WO2023138209A1 - 电池单体、电池以及用电设备 - Google Patents

电池单体、电池以及用电设备 Download PDF

Info

Publication number
WO2023138209A1
WO2023138209A1 PCT/CN2022/134007 CN2022134007W WO2023138209A1 WO 2023138209 A1 WO2023138209 A1 WO 2023138209A1 CN 2022134007 W CN2022134007 W CN 2022134007W WO 2023138209 A1 WO2023138209 A1 WO 2023138209A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
side plate
pressure relief
relief mechanism
weak
Prior art date
Application number
PCT/CN2022/134007
Other languages
English (en)
French (fr)
Inventor
李川
雷育永
郭志君
石胜云
宋英俊
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023138209A1 publication Critical patent/WO2023138209A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the battery field, and in particular to a battery cell, a battery and an electrical device.
  • Battery cells are widely used in electronic equipment, such as electric vehicles, electric aircraft, electric ships, mobile phones, laptop computers, electric toys and electric tools, etc.
  • the battery cells may include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, and the like.
  • the present application provides a battery cell, a battery and an electrical device, which can effectively improve the safety of the battery cell.
  • the present application provides a battery cell, including: an electrode assembly, a casing, a pressure relief mechanism, and a support plate.
  • the casing is used to accommodate the electrode assembly and includes a first side plate; a pressure relief mechanism is arranged on the first side plate, and the pressure relief mechanism is configured to be activated when the internal pressure of the battery cell reaches a first threshold to release the internal pressure;
  • the support plate is arranged between the first side plate and the electrode assembly, and the support plate is provided with a weak portion, which is opposite to the pressure relief mechanism in the thickness direction of the first side plate.
  • the cell ruptures along the weakened portion when the internal pressure of the cell reaches a second threshold to form a channel that directs fluid to the pressure relief mechanism.
  • the fluid released by the battery cell during thermal runaway can be guided to the pressure relief mechanism, so that the pressure relief mechanism is activated in time and releases the internal fluid.
  • the shape of the weak part is the same as that of the outline of the pressure relief mechanism, and the outer dimensions of the weak part are not larger than the outline of the pressure relief mechanism, which can ensure that the fluid is accurately guided to the pressure relief mechanism and prevent uneven pressure release caused by fluid accumulation in the casing. Therefore, the above-mentioned components can effectively increase the discharge rate of the internal fluid when the battery cell is thermally runaway, and improve the safety performance of the battery cell.
  • the first threshold P1 and the second threshold P2 satisfy a relationship P2 ⁇ P1.
  • the second threshold is set to be smaller than the first threshold, which can ensure that under the same internal pressure condition, the weak part on the support plate is broken before the pressure relief mechanism, or the weak part on the support plate and the pressure relief mechanism are broken at the same time, so as to ensure the smooth discharge of the fluid inside the battery cell.
  • the support plate includes a first part, a second part and a first weak part, the first part is disposed opposite to the pressure relief mechanism, the second part surrounds the outside of the first part, and the first weak part is connected between the first part and the second part.
  • the first part and the second part are connected by setting the first weak part.
  • an insulating sheet is further included, the insulating sheet includes a third part, a fourth part and a second weak part, the third part is arranged opposite to the first part, the fourth part surrounds the outside of the third part, and the second weak part is connected between the third part and the fourth part.
  • the second weak portion is provided to connect the third part and the fourth part, and when the internal pressure of the battery cell does not exceed the second threshold value, the normal structural form of the insulating sheet is maintained.
  • the fourth part is arranged around the outside of the third part, and when the internal pressure of the battery cell exceeds the second threshold, the fourth part is evenly stressed in the circumferential direction and ruptures smoothly.
  • the orthographic projection of the first weak portion on the first side plate falls completely within the range of the pressure relief mechanism, and/or the orthographic projection of the second weak portion on the first side plate falls completely within the range of the pressure relief mechanism.
  • the orthographic projections of the first weak part and the second weak part on the first side plate fall within the range of the pressure relief mechanism.
  • the support plate includes a plurality of first through holes arranged at intervals along the circumferential direction of the first part, and the first through holes penetrate the support plate along the thickness direction of the first side plate; there are first connecting sections between two adjacent first through holes, and the multiple first connecting sections and the multiple first through holes are alternately arranged along the circumferential direction of the first part to form a first weak portion.
  • first connecting section By setting the first connecting section, the first part and the second part are connected to ensure the integrity of the structure before the support plate breaks; setting the first through hole reduces the strength of the first weak part of the support plate, ensuring that the first part can be smoothly separated from the second part along the first weak part when the internal pressure of the battery cell reaches the second threshold.
  • the insulating sheet includes a plurality of second through holes arranged along the circumferential direction of the third part, and the second through holes penetrate the insulating sheet along the thickness direction of the first side plate; there are second connecting sections between two adjacent second through holes, and the plurality of second connecting sections and the plurality of second through holes are alternately arranged along the circumferential direction of the third part and form a second weak portion.
  • the third part and the fourth part are connected to ensure the integrity of the structure before the insulating sheet breaks and the insulation performance between the electrode assembly and the casing; setting the first through hole reduces the strength of the second weak part, ensuring that the third part can be smoothly separated from the fourth part along the second weak part when the internal pressure of the battery cell reaches the second threshold.
  • the thickness of the first connection section is smaller than the thickness of the second portion, and/or the thickness of the second connection section is smaller than the thickness of the fourth portion.
  • the orthographic projection of the second weak portion on the support plate completely falls within the range of the first portion.
  • the above-mentioned structure can guide the fluid inside the battery cell to the through hole where the first part of the support plate is detached, so as to play the role of drainage and ensure the insulation performance of the insulating plate.
  • the orthographic projections of the plurality of second through holes on the support plate are alternately distributed with the plurality of first through holes on the support plate.
  • the insulating performance of the insulating sheet is ensured by setting the first through holes and the second through holes in a staggered distribution.
  • the surface of the first weakened portion facing the first side plate is recessed in a direction away from the first side plate relative to the surface of the first portion facing the first side plate, and/or the surface of the first weakened portion facing the electrode assembly is recessed in a direction away from the electrode assembly relative to the surface of the first portion facing the electrode assembly.
  • the surface of the second weakened portion facing the first side plate is recessed in a direction away from the first side plate relative to the surface of the first portion facing the first side plate, and/or the surface of the second weakened portion facing the electrode assembly is recessed in a direction away from the electrode assembly relative to the surface of the first portion facing the electrode assembly.
  • the orthographic projection of the first weak portion on the first side plate is any one of circle, ellipse, square and racetrack shape
  • the orthographic projection of the second weak portion on the first side plate is any one of circle, ellipse, square and racetrack shape.
  • the weak portion is designed into a specific shape to facilitate production.
  • the present application provides a battery, which includes the battery cell in the above embodiment.
  • the present application provides an electric device, which includes the battery in the above embodiment, and the battery is used to provide electric energy.
  • FIG. 1 is a schematic structural view of a vehicle in some embodiments of the present application.
  • Fig. 2 is a schematic diagram of an exploded structure of a battery in some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell in some embodiments of the present application.
  • FIG. 4 is a schematic structural view of battery cells in other embodiments of the present application.
  • Fig. 5 is a schematic cross-sectional structure diagram of a shell of some embodiments of the present application.
  • Fig. 6 is an enlarged schematic diagram of the pressure relief mechanism shown in Fig. 5 at the circle frame A;
  • Fig. 7 is a schematic structural diagram of a support plate in some embodiments of the present application.
  • Fig. 8 is a structural schematic diagram of the support plate shown in Fig. 7 at the circular frame B;
  • Fig. 9 is a schematic structural diagram of an insulating sheet according to some embodiments of the present application.
  • Fig. 10 is a schematic structural diagram of the first press groove in some embodiments of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to more than two (including two).
  • the protection measures include at least switching elements, selection of appropriate separator materials, and pressure relief mechanisms.
  • the switching element refers to the element that can prevent the battery from charging or discharging in time when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive pole piece and the negative pole piece, and when the temperature rises to a certain value, it can automatically dissolve the micro-scale (or even nano-scale) micropores attached to it, so that metal ions cannot pass through the separator to terminate the internal reaction of the battery cell.
  • the pressure relief mechanism refers to an element or component that is activated to release the internal pressure when the internal pressure of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to different requirements. The above-mentioned threshold value may depend on one or several materials in the positive electrode sheet, negative electrode sheet, electrolyte and separator in the battery cell.
  • the pressure relief mechanism can be in the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and can specifically use a pressure-sensitive element or structure, that is, when the internal pressure of the battery cell reaches a predetermined threshold, the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism ruptures, thereby forming an opening or channel for internal pressure or temperature release.
  • actuation refers to that the pressure release mechanism acts or is activated to a certain state, so that the internal pressure of the battery cell can be released.
  • Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the discharge from battery cells mentioned in the embodiments of this application includes, but is not limited to, electrolyte, dissolved or split positive and negative electrodes, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, and the like.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery cell. For example, when a short circuit, overcharge, etc. occur, it may cause thermal runaway inside the battery cell and a sudden increase in pressure. In this case, the internal pressure can be released in time through the actuation of the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • the pressure relief mechanism is usually mounted on the casing, and a support plate is usually provided between the casing and the electrode assembly, and the support plate is used to support the electrode assembly and space a certain gap between the electrode assembly and the casing.
  • the inventors of the present application found that the space available for gas flow inside the battery cell is limited, and when thermal runaway occurs, the discharge rate of the internal fluid is relatively low.
  • the limitation of the flow rate of the fluid is mainly due to the blocking of the pressure relief mechanism by the support plate, resulting in poor fluid discharge and safety accidents.
  • the battery cell includes an electrode assembly, a casing, a pressure relief mechanism, and a support plate.
  • the casing is used to accommodate the electrode assembly and includes a first side plate; the pressure relief mechanism is disposed on the first side plate, and the pressure relief mechanism is configured to be activated when the internal pressure of the battery cell reaches a first threshold to release the internal pressure;
  • the support plate is disposed between the first side plate and the electrode assembly, and the support plate is provided with a weak portion, which is opposite to the pressure relief mechanism in the thickness direction of the first side plate, the shape of the weak portion is the same as the shape of the outline of the pressure relief mechanism, and the outer dimension of the weak portion is not greater than the dimension of the outline of the pressure relief mechanism, and the support plate is configured inside the battery cell
  • the pressure ruptures along the weakened portion when the pressure reaches a second threshold to form a channel that directs fluid to the pressure relief
  • the fluid released by the battery cell during thermal runaway can be guided to the pressure relief mechanism, so that the pressure relief mechanism can be activated in time and release the fluid.
  • the shape of the weak part is the same as that of the outline of the pressure relief mechanism, and the external dimensions of the weak part are not larger than the outline of the pressure relief mechanism, which can ensure that the fluid is accurately guided to the pressure relief mechanism, and prevent uneven pressure release caused by accumulation of fluid in the space between the shell and the support plate. Therefore, the above-mentioned components can effectively increase the discharge rate of the battery cell when it is thermally runaway, and improve the safety performance of the battery cell.
  • the battery cells and batteries disclosed in the embodiments of the present application can be used, but not limited, in electric devices such as vehicles, ships or aircrafts.
  • the power supply system comprising the battery cells and batteries disclosed in this application can be used to form the power device, so that the rate of fluid discharge inside the battery cells can be increased, and the safety performance of the battery cells and batteries can be improved.
  • the embodiment of the present application provides an electric device using a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 for working power requirements.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 housed in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cells 20 , and the box body 10 may adopt various structures.
  • the box 10 includes a first box 11 and a second box 12 , the first box 11 and the second box 12 cover each other, and the first box 11 and the second box 12 jointly define an accommodating space for accommodating the battery cell 20 .
  • the second box body 12 can be a hollow structure with one end open, and the first box body 11 can be a plate-shaped structure.
  • the first box body 11 covers the opening side of the second box body 12, so that the first box body 11 and the second box body 12 jointly define an accommodation space;
  • the box body 10 formed by the first box body 11 and the second box body 12 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 is housed in the case 10 .
  • the battery 100 can also be a plurality of battery cells 20 connected in series, parallel or mixed to form a battery module, and then multiple battery modules are connected in series, parallel or mixed to form a whole, and accommodated in the box 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • each battery cell 20 can be a secondary battery or a primary battery; it can also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit constituting a battery.
  • the battery cell 20 includes a casing 26 , and the casing 26 includes an end cap assembly 21 , a casing 22 , an electrode assembly 23 and other functional components.
  • the end cover assembly 21 refers to a component that covers the opening of the casing 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap assembly 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap assembly 21 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap assembly 21 is not easily deformed when it is squeezed and collided, so that the battery cell 20 can have higher structural strength, and the safety performance can also be improved.
  • Functional components such as electrode terminals 25 may be provided on the end cap assembly 21 .
  • the electrode terminal 25 can be used for electrical connection with the electrode assembly 23 for outputting or inputting electric energy of the battery cell 20 .
  • the end cap assembly 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • the material of the end cover assembly 21 may also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover assembly 21 , and the insulator can be used to isolate the electrical connection components in the housing 22 from the end cover assembly 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the case 22 is a component for mating with the end cap component 21 to form the internal environment of the battery cell 20 .
  • the internal environment can be used to accommodate the electrode assembly 23, electrolyte and other components.
  • the casing 22 and the end cap assembly 21 can be independent components, and an opening can be provided on the casing 22 , and the internal environment of the battery cell 20 can be formed by making the end cap assembly 21 cover the opening at the opening.
  • the end cover assembly 21 and the housing 22 may also be integrated. Specifically, the end cover assembly 21 and the housing 22 can form a common connection surface before other components are inserted into the housing, and when the inside of the housing 22 needs to be encapsulated, the end cover assembly 21 is then used to cover the housing 22 .
  • the housing 22 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the casing 22 can be determined according to the specific shape and size of the electrode assembly 23 .
  • the housing 22 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode assembly 23 is a part where the electrochemical reaction occurs in the battery cell 20 .
  • One or more electrode assemblies 23 may be contained within the case 22 .
  • the electrode assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the parts of the positive electrode sheet and the negative electrode sheet with the active material constitute the main body of the electrode assembly 23 , and the parts of the positive electrode sheet and the negative electrode sheet without the active material respectively constitute tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the positive electrode active material and the negative electrode active material react with the electrolyte, and the tabs are directly or indirectly connected to the electrode terminal 25 to form a current loop.
  • FIG. 4 is a schematic structural diagram of a battery cell 20 in some other embodiments of the present application
  • FIG. 5 is a schematic cross-sectional structural diagram of a housing 26 in some embodiments of the present application
  • FIG. 6 is an enlarged schematic diagram of the pressure relief mechanism 24 shown in FIG.
  • the battery cell 20 of the embodiment of the present application includes an electrode assembly 23 , a casing 26 , a pressure relief mechanism 24 and a support plate 28 .
  • the casing 26 is used to accommodate the electrode assembly 23 and includes a first side plate 27 .
  • the pressure relief mechanism 24 is disposed on the first side plate 27 , and the pressure relief mechanism 24 is configured to be activated when the internal pressure of the battery cell 20 reaches a first threshold to release the internal pressure.
  • the support plate 28 is arranged between the first side plate 27 and the electrode assembly 23.
  • the support plate 28 is provided with a weak portion 2801, which is opposite to the pressure relief mechanism 24 in the thickness direction of the first side plate 27.
  • the shape of the weakened portion 2801 is the same as that of the outline of the pressure relief mechanism 24.
  • the outer dimension of the weak portion 2801 is not larger than the outline of the pressure relief mechanism 24. 2801 is ruptured to form a channel that directs fluid to pressure relief mechanism 24 .
  • the pressure relief mechanism 24 can be arranged at the side of the battery cell 20 or at the bottom of the battery cell 20 , which is selected according to specific design requirements, and is not limited here. In the embodiment of the present application, the pressure relief mechanism 24 is disposed at the bottom of the battery cell 20 . The pressure relief mechanism 24 is arranged at the bottom of the battery cell 20. When the internal pressure of the battery cell 20 reaches the first threshold, the internal fluid is sprayed toward the bottom, which can prevent the sprayed fluid from causing damage to surrounding equipment or operators.
  • the profile of the support plate 28 is the same as that of the first side plate 27 , and can provide stable support for the electrode assembly 23 inside the battery cell 20 .
  • the fluid released by the battery cell 20 when thermal runaway can be guided to the pressure relief mechanism 24, so that the pressure relief mechanism 24 brakes in time and releases the fluid.
  • the shape of the weakened part 2801 is the same as the shape of the outline of the pressure relief mechanism 24, and the outer dimensions of the weak part 2801 are not larger than the outline of the pressure relief mechanism 24, which can ensure that the fluid is accurately guided to the pressure relief mechanism 24 and prevent uneven pressure release caused by fluid accumulation in the housing 26. Therefore, the above-mentioned components can effectively increase the discharge rate of the battery cell 20 when thermal runaway occurs, and improve the safety performance of the battery cell 20 .
  • the first threshold P1 and the second threshold P2 satisfy a relationship P2 ⁇ P1.
  • the second threshold for rupture of the support plate 28 is set to be smaller than the first threshold for rupture of the pressure relief mechanism 24, which can ensure that under the same internal pressure conditions, the weak portion 2801 on the support plate 28 ruptures before the pressure relief mechanism 24, or the weak portion 2801 on the support plate 28 and the pressure relief mechanism 24 rupture at the same time, so as to ensure that the fluid inside the battery cell 20 is discharged smoothly.
  • the support plate 28 is disposed adjacent to the pressure relief mechanism 24 .
  • the weak portion 2801 on the support plate 28 is attached to the pressure relief mechanism 24 . If the second threshold is set to be smaller than the first threshold, when the internal pressure of the battery cell 20 exceeds the second threshold, the pressure relief mechanism 24 will not rupture, but the weak portion 2801 on the support plate 28 will rupture. However, since the support plate 28 is attached to the pressure relief mechanism 24, the pressure relief mechanism 24 blocks the displacement of the weak portion 2801, so the support plate 28 can still maintain its original shape under the supporting force of the pressure relief mechanism 24 after the weak portion 2801 is broken.
  • the weak portion 2801 on the support plate 28 and the pressure relief mechanism 24 will rupture successively.
  • the pressure relief mechanism 24 is opened, providing a displacement space for the weak part 2801, and the weak part 2801 is also broken smoothly. Channels for passage of fluid are formed on the support plate 28 . Therefore, the above configuration can ensure that after the pressure relief mechanism 24 is broken, the weak portion 2801 is also broken smoothly, so that the internal fluid can pass through smoothly.
  • the support plate 28 includes a first part 2802 , a second part 2803 and a first weak part 2804 , the first part 2802 is disposed opposite to the pressure relief mechanism 24 , the second part 2803 surrounds the outside of the first part 2802 , and the first weak part 2804 is connected between the first part 2802 and the second part 2803 .
  • the first part 2802 and the second part 2803 are connected by setting the first weak part 2804.
  • the strength of the first weak part 2804 is smaller than that of the first part 2802 and the second part 2803, so the battery cell 20 may rupture after the internal pressure reaches the second threshold.
  • the structure of the support plate 28 is ensured, and the second part 2803 is arranged around the outside of the first part 2802.
  • the second part 2803 is evenly stressed in the circumferential direction and ruptures smoothly.
  • the rupture means that the first part 2802 and the second part 2803 are at least partially separated, and a passage or opening for the internal fluid of the battery cell 20 to pass is formed on the support plate 28 corresponding to the position of the pressure relief mechanism 24 .
  • the battery cell 20 further includes an insulating sheet 29 , the insulating sheet 29 includes a third part 2901 , a fourth part 2902 and a second weak part 2903 , the third part 2901 is arranged opposite to the first part 2802 , the fourth part 2902 surrounds the outside of the third part 2901 , and the second weak part 2903 is connected between the third part 2901 and the fourth part 2902 .
  • the third part 2901 and the fourth part 2902 are connected by setting the second weak part 2903 .
  • the strength of the second weak portion 2903 is smaller than that of the first portion 2802 and the second portion 2803 , so rupture may occur after the internal pressure of the battery cell 20 reaches a preset threshold.
  • the preset threshold set in this application may be the second threshold, that is, the rupture stress of the second weak portion 2903 is set to be equal to that of the first weak portion 2804 .
  • This setting can ensure that the insulating sheet 29 and the supporting plate 28 are simultaneously split when the internal pressure reaches a certain value, thereby improving the efficiency of the split.
  • the above preset threshold can also be set to be slightly smaller than the second threshold, then the fluid first breaks through the second weak portion 2903 and then breaks through the first weak portion 2804 .
  • the normal structural form of the insulating sheet 29 is maintained.
  • the fourth part 2902 is arranged around the outside of the third part 2901. When the internal pressure of the battery cell 20 exceeds the second threshold, the fourth part 2902 is evenly stressed in the circumferential direction and ruptures smoothly.
  • the above threshold can also be set to be different from the second threshold, and the specific setting method can be carried out according to the structure of the insulating sheet 29 and the support plate 28, and the size of the preset threshold is not limited here.
  • the orthographic projection of the first weak portion 2804 on the first side plate 27 completely falls within the range of the pressure relief mechanism 24 .
  • the first weak portion 2804 is arranged opposite to the pressure relief mechanism 24, and is within the range corresponding to the pressure relief mechanism 24 in the thickness direction of the first side plate 27. After the first weak portion 2804 is broken, the first part 2802 is at least partially separated from the second part 2803, and a through hole is formed on the support plate 28. The fluid in the battery cell 20 can flow to the pressure relief mechanism 24 along the through hole. Therefore, the above structure can better guide the internal fluid.
  • the outline dimension of the first weakened portion 2804 is smaller than the outline dimension of the pressure relief mechanism 24 .
  • the width of the first weakened portion 2804 is 1mm to 3mm narrower than the width of the pressure relief mechanism 24, and the length of the first weakened portion 2804 is 1mm to 3mm shorter than the length of the pressure relief mechanism 24.
  • the orthographic projection of the second weak portion 2903 on the first side plate 27 completely falls within the range of the pressure relief mechanism 24 .
  • the second weak part 2903 can also be arranged opposite to the pressure relief mechanism 24, and within the range corresponding to the pressure relief mechanism 24 in the thickness direction of the first side plate 27, after the second weak part 2903 is broken, the third part 2901 is at least partially separated from the fourth part 2902, and a through hole is formed on the insulating sheet 29, and the fluid in the battery cell 20 can flow to the pressure relief mechanism 24 along the through hole, so the above structure can better guide the internal fluid.
  • the support plate 28 includes a plurality of first through holes 2805 arranged at intervals along the circumferential direction of the first part 2802 , and the first through holes 2805 penetrate the support plate 28 along the thickness direction of the first side plate 27 ; there are first connecting sections 2806 between adjacent two first through holes 2805 , and the multiple first connecting sections 2806 and the multiple first through holes 2805 are alternately arranged along the circumferential direction of the first part 2802 and form the first weak portion 2 804.
  • the first part 2802 and the second part 2803 are connected by setting the first connecting section 2806 to ensure the integrity of the structure before the support plate 28 breaks and ensure the support function of the support plate 28 to the electrode assembly 23 .
  • Setting the first through hole 2805 reduces the strength of the first weak portion 2804 of the support plate 28 to ensure that the first portion 2802 can be smoothly separated from the second portion 2803 along the first weak portion 2804 when the internal pressure of the battery cell 20 reaches the second threshold. And the above method is convenient to manufacture and easy to operate.
  • the minimum stress at which the first weak portion 2804 breaks can be adjusted. For example, as the first through hole 2805 is extended, the connection strength of the corresponding first connecting section 2806 decreases, so the minimum stress for breaking the first weak portion 2804 decreases accordingly, whereas the minimum stress for breaking the first weak portion 2804 increases accordingly. Alternatively, if the density of the first through holes 2805 is increased, the connection strength of the corresponding first connection section 2806 will also decrease, and on the contrary, the minimum stress for the first weak portion 2804 to break increases correspondingly.
  • the above-mentioned design is related to factors such as the material and thickness of the support plate 28, and can be set according to specific conditions, and will not be repeated here.
  • the insulating sheet 29 includes a plurality of second through holes arranged along the circumferential direction of the third part 2901 , and the second through holes penetrate the insulating sheet 29 along the thickness direction of the first side plate 27 ; there are second connecting sections between two adjacent second through holes, and a plurality of second connecting sections and a plurality of second through holes are alternately arranged along the circumferential direction of the third part 2901 to form a second weak portion 2903 .
  • the third part 2901 and the fourth part 2902 are connected by setting the second connecting section, so as to ensure the integrity of the structure before the insulating sheet 29 breaks and the insulation performance between the electrode assembly 23 and the casing 26; setting the first through hole 2805 reduces the strength of the second weak part 2903, ensuring that the third part 2901 can be smoothly separated from the fourth part 2902 along the second weak part 2903 when the internal pressure of the battery cell 20 reaches the second threshold.
  • the minimum stress at which the second weak portion 2903 breaks can be adjusted.
  • the design of the minimum stress of the second weak portion 2903 is related to factors such as the material and thickness of the insulating sheet 29 , and can be set according to specific conditions, so details will not be repeated here.
  • the thickness of the first connection section 2806 is smaller than the thickness of the second part 2803 , and/or the thickness of the second connection section is smaller than the thickness of the fourth part 2902 .
  • the connection strength between the first part 2802 and the second part 2803 is reduced, so by adjusting the thickness of the second connecting section, the connection strength between the third part 2901 and the fourth part 2902 can be changed.
  • the orthographic projection of the second weak portion 2903 on the support plate 28 completely falls within the range of the first portion 2802 .
  • the second weak portion 2903 is provided corresponding to the first part 2802, and after the third part 2901 is broken, an opening or channel for fluid to pass is formed on the insulating sheet 29 .
  • the area of the second weak portion 2903 in the thickness direction of the first side plate 27 is smaller than that of the first portion 2802 , so the area of the above-mentioned opening or channel is also smaller than that of the first portion 2802 .
  • the above-mentioned structure can guide the fluid inside the battery cell 20 to the through hole after the first part 2802 of the support plate 28 is detached, so as to play a drainage role and ensure the insulation performance of the insulating plate.
  • the orthographic projections of the plurality of second through holes on the support plate 28 and the plurality of first through holes 2805 are alternately distributed on the support plate 28 .
  • the surface of the first weakened portion 2804 facing the first side plate 27 is recessed in a direction away from the first side plate 27 relative to the surface of the first portion 2802 facing the first side plate 27 to form a first pressure groove 2807, or the surface of the first weak portion 2804 facing the electrode assembly 23 is recessed in a direction away from the electrode assembly 23 relative to the surface of the first portion 2802 facing the electrode assembly 23 to form a first pressure.
  • the groove 2807 , or the surface of the first weakened portion 2804 facing the electrode assembly 23 and the surface away from the electrode assembly 23 are inwardly depressed to form a first pressure groove 2807 .
  • the aforementioned structure reduces the thickness of the first weak portion 2804 by setting the first weak portion 2804 as the first pressure groove 2807 sunken inward, and reduces the connection strength of the first weak portion 2804, so that the first weak portion 2804 can be broken smoothly when the internal pressure reaches the second threshold, and the above-mentioned structure is convenient for production and operation.
  • the surface of the second weakened portion 2903 facing the first side plate 27 is recessed to form a second groove in a direction away from the first side plate 27 relative to the surface of the first portion 2802 facing the first side plate 27;
  • the surface of 03 facing the electrode assembly 23 and the surface away from the electrode assembly 23 are simultaneously recessed inward to form a second pressure groove.
  • the orthographic projection of the first weak portion 2804 on the first side plate 27 is any one of a circle, ellipse, square, and racetrack shape
  • the orthographic projection of the second weak portion 2903 on the first side plate 27 is any one of a circle, ellipse, square, and racetrack shape.
  • the weak portion 2801 is designed into a specific shape to facilitate production.
  • both the first weak portion 2804 and the second weak portion 2903 may be designed as a square shape.
  • the width of the second weak portion 2903 is 0.5 mm to 1.0 mm narrower than the width of the first weak portion 2804
  • the length of the second weak portion 2903 is 0.5 mm to 1.0 mm shorter than the length of the first weak portion 2804 .
  • both the first weakened portion 2804 and the second weakened portion 2903 may be designed to be circular, and the diameter of the second weakened portion 2903 is 0.5 mm to 1.0 mm smaller than the diameter of the first weakened portion 2804 .
  • the above-mentioned structure can limit the flow direction of the internal fluid and at the same time ensure the smooth flow of the fluid.
  • the present application also provides a battery 100, including the battery cell 20 described in any of the solutions above.
  • the present application also provides an electric device, including the battery 100 described in any solution above, and the battery 100 is used to provide electric energy for the electric device.
  • the electric device may be any of the aforementioned devices or systems using the battery 100.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请公开了一种电池单体、电池以及用电设备,电池单体包括电极组件、外壳、泄压机构以及支撑板,外壳用于容纳电极组件且包括第一侧板;泄压机构设置于第一侧板,泄压机构被配置为在电池单体的内部压力达到第一阈值时致动,以泄放内部压力;支撑板设置于第一侧板和电极组件之间,支撑板设有薄弱部,薄弱部与泄压机构在第一侧板的厚度方向上相对,薄弱部的形状与泄压机构轮廓的形状相同,薄弱部的外形尺寸不大于泄压机构轮廓的尺寸,支撑板被配置为在电池单体的内部压力达到第二阈值时沿着薄弱部破裂,以形成将流体引导至泄压机构的通道。本申请实施例中的技术方案能够有效提升电池单体的安全性。

Description

电池单体、电池以及用电设备
相关申请的交叉引用
本申请要求享有于2022年01月24日提交的名称为“电池单体、电池以及用电设备”的中国专利申请202220191516.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池领域,尤其涉及一种电池单体、电池以及用电设备。
背景技术
电池单体广泛应用于电子设备中,例如电动汽车、电动飞机、电动轮船、手机、笔记本电脑、电动玩具以及电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
目前,对电池单体以及电池的研究课题中,除了提高电池单体的转换效率和性能的研究之外,提高电池单体的安全也是一项重要的研究内容。如果电池单体或者电池的安全性能无法保障,那么其的应用就会受到限制。因此,提高电池安全性能是本领域一个亟待解决的技术问题。
发明内容
鉴于上述问题,本申请提供一种电池单体、电池以及用电设备,能够有效提升电池单体的安全性。
第一方面,本申请提供了一种电池单体,包括:电极组件、外壳、泄压机构以及支撑板。外壳,用于容纳电极组件且包括第一侧板;泄压机构,设置于第一侧板,泄压机构被配置为在电池单体的内部压力达到第一阈值时致动,以泄放内部压力;支撑板,设置于第一侧板和电极组件之间,支撑板设有薄弱部,薄弱部与泄压机构在第一侧板的厚度方向上相对,薄弱部的形状与泄压机构轮廓的形状相同,薄弱部的外形尺寸不大于泄压机构轮廓的尺寸,支撑板被配置为在电池单体的内部压力达到第二阈值时沿着薄弱部破裂,以形成将流体引导至泄压机构的通道。
本申请实施例的技术方案中,通过在支撑板上设置薄弱部,并且将薄弱部对应泄压机构设置,能够将电池单体在热失控时释放的流体引导至泄压机构,使得泄压机构及时致动并泄放内部流体。并且,薄弱部的形状与泄压机构轮廓的形状相同,薄弱部的外形尺寸不大于泄压机构轮廓的尺寸,能够保证将流体精准的引导至泄压机构,防止流体在外壳中淤积导致的压力释放不均。因此,上述部件能有效提高电池单体热失控时内部流体的排放速率,提高电池单体的安全性能。
在一些实施例中,第一阈值P1与第二阈值P2满足关系P2<P1。本申请实施例将第二阈值设置为小于第一阈值,能够保证在同等内部压力状况下,支撑板上的薄弱部先于泄压机构破裂,或者支撑板上的薄弱部与泄压机构同时破裂,保证电池单体内部的流体顺利排出。
在一些实施例中,支撑板包括第一部分、第二部分以及第一薄弱部,第一部分与泄压机构相对设置,第二部分环绕在第一部分的外侧,第一薄弱部连接于第一部分和第二部分之间。上述的结构,通过设置第一薄弱部将第一部分以及第二部分进行连接,在电池单体内部压力没有超过第二阈值时,保证支撑板的结构完整性,并且设置第二部分环绕在第一部分 的外侧,在电池单体内部压力超过第二阈值时,第二部分周向均匀受力顺利发生破裂。
在一些实施例中,还包括绝缘片,绝缘片包括第三部分、第四部分以及第二薄弱部,第三部分与第一部分相对设置,第四部分环绕在第三部分的外侧,第二薄弱部连接于第三部分和第四部分之间。上述的结构,通过设置第二薄弱部将第三部分以及第四部分进行连接,在电池单体内部压力没有超过第二阈值时,保持绝缘片的正常结构形态。并且设置第四部分环绕在第三部分的外侧,在电池单体内部压力超过第二阈值时,第四部分周向均匀受力顺利发生破裂。
在一些实施例中,第一薄弱部在第一侧板上的正投影完全落入泄压机构范围内,和/或第二薄弱部在第一侧板上的正投影完全落入泄压机构范围内。第一薄弱部和第二薄弱部在第一侧板上的正投影均落入泄压机构范围内,在第一部分和第三部分破裂后,分别在绝缘片和支撑板上形成通孔,电池单体内部的流体能够沿着通孔流向泄压孔并从泄压孔处排出,上述的结构能起到引流的作用。
在一些实施例中,支撑板包括沿第一部分的周向间隔设置的多个第一通孔,第一通孔沿第一侧板的厚度方向贯穿支撑板;相邻两个第一通孔之间具有第一连接段,多个第一连接段和多个第一通孔沿第一部分的周向交替布置,并形成第一薄弱部。通过设置第一连接段,将第一部分和第二部分进行连接,保证支撑板破裂之前的结构的完整性;设置第一通孔降低支撑板的第一薄弱部的强度,保证在电池单体内部压力达到第二阈值时第一部分能够沿着第一薄弱部顺利的脱离第二部分。
在一些实施例中,绝缘片包括沿第三部分的周向设置的多个第二通孔,第二通孔沿第一侧板的厚度方向贯穿绝缘片;相邻两个第二通孔之间 具有第二连接段,多个第二连接段和多个第二通孔沿第三部分的周向交替布置,并形成第二薄弱部。通过设置第二连接段,将第三部分和第四部分进行连接,保证绝缘片破裂之前的结构的完整性以及电极组件与外壳之间的绝缘性能;设置第一通孔降低第二薄弱部的强度,保证在电池单体内部压力达到第二阈值时第三部分能够沿着第二薄弱部顺利的脱离第四部分。
在一些实施例中,第一连接段的厚度小于第二部分的厚度,和/或第二连接段的厚度小于第四部分的厚度。通过减小第一连接段的厚度,改变第一部分与第二部分之间的连接强度,调整第二连接段的厚度,能够改变第三部分与第四部分之间的连接强度。
在一些实施例中,第二薄弱部在支撑板上的正投影完全落入第一部分范围内。上述的结构,能够将电池单体内部的流体集中引导至支撑板第一部分脱离后的通孔处,起到引流作用,并且保证绝缘板的绝缘性能。
在一些实施例中,多个第二通孔在支撑板上的正投影与多个第一通孔在支撑板上交错分布。通过设置第一通孔和第二通孔交错分布,保证绝缘片的绝缘性能。
在一些实施例中,在第一侧板的厚度方向上,第一薄弱部面向第一侧板的表面相对于第一部分面向第一侧板的表面向远离第一侧板的方向凹陷,和/或第一薄弱部面向电极组件的表面相对于第一部分面向电极组件的表面向远离电极组件的方向凹陷。通过将第一薄弱部设置为向内凹陷的压槽,减小第一薄弱部的厚度,降低第一薄弱部的连接强度,使第一薄弱部在内部压力达到第二阈值时能够顺利破裂。
在一些实施例中,在第一侧板的厚度方向上,第二薄弱部面向第一侧板的表面相对于第一部分面向第一侧板的表面向远离第一侧板的方向凹陷,和/或第二薄弱部面向电极组件的表面相对于第一部分面向电极组件的 表面向远离电极组件的方向凹陷。通过将第二薄弱部设置为向内凹陷的压槽,减小第二薄弱部的厚度,降低第二薄弱部的连接强度,使第二薄弱部在内部压力达到第二阈值时能够顺利破裂。
在一些实施例中,第一薄弱部在第一侧板上的正投影为圆形、椭圆形、方形以及跑道型中的任意一者,和/或第二薄弱部在第一侧板上的正投影为圆形、椭圆形、方形以及跑道型中的任意一者。上述的结构将薄弱部设计成特定的形状,以便于生产。
第二方面,本申请提供了一种电池,其包括上述实施例中的电池单体。
第三方面,本申请提供了一种用电装置,其包括上述实施例中的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请一些实施例的车辆的结构示意图;
图2位本申请一些实施例的电池的分解结构示意图;
图3为本申请一些实施例的电池单体的分解结构示意图;
图4为本申请另一些实施例的电池单体的结构示意图;
图5为本申请一些实施例的外壳的剖视结构示意图;
图6为图5所示的泄压机构在圆框A处的放大示意图;
图7为本申请一些实施例的支撑板的结构示意图;
图8为图7所示的支撑板在圆框B处的结构示意图;
图9为本申请一些实施例的绝缘片的结构示意图;
图10为本申请一些实施例的第一压槽的结构示意图。
附图标记详细说明:
1000、车辆;100、电池;200、控制器;300、马达;10、箱体;11、第一箱体;12、第二箱体;20、电池单体;21、端盖组件;22、壳体;23、电极组件;24、泄压机构;25、电极端子;26、外壳;27、第一侧板;28、支撑板;2801、薄弱部;2802、第一部分;2803、第二部分;2804、第一薄弱部;2805、第一通孔;2806、第一连接段;2807、第一压槽;29、绝缘片;2901、第三部分;2902、第四部分;2903、第二薄弱部。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语 “安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
对于电池单体来说,主要的危险来自于充电和放电过程,为了有效避免不必要的损失,对电池单体一般会有至少三重保护措施,具体的,保护措施至少包括开关元件、选择适当的隔离件材料以及泄压机构。开关元件是指电池单体内部的温度或者电阻达到一定阈值时能够及时阻止电池充电或者放电的元件。隔离件用于隔离正极极片和负极极片,并且可以在温度上升到一定数值时自动溶解掉附着于其上的微米级(甚至纳米级)的微孔,从而使金属离子不能通过隔离件,以终止电池单体的内部反应。
泄压机构是指电池单体的内部压力达到预定阈值时致动以泄放内部压力的元件或部件。该阈值设计根据需求不同而不同。上述的阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离间中的一种或几种材料。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等形式,并可以具体采用压敏元件或构造,即当电池单体的内部压力达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构破裂,从而形成可供内部压力或温度泄放的开口或通道。
上文中的“致动”指的是,泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力得以被泄放。泄压机构产生的动作可以包括但不限于,泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出,以此方式能够在可控压力的情况下使电池单体发 生泄压,从而避免潜在的更严重的事故发生。
本申请实施例所提到的来自电池单体的排放物,包括但不限于电解液、被溶解或分裂的正负极极片、隔离件的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池单体的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控而压力骤升。这种情况下通过泄压机构致动能够及时将内部压力向外释放,以防止电池单体爆炸、起火。
泄压机构通常安装于外壳,外壳与电极组件之间通常设有支撑板,支撑板用于支撑电极组件,并将电极组件与外壳之间间隔一定的空隙。
在研究过程中本申请的发明人发现,电池单体内部可供气体流动的空间有限,造成热失控时,内部流体排出的速率较低。而流体的流速受限主要是由于泄压机构受到支撑板的遮挡,导致流体排出不畅,导致安全事故。
基于上述的考虑,为了提升电池单体内部流体的排出速率,发明人研究设计出一种技术方案,在该技术方案中,电池单体包括电极组件、外壳、泄压机构以及支撑板。外壳用于容纳电极组件且包括第一侧板;泄压机构设置于第一侧板,泄压机构被配置为在电池单体的内部压力达到第一阈值时致动,以泄放内部压力;支撑板设置于第一侧板和电极组件之间,支撑板设有薄弱部,薄弱部与泄压机构在第一侧板的厚度方向上相对,薄弱部的形状与泄压机构轮廓的形状相同,薄弱部的外形尺寸不大于泄压机构轮廓的尺寸,支撑板被配置为在电池单体的内部压力达到第二阈值时沿着薄弱部破裂,以形成将流体引导至泄压机构的通道。
本申请实施例的技术方案中,通过在支撑板上设置薄弱部,并且将 薄弱部对应泄压机构设置,能够将电池单体在热失控时释放的流体引导至泄压机构,使泄压机构及时致动并泄放流体。并且,薄弱部的形状与泄压机构轮廓的形状相同,薄弱部的外形尺寸不大于泄压机构轮廓的尺寸,能够保证将流体精准的引导至泄压机构,防止流体在外壳与支撑板之间的空间淤积导致的压力释放不均。因此,上述部件能有效提高电池单体热失控时的排放速率,提高电池单体的安全性能。
本申请实施例公开的电池单体以及电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,提升电池单体内部流体排出的速率,提升电池单体以及电池的安全性能。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部、头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时 的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10包括第一箱体11和第二箱体12,第一箱体11与第二箱体12相互盖合,第一箱体11和第二箱体12共同限定出用于容纳电池单体20的容纳空间。第二箱体12可以为一端开口的空心结构,第一箱体11可以为板状结构,第一箱体11盖合于第二箱体12的开口侧,以使第一箱体11与第二箱体12共同限定出容纳空间;第一箱体11和第二箱体12也可以是均为一侧开口的空心结构,第一箱体11的开口侧盖合于第二箱体12的开口侧。当然,第一箱体11和第二箱体12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内。当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂 硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3所示,电池单体20包括有外壳26,外壳26包括端盖组件21、壳体22、电极组件23以及其他的功能性部件。
端盖组件21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖组件21的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖组件21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖组件21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖组件21上可以设置有如电极端子25等的功能性部件。电极端子25可以用于与电极组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖组件21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖组件21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖组件21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖组件21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖组件21以形成电池单体20的内部环境的组件。其中,该内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体22和端盖组件21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖组件21盖合开口以形成电池单体20的内部环境。不限 地,也可以使端盖组件21和壳体22一体化。具体地,端盖组件21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖组件21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件23的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳直接或间接连接电极端子25以形成电流回路。
请参考图4至图8,图4为本申请另一些实施例的电池单体20的结构示意图;图5为本申请一些实施例的外壳26的剖视结构示意图;图6为图5所示的泄压机构24在圆框A处的放大示意图;图7为本申请一些实施例的支撑板28的结构示意图;图8为图7所示的支撑板28在圆框B处的结构示意图。
如图3以及图4所示,本申请实施例的电池单体20包括电极组件23、外壳26、泄压机构24以及支撑板28。外壳26用于容纳电极组件23且包括第一侧板27。泄压机构24设置于第一侧板27,泄压机构24被配置为在电池单体20的内部压力达到第一阈值时致动,以泄放内部压力。 支撑板28设置于第一侧板27和电极组件23之间,支撑板28设有薄弱部2801,薄弱部2801与泄压机构24在第一侧板27的厚度方向上相对,薄弱部2801的形状与泄压机构24轮廓的形状相同,薄弱部2801的外形尺寸不大于泄压机构24轮廓的尺寸,支撑板28被配置为在电池单体20的内部压力达到第二阈值时沿着薄弱部2801破裂,以形成将流体引导至泄压机构24的通道。
泄压机构24可以设于电池单体20的侧部也可以设于电池单体20的底部,根据具体的设计需要选择,在此不做限制。在本申请的实施例中,泄压机构24设于电池单体20底部。将泄压机构24设于电池单体20底部,当电池单体20内部压力达到第一阈值时,内部的流体朝向底部喷出,能够防止喷出的流体对周围的设备或者操作人员造成伤害。支撑板28的外形轮廓与第一侧板27的轮廓相同,能够对电池单体20内部的电极组件23提供稳定的支撑作用。本申请实施例的技术方案中,通过在支撑板28上设置薄弱部2801,并且将薄弱部2801对应泄压机构24设置,能够将电池单体20在热失控时释放的流体引导至泄压机构24,使泄压机构24及时制动并泄放流体。并且,薄弱部2801的形状与泄压机构24轮廓的形状相同,薄弱部2801的外形尺寸不大于泄压机构24轮廓的尺寸,能够保证将流体精准的引导至泄压机构24,防止流体在外壳26中淤积导致的压力释放不均。因此,上述部件能有效提高电池单体20热失控时的排放速率,提高电池单体20的安全性能。
在本申请的一些实施例中,第一阈值P1与第二阈值P2满足关系P2<P1。本申请实施例将支撑板28破裂的第二阈值设置为小于泄压机构24破裂的第一阈值,能够保证在同等内部压力状况下,支撑板28上的薄弱部2801先于泄压机构24破裂,或者支撑板28上的薄弱部2801与泄压机构24同时破裂,保证电池单体20内部的流体顺利排出。
具体的,请参考图5以及图6,支撑板28与泄压机构24相邻设置。支撑板28上的薄弱部2801与泄压机构24贴合。将第二阈值设置为小于第一阈值,在电池单体20内部压力超过第二阈值后,泄压机构24不会破裂,而支撑板28上的薄弱部2801将会破裂。但是由于支撑板28与泄压机构24贴合,泄压机构24阻挡薄弱部2801的位移,因此薄弱部2801破裂后支撑板28在泄压机构24的支撑力作用下仍然能够保持原有的形状。而当电池单体20内部压力超过第一阈值,支撑板28上的薄弱部2801以及泄压机构24将会先后发生破裂。泄压机构24打开,为薄弱部2801提供了位移空间,薄弱部2801也顺利破裂。支撑板28上形成供流体通过的通道。因此,上述的设置能够保证泄压机构24破裂后,薄弱部2801也顺利破裂,保证内部流体顺利通过。
在本申请的一些实施例中,如图7所示,支撑板28包括第一部分2802、第二部分2803以及第一薄弱部2804,第一部分2802与泄压机构24相对设置,第二部分2803环绕在第一部分2802的外侧,第一薄弱部2804连接于第一部分2802和第二部分2803之间。
上述的结构,通过设置第一薄弱部2804将第一部分2802以及第二部分2803进行连接,第一薄弱部2804强度小于第一部分2802以及第二部分2803,因此在电池单体20内部压力达到第二阈值之后可以发生破裂。在电池单体20内部压力没有超过第二阈值时,保证支撑板28的结构,并且设置第二部分2803环绕在第一部分2802的外侧,在电池单体20内部压力超过第二阈值时,第二部分2803周向均匀受力顺利发生破裂。破裂指的是,第一部分2802与第二部分2803之间至少部分脱离,在支撑板28上对应泄压机构24的位置形成供电池单体20内部流体通过的通道或开口。
在本申请的一些实施例中,请结合参考图8,电池单体20还包括绝 缘片29,绝缘片29包括第三部分2901、第四部分2902以及第二薄弱部2903,第三部分2901与第一部分2802相对设置,第四部分2902环绕在第三部分2901的外侧,第二薄弱部2903连接于第三部分2901和第四部分2902之间。
上述的结构,通过设置第二薄弱部2903将第三部分2901以及第四部分2902进行连接。第二薄弱部2903强度小于第一部分2802以及第二部分2803,因此在电池单体20内部压力达到预设阈值之后可以发生破裂。本申请中设置的预设阈值可以为第二阈值,也就是将第二薄弱部2903的破裂应力设置为与第一薄弱部2804相等。这样设置可以保证绝缘片29与支撑板28在内部压力达到一定值时同时裂开,提升破裂的效率。也可以将上述的预设阈值设置为稍小于第二阈值,那么流体先冲破第二薄弱部2903然后冲破第一薄弱部2804。在电池单体20内部压力没有超过第二阈值时,保持绝缘片29的正常结构形态。并且设置第四部分2902环绕在第三部分2901的外侧,在电池单体20内部压力超过第二阈值时,第四部分2902周向均匀受力顺利发生破裂。上述的阈值也可以设置为与第二阈值不等,具体的设置方法可以根据绝缘片29以及支撑板28的结构进行,预设阈值的大小与在此不做限制。
在本申请的一些实施例中,第一薄弱部2804在第一侧板27上的正投影完全落入泄压机构24范围内。上述的结构中,第一薄弱部2804相对泄压机构24设置,且在第一侧板27厚度方向上对应泄压机构24的范围内,第一薄弱部2804破裂之后,第一部分2802至少部分脱离第二部分2803,在支撑板28上形成通孔,电池单体20内的流体能够沿着通孔流向泄压机构24,因此上述的结构能够更好地起到对内部流体进行导流的作用。
在一些可选地实施例中,第一薄弱部2804的轮廓尺寸比泄压机构24的轮廓尺寸小。例如,当泄压机构24以及第一薄弱部2804均为方形或矩形时,第一薄弱部2804的宽度尺寸比泄压机构24的宽度尺寸窄1mm至3mm、第一薄弱部2804的长度尺寸比泄压机构24的长度尺寸短1mm至3mm。上述的设计,能在对流体的流动方向进行限制的同时,保证内部流体顺利流出。
进一步的,第二薄弱部2903在第一侧板27上的正投影完全落入泄压机构24范围内。第二薄弱部2903也可以相对泄压机构24设置,且在第一侧板27厚度方向上对应泄压机构24的范围内,第二薄弱部2903破裂之后,第三部分2901至少部分脱离第四部分2902,在绝缘片29上形成通孔,电池单体20内的流体能够沿着通孔流向泄压机构24,因此上述的结构能够更好地起到对内部流体进行导流的作用。
在本申请的一些实施例中,请参考图7以及图8,支撑板28包括沿第一部分2802的周向间隔设置的多个第一通孔2805,第一通孔2805沿第一侧板27的厚度方向贯穿支撑板28;相邻两个第一通孔2805之间具有第一连接段2806,多个第一连接段2806和多个第一通孔2805沿第一部分2802的周向交替布置,并形成第一薄弱部2804。
上述结构中,通过设置第一连接段2806,将第一部分2802和第二部分2803进行连接,保证支撑板28破裂之前的结构的完整性,保证支撑板28对电极组件23的支撑作用。设置第一通孔2805降低支撑板28的第一薄弱部2804的强度,保证在电池单体20内部压力达到第二阈值时第一部分2802能够沿着第一薄弱部2804顺利的脱离第二部分2803。并且上述方法,制造便利,易于操作。
具体的,通过改变第一通孔2805的长度,能够调节第一薄弱部 2804破裂的最小应力。例如,将第一通孔2805的延长,相应的第一连接段2806连接强度降低,因此第一薄弱部2804破裂的最小应力相应减小,反之第一薄弱部2804破裂的最小应力相应增加。或者将第一通孔2805设置的密度提升,对应的第一连接段2806的连接强度也会降低,反之第一薄弱部2804破裂的最小应力相应增加。上述的设计与支撑板28的材料、厚度等因素有关,可以根据具体情况进行设置,在此不做赘述。
在本申请的一些实施例中,如图9所示,绝缘片29包括沿第三部分2901的周向设置的多个第二通孔,第二通孔沿第一侧板27的厚度方向贯穿绝缘片29;相邻两个第二通孔之间具有第二连接段,多个第二连接段和多个第二通孔沿第三部分2901的周向交替布置,并形成第二薄弱部2903。
上述的实施例通过设置第二连接段,将第三部分2901和第四部分2902进行连接,保证绝缘片29破裂之前的结构的完整性以及电极组件23与外壳26之间的绝缘性能;设置第一通孔2805降低第二薄弱部2903的强度,保证在电池单体20内部压力达到第二阈值时第三部分2901能够沿着第二薄弱部2903顺利的脱离第四部分2902。具体的,通过改变第二通孔的长度,能够调节第二薄弱部2903破裂的最小应力。第二薄弱部2903最小应力的设计与绝缘片29的材料、厚度等因素有关,可以根据具体情况进行设置,在此不做赘述。
在本申请的一些实施例中,第一连接段2806的厚度小于第二部分2803的厚度,和/或第二连接段的厚度小于第四部分2902的厚度。通过减小第一连接段2806的厚度,降低第一部分2802与第二部分2803之间的连接强度,因此通过调整第二连接段的厚度,能够改变第三部分2901与第四部分2902之间的连接强度。
在本申请的一些实施例中,第二薄弱部2903在支撑板28上的正投影完全落入第一部分2802范围内。具体的,第二薄弱部2903对应第一部分2802设置,且第三部分2901破裂后绝缘片29上形成供流体通过的开口或通道。第二薄弱部2903在第一侧板27厚度方向上面积小于第一部分2802,因此上述的开口或通道的面积也小于第一部分2802。上述的结构,能够将电池单体20内部的流体集中引导至支撑板28第一部分2802脱离后的通孔处,起到引流作用,并且保证绝缘板的绝缘性能。
在本申请的一些实施例中,多个第二通孔在支撑板28上的正投影与多个第一通孔2805在支撑板28上交错分布。通过设置第一通孔2805和第二通孔交错分布,能够有效增加电极组件23至外壳26的爬电距离,减少漏电,保证绝缘片29的绝缘性能。
在本申请的一些实施例中,如图10所示,在第一侧板27的厚度方向上,第一薄弱部2804面向第一侧板27的表面相对于第一部分2802面向第一侧板27的表面向远离第一侧板27的方向凹陷,形成第一压槽2807,或第一薄弱部2804面向电极组件23的表面相对于第一部分2802面向电极组件23的表面向远离电极组件23的方向凹陷形成第一压槽2807,或者第一薄弱部2804面向电极组件23的表面以及远离电极组件23的表面同时向内凹陷形成第一压槽2807。具体的,上述的结构通过将第一薄弱部2804设置为向内凹陷的第一压槽2807,减小第一薄弱部2804的厚度,降低第一薄弱部2804的连接强度,使第一薄弱部2804在内部压力达到第二阈值时能够顺利破裂,并且上述的结构便于生产以及操作。
在本申请的一些实施例中,在第一侧板27的厚度方向上,第二薄弱部2903面向第一侧板27的表面相对于第一部分2802面向第一侧板27的表面向远离第一侧板27的方向凹陷形成第二压槽,或第二薄弱部2903 面向电极组件23的表面相对于第一部分2802面向电极组件23的表面向远离电极组件23的方向凹陷形成第二压槽,或第二薄弱部2903面向电极组件23的表面以及远离电极组件23的表面同时向内凹陷形成第二压槽。通过将第二薄弱部2903设置为向内凹陷的压槽,减小第二薄弱部2903的厚度,降低第二薄弱部2903的连接强度,使第二薄弱部2903在内部压力达到第二阈值时能够顺利破裂。可以理解的是,将第二薄弱部2903设置为第二压槽,可以减小第一薄弱部2804的厚度,降低第二薄弱部2903的连接强度,同样可以使第二薄弱部2903在内部压力达到预设阈值时顺利破裂,并且上述的结构便于生产以及操作。
在本申请的一些实施例中,第一薄弱部2804在第一侧板27上的正投影为圆形、椭圆形、方形以及跑道型中的任意一者,和/或第二薄弱部2903在第一侧板27上的正投影为圆形、椭圆形、方形以及跑道型中的任意一者。上述的结构将薄弱部2801设计成特定的形状,以便于生产。
在一些可选地实施例中,可以将第一薄弱部2804以及第二薄弱部2903均设计为方形。第二薄弱部2903的宽度尺寸比第一薄弱部2804的宽度尺寸窄0.5mm至1.0mm、第二薄弱部2903的长度尺寸比第一薄弱部2804的长度尺寸短0.5mm至1.0mm。或者,也可以将第一薄弱部2804以及第二薄弱部2903均设计为圆形,第二薄弱部2903的直径比第一薄弱部2804的直径小0.5mm至1.0mm。上述的结构,能够对内部流体流动方向进行限制的同时,保证流体顺利流出。
根据本申请的一些实施例,本申请还提供了一种电池100,包括以上任一方案所述的电池单体20。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案所述的电池100,并且电池100用于为用电装置提供电能。用 电装置可以是前述任一应用电池100的设备或系统。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电池单体(20),包括:
    电极组件(23);
    外壳(26),用于容纳所述电极组件(23)且包括第一侧板(27);
    泄压机构(24),设置于所述第一侧板(27),所述泄压机构(24)被配置为在所述电池单体(20)的内部压力达到第一阈值时致动,以泄放所述内部压力;以及
    支撑板(28),设置于所述第一侧板(27)和所述电极组件(23)之间,所述支撑板(28)设有薄弱部(2801),所述薄弱部(2801)与所述泄压机构(24)在所述第一侧板(27)的厚度方向上相对,所述薄弱部(2801)的形状与所述泄压机构(24)轮廓的形状相同,所述薄弱部(2801)的外形尺寸不大于所述泄压机构(24)轮廓的尺寸,所述支撑板(28)被配置为在所述电池单体(20)的内部压力达到第二阈值时沿着所述薄弱部(2801)破裂,以形成将流体引导至所述泄压机构(24)的通道。
  2. 根据权利要求1所述的电池单体(20),其中,所述第一阈值P1与所述第二阈值P2满足关系P2<P1。
  3. 根据权利要求1或2所述的电池单体(20),其中,所述支撑板(28)包括第一部分(2802)、第二部分(2803)以及第一薄弱部(2804),所述第一部分(2802)与所述泄压机构(24)相对设置,所述第二部分(2803)环绕在所述第一部分(2802)的外侧,所述第一薄弱部(2804)连接于所述第一部分(2802)和所述第二部分(2803)之间。
  4. 根据权利要求3所述的电池单体(20),其中,还包括绝缘片(29),所述绝缘片(29)包括第三部分(2901)、第四部分(2902)以及第二薄弱部(2903),所述第三部分(2901)与所述第一部分(2802)相对设置,所述第四部 分(2902)环绕在所述第三部分(2901)的外侧,所述第二薄弱部(2903)连接于所述第三部分(2901)和所述第四部分(2902)之间。
  5. 根据权利要求4所述的电池单体(20),其中,所述第一薄弱部(2804)在所述第一侧板(27)上的正投影完全落入所述泄压机构(24)范围内,和/或所述第二薄弱部(2903)在所述第一侧板(27)上的正投影完全落入所述泄压机构(24)范围内。
  6. 根据权利要求4或5所述的电池单体(20),其中,所述支撑板(28)包括沿所述第一部分(2802)的周向间隔设置的多个第一通孔(2805),所述第一通孔(2805)沿所述第一侧板(27)的厚度方向贯穿所述支撑板(28);相邻两个所述第一通孔(2805)之间具有第一连接段(2806),多个所述第一连接段(2806)和多个所述第一通孔(2805)沿所述第一部分(2802)的周向交替布置,并形成所述第一薄弱部(2804)。
  7. 根据权利要求6所述的电池单体(20),其中,所述绝缘片(29)包括沿所述第三部分(2901)的周向设置的多个第二通孔,所述第二通孔沿所述第一侧板(27)的厚度方向贯穿所述绝缘片(29);相邻两个所述第二通孔之间具有第二连接段,多个所述第二连接段和多个所述第二通孔沿所述第三部分(2901)的周向交替布置,并形成所述第二薄弱部(2903)。
  8. 根据权利要求7所述的电池单体(20),其中,所述第一连接段(2806)的厚度小于所述第二部分(2803)的厚度,和/或所述第二连接段的厚度小于所述第四部分(2902)的厚度。
  9. 根据权利要求4-8中任一项所述的电池单体(20),其中,所述第二薄弱部(2903)在所述支撑板(28)上的正投影完全落入所述第一部分(2802)范围内。
  10. 根据权利要求7或8所述的电池单体(20),其中,多个所述第二通孔在所述支撑板(28)上的正投影与多个所述第一通孔(2805)在所述支撑板 (28)上交错分布。
  11. 根据权利要求4-10中任一项所述的电池单体(20),其中,在所述第一侧板(27)的厚度方向上,所述第一薄弱部(2804)面向所述第一侧板(27)的表面相对于所述第一部分(2802)面向所述第一侧板(27)的表面向远离所述第一侧板(27)的方向凹陷,和/或所述第一薄弱部(2804)面向所述电极组件(23)的表面相对于所述第一部分(2802)面向所述电极组件(23)的表面向远离所述电极组件(23)的方向凹陷。
  12. 根据权利要求4-11中任一项所述的电池单体(20),其中,在所述第一侧板(27)的厚度方向上,所述第二薄弱部(2903)面向所述第一侧板(27)的表面相对于所述第一部分(2802)面向所述第一侧板(27)的表面向远离所述第一侧板(27)的方向凹陷,和/或所述第二薄弱部(2903)面向所述电极组件(23)的表面相对于所述第一部分(2802)面向所述电极组件(23)的表面向远离所述电极组件(23)的方向凹陷。
  13. 根据权利要求4-12中任一项所述的电池单体(20),其中,所述第一薄弱部(2804)在所述第一侧板(27)上的正投影为圆形、椭圆形、方形以及跑道型中的任意一者,和/或所述第二薄弱部(2903)在所述第一侧板(27)上的正投影为圆形、椭圆形、方形以及跑道型中的任意一者。
  14. 一种电池,包括如权利要求1-13任意一项所述的电池单体(20)。
  15. 一种用电设备,包括如权利要求14所述的电池,所述电池用于提供电能。
PCT/CN2022/134007 2022-01-24 2022-11-24 电池单体、电池以及用电设备 WO2023138209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220191516.9 2022-01-24
CN202220191516.9U CN216720178U (zh) 2022-01-24 2022-01-24 电池单体、电池以及用电设备

Publications (1)

Publication Number Publication Date
WO2023138209A1 true WO2023138209A1 (zh) 2023-07-27

Family

ID=81873496

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/101110 WO2023137976A1 (zh) 2022-01-24 2022-06-24 电池单体、电池以及用电装置
PCT/CN2022/134007 WO2023138209A1 (zh) 2022-01-24 2022-11-24 电池单体、电池以及用电设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101110 WO2023137976A1 (zh) 2022-01-24 2022-06-24 电池单体、电池以及用电装置

Country Status (2)

Country Link
CN (2) CN216720178U (zh)
WO (2) WO2023137976A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216720178U (zh) * 2022-01-24 2022-06-10 宁德时代新能源科技股份有限公司 电池单体、电池以及用电设备
WO2024026825A1 (zh) * 2022-08-05 2024-02-08 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
WO2024040530A1 (zh) * 2022-08-25 2024-02-29 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
CN218351658U (zh) * 2022-10-24 2023-01-20 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
CN116526060B (zh) * 2023-07-03 2023-11-17 宁德时代新能源科技股份有限公司 电池及用电设备
CN116544488B (zh) * 2023-07-06 2023-11-14 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置
CN116706416B (zh) * 2023-08-07 2023-10-13 蜂巢能源科技股份有限公司 一种动力电池及电池包
CN117154324B (zh) * 2023-10-30 2024-04-05 宁德时代新能源科技股份有限公司 电池和用电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214898799U (zh) * 2021-06-30 2021-11-26 宁德时代新能源科技股份有限公司 端盖组件、电池及用电装置
CN216720178U (zh) * 2022-01-24 2022-06-10 宁德时代新能源科技股份有限公司 电池单体、电池以及用电设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503101B2 (ja) * 2007-06-22 2014-05-28 株式会社神戸製鋼所 電池ケース
JP2011204469A (ja) * 2010-03-25 2011-10-13 Sanyo Electric Co Ltd 角形密閉二次電池
JP5811456B2 (ja) * 2010-12-28 2015-11-11 株式会社Gsユアサ 蓄電素子
JP2016095930A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 密閉型リチウムイオン二次電池
CN107394063B (zh) * 2016-05-16 2023-06-06 宁德时代新能源科技股份有限公司 二次电池
JP6718985B2 (ja) * 2017-01-10 2020-07-08 ビークルエナジージャパン株式会社 角形二次電池
WO2021196033A1 (zh) * 2020-03-31 2021-10-07 东莞新能安科技有限公司 电池结构
CN111933833B (zh) * 2020-09-21 2021-01-01 江苏时代新能源科技有限公司 端盖组件、电池单体、电池及用电装置
CN113013503B (zh) * 2020-10-19 2022-07-15 江苏时代新能源科技有限公司 电池及用电装置
CN112018462B (zh) * 2020-10-19 2021-02-09 江苏时代新能源科技有限公司 一种电池、用电装置及制备电池的方法、设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214898799U (zh) * 2021-06-30 2021-11-26 宁德时代新能源科技股份有限公司 端盖组件、电池及用电装置
CN216720178U (zh) * 2022-01-24 2022-06-10 宁德时代新能源科技股份有限公司 电池单体、电池以及用电设备

Also Published As

Publication number Publication date
CN116806391A (zh) 2023-09-26
CN216720178U (zh) 2022-06-10
WO2023137976A1 (zh) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2023138209A1 (zh) 电池单体、电池以及用电设备
WO2023045672A1 (zh) 一种端盖、端盖组件、电池单体、电池及用电设备
WO2023098258A1 (zh) 电池单体、电池以及用电装置
CN112018302B (zh) 电池、用电装置、制备电池的方法和设备
EP3958378A1 (en) Battery, electric device, and method and device for preparing battery
EP3958388A1 (en) Battery, electric device, and method and device for preparing battery
WO2023050631A1 (zh) 端盖组件、电池单体、电池以及用电装置
CA3156564A1 (en) Case of battery, battery, power consumption device, and method and device for preparing battery
CN216750210U (zh) 电池单体、电池及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
CN216720196U (zh) 电池单体、电池及用电装置
WO2023151494A1 (zh) 一种加热组件、电池以及用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2023159847A1 (zh) 电池单体、电池及用电装置
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2023050236A1 (zh) 泄压机构、电池单体、电池、用电装置及其制造方法
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023050239A1 (zh) 泄压机构、电池单体、电池、用电装置及其制造方法
WO2023205976A1 (zh) 用于电池单体的外壳、电池单体、电池及用电装置
WO2023050075A1 (zh) 电池单体、盖组件、电池、用电装置、方法及设备
EP4009433B1 (en) Battery, electric apparatus, and battery manufacturing method and device
CN218334192U (zh) 电池及用电装置
WO2024059968A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022921633

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022921633

Country of ref document: EP

Effective date: 20240417