WO2023205868A1 - Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica - Google Patents

Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica Download PDF

Info

Publication number
WO2023205868A1
WO2023205868A1 PCT/BR2023/050127 BR2023050127W WO2023205868A1 WO 2023205868 A1 WO2023205868 A1 WO 2023205868A1 BR 2023050127 W BR2023050127 W BR 2023050127W WO 2023205868 A1 WO2023205868 A1 WO 2023205868A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
acid sequence
cells
nucleic acid
seq
Prior art date
Application number
PCT/BR2023/050127
Other languages
English (en)
French (fr)
Inventor
Dimas Tadeu Covas
Virginia Picanço E Castro
Rodrigo Do Tocantins Calado De Saloma RODRIGUES
Renata Nacasaki SILVESTRE
Julia Teixeira Cottas De AZEVEDO
Original Assignee
Fundação Hemocentro de Ribeirão Preto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102022008333-9A external-priority patent/BR102022008333B1/pt
Application filed by Fundação Hemocentro de Ribeirão Preto filed Critical Fundação Hemocentro de Ribeirão Preto
Publication of WO2023205868A1 publication Critical patent/WO2023205868A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4635Cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • A61K39/464412CD19 or B4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma

Definitions

  • the present invention falls within the field of medical sciences and genetic engineering, more specifically, in the area of antineoplastic agents, as it relates to a chimeric antigen natural killer cell receptor (NK-CAR) construct that modulates the interleukin-15 (IL-15) and interleukin-27 (IL-27) pathways for use in cancer treatment.
  • NK-CAR chimeric antigen natural killer cell receptor
  • CAR T-cell therapy has proven its importance in fighting cancer, with one caveat: this therapy requires sufficient functional primary T cells for re-infusion into the patient. Expanding T cells to obtain sufficient CAR T cells for autologous treatment is a time-consuming process and the efficiency of transduction and expansion is uncertain. Such parameters will depend greatly on the quality of these cells from patients, which, They are often very affected and do not have many healthy T cells. Furthermore, CAR T-therapy still has a long way to go to be effective against solid tumors. Therefore, all these challenges highlight the need to seek other immunotherapy options, and recent developments have shown that cell therapy with Natural Killers (NK) cells is one of the most promising.
  • NK Natural Killers
  • NK-CAR cells have several advantages over CAR T-cells.
  • CAR NK cells retain an intrinsic ability to recognize and direct their cytotoxicity to tumor cells through their native receptors, making tumor cell evasion through downregulation of the target antigen less likely. of CAR.
  • TNF tumor necrosis factor
  • IL interleukin
  • GVHD graft-versus-host disease
  • the donor's CD4+ T cells are activated when the TCR binds to peptides presented by the host's antigen presenting cells (ARC), via MHC class II.
  • ARC antigen presenting cells
  • the response triggered by the activation of CD4+ T cells that can cause an inflammatory response of the T helper 1 (Thl) or T helper 2 (Th2) type.
  • NK cells do not express TCR, they generally do not cause GVHD, which makes it possible for NK-CAR cells to be ready for off-the-shelf therapeutic use.
  • NK cells In addition to causing direct death of tumor cells, NK cells produce cytokines and chemokines that help in the activation and recruitment of dendritic cells to the tumor environment, allowing these cells to recognize tumor antigens released by lysed target cells and present them to T cells, amplifying the response against the tumor.
  • cytokines play a fundamental role in activating cells of the immune system, including NK cells.
  • CAR NK cell therapy still has to overcome several difficulties, such as loss of target antigen, tumor heterogeneity, and hostile tumor microenvironment. Furthermore, the survival and expansion of NK cells are still challenging obstacles. Thus, the ability to target NK cell cytotoxicity against refractory tumors through CAR expression will likely contribute to a paradigm shift in cancer treatment.
  • the present invention proposes a chimeric antigen natural killer cell receptor (NK-CAR) construct that modulates the interleukin-15 (IL-15) and interleukin pathways -27 (IL-27) for use in treating cancer.
  • IL-15 interleukin-15
  • IL-27 interleukin pathways -27
  • IL-15 or IL-27 pathways may promote significant increases in NK cell proliferation, activation, cytokine secretion, and tumor cytolytic activity.
  • the present invention proposes a novel vector containing a fusion of IL-15 with its R alpha receptor, aiming at better persistence of NK-CAR cell activity.
  • IL-15x IL-15R hyperagonist alpha fusion proteins authored by Mortier et al., published on January 20, 2006 in the journal J B ⁇ ol Chem., 281 (3):1612-9, under number doi: 10.1074 /jbc.M50862420, discloses that the use of a fusion protein comprising IL-15 linked to an IL-15 Rasushi domain via a flexible linker can provide more potent activity in the proliferation of lymphocytes (such as NK cells, NK-T cells and CD8-positive memory cells), activation of dendritic cells and similar than that caused by the conventional combined use of the IL-15 domain and IL-15Rasushi.
  • lymphocytes such as NK cells, NK-T cells and CD8-positive memory cells
  • the present invention proposes an NK-CAR construct in which chemokines are not used.
  • immune cells allogeneic cells such as CAR-NK cells
  • antitumor activity by CAR can be enhanced (e.g., reduction in the number of residual tumor cells, improvement in the amount of IFN ⁇ to be produced, and improvement in the migration and accumulation of host immune cells (such as T cells, dendritic cells, NK cells ) at the tumor site).
  • host immune cells such as T cells, dendritic cells, NK cells
  • the therapeutic effect on cancer can be improved by a drug containing the NK cell of the present invention.
  • NK-CAR chimeric antigen natural killer cell receptor
  • the present invention will provide significant advantages in relation to cell therapy for the treatment of neoplasms.
  • the present invention relates to a nucleic acid sequence encoding a chimeric antigen natural killer cell receptor (NK-CAR), wherein the NK-CAR comprises:
  • nucleic acid sequence further comprises a self-cleaving peptide and a transgene encoding at least one selected from the group consisting of interleukin-15 with its receptor RA (IL-15RA) and interleukin-27 (IL-27).
  • IL-15RA interleukin-15 with its receptor RA
  • IL-27 interleukin-27
  • the present invention further relates to a chimeric antigen natural killer cell receptor (NK-CAR) polypeptide comprising:
  • an intracellular T-cell signaling domain of CD3 ⁇ wherein said polypeptide further comprises a self-cleaving peptide and at least one cytokine selected from the group consisting of interleukin-15 with its receptor RA (IL-15RA) and interleukin -27 (IL- 27).
  • IL-15RA interleukin-15 with its receptor RA
  • IL- 27 interleukin -27
  • the present invention additionally relates to a vector comprising the nucleic acid sequence of the present invention.
  • the present invention additionally relates to an in vitro method of obtaining a cell comprising the following steps: (a) transforming a cell with the vector of the invention; and (b) cultivating said transformed cell under conditions of growth of the cell, wherein said cell is a Natural-Killer (NK) cell.
  • NK Natural-Killer
  • the present invention further relates to the use of said nucleic acid sequence of the invention, said NK-CAR polypeptide of the invention, or said vector of the invention for the preparation of a medicament for treating the cancer.
  • the present invention further relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the chimeric antigen natural killer cell receptor (NK-CAR) vector of the present invention, or the polypeptide of the invention, or the sequence of nucleic acid of the invention and a pharmaceutically acceptable carrier.
  • NK-CAR chimeric antigen natural killer cell receptor
  • Figure 1 refers to the lentiviral vectors used to evaluate CAR.19 expression and the effect of cytokines.
  • Figure 2 represents the electrophoresis of enzymatic digestion of lentiviral vectors and the respective size of the DNA bands.
  • Figures 3A-D graphically show the expression and stability of CAR in NK-92 cells transduced with the constructs SEW-SFFV-CAR.19, SEW-SFFV-CAR. 19-IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra and SEW-SFFV-CAR.19-IL-27.
  • Figures 5A-D graphically represent the cell proliferation of the NK-92 line modified with different CAR.19 constructs expressing interleukins, in the presence or absence of IL-2.
  • Figures 6A-C graphically represent the cytotoxic effect of NK-92-CAR cells against CD19+ (NALM- 6 and Raji) and CD19- (K562) cells.
  • Figures 7A-J graphically represent the cytokines secreted in co-culture assay of NK-92 wt or NK-92 effector cells transduced with different CAR.19 constructs and Raji, NALM-6 and K562 target cells.
  • Figures 8A-C graphically represent the cell exhaustion assay (re-calleging) of NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR cells. 19-IL-15, NK-92-SFFV-CAR.19-IL-15/IL-15Ra, NK-92-SFFV-CAR. 19-IL-27 exposed to Raji target cell in a ratio of 1:2 (effector cells: target cells).
  • Figures 9A-C graphically depict the transduction of primary PB NK cells with SEW-SFFV-CAR.19-IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra and SEW- SFEV-CAR.19-IL-27 and cell proliferation.
  • Figures 10A-B graphically represent the cytotoxicity assay for NK-PB-SFFV-CAR.19-IL-15, NK-PB-SFFV-CAR.19-IL-15/IL-15Ra and NK effector cells -PB wt against CD19 positive tumor cells (triplicates).
  • Figures 11A, 11C and HE represent the evaluation of the cytotoxic potential of NK-92-SFFV-CAR.19 (4 constructs) and NK-92 wt cells in NSG mouse models infused with 4x10 4 Raji tumor cells. luc (systemic lymphoma model).
  • Figures 12A-E represent the evaluation of the cytotoxic potential of NK-92-SFFV-CAR.19-IL-15/IL- 15Ra and NK-92 wt cells in NSG mouse models after IV infusion of 2xl0 4 cells Raji-luc tumors (systemic lymphoma model).
  • the present invention relates to a nucleic acid sequence encoding a chimeric antigen natural killer cell receptor (NK-CAR), wherein the NK-CAR comprises:
  • nucleic acid sequence further comprises a T2A self-cleaving peptide and a transgene encoding at least one selected from the group consisting of interleukin-15 with its RA receptor (IL-15RA) and interleukin-27 (IL-27).
  • IL-15RA interleukin-15 with its RA receptor
  • IL-27 interleukin-27
  • the anti-CD19 scFV comprises the amino acid sequence as established by SEQ ID NO: 1, wherein it is encoded by the nucleotide sequence as established in SEQ ID NO: 2.
  • amino acids at positions 1 to 20 of SEQ ID NO:1 refer to the IL-2 signal peptide.
  • nucleotides at positions 1 to 60 of SEQ ID NO:2 refer to the nucleotide sequence encoding the IL-2 signal peptide.
  • a signal peptide is an amino acid sequence generally located in the N-terminal region of proteins. Many of the proteins synthesized in cellular compartments do not necessarily perform their biological roles in the places where they are generated, needing to be exported to the specific region where they will perform their functions. The function of the signal peptide sequence is to mark proteins that will be exported to certain locations, such as the extracellular environment. These proteins are recognized through the signal peptide, which, after export, is removed from the protein through the action of proteases. Signal peptides can also be composed of sequences located internally in proteins, which are not subsequently removed, remaining an integral part of the protein. [48] In one embodiment of the invention, the transmembrane domain comprises the amino acid sequence as established by SEQ ID NO: 3, where it is encoded by the nucleotide sequence as established in SEQ ID NO: 4.
  • the costimulatory domain comprises the amino acid sequence as established by SEQ ID NO: 5, where it is encoded by the nucleotide sequence as established in SEQ ID NO: 6.
  • the intracellular T cell signaling domain of CD3 ⁇ comprises the amino acid sequence as set forth in SEQ ID NO: 7, wherein it is encoded by the nucleotide sequence as set forth in SEQ ID NO: 8.
  • Said self-cleaving peptide is selected from the group consisting of P2A, E2A, F2A and T2A.
  • the heterologous self-cleaving peptide T2A comprises the amino acid sequence as set forth in SEQ ID NO: 9, wherein it is encoded by the nucleotide sequence as set forth in SEQ ID NO: 10.
  • the transgene encoding at least one selected from the group consisting of interleukin-15 with its receptor RA (IL-15RA) and interleukin-27 (IL-27) comprises the nucleotide sequence as established in SEQ ID Nos: 11 and 12, respectively. Furthermore, the IL-15RA and IL-27 encoded by said transgene comprise the amino acid sequences as established by SEQ ID Nos: 13 and 14 respectively.
  • the proposed NK-CAR is considered a fourth-generation CAR designed to secrete a cytokine along with CAR signaling in the target tumor tissue, thus obtaining a more potent CAR.
  • the fourth generation CAR has several advantages: i) the cytokine of interest is deposited in the tumor region (CAR target), ii) the inducible release of cytokines avoids systemic toxicity while reaching the therapeutic dose in the target tissue, iii ) in the case of continuous release of the cytokine, it can reach high levels in the long term, as long as the producing fourth generation CAR cell is activated, iii) it can promote the initiation of a secondary immune response against cancer cells that are invisible to the NK-CAR cells and finally iv) low numbers of fourth generation CAR cells are necessary to produce the same antitumor effect as NK-CAR cells without transgenic cytokine.
  • Cytokines are crucial natural adjuvants involved in the regulation and activation of NK cells against tumor cells. Some of these stimulatory factors are IL-12, IL-15, IL-2, IFN-a and IFN-p. Members of the TNF cytokine family are expressed by NK cells and are important mediators of apoptosis.
  • IL-15 is a pleiotropic cytokine essential for the development and function of NK cells and is currently under investigation as an immunotherapeutic agent for the treatment of cancer.
  • IL-15 is a highly related to IL-2, with its own role in the development, survival, proliferation and activation of NK cells and lymphocytes. Due to these properties, IL-15 has been used in several preclinical and clinical studies, the latter involving the use of IL-15 for the treatment of hematological malignancies and solid tumors.
  • IL-15 superagonist by joining IL-15 to its soluble high-affinity alpha receptor (IL-15 Ra), inspired by the natural transpresentation of IL-15, increased the potential of this interleukin.
  • the IL-15 superagonist (IL-15 complexed with IL-15 receptor alpha (IL-15 Ra)) shows promising advantages over monomeric IL-15 as it has a prolonged half-life and more potent stimulation of NK cells. Simultaneous expression of IL-15Ra in the same cell was shown to be physiologically necessary for the production and secretion of IL-15.
  • IL-27 is a heterodimeric cytokine composed of two subunits, encoded by two genes: EBI3 (Epstein-Barr virus-induced gene 3) (chromosome 19) and IL-27p28 (chromosome 16). IL-27 is expressed by antigen-presenting cells and interacts with a specific cell surface receptor complex known as the IL-27 receptor (IL-27R). This receptor consists of two proteins, IL-27Ra (or WSX1) and gpl30. IL-27 induces the differentiation of different T cell populations in the immune system.
  • EBI3 Epstein-Barr virus-induced gene 3
  • IL-27p28 chromosome 16
  • IL-27 is expressed by antigen-presenting cells and interacts with a specific cell surface receptor complex known as the IL-27 receptor (IL-27R). This receptor consists of two proteins, IL-27Ra (or WSX1) and gpl30. IL-27 induces the differentiation of different T cell populations in
  • IL-27 is a cytokine with pro- and anti-inflammatory properties, which promotes activation of human NK cells and NKp46-dependent cytotoxicity. Additionally, IL-27 also conditions NK cells to respond appropriately to IL-18 stimulation and induces increased IFN- ⁇ secretion. IL-27 provides a feedback mechanism, triggering the secretion of the anti-inflammatory cytokine IL-10 by T cells. However, the role of IL-27 in NK cells is not yet well defined.
  • IL-15RA and IL-27 are cytokines that are not expressed by natural NK cells (in which exogenous genes are not introduced). In nature, the DNA of these proteins is not fused, and the proteins interact after translation. In both cytokines (IL15 and IL27) a ligand (linker) was added to make this junction, and this does not exist in nature.
  • an elastin linker was used to bind the EBI3 (amino acids 1 to 687 of SEQ ID NO:12) and IL-27p28 (amino acids 718 to 1362 of SEQ ID NO:12) subunits of the cytokine IL -27.
  • the linker comprises the nucleotide sequence as set forth in SEQ ID NO:19.
  • a linker was used to join IL-15 (1 to 406 amino acids of SEQ ID NO:11) with its IL-15Ra receptor (478 to 720 of SEQ ID NO: 11).
  • the linker comprises the nucleotide sequence as set forth in SEQ ID NO:20.
  • nucleic acid sequence is intended to involve a DNA or RNA polymer, that is, a polynucleotide, which may be single-stranded or double-stranded, and which may contain unnatural or altered nucleotides.
  • nucleic acid refers to a polymeric form of nucleotides of any length, or ribonucleotides (RNA), or deoxyribonucleotides (DNA). These terms refer to the primary structure of the molecule, and thus include double-stranded and single-stranded DNA, and double-stranded and single-stranded RNA.
  • the term includes, as equivalents, analogues of, or RNA, or DNA, produced from nucleotide analogues and modified polynucleotides, such as, but not limited to, methylated and/or limited polynucleotides.
  • the nucleic acid sequence encoding an NK-CAR comprises NK-CAR nucleotide sequences selected from the group consisting of SEQ ID NO:15 relating to the Cdl9/IL15RA CAR and SEQ ID NO: 16referring to CAR Cdl9/IL27.
  • nucleotides in positions 1 to 60 of SEQ ID NO:15 refer to the nucleotide sequence that encodes the IL-2 signal peptide.
  • nucleotides in positions 1 to 60 of SEQ ID NO:16 refer to the nucleotide sequence that encodes the IL-2 signal peptide.
  • NK-CAR chimeric antigen natural killer cell receptor
  • an intracellular T-cell signaling domain of CD3 ⁇ wherein said polypeptide further comprises a T2A self-dividing peptide and at least one cytokine selected from the group consisting of interleukin-15 with its receptor RA (IL-15RA ) and interleukin-27 (IL-27).
  • IL-15RA interleukin-15 with its receptor RA
  • IL-27 interleukin-27
  • said NK-CAR polypeptide comprises amino acid sequences selected from the group consisting of SEQ ID NO:17 relating to CAR Cdl9/IL15RA and SEQ ID NO:18 relating to CAR Cdl9/IL27 .
  • the present invention relates to a vector comprising the nucleic acid sequence of the present invention.
  • said vector comprises the nucleic acid sequence as set forth in SEQ ID NO: 15 or SEQ ID NO: 16.
  • Said vector is a lentiviral vector.
  • the present invention refers to an in vitro method of obtaining a cell that comprises the following steps: a) transforming a cell with the vector of the invention; and b) cultivating said transformed cell under cell growth conditions.
  • Said cell is a Natural-Killer cell
  • the present invention relates to the use of an immune effector cell genetically modified to express a chimeric antigen receptor (CAR) for the preparation of a medicine for the destruction of cancer cells, such as the treatment of cell cancers.
  • CAR chimeric antigen receptor
  • B such as lymphomas and leukemias.
  • Said cell is a Natural-Killer (NK) cell.
  • said use is for allogeneic therapeutic use.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising the chimeric antigen natural killer cell receptor (NK-CAR) vector of the present invention, or the polypeptide of the present invention, or the nucleic acid sequence of the invention and a pharmaceutically acceptable carrier.
  • NK-CAR chimeric antigen natural killer cell receptor
  • the pharmaceutical composition comprises an NK cell that expresses the CAR of the invention, more preferably, a population of NK cells that express the CAR of the invention.
  • the anti-CD19 CAR gene sequences followed by 4-1BB-CD3 ⁇ were synthesized in gene blocks and inserted into the SEW-SFFV vector through molecular cloning using the restriction sites for the NdeI and Sbfl enzymes, resulting in the SEW-SFFV-CAR.19 vector.
  • the SFFV promoter of the SEW-SFFV-CAR.19 vector was removed and replaced by the EFla promoter gene sequence by molecular cloning flanked by the restriction enzymes EcoRI and NdeI, resulting in the SEW-EFla-CAR.19 vector.
  • the anti-CD19 CAR gene sequences followed by 4-1BB-CD3 ⁇ , T2A, IL-15 and IL-15 Ra receptor sequence were synthesized in gene blocks and inserted into the SEW-SFFV vector through molecular cloning using the restriction of the Ndel and Sbfl enzymes, generating the vector SEW-SFFV-CAR.19-IL- 15/IL-15Ra.
  • the anti-CD19 CAR gene sequences followed by 4-1BB-CD3 ⁇ , T2A and IL-27 were synthesized in gene blocks and inserted into the SEW-SFFV vector through molecular cloning using the restriction sites of the Ndel and Sbfl enzymes, generating the vector SEW-SFFV-CAR.19-IL-27.
  • FIG. 1 illustrates the aforementioned lentiviral vectors constructed to evaluate the expression of CAR.19 and the effect of cytokines, in which LTR HIV AU5 refers to the self-inactivated 5' long terminal repeat (LTR) of HIV- 1; RRE refers to the element responsive to View; W refers to the packaging sign; cPPT/CTS refers to the central element of the polypurine tract; SFFV refers to the slpeen focus-forming virus promoter; scFV refers to the single-chain variable fragment; IL-15 refers to interleukin 15; IL-27 refers to interleukin 27; IL-15-IL15ROC refers to interleukin 15 fused with the IL-15 receptor; WPRE refers to the woodchuck post-transcriptional regulatory element; and LTR HIV AU3 refers to the self-inactivated 3' long terminal repeat (LTR) of HIV-1.
  • LTR HIV AU5 refers to the self-inactivated 5' long terminal
  • well A refers to electrophoresis in a 1% agarose gel containing DNA bands after enzymatic digestion of the SEW-SFFV-CAR.19 lentiviral vector
  • well B refers to electrophoresis after enzymatic digestion of the lentiviral vector SEW-SFFV-CAR.19-IL-15
  • well C refers to electrophoresis after enzymatic digestion of the lentiviral vector SEW-SFFV-CAR.19-IL-15/IL-15Ra
  • well D refers to electrophoresis after enzymatic digestion of the lentiviral vector SEW-SFFV-CAR.19-IL-27
  • well E refers to electrophoresis after enzymatic digestion of the SEW-SFFV-GFP lentiviral vector
  • a 1 kb molecular weight marker was applied to the first well of the agarose gel.
  • (B) refers to the enrichment of CAR+ populations after positive selection of NK-92-CAR cells carried out in two steps and evaluation of the stability of CAR expression after more than 30 days of culture;
  • (C) refers to dot plots representative of flow cytometry data from NK-92-SFFV-CAR.19 and NK-92-SFFV-CAR.19-IL-15 cells before and after 30 days after the positive selection process of CAR.19 cells; and
  • (D) refer to dot plots representative of flow cytometry data from NK-92-SFFV-CAR.19-IL-15/IL-15Ra and NK-92-SFFV-CAR.19 cells -IL-27 before and more than 30 days after the positive selection process of CAR.19 cells.
  • NK-92 cells that express CAR on their surface were selected with anti-CAR antibody conjugated with biotin-SP and anti-biotin microspheres, twice. After the second CAR selection, the cells showed CAR expression of about 99% ( Figure 3B).
  • NK-CAR cells with different vectors were cultured in the presence and absence of IL-2 and cell proliferation was evaluated for 21 days, also comparing the proliferation of wt NK-92 cells ( Figure 5A and 5B).
  • NK-92-SFFV-CAR.19- IL-27 cells showed greater cellular expansion than other cells transduced with CAR.19 and NK-92 wt. NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL-15, NK-92-SFFV-CAR.19-IL-15/IL-15Ra cells presented very similar cell expansion (Figure 5A).
  • NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL-27 cells stopped expand, and the number of cells began to decline.
  • NK-92-SFFV-CAR.19-IL-15 cells showed positive cell expansion until day 12, and then began to decrease in number.
  • Figures 6A-C graphically represent the cytotoxic effect of NK-92-CAR cells against CD19+ (NALM-6 and Raji) and CD19- (K562) cells, where NK-92 wt, NK-92- SFFV-CAR.19, NK-92-SFFV-CAR.
  • NK-CAR.19 cells were incubated with the human cell lines CD19 + Raji (from LB) and NALM-6 (from LLA) and with the tumor cell line CD19- K562 (specificity control), in effector cell:cell ratios target of 2:1 and 10:1, for a period of 5 hours.
  • NK-CARs induce cytokine secretion in NK cells
  • the proteins secreted after co-culture with the target cells were measured using the Lum ⁇ nex MAGPIX system.
  • the cytokines IL-15, IL-27, IFN- ⁇ , TNF-a, IL-10, IL-8, IL-18, granzyme A, granzyme B and perforin were evaluated (Figure 7).
  • Figures 7A-J graphically represent the cytokines secreted in a co-culture assay of NK-92 wt or NK-92 effector cells transduced with different CAR.19 constructs and Raji target cells, NALM-6 and K562, in which in the legend of the aforementioned graphs the effector cells are referred to as follows: NK-92 wt (not transduced); CAR.19 refer to NK-92- SFFV-CAR.19; CAR.19-IL-15 refer to NK-92-SFFV-CAR.19-IL-15; CAR.19-IL-15Ra refer to NK-92-SFFV-CAR.19-L-15/IL-15Ra; and CAR.19-IL-27 refer to NK-92-SFFV-CAR.19-IL-27.
  • NK-92 wt cells NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL15, NK-92- SFFV-CAR.19-IL-15/IL-15Ra and NK-92-SFFV-CAR.19-IL-27 were co-cultured at a ratio of effector cells: target cells of 1:2, with repeated exposures of effector cells to target cells (Raji CD19+), at times Oh, 24h and 48h.
  • the assessment of markers associated with cell exhaustion, LAG-3, PD-1 and Tim-3 was then determined by flow cytometry and compared with NK-CAR cells maintained in the absence of targets.
  • Figures 8A-C graphically represent the cell exhaustion assay (re-calleging) of NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL-15 cells , NK-92- SFFV-CAR.19-IL-15/IL-15Ra, NK-92-SFFV-CAR.19-IL-27 exposed to Raji target cell in a ratio of 1:2 (effector cells: target cells) , in which in the legend of the aforementioned graphs the effector cells are referred to as follows: WT refers to NK-92 wt; CAR.19 refers to NK-92-SFFV-CAR.19; CAR-IL-15 refers to NK-92-SFFV-CAR.
  • CAR-IL-15/IL-15Ra refers to NK-92-SFFV-CAR.19-IL-15/IL-15Ra
  • IL-27 refers to NK-92-SFFV-CAR.19-IL-27, which were co-cultivated in presence or absence of Raj1 target cells.
  • new target cells were added in a 1:2 ratio (effector: target) at times Oh, 24h and 48h, and labeled with antibodies (A) LAG-3, (B) PD-1 and (C) Tim- 3 was carried out 72 hours after the start of the test. For these results, Student's t statistical test was performed and values of p ⁇ 0.05 (*) and p ⁇ 0.01(**) were considered significant.
  • effector cells NK-92 wt, NK- 92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL15, NK-92-SFFV-CAR.19- IL-15/IL -15Ra and NK-92-SFFV-CAR.19-IL-27 showed increased expression of LAG-3 when exposed to target cells for 72h.
  • NK-92-SFFV-CAR.19-IL-27 cells showed higher expression of LAG-3 than other effector cells (Figure 8A).
  • PB NK cells were isolated by CD56-negative immunomagnetic selection. Then, NK cells were activated with beads and transduced with SEW-SFFV-CAR.19-IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra and SEW-SFFV-CAR.19-IL - 27 (MCI 200) and cultured with NK MACS medium (Miltenyi) supplemented with 5% human AB serum, IL-2 (1000 IU/mL) and IL-21 (20ng/mL).
  • NK MACS medium Miltenyi
  • FIGS 9A-C graphically depict the transduction of primary PB NK cells with SEW-SFFV-CAR.19-IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra and SEW- SFFV-CAR.19-IL-27 and cell proliferation, in which (A) shows an analysis of CAR.19 expression by flow cytometry of NK-PB-SFFV-CAR.19-IL-15, NK cells -PB-SFFV- CAR.19-IL-15/IL-15Ra, NK-PB-SFFV-CAR.19-IL-27 and NK-PB wt (unmodified NK cells - control for nonspecific binding) from peripheral blood in days 02, 07 and 21; (B) Shown is the percentage of CAR.19 cells positive for NK-PB-SFFV-CAR.19-IL-15 cells (2 donors), NK-PB-SFFV- CAR.19-IL-15/IL-15Ra (1 donor, duplicate) and NK-
  • the transduced cells showed a drop in CAR expression within 21 days ( Figure 9A and 9B), except for the NK-PB-SFFV-CAR.19-IL-15/IL-15Ra cells, which showed a slightly more constant expression.
  • NK-PB-SFFV-CAR.19-IL-15/IL-15Ra cells showed similar cell proliferation with unmodified NK cells ( Figure 9C ).
  • NK-PB-SFFV-CAR.19-IL-27 cells stopped growing from day 11 and from then on, the total number of cells began to decrease (Figure 9C).
  • Figures 10A-B graphically represent the cytotoxicity assay for NK-PB-SFFV-CAR.19-IL-15, NK-PB-SFFV-CAR.19-IL-15/IL-15Ra and NK effector cells -PB wt against CD19 positive tumor cells (triplicate), in which the cytotoxic effect of PB NK cells transduced with CAR.19 containing IL-15 or IL-15 with alpha receptor against tumor target cells was evaluated by cytotoxicity assay by the method flow cytometry.
  • NK-PB wt, NK-PB-SFFV-CAR.19-IL-15 and NK-PB-SFFV- CAR.19-IL-15/IL-15Ra were co-cultured with CD19+ (A) Raji and (B) NALM-6 tumor lines at effector:target cell ratios of 1:1 and 10:1 for 2 hours.
  • A) and B the One-way ANOVA statistical test was used, with Tukey's multiple comparison post-test. The values of p ⁇ 0.05 (*) and p ⁇ 0.005 (**) were considered.
  • NK-CAR.19 cells were incubated (7 days after transduction) with the human cell lines CD19+ Raji and NALM-6, in effector cell:cell ratios target of 1:1 and 10:1, for a period of 2 hours ( Figure 10A and 10B).
  • CAR expression in these cells at the time of the co-cultivation experiment was 23.6% for NK-PB-SFFV-CAR.19-IL-15 and 21% for NK-CB-SFFV-CAR.19-IL- 15/IL-15Ra.
  • both NK-PB-SFFV-CAR.19-IL- 15 and NK-PB-SFFV-CAR.19-IL-15/IL-15R ⁇ are more cytotoxic than NK-PB wt cells in proportion 10: 1 ( Figure 10A).
  • NK-PB-SFFV-CAR.19-IL- 15/IL-15Ra cells were more cytotoxic than non-transduced cells ( Figure 10B).
  • NK-PB-SFFV-CAR.19-IL- 15 cells did not show cytotoxicity against NALM- 6 cells.
  • PB NK cells have a higher transduction efficiency (Figure 9B) than NK-92 cells ( Figures 3A-D).
  • NK-PB-SFFV-CAR.19-IL15 and IL-15/IL-15Ra cells are cytotoxic to Raji cells and only NK-PB-SFFV-CAR.19-IL15/IL-15Ra cells are cytotoxic to NALM cells -6.
  • NK-CAR cells in vivo [121] To evaluate the in vivo antineoplastic potential of NK-CAR cells, 15 immunodeficient mice of the NOD-scid gamma (NSG) lineage received 4xl0 4 RAJI-luc cells intravenously (lateral caudal vein).
  • NSG NOD-scid gamma
  • the control group (F) (n 2) received only PBS lx.
  • Figures 11A, 11C and 11E show the evaluation of the cytotoxic potential of NK-92-SFFV-CAR.19 (4 constructs) and NK-92 wt cells in NSG mouse models infused with 4xl0 4 Raji tumor cells.
  • Figure 11A refers to the animal experiment scheme indicating the day of tumor cell infusion and treatment doses
  • Figure 11C refers to the assessment of tumor load (photons/s) on the day 21 after infusion of Raji-Luc cells
  • Figure 11E are images of the assessment of bioluminescence intensity (Photons/second) on day 9, 14 and 21 in the treated groups (NK- 92 wt, NK-92-SFFV-CAR -19, NK-92-SFFV-CAR-19-IL-15, NK-92-SFFV-CAR-19-IL-15/IL-15Ra and NK-92-SFFV-CAR-19-IL-27) and untreated (Control - PBS IX) in the IVIS Lum ⁇ na System equipment (Perkin Elmer).
  • the animals received 4 infusions (doses) of 7x10 6 NK cells mentioned above, on days 4, 8, 11 and 15 after tumor induction ( Figure 11A). During and after the treatment, tumor burden was monitored by bioluminescence quantification (IVIS Lumina System, Perkin Elmer).
  • Figures 12 AE show the evaluation of the cytotoxic potential of NK-92-SFFV-CAR.19-IL-15/IL-15Ra and NK-92 wt cells in NSG mouse models after IV infusion of 2xl0 4 tumor cells Raji-luc (systemic lymphoma model), where (A) refers to the animal experiment scheme indicating the day of tumor infusion and the days of treatment doses; (B) represents a graph of bioluminescence intensity (photons/s) on days 8, 15 and 22 of the treated groups (NK-92 wt or NK-92-SFFV-CAR-19-IL-15/IL-15Ra) and untreated (Control - PBS IX), in which the Oneway ANOVA statistical test (p>0.05) was used; (C) represents a graph of the Bioluminescence intensity (photons/s) only on day 22 of the treated groups (NK-92 wt and NK-92-SFFV-CAR-19-IL- 15/IL-15Ra) and untreated
  • NK-92-SFFV-CAR.19-IL-15/IL-15Ra cells were apparently better than NK-92 cells modified with the other CAR.19 constructs, these cells were chosen to evaluate the efficacy of the cells Genetically modified NK-92. Furthermore, 5 doses were applied instead of 4 and the first dose was infused on day 0.
  • NK-92-CAR.19 cells despite having antitumor potential in vitro, were not as effective in vivo. This can be explained by the difficulty in migrating NK-CAR cells to the areas most affected by the tumor, such as the liver, spleen and bone marrow. However, again the tests presented here showed a slight decrease in tumor progression in animals treated with NK-92-SFFV-CAR-19-IL-15/IL-15Ra.
  • constructs described here reveal that antitumor activity is increased by CAR-NK cells that coexpress interleukin-15 fused to its RA receptor (IL-15/IL15 RA) and interleukin-27 (IL- 27) and that the persistence and proliferation of CAR-NK cells are especially improved.
  • IL-15/IL15 RA interleukin-15 fused to its RA receptor
  • IL- 27 interleukin-27
  • the results described here are promising that the modality of gene transfer and expression of the interleukins IL-15RA and IL-27 together with CAR in NK cells can be extended to a modality of gene transfer and their expression on immune cells other than NK cells, such as T cells, monocytes, macrophages and dendritic cells.
  • NK-CAR chimeric antigen natural killer cell receptor
  • scFv anti-CD19 single-chain variable fragment
  • nucleic acid sequence further comprises a self-cleaving peptide and a transgene encoding at least one selected from the group consisting of interleukin-15 with its RA receptor ( IL-15RA) and interleukin-27 (IL-27).
  • IL-15RA interleukin-15 with its RA receptor
  • IL-27 interleukin-27
  • nucleic acid sequence according to item 1, wherein the anti-CD19 scFV comprises the amino acid sequence as established by SEQ ID NO: 1, wherein it is encoded by the nucleotide sequence as established by SEQ ID NO: two.
  • transmembrane domain comprises the amino acid sequence as established by SEQ ID NO: 3, in which it is encoded by the nucleotide sequence as established in SEQ ID NO: 4.
  • nucleic acid sequence according to item 1, wherein the co-stimulatory domain comprises the amino acid sequence as established by SEQ ID NO: 5, wherein it is encoded by the nucleotide sequence as established by SEQ ID NO: 6.
  • nucleic acid sequence according to item 1 wherein the intracellular T cell signaling domain of CD3 ⁇ comprises the amino acid sequence as per established by SEQ ID NO: 7, where it is encoded by the nucleotide sequence as established in SEQ ID NO: 8.
  • nucleic acid sequence according to item 1, wherein the heterologous self-cleaving peptide is preferably T2A which comprises the amino acid sequence as established in SEQ ID NO: 9, wherein it is encoded by the nucleotide sequence as established in SEQ ID NO: 10.
  • nucleic acid sequence according to item 1 wherein the transgene encoding at least one selected from the group consisting of interleukin-15 with its receptor RA (IL-15RA) and interleukin-27 (IL-27) comprises the nucleotide sequence as set forth in SEQ ID NOs: 11 and 12, respectively, wherein IL-15 is linked to its IL-15Ra receptor by a linker comprising the nucleotide sequence as set forth in SEQ ID NO:20; and the IL-27 EBI3 subunit is linked to the IL-27 IL-27p28 subunit by an elastin linker comprising the nucleotide sequence as set forth in SEQ ID NO:19.
  • IL-15RA interleukin-15 with its receptor RA
  • IL-27 interleukin-27
  • nucleic acid sequence according to item 1, wherein the IL-15RA and IL-27 encoded by said transgene comprises the amino acid sequences as established by SEQ ID Nos: 13 and 14, respectively.
  • Nucleic acid sequence according to any one of items 1 to 8 wherein the NK-CAR is a fourth generation CAR designed to secrete a cytokine in conjunction with CAR signaling in the target tumor tissue.
  • Nucleic acid sequence according to any one of items 1 to 8 comprising NK-CAR nucleotide sequences selected from the group consisting of SEQ ID NO:15 relating to CAR Cdl9/IL15RA and SEQ ID NO: 16 regarding CAR Cdl9/IL27.
  • NK-CAR Chimeric antigen natural killer cell receptor
  • an intracellular T-cell signaling domain of CD3 ⁇ wherein said polypeptide further comprises a self-cleaving peptide and one at least one cytokine selected from the group consisting of interleukin-15 with its RA receptor (IL-15RA) and interleukin-27 (IL-27).
  • IL-15RA interleukin-15 with its RA receptor
  • IL-27 interleukin-27
  • NK-CAR polypeptide comprising amino acid sequences selected from the group consisting of SEQ ID NO:17 referring to CAR Cdl9/IL15RA and SEQ ID NO:18 referring to CAR Cdl9/ IL27.
  • Vector comprising the nucleic acid sequence as defined in any of items 1 to 10.
  • Vector according to item 13, which is a lentiviral vector.
  • In vitro method of obtaining a cell comprising the following steps: a) transforming a cell with the vector as defined in any one of claims 13 to 15; and b) culturing said transformed cell under cell growth conditions.
  • nucleic acid sequence as defined in any of items 1 to 10, the NK-CAR polypeptide as defined in item 11 or 12, or the vector as defined in any of items 13 to 15 wherein it is for the preparation of a medicine to treat cancer.
  • cancer is selected from B cell cancers, such as lymphomas and leukemias.
  • composition comprising:
  • NK-CAR polypeptide as defined in claim 11 or 12, or

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oncology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A presente invenção se refere a uma sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (NK-CAR), em que o NK-CAR compreende: (a) um fragmento variável de cadeia única (scFv) anti-CD19; (b) um domínio transmembrana; (c) um domínio co- estimulatório 4-1BB; e (d) um domínio de sinalização de células T intracelular de CD3ζ, em que a referida sequência de ácido nucleico compreende ainda um peptídeo de autoclivagem e um transgene que codifica pelo menos um selecionado do grupo que consiste em IL-15RA e IL-27 para uso no tratamento do câncer.

Description

SEQUÊNCIA DE ÁCIDO NUCLEICO QUE CODIFICA UM RECEPTOR DE CÉLULA NATURAL KILLER DE ANTIGENO QUIMÉRICO (NK-CAR), POLIPEPTÍDEO DO REFERIDO NK CAR, VETOR QUE COMPREENDE A REFERIDA SEQUÊNCIA DE ÁCIDO NUCLEICO, MÉTODO IN VITRO DE OBTENÇÃO DE UMA CÉLULA NK, USO DOS REFERIDOS SEQUÊNCIA DE ÁCIDO NUCLEICA, POLIPEPTÍDEO OU VETOR, E COMPOSIÇÃO FARMACÊUTICA
Campo de Aplicação:
[1] A presente invenção se insere no campo de ciências médicas e engenharia genética, mais especificamente, na área de agentes antineoplásicos, uma vez que se refere a um construto de receptor de célula natural killer de antigeno quimérico (NK-CAR) que modula as vias de interleucina-15 (IL-15) e interleucina-27 (IL-27) para uso no tratamento do câncer.
Fundamentos da Invenção e Estado da Técnica:
[2] A terapia celular é uma abordagem inovadora que permite inúmeras possibilidades no campo do tratamento do câncer. As células T geneticamente modificadas com um receptor quimérico de antigeno (CAR) têm sido usadas com sucesso em pacientes hematológicos recidivados/refratários.
[3] Sem dúvida, a terapia com células T-CAR provou sua importância no combate ao câncer, com uma ressalva: esta terapia requer células T primárias funcionais suficientes para re-infusão no paciente. A expansão de células T até a obtenção de células T-CAR suficientes para o tratamento autólogo é um processo demorado e a eficiência da transdução e expansão é incerta. Tais parâmetros dependerão muito da qualidade destas células provenientes dos pacientes, que, muitas vezes, estão muito acometidos e não possuem muitas células T saudáveis. Além disso, a terapia com T-CAR ainda tem um longo caminho a percorrer para ser efetiva contra tumores sólidos. Desse modo, todos esses desafios destacam a necessidade de buscar outras opções de imunoterapia, e desenvolvimentos recentes mostraram que a terapia celular com células Natural Killers (NK) é uma das mais promissoras.
[4] As células NK-CAR têm várias vantagens sobre as células T-CAR. Primeiro, ao contrário das células T-CAR, as células NK-CAR retêm uma capacidade intrínseca de reconhecer e direcionar sua citotoxicidade para células tumorais através de seus receptores nativos, tornando menos provável a evasão de células tumorais por meio de regulação negativa do antigeno alvo de CAR. Segundo, as células NK-CAR não sofrem expansão clonal in vivo ou rejeição imunológica. Diferentemente das células T-CAR, as células NK não causam a sindrome de liberação de citocinas (CRS) por produzirem um perfil de citocinas diferente das células T. Células NK costumam produzir citocinas como intérferon gama (IFN-y) e o fator estimulador de colônias de granulócitos e macrófagos (GM-CSF, do inglês granulocyte macrophage colony stimulating factor) . Já as células T produzem uma grande quantidade de citocinas inflamatórias, como fator de necrose tumoral (TNF) a, interleucina (IL) 6 e IL-1, ocasionando a CRS.
[5] Por fim, um risco importante da imunoterapia de células T-CAR, para o caso de um possível tratamento alogênico, é a doença do enxerto contra o hospedeiro (DECH). A DECH tem como principal mecanismo a alorreatividade das células T às células do hospedeiro, mas ocorre por diferentes mecanismos dependendo do tipo de célula T. De maneira geral, células T CD8+ do doador são ativadas quando o seu receptor de células T (TCR) se liga aos peptideos apresentados pelo complexo principal de histocompatibilidade (MHC) de classe I do hospedeiro. Os efeitos citotóxicos de células TCD8+ são mediados por secreção de perforina e granzima, e pelo FasL. Já as células TCD4+ do doador são ativadas quando o TCR se liga aos peptideos apresentados pelas células apresentadoras de antigenos (ARC) do hospedeiro, via MHC de classe II. A resposta desencadeada pela ativação das células TCD4+ que pode ocasionar resposta inflamatória do tipo T helper 1 (Thl) ou T helper 2 (Th2).
[6] Pelo fato de não expressar TCR, as células NK geralmente não causam a DECH, o que torna possível que as células NK-CAR sejam prontas para uso terapêutico alogênico (off-the-shelf).
[7] Além de causar a morte direta de células tumorais, as células NK produzem citocinas e quimiocinas que ajudam na ativação e recrutamento de células dendriticas para o ambiente tumoral, permitindo que estas células reconheçam antigenos tumorais liberados pelas células alvo lisadas e os apresentem para células T, amplificando a resposta contra o tumor.
[8] Dessa forma, as citocinas têm um papel fundamental em ativar as células do sistema imune, incluindo células NK. A incorporação de citocinas no CAR, originando o CAR de quarta geração pode representar um aumento da potência das células NK-CAR. [9] Todavia, tal como nas células T-CAR, a terapia com células NK-CAR ainda tem que superar várias dificuldades, como perda de antigeno-alvo, heterogeneidade do tumor e microambiente tumoral hostil. Além disso, a sobrevivência e a expansão de células NK ainda são obstáculos desafiadores. Assim, a capacidade de direcionar a citotoxicidade de células NK contra tumores refratários por meio da expressão de CAR provavelmente contribuirá para uma mudança de paradigma no tratamento do câncer.
[10] Nesse sentido, de modo a solucionar os problemas técnicos citados, a presente invenção propõe um construto de receptor de célula natural killer de antigeno quimérico (NK- CAR) que modula as vias de interleucina-15 (IL-15) e interleucina-27 (IL-27) para uso no tratamento câncer. Esses construtos CAR que modulam as vias de IL-15 ou IL-27 propostos podem promover aumentos significativos na proliferação, ativação, secreção de citocinas e atividade citolitica tumoral de células NK. Além disso, a presente invenção propõe um vetor inédito contendo uma fusão de IL- 15 com seu receptor R alfa, visando uma melhor persistência de atividade das células NK-CAR.
[11] Embora existam muitos estudos clínicos utilizando células T-CAR, poucos documentos do estado da técnica descrevem estudos clinicos para células NK-CAR.
[12] O artigo cientifico intitulado "Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma . Hyperagonist IL-15 x IL-15R alpha fusion proteins" (Receptor solúvel de interleucina-15 alfa (IL-15R alfa)-sushi como agonista seletivo e potente da ação de IL- 15 através de IL-15R beta/gama. Proteínas de fusão alfa hiperagonista IL-15x IL-15R), de autoria de Mortier et al., publicado em 20 de janeiro de 2006 na revista J Bíol Chem., 281 (3):1612-9, sob o número doi: 10.1074/jbc.M50862420, divulga que o uso de uma proteína de fusão compreendendo IL- 15 ligada a um dominio IL-15Rasushi através de um ligante flexível pode fornecer atividade mais potente na proliferação de linfócitos (como células NK, células NK-T e células CD8-positivas de memória), ativação de células dendriticas e semelhantes do que o causado pelo uso combinado convencional do dominio IL-15 e IL-15Rasushi. No entanto, o referido artigo de Mortier et al. é silente quanto às descrições especificas de combinações do dominio IL-15 e IL- 15Rasushi com CAR.
[13] O artigo cientifico intitulado "Expression of IL- 15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis" (A expressão de IL-15RA ou uma fusão IL-15/IL-15RA em células T CD8+ modifica a função de células T transferidas adotivamente em cis), de autoria de Rowley et al., publicado em fevereiro de 2009 na revista Eur J Immunol., 39(2):491-506, sob o número doi: 10.1002/eji.200838594, divulga que a transfecção de uma proteína de fusão secretora de IL-15 e IL-15Ra de camundongo melhora a viabilidade e capacidade proliferativa de células T CD8-positivas. No entanto, o referido artigo de Rowley et al. não inclui células NK e nem descrições especificas de combinações de IL-15 com CAR. [14] 0 artigo cientifico intitulado "Treatment with IL- 27 attenuates experimental colitis through the suppression of the development of IL-17-producing T helper cells" (0 tratamento com IL-27 atenua a colite experimental através da supressão do desenvolvimento de células T auxiliares produtoras de IL-17), de autoria de Sasaoka et al., publicado em 30 de dezembro de 2010, na revista Am J Physiol Gastrointest Liver Physiol, 300: G568-G576, sob o número doi:10.1152/ajpgi .00329.2010, divulga um IL-27 de cadeia simples (p28 e EBI3 ligados por um ligante flexível) e um efeito do mesmo no tratamento da doença inflamatória intestinal (DII). Todavia, o referido artigo de Sasaoka et al. não inclui descrições de células CAR-NK e muito menos combinações de IL-27.
[15] O pedido de patente internacional n° PCT/US2005/036407, publicado sob o n° WO 2007/037780 em 5 de abril de 2007, em nome de GOVERNMENT OF THE UNITED STATES OF AMERICA, Represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, intitulado: "Adoptive immunotherapy with enhanced T lymphocyte survival" (Imunoterapia adotiva com sobrevivência dos linfócitos T melhorada) descreve células T que expressam IL-7 recombinante, IL-15 recombinante ou combinações destes e revela que a expressão de tais citocinas melhora a sobrevivência das células T. No entanto, o referido pedido internacional não inclui descrições especificas de células CAR-NK e tão pouco combinações das citocinas especificas com CAR.
[16] O pedido de patente internacional n° PCT/US2012/055443, publicado sob o n° WO 2013/040371 em 21 de março de 2013, em nome de BAYLOR COLLEGE OF MEDICINE, intitulado: "Targeting the tumor microenvironment using manipulated NKT cells" (Direcionando o microambiente tumoral usando células NKT manipuladas) revela uma célula T modificada contendo um construto de expressão que codifica IL-2, IL-4, IL-7, IL-15 ou combinações destes e um construto CAR. No entanto, o referido pedido internacional não inclui descrições de combinações de citocinas IL27 e nem a IL15- IL15Ra.
[17] O pedido de patente internacional n° PCT/US2014/038005, publicado sob o n° WO 2014/186469 em 20 de novembro de 2014, em nome de BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, intitulado: "Human application of engineered chimeric antigen receptor (CAR) T-cells" (Aplicação humana de células T do receptor de antigeno quimérico (CAR) projetado) divulga células CAR-T que expressam citocinas ligadas à membrana, tais como IL-7, IL- 15 (proteína de fusão IL-15/IL15Ra) e IL-21. No entanto, o referido pedido internacional não inclui descrições especificas de combinações com IL-27 e nem a utilização em células NK.
[18] O pedido de patente norte-americano n° US 2013/071414, publicado em 21 de março de 2013, em nome de DOTTI GIANPIETRO, SPENCER DAVID M, ROONEY CLIONA M, e BRENNER MALCOLM K, intitulado: "Engineered CD19-specific T lymphocytes that coexpress IL-15 and an inducible CASPASE-9 based suicide gene for the treatment of B-cell malignancies" (Linfócitos T específicos de CD19 modificados que coexpressam IL-15 e um gene suicida baseado em CASPASE-9 induzivel para o tratamento de malignidades de células B) divulga uma célula CAR-T expressando IL-15 e direcionando CD19. No entanto, o referido pedido norte-americano não inclui descrições especificas de combinações de IL-15- IL15RA, ou IL 27 em células NK.
[19] 0 pedido de patente europeu n° EP 3 845 654, publicado em 7 de julho de 2021, em nome de Noile-Immune Biotech, Inc, e Takeda Pharmaceutical Company Limited, intitulado: "CAR-expressíng T cells and CAR expression vector" (Células T que expressam CAR e vetor de expressão CAR) divulga uma célula CAR-T expressando IL-15 ou IL-27 em células T em combinação com a quimiocina CCL19. Diferentemente, a presente invenção propõe uma construção NK-CAR em que não é utilizado quimiocinas.
[20] Já o artigo cientifico intitulado "Glypican-3- specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma" (Células T CAR especificas de glipicano-3 que coexpressam IL15 e IL21 têm expansão superior e atividade antitumoral contra o carcinoma hepatocelular), de autoria de Barta et al., publicado em 17 de janeiro de 2020, na revista Cancer Immunol Res., 8(3) :309-320, sob o número doi: 10.1158/2326-6066 .CIR-19-0293, revela uma célula CAR-T que expressa IL-15 e/ou IL-21 e direciona GPC3. No entanto, o referido artigo não inclui descrições especificas de combinações com IL-15-IL15RA ou com IL-27 se distanciando, portanto, da presente invenção.
[21] Desse modo, diferentemente do estado a técnica, é um objetivo da presente invenção fornecer células imunes alogênicas (tais como células CAR-NK) com maior atividade antitumoral coexpressando citocinas. Portanto, a atividade antitumoral pelo CAR pode ser aumentada (por exemplo, redução no número de células tumorais residuais, melhoria na quantidade de IFNy a ser produzida e melhoria na migração e acúmulo de células imunes hospedeiras (como células T, células dendriticas, células NK) no local do tumor). Além disso, o efeito terapêutico no câncer pode ser melhorado por um medicamento contendo a célula NK da presente invenção.
[22] Portanto, nenhum documento do estado da técnica divulga um construto de receptor de célula natural killer de antigeno quimérico (NK-CAR) que modula as vias de interleucina-15 (IL-15) e interleucina-27 (IL-27) para uso no tratamento do câncer, tal como proposto pela presente invenção.
Sumário da invenção:
[23] A presente invenção propiciará vantagens significativas em relação à terapia celular para o tratamento de neoplasias.
[24] Em um primeiro aspecto, a presente invenção se refere a uma sequência de ácido nucleico que codifica um receptor de célula natural killer de antigeno quimérico (NK- CAR), em que o NK-CAR compreende:
(a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que a referida sequência de ácido nucleico compreende ainda um peptideo de autoclivagem e um transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
[25] Em um segundo aspecto, a presente invenção adicionalmente se refere a um polipeptideo do receptor de célula natural killer de antigeno quimérico (NK-CAR) que compreende:
(a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que o referido polipeptideo compreende ainda um peptideo de autoclivagem e pelo menos uma citocina selecionada do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL- 27).
[26] Em um terceiro aspecto, a presente invenção adicionalmente se refere a um vetor que compreende a sequência de ácido nucleico da presente invenção.
[27] Em um quarto aspecto, a presente invenção adicionalmente se refere a um método in vitro de obtenção de uma célula que compreende as seguintes etapas: (a) transformar uma célula com o vetor da invenção; e (b) cultivar a referida célula transformada sob condições de crescimento da célula, em que a referida célula é uma célula Natural-Killer (NK).
[28] Em um quinto aspecto, a presente invenção adicionalmente se refere ao uso da referida sequência de ácido nucleico da invenção, do referido polipeptideo de NK- CAR da invenção, ou do referido vetor da invenção para o preparo de um medicamento para tratar o câncer.
[29] Em um sexto aspecto, a presente invenção adicionalmente se refere a uma composição farmacêutica que compreende o vetor do receptor de célula natural killer de antigeno quimérico (NK-CAR) da presente invenção, ou o polipeptideo da invenção, ou a sequência de ácido nucleico da invenção e um veiculo farmaceuticamente aceitável.
Breve descrição das figuras:
[30] A presente invenção, juntamente com as suas vantagens adicionais, pode ser melhor entendida mediante referência às imagens em anexo e a seguinte descrição.
[31] A Figura 1 se refere aos vetores lentivirais utilizados para avaliação da expressão de CAR.19 e efeito das citocinas.
[32] A Figura 2 representa a eletroforese da digestão enzimática de vetores lentivirais e o respectivo tamanho das bandas de DNA.
[33] As Figuras 3A-D mostram graficamente a expressão e estabilidade de CAR em células NK-92 transduzidas com os constructos SEW-SFFV-CAR.19, SEW-SFFV-CAR. 19-IL-15, SEW- SFFV-CAR.19-IL-15/IL-15Ra e SEW-SFFV-CAR.19-IL-27.
[34] As Figuras 4A-E representam graficamente a porcentagem de células positivas para marcadores de NK-92: CD56, CD45, CD28, CDlla (LFA-1), CD2 (LFA-2), NKG2D, NKp30, NKp46, CD95 nas células: (A) NK-92 wt, (B) NK-92-SFFV-CAR.19, (C) NK-92-SFFV-CAR.19-IL-15, (D) NK-92-SFFV-CAR. 19-IL- 15/IL-15Ra e (E) NK-92-SFFV-CAR.19-IL-27 (n=2).
[35] As Figuras 5A-D representam graficamente a proliferação celular da linhagem NK-92 modificada com diferentes construções de CAR.19 expressando interleucinas, na presença ou ausência de IL-2.
[36] As Figuras 6A-C representam graficamente o efeito citotóxico das células NK-92-CAR contra células CD19+ (NALM- 6 e Raji) e CD19- (K562).
[37] As Figuras 7A-J representam graficamente as citocinas secretadas em ensaio de co-cultivo de células efetoras NK-92 wt ou NK-92 transduzidas com diferentes constructos de CAR.19 e células alvo Raji, NALM-6 e K562.
[38] As Figuras 8A-C representam graficamente o ensaio de exaustão celular (re-challegíng) das células NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR. 19-IL-15, NK-92-SFFV- CAR.19-IL-15/IL-15Ra, NK-92-SFFV-CAR. 19-IL-27 expostas à célula alvo Raji na proporção de 1:2 (células efetoras: células alvo).
[39] As Figuras 9A-C representam graficamente a transdução de células NK primárias de PB com vetores SEW- SFFV-CAR.19-IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra e SEW- SFEV-CAR.19-IL-27 e proliferação celular.
[40] As Figuras 10A-B representam graficamente o ensaio de citotoxicidade para células efetoras NK-PB-SFFV-CAR.19- IL-15, NK-PB-SFFV-CAR.19-IL-15/IL-15Ra e NK-PB wt contra células tumorais CD19 positivas (triplicata). [41] As Figuras 11A, 11C e H E representam a avaliação do potencial citotóxico das células NK-92-SFFV-CAR.19 (4 constructos) e NK-92 wt em modelos de camundongos NSG com infusão de 4xl04 células tumorais Raji-luc (modelo sistêmico de linfoma).
[42] As Figuras 12A-E representam a avaliação do potencial citotóxico das células NK-92-SFFV-CAR.19-IL-15/IL- 15Ra e NK-92 wt em modelos de camundongos NSG após infusão IV de 2xl04 células tumorais Raji-luc (modelo sistêmico de linfoma).
Descrição detalhada da invenção:
[43] Embora a presente invenção possa ser suscetível a diferentes concretizações, é mostrada, na seguinte discussão detalhada, uma concretização preferida, com o entendimento de que a presente concretização deve ser considerada uma exemplificação dos princípios da invenção e não pretende limitar a presente invenção ao que foi descrito neste relatório.
[44] A presente invenção se refere a uma sequência de ácido nucleico que codifica um receptor de célula natural killer de antigeno quimérico (NK-CAR), em que o NK-CAR compreende:
(a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana de CD8;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que a referida sequência de ácido nucleico compreende ainda um peptideo autoclivagem T2A e um transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
[45] Em uma concretização da invenção, o scFV anti-CD19 compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 1, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 2.
[46] Adicionalmente, os aminoácidos nas posições 1 ao 20 da SEQ ID NO:1 referem-se ao peptideo sinal de IL-2. E os nucleotideos nas posições 1 ao 60 da SEQ ID NO:2 referem-se a sequência de nucleotideos que codifica o peptideo sinal de IL-2.
[47] Peptideo sinal é uma sequência de aminoácidos geralmente localizada na região N-terminal de proteínas. Muitas das proteínas sintetizadas nos compartimentos celulares não desempenham seus papéis biológicos necessariamente nos locais onde são geradas, necessitando ser exportadas para a região especifica onde exercerão suas funções. A sequência do peptideo sinal tem por função marcar as proteínas que serão exportadas para determinados locais, como por exemplo, o ambiente extracelular. Estas proteínas são reconhecidas por meio do peptideo sinal, o qual, após a exportação, é removido da proteína por meio da ação de proteases. Peptideos sinais também podem ser compostos por sequências localizadas internamente em proteínas, não sendo posteriormente removidas, mantendo-se como parte integrante da proteína. [48] Em uma concretização da invenção, o dominio transmembrana compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 3, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 4.
[49] Em uma concretização da invenção, o dominio co- estimulatório compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 5, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 6.
[50] Em uma concretização da invenção, o dominio de sinalização de células T intracelular de CD3Ç compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 7, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 8.
[51] O referido peptideo de autoclivagem é selecionado do grupo que consiste em P2A, E2A, F2A e T2A.
[52] Em uma concretização da invenção, o peptideo de autoclivagem heterólogo T2A compreende a sequência de aminoácidos conforme estabelecida na SEQ ID NO: 9, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 10.
[53] Em uma concretização da invenção, o transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27) compreende a sequência de nucleotideos conforme estabelecida nas SEQ ID Nos: 11 e 12, respectivamente. Ainda, as IL-15RA e IL-27 codificadas pelo referido transgene compreende as sequências de aminoácidos conforme estabelecidas pelas SEQ ID Nos: 13 e 14 respectivamente .
[54] Em vista do acima exposto, o NK-CAR proposto é considerado um CAR de quarta geração projetado para secretar uma citocina juntamente com a sinalização do CAR no tecido tumoral alvo, obtendo assim um CAR mais potente.
[55] 0 CAR de quarta geração apresenta várias vantagens: i) a citocina de interesse é depositada na região tumoral (alvo do CAR), ii) a liberação induzivel de citocinas evita a toxicidade sistêmica enquanto atinge a dose terapêutica no tecido alvo, iii) no caso de liberação continua da citocina, esta pode atingir altos niveis a longo prazo, desde que a célula CAR de quarta geração produtora esteja ativada, iii) pode promover a iniciação de uma resposta imune secundária contra as células cancerígenas que são invisíveis para as células NK-CAR e por fim iv) são necessários baixos números de células CAR de quarta geração para produzir o mesmo efeito antitumoral que as células NK- CAR sem citocina transgênica.
[56] As citocinas são adjuvantes naturais cruciais envolvidas na regulação e ativação das células NK contra as células tumorais. Alguns desses fatores estimulatórios são IL-12, IL-15, IL-2, IFN-a e IFN-p. Os membros da familia de citocinas dos TNFs são expressos pelas células NK e importantes mediadores de apoptose.
[57] A IL-15 é uma citocina pleiotrópica essencial para o desenvolvimento e função das células NK e está atualmente sob investigação como um agente imunoterapêutico para o tratamento do câncer. A IL-15 é uma interleucina altamente relacionada a IL-2, com um papel próprio no desenvolvimento, sobrevivência, proliferação e ativação de células NK e linfócitos. Devido a essas propriedades, a IL-15 foi usada em diversos estudos pré clinicos e clínicos, esses últimos envolvendo uso de IL-15 para tratamento de doenças malignas hematológicas e tumores sólidos.
[58] Recentemente, a criação do superagonista de IL-15 pela junção de IL-15 ao seu receptor alfa de alta afinidade (IL-15 Ra) solúvel, inspirado na transapresentação natural de IL-15, aumentou o potencial desta interleucina. 0 superagonista da IL-15 (IL-15 complexada com receptor alpha de IL-15 (IL-15 Ra)) mostra vantagens promissoras sobre a IL-15 monomérica por apresentar meia-vida prolongada e estimular de forma mais potente as células NK. A expressão simultânea de IL-15Ra na mesma célula se mostrou fisiologicamente necessária para a produção e secreção de IL-15.
[59] Uma outra citocina importante que pode atuar na expansão e no aumento da citotoxicidade de células NK, é a IL-27. A IL-27 é uma citocina heterodimérica composta por duas subunidades, codificadas por dois genes: o EBI3 (do inglês Epsteín-Barr virus-induced gene 3)(cromossomo 19) e o IL-27p28 (cromossomo 16). A IL-27 é expressa por células apresentadoras de antigeno e interage com um complexo receptor de superfície celular especifico conhecido como receptor de IL-27 (IL-27R). Este receptor consiste em duas proteínas, IL-27Ra (ou WSX1) e gpl30. A IL-27 induz a diferenciação das diversas populações de células T no sistema imunológico. [60] A IL-27 é uma citocina com propriedades pro- e anti-inflamatórias, que promove ativação das células NK humanas e citotoxicidade dependente de NKp46. Adicionalmente, a IL-27 também condiciona as células NK para resposta adequada ao estimulo de IL-18 e induz ao aumento da secreção de IFN-y. A IL-27 fornece um mecanismo de feedback, desencadeando a secreção da citocina anti-inflamatória IL- 10 pelas células T. No entanto, o papel de IL-27 nas células NK ainda não está bem definido.
[61] É válido ressaltar que as IL-15RA e IL-27 são citocinas que não são expressas por células NK naturais (nas quais não são introduzidos genes exógenos). Na natureza, o DNA dessas proteínas não é fusionado, e as proteínas interagem depois da tradução. Em ambas citocinas (IL15 e IL27) foi adicionado um ligante (linker) para fazer essa junção, e isso não existe na natureza.
[62] Em uma concretização, foi utilizado um ligante de elastina para ligar as subunidades EBI3 (aminoácidos 1 ao 687 da SEQ ID NO:12) e o IL-27p28 (aminoácidos 718 ao 1362 da SEQ ID NO:12) da citocina IL-27. Preferencialmente, o ligante compreende a sequência de nucleotideos conforme estabelecido pela SEQ ID NO:19.
[63] Em uma concretização, para o IL-15Ra foi utilizado um ligante para junção da IL-15 (1 ao 406 aminoácidos da SEQ ID NO:11) com o seu receptor IL-15Ra (478 ao 720 da SEQ ID NO:11). Preferencialmente, o ligante compreende a sequência de nucleotideos conforme estabelecido pela SEQ ID NO:20.
[64] O termo "sequência de ácido nucleico" é pretendido para envolver um polímero de DNA ou de RNA, isto é, um polinucleotideo, que pode ser de trançado único ou de trançado duplo, e que pode conter nucleotideos não naturais ou alterados. 0 termo "ácido nucleico", conforme aqui usado, se refere a uma forma polimérica de nucleotideos de qualquer comprimento, ou ribonucleotideos (RNA), ou desoxirribonucleotideos (DNA). Estes termos se referem à estrutura primária da molécula, e, desse modo, incluem DNA de trançado duplo e de trançado único, e RNA de trançado duplo e de trançado único. 0 termo inclui, como equivalentes, análogos de, ou RNA, ou DNA, produzidos de análogos de nucleotideo e polinucleotideos modificados, tais como, embora não limitados a, polinucleotideos metilatados e/ou limitados.
[65] Em uma concretização da invenção, a sequência de ácido nucleico que codifica um NK-CAR compreende as sequências nucleotidicas de NK-CAR selecionadas do grupo que consiste em SEQ ID NO:15 referente ao CAR Cdl9/IL15RA e SEQ ID NO:16referente ao CAR Cdl9/IL27.
[66] É válido ressaltar que os nucleotideos nas posições 1 ao 60 da SEQ ID NO:15 referem-se à sequência de nucleotideos que codifica o peptideo sinal IL-2. Já os nucleotideos nas posições 1 ao 60 da SEQ ID NO:16 referem- se à sequência de nucleotideos que codifica o peptideo sinal IL-2.
[67] Adicionalmente, a presente invenção se refere ao polipeptideo do receptor de célula natural killer de antigeno quimérico (NK-CAR) que compreende:
(a) um fragmento variável de cadeia única (scFv) anti-
Figure imgf000021_0001
(b) um domínio transmembrana de CD8;
(c) um domínio co-estimulatório 4-1BB; e
(d) um domínio de sinalização de células T intracelular de CD3Ç, em que o referido polipeptídeo compreende ainda um peptídeo de auto d ivagem T2A e pelo menos uma citocina selecionada do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
[68] Em uma concretização da invenção, o referido polipeptídeo do NK-CAR compreende as sequências de aminoácidos selecionadas do grupo que consiste em SEQ ID NO:17 referente ao CAR Cdl9/IL15RA e SEQ ID NO:18 referente ao CAR Cdl9/IL27.
[69] Adicionalmente,a presente invenção se refere a um vetor que compreende a sequência de ácido nucleico da presente invenção.
[70] Em uma concretização da invenção, o referido vetor compreende a sequência de ácido nucleico conforme estabelecida na SEQ ID NO: 15 ou SEQ ID NO:16.
[71] O referido vetor é um vetor lentiviral.
[72] Adicionalmente,a presente invenção se refere a um método in vitro de obtenção de uma célula que compreende as seguintes etapas: a) transformar uma célula com o vetor da invenção; e b) cultivar a referida célula transformada sob condições de crescimento da célula.
[73] A referida célula é uma célula Natural-Killer
(NK). [74] Adicionalmente, a presente invenção se refere ao uso de uma célula efetora imune geneticamente modificada para expressar um receptor de antigeno quimérico (CAR) para o preparo de um medicamento para a destruição de células cancerígenas, tal como o tratamento dos cânceres de células B, tais como linfomas e leucemias.
[75] A referida célula é uma célula Natural-Killer (NK).
[76] Em uma concretização da invenção, o referido uso é para uso terapêutico alogênico.
[77] Adicionalmente,a presente invenção se refere a uma composição farmacêutica que compreende o vetor do receptor de célula natural killer de antigeno quimérico (NK-CAR) da presente invenção, ou o polipeptideo da presente invenção, ou a sequência de ácido nucleico da invenção e um veiculo farmaceuticamente aceitável.
[78] Em uma concretização preferida, a composição farmacêutica compreende uma célula NK que expressa o CAR da invenção, mais preferivelmente, uma população de células NK que expressam o CAR da invenção.
[79] Portanto, de modo a elucidar a presente invenção, a seguir são apresentados exemplos que adicionalmente ilustram a invenção, mas, naturalmente, não devem ser construídos como de qualquer modo limitando o seu escopo.
Exemplos:
- Construção dos vetores lentívíraís:
[80] As sequências gênicas de CAR anti-CD19 seguida de 4-1BB-CD3Ç foram sintetizadas em blocos gênicos e inserida no vetor SEW-SFFV através de clonagem molecular utilizando os sítios de restrição das enzimas Ndel e Sbfl, resultando no vetor SEW-SFFV-CAR.19. 0 promotor SFFV do vetor SEW-SFFV- CAR.19 foi removido e substituído pela sequência gênica do promotor EFla por clonagem molecular flanqueada pelas enzimas de restrição EcoRI e Ndel, resultando no vetor SEW- EFla -CAR.19.
[81] Em seguida, três vetores foram sintetizados contendo, além de sequência gênica de CAR.19, ou a sequência de IL-15, ou IL-15 juntamente com IL-15Ra ou IL-27, utilizando o backbone SEW-SFFV.
[82] As sequências gênicas de CAR anti-CD19 seguida de 4-1BB-CD3Ç, T2A e IL-15 foram sintetizadas em blocos gênicos e inserida no vetor SEW-SFFV através de clonagem molecular utilizando os sítios de restrição das enzimas Ndel e Sbfl, gerando o vetor SEW-SFFV-CAR.19-IL-15. As sequências gênicas de CAR anti-CD19 seguida de 4-1BB-CD3Ç, T2A, IL-15 e sequência de receptor Ra de IL-15 foram sintetizadas em blocos gênicos e inserida no vetor SEW-SFFV através de clonagem molecular utilizando os sítios de restrição das enzimas Ndel e Sbfl, gerando o vetor SEW-SFFV-CAR.19-IL- 15/IL-15Ra. As sequências gênicas de CAR anti-CD19 seguida de 4-1BB-CD3Ç, T2A e IL-27 foram sintetizadas em blocos gênicos e inserida no vetor SEW-SFFV através de clonagem molecular utilizando os sítios de restrição das enzimas Ndel e Sbfl, gerando o vetor SEW-SFFV-CAR.19-IL-27.
[83] A Figura 1 ilustra os referidos vetores lentivirais construídos para avaliação da expressão de CAR.19 e efeito das citocinas, em que LTR HIV AU5 se refere a repetição terminal longa 5' auto-inativada (LTR) do HIV- 1; RRE se refere ao elemento responsive a Ver; W se refere ao sinal de embalagem; cPPT/CTS se refere ao elemento central do trato polipurinico; SFFVse refere ao promotor de virus formador de foco slpeen; scFV se refere ao fragmento variável de cadeia única; IL-15 se refere à interleucina 15; IL-27 se refere à interleucina 27; IL-15-IL15ROC se refere à interleucina 15 fusionada com receptor a da IL-15; WPRE se refere ao elemento regulador pós-transcricional marmota; e LTR HIV AU3 se refere à repetição terminal longa 3' auto- inativada (LTR) do HIV-1.
[84] No backbone lentiviral SEW-SFFV-CAR .19 foram clonados as citocinas IL-15, IL-15/IL15-RA (expressando interleucina 15 com receptor Ra) e IL-27 e foi gerado os vetores: SEW-SFFV-CAR. 19-IL-15, SEW-SFFV-CAR.19-IL-15/IL- 15Ra, SEW-SFFV-CAR.19-IL-27 . Os produtos das digestões desses vetores foram separados por eletroforese em gel de agarose 1% (Figura 2), resultando nas bandas de tamanhos aproximados do esperado, demonstrando a integridade da sequência de DNA (Tabela 1).
Tabela 1 - Enzimas de restrição usadas para digestão de vetores lentivirais e o tamanho esperado das bandas.
Figure imgf000025_0001
Figure imgf000026_0001
[85] Para melhor entendimento, na Figura 2, o poço A se refere a eletroforese em gel de agarose 1% contendo bandas de DNA após digestão enzimática do vetor lentiviral SEW- SFFV-CAR.19, o poço B se refere a eletroforese após digestão enzimática do vetor lentiviral SEW-SFFV-CAR.19-IL-15, o poço C se refere a eletroforese após digestão enzimática do vetor lentiviral SEW-SFFV-CAR.19-IL-15/IL-15Ra; o poço D se refere a eletroforese após digestão enzimática do vetor lentiviral SEW-SFFV-CAR.19-IL-27 ; e o poço E se refere a eletroforese após digestão enzimática do vetor lentiviral SEW-SFFV-GFP; no primeiro poço do gel de agarose foi aplicado um marcador de peso molecular 1 kb (Axygen).
[86] Desse modo, o vetor SEW-SFFV-GFP foi utilizado nos experimentos de padronização de transdução de células NK-92.
Testes experimentais:
- Transdução de células NK-92 com diferentes vetores de CAR.19 e seleção positiva das células
[87] As Figuras 3A-D mostram graficamente a expressão e estabilidade de CAR em células NK-92 transduzidas com os constructos SEW-SFFV-CAR. 19, SEW-SFFV-CAR.19-IL-15, SEW- SFFV-CAR.19-IL-15/IL-15Ra e SEW-SFFV-CAR.19-IL-27, em que (A) se refere ao percentual de células NK-92 CAR+ transduzidas com os constructos SEW-SFFV-CAR.19 (n=2), SEW- SFFV-CAR.19-IL-15 (n=3), SEW-SFFV-CAR.19-IL-15/IL-15Ra
(n=2) e SEW-SFFV-CAR.19-IL-27 (n=3) nos dias 07 e 14 após a transdução; (B) se refere ao enriquecimento das populações CAR+ após seleção positiva de células NK-92-CAR realizada em duas etapas e avaliação da estabilidade da expressão de CAR após mais de 30 dias de cultivo; (C) se refere aos gráficos de pontos (dot plots) representativos de dados de citometria de fluxo de células NK-92-SFFV-CAR.19 e NK-92-SFFV-CAR.19- IL-15 antes e mais de 30 dias depois do processo de seleção positiva das células CAR.19; e (D) se referem aos gráficos de pontos (dot plots) representativos de dados de citometria de fluxo de células NK-92-SFFV-CAR.19-IL-15/IL-15Ra e NK-92- SFFV-CAR.19-IL-27 antes e mais de 30 dias depois do processo de seleção positiva das células CAR.19.
[88] Portanto, as células NK-92 foram transduzidas com os diferentes vetores e a marcação de CAR.19 foi realizada nos dias 07 e 14. Os resultados demonstraram uma eficiência de transdução (dia 7) de 10,7%±l,93 para SEW-SFFV-CAR.19, 5,8%±3 para SEW-SFFV-CAR.19-IL-15, 3,7%±1,1 para SEW-SFFV- CAR.19-IL-15Ra e 3,2%±0,6 para SEW-SFFV-CAR.19-IL-27. É possível observar que os vetores de menor tamanho (SEW-SFFV- CAR.19 e SEW-SFFV-CAR.19-IL-15) (Tabela 1) apresentam maior eficiência de transdução (Figura 3A). Em seguida, com intuito de aumentar a porcentagem de células NK-92 positivas para CAR.19, as células NK-92 que expressam CAR em sua superfície foram selecionadas com anticorpo anti-CAR conjugado com biotina-SP e por microesferas anti-biotina, por duas vezes. Após a segunda seleção de CAR, as células apresentaram expressão de CAR de cerca de 99% (Figura 3B).
[89] Todas as presentes construções mostraram uma expressão bastante estável de CAR (Figuras 3A-D), medida pela expressão de superfície da porcentagem de scFv quimérico (específico para CD19) após 30 dias em cultura (pós-seleção).
A expressão de CAR permaneceu praticamente constante para NK-92-SFFV-CAR.19 (97%), NK-92-SFFV-CAR.19-IL-15 (95%), NK- 92-SFFV-CAR .19-IL-15/IL-15Ra (85%) e NK-92-SFFV-CAR.19-IL- 27 (74%). Estes resultados indicam que a expressão do CAR, impulsionada pelo promotor SFFV, permanece estável durante a expansão das células NK-92. Durante esse período, IL-2 (concentração final de 500 UI/mL) foi adicionada à cultura a cada 2-3 dias.
[90] Após a geração de células NK-92-CAR foi realizado a caracterização imunofenotípica das diferentes células NK- 92-CAR após a expansão (Figuras 4A-E).
[91] A saber, as Figuras 4A-E representam graficamente a porcentagem de células positivas para marcadores de NK-92: CD56, CD45, CD28, CDlla (LFA-1), CD2 (LFA-2), NKG2D, NKp30, NKp46, CD95 nas células: (A) NK-92 wt, (B) NK-92-SFFV-CAR.19, (C) NK-92-SFFV-CAR.19-IL-15, (D) NK-92-SFFV-CAR. 19-IL- 15/IL-15Ra e (E) NK-92-SFFV-CAR.19-IL-27 (n=2); em que para as células modificadas geneticamente, a expressão de CAR.19 também foi avaliada.
[92] Nesse sentido, as células NK-92 wt e todas as células NK-92 expressando CAR. 19 e as interleucinas correspondentes expressaram os marcadores CD56, CD45, CD28, CDlla (LFA-1), NKp30 e menos de 50% das mesmas células expressaram CD2, CD95, NKG2D e NKp46. As células não expressaram CD16, DNAM-1, CD3, CD69. Assim, os resultados aqui presentes mostraram que não houve diferença de expressão dos marcadores imunofenotipicos após a transdução das células com o CAR. (n=2).
- Efeito das cltoclnas na expansão de células NK-92-CAR
[93] Após ser avaliado a estabilidade da expressão de CAR dos vetores SEW-SFFV-CAR.19, SEW-SFFV-CAR.19-IL-15, SEW- SFFV-CAR.19-IL-15/IL-15Ra e SEW-SFFV-CAR.19-IL-27, foi necessário analisar o efeito das interleucinas presentes no vetor e o seu efeito na proliferação das células transduzidas. Foi investigado ainda se as citocinas produzidas nos vetores seriam suficientes para substituir a IL-2 exógena e permitir a expansão celular.
[94] Nas Figuras 5A-D são mostradas graficamente a proliferação celular da linhagem NK-92 modificada com diferentes construções de CAR.19 expressando interleucinas, na presença ou ausência de IL-2. São mostradas ainda as células NK-92 transduzidas com vetores de CAR.19 co- expressando interleucinas IL-15 ou IL-15 com receptor a ou IL-27, em que (A) se refere à expansão das células NK-92 wt (n=4), NK-92-SFFV-CAR. 19 (n=4), NK-92-SFFV-CAR. 19-IL-15 (n=4), NK-92-SFFV-CAR.19-IL-15/IL-15Ra (n=4) e NK-92-SFFV- CAR.19-IL-27 (n=4) após 21 dias de cultivo com presença de IL-2 (500 UI/mL); (B) se refere à expansão das células NK- 92 wt (n=4), NK-92-SFFV-CAR.19 (n=4), NK-92-SFFV-CAR.19-IL- 15 (n=4), NK-92-SFFV-CAR.19-IL-15/IL-15Ra (n=4) e NK-92- SFFV-CAR.19-IL-27 (n=4) após 21 dias de cultivo sem IL-2; (C) se refere à viabilidade das células NK-92 cultivadas na presença de IL-2 por 21 dias; e (D) se refere à viabilidade das células NK-92 cultivadas na ausência de IL-2 por 21 dias. Para tais resultados, foi considerado o teste estatístico Two-way ANOVA, pós-teste de comparação múltipla de Tukey, e foram considerados valores de p<0,0003 (***).
[95] Portanto, as células NK-CAR com diferentes vetores foram cultivadas na presença e ausência de IL-2 e a proliferação das células foi avaliado por 21 dias, comparando-se também a proliferação das células NK-92 wt (Figura 5A e 5B).
[96] Na presença de IL-2 as células NK-92-SFFV-CAR.19- IL-27 apresentaram uma expansão celular superior às outras células transduzidas com CAR.19 e a NK-92 wt. Já as células NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL-15, NK-92- SFFV-CAR.19-IL-15/IL-15Ra apresentaram expansão celular muito similar (Figura 5A).
[97] Na condição de cultivo sem IL-2, após 9 dias de cultivo, as células NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV- CAR.19-IL-27 pararam de expandir, e o número de células começou a decair. Já as células NK-92-SFFV-CAR.19-IL-15 apresentaram expansão celular positiva até dia 12, e depois começaram a decrescer em número. 0 único tipo celular que apresentou crescimento em número durante todo o periodo de 21 dias foi a NK-92-SFFV-CAR.19-IL-15/IL-15Ra, apesar de ter tido um crescimento inferior a condição com IL-2 (Média= 2,8 x 109 vs. média= 9,7 x 107 na condição sem IL-2) (Figura 5A e 5B). A viabilidade celular se manteve entre 85-99% nas células cultivadas na presença de IL-2 (Figura 5C), enquanto dentre as células cultivadas sem IL-2, apenas as células NK- 92-SFFV-CAR.19-IL-15/IL-15Ra se mantiveram com viabilidade entre 80-95% durante os 21 dias de cultivo (Figura 5D). [98] Dessa forma, as células que foram transduzidas com vetor SEW-SFFV-CAR.19-IL-15/IL-15Ra puderam ser expandidas sem IL-2 ou com quantidades inferiores dessa interleucina, reduzindo os custos da cultura.
- Composição do CAR influencia a atividade citotóxica contra células B CD19+
[99] Um amplo espectro de ensaios de citotoxicidade e viabilidade celular é atualmente utilizado para determinar a potência de células T/NK-CAR. Um ensaio ideal para a determinação da viabilidade e/ou citotoxicidade in vitro deve ser rápido, seguro, confiável, eficiente e econômico. Portanto, foi testado três diferentes métodos: i) quantificação por citometria de fluxo, ii) ensaio de Delfia Europium e iii) Incucyte® Cytotoxicity Assay.
[100] As Figuras 6A-C representam graficamente o efeito citotóxico das células NK-92-CAR contra células CD19+ (NALM-6 e Raji) e CD19- (K562), em que as células NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR. 19-IL-15, NK-92-SFFV- CAR.19-IL-15/IL-15Ra e NK-92-SFFV-CAR.19-IL-27 foram co- cultivada com linhagens tumorais CD19+, as quais (A) se refere Raji (n=3); (B) se refere NALM-6 (n=6) e linhagem tumoral CD19-; e (C) se refere K562 (n=6), nas proporções células efetoras:alvo de 2:1 e 10:1, por 5 horas. Para tais resultados, foi realizado o teste estatístico One-way ANOVA, com pós-teste de comparação múltipla de Tukey, e foram considerados os valores de p: p<0,05 (*), p<0,01 (**); p<0,0003 (***) e p<0,0001 (****)•
[101] Conforme mostrado nas Figuras 6A-C, para avaliar a citotoxicidade por citometria de fluxo, foi incubado células NK-CAR.19 com as linhagens de celulares humanas CD19 + Raji (de LB) e NALM-6 (de LLA) e com a linhagem de celular tumoral CD19- K562 (controle de especificidade), nas proporções células efetoras:células alvo de 2:1 e 10:1, por um periodo de 5 horas.
[102] No co-cultivo com a linhagem celular Raji observou-se que na proporção 2:1, apenas a NK-92-SFFV- CAR.19-IL-27 foi mais citotóxica que as células NK-92 wt e os outros constructos de CAR.19. Já na proporção 10:1 todos os constructos de CAR.19 são mais citotóxicos que as células NK-92 não modificadas, e, além disso, as células NK-92-SFFV- CAR.19-IL-27 apresentaram uma atividade citotóxica mais eficiente contra as células Raji do que o constructo NK-92- SFFV-CAR.19, NK-92-SFFV-CAR.19-IL-15 e NK-92-SFFV-CAR.19- IL-15/IL-15Ra (Figura 6A). Para a linhagem celular NALM-6, observou-se que apenas a NK-92-SFFV-CAR.19-IL-15/IL-15Ra foi mais citotóxica que as células NK-92 wt na proporção 2:1. No entanto, na proporção 10:1 todos os constructos de CAR.19 foram mais citotóxicos que as células NK-92 não modificadas, e, além disso, as células NK-92-SFFV-CAR.19-IL-15, NK-92- SFFV-CAR.19-IL-15/IL-15Rα e NK-92-SFFV-CAR. 19-IL-27 apresentaram um efeito antitumoral mais eficiente contra células NALM-6 do que células NK-92 transduzidas com o constructo SEW-SFFV-CAR .19. Isso pode indicar que as citocinas podem exercer algum papel relevante na citotoxicidade de células NK-92 modificadas (Figura 6B). - CARs de quarta geração induzem a secreção de citocinas em células NK [103] Com intuito de avaliar as citocinas e outras proteínas envolvidas na ação citotóxica das células NK-CAR, foram dosadas as proteínas secretadas após o co-cultivo com as células alvo (CD19+ e CD19-), utilizando o sistema Lumínex MAGPIX. Nesse ensaio, foram avaliadas as citocinas IL-15, IL-27, IFN-y, TNF-a, IL-10, IL-8, IL-18, granzima A, granzima B e perforina (Figura 7).
[104] É válido esclarecer que as Figuras 7A-J representam graficamente as citocinas secretadas em ensaio de co-cultivo de células efetoras NK-92 wt ou NK-92 transduzidas com diferentes constructos de CAR.19 e células alvo Raji, NALM-6 e K562, em que na legenda dos referidos gráficos as células efetoras se referem conforme a seguir: a NK-92 wt (não transduzida); CAR.19 se referem a NK-92- SFFV-CAR.19; CAR.19-IL-15 se referem a NK-92-SFFV-CAR.19-IL- 15; CAR.19-IL-15Ra se referem a NK-92-SFFV-CAR.19-L-15/IL- 15Ra; e CAR.19-IL-27 se referem a NK-92-SFFV-CAR.19-IL-27. Para melhor entendimento dos gráficos na Figura 7, a seguir é informado a determinação da concentração de (A) IL-15 (pg/ml), (B) IL-27 (pg/ml), (C) IFN-y (ng/ml), (D) TNF-α (ng/ml), (E) IL-10 (ng/ml), (F) IL-8 (pg/ml) e (G) IL-18 (pg/ml) (H) Granzima A (ng/ml) (I) Granzima B (ng/ml) e (J) Perforina (ng/ml) em sobrenadante coletado de células efetoras co-cultivadas com células alvo Raji, NALM-6 e K562, respectivamente. Para tais resultados, foi realizado teste estatístico One-way ANOVA, com pós-teste de comparação múltipla de Tukey e foram considerados os seguintes valores de p: p<0,05 (*), p<0,01(**), p<0,0003 (***) e p<0,0001 [105] Portanto, o co-cultivo foi realizado com as células efetoras NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV- CAR.19-IL-15, NK-92-SFFV-CAR.19-IL-15/IL-15Ra e NK-92-SFFV- CAR.19-IL-27 com as células alvo CD19 positivas Raji, NALM- 6 e CD19 negativa K562, na proporção 10:1, por um periodo de 5 horas.
- Estimulação repetida afeta díferencíalmente a exaustão das células NK-CAR
[106] Para avaliar os efeitos da estimulação repetida nas variantes das células NK-CAR, células NK-92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL15, NK-92-SFFV- CAR.19-IL-15/IL-15Ra e NK-92-SFFV-CAR.19-IL-27 foram co- cultivadas na proporção células efetoras:células alvo de 1:2, com exposições repetidas das células efetoras às células alvo (Raji CD19+), nos tempos Oh, 24h e 48h. A avaliação dos marcadores associados à exaustão celular, LAG-3, PD-1 e Tim- 3, foi então determinada por citometria de fluxo e comparada com células NK-CAR mantidas na ausência de alvos.
[107] As Figuras 8A-C representam graficamente o ensaio de exaustão celular (re-challeging) das células NK- 92 wt, NK-92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL-15, NK-92- SFFV-CAR.19-IL-15/IL-15Ra, NK-92-SFFV-CAR.19-IL-27 expostas à célula alvo Raji na proporção de 1:2 (células efetoras: células alvo), em que na legenda dos referidos gráficos as células efetoras se referem conforme a seguir: WT se refere a NK-92 wt; CAR.19 se refere a NK-92-SFFV-CAR.19; CAR-IL-15 se refere NK-92-SFFV-CAR. 19-IL-15; CAR-IL-15/IL-15Ra se refere a NK-92-SFFV-CAR.19-IL-15/IL-15Ra e IL-27 se refere a NK-92-SFFV-CAR.19-IL-27, as quais foram co-cultivadas na presença ou não de células alvo Raj1 . Ainda, foram adicionadas novas células alvo na proporção 1:2 (efetora:alvo) nos tempos Oh, 24h e 48h, e a marcação com os anticorpos (A) LAG-3, (B) PD-1 e (C) Tim-3 foi realizada 72 horas depois do inicio do ensaio. Para tais resultados, foi realizado teste estatístico t de Student e foram considerados significativos os valores de p<0,05 (*) e p<0,01(**).
[108] Portanto, as células efetoras NK-92 wt, NK- 92-SFFV-CAR.19, NK-92-SFFV-CAR.19-IL15, NK-92-SFFV-CAR.19- IL-15/IL-15Ra e NK-92-SFFV-CAR.19-IL-27 apresentaram expressão aumentada de LAG-3 quando expostas a células alvo por 72h. Dentre as células alvo, as células NK-92-SFFV- CAR.19-IL-27 apresentaram maior expressão de LAG-3 que as outras células efetoras (Figura 8A).
[109] Já em relação ao marcador celular PD-1, exceto as células NK-92-SFFV-CAR.19, todas as outras apresentaram maior expressão de PD-1 após exposições repetidas às células alvo (Figura 8B). A expressão de PD-1 foi maior nas células NK-92-SFFV-CAR.19-IL-27 do que nas outras células efetoras quando expostas às células Raji (Figura 8B).
[110] Para todas as variantes de células NK-CAR, a estimulação repetida levou a diminuição da expressão de superfície de Tim-3, que apresentava alta expressão mesmo sem a estimulação com as células alvo (Figura 8C).
[111] Já em relação ao marcador celular PD-1, exceto as células NK-92-SFFV-CAR.19, todas as outras apresentaram maior expressão de PD-1 após exposições repetidas às células alvo (Figura 19B). A expressão de PD-1 foi maior nas células NK-92-SFFV-CAR.19-IL-27 do que nas outras células efetoras quando expostas às células Raj1 (Figura 8B).
[112] Para todas as variantes de células NK-CAR, a estimulação repetida levou a diminuição da expressão de superfície de Tim-3, que apresentava alta expressão mesmo sem a estimulação com as células alvo (Figura 8C).
- Geração de células NK-CAR de sangue periférico e avaliação de sua capacidade antitumoral
[113] Em paralelo às gerações das células NK-92- CAR, foi avaliado o efeito das construções da presente invenção em células NK primárias isoladas de PB.
[114] As células NK de PB foram isoladas por seleção imunomagnética CD56- negativa. Em seguida, as células NK foram ativadas com beads e transduzidas com SEW-SFFV-CAR.19- IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra e SEW-SFFV-CAR.19-IL- 27 (MCI 200) e cultivadas com meio NK MACS (Miltenyi) suplementado com 5% de soro AB humano, IL-2 (1000 UI/mL) e IL-21 (20ng/mL).
[115] As Figuras 9A-C representam graficamente a transdução de células NK primárias de PB com vetores SEW- SFFV-CAR.19-IL-15, SEW-SFFV-CAR.19-IL-15/IL-15Ra e SEW- SFFV-CAR.19-IL-27 e proliferação celular, em que em (A) é mostrado uma análise da expressão de CAR.19 por citometria de fluxo das células NK-PB-SFFV-CAR.19-IL-15, NK-PB-SFFV- CAR.19-IL-15/IL-15Ra, NK-PB-SFFV-CAR.19-IL-27 e NK-PB wt (células NK não modificada-controle para ligação inespecifica) de sangue periférico nos dias 02, 07 e 21; (B) é mostrado a porcentagem de células CAR.19 positivas para as células NK-PB-SFFV-CAR.19-IL-15 (2 doadores), NK-PB-SFFV- CAR.19-IL-15/IL-15Ra (1 doador, duplicata) e NK-PB-SFFV- CAR.19-IL-27 (2 doadores); e em (C) é mostrado a proliferação celular de NK-PB wt e transduzidas com vetores de CAR.19 co- expressando IL-15, IL-15/IL-15Ra ou IL-27.
[116] Portanto, as células transduzidas apresentaram uma queda da expressão de CAR no periodo de 21 dias (Figura 9A e 9B), exceto as células NK-PB-SFFV-CAR.19- IL-15/IL-15Ra, que apresentaram uma expressão um pouco mais constante. Em relação a proliferação celular, as células transduzidas e não transduzidas com vetor CAR.19, com exceção das células NK-PB-SFFV-CAR.19-IL-27, mostraram uma proliferação celular semelhante com as células NK não modificadas (Figura 9C). As células NK-PB-SFFV-CAR.19-IL-27 pararam de crescer a partir do dia 11 e a partir de então, o número total de células passou a diminuir (Figura 9C).
[117] Em seguida, foi avaliado a capacidade citotóxica das células NK-PB-SFFV-CAR.19-IL-15 e NK-PB-SFFV- CAR.19-IL-15/IL-15Ra .As células NK-PB-SFFV-CAR.19-IL-27 não foram avaliadas por não possuir número de células suficientes devido ao decaimento no crescimento celular (Figura 9C).
[118] As Figuras 10A-B representam graficamente o ensaio de citotoxicidade para células efetoras NK-PB-SFFV- CAR.19-IL-15, NK-PB-SFFV-CAR.19-IL-15/IL-15Ra e NK-PB wt contra células tumorais CD19 positivas (triplicata), em que o efeito citotóxico das células NK de PB transduzidas com CAR.19 contendo IL-15 ou IL-15 com receptor alfa contra células alvo tumorais foi avaliado por ensaio de citotoxicidade pelo método de citometria de fluxo. Assim, as células NK-PB wt, NK-PB-SFFV-CAR.19-IL-15 e NK-PB-SFFV- CAR.19-IL-15/IL-15Ra foram co-cultivadas com linhagens tumorais CD19+ (A) Raji e (B) NALM-6 nas proporções células efetoras:alvo de 1:1 e 10:1, por 2 horas. Para (A) e (B), o teste estatístico One-way ANOVA foi utilizado, com pós-teste de comparação múltipla de Tukey. Foram considerados os valores de p<0,05 (*) e p<0,005 (**).
[119] Assim, conforme mostrado nas Figuras 10 A-B, para avaliar a citotoxicidade, foram incubadas células NK- CAR.19 (7 dias após transdução) com as linhagens de celulares humanas CD19+ Raji e NALM-6, nas proporções células efetoras:células alvo de 1:1 e 10:1, por um periodo de 2 horas (Figura 10A e 10B). A expressão de CAR nessas células no momento do experimento de co-cultivo foi de 23,6% para NK-PB-SFFV-CAR.19-IL-15 e 21% para NK-CB-SFFV-CAR.19-IL- 15/IL-15Ra. Para linhagem Raji, tanto NK-PB-SFFV-CAR.19-IL- 15 quanto NK-PB-SFFV-CAR.19-IL-15/IL-15Rα são mais citotóxicas que as células NK-PB wt na proporção 10:1 (Figura 10A). Para linhagem NALM-6, as células NK-PB-SFFV-CAR.19-IL- 15/IL-15Ra foram mais citotóxicas que as células não transduzidas (Figura 10B). As células NK-PB-SFFV-CAR.19-IL- 15 não apresentaram citotoxicidade contra as células NALM- 6.
[120] Portanto, foi concluído que as células NK de PB tem uma eficiência de transdução (Figura 9B) maior do que as células NK-92 (Figuras 3A-D). As células NK-PB-SFFV- CAR.19-IL15 e IL-15/IL-15Ra são citotóxicas para células Raji e apenas as células NK-PB-SFFV-CAR.19-IL15/IL-15Ra são citotóxicas para células NALM-6.
- Potencial antitumoral das células NK-CAR ín vivo [121] Para avaliar o potencial antineoplásico in vivo das células NK-CAR, 15 camundongos imunodeficientes da linhagem NOD-scid gama (NSG) receberam 4xl04 células RAJI- luc por via intravenosa (veia caudal lateral). Após 4 dias da injeção das células tumorais, os animais foram distribuídos aleatoriamente em 6 grupos que receberam 7xl06 células por via intravenosa (A a E): A) NK-92 wt (n=3), B) NK-92-SFFV-CAR.19 (n=2), C) NK-92-SFFV-CAR.19-IL-15 (n=2), D) NK-92-SFFV-CAR.19-IL-15/IL-15Ra (n=3) e E) NK-92-SFFV- CAR.19-IL-27 (n=3). 0 grupo controle (F) (n = 2) recebeu apenas PBS lx.
[122] As Figuras 11A, 11C e 11E mostram a avaliação do potencial citotóxico das células NK-92-SFFV-CAR.19 (4 construtos) e NK-92 wt em modelos de camundongos NSG com infusão de 4xl04 células tumorais Raji-luc (modelo sistêmico de linfoma), em que a Figura 11A se refere ao esquema do experimento animal indicando o dia da infusão das células tumorais e doses de tratamento, a Figura 11C se refere a avaliação da carga tumoral (fótons/s) no dia 21 após a infusão das células Raji-Luc, e a Figura 11E são imagens da avaliação da intensidade de bioluminescência (Fótons/segundo) do dia 9, 14 e 21 nos grupos tratados (NK- 92 wt, NK-92-SFFV-CAR-19, NK-92-SFFV-CAR-19-IL-15, NK-92- SFFV-CAR-19-IL-15/IL-15Ra e NK-92-SFFV-CAR-19-IL-27) e não tratados (Controle - PBS IX) no equipamento IVIS Lumína System (Perkin Elmer).
[123] Portanto, os animais receberam 4 infusões (doses) de 7xl06 células NK citadas acima, nos dias 4, 8, 11 e 15 após a indução tumoral (Figura 11A). Durante e após o tratamento, a carga tumoral foi monitorada por quantificação da bioluminescência (IVIS Lumina System, Perkin Elmer).
[124] As análises do sinal bioluminescente demonstraram que houve diferença na carga tumoral entre os grupos tratados com as células NK-92-CAR e o controle (PBS IX) (Figura 11B e 11C). Dentre os tratamentos, o grupo tratado com as células NK-92-SFFV-CAR. 19-IL-15/IL-15Ra apresentou a menor taxa de progressão tumoral no dia 21 (Figura 11C), além de ter sido o grupo que teve o último animal a vir a óbito (dia 28).
[125] Para tentar observar algum efeito ín vivo das células NK-92-CAR e avaliar a citotoxicidade destas células, foi diminuído a carga tumoral e foi aumentado o número de infusões de células NK-92-CAR (Figura 12A).
[126] As Figuras 12 A-E mostram a avaliação do potencial citotóxico das células NK-92-SFFV-CAR.19-IL-15/IL- 15Ra e NK-92 wt em modelos de camundongos NSG após infusão IV de 2xl04 células tumorais Raji-luc (modelo sistêmico de linfoma), em que (A) se refere ao esquema de experimento animal indicando o dia da infusão do tumor e os dias da dose doses de tratamento; (B) representa um gráfico da intensidade de bioluminescência (fótons/s) nos dias 8, 15 e 22 dos grupos tratados (NK-92 wt ou NK-92-SFFV-CAR-19-IL-15/IL-15Ra) e não tratado (Controle - PBS IX), em que o teste estatístico Oneway ANOVA (p>0,05) foi utilizado; (C) representa um gráfico da intensidade de Bioluminescência (fótons/s) apenas do dia 22 dos grupos tratados (NK-92 wt e NK-92-SFFV-CAR-19-IL- 15/IL-15Ra) e não tratado (Controle - PBS IX), em que o teste estatístico One-way ANOVA e pós-teste de comparação múltipla de Tukey (p<0,05) foram utilizados; (D) se refere de forma gráfica à curva de sobrevida dos animais após tratamento com células NK-92 modificadas e não modificadas geneticamente, em que o teste de log-rank (p<0,05) foi realizado; e (E) são imagens da avaliação da intensidade de bioluminescência dos animais tratados (NK-92 wt e NK-92-SFFV-CAR-19-IL-15/IL- 15Ra) e não tratados (Controle - PBS IX) nos dias 8,15 e 22 obtidas no equipamento IVIS Lumina System (Perkin Elmer).
[127] Dessa forma, foi executado um novo experimento com um número inicial de 2 x 104 células Raji- Luc, infundidas via veia caudal. Como as células NK-92-SFFV- CAR.19-IL-15/IL-15Ra demonstraram ser aparentemente melhores que as células NK-92 modificadas com os outros constructos de CAR.19, essas células foram escolhidas para avaliar a eficácia das células NK-92 modificadas geneticamente. Além disso, foram aplicadas 5 doses em vez de 4 e a primeira dose foi infundida no dia 0. O grupo controle recebeu PBS lx (n=4), os grupos tratamento com NK-92 wt (n=4) e tratado com NK-92-SFFV-CAR .19-IL-15/IL-15Ra (n=4) receberam cinco infusões de 7 x 106 células NK-CAR nos dias 0, 3, 7, 10 e 14 após indução tumoral. Os resultados mostraram uma pequena diferença na curva de sobrevida dos animais tratados com NK- 92-CAR.19-IL-15/IL-15Ra em relação aos animais do grupo NK- 92 wt e controle (PBS lx) (teste log-rank, p=0,02) (Figura 12D). A análise da bioluminescência não apresentou diferenças entre os animais tratados e os controles (Figura 12B). No entanto, ao analisar isoladamente o dia 21 após a infusão tumoral, o grupo tratado com as células NK-92-SFFV- CAR.19-IL-15/IL-15Ra teve uma carga tumoral menor que o grupo controle (PBS lx), mas não foi menor que a do grupo tratado com NK-92 wt (Figura 12C).
[128] Portanto, conclui-se que as células NK-92- CAR.19, por mais que tenham potencial antitumoral in vitro, não foram tão efetivas ín vivo. Isso pode ser explicado pela dificuldade de migração das células NK-CAR para as áreas mais acometidas pelo tumor, como figado, baço e medula óssea. No entanto, novamente os testes aqui apresentados mostraram uma leve diminuição da progressão tumoral nos animais tratados com NK-92-SFFV-CAR-19-IL-15/IL-15Ra.
[129] Em vista do acima exposto, as construções aqui descritas revelam que a atividade antitumoral é aumentada por células CAR-NK que coexpressam interleucina-15 fusionada ao seu receptor RA (IL-15/IL15 RA) e interleucina-27 (IL-27) e que a persistência e proliferação das células CAR-NK são especialmente melhoradas.
[130] Além disso, os resultados aqui descritos são promissores para que a modalidade de transferência de genes e expressão das interleucinas IL-15RA e IL-27 juntamente com CAR em células NK pode ser estendida para uma modalidade de transferência de genes e sua expressão em células imunes que não sejam células NK, tais como células T, monócitos, macrófagos e células dendriticas.
Figure imgf000042_0001
1. Sequência de ácido nucleico em que codifica um receptor de célula natural killer de antigeno quimérico (NK- CAR), em que o NK-CAR compreende: (a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana de CD8;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que a referida sequência de ácido nucleico compreende ainda um peptideo de autoclivagem e um transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
2. Sequência de ácido nucleico, de acordo com o item 1, em que o scFV anti-CD19 compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 1, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 2.
3. Sequência de ácido nucleico, de acordo com o item 1, em que o dominio transmembrana compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 3, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 4.
4. Sequência de ácido nucleico, de acordo com o item 1, em que o dominio co-estimulatório compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 5, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 6.
5. Sequência de ácido nucleico, de acordo com o item 1, em que o dominio de sinalização de células T intracelular de CD3Ç compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 7, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 8.
6. Sequência de ácido nucleico, de acordo com o item 1, em que o peptideo de autoclivagem heterólogo é preferencialmente o T2A que compreende a sequência de aminoácidos conforme estabelecida na SEQ ID NO: 9, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 10.
7. Sequência de ácido nucleico, de acordo com o item 1, em que o transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27) compreende a sequência de nucleotideos conforme estabelecida nas SEQ ID Nos: 11 e 12, respectivamente, em que a IL-15 é ligada ao seu receptor IL-15Ra por um ligante que compreende a sequência de nucleotideos conforme estabelecido pela SEQ ID NO:20; e a subunidade EBI3 da IL-27 é ligada à subunidade IL-27p28 da IL-27 por um ligante de elastina que compreende a sequência de nucleotideos conforme estabelecido pela SEQ ID NO:19.
8. Sequência de ácido nucleico, de acordo com o item 1, em que as IL-15RA e IL-27 codificadas pelo referido transgene compreende as sequências de aminoácidos conforme estabelecidas pelas SEQ ID Nos: 13 e 14, respectivamente.
9. Sequência de ácido nucleico, de acordo com qualquer um dos itens 1 a 8, em que o NK-CAR é um CAR de quarta geração projetado para secretar uma citocina juntamente com a sinalização do CAR no tecido tumoral alvo. 10. Sequência de ácido nucleico, de acordo com qualquer um dos itens 1 a 8, em que compreende as sequências nucleotidicas de NK-CAR selecionadas do grupo que consiste em SEQ ID NO:15 referente ao CAR Cdl9/IL15RA e SEQ ID NO:16 referente ao CAR Cdl9/IL27.
11. Polipeptideo do receptor de célula natural killer de antigeno quimérico (NK-CAR) em que compreende:
(a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana de CD8;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que o referido polipeptideo compreende ainda um peptideo de autoclivagem e um pelo menos uma citocina selecionada do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
12. Polipeptideo do NK-CAR, de acordo com o item 11, em que compreende as sequências de aminoácidos selecionadas do grupo que consiste em SEQ ID NO:17 referente ao CAR Cdl9/IL15RA e SEQ ID NO:18 referente ao CAR Cdl9/IL27.
13. Vetor em que compreende a sequência de ácido nucleico conforme definida em qualquer um dos itens 1 a 10.
14. Vetor, de acordo com o item 13, em que a sequência de ácido nucleico é conforme estabelecida na SEQ ID NO: 14 ou SEQ ID NO:15.
15. Vetor, de acordo com o item 13, em que é um vetor lentiviral. 16. Método in vitro de obtenção de uma célula em que compreende as seguintes etapas: a) transformar uma célula com o vetor conforme definido em qualquer uma das reivindicações 13 a 15; e b) cultivar a referida célula transformada sob condições de crescimento da célula.
17. Método in vitro, de acordo com o item 16, em que a referida célula é uma célula Natural-Killer (NK).
18. Uso da sequência de ácido nucleico conforme definida em qualquer um dos itens 1 a 10, do polipeptideo de NK-CAR conforme definido no item 11 ou 12, ou do vetor conforme definido em qualquer um dos itens 13 a 15 em que é para o preparo de um medicamento para tratar o câncer.
19. Uso, de acordo com o item 18, em que o câncer é selecionado dentre cânceres de células B, tais como linfomas e leucemias.
20. Uso, de acordo com o item 18, em que é para tratar o câncer em uma terapia alogênica.
21. Composição farmacêutica em que compreende:
(i) sequência de ácido nucleico conforme definida em qualquer uma das reivindicações 1 a 10, ou
(ii) polipeptideo de NK-CAR conforme definido na reivindicação 11 ou 12, ou
(iii) vetor conforme definido em qualquer uma das reivindicações 13 a 15, e
(iv) um veiculo farmaceuticamente aceitável.
[132] Assim, as concretizações apresentadas na presente invenção não limitam a totalidade das possibilidades, e será entendido que várias omissões, substituições e alterações podem ser feitas por um técnico versado no assunto, sem se afastar do espirito e escopo da presente invenção.
[133] Também é preciso entender que os desenhos não estão necessariamente em escala, mas que eles são apenas de natureza conceituai. A intenção é, portanto, ser limitada, tal como indicado pelo escopo das reivindicações anexas.
[134] É expressamente previsto que todas as combinações dos elementos que desempenham a mesma função substancialmente da mesma forma para alcançar os mesmos resultados estão dentro do escopo da invenção. Substituições de elementos de uma concretização descrita para outra são também totalmente pretendidos e contemplados.
[135] Os técnicos versados no assunto irão valorizar os conhecimentos aqui apresentados e poderão reproduzir a invenção nas concretizações apresentadas e em outras variantes, abrangidas no escopo das reivindicações.

Claims

REIVINDICAÇÕES
1. Sequência de ácido nucleico caracterizada pelo fato de que codifica um receptor de célula natural killer de antigeno quimérico (NK-CAR), em que o NK-CAR compreende:
(a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana de CD8;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que a referida sequência de ácido nucleico compreende ainda um peptideo de autoclivagem e um transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
2. Sequência de ácido nucleico, de acordo com a reivindicação 1, caracterizada pelo fato de que o scFV anti- CD19 compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 1, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 2.
3. Sequência de ácido nucleico, de acordo com a reivindicação 1, caracterizada pelo fato de que o dominio transmembrana compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 3, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 4.
4. Sequência de ácido nucleico, de acordo com a reivindicação 1, caracterizada pelo fato de que o dominio co-estimulatório compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 5, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 6.
5. Sequência de ácido nucleico, de acordo com a reivindicação 1, caracterizada pelo fato de que o dominio de sinalização de células T intracelular de CD3Ç compreende a sequência de aminoácidos conforme estabelecida pela SEQ ID NO: 7, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 8.
6. Sequência de ácido nucleico, de acordo com a reivindicação 1, caracterizada pelo fato de que o peptideo de autoclivagem heterólogo é preferencialmente o T2A que compreende a sequência de aminoácidos conforme estabelecida na SEQ ID NO: 9, em que é codificado pela sequência de nucleotideos conforme estabelecida na SEQ ID NO: 10.
7. Sequência de ácido nucleico, de acordo com a reivindicação 1, caracterizada pelo fato de que o transgene que codifica pelo menos um selecionado do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27) compreende a sequência de nucleotideos conforme estabelecida nas SEQ ID Nos: 11 e 12, respectivamente, em que a IL-15 é ligada ao seu receptor IL- 15Ra por um ligante que compreende a sequência de nucleotideos conforme estabelecido pela SEQ ID NO:20; e a subunidade EBI3 da IL-27 é ligada à subunidade IL-27p28 da IL-27 por um ligante de elastina que compreende a sequência de nucleotideos conforme estabelecido pela SEQ ID NO:19.
8. Sequência de ácido nucleico, de acordo com a reivindicação 1 ou 7, caracterizada pelo fato de que as IL- 15RA e IL-27 codificadas pelo referido transgene compreende as sequências de aminoácidos conforme estabelecidas pelas SEQ ID Nos: 13 e 14, respectivamente.
9. Sequência de ácido nucleico, de acordo com qualquer uma das reivindicações 1 a 8, caracterizada pelo fato de que o NK-CAR é um CAR de quarta geração projetado para secretar uma citocina juntamente com a sinalização do CAR no tecido tumoral alvo.
10. Sequência de ácido nucleico, de acordo com qualquer uma das reivindicações 1 a 8, caracterizada pelo fato de que compreende as sequências nucleotidicas de NK-CAR selecionadas do grupo que consiste em SEQ ID NO:15 referente ao CAR Cdl9/IL15RA e SEQ ID NO:16 referente ao CAR Cdl9/IL27.
11. Polipeptideo do receptor de célula natural killer de antigeno quimérico (NK-CAR) caracterizado pelo fato de que compreende:
(a) um fragmento variável de cadeia única (scFv) anti- CD19;
(b) um dominio transmembrana de CD8;
(c) um dominio co-estimulatório 4-1BB; e
(d) um dominio de sinalização de células T intracelular de CD3Ç, em que o referido polipeptideo compreende ainda um peptideo de autoclivagem e um pelo menos uma citocina selecionada do grupo que consiste em interleucina-15 com seu receptor RA (IL-15RA) e interleucina-27 (IL-27).
12. Polipeptideo do NK-CAR, de acordo com a reivindicação 11, caracterizado pelo fato de que compreende as sequências de aminoácidos selecionadas do grupo que consiste em SEQ ID NO:17 referente ao CAR Cdl9/IL15RA e SEQ ID NO:18 referente ao CAR Cdl9/IL27.
13. Vetor caracterizado pelo fato de que compreende a sequência de ácido nucleico conforme definida em qualquer uma das reivindicações 1 a 10.
14. Vetor, de acordo com a reivindicação 13, caracterizado pelo fato de que a sequência de ácido nucleico é conforme estabelecida na SEQ ID NO: 14 ou SEQ ID NO:15.
15. Vetor, de acordo com a reivindicação 13, caracterizado pelo fato de que é um vetor lentiviral.
16. Método in vitro de obtenção de uma célula caracterizado pelo fato de que compreende as seguintes etapas: a) transformar uma célula com o vetor conforme definido em qualquer uma das reivindicações 13 a 15; e b) cultivar a referida célula transformada sob condições de crescimento da célula.
17. Método in vitro, de acordo com a reivindicação 16, caracterizado pelo fato de que a referida célula é uma célula Natural-Killer (NK).
18. Uso da sequência de ácido nucleico conforme definida em qualquer uma das reivindicações 1 a 10, do polipeptideo de NK-CAR conforme definido na reivindicação 11 ou 12, ou do vetor conforme definido em qualquer uma das reivindicações 13 a 15 caracterizado pelo fato de ser para o preparo de um medicamento para tratar o câncer.
19. Uso, de acordo com a reivindicação 18, caracterizado pelo fato de que o câncer é selecionado dentre cânceres de células B, tais como linfomas e leucemias.
20. Uso, de acordo com a reivindicação 18, caracterizado pelo fato de que é para tratar o câncer em uma terapia alogênica.
21. Composição farmacêutica caracterizada pelo fato de que compreende:
(i) sequência de ácido nucleico conforme definida em qualquer uma das reivindicações 1 a 10, ou
(ii) polipeptideo de NK-CAR conforme definido na reivindicação 11 ou 12, ou
(iii) vetor conforme definido em qualquer uma das reivindicações 13 a 15, e
(iv) um veiculo farmaceuticamente aceitável.
PCT/BR2023/050127 2022-04-29 2023-04-21 Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica WO2023205868A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102022008333-9A BR102022008333B1 (pt) 2022-04-29 Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica
BR1020220083339 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023205868A1 true WO2023205868A1 (pt) 2023-11-02

Family

ID=83401957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2023/050127 WO2023205868A1 (pt) 2022-04-29 2023-04-21 Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica

Country Status (1)

Country Link
WO (1) WO2023205868A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728459A (zh) * 2017-04-24 2018-11-02 上海恒润达生生物科技有限公司 靶向cd19的嵌合抗原受体并联合表达il-15的方法和用途
WO2020045610A1 (ja) * 2018-08-31 2020-03-05 ノイルイミューン・バイオテック株式会社 Car発現t細胞及びcar発現ベクター
WO2020077356A1 (en) * 2018-10-12 2020-04-16 Icell Gene Therapeutics Llc CHIMERIC ANTIGEN RECEPTORS (CARs) COMPOSITIONS AND METHODS OF USE THEREOF
WO2021040736A1 (en) * 2019-08-30 2021-03-04 Obsidian Therapeutics, Inc. Tandem cd19 car-based compositions and methods for immunotherapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728459A (zh) * 2017-04-24 2018-11-02 上海恒润达生生物科技有限公司 靶向cd19的嵌合抗原受体并联合表达il-15的方法和用途
WO2020045610A1 (ja) * 2018-08-31 2020-03-05 ノイルイミューン・バイオテック株式会社 Car発現t細胞及びcar発現ベクター
WO2020077356A1 (en) * 2018-10-12 2020-04-16 Icell Gene Therapeutics Llc CHIMERIC ANTIGEN RECEPTORS (CARs) COMPOSITIONS AND METHODS OF USE THEREOF
WO2021040736A1 (en) * 2019-08-30 2021-03-04 Obsidian Therapeutics, Inc. Tandem cd19 car-based compositions and methods for immunotherapy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SILVESTRE R. N. ET AL: "ENGINEERED CD19-CAR NK CELLS AS AN OFF-THE-SHELF ALTERNATIVE TO B CELL LEUKEMIA AND LYMPHOMA TREATMENT", HEMATOLOGY, TRANSFUSION AND CELL THERAPY, vol. 42, 1 November 2020 (2020-11-01), pages 417 - 418, XP093061241, ISSN: 2531-1379, Retrieved from the Internet <URL:https://pdf.sciencedirectassets.com/318507/1-s2.0-S2531137920X00071/1-s2.0-S2531137920309895/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjELP%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIEuVQwRg0%2Bf2iuUUSuXR9Z%2FhOt%2BblMVnUf5NycttbZ0sAiBdP9DRLNbuLuGBOaBFzT5YHpg2UzJrRao4FE7r84JJNiqzBQgrEAU> DOI: 10.1016/j.htct.2020.10.703 *

Also Published As

Publication number Publication date
BR102022008333A2 (pt) 2022-09-20

Similar Documents

Publication Publication Date Title
JP7288401B2 (ja) 新規の遺伝子スイッチ発現系を介したポリペプチドの発現のモジュレーション
CN108699523B (zh) Nk细胞培养用培养基添加试剂盒及利用所述试剂盒的nk细胞培养方法
JP5779090B2 (ja) 新規に単離された細胞の治療組成物の操作および送達
ES2724451T3 (es) ICOS regula fundamentalmente la expansión y la función de linfocitos Th17 humanos inflamatorios
AU2006328943B2 (en) Improved method for expansion of tumour-reactive T-lymphocytes for immunotherapy of patients with cancer
TWI789348B (zh) 表現免疫機能控制因子之免疫活性細胞及表現載體
CN103502438A (zh) 用于细胞免疫治疗的方法和组合物
JP2020527937A (ja) 新規の細胞タグの発現
JP2015509717A (ja) 抗腫瘍活性およびcar存続性を強化するためのicosベースのcarの使用
Kim et al. Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7
CN105296431A (zh) 肿瘤结合特异性γδTCR基因修饰的αβT细胞及其抑癌用途
KR20190126182A (ko) aNK 및 IL-12 조성물 및 방법 (ANK AND IL-12 COMPOSITIONS AND METHODS)
WO2019236577A2 (en) Muc16 specific chimeric antigen receptors and uses thereof
KR20210141479A (ko) 키메라 시토카인 수용체
EP3940063A2 (en) Method for the expansion and differentiation of t lymphocytes and nk cells in adoptive transfer therapies
Mensali et al. Preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy
ES2966593T3 (es) Tratamiento del cáncer y de enfermedades autoinmunitarias e inflamatorias
JPH08510901A (ja) T▲下h▼非依存性細胞障害性t細胞の産生において使用するためのハイブリッド遺伝子
WO2024055339A1 (zh) 用于制备和扩增通用型人源化抗cd19 car-nk细胞的方法及其用途
WO2023205868A1 (pt) Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica
BR102022008333B1 (pt) Sequência de ácido nucleico que codifica um receptor de célula natural killer de antígeno quimérico (nk-car), polipeptídeo do referido nk car, vetor que compreende a referida sequência de ácido nucleico, método in vitro de obtenção de uma célula nk, uso dos referidos sequência de ácido nucleica, polipeptídeo ou vetor, e composição farmacêutica
CN117716024A (zh) 包含饲养细胞的自然杀伤细胞增殖用组合物
TWI744811B (zh) 重組erIL-15自然殺手細胞
BR112020018534A2 (pt) Imunoterapia com células t direcionadas por zetacina alvejada por receptor alfa 2 da il-13
Sanchez et al. T9 glioma cells expressing membrane-macrophage colony stimulating factor produce CD4+ T cell-associated protective immunity against T9 intracranial gliomas and systemic immunity against different syngeneic gliomas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23730697

Country of ref document: EP

Kind code of ref document: A1