 2020-08-11 2021-10-22 宁德新能源科技有限公司 一种电化学装置及电子设备
CN215578755U (zh) * 2021-09-24 2022-01-18 宁德时代新能源科技股份有限公司 一种端盖、端盖组件、电池单体、电池及用电设备
CN216354617U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置

Also Published As

Publication number Publication date
CN117337512A (zh) 2024-01-02
US20240222822A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
WO2023045672A1 (zh) 一种端盖、端盖组件、电池单体、电池及用电设备
CN213601965U (zh) 电池、用电装置和制备电池的装置
WO2023138209A1 (zh) 电池单体、电池以及用电设备
CN214254572U (zh) 电池单体、电池以及用电装置
WO2023050835A1 (zh) 端盖组件、电池单体、电池以及用电装置
CN215989098U (zh) 电池单体、电池以及用电装置
WO2023050631A1 (zh) 端盖组件、电池单体、电池以及用电装置
CN215119052U (zh) 电池壳体、电池及装置
CN114175378A (zh) 电池、用电装置、制备电池的方法和装置
CN216750210U (zh) 电池单体、电池及用电装置
CN115066800B (zh) 电池盒、电池单体、电池、制备电池盒的方法和装置
CN115699437A (zh) 电池单体及其制造方法和系统、电池以及用电装置
CN218632347U (zh) 绝缘膜、电池单体、电池及用电装置
WO2023240782A1 (zh) 泄压结构、电池单体、电池及用电装置
WO2023065954A1 (zh) 电池单体、电池及用电装置
WO2023221267A1 (zh) 端盖组件、电池单体、电池及用电装置
JP7514380B2 (ja) 圧力解放装置、電池セル、電池及び電気デバイス
JP7480314B2 (ja) 電池ケース、電池セル、電池、電池ケースの製造方法及び装置
WO2023193726A1 (zh) 电池及用电设备
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
CN218586128U (zh) 电池单体、电池及用电装置
WO2023205976A1 (zh) 用于电池单体的外壳、电池单体、电池及用电装置
WO2023245429A1 (zh) 电池单体、电池及用电装置
WO2024000103A1 (zh) 电池以及用电装置
CN216698635U (zh) 圆柱电池单体、电池及用电设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280034250.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022938835

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022938835

Country of ref document: EP

Effective date: 20240530