WO2023065954A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023065954A1
WO2023065954A1 PCT/CN2022/120609 CN2022120609W WO2023065954A1 WO 2023065954 A1 WO2023065954 A1 WO 2023065954A1 CN 2022120609 W CN2022120609 W CN 2022120609W WO 2023065954 A1 WO2023065954 A1 WO 2023065954A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
battery cell
battery
cover plate
pressure
Prior art date
Application number
PCT/CN2022/120609
Other languages
English (en)
French (fr)
Inventor
靳超
任苗苗
朱田广
代志鹏
严观福生
赵丰刚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22882565.9A priority Critical patent/EP4262001A1/en
Publication of WO2023065954A1 publication Critical patent/WO2023065954A1/zh
Priority to US18/239,762 priority patent/US20230411773A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery cell, a battery and an electrical device.
  • Lithium-ion battery is a high-performance secondary battery, which has the advantages of high working voltage, high energy density, small size, large capacity, long cycle life, and no memory effect. It is widely used in consumer electronics, power batteries and other fields. During the battery manufacturing process, the cells are usually sealed in the cell casing and cover plate which are welded together.
  • an explosion-proof valve is usually installed on the cover plate when producing the battery pack.
  • the gas generated in the battery cell will break through the scored area of the explosion-proof valve and make the explosion-proof valve burst open, thereby achieving the purpose of pressure relief. Therefore, when the battery cell is abnormal and the internal temperature and pressure rise sharply, how to ensure that the explosion-proof valve bursts and releases the pressure in time has become a technical issue of great concern in the field of battery manufacturing.
  • an object of the present application is to provide a battery cell, a battery and an electrical device to improve battery safety.
  • the embodiment of the first aspect of the present application provides a battery cell, including: a housing, a cover plate and a pressure relief device, the housing has an opening; the cover plate covers the opening, and the cover plate and the housing are welded to form a weld; On the cover plate, the pressure relief device is provided with a weakened area, which is configured to be destroyed to release the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value, wherein the minimum distance between the edge of the weakened area and the weld seam is greater than or equal to 3 mm.
  • the edge of the weak zone of the pressure relief device is set at least 3 mm away from the weld seam, so that when the cover plate is welded on the casing to form a weld seam, the distance from the edge of the weak zone to the weld seam can be avoided as much as possible.
  • the areas of weakness of at least two pressure relief devices are different. Different weak areas have different areas, so that the caliber of the pressure relief port after blasting in each weak area is different. In this way, different burst pressures can be designed for weak areas of different areas. In the process of gradually increasing the internal pressure of the battery, the burst pressure is small One or part of the weak area of the battery is blasted first to release the pressure, and when the internal pressure of the battery cannot be effectively released and continues to rise, one or part of the weak area with a higher blasting pressure will be blasted again to increase the pressure relief capacity, so as to achieve different battery life. Different numbers of pressure relief devices are exploded under the pressure threshold to achieve the effect of gradient blasting.
  • the minimum distances between the edge of the weakened area of each pressure relief device and the weld seam are the same.
  • the (minimum) distance between the edge of the weak zone and the weld seam determines the pressure change range of the burst pressure in the weak zone before and after welding the cover plate.
  • the minimum distance between the edge of the weak zone of each pressure relief device and the weld seam is the same. Under the premise of minimizing the influence of the weld seam on the blasting pressure, it is ensured that the pressure change range of the weak area of each pressure relief device tends to be the same, and an explosion-proof effect closer to the design parameters is achieved.
  • the minimum distance between the weakened regions of any two adjacent pressure relief devices is greater than or equal to 3 millimeters. Keeping the minimum distance between the weak areas of adjacent pressure relief devices at more than 3mm can avoid the deviation of the actual burst pressure from the design threshold due to too close a distance between the weak areas.
  • the battery cell further includes a positive terminal and a negative terminal disposed on the cover plate, and a plurality of pressure relief devices are located between the positive terminal and the negative terminal.
  • the battery cell further includes a liquid injection port disposed on the cover plate and located between the positive terminal and the negative terminal, and a plurality of pressure relief devices are respectively disposed on both sides of the liquid injection port.
  • the pressure relief devices are arranged on both sides of the liquid injection port to disperse the position of each pressure relief device as far as possible, to ensure that the pressure relief device is as far away from other surrounding components as possible, and to avoid deviations between the actual blast pressure and the design threshold as much as possible.
  • the battery cell further includes a liquid injection port disposed on the cover plate and located between the positive terminal and the negative terminal, and a plurality of pressure relief devices are disposed on the same side of the liquid injection port.
  • the ratio of the lower limit of the burst pressure of the weak zone of the two pressure relief devices is greater than or equal to 1.2 and less than or equal to 1.5.
  • the size of the weakened area of each pressure relief device has a predetermined value
  • the area of the weakened area of at least some of the pressure relief devices has a first predetermined value
  • the size of the weakened area of at least some of the pressure relief devices has a second predetermined value. value.
  • the size of the weak area of each pressure relief device is designed as a predetermined value. According to the actual pressure relief requirements of different battery products, pressure relief devices of various sizes can be selected and combined, and then set on the cover plate to make the battery unit The body has the expected pressure relief capability.
  • An embodiment of the second aspect of the present application provides a battery, which includes the battery cell in the above embodiment.
  • the embodiment of the third aspect of the present application provides an electric device, which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Fig. 3 is a schematic diagram of an exploded structure of a battery cell provided by some embodiments of the present application.
  • FIG. 4 is a schematic side view of the cover plate structure of the battery cell shown in FIG. 3 .
  • Figure 5 is a graph of the strength of the weak zone as a function of the distance between the edge and the weld.
  • Fig. 6 is a schematic diagram of another cover plate structure of a battery cell provided by some embodiments of the present application.
  • Fig. 7 is a schematic structural diagram of a cover plate of a battery cell provided by some embodiments of the present application.
  • Fig. 8 is a schematic diagram of another cover plate structure of a battery cell provided by some embodiments of the present application.
  • Battery cell 100 casing 11; cover plate 12; pressure relief device 13; positive terminal 14; negative terminal 15; liquid injection port 16; opening 110; weak area 130;
  • a box body 200 , a first part 201 and a second part 202 .
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • an explosion-proof valve is usually installed on the cover plate.
  • the explosion-proof valve is usually a scored aluminum sheet. Weld strength of plate and cell casing. When there is an abnormality in the battery cell and the thermal runaway inside the battery causes the temperature and pressure to rise sharply, the gas generated in the battery cell will break through the scored area of the explosion-proof valve and make the explosion-proof valve burst open, thereby achieving the purpose of pressure relief.
  • the cover plate originally designed to have a predetermined explosive force is greatly increased after being welded to the casing.
  • the applicant provided a battery cell after in-depth research, including: a shell with an opening; The plate and the shell are welded to form a weld; the pressure relief device is set on
  • the cover plate and the pressure relief device are provided with a weakened area configured to be destroyed to release the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value, wherein the minimum distance between the edge of the weakened area and the weld seam is greater than or equal to 3 millimeters.
  • the edge of the weak area of the pressure relief device is set at least 3mm away from the welding seam, so that the cover plate is welded on the
  • the blasting force of the weak area of the pressure relief device of the welded battery cell can keep the original design pressure threshold before assembly as much as possible, so as to ensure that when the battery cell is abnormal and the internal temperature and pressure rise sharply, the weak area of the pressure relief device can reach Burst and release pressure in time when the pressure threshold is designed.
  • the embodiment of the present application provides an electric device using a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 1001 , and the battery 1001 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 1001 can be used for power supply of the vehicle 1000 , for example, the battery 1001 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 1002 and a motor 1003 , the controller 1002 is used to control the battery 1001 to supply power to the motor 1003 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 1001 can be used not only as an operating power source for the vehicle 1000 but also as a driving power source for the vehicle 1000 to provide driving power for the vehicle 1000 instead of or partially replacing fuel or natural gas.
  • FIG. 2 is an exploded view of a battery 1001 provided by some embodiments of the present application.
  • the battery 1001 includes a case 200 and a battery cell 100 , and the battery cell 100 is accommodated in the case 200 .
  • the box body 200 is used to provide accommodating space for the battery cells 100 , and the box body 200 may adopt various structures.
  • the box body 200 may include a first part 201 and a second part 202, the first part 201 and the second part 202 cover each other, the first part 201 and the second part 202 jointly define a of accommodation space.
  • the second part 202 can be a hollow structure with one end open, the first part 201 can be a plate-shaped structure, and the first part 201 covers the opening side of the second part 202, so that the first part 201 and the second part 202 jointly define an accommodation space ;
  • the first part 201 and the second part 202 can also be hollow structures with one side opening, and the opening side of the first part 201 is covered by the opening side of the second part 202 .
  • the box body 200 formed by the first part 201 and the second part 202 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • the battery 1001 there may be multiple battery cells 100 , and the multiple battery cells 100 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 100 are both in series and in parallel.
  • a plurality of battery cells 100 can be directly connected in series, in parallel or mixed together, and then the whole of the plurality of battery cells 100 is housed in the box 200; of course, the battery 1001 can also be a plurality of battery cells 100
  • the battery modules are firstly connected in series or in parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole and accommodated in the box 200 .
  • the battery 1001 may also include other structures, for example, the battery 1001 may also include a bus component for realizing electrical connection between multiple battery cells 100 .
  • each battery cell 100 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 100 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided by some embodiments of the present application
  • FIG. 4 is a schematic side view of a cover plate structure of a battery cell shown in FIG. 3 .
  • the first aspect of the present application provides a battery cell 100 , which includes a casing 11 , a cover plate 12 and a pressure relief device 13 .
  • the casing 11 plays the role of fixing and sealing the internal electrochemical system, and the inside thereof is used for setting the battery cell and the electrolyte.
  • the casing 11 can be, for example, a steel casing, an aluminum alloy casing, or the like.
  • the casing 11 has an inner accommodation space and an opening 110 communicating with the inner accommodation space for accommodating the battery cell and the electrolyte.
  • the battery cells are placed in the housing space of the casing 11 first, and then the casing 11 is welded and packaged with the cover plate 12 , and then liquid injection and other process operations are performed.
  • the shape of the casing 11 may be cylindrical (circular in cross section), square cylindrical (rectangular in cross section) or other shapes.
  • the housing 11 is in the shape of a square cylinder.
  • the material of the casing 11 can be selected from steel, aluminum, aluminum-plastic film, etc., which can be determined according to different battery design requirements.
  • the cover plate 12 is used to cover the opening 110 and is welded with the housing 11 to form a weld seam.
  • the weld seam surrounds the edge of the cover plate 12 (that is, the outer contour of the cover plate 12) and closes the cover plate 12 and the opening 110
  • the edge of the battery cell and the electrolyte are sealed in the casing 11 to avoid moisture intrusion and electrolyte leakage.
  • the pressure relief device 13 is disposed on the cover plate 12 .
  • the pressure relief device 13 is provided with a weakened area 130 configured to be destroyed to release the internal pressure when the internal pressure or temperature of the battery cell 100 reaches a threshold value, wherein the minimum distance d between the edge of the weakened area and the weld seam greater than or equal to 3 mm.
  • the pressure relief device 13 is an explosion-proof valve whose shape is generally a racetrack, and the weak area 130 on the surface of the explosion-proof valve is a score, and the pressure boundary of the weak area 130 is greater than the life cycle of the battery cell 100 The pressure produced is lower than the strength of the weld seam between the cover plate 12 and the casing 11 .
  • the edge of the weakened area 130 is set at least 3 millimeters away from the weld seam, and the far distance between the two makes the welding seam pair of the cover plate 12 and the housing 11 weak when the cover plate 12 is welded to the housing 11.
  • the impact of the blasting force in the zone 130 is relatively small, so that the blasting force of the cover plate 12 is almost unchanged before being welded to the shell 11 and after being welded to the shell 11, thereby ensuring that the blasting force of the weak zone 13 is before welding,
  • the blasting force of the weak area 130 can keep the original design pressure threshold before assembly as far as possible, so as to ensure that the pressure relief device 13 can be activated when the battery cell is abnormal and the internal temperature and pressure of the casing 11 rise sharply.
  • the weak zone 130 can explode and release pressure in time when the design pressure threshold is reached.
  • the cover plate 12 of the battery cell 100 usually has a fixed size, but increasing the minimum distance between the edge of the weak zone 130 and the weld seam under the design concept of this application will occupy
  • the size of the setting area of the pressure relief device 13 leads to the fact that the area of the weak area 130 cannot be designed larger, which affects the pressure relief speed of the weak area 130 after blasting to a certain extent, and cannot meet the greater pressure relief of some large-capacity battery cells. pressure requirements.
  • multiple pressure relief devices 13 may be provided.
  • each pressure relief device 13 can become a pressure relief port after blasting, so that the area of a single weak area 130 can not be designed more by increasing the number of pressure relief ports.
  • the large size of the pressure relief port can not be enlarged, which affects the pressure relief speed, and effectively improves the pressure relief capacity.
  • another embodiment of the present application provides another battery cell, which has roughly the same structure as the battery cell 100 provided in the above embodiment, except that the cover plate 12 provided in this embodiment has multiple The area of the weak zone 130 of each pressure relief device 13 is different.
  • the calibers of the pressure relief openings after each weak area 130 are blasted are different.
  • different burst pressures can be designed for the two weak areas 130 with different areas, and the internal pressure of the battery cell 100 gradually increases.
  • a weak area 130 with a lower bursting pressure bursts first to release the pressure, and when the internal pressure of the battery cell 100 cannot be effectively released and continues to rise, a weak area 130 with a higher bursting pressure bursts again.
  • to increase the pressure relief capacity so as to realize the bursting of one or two pressure relief devices under different pressure thresholds, and achieve the effect of gradient blasting.
  • the number of weak zones 130 is three or more, it can be set that at least two different weak zones 130 have different areas, so that the caliber of the pressure relief port after the blasting of each weak zone 130 is different, so that Different burst pressures are designed for the weak areas 130 of different areas.
  • one or part of the weak areas 130 with a smaller burst pressure bursts first to release the pressure, and when the internal pressure of the battery When it cannot be effectively released and continues to rise, one or part of the weak area 130 with higher blasting pressure will be blasted again to increase the pressure relief capacity, so as to realize the bursting of different pressure relief devices at different pressure thresholds and achieve the effect of gradient blasting.
  • the (minimum) distance between the edge of the weak zone 130 and the weld seam determines the pressure change range of the burst pressure in the weak zone before and after welding the cover plate 12, and the minimum distance between the edge of the weak zone of each pressure relief device and the weld seam The distances are the same, which can ensure that the pressure variation range of the weak zone 130 of each pressure relief device 13 tends to be the same under the premise of reducing the influence of the weld seam on the blast pressure as much as possible, so as to achieve an explosion-proof effect closer to the design parameters.
  • the minimum distance between the weakened regions 130 of any two adjacent pressure relief devices 13 is greater than or equal to 3 millimeters.
  • the battery cell 100 also includes a positive terminal 14 and a negative terminal 15 arranged on the cover plate 12.
  • the multiple pressure relief devices 13 can be located on the positive terminal 14 and the negative terminal. between terminals 15.
  • at least part of the pressure relief device 13 can also be arranged on the other side opposite to the positive terminal 14
  • the negative terminal 15 can be arranged between the positive terminal 14 and at least part of the pressure relief device 13 .
  • a positive terminal 14 , at least one pressure relief device 13 , a negative terminal 15 and at least one pressure relief device 13 are provided respectively.
  • the area of the weakened area 130 of the pressure relief device 13 located on both sides of the negative terminal 15 can also be different.
  • the one that is closer to the positive terminal 14 13 that is, the pressure relief device 13 located between the positive terminal 14 and the negative terminal 15
  • it can also be a weak zone of a pressure relief device 13 (that is, the pressure relief device 13 located between the positive terminal 14 and the negative terminal 15) that is closer to the positive terminal 14.
  • the area 130 is small, while the area of weakness 130 of a pressure relief device 13 farther away from the positive terminal 14 is larger.
  • the selection can be flexibly adjusted according to the actual design structure of the battery cell, and the arrangement is more flexible to avoid the interference problem at the top of the battery cell.
  • the battery cell 100 further includes a liquid injection port 16 disposed on the cover plate 12 and located between the positive terminal 14 and the negative terminal 15 . As shown in FIG. 7 , each pressure relief device 13 is located on the same side of the liquid injection port 16 .
  • a plurality of pressure relief devices 13 may be respectively disposed on both sides of the liquid injection port 16 .
  • the pressure relief devices 13 are arranged on both sides of the liquid injection port 16 to disperse the positions of the pressure relief devices 13 as far as possible, to ensure that the pressure relief devices 13 are as far away from other surrounding components as possible, and to avoid deviations between the actual burst pressure and the design threshold.
  • the ratio of the lower limit of the burst pressure of the weak zone 130 of the two pressure relief devices 13 is greater than or equal to 1.2 and less than or equal to 1.5.
  • the burst pressure values of the pressure relief devices can be controlled more precisely, thereby improving the safety of the battery.
  • the area size of the weak area 130 of each pressure relief device 13 may have a predetermined value, wherein at least some of the area size of the weak area 130 of the pressure relief device 13 has a first The predetermined value, at least part of the area of the weakened region 130 of the pressure relief device 13 has a second predetermined value.
  • the area size of the weak area 130 of each pressure relief device 13 is designed as a predetermined value, which can be selected and combined from pressure relief devices 13 of various sizes according to the actual pressure relief requirements of different battery products, and then installed on the cover plate 12 Therefore, the battery cell 100 has the desired pressure relief capability. In this way, by combining pressure relief devices of different specifications to meet the pressure relief requirements of different battery products, the development cost can be effectively reduced.
  • the embodiment of the second aspect of the present application further provides a battery, which includes the battery cell in the above embodiment.
  • the embodiment of the third aspect of the present application further provides an electric device, which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • the battery cell 100 includes a casing 11 , a cover plate 12 , a pressure relief device 13 , a positive terminal 14 , a negative terminal 15 , and a liquid injection port 16 .
  • the casing 11 has an inner accommodation space and an opening 110 communicating with the inner accommodation space for accommodating the battery cell and the electrolyte.
  • the casing 11 is in the shape of a square cylinder.
  • the cover plate 12 is used to cover the opening 110 and is welded with the housing 11 to form a weld seam.
  • the weld seam surrounds the edge of the cover plate 12 (that is, the outer contour of the cover plate 12 ) and closes the gap between the cover plate 12 and the opening 110. edge.
  • the pressure relief device 13 is disposed on the cover plate 12 .
  • the positive terminal 14 and the negative terminal 15 are disposed on the cover plate 12 , and the pressure relief device 13 is located between the positive terminal 14 and the negative terminal 15 .
  • the number of the pressure relief device 13 is two, the pressure relief device 13 is provided with a weakened area 130, and the weakened area 130 is configured to be destroyed to release the internal pressure when the internal pressure or temperature of the battery cell 100 reaches a threshold value, wherein the weak The minimum distance d between the edge of the zone and the weld is greater than or equal to 3 mm.
  • the liquid injection port 16 is disposed on the cover plate 12 and located between the positive terminal 14 and the pressure relief device 13 , and is used for injecting electrolyte solution into the casing 11 sealed by the cover plate 12 .
  • the positive terminal 14 , the liquid injection port 16 , the two pressure relief devices 13 and the negative terminal 15 are arranged in sequence.
  • the long axis direction of the racetrack-shaped pressure relief device 13 is consistent with the arrangement direction.
  • the long axis direction of the racetrack-shaped pressure relief device 13 can also be along other directions, for example, the long axis direction of the racetrack-shaped pressure relief device 13 is in line with the Arrangement direction is vertical etc.
  • the direction of its long axis can also be flexibly adjusted under the premise of ensuring that the edge of the weak zone 130 is at least 3 millimeters away from the weld seam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请提供一种电池单体、电池和用电装置。电池单体包括壳体、盖板和泄压装置。壳体具有开口;盖板盖合于开口,盖板与壳体焊接形成焊缝;泄压装置设置于盖板,泄压装置设置有薄弱区,薄弱区被配置为在电池单体的内部压力或温度达到阈值时被破坏以泄放内部压力,薄弱区的边缘与焊缝的最小距离大于或等于3毫米。

Description

电池单体、电池及用电装置
交叉引用
本申请引用于2021年10月19日递交的名称为“电池单体”的第202111217337.4号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池单体、电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
锂离子电池是一种高性能的二次电池,具有工作电压高、能量密度高、体积小、容量大、循环寿命长、无记忆效应等优点,广泛用于消费电子、动力电池等领域。电池制造过程中,通常将电芯密封于焊接在一起的电芯外壳和盖板内。
为了防止电池内部热失控而引发爆炸,生产电池组时,通常在盖板上设置防爆阀。当在电芯出现异常、电池内部热失控而导致温度和压力急剧升高时,电芯内产生的气体会冲开防爆阀的刻痕区域使得防爆阀爆开,从而达到泄压的目的。因此,在电芯出现异常、内部温度和压力急剧升高时,如何确保防爆阀及时爆开、泄压,成为电池制造领域高度关注的技术问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种电池单体、电池及用电装置,以改善电池安全的问题。
本申请第一方面的实施例提供一种电池单体,包括:壳体、盖板和泄压装置,壳体具有开口;盖板盖合于开口,盖板与壳体焊接形成焊缝;设置于盖板,泄压装置设置有薄弱区,薄弱区被配置为在电池单体的内部压力或温度达到阈值时被破坏以泄放内部压力,其中,薄弱区的边缘与焊缝的最小距离大于或等于3毫米。
本实施例提供的电池单体,将泄压装置的薄弱区边缘设置为距离焊缝至少3毫米,从而将盖板焊接在壳体上形成焊缝时,能尽量避免薄弱区的边缘距离焊缝过近而导致爆破压力在焊接完成后升高的问题,降低薄弱区的爆破压力在盖板焊接前后的变化幅度,从而,焊接的电池单体的泄压装置的薄弱区爆破力能够尽量保持组装前的原有设计压力 阈值,确保在电芯出现异常、内部温度和压力急剧升高时,泄压装置的薄弱区能够达到设计压力阈值时及时爆开、泄压。
在一些实施例中,泄压装置为多个。由于设置在盖板上的薄弱区边缘距离焊缝之间的间距在3毫米以上,薄弱区的面积无法设计的更大,局限了薄弱区爆开后的泄压口口径,从一定程度上影响泄压速度,因此,设置多个泄压装置之后,增加了泄压口数量,弥补单个薄弱区的面积无法设计的更大而带来的泄压口口径无法做大、影响泄压速度的缺陷,有效提升泄压能力。
在一些实施例中,至少两个泄压装置的薄弱区的面积不同。不同薄弱区具有不同面积,从而使得各个薄弱区爆破后的泄压口口径不同,如此可以为不同面积的薄弱区设计不同的爆破压力,在电池内部压力逐渐升高的过程中,爆破压力较小的一个或部分薄弱区先爆破而进行泄压,而当电池内部压力无法有效释放而持续升高时,爆破压力较大的一个或部分薄弱区再爆破、以增加泄压能力,从而实现在不同压力阈值下爆开不同数量的泄压装置,达到梯度爆破效果。
在一些实施例中,各个泄压装置的薄弱区的边缘与焊缝的最小距离均相同。薄弱区的边缘与焊缝的(最小)距离的大小决定了薄弱区爆破压力在盖板焊接前后的压力变化幅度,各个泄压装置的薄弱区的边缘与焊缝的最小距离均相同,可以在尽量降低焊缝对爆破压力的影响前提下,确保各个泄压装置的薄弱区的压力变化幅度也趋于相同,达成与设计参数更加接近的防爆效果。
在一些实施例中,任意两个相邻的泄压装置的薄弱区之间的最小距离大于或等于3毫米。将相邻的泄压装置的薄弱区之间的最小距离保持在3毫米以上,能够尽量避免薄弱区与薄弱区之间距离过近而导致实际爆破压力与设计阈值产生偏差。
在一些实施例中,电池单体还包括设置在盖板上的正极端子和负极端子,多个泄压装置均位于正极端子和负极端子之间。通过多样式的设置,能够根据电池单体的实际设计结构灵活调整选择,排布更加灵活,以规避电芯顶部的干涉问题。
在一些实施例中,电池单体还包括设置在盖板上、并位于正极端子和负极端子之间的注液口,多个泄压装置分别设置在注液口的两侧。
泄压装置设置在注液口的两侧能够尽量分散各个泄压装置的位置,确保泄压装置与周围的其他部件结构尽量远离,尽量避免实际爆破压力与设计阈值产生偏差。
在一些实施例中,电池单体还包括设置在盖板上、并位于正极端子和负极端子之间的注液口,多个泄压装置设置在注液口的同一侧。
在一些实施例中,泄压装置为两个,两个泄压装置的薄弱区的爆破压力下限比大于或等于1.2且小于或等于1.5之间。
在一些实施例中,各个泄压装置的薄弱区面积大小均具有预定值,至少部泄压装置的薄弱区面积大小具有第一预定值,至少部分泄压装置的薄弱区面积大小具有第二预定值。
将各个泄压装置的薄弱区面积大小设计为预定值,可以根据不同电池产品的实际泄压需求、从各种面积大小的泄压装置中进行挑选并组合、进而设置在盖板上使电池单体具备期望的泄压能力。
本申请第二方面的实施例提供一种电池,其包括上述实施例中的电池单体。
本申请第三方面的实施例提供一种用电装置,其包括上述实施例中的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1为本申请一些实施例提供的车辆的结构示意图。
图2为本申请一些实施例提供的电池的爆炸图。
图3是本申请一些实施例提供的电池单体的分解结构示意图。
图4是图3所示电池单体的盖板结构侧视示意图。
图5是薄弱区强度随边缘与焊缝之间距离变化的曲线图。
图6是本申请一些实施例提供的电池单体的另一种盖板结构示意图。
图7是本申请一些实施例提供的电池单体的盖板结构示意图。
图8是本申请一些实施例提供的电池单体的另一种盖板结构示意图。
附图标记说明:
车辆1000;
电池1001,控制器1002,马达1003;
电池单体100,壳体11;盖板12;泄压装置13;正极端子14;负极端子15;注液口16;开口110;薄弱区130;
箱体200,第一部分201,第二部分202。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水目前,作为消费电子或动力电池使用的锂离子电池,其制造通常包括极片制片、电芯组装、电芯入壳、盖板封装、干燥注液、化成分容等工艺流程,经过上述工艺流程之后,组装好的电芯会被密封在焊接在一起的电芯外壳和盖板内。
为了防止电池内部热失控而引发爆炸,生产电池组时,通常在盖板上设置防爆阀,防爆阀通常为形成有刻痕的铝薄片,压力边界大于电池生命周期内的产气压强、小于盖板和电芯外壳的焊缝强度。当在电芯出现异常、电池内部热失控而导致温度和压力急剧升高时,电芯内产生的气体会冲开防爆阀的刻痕区域使得防爆阀爆开,从而达到泄压的目的。本发明人注意到,相关的电池单体制造过程中,将设置有防爆阀的盖板焊接至壳体上时,盖板与壳体之间的焊缝会导致防爆阀的刻痕区域爆破力大幅增加,使得原本设计为具有预定爆破力的盖板在焊接至壳体上之后大幅度增加,当电池内部温度和压力急剧升高而压力升高至预定爆破力时,防爆阀的刻痕区域无法及时爆开,从而存在电池爆炸危险。
基于以上考虑,为了避免焊缝影响爆破力而导致的电池爆炸危险发生,申请人经过深入研究,提供了一种电池单体,包括:壳体,具有开口;盖板,盖合于开口,盖板与壳体焊接形成焊缝;泄压装置,设置于
盖板,泄压装置设置有薄弱区,薄弱区被配置为在电池单体的内部压力或温度达到阈值时被破坏以泄放内部压力,其中,薄弱区的边缘与焊缝的最小距离大于或等于3毫米。该种电池单体将泄压装置的薄弱区边缘设置为距离焊缝至少3毫米,从而将盖板焊接在
壳体上形成焊缝时,能尽量避免薄弱区的边缘距离焊缝过近而导致爆破压力在焊接完成后升高的问题,降低薄弱区的爆破压力在盖板焊接前后的变化幅度,从而,焊接的电池单体的泄压装置的薄弱区爆破力能够尽量保持组装前的原有设计压力阈值,确保在电芯出现异常、内部温度和压力急剧升高时,泄压装置的薄弱区能够达到设计压力阈值时及时爆开、泄压。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池1001,电池1001可以设置在车辆1000的底部或头部或尾部。电池1001可以用于车辆1000的供电,例如,电池1001可以作为车辆1000的操作电源。车辆1000还可以包括控制器1002和马达1003,控制器1002用来控制电池1001为马达1003供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池1001不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池1001的爆炸图。电池1001包括箱体200和电池单体100,电池单体100容纳于箱体200内。其中,箱体200用于为电池单体100提供容纳空间,箱体200可以采用多种结构。在一些实施例中,箱体200可以包括第一部分201和第二部分202,第一部分201与第二部分202相互盖合,第一部分201和第二部分202共同限定出用于容纳电池单体100的容纳空间。第二部分202可以为一端开口的空心结构,第一部分201可以为板状结构,第一部分201盖合于第二部分202的开口侧,以使第一部分201与第二部分202共同限定出容纳空间;第一部分201和第二部分202也可以是均为一侧开口的空心结构,第一部分201的开口侧盖合于第二部分202的开口侧。当然,第一部分201和第二部分202形成的箱体200可以是多种形状,比如,圆柱体、长方体等。
在电池1001中,电池单体100可以是多个,多个电池单体100之间可串联或并联或混联,混联是指多个电池单体100中既有串联又有并联。多个电池单体100之间可直接串联或并联或混联在一起,再将多个电池单体100构成的整体容纳于箱体200内;当然,电池1001也可以是多个电池单体100先串联或并联或混联组成电池模块形式,多个 电池模块再串联或并联或混联形成一个整体,并容纳于箱体200内。电池1001还可以包括其他结构,例如,该电池1001还可以包括汇流部件,用于实现多个电池单体100之间的电连接。
其中,每个电池单体100可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体100可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3-图4,图3是本申请一些实施例提供的电池单体的分解结构示意图,图4是图3所示电池单体的盖板结构侧视示意图。
根据本申请的一些实施例,本申请第一方面提供一种电池单体100,其包括壳体11、盖板12和泄压装置13。
壳体11起到对内部电化学系统固定和密封的作用,其内部用于设置电芯以及电解液,壳体11例如可以为钢壳、铝合金外壳等。本实施例中,壳体11具有内部容置空间、以及与内部容置空间连通的开口110,用于容纳电芯以及电解液。在电池制造过程中,会先将电芯置入壳体11的容置空间中,再利用盖板12对壳体11进行焊接封装,继而进行注液等工艺操作。壳体11的形状可以为圆筒状(横截面为圆形)、方形筒状(横截面为矩形)或其他形状。本实施例中,壳体11为方形筒状。在一些实施例中,在电池单体100的制备过程中,壳体11的材质可以选用钢、铝、铝塑膜等,可以依照不同的电池设计需求而定。
盖板12,用于盖合在开口110上、并与壳体11焊接形成焊缝,该焊缝环绕盖板12的边缘(也即盖板12的外轮廓)并封闭盖板12与开口110的边缘,以将电芯和电解液密封在壳体11之内,避免湿气侵入和电解液泄露。
泄压装置13,设置于盖板12上。泄压装置13设置有薄弱区130,薄弱区130被配置为在电池单体100的内部压力或温度达到阈值时被破坏以泄放内部压力,其中,薄弱区的边缘与焊缝的最小距离d大于或等于3毫米。在一些实施例中,泄压装置13为防爆阀,其形状大体呈跑道型,且防爆阀的表面的薄弱区130为刻痕,薄弱区130的压力边界大于电池单体100在生命周期内的产气压强、且小于盖板12和壳体11的焊缝强度。如此以来,当电芯出现异常、壳体11内部热失控而导致温度和压力急剧升高时,电芯内产生的气体会冲开刻痕区域使得防爆阀爆开,从而达到泄压的目的。
发明人发现,相关的电池单体制造过程中,将设置有防爆阀的盖板12焊接至壳体11上时,盖板12与壳体11之间的焊缝会导致防爆阀的刻痕区域爆破力大幅增加,而当 焊缝与刻痕区的距离增大时,防爆阀的刻痕区域爆破力增加幅度会变小,如图5曲线所示。因此,本实施例将薄弱区130边缘设置为距离焊缝至少3毫米,二者较远的间距使得盖板12被焊接至壳体11上时,盖板12与壳体11的焊缝对薄弱区130的爆破力影响较小,从而使得盖板12在焊接至壳体11上之前、与焊接至壳体11上之后的爆破力几乎不变,从而保证薄弱区13的爆破力在焊接前、后的一致性,也就是说,薄弱区130的爆破力能够尽量保持组装前的原有设计压力阈值,确保在电芯出现异常、壳体11内部温度和压力急剧升高时,泄压装置13的薄弱区130能够达到设计压力阈值时及时爆开、泄压。
在实际生产过程中,为了方便采购,电池单体100的盖板12通常具有固定的规格大小,而在本申请的设计构思下增大薄弱区130边缘距离焊缝之间的最小间距,会挤占泄压装置13的设置区域大小,从而导致薄弱区130的面积无法设计的更大,从一定程度上影响薄弱区130爆破后的泄压速度,无法满足部分大容量电池单体的更大的泄压要求。
因此,在本申请实施例中,参见图6,可以将泄压装置13设置为多个。
设置多个泄压装置13之后,每个泄压装置13的薄弱区130都可以在爆破之后成为一个泄压口,从而可以通过增加泄压口数量,弥补单个薄弱区130的面积无法设计的更大而带来的泄压口口径无法做大、影响泄压速度的缺陷,有效提升泄压能力。
参见图7,本申请另一实施例提供另一种电池单体,其与上述实施例提供的电池单体100结构大致相同,不同之处在于,本实施例提供的盖板12上设置的多个泄压装置13的薄弱区130面积不同。
由于两个薄弱区130具有不同面积,从而使得各个薄弱区130爆破后的泄压口口径不同,如此可以为两个不同面积的薄弱区130设计不同的爆破压力,在电池单体100内部压力逐渐升高的过程中,爆破压力较小的一个薄弱区130先爆破而进行泄压,而当电池单体100内部压力无法有效释放而持续升高时,爆破压力较大的一个薄弱区130再爆破、以增加泄压能力,从而实现在不同压力阈值下爆开一个或两个泄压装置,达到梯度爆破效果。
可以理解的是,当薄弱区130的数量为三个或更多时,可以设置为至少两个不同薄弱区130具有不同面积,从而使得各个薄弱区130爆破后的泄压口口径不同,如此可以为不同面积的薄弱区130设计不同的爆破压力,在电池单体100内部压力逐渐升高的过程中,爆破压力较小的一个或部分薄弱区130先爆破而进行泄压,而当电池内部压力无法有效释放而持续升高时,爆破压力较大的一个或部分薄弱区130再爆破、以增加泄压能力,从而实现在不同压力阈值下爆开数量不同的泄压装置,达到梯度爆破效果。
需要指出的是,当泄压装置13的数量为多个时,可以将各个泄压装置13的薄弱区130的边缘与焊缝的最小距离设计为相同。
经试验发现,薄弱区130的边缘与焊缝的(最小)距离的大小决定了薄弱区爆破压力在盖板12焊接前后的压力变化幅度,各个泄压装置的薄弱区的边缘与焊缝的最小距离均相同,可以在尽量降低焊缝对爆破压力的影响前提下,确保各个泄压装置13的薄弱区130的压力变化幅度也趋于相同,达成与设计参数更加接近的防爆效果。
在本申请的另一可实施的方案中,当泄压装置13的数量为多个时,任意两个相邻的泄压装置13的薄弱区130之间的最小距离大于或等于3毫米。
将相邻的泄压装置13的薄弱区130之间的最小距离保持在3毫米以上,能够尽量避免薄弱区130与薄弱区130之间距离过近而导致实际爆破压力与设计阈值产生偏差。
在一些实施例中,电池单体100还包括设置在盖板12上的正极端子14和负极端子15,泄压装置13为多个时,多个泄压装置13可以均位于正极端子14和负极端子15之间。可以理解,在其他实施方案中,还可以将至少部分泄压装置13设置在与正极端子14相对的另一侧、而将负极端子15设置在正极端子14和至少部分泄压装置13之间。换句话说,从盖板12的一侧至另一侧,分别设置有正极端子14、至少一个泄压装置13、负极端子15以及至少一个泄压装置13。如此以来,负极端子15的两侧均设置有至少一个泄压装置13。在一些实施例中,位于负极端子15两侧的泄压装置13的薄弱区130的面积也可以不同,例如,当泄压装置13为两个时,距离正极端子14较近的一个泄压装置13(也即位于正极端子14和负极端子15之间的泄压装置13)的薄弱区130面积较大,而距离正极端子14较远的一个泄压装置13的薄弱区130面积较小。当然,可以理解,在另一个变更实施方案中,也可以是距离正极端子14较近的一个泄压装置13(也即位于正极端子14和负极端子15之间的泄压装置13)的薄弱区130面积较小,而距离正极端子14较远的一个泄压装置13的薄弱区130面积较大。
通过这种多样式的设置,能够根据电池单体的实际设计结构灵活调整选择,排布更加灵活,以规避电芯顶部的干涉问题。
在一些实施例中,电池单体100还包括设置在盖板12上、并位于正极端子14和负极端子15之间的注液口16。如图7所示,各泄压装置13均位于注液口16的同一侧。
在一些实施例中,如图8所示,多个泄压装置13可以分别设置在注液口16的两侧。泄压装置13设置在注液口16的两侧能够尽量分散各个泄压装置13的位置,确保泄压装置13与周围的其他部件结构尽量远离,尽量避免实际爆破压力与设计阈值产生偏差。
在本实施例的在一些实施例中,两个泄压装置13的薄弱区130的爆破压力下限比大于或等于1.2且小于或等于1.5之间。
通过设置两个泄压装置13的薄弱区130的爆破压力下限比能够更精准地控制泄压装置的爆破压力值,提高电池的安全性。
需要说明的是,在电池单体100的部件生产过程中,各个泄压装置13的薄弱区130的面积大小可以具有预定值,其中,至少部分泄压装置13的薄弱区130面积大小具有第一预定值,至少部分泄压装置13的薄弱区130的面积大小具有第二预定值。
将各个泄压装置13的薄弱区130面积大小设计为预定值,可以根据不同电池产品的实际泄压需求、从各种面积大小的泄压装置13中进行挑选并组合、进而设置在盖板12上使电池单体100具备期望的泄压能力。如此通过组合不同规格的泄压装置以满足不同电池产品泄压需求的做法,能够有效降低开发费用。
本申请第二方面的实施例还提供一种电池,其包括上述实施例中的电池单体。
本申请第三方面的实施例还提供一种用电装置,其包括上述实施例中的电池,电池用于提供电能。
在一些实施例中,如图3和图6所示,电池单体100包括壳体11、盖板12、泄压装置13、正极端子14、负极端子15、以及注液口16。
壳体11具有内部容置空间、以及与内部容置空间连通的开口110,用于容纳电芯以及电解液,壳体11为方形筒状。盖板12用于盖合在开口110上、并与壳体11焊接形成焊缝,该焊缝环绕盖板12的边缘(也即盖板12的外轮廓)并封闭盖板12与开口110的边缘。泄压装置13设置于盖板12上。
正极端子14与负极端子15设置与盖板12上,而泄压装置13位于正极端子14与负极端子15之间。泄压装置13的数量为两个,泄压装置13设置有薄弱区130,薄弱区130被配置为在电池单体100的内部压力或温度达到阈值时被破坏以泄放内部压力,其中,薄弱区的边缘与焊缝的最小距离d大于或等于3毫米。
注液口16设置于盖板12上、且位于正极端子14与泄压装置13之间,用于向被盖板12密封的壳体11内注入电解液。在盖板12的一侧至另外一侧的方向上,依次排布所正极端子14、注液口16、两个泄压装置13以及负极端子15。而跑道型的泄压装置13的长轴方向与该排布方向一致。但是,可以理解,只要保证薄弱区130边缘距离焊缝至少3毫米,跑道型的泄压装置13的长轴方向也可以沿其他方向,例如,跑道型的泄压装置13的长轴方向与该排布方向垂直等。当然,在泄压装置13的数量为单个时,其长轴 方向也可以在保证薄弱区130边缘距离焊缝至少3毫米的前提下灵活调整。最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种电池单体,包括:
    壳体,具有开口;
    盖板,盖合于所述开口,所述盖板与所述壳体焊接形成焊缝;
    泄压装置,设置于所述盖板,所述泄压装置设置有薄弱区,所述薄弱区被配置为在所述电池单体的内部压力或温度达到阈值时被破坏以泄放内部压力,
    其中,所述薄弱区的边缘与所述焊缝的最小距离大于或等于3毫米。
  2. 如权利要求1所述的电池单体,其中,所述电池单体包括多个所述泄压装置。
  3. 如权利要求2所述的电池单体,其中,至少两个所述泄压装置的薄弱区的面积不同。
  4. 如权利要求2所述的电池单体,其中,各个所述泄压装置的所述薄弱区的边缘与所述焊缝的最小距离均相同。
  5. 如权利要求2所述的电池单体,其中,任意两个相邻的所述泄压装置的所述薄弱区之间的最小距离大于或等于3毫米。
  6. 如权利要求2所述的电池单体,还包括设置在所述盖板上的正极端子和负极端子,多个所述泄压装置均位于所述正极端子和所述负极端子之间。
  7. 如权利要求6所述的电池单体,还包括设置在所述盖板上、并位于所述正极端子和所述负极端子之间的注液口,多个所述泄压装置分别设置在所述注液口的两侧。
  8. 如权利要求6所述的电池单体,还包括设置在所述盖板上、并位于所述正极端子和所述负极端子之间的注液口,多个所述泄压装置设置在所述注液口的同一侧。
  9. 如权利要求2-8中任一项所述的电池单体,其中,所述电池单体包括两个所述泄压装置,两个所述泄压装置的所述薄弱区的爆破压力下限比大于或等于1.2且小于或等于1.5。
  10. 如权利要求2-8中任一项所述的电池单体,其中,各个所述泄压装置的薄弱区面积大小均具有预定值,至少部分所述泄压装置的薄弱区面积大小具有第一预定值,至少部分所述泄压装置的薄弱区面积大小具有第二预定值。
  11. 一种电池,包括如权利要求1-10中任一项所述的电池单体。
  12. 一种用电装置,所述用电装置包括如权利要求11所述的电池,所述电池用于提供电能。
PCT/CN2022/120609 2021-10-19 2022-09-22 电池单体、电池及用电装置 WO2023065954A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22882565.9A EP4262001A1 (en) 2021-10-19 2022-09-22 Battery cell, battery, and electric device
US18/239,762 US20230411773A1 (en) 2021-10-19 2023-08-30 Battery cell, battery and electrical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111217337.4A CN115832596A (zh) 2021-10-19 2021-10-19 电池单体
CN202111217337.4 2021-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/239,762 Continuation US20230411773A1 (en) 2021-10-19 2023-08-30 Battery cell, battery and electrical apparatus

Publications (1)

Publication Number Publication Date
WO2023065954A1 true WO2023065954A1 (zh) 2023-04-27

Family

ID=85515422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120609 WO2023065954A1 (zh) 2021-10-19 2022-09-22 电池单体、电池及用电装置

Country Status (4)

Country Link
US (1) US20230411773A1 (zh)
EP (1) EP4262001A1 (zh)
CN (1) CN115832596A (zh)
WO (1) WO2023065954A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096543A (zh) * 2023-10-18 2023-11-21 蜂巢能源科技股份有限公司 一种电池、电池模组和电池包

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117374488B (zh) * 2023-12-07 2024-02-20 蜂巢能源科技股份有限公司 盖板及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302636A (ja) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd 扁平型密閉電池
WO2014069575A1 (ja) * 2012-11-02 2014-05-08 株式会社 豊田自動織機 蓄電装置及び蓄電装置の製造方法
CN107251274A (zh) * 2015-03-06 2017-10-13 三洋电机株式会社 密闭型电池
CN108428836A (zh) * 2018-01-09 2018-08-21 宁德时代新能源科技股份有限公司 二次电池顶盖用防爆阀、顶盖组件、二次电池及汽车
CN111542944A (zh) * 2017-12-05 2020-08-14 三星Sdi株式会社 二次电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919777B2 (ja) * 2011-01-31 2016-05-18 株式会社Gsユアサ 蓄電素子
CN104319360B (zh) * 2014-11-11 2017-01-25 东莞新能源科技有限公司 锂离子电池和电池包
CN109659454B (zh) * 2017-10-10 2020-11-10 宁德时代新能源科技股份有限公司 二次电池的顶盖组件以及二次电池
CN214254572U (zh) * 2020-11-25 2021-09-21 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN112713345B (zh) * 2021-03-26 2021-07-16 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制造方法及制造设备
CN112736363B (zh) * 2021-04-01 2021-07-20 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制备电池单体的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302636A (ja) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd 扁平型密閉電池
WO2014069575A1 (ja) * 2012-11-02 2014-05-08 株式会社 豊田自動織機 蓄電装置及び蓄電装置の製造方法
CN107251274A (zh) * 2015-03-06 2017-10-13 三洋电机株式会社 密闭型电池
CN111542944A (zh) * 2017-12-05 2020-08-14 三星Sdi株式会社 二次电池
CN108428836A (zh) * 2018-01-09 2018-08-21 宁德时代新能源科技股份有限公司 二次电池顶盖用防爆阀、顶盖组件、二次电池及汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096543A (zh) * 2023-10-18 2023-11-21 蜂巢能源科技股份有限公司 一种电池、电池模组和电池包
CN117096543B (zh) * 2023-10-18 2024-02-20 蜂巢能源科技股份有限公司 一种电池、电池模组和电池包

Also Published As

Publication number Publication date
CN115832596A (zh) 2023-03-21
US20230411773A1 (en) 2023-12-21
EP4262001A1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2023065954A1 (zh) 电池单体、电池及用电装置
WO2023045672A1 (zh) 一种端盖、端盖组件、电池单体、电池及用电设备
US20220320677A1 (en) Battery cell and manufacturing method and system therefor, battery and electric device
WO2023045401A1 (zh) 注液孔密封装置、端盖组件、电池单体、电池以及用电设备
CN215119052U (zh) 电池壳体、电池及装置
JP7325642B2 (ja) 電池ケース、電池セル、電池、電池ケースの製造方法及び装置
WO2023131031A1 (zh) 一种电池单体、电池及用电装置
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
JP2023504937A (ja) 圧力放出機構、電池ケース、電池セル、電池、製造方法及び装置
JP7480314B2 (ja) 電池ケース、電池セル、電池、電池ケースの製造方法及び装置
CN220209101U (zh) 电池单体、电池及用电装置
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
WO2023193726A1 (zh) 电池及用电设备
CN218586128U (zh) 电池单体、电池及用电装置
CN218215490U (zh) 端盖组件、电池单体、电池及用电设备
WO2024000103A1 (zh) 电池以及用电装置
CN216698635U (zh) 圆柱电池单体、电池及用电设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
CN216354619U (zh) 一种电池单体、电池及用电装置
WO2023133823A1 (zh) 绝缘贴片、电池单体、电池及装置
WO2023078032A1 (zh) 电池盖板组件、电池单体、电池和用电设备
WO2023028867A1 (zh) 壳体、电池单体、电池及用电设备
CN212991190U (zh) 电池盒、电池单体、电池和用电设备
WO2022170495A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023205976A1 (zh) 用于电池单体的外壳、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022882565

Country of ref document: EP

Effective date: 20230713

NENP Non-entry into the national phase

Ref country code: DE