WO2023204103A1 - 粉状燃料バーナ - Google Patents

粉状燃料バーナ Download PDF

Info

Publication number
WO2023204103A1
WO2023204103A1 PCT/JP2023/014715 JP2023014715W WO2023204103A1 WO 2023204103 A1 WO2023204103 A1 WO 2023204103A1 JP 2023014715 W JP2023014715 W JP 2023014715W WO 2023204103 A1 WO2023204103 A1 WO 2023204103A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
air
fuel
cylindrical
fuel mixture
Prior art date
Application number
PCT/JP2023/014715
Other languages
English (en)
French (fr)
Inventor
貞行 武藤
俊 矢原
晶大 丹羽
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023204103A1 publication Critical patent/WO2023204103A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/06Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel

Definitions

  • the present disclosure relates to a powdered fuel burner used in boilers and the like.
  • pulverized fuel burner (hereinafter also simply referred to as a "burner") that is used in a boiler or the like and burns pulverized fuel is the pulverized coal combustion device described in Patent Document 1, for example.
  • This pulverized coal combustion device uses a cylindrical body as a pulverized coal passage, a secondary air passage and a tertiary air passage are provided surrounding the cylindrical body, and one or more venturi parts are provided within the cylindrical body. .
  • pulverized coal when using pulverized coal as fuel, a direct combustion method is adopted in which the pulverized coal is pulverized by a pulverizer and mixed with conveying air, and this mixture is supplied directly from the pulverizer to the burner. ing.
  • A/F of the air-fuel mixture supplied from a conventional crusher is suitable for pulverized coal, it is not suitable for flame-retardant powdered fuel. Therefore, we installed a storage tank between the crusher and the burner to separate the air-fuel mixture into solid gas and temporarily store the powdered fuel, creating an A/F suitable for flame-retardant powdered fuel.
  • a conceivable configuration is an indirect combustion method in which a mixture of powdered fuel sent from a storage tank and conveying air is generated and supplied to a burner. In the case of such an indirect combustion method, additional equipment such as a solid-gas separator and a storage tank is required compared to the case of a direct combustion method, and an increase in equipment cost is unavoidable.
  • the present disclosure has been made in order to solve the above problems, and provides a powder that can improve ignitability even when flame-retardant powder fuel such as petroleum residue fuel is supplied directly from a crusher.
  • the purpose is to provide a fuel burner of the type.
  • a powdered fuel burner is a powdered fuel burner that is installed in a combustion chamber of a boiler, and which generates a mixture of powdered fuel and conveying air.
  • a cylindrical mixture conveying pipe through which the air-fuel mixture is conveyed and injects the mixture from its tip into the combustion chamber;
  • a swirling vane installed at the tip of the mixture conveying pipe;
  • a rod-shaped central flow inhibiting part installed on the central axis of the mixture conveying pipe on the upstream side and having a cylindrical surface concentric with the mixture conveying pipe and extending in the direction of the central axis;
  • a cylindrical peripheral flow installed along the inner wall surface of the mixture transfer pipe between the swirling vane and having a cylindrical inner peripheral surface concentric with the mixture transfer pipe and extending in the central axis direction; It is equipped with an inhibiting part.
  • the present disclosure provides a powdered fuel burner having the configuration described above and capable of improving ignitability even when flame-retardant powdered fuel such as petroleum residue fuel is directly supplied from a pulverizer. It has the effect of being able to
  • FIG. 1 is a schematic diagram showing an example of a combustion system including a boiler equipped with a powdered fuel burner according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of the powdered fuel burner according to the present embodiment.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • FIG. 4 is a diagram showing an example of the swirl vane viewed from the base end side of the air-fuel mixture conveying pipe.
  • FIG. 5 is a schematic cross-sectional view showing the main parts of a powdered fuel burner using another swirl vane.
  • FIG. 6 is a schematic cross-sectional view showing the main parts of a powdered fuel burner using another swirl vane.
  • FIG. 1 is a schematic diagram showing an example of a combustion system including a boiler equipped with a powdered fuel burner according to the present embodiment.
  • the combustion system shown in FIG. 1 includes a fuel supply device 20 and a boiler 100.
  • the fuel supply device 20 includes a fuel storage tank 21, a metering feeder 22, and a crusher 23.
  • the fuel storage tank 21 stores a flame-retardant fuel such as petroleum residue such as petroleum coke.
  • the fuel stored in the fuel storage tank 21 is supplied to a metering feeder 22, and a predetermined weight of fuel is supplied from the metering feeder 22 to a crusher 23.
  • the pulverizer 23 pulverizes the fuel supplied from the metering feeder 22 into powder, and supplies a mixture of the pulverized fuel and transport air to the pulverized fuel burner 5 of the boiler 100 .
  • the air-fuel ratio A/F of the air-fuel mixture supplied from the crusher 23 to the powdered fuel burner 5 is about 1.8.
  • the boiler 100 is configured as an inverted vertical furnace.
  • the boiler 100 includes a combustion chamber 1 formed in a cylindrical shape with a rectangular cross section, for example, and a flue 12 connected to the combustion chamber 1 via a gas outlet 11.
  • the combustion chamber 1 includes a high-temperature reduction combustion chamber 2 formed at the upper end, a low-temperature oxidation combustion chamber 3 formed below the high-temperature reduction combustion chamber 2, and a high-temperature reduction combustion chamber 2 and a low-temperature oxidation combustion chamber 3 mutually connected to each other. It has a connecting constriction part 4.
  • the throttle part 4 is a flow path whose horizontal cross-sectional area is reduced by 20 to 50% compared to other parts of the combustion chamber 1.
  • the walls of the high-temperature reduction combustion chamber 2 are covered with a refractory material 6 that can withstand a predetermined high temperature inside the furnace.
  • a plurality of powdered fuel burners 5 are arranged on each of two opposing side walls of the high temperature reduction combustion chamber 2 .
  • eight powdered fuel burners 5 are provided.
  • the eight burners 5 are arranged so that their flame axes do not directly oppose each other and are parallel to each other.
  • fuel supplied from the burner 5 is initially combusted in a high-temperature reducing atmosphere.
  • the combustion gas generated here is pushed out from the high temperature reduction combustion chamber 2 and flows down through the throttle part 4 to the low temperature oxidation combustion chamber 3 because the combustion gas is increased by the newly supplied fuel.
  • the side wall of the low-temperature oxidation combustion chamber 3 has a water-cooled wall structure, and the high-temperature combustion gas flowing down from the high-temperature reduction combustion chamber 2 through the throttle section 4 is cooled.
  • a plurality of air nozzles 7 for supplying air for two-stage combustion are arranged in a single stage or in multiple stages on a furnace wall spaced downward from the throttle part 4.
  • unburned gas in the combustion gas is subjected to two-stage combustion in a low-temperature oxidizing atmosphere by air supplied from the air nozzle 7.
  • the combustion ash accumulated at the bottom of the furnace is discharged from the ash outlet 8 to the outside of the furnace.
  • a gas outlet 11 communicating with a flue 12 is provided on the lower side of the two-stage combustion region 10.
  • the combustion gas generated in the two-stage combustion region 10 reverses its flow in a U-shape and flows into the flue 12.
  • the flue 12 is provided with a steam superheater tube 13 and an economizer 14.
  • the combustion gas that has flowed into the flue 12 exchanges heat with boiler water in the steam superheater tube 13 and economizer 14, and is then supplied to a post-treatment process. Further, the combustion ash accompanying the combustion gas is discharged from the ash discharge port 15.
  • the fuel supplied from the powdered fuel burner 5 is initially combusted in a high-temperature reducing atmosphere in the high-temperature reducing combustion chamber 2, and then subjected to two-stage combustion in a low-temperature oxidizing atmosphere in the low-temperature oxidizing combustion chamber 3. The amount of NOx generated is reduced.
  • FIG. 2 is a schematic cross-sectional view showing an example of the powdered fuel burner 5 according to the present embodiment.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • the powdered fuel burner 5 shown in FIG. 2 includes a cylindrical air-fuel mixture conveying pipe 51 and a wind box 52 through which the air-fuel mixture supplied from the crusher 23 is conveyed.
  • the wind box 52 includes a secondary air supply path 53 that supplies secondary air to the high temperature reduction combustion chamber 2 and a tertiary air supply path 54 that supplies tertiary air swirled by the swirling vane 55 to the high temperature reduction combustion chamber 2. It is equipped with That is, the air-fuel mixture is injected from the tip of the air-fuel mixture transfer pipe 51 to the high-temperature reduction combustion chamber 2, and secondary air and tertiary air, which are combustion air, are injected into the high-temperature reduction combustion chamber 2 from around the tip of the air-fuel mixture transfer pipe 51. supplied to
  • a flame stabilizing plate 51 a is provided at the tip of the mixture transport pipe 51 so as to be integrated with the mixture transport pipe 51 .
  • a swirl vane 64 and a short inner cylinder 65 are installed at the tip of the mixture conveying pipe 51.
  • the base end of the mixture conveying pipe 51 is connected to a mixture supply pipe 57 through which the mixture from the crusher 23 is supplied via an elbow pipe 58 .
  • an ignition burner 61 consisting of a gun-type heavy oil burner or a gas burner is arranged on the central axis 5a of the air-fuel mixture conveying pipe 51.
  • FIG. 4 is a diagram showing an example of the swirling vane 64 viewed from the base end side of the air-fuel mixture conveying pipe 51.
  • the swirling blade 64 is a well-known type including a cylindrical portion 64a attached to the ignition burner 61 and a plurality of flat blades 64b, and is arranged inside the inner cylinder 65.
  • the inner cylinder 65 is installed inside the air-fuel mixture transport pipe 51 and concentrically with the air-fuel mixture transport pipe 51 .
  • the plurality of blades 64b are attached to the outer peripheral surface of the cylindrical portion 64a at equal intervals and at a predetermined angle with respect to the center line of the cylindrical portion 64a.
  • the center line of the cylindrical portion 64a is the same as the central axis 5a, and the cylindrical portion 64a is installed concentrically with the air-fuel mixture conveying pipe 51.
  • a rod-shaped central flow inhibiting portion 62 is installed on the central axis 5a of the mixture conveying pipe 51 upstream of the swirling vanes 64 in the conveying direction of the mixture.
  • the central flow inhibiting portion 62 has a cylindrical surface 62a that is concentric with the air-fuel mixture conveying pipe 51 and extends in the direction of the central axis 5a.
  • a cylindrical peripheral flow inhibiting portion 63 is installed along the inner wall surface 51s of the mixture conveying pipe 51 between the central flow inhibiting portion 62 and the swirling vane 64.
  • the peripheral flow inhibiting portion 63 has a cylindrical inner circumferential surface 63a that is concentric with the air-fuel mixture conveying pipe 51 and extends in the direction of the central axis 5a.
  • the air-fuel mixture flowing inside the air-fuel mixture conveying pipe 51 flows around the inside of the pipe by the central flow obstruction part 62, and then is directed toward the center of the pipe by the peripheral flow obstruction part 63.
  • the liquid flows through the central portion of the tube in the same direction as the central axis 5a.
  • the peripheral flow inhibiting part 63 it spreads throughout the pipe, flows, is swirled by the swirling vanes 64, and is ejected into the combustion chamber 1.
  • the powdered fuel particles contained in the air-fuel mixture pass through the installation area of the peripheral flow inhibiting portion 63 in the same direction as the central axis 5a, they tend to move straight due to the inertial force.
  • a mixture with a high concentration of powdered fuel flows through the central portion of the mixture transfer pipe 51, passes through the swirl vane 64, and ignites the combustion chamber 1. It is ejected to region R1. Further, as shown by arrow S2, an air-fuel mixture with a low concentration of powdered fuel, that is, an air-fuel mixture with a high A/F, flows near the pipe wall of the air-fuel mixture conveying pipe 51. Therefore, even if the air-fuel mixture with a large A/F is supplied to the main burner 5, the A/F of the air-fuel mixture injected into the combustion chamber 1 can be locally reduced.
  • the A/F of the air-fuel mixture injected into the combustion chamber 1 is /F can be locally reduced to make the A/F suitable for ignition and combustion of powdered fuel.
  • ignitability can be improved and stable combustion can be achieved.
  • the A/F of the air-fuel mixture supplied from the crusher 23 is about 1.8, which is suitable for igniting and burning petroleum coke, which is an example of flame-retardant powdered fuel.
  • /F is preferably 1.5 or less, more preferably about 1.0.
  • FIG. 5 is a schematic cross-sectional view showing a main part of the powdered fuel burner 5 using a swirling vane 66 different from the swirling vane 64 described above.
  • a swirl vane 66 is provided in place of the swirl vane 64 and inner cylinder 65 of FIG. 2, and the configuration other than the swirl vane 66 is the same as that of the powdered fuel burner 5 shown in FIG. be.
  • the central flow inhibiting portion 62 has a predetermined length in which the length L1 of the cylindrical surface 62a in the direction of the central axis 5a is greater than or equal to a certain value. Thereby, the flow direction of the powdery particles contained in the air-fuel mixture that has passed through the surface of the cylindrical surface 62a is made parallel to the direction of the central axis 5a.
  • the peripheral flow inhibiting portion 63 has a length L2 of the cylindrical inner circumferential surface 63a in the direction of the central axis 5a, which is a predetermined length greater than or equal to a certain value. Thereby, the flow direction of the powdery particles contained in the air-fuel mixture that has passed through the surface of the inner circumferential surface 63a is made parallel to the direction of the central axis 5a.
  • the diameter of the cylindrical surface 62a of the central flow inhibiting portion 62 is greater than or equal to the diameter of the cylindrical inner circumferential surface 63a of the peripheral flow inhibiting portion 63.
  • the total of the diameter of the cylindrical surface 62a of the central flow inhibiting portion 62 and twice the distance from the inner wall surface 51s of the mixture conveying pipe 51 to the inner circumferential surface 63a of the peripheral flow inhibiting portion 63 is the mixture conveyance. It is larger than the inner diameter of the tube 51. Therefore, when the inside of the air-fuel mixture conveying pipe 51 is viewed from the direction of the central axis 5a, it appears that there is no gap between the central flow inhibiting portion 62 and the peripheral flow inhibiting portion 63, as shown in FIG.
  • the flow direction of all the air-fuel mixture flowing inside the air-fuel mixture conveying pipe 51 is regulated by the central flow inhibiting portion 62 and the peripheral flow inhibiting portion 63, so that the flow of the air-fuel mixture can be made into a desired flow. , contributes to locally reducing the A/F of the air-fuel mixture injected into the combustion chamber 1.
  • the central flow inhibiting portion 62 has curved surfaces 62b and 62c at both ends of the cylindrical surface 62a, which protrude from the ends of the cylindrical surface 62a in the direction of the central axis 5a and have a conical side surface shape. It is preferable that the angles e and f formed by the curved surfaces 62b and 62c and the central axis 5a are 20 degrees or less. Thereby, the generation of separation vortices can be suppressed before and after the air-fuel mixture flowing in the air-fuel mixture conveying pipe 51 passes through the central flow inhibiting portion 62, and the flow of the air-fuel mixture can be made into a desired flow.
  • the curved surface 62b is formed to protrude upstream from the upstream end of the cylindrical surface 62a in the air-fuel mixture conveying direction, and the curved surface 62c is formed to protrude downstream from the downstream end of the cylindrical surface 62a. There is.
  • peripheral flow inhibiting portions 63 are provided at both ends of the cylindrical inner circumferential surface 63a, protrude from the ends of the inner circumferential surface 63a in the direction of the central axis 5a, and are connected to the inner wall surface 51s of the mixture conveying pipe 51, and have a truncated conical side surface shape. It has curved surfaces 63b and 63c that form . It is preferable that the angles g and h formed by the curved surfaces 63b and 63c and the inner wall surface 51s of the air-fuel mixture conveying pipe 51 are 20 degrees or less.
  • the curved surface 63b is formed to protrude upstream from the upstream end of the inner circumferential surface 63a in the air-fuel mixture conveying direction, and the curved surface 63c is formed to protrude downstream from the downstream end of the inner circumferential surface 63a. has been done.
  • the central flow inhibiting portion 62 may be configured to be able to adjust its position in the direction of the central axis 5a.
  • the central flow inhibiting part 62 is attached to the ignition burner 61 so as to be slidable in the direction of the central axis 5a, the central flow inhibiting part 62 is connected to an operating lever, and this operating lever is connected to the outside of the mixture conveying pipe 51. The operating lever may be moved in the direction of the central axis 5a by being pulled out.
  • the interval between the downstream curved surface 62c of the central flow inhibiting part 62 and the upstream curved surface 63b of the peripheral flow inhibiting part 63 can be adjusted by moving the central flow inhibiting part 62 in the direction of the central axis 5a.
  • the interval can be adjusted.
  • the swirling blade 66 shown in FIG. 5 includes a cylindrical portion 66a installed at the tip of the mixture transport pipe 51 and inside the mixture transport pipe 51, and a plurality of blades 66b made of a flat plate.
  • the plurality of blades 66b are attached to the outer peripheral surface of the cylindrical portion 66a at equal intervals and at a predetermined angle with respect to the center line of the cylindrical portion 66a.
  • the center line of the cylindrical portion 66a is the same as the central axis 5a, and the cylindrical portion 66a is installed concentrically with the air-fuel mixture conveying pipe 51.
  • the swirling vane 66 is generally constructed by increasing the diameter of the cylindrical portion 64a in the aforementioned swirling vane 64.
  • the cylindrical portion 66a of the swirl vane 66 has an inner diameter larger than the diameter of the cylindrical inner circumferential surface 63a of the peripheral flow inhibiting portion 63.
  • a plurality of blades 64b are crowded in the central portion near the center.
  • Many particles of fuel can be supplied to the ignition region R1. Therefore, it contributes to locally reducing the A/F of the air-fuel mixture supplied to the ignition region R1 of the combustion chamber 1.
  • FIG. 6 is a schematic cross-sectional view showing a main part of a powdered fuel burner 5 that uses a swirling vane 67 different from the swirling vanes 64 and 66 described above.
  • This swirling vane 67 generally has a configuration in which the diameter of the swirling vane 64 shown in FIG. 2 is increased by increasing the length of the vane 64b, and the inner cylinder 65 is not installed. In some cases, such a swirl vane 67 may be used.
  • a central shaft rod is installed on the central axis 5a in place of the ignition burner 61, A central flow inhibiting portion 62 may be attached to the central shaft.
  • the swirl vanes 64 and 67 shown in FIGS. 2 and 6 may also be attached to the central shaft rod.
  • the flame-retardant powdered fuel in this embodiment may be petroleum residue fuel, biomass fuel, or a mixed fuel of biomass and pulverized coal, which is more difficult to burn than pulverized coal.
  • a powdered fuel burner is a powdered fuel burner installed in a combustion chamber of a boiler, in which a mixture of powdered fuel and transportation air is conveyed and mixed from the tip.
  • a cylindrical air-fuel mixture conveying pipe that injects air into the combustion chamber;
  • a swirling vane installed at the tip of the mixture conveying pipe;
  • a swirling vane disposed at the tip of the mixture conveying pipe, and a mixture conveying pipe located upstream of the swirling vane in the direction of conveying the mixture.
  • a rod-shaped central flow inhibiting part installed on the central axis of the pipe, concentric with the mixture conveying pipe and having a cylindrical surface extending in the central axis direction; and between the central flow inhibiting part and the swirling vane.
  • a cylindrical peripheral flow inhibiting part installed along an inner wall surface of the mixture transport pipe, having a cylindrical inner peripheral surface concentric with the mixture transport pipe and extending in the central axis direction;
  • the air-fuel mixture flowing inside the air-fuel mixture conveying pipe flows around the inside of the pipe by the central flow obstruction part, and then is directed toward the center of the pipe by the peripheral flow obstruction part, so that the mixture flows along the center axis of the pipe. flows in the same direction as the direction. Thereafter, when it leaves the area where the peripheral flow inhibiting part is installed, it spreads throughout the pipe, flows, is swirled by the swirling vanes, and is ejected into the combustion chamber.
  • the powdered fuel particles contained in the air-fuel mixture have passed straight through the installation area of the peripheral flow obstruction part in the same direction as the central axis, they tend to move straight due to inertia, so the air-fuel mixture is transported
  • the concentration of powdered fuel is high in the central part of the tube, and the concentration in other parts is low, and the powdered fuel passes through the swirl vanes and is injected into the combustion chamber. Therefore, even if the air-fuel mixture with a large A/F is supplied to the main burner, the A/F of the air-fuel mixture injected into the combustion chamber can be locally reduced.
  • the diameter of the cylindrical surface of the central flow obstruction part is equal to or smaller than the diameter of the cylindrical inner periphery of the peripheral flow obstruction part. It is greater than or equal to the diameter of the surface.
  • the central flow inhibiting portion is arranged at both ends of the cylindrical surface from the end of the cylindrical surface to the center. It has a curved surface that protrudes in the axial direction and has a conical side surface shape, and the angle between the curved surface and the central axis is 20 degrees or less, and the peripheral flow inhibiting portion is located at both ends of the cylindrical inner peripheral surface, a curved surface protruding from an end of the inner circumferential surface in the direction of the central axis and connected to the inner wall surface of the mixture transfer pipe and forming a side surface shape of a truncated cone, the shape of the curved surface and the inner wall surface of the mixture transfer pipe; The angle is 20 degrees or less.
  • a powdered fuel burner according to a fourth aspect of the present disclosure is the powdered fuel burner according to any one of the first to third aspects, wherein the central flow inhibiting portion is configured to be adjustable in position in the central axis direction. has been done. Thereby, the interval between the central flow inhibiting part and the peripheral flow inhibiting part can be adjusted by moving the central flow inhibiting part in the central axis direction. The narrower the above interval is, the higher the concentration of powdered fuel in the mixture after passing through the peripheral flow obstruction section will be near the center of the mixture conveying pipe. Can be adjusted.
  • the powdered fuel burner according to a fifth aspect of the present disclosure is the powdered fuel burner according to any one of the first to fourth aspects, wherein the swirling vane is concentric with the mixture conveying pipe and conveys the mixture.
  • a cylindrical part installed at the tip of the pipe and inside the mixture conveying pipe and having an inner diameter equal to or larger than the diameter of the cylindrical inner peripheral surface of the peripheral flow inhibiting part; and a cylindrical part attached to the outer peripheral surface of the cylindrical part. It is equipped with multiple blades. This allows many particles of powdered fuel to be supplied to the combustion chamber from near the center of the air-fuel mixture conveying pipe, contributing to locally reducing the A/F of the air-fuel mixture injected into the combustion chamber.
  • a powdered fuel burner according to a sixth aspect of the present disclosure is a powdered fuel burner according to any one of the first to fifth aspects, wherein the powdered fuel is petroleum residue fuel, biomass fuel, or biomass and fine powder. It is a mixed fuel with charcoal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

粉状燃料バーナは、ボイラの燃焼室に設置される粉状燃料バーナであって、粉状燃料と搬送用空気とを混合した混合気が搬送され、先端から混合気を燃焼室へ噴出する円筒状の混合気搬送管と、混合気搬送管の先端に設置された旋回羽根と、混合気の搬送方向において旋回羽根よりも上流寄りの混合気搬送管の中心軸線上に設置され、混合気搬送管と同心状で中心軸線方向に延びた円筒面を有する棒状の中央流れ阻害部と、中央流れ阻害部と旋回羽根との間の混合気搬送管の内壁面に沿って設置され、混合気搬送管と同心状で中心軸線方向に延びた円筒状の内周面を有する筒状の周辺流れ阻害部と、を備えている。

Description

粉状燃料バーナ
 本開示は、ボイラ等に用いられる粉状燃料バーナに関する。
 ボイラ等に用いられ、粉状燃料を燃焼する粉状燃料バーナ(以下、単に「バーナ」とも言う)として、例えば特許文献1に記載の微粉炭燃焼装置が挙げられる。この微粉炭燃焼装置は、筒状体を微粉炭通路とし、筒状体を囲むように2次空気通路、3次空気通路が設けられ、筒状体内に1以上のベンチュリー部が設けられている。
特開昭58-224207号公報
 上記のように、微粉炭を燃料にする場合には、粉砕機で石炭を粉砕した微粉炭を搬送用空気と混合し、この混合気を粉砕機から直接バーナへ供給する直接燃焼方式が採用されている。
 近年、石油コークス等の石油残渣を燃料に利用することが考えられている。石油残渣燃料は固定炭素を多く含むため、微粉炭と比較して燃えにくい難燃性の粉状燃料である。この石油残渣燃料のように難燃性の粉状燃料の良好な着火性を得るためには、バーナからボイラの燃焼室へ供給される混合気の空燃比であるA/F(=燃料搬送用空気量[Nm3/h]/燃料流量[t/h])を微粉炭の場合よりも小さくする必要がある。
 ところが、従来式の粉砕機から供給される混合気のA/Fは微粉炭には適しているが、難燃性の粉状燃料には適していない。そこで、粉砕機とバーナとの間に、混合気を固気分離して一時的に粉状燃料を貯蔵する貯槽等を設置し、難燃性の粉状燃料に適したA/Fとなるように貯槽から送出される粉状燃料に搬送用空気を加えた混合気を生成してバーナへ供給する間接燃焼方式の構成が考えられる。このような間接燃焼方式の場合には、直接燃焼方式の場合に比べて固気分離装置および貯槽等の追加設備が必要となり、設備コストの増加が避けられない。
 本開示は上記のような課題を解決するためになされたもので、石油残渣燃料等の難燃性の粉状燃料が粉砕機から直接供給されても、着火性の向上を図ることができる粉状燃料バーナを提供することを目的としている。
 上記目的を達成するために、本開示のある態様に係る粉状燃料バーナは、ボイラの燃焼室に設置される粉状燃料バーナであって、粉状燃料と搬送用空気とを混合した混合気が搬送され、先端から混合気を前記燃焼室へ噴出する円筒状の混合気搬送管と、前記混合気搬送管の先端に設置された旋回羽根と、混合気の搬送方向において前記旋回羽根よりも上流寄りの前記混合気搬送管の中心軸線上に設置され、前記混合気搬送管と同心状で前記中心軸線方向に延びた円筒面を有する棒状の中央流れ阻害部と、前記中央流れ阻害部と前記旋回羽根との間の前記混合気搬送管の内壁面に沿って設置され、前記混合気搬送管と同心状で前記中心軸線方向に延びた円筒状の内周面を有する筒状の周辺流れ阻害部と、を備えている。
 本開示は、以上に説明した構成を有し、石油残渣燃料等の難燃性の粉状燃料が粉砕機から直接供給されても、着火性の向上を図ることができる粉状燃料バーナを提供することができるという効果を奏する。
図1は、本実施形態に係る粉状燃料バーナを備えたボイラを含む燃焼システムの一例を示す概略図である。 図2は、本実施形態に係る粉状燃料バーナの一例を示す概略断面図である。 図3は、図2におけるA-A断面図である。 図4は、混合気搬送管の基端側から視た旋回羽根の一例を示す図である。 図5は、別の旋回羽根を用いた粉状燃料バーナの要部を示す概略断面図である。 図6は、別の旋回羽根を用いた粉状燃料バーナの要部を示す概略断面図である。
 以下、本開示の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図面を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状及び寸法比等については正確な表示ではない場合がある。
 (実施形態)
 図1は、本実施形態に係る粉状燃料バーナを備えたボイラを含む燃焼システムの一例を示す概略図である。
 図1に示す燃焼システムは、燃料供給装置20とボイラ100とを備えている。燃料供給装置20は、燃料貯槽21と計量フィーダ22と粉砕機23とを備える。燃料貯槽21には、例えば石油コークス等の石油残渣等の難燃性の燃料が貯留される。燃料貯槽21に貯留されている燃料は計量フィーダ22に供給され、計量フィーダ22から所定重量の燃料が粉砕機23に供給される。粉砕機23は、計量フィーダ22から供給された燃料を粉砕して粉状にし、この粉状燃料と搬送用空気とを混合した混合気をボイラ100の粉状燃料バーナ5へ供給する。この粉砕機23から粉状燃料バーナ5へ供給される混合気の空燃比であるA/Fは1.8程度である。
 ボイラ100は、倒立型の堅型炉として構成されている。ボイラ100は、例えば長方形断面の筒状に形成された燃焼室1と、当該燃焼室1にガス流出口11を介して接続される煙道12とを備えている。
 燃焼室1は、上端部に形成される高温還元燃焼室2と、高温還元燃焼室2の下方に形成される低温酸化燃焼室3と、高温還元燃焼室2と低温酸化燃焼室3とを互いに接続する絞り部4とを有している。絞り部4は、燃焼室1の他の部分に比べて水平断面積を20~50%減少させた流路である。
 高温還元燃焼室2の壁は、所定の高温の炉内温度に耐えうる耐火材6で覆われている。高温還元燃焼室2の対向する2つの側壁の各々には、複数の粉状燃料バーナ5が配設されている。本例では、粉状燃料バーナ5が8つ設けられている。8つのバーナ5は、それぞれ、火炎軸が正対しないように、且つ、軸平行となるように配されている。高温還元燃焼室2では、バーナ5から供給される燃料が、高温の還元雰囲気中で初期燃焼される。ここで発生する燃焼ガスは、新たに供給される燃料により燃焼ガスが増加するため、高温還元燃焼室2から押し出されて絞り部4を通って低温酸化燃焼室3へ流下する。
 低温酸化燃焼室3の側壁は水冷壁構造になっており、高温還元燃焼室2から絞り部4を通って流下した高温の燃焼ガスが冷却される。低温酸化燃焼室3には、絞り部4から下方へ離間した炉壁に、二段燃焼用空気を供給する複数の空気ノズル7が単段あるいは複数段配設されている。空気ノズル7より下方の二段燃焼領域10において、空気ノズル7から供給される空気によって、燃焼ガス中の未燃ガスを低温の酸化雰囲気中で二段燃焼させる。炉底に溜まった燃焼灰は、灰排出口8から炉外へ排出される。
 二段燃焼領域10の下方側面に、煙道12に通じるガス流出口11が設けられている。二段燃焼領域10で生じた燃焼ガスはU字状に流れを反転させて煙道12に流入する。煙道12には、蒸気過熱器管13とエコノマイザ14とが設けられている。煙道12に流入した燃焼ガスは、蒸気過熱器管13及びエコノマイザ14でボイラ水と熱交換を行い、後処理工程に供給される。また、燃焼ガスに同伴する燃焼灰は灰排出口15から排出される。
 このボイラ100では、粉状燃料バーナ5から供給された燃料が、高温還元燃焼室2において高温還元雰囲気で初期燃焼され、さらに低温酸化燃焼室3において低温酸化雰囲気で二段燃焼されることにより、NOx発生量が低減される。
 図2は、本実施形態に係る粉状燃料バーナ5の一例を示す概略断面図である。図3は、図2におけるA-A断面図である。
 図2に示す粉状燃料バーナ5は、粉砕機23から供給される混合気が搬送される円筒状の混合気搬送管51および風箱52を備える。風箱52は、2次空気を高温還元燃焼室2へ供給する2次空気供給路53と、旋回ベーン55で旋回された3次空気を高温還元燃焼室2へ供給する3次空気供給路54とを備えている。つまり、混合気搬送管51の先端から混合気が高温還元燃焼室2へ噴出され、混合気搬送管51の先端の周囲から燃焼用空気である2次空気および3次空気が高温還元燃焼室2へ供給される。
 また、混合気搬送管51の先端には、保炎板51aが混合気搬送管51と一体化して配設されている。混合気搬送管51の先端には旋回羽根64および短い内筒65が設置されている。混合気搬送管51の基端は、エルボ管58を介して粉砕機23からの混合気が供給される混合気供給管57に接続されている。また、混合気搬送管51の中心軸線5a上にガンタイプの重油バーナまたはガスバーナからなる着火用バーナ61が配置されている。
 旋回羽根64は、着火用バーナ61の先端付近に固定されている。図4は、混合気搬送管51の基端側から視た旋回羽根64の一例を示す図である。この旋回羽根64は、着火用バーナ61に取り付けられる円筒部64aと、平板よりなる複数の羽根64bとを備えた周知のものであり、内筒65の内側に配置される。内筒65は、混合気搬送管51と同心状で混合気搬送管51の内側に設置されている。複数の羽根64bは、円筒部64aの外周面に等間隔で、円筒部64aの中心線に対して所定の角度を有して取り付けられている。円筒部64aの中心線は中心軸線5aと同一であり、円筒部64aは混合気搬送管51と同心状に設置されている。
 この粉状燃料バーナ5では、ボイラ100の運転開始時には、まず、着火用バーナ61から噴出される重油またはガスが燃焼される。そして、高温還元燃焼室2が温められてから粉状燃料バーナ5から混合気が噴出され、混合気内の粉状燃料の燃焼が開始される。この後は、適時に着火用バーナ61からの重油またはガスの噴出が停止され、粉状燃料バーナ5から噴出される混合気内の粉状燃料の燃焼が継続される。
 本実施形態の粉状燃料バーナ5は、混合気の搬送方向において旋回羽根64よりも上流寄りの混合気搬送管51の中心軸線5a上に棒状の中央流れ阻害部62が設置されている。この中央流れ阻害部62は、混合気搬送管51と同心状で中心軸線5a方向に延びた円筒面62aを有している。また、中央流れ阻害部62と旋回羽根64との間の混合気搬送管51の内壁面51sに沿って筒状の周辺流れ阻害部63が設置されている。この周辺流れ阻害部63は、混合気搬送管51と同心状で中心軸線5a方向に延びた円筒状の内周面63aを有している。
 この粉状燃料バーナ5によれば、混合気搬送管51の内部を流れる混合気は、中央流れ阻害部62によって管内周辺を流れた後、周辺流れ阻害部63によって管内中央方向に向きを変えられて管内中央部分を中心軸線5a方向と同方向に流れる。その後、周辺流れ阻害部63の設置領域を抜け出すと管内全体に広がって流れ、旋回羽根64によって旋回されて燃焼室1へ噴出される。ここで、混合気に含まれる粉状燃料の粒子は、周辺流れ阻害部63の設置領域を中心軸線5a方向と同方向に直進して通過した後も、慣性力によって直進しようとするので、矢印S1で示すように混合気搬送管51の中央部分には粉状燃料の濃度が高い混合気、つまりA/Fが小さい状態の混合気が流れ、旋回羽根64を通過して燃焼室1の着火領域R1へ噴出される。また、矢印S2で示すように混合気搬送管51の管壁近辺には粉状燃料の濃度が低い混合気つまりA/Fが大きい状態の混合気が流れる。よって、A/Fが大きい状態の混合気が本バーナ5へ供給されても、燃焼室1へ噴出する混合気のA/Fを局所的に小さくすることができる。すなわち、石油残渣燃料等の難燃性の粉状燃料がその着火および燃焼に適したA/Fよりも大きい状態で粉砕機23から直接供給されても、燃焼室1へ噴出する混合気のA/Fを局所的に小さくして粉状燃料の着火および燃焼に適したA/Fにすることができる。その結果、着火性の向上が図れ、安定した燃焼が可能になる。ちなみに、本例では、粉砕機23から供給される混合気のA/Fは、1.8程度であるが、難燃性の粉状燃料の一例である石油コークスの着火および燃焼に適したA/Fは、1.5以下が好ましく、1.0程度がより好ましい。
 さらに、中央流れ阻害部62および周辺流れ阻害部63の詳細について、図5を参照して説明する。なお、図5は、上記旋回羽根64とは異なる別の旋回羽根66を用いた粉状燃料バーナ5の要部を示す概略断面図である。この図5の場合、図2の旋回羽根64および内筒65に代えて、旋回羽根66を備えた構成であり、旋回羽根66以外の構成は、図2に示す粉状燃料バーナ5と同様である。
 図5に示すように、中央流れ阻害部62は円筒面62aの中心軸線5a方向の長さL1が一定値以上の所定長さである。これにより、円筒面62aの表面を通過した混合気に含まれる粉状粒子の流れ方向が中心軸線5aの方向と平行になるようにしている。また、周辺流れ阻害部63は円筒状の内周面63aの中心軸線5a方向の長さL2が一定値以上の所定長さである。これにより、内周面63aの表面を通過した混合気に含まれる粉状粒子の流れ方向が中心軸線5aの方向と平行になるようにしている。
 また、中央流れ阻害部62の円筒面62aの直径が、周辺流れ阻害部63の円筒状の内周面63aの直径以上である。換言すれば、中央流れ阻害部62の円筒面62aの直径と、混合気搬送管51の内壁面51sから周辺流れ阻害部63の内周面63aまでの距離の2倍との合計が混合気搬送管51の内径以上である。よって、混合気搬送管51内を中心軸線5a方向から視た場合、例えば図3に示すように、中央流れ阻害部62と周辺流れ阻害部63との間に隙間が無いように見える。これにより、混合気搬送管51内を流れる混合気の全てが、中央流れ阻害部62及び周辺流れ阻害部63によって流れ方向が規制されるので、混合気の流れを所望の流れとすることができ、燃焼室1へ噴出する混合気のA/Fを局所的に小さくすることに寄与する。
 また、中央流れ阻害部62は、円筒面62aの両端に、円筒面62aの端から中心軸線5a方向に突出し円錐の側面形状をなす曲面62b,62cを有する。この曲面62b,62cと中心軸線5aとのなす角度e,fが20度以下であることが好ましい。これにより、混合気搬送管51内を流れる混合気が中央流れ阻害部62を通過する前後において剥離渦の発生を抑制し、混合気の流れを所望の流れとすることができる。なお、曲面62bは、円筒面62aの混合気の搬送方向における上流側の端から上流寄りに突出して形成され、曲面62cは、円筒面62aの下流側の端から下流寄りに突出して形成されている。
 また、周辺流れ阻害部63は、円筒状の内周面63aの両端に、内周面63aの端から中心軸線5a方向に突出して混合気搬送管51の内壁面51sに繋がり円錐台の側面形状をなす曲面63b,63cを有する。この曲面63b,63cと混合気搬送管51の内壁面51sとのなす角度g,hが20度以下であることが好ましい。これにより、混合気搬送管51内を流れる混合気が周辺流れ阻害部63を通過する前後において剥離渦の発生を抑制し、混合気の流れを所望の流れとすることができる。このように、混合気搬送管51内の混合気の流れを所望の流れとすることができ、燃焼室1へ噴出する混合気のA/Fを局所的に小さくすることに寄与する。なお、曲面63bは、内周面63aの混合気の搬送方向における上流側の端から上流寄りに突出して形成され、曲面63cは、内周面63aの下流側の端から下流寄りに突出して形成されている。
 また、中央流れ阻害部62は、中心軸線5a方向の位置を調整可能に構成されていてもよい。この場合、例えば、中央流れ阻害部62を着火用バーナ61に中心軸線5a方向に摺動自在に取り付け、中央流れ阻害部62に操作レバーを接続し、この操作レバーを混合気搬送管51の外部へ引き出して、操作レバーを中心軸線5a方向に移動可能な構成としてもよい。これにより、中央流れ阻害部62を中心軸線5a方向に移動させて中央流れ阻害部62の下流側曲面62cと周辺流れ阻害部63の上流側曲面63bとの間隔を調整することができる。上記間隔を狭くするほど、周辺流れ阻害部63を通過後の混合気中の粉状燃料の濃度が混合気搬送管51のより中央に近い部分が高くなり、適切な濃度分布となるように上記間隔を調整することができる。
 なお、図5に示す旋回羽根66は、混合気搬送管51の先端にかつ混合気搬送管51の内側に設置された円筒部66aと、平板よりなる複数の羽根66bとを備えている。複数の羽根66bは、円筒部66aの外周面に等間隔で、円筒部66aの中心線に対して所定の角度を有して取り付けられている。円筒部66aの中心線は中心軸線5aと同一であり、円筒部66aは混合気搬送管51と同心状に設置されている。つまり、旋回羽根66は、概ね、前述の旋回羽根64において円筒部64aの径を大きくした構成である。この旋回羽根66の円筒部66aは、周辺流れ阻害部63の円筒状の内周面63aの直径以上の内径を有している。
 例えば、図4に示す旋回羽根64では、その中心に近い中央部分では複数の羽根64bが込み入っている。この中央部分の旋回羽根64によって着火領域R1の外側へ粉状燃料の多くの粒子がはじき飛ばされる場合には、図5に示す旋回羽根66を用いることで、混合気搬送管51の中心付近から粉状燃料の多くの粒子を着火領域R1へ供給することができる。よって、燃焼室1の着火領域R1へ供給される混合気のA/Fを局所的に小さくすることに寄与する。
 また、図6は、上記旋回羽根64,66とは異なる別の旋回羽根67を用いた粉状燃料バーナ5の要部を示す概略断面図である。この旋回羽根67は、概ね、図2に示す旋回羽根64において、羽根64bの長さを長くすることにより径を大きくした構成であり、内筒65は設置していない。場合によっては、このような旋回羽根67を用いてもよい。
 なお、本実施形態において、着火用バーナ61が混合気搬送管51の内部ではなく、別途設置される場合には、着火用バーナ61に代えて、中心軸線5a上に中心軸棒を設置し、その中心軸棒に中央流れ阻害部62が取り付けられていてもよい。この場合、図2、図6の旋回羽根64,67も上記中心軸棒に取り付けられていてもよい。
 また、本実施形態における難燃性の粉状燃料は、微粉炭よりも燃えにくい石油残渣燃料、バイオマス燃料、または、バイオマスと微粉炭との混合燃料であってもよい。
 上記説明から、当業者にとっては、本開示の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 (まとめ)
 本開示の第1態様に係る粉状燃料バーナは、ボイラの燃焼室に設置される粉状燃料バーナであって、粉状燃料と搬送用空気とを混合した混合気が搬送され、先端から混合気を前記燃焼室へ噴出する円筒状の混合気搬送管と、前記混合気搬送管の先端に設置された旋回羽根と、混合気の搬送方向において前記旋回羽根よりも上流寄りの前記混合気搬送管の中心軸線上に設置され、前記混合気搬送管と同心状で前記中心軸線方向に延びた円筒面を有する棒状の中央流れ阻害部と、前記中央流れ阻害部と前記旋回羽根との間の前記混合気搬送管の内壁面に沿って設置され、前記混合気搬送管と同心状で前記中心軸線方向に延びた円筒状の内周面を有する筒状の周辺流れ阻害部と、を備えている。
 この構成によれば、混合気搬送管の内部を流れる混合気は、中央流れ阻害部によって管内周辺を流れた後、周辺流れ阻害部によって管内中央方向に向きを変えられて管内中央部分を中心軸線方向と同方向に流れる。その後、周辺流れ阻害部の設置領域を抜け出すと管内全体に広がって流れ、旋回羽根によって旋回されて燃焼室へ噴出される。ここで、混合気に含まれる粉状燃料の粒子は、周辺流れ阻害部の設置領域を中心軸線方向と同方向に直進して通過した後も、慣性力によって直進しようとするので、混合気搬送管の中央部分には粉状燃料の濃度が高く、他の部分の濃度が低い状態となって旋回羽根を通過して燃焼室へ噴出される。よって、A/Fが大きい状態の混合気が本バーナへ供給されても、燃焼室へ噴出する混合気のA/Fを局所的に小さくすることができる。すなわち、石油残渣燃料等の難燃性の粉状燃料がその着火および燃焼に適したA/Fよりも大きい状態で粉砕機から直接供給されても、燃焼室へ噴出する混合気のA/Fを局所的に小さくして粉状燃料の着火および燃焼に適したA/Fにすることができる。その結果、着火性の向上が図れ、安定した燃焼が可能になる。
 本開示の第2態様に係る粉状燃料バーナは、第1態様に係る粉状燃料バーナにおいて、前記中央流れ阻害部の前記円筒面の直径が、前記周辺流れ阻害部の前記円筒状の内周面の直径以上である。これにより、混合気搬送管内を流れる混合気の全てが、中央流れ阻害部及び周辺流れ阻害部によって流れ方向が規制されるので、混合気の流れを所望の流れとすることができ、燃焼室へ噴出する混合気のA/Fを局所的に小さくすることに寄与する。
 本開示の第3態様に係る粉状燃料バーナは、第1または第2態様に係る粉状燃料バーナにおいて、前記中央流れ阻害部は、前記円筒面の両端に、前記円筒面の端から前記中心軸線方向に突出し円錐の側面形状をなす曲面を有し、前記曲面と前記中心軸線とのなす角度が20度以下であり、前記周辺流れ阻害部は、前記円筒状の内周面の両端に、前記内周面の端から前記中心軸線方向に突出して前記混合気搬送管の内壁面に繋がり円錐台の側面形状をなす曲面を有し、前記曲面と前記混合気搬送管の内壁面とのなす角度が20度以下である。これにより、混合気搬送管内を流れる混合気が中央流れ阻害部を通過する前後において剥離渦の発生を抑制するとともに、周辺流れ阻害部を通過する前後において剥離渦の発生を抑制する。このように、混合気搬送管内において剥離渦の発生を抑制し混合気の流れを所望の流れとすることができ、燃焼室へ噴出する混合気のA/Fを局所的に小さくすることに寄与する。
 本開示の第4態様に係る粉状燃料バーナは、第1~第3のいずれかの態様に係る粉状燃料バーナにおいて、前記中央流れ阻害部は、前記中心軸線方向の位置を調整可能に構成されている。これにより、中央流れ阻害部を中心軸線方向に移動させて中央流れ阻害部と周辺流れ阻害部との間隔を調整することができる。上記間隔を狭くするほど、周辺流れ阻害部を通過後の混合気中の粉状燃料の濃度が混合気搬送管のより中央に近い部分が高くなり、適切な濃度分布となるように上記間隔を調整することができる。
 本開示の第5態様に係る粉状燃料バーナは、第1~第4のいずれかの態様に係る粉状燃料バーナにおいて、前記旋回羽根は、前記混合気搬送管と同心状で前記混合気搬送管の先端にかつ前記混合気搬送管の内側に設置され、前記周辺流れ阻害部の前記円筒状の内周面の直径以上の内径を有する円筒部と、前記円筒部の外周面に取り付けられた複数の羽根とを備えている。これにより、混合気搬送管の中心付近から粉状燃料の多くの粒子を燃焼室へ供給することができ、燃焼室へ噴出する混合気のA/Fを局所的に小さくすることに寄与する。
 本開示の第6態様に係る粉状燃料バーナは、第1~第5のいずれかの態様に係る粉状燃料バーナにおいて、前記粉状燃料は、石油残渣燃料、バイオマス燃料、または、バイオマスと微粉炭との混合燃料である。
1 ボイラの燃焼室
5 粉状燃料バーナ
51 混合気搬送管
62 中央流れ阻害部
62a 中央流れ阻害部の円筒面
63 周辺流れ阻害部
63a 周辺流れ阻害部の内周面
64,66,67 旋回羽根
66a 旋回羽根の円筒部
66b 旋回羽根の羽根

Claims (6)

  1.  ボイラの燃焼室に設置される粉状燃料バーナであって、
     粉状燃料と搬送用空気とを混合した混合気が搬送され、先端から混合気を前記燃焼室へ噴出する円筒状の混合気搬送管と、
     前記混合気搬送管の先端に設置された旋回羽根と、
     混合気の搬送方向において前記旋回羽根よりも上流寄りの前記混合気搬送管の中心軸線上に設置され、前記混合気搬送管と同心状で前記中心軸線方向に延びた円筒面を有する棒状の中央流れ阻害部と、
     前記中央流れ阻害部と前記旋回羽根との間の前記混合気搬送管の内壁面に沿って設置され、前記混合気搬送管と同心状で前記中心軸線方向に延びた円筒状の内周面を有する筒状の周辺流れ阻害部と、
     を備えた粉状燃料バーナ。
  2.  前記中央流れ阻害部の前記円筒面の直径が、前記周辺流れ阻害部の前記円筒状の内周面の直径以上である、
     請求項1に記載の粉状燃料バーナ。
  3.  前記中央流れ阻害部は、前記円筒面の両端に、前記円筒面の端から前記中心軸線方向に突出し円錐の側面形状をなす曲面を有し、前記曲面と前記中心軸線とのなす角度が20度以下であり、
     前記周辺流れ阻害部は、前記円筒状の内周面の両端に、前記内周面の端から前記中心軸線方向に突出して前記混合気搬送管の内壁面に繋がり円錐台の側面形状をなす曲面を有し、前記曲面と前記混合気搬送管の内壁面とのなす角度が20度以下である、
     請求項1または2に記載の粉状燃料バーナ。
  4.  前記中央流れ阻害部は、前記中心軸線方向の位置を調整可能に構成された、
     請求項1または2に記載の粉状燃料バーナ。
  5.  前記旋回羽根は、
     前記混合気搬送管と同心状で前記混合気搬送管の先端にかつ前記混合気搬送管の内側に設置され、前記周辺流れ阻害部の前記円筒状の内周面の直径以上の内径を有する円筒部と、
     前記円筒部の外周面に取り付けられた複数の羽根とを備えた、
     請求項1または2に記載の粉状燃料バーナ。
  6.  前記粉状燃料は、石油残渣燃料、バイオマス燃料、または、バイオマスと微粉炭との混合燃料である、
     請求項1または2に記載の粉状燃料バーナ。
PCT/JP2023/014715 2022-04-22 2023-04-11 粉状燃料バーナ WO2023204103A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022070677A JP2023160353A (ja) 2022-04-22 2022-04-22 粉状燃料バーナ
JP2022-070677 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023204103A1 true WO2023204103A1 (ja) 2023-10-26

Family

ID=88419938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014715 WO2023204103A1 (ja) 2022-04-22 2023-04-11 粉状燃料バーナ

Country Status (2)

Country Link
JP (1) JP2023160353A (ja)
WO (1) WO2023204103A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195314U (ja) * 1983-06-14 1984-12-25 バブコツク日立株式会社 微粉炭燃焼装置
JPH08110014A (ja) * 1994-10-07 1996-04-30 Babcock Hitachi Kk 微粉炭燃焼装置
JP2014001908A (ja) * 2012-06-20 2014-01-09 Babcock-Hitachi Co Ltd 固体燃料バーナ及び固体燃料バーナを備えた酸素燃焼装置
CN104566357A (zh) * 2013-10-29 2015-04-29 烟台龙源电力技术股份有限公司 煤粉燃烧器以及锅炉
CN106051759A (zh) * 2016-07-05 2016-10-26 哈尔滨锅炉厂有限责任公司 多级分离中心回流式轴向旋流燃烧器
WO2017141551A1 (ja) * 2016-02-15 2017-08-24 三菱日立パワーシステムズ株式会社 燃焼バーナ及び燃焼バーナのメンテナンス方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195314U (ja) * 1983-06-14 1984-12-25 バブコツク日立株式会社 微粉炭燃焼装置
JPH08110014A (ja) * 1994-10-07 1996-04-30 Babcock Hitachi Kk 微粉炭燃焼装置
JP2014001908A (ja) * 2012-06-20 2014-01-09 Babcock-Hitachi Co Ltd 固体燃料バーナ及び固体燃料バーナを備えた酸素燃焼装置
CN104566357A (zh) * 2013-10-29 2015-04-29 烟台龙源电力技术股份有限公司 煤粉燃烧器以及锅炉
WO2017141551A1 (ja) * 2016-02-15 2017-08-24 三菱日立パワーシステムズ株式会社 燃焼バーナ及び燃焼バーナのメンテナンス方法
CN106051759A (zh) * 2016-07-05 2016-10-26 哈尔滨锅炉厂有限责任公司 多级分离中心回流式轴向旋流燃烧器

Also Published As

Publication number Publication date
JP2023160353A (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
CA2487215C (en) Solid fuel burner, solid fuel burner combustion method, combustion apparatus and combustion apparatus operation method
JP5897363B2 (ja) 微粉炭バイオマス混焼バーナ
AU2002301911B2 (en) Solid fuel burner, burning method using the same, combustion apparatus and method of operating the combustion apparatus
JP4969015B2 (ja) 固体燃料バーナと固体燃料バーナを用いた燃焼方法
JP2544662B2 (ja) バ―ナ―
WO2013141312A1 (ja) 微粉炭バイオマス混焼バーナおよび燃料燃焼方法
AU2003212026A1 (en) Nox-reduced combustion of concentrated coal streams
JP2004100967A (ja) 粉体燃焼用バーナ、粉体燃焼方法および焼却炉
JP5386230B2 (ja) 燃料バーナ及び旋回燃焼ボイラ
JP2003240227A (ja) 固体燃料バーナと固体燃料バーナの燃焼方法
US20150192296A1 (en) Solid Fuel Burner
WO2023204103A1 (ja) 粉状燃料バーナ
JP3830582B2 (ja) 微粉炭燃焼バーナ
WO2023204102A1 (ja) 粉状燃料バーナ
CN211011344U (zh) 一种筒式煤粉燃烧器
JP2954628B2 (ja) 微粉炭バーナ
JP3899457B2 (ja) 固体燃料バーナと固体燃料バーナの燃焼方法
JPH11148610A (ja) 固体燃料燃焼用バーナと固体燃料用燃焼装置
JPS59210205A (ja) 微粉炭バ−ナ装置
JP2519923B2 (ja) 微粉炭燃焼装置
JP7262521B2 (ja) ガスバーナ、及び燃焼設備
JPS5843313A (ja) 微粉炭燃焼バ−ナ
US11248785B2 (en) Coal nozzle assembly for a steam generation apparatus
JP6729045B2 (ja) 助燃用ガスバーナ及び副生ガスバーナ
JP4016909B2 (ja) 粉体燃焼装置および粉体燃焼方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791751

Country of ref document: EP

Kind code of ref document: A1