WO2023202493A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2023202493A1
WO2023202493A1 PCT/CN2023/088456 CN2023088456W WO2023202493A1 WO 2023202493 A1 WO2023202493 A1 WO 2023202493A1 CN 2023088456 W CN2023088456 W CN 2023088456W WO 2023202493 A1 WO2023202493 A1 WO 2023202493A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
reconfigurable smart
network side
smart surface
selected reconfigurable
Prior art date
Application number
PCT/CN2023/088456
Other languages
English (en)
French (fr)
Inventor
党建
李业伟
樊婷婷
孙晨
Original Assignee
索尼集团公司
党建
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 党建 filed Critical 索尼集团公司
Publication of WO2023202493A1 publication Critical patent/WO2023202493A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to an electronic device and method for wireless communication and a computer-readable storage medium. More specifically, it relates to the use of reconfigurable smart surfaces (RIS) to assist in determining location information of user equipment.
  • RIS reconfigurable smart surfaces
  • methods for positioning user equipment include multiple round-trip delay positioning methods, arrival time difference positioning methods, arrival angle positioning methods, etc.
  • the multiple round-trip delay positioning method requires the user equipment to switch between different base stations. The switching process is complicated and the positioning delay is large.
  • the arrival time difference positioning method requires time synchronization between base stations, otherwise the positioning accuracy will be affected.
  • the arrival angle positioning method requires the base station to be equipped with a large-scale antenna to ensure high positioning accuracy, which increases the positioning cost.
  • an electronic device for wireless communication which includes a processing circuit configured to: based on a connection status between the electronic device and a user device within a service range of the electronic device And choose from multiple original reconfigurable smart surfaces A plurality of selected reconfigurable smart surfaces are selected to determine the initial position information of the user device.
  • positioning the user equipment is improved by determining initial location information of the user equipment through a plurality of selected reconfigurable smart surfaces selected based on the connection status between the electronic device and the user equipment. applicability.
  • an electronic device for wireless communication which includes a processing circuit configured to: based on a connection status between the electronic device and a network side device that provides services for the electronic device.
  • a plurality of selected reconfigurable smart surfaces selected from a plurality of original reconfigurable smart surfaces assist the network side device in determining the initial position information of the electronic device.
  • a plurality of selected reconfigurable smart surfaces selected based on the connection status between the electronic device and the network side device are used to assist in determining location information, thereby improving the applicability of positioning the electronic device. sex.
  • a method for wireless communication comprising: generating a data from a plurality of original reconfigurable smart surfaces based on a connection status between an electronic device and a user device within a service range of the electronic device. A plurality of selected reconfigurable smart surfaces are selected to determine initial position information of the user device.
  • a method for wireless communication including: selecting from a plurality of original reconfigurable smart surfaces based on a connection status between an electronic device and a network side device that provides services for the electronic device.
  • a plurality of selected reconfigurable smart surfaces are generated to assist the network side device in determining the initial location information of the electronic device.
  • computer program codes and computer program products for implementing the above-mentioned method for wireless communication are also provided, as well as computers having the computer program codes for implementing the above-mentioned method for wireless communication recorded thereon.
  • readable storage media are also provided.
  • FIG. 1 shows a functional module block diagram of an electronic device for wireless communication according to one embodiment of the present disclosure
  • Figure 2 shows an example of mapping between a reconfigurable intelligent surface (RIS) and a downlink synchronization signal according to an embodiment of the present disclosure
  • FIG. 3 shows an example of an electronic device broadcasting a synchronization signal block (SSB) to a user device via an original reconfigurable smart surface according to an embodiment of the present disclosure
  • SSB synchronization signal block
  • Figure 4 shows an example of an electronic device broadcasting SSB to a user device via a thick beam of an original reconfigurable smart surface according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating a user equipment selecting a selected reconfigurable smart surface based on a measurement result of a received downlink synchronization signal according to an embodiment of the present disclosure
  • Figure 6 shows an example of signaling interaction between an electronic device and a user equipment according to an embodiment of the present disclosure
  • Figure 7 shows an example in which an electronic device determines initial position information via a selected reconfigurable smart surface based on a preamble according to an embodiment of the present disclosure
  • FIG. 8 shows another example in which an electronic device determines initial position information via a selected reconfigurable smart surface based on a preamble according to an embodiment of the present disclosure
  • Figure 9 shows another example of mapping between RIS and downlink synchronization signals according to an embodiment of the present disclosure.
  • Figure 10 shows another example of an electronic device broadcasting an SSB to a user device via an original reconfigurable smart surface according to an embodiment of the present disclosure
  • Figure 11 shows another example of an electronic device broadcasting SSB to a user device via a thick beam of an original reconfigurable smart surface according to an embodiment of the present disclosure
  • Figure 12 shows another example of signaling interaction between an electronic device and a user equipment according to an embodiment of the present disclosure
  • Figure 13 shows an example in which an electronic device determines initial position information via a selected reconfigurable smart surface based on a preamble and a detection reference signal according to an embodiment of the present disclosure
  • Figure 14 shows another example in which an electronic device determines initial position information via a selected reconfigurable smart surface based on a preamble and a sounding reference signal according to an embodiment of the present disclosure
  • Figure 15 shows an example in which an electronic device determines enhanced location information based on initial location information in a non-connected state according to an embodiment of the present disclosure
  • Figure 16 shows another example in which an electronic device determines enhanced location information based on initial location information in a non-connected state according to an embodiment of the present disclosure
  • FIG. 17 shows an example in which an electronic device determines enhanced location information based on candidate thin beams according to an embodiment of the present disclosure
  • FIG. 18 shows another example in which an electronic device determines enhanced location information based on candidate thin beams according to an embodiment of the present disclosure
  • Figure 19 shows a schematic diagram of communication using beams between an electronic device and user equipment according to an embodiment of the present disclosure
  • Figure 20 is a schematic diagram illustrating the selection of a plurality of initial reconfigurable smart surfaces within the range of an initial beam according to an embodiment of the present disclosure
  • Figure 21 shows an example of signaling interaction between an electronic device and a user equipment with which a connection has been established according to an embodiment of the present disclosure
  • Figure 22 shows an example in which an electronic device determines enhanced location information based on initial location information in a connected state according to an embodiment of the present disclosure
  • Figure 23 shows another example of signaling interaction between an electronic device and a user equipment with which a connection has been established according to an embodiment of the present disclosure
  • Figure 24 shows another example in which an electronic device determines enhanced location information based on initial location information in a connected state according to an embodiment of the present disclosure
  • Figure 25 shows another schematic diagram of communication using beams between an electronic device and a user equipment according to an embodiment of the present disclosure
  • Figure 26 shows a functional module block diagram of an electronic device for wireless communication according to another embodiment of the present disclosure.
  • Figure 27 shows a flowchart of a method for wireless communication according to one embodiment of the present disclosure
  • 29 is a schematic configuration illustrating an eNB or gNB to which the technology of the present disclosure may be applied.
  • FIG. 30 is a block diagram illustrating a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure may be applied;
  • FIG. 31 is a block diagram illustrating an example of a schematic configuration of a smartphone to which the technology of the present disclosure may be applied;
  • FIG. 32 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • 33 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present invention may be implemented.
  • FIG. 1 shows a functional module block diagram of an electronic device 100 for wireless communication according to one embodiment of the present disclosure.
  • the electronic device 100 includes: a determining unit 101 that can select a plurality of original reconfigurable smart surfaces from a plurality of original reconfigurable smart surfaces based on a connection status between the electronic device 100 and a user device within a service range of the electronic device 100 .
  • a plurality of selected reconfigurable smart surfaces are selected to determine the initial position information of the user device.
  • the determination unit 101 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 100 may serve as a network-side device in a wireless communication system. Specifically, for example, it may be provided on the base station side or communicably connected to the base station.
  • the electronic device 100 may be implemented at a chip level, or may also be implemented at a device level.
  • the electronic device 100 may operate as a base station itself, and may also include external devices such as memory, transceivers (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, user equipment (UE), other base stations, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the base station may be an eNB or a gNB, for example.
  • the wireless communication system according to the present disclosure may be a 5G NR (New Radio, New Radio) communication system. Further, the wireless communication system according to the present disclosure may include a non-terrestrial network (Non-terrestrial network, NTN). Optionally, the wireless communication system according to the present disclosure may also include a terrestrial network (Terrestrial network, TN). In addition, those skilled in the art can understand that the wireless communication system according to the present disclosure may also be a 4G or 3G communication system.
  • the connection state between the electronic device 100 and the user equipment includes: a non-connected state in which a communication connection is not established between the electronic device 100 and the user equipment and a connected state in which a communication connection has been established between the electronic device 100 and the user equipment.
  • N is a positive integer less than or equal to M
  • selected reconfigurable smart surfaces are selected from the M original reconfigurable smart surfaces for determining the user device. initial location information.
  • positioning the user equipment is improved by determining location information of the user equipment from a plurality of selected reconfigurable smart surfaces selected based on the connection status between the electronic device 100 and the user equipment. applicability, and can improve positioning coverage.
  • the determining unit 101 may be configured to respectively broadcast downlink synchronization signals including preambles via a plurality of original reconfigurable smart surfaces for the user equipment when the electronic device 100 and the user equipment are in a non-connection state.
  • a plurality of selected reconfigurable smart surfaces are selected based on the preamble.
  • a plurality of selected reconfigurable smart surfaces can be selected for positioning based on the preamble.
  • the downlink synchronization signal may include a synchronization signal block (SSB).
  • SSB synchronization signal block
  • downlink synchronization signals respectively corresponding to multiple original reconfigurable smart surfaces do not include a common preamble.
  • the SSB corresponding to RIS-1 is SSB1
  • the SSB corresponding to RIS-2 is SSB2
  • the SSB corresponding to RIS-M is SSBM.
  • Figure 2 shows an example of mapping between a reconfigurable smart surface and a downlink synchronization signal according to an embodiment of the present disclosure.
  • SSB-per-rach-occasion this means that a RIS has multiple PRACH opportunities and the RIS is configured with a wide beam to broadcast the signal.
  • Figure 2 only the mapping between four RISs (whose sequence numbers are RIS-1, RIS-2, RIS-3, and RIS-4) and SSB resources is shown in Figure 2.
  • the SSB corresponding to RIS-1 is SSB1
  • the SSB corresponding to RIS-2 is SSB2
  • the SSB corresponding to RIS-3 is SSB3
  • the SSB corresponding to RIS-4 is SSB4.
  • the four SSB1s shown in Figure 2 indicate that SSB1 includes four preambles, and the time domain and frequency domain resources corresponding to each preamble are represented by the horizontal axis and the vertical axis respectively.
  • SSB1 circled with an ellipse in Figure 2 is used to schematically represent a single preamble time-frequency resource among the four preamble time-frequency resources corresponding to SSB1.
  • SSB2, SSB3, and SSB4 in Figure 2 include four preambles similarly to SSB1.
  • the number of preambles included in each SSB may be other numbers than 4.
  • SSB1, SSB2, SSB3, and SSB4 do not occupy common time-frequency resources, so preambles can be sent through PRACH (Physical Random Access Channel) on different time-frequency resources.
  • PRACH Physical Random Access Channel
  • PRACH can be used directly for positioning.
  • FIG. 3 shows an example of the electronic device 100 broadcasting SSB to the user device via the original reconfigurable smart surface according to an embodiment of the present disclosure.
  • the electronic device 100 is sometimes referred to as gNB, and the user equipment is referred to as UE.
  • gNB broadcasts SSB1,..., to the UE via RIS-1, and broadcasts SSBM to the UE via RIS-M.
  • a common preamble is not included in each SSB.
  • the downlink synchronization signal corresponding to each original reconfigurable intelligent surface among the plurality of original reconfigurable intelligent surfaces also includes a sequence number of the coarse beam of the original reconfigurable intelligent surface.
  • each original reconfigurable smart surface may have several coarse beams respectively.
  • each original reconfigurable smart surface has three coarse beams respectively, and the sequence numbers of these three coarse beams are marked as coarse beam 1, coarse beam 2 and coarse beam 3.
  • each original reconfigurable smart surface may have other numbers of coarse beams.
  • the three thick beams of each original reconfigurable smart surface can be used to broadcast the SSB corresponding to the original reconfigurable smart surface respectively.
  • the SSBs corresponding to the original reconfigurable smart surface can be distinguished into SSBs broadcasted on coarse beams in different directions.
  • SSB1 can be distinguished into SSB1-1 broadcast through coarse beam 1 of RIS-1, SSB1-2 broadcast through coarse beam 2 of RIS-1, and SSB1-3 broadcast through coarse beam 3 of RIS-1.
  • SSB2 can be distinguished into SSB2-1 broadcast through coarse beam 1 of RIS-2, SSB2-2 broadcast through coarse beam 2 of RIS-2, and SSB2-3 broadcast through coarse beam 3 of RIS-2,...
  • SSBM can be distinguished into SSBM-1 broadcasted through coarse beam 1 of RIS-M, SSBM-2 broadcasted through coarse beam 2 of RIS-M, and SSBM-3 broadcasted through coarse beam 3 of RIS-M.
  • FIG. 4 shows an example in which the electronic device 100 broadcasts SSB to the user equipment via a thick beam of the original reconfigurable smart surface according to an embodiment of the present disclosure.
  • M original RISs (RIS-1, RIS-2, ..., RIS-M) are shown in Figure 4 .
  • the connection between gNB and UE marked with " ⁇ " in Figure 4 indicates that there is no direct link between gNB and UE (for example, there is no direct link because there is an obstacle between gNB and UE).
  • gNB broadcasts SSB1 to the UE via RIS-1, more specifically, broadcasts SSB1-1, SSB1-2, and SSB1-3 via the three thick beams of RIS-1; gNB broadcasts SSB1-1, SSB1-2, and SSB1-3 to the UE via RIS-2.
  • gNB broadcasts SSBM to the UE via RIS-M, more specifically, via RIS- The three thick beams of M broadcast SSBM-1, SSBM-2 and SSBM-3 respectively.
  • a plurality of selected reconfigurable smart surfaces are selected by the user equipment based on measurements of received downlink synchronization signals.
  • the measurement results of the received downlink synchronization signal include the reference signal received power (RSRP) of the received downlink synchronization signal, the signal-to-interference-to-noise ratio of the received downlink synchronization signal, and so on.
  • RSRP reference signal received power
  • the measurement result is usually RSRP as an example.
  • FIG. 5 is a schematic diagram illustrating a user equipment selecting a selected reconfigurable smart surface based on a measurement result of a received downlink synchronization signal according to an embodiment of the present disclosure.
  • the UE calculates the RSRP of the SSBs received via RIS-1,...,RIS-M, and compares and sorts the maximum RSRP corresponding to each RIS, starting from RIS-1,...,RIS Select the RIS corresponding to the top N largest RSRPs among -M as the selected reconfigurable smart surface (selected RIS). For example, when there is an obstruction between the gNB and the UE and there is no direct link between the gNB and the UE, N is a positive integer greater than or equal to 3.
  • the determining unit 101 may be configured to receive, from the user equipment, a preamble corresponding to each of the plurality of selected reconfigurable smart surfaces respectively corresponding to the selected reconfigurable smart surface via the selected reconfigurable smart surface.
  • the user device sends a corresponding preamble to the electronic device 100 via the selected reconfigurable smart surface.
  • the determining unit 101 may be configured to also receive reporting information corresponding to the selected reconfigurable smart surface from the user device via the selected reconfigurable smart surface, wherein the reporting information corresponding to the selected reconfigurable smart surface is Reporting information corresponding to the first selected reconfigurable smart surface in the smart surface to be used to send a random access response to the user equipment includes indicating that the first selected reconfigurable smart surface is used to send a random access response.
  • the feedback identification, and the reporting information corresponding to other selected reconfigurable smart surfaces among the plurality of selected reconfigurable smart surfaces except the first selected reconfigurable smart surface respectively include indicating other selected reconfigurable smart surfaces. Certain reconfigurable smart surfaces are not used to send non-feedback flags for random access responses.
  • the first selected reconfigurable smart surface may be the RIS corresponding to the maximum RSRP among the selected reconfigurable smart surfaces RIS-1, ..., RIS-N.
  • the selected reconfigurable smart surfaces only the first selected reconfigurable smart surface that reports the feedback identifier is used for communication between the electronic device 100 and the user device, while other selected reconfigurable smart surfaces that report non-feedback identifiers can be used for communication between the electronic device 100 and the user device.
  • the reconstructed smart surface is only used to assist positioning. Therefore, the signaling overhead for positioning between the electronic device 100 and the user equipment is reduced, and the cost required for positioning is reduced.
  • electronic device 100 may send a random access response to the user device via the first selected reconfigurable smart surface.
  • the reported information corresponding to each selected reconfigurable smart surface also includes the selected Determine the sequence number of the optimal coarse beam of the reconfigurable smart surface, and the optimal coarse beam is among the coarse beams of the selected reconfigurable smart surface such that the user equipment obtains the information from the electronic device via the selected reconfigurable smart surface Measurements of the received downlink synchronization signal for the largest thick beam.
  • the reported information corresponding to the first selected reconfigurable smart surface also includes accuracy requirements regarding position information.
  • FIG. 6 shows an example of signaling interaction between the electronic device 100 and the user equipment according to an embodiment of the present disclosure.
  • RIS-1 the first selected reconfigurable smart surface
  • the link between UE and gNB via RIS-1 is marked as the "maximum RSRP link” which means that RIS-1 is among RIS-1, RIS-2, and RIS-3 and corresponds to the maximum RSRP.
  • RIS reconfigurable smart surfaces
  • other selected reconfigurable smart surfaces include RIS-2 (e.g., in Figure 6, the link between the UE and the gNB via RIS-2 is labeled "Second largest RSRP link", meaning RIS-2 is the RIS corresponding to the second largest RSRP among RIS-1, RIS-2, and RIS-3) and RIS-3 (for example, in Figure 6, the link between UE and gNB via RIS-3 The road is marked as "the third largest RSRP link", which means that RIS-3 is the RIS corresponding to the third largest RSRP among RIS-1, RIS-2, and RIS-3).
  • gNB can receive the preamble corresponding to SSB1, feedback identifier, sequence number of the optimal coarse beam of RIS-1 and positioning accuracy requirements from the UE via RIS-1; gNB can receive from the UE via RIS-2 The preamble corresponding to SSB2, the non-feedback identification, and the sequence number of the optimal coarse beam of RIS-2; and the gNB can receive the preamble corresponding to SSB3, the non-feedback identification, and the sequence number of RIS-3 from the UE via RIS-3 The sequence number of the optimal coarse beam.
  • the gNB may send a random access response to the UE via RS-1.
  • the determining unit 101 may be configured to calculate, based on the received preamble corresponding to each selected reconfigurable smart surface, the number of signals from the user device to the electronic device corresponding to each selected reconfigurable smart surface.
  • the initial location information is determined based on the arrival delays between the devices 100 and corresponding to each selected reconfigurable smart surface. As a result, the time delay and synchronization error of traditional positioning methods are reduced.
  • gNB can separately calculate (or measure (quantity) arrival delay from gNB to UE corresponding to RIS-1, RIS-2, and RIS-3, thereby determining the initial location information.
  • the electronic device 100 subtracts the arrival delay obtained in advance from each selected reconfigurable smart surface link to the electronic device 100, then the arrival delay from the user equipment to each selected link can be obtained.
  • the arrival delay of the reconfigurable intelligent surface link is determined, so that the initial location information of the user equipment can be determined.
  • FIG. 7 shows an example in which the electronic device 100 determines initial position information via a selected reconfigurable smart surface based on a preamble according to an embodiment of the present disclosure.
  • the preamble corresponding to RIS-1 may be denoted as Preamble 1
  • the preamble corresponding to RIS-2 may be denoted as Preamble 2
  • the preamble corresponding to RIS-3 may be denoted as Preamble 3.
  • the SSB corresponding to the optimal thick beam of RIS-1 is SSB1-3
  • the SSB corresponding to the optimal thick beam of RIS-2 is SSB2-3
  • the SSB corresponding to the optimal thick beam of RIS-3 is SSB3 -2.
  • t 1 represent the arrival delay (TOA) from UE to gNB corresponding to RIS-1
  • t 2 represents the arrival delay from UE to gNB corresponding to RIS-2
  • t 3 represents the arrival delay from UE to gNB corresponding to RIS-3.
  • the arrival delay difference (TDOA) of RIS-2 relative to RIS-1 is t 2 -t 1
  • the arrival delay difference of RIS-3 relative to RIS-1 is t 3 -t 1 .
  • the preamble-based arrival time difference method is used to calculate the initial location information. Based on the signal arrival delay difference between multiple RIS, the distance difference between the user equipment and different RIS can be calculated, and then the RIS is the focus and the distance difference is the hyperbola. The intersection point of different hyperbolas is the user's initial position.
  • TDOA-1 represents a hyperbola with RIS-3 and RIS-1 as the focus, and the distance difference corresponding to the arrival delay difference between the user equipment to RIS-3 and RIS-1 as the long axis.
  • TDOA-2 represents a hyperbola with RIS-2 and RIS-1 as the focus, and the distance difference corresponding to the user's arrival delay difference between RIS-2 and RIS-1 as the long axis. It can be calculated through the TDOA-1 double The intersection point of the curve with the TDOA-2 hyperbola is used to determine the initial position of the user equipment.
  • the determining unit 101 may be configured to determine the initial position information further based on the sequence number of the optimal coarse beam of each selected reconfigurable smart surface.
  • the RIS when determining the initial position, the RIS is used as the origin, and the arrival angle corresponding to the optimal thick beam of the RIS is used as a ray.
  • the initial position of the user equipment can be determined through the intersection of multiple rays corresponding to different RIS.
  • the ray drawn by the arrival angle corresponding to the optimal thick beam of RIS-1 is denoted as L1
  • RIS-2 the origin
  • the ray corresponding to the optimal thick beam of RIS-2 is The ray made by the arrival angle
  • the ray made by taking RIS-3 as the origin and the arrival angle corresponding to the optimal thick beam of RIS-3 is denoted as L3.
  • the ray L1 of the arrival angle corresponding to the thick beam corresponding to SSB-1-3 in Figure 7 can be drawn, and the arrival angle corresponding to the thick beam corresponding to SSB-2-3 and SSB-3-2 can also be drawn.
  • Rays L2 and L3, the intersection of these three rays can be used to determine the initial position of the user device.
  • FIG. 8 shows another example in which the electronic device 100 determines initial position information via a selected reconfigurable smart surface based on a preamble according to an embodiment of the present disclosure.
  • the preamble-based multi-station round trip time (RTT) method can be used to calculate the initial location information.
  • the three RTT curves RTT-1, RTT-2, and RTT-3 respectively represent the curves corresponding to the multi-station round-trip time of the three reconfigurable smart surfaces RIS-1, RIS-2, and RIS-3.
  • the distance from the user equipment to different RIS can be calculated.
  • the RTT curve can be obtained. The intersection of multiple RTT curves is the user location.
  • RTT-1 represents the RTT curve corresponding to RIS-1 as the center of the circle and the distance between RIS-1 and the user equipment as the radius
  • RTT-2 represents the RTT curve with RIS-2 as the center of the circle and RIS2
  • the distance between RIS3 and the user equipment is the RTT curve corresponding to the radius
  • RTT-3 means that with RIS-3 as the center of the circle, the distance between RIS3 and the user equipment is the RTT curve corresponding to the radius.
  • the intersection point of the RTT-1 curve, the RTT-2 curve, and the RTT-3 curve in Figure 8 is the initial position of the user equipment.
  • the ray L1 of the arrival angle corresponding to the thick beam corresponding to SSB-1-3 in FIG. 8 can be generated, and the arrival angle corresponding to the thick beam corresponding to SSB-2-3 and SSB-3-2 can also be generated.
  • the intersection point of these three rays can be used to determine the initial position of the user device.
  • At least part of the downlink synchronization signals respectively corresponding to the plurality of original reconfigurable smart surfaces includes a common preamble, and is associated with each original reconfigurable smart surface.
  • the downlink synchronization signal corresponding to the smart surface also includes the sequence number of the original reconfigurable smart surface.
  • Figure 9 shows another example of mapping between RIS and downlink synchronization signals according to an embodiment of the present disclosure.
  • SSB-per-rach-occasion this means that one PRACH opportunity can have multiple RIS, and the RIS is configured with a wide beam to broadcast the signal.
  • the SSB corresponding to RIS-1 is SSB1
  • the SSB corresponding to RIS-2 is SSB2
  • the SSB corresponding to RIS-3 is SSB3
  • the SSB corresponding to RIS-4 is SSB4.
  • SSB1/2 indicates that the preamble time-frequency resources are shared between RIS-1 and RIS-2
  • SSB3/4 indicates that the preamble time-frequency resources are shared between RIS-3 and RIS-4.
  • SSB1/2 circled with an ellipse is used to schematically represent a single preamble time-frequency resource shared between RIS-1 and RIS-2.
  • the preamble shown in each column of Figure 9 corresponds to multiple RIS. That is to say, SSBs corresponding to different RIS occupy common time-frequency resources, thereby including a common preamble. Since the RIS cannot be distinguished by the preamble, the SSB corresponding to the original RIS also includes the sequence number of the original RIS.
  • Figure 10 shows another example of the electronic device 100 broadcasting SSB to the user device via the original reconfigurable smart surface according to an embodiment of the present disclosure.
  • gNB broadcasts SSB1,..., to the UE via RIS-1, and broadcasts SSBM to the UE via RIS-M.
  • the sequence number of the original RIS is also included in each SSB.
  • the downlink synchronization signal corresponding to each original reconfigurable smart surface also includes the sequence number of the coarse beam of the original reconfigurable smart surface.
  • Figure 11 shows another example of the electronic device 100 broadcasting SSB to the user equipment via a thick beam of the original reconfigurable smart surface according to an embodiment of the present disclosure.
  • M original RISs (RIS-1, RIS-2, ..., RIS-M) are shown in Figure 11 .
  • the SSB corresponding to RIS-1 is SSB1
  • the SSB corresponding to RIS-2 is SSB2,...
  • the SSB corresponding to RIS-M is SSBM.
  • the connection between gNB and UE marked with " ⁇ " in Figure 11 indicates that there is no direct link between gNB and UE.
  • gNB broadcasts SSB1 to the UE via RIS-1, more specifically, broadcasts SSB1-1, SSB1-2 and SSB1-3 via the three thick beams of RIS-1; gNB broadcasts SSB1-1, SSB1-2 and SSB1-3 via RIS-2 to the UE. Broadcast SSB2, more specifically, broadcast SSB2-1, SSB2-2 and SSB2-3 via the 3 thick beams of RIS-2 respectively; ...; gNB broadcasts SSBM to the UE via RIS-M, more specifically Ground, SSBM-1, SSBM-2 and SSBM-3 are broadcast via three thick beams of RIS-M respectively. As shown in Figure 11, each SSB includes the sequence number corresponding to the original RIS.
  • the determining unit 101 may be configured to receive, from the user equipment, via a second selected reconfigurable smart surface among the plurality of selected reconfigurable smart surfaces to be used for sending a random access response to the user equipment.
  • the preamble and reporting information corresponding to the second selected reconfigurable smart surface, and the reported information includes the serial numbers of multiple selected reconfigurable smart surfaces. Therefore, the signaling overhead for positioning between the electronic device 100 and the user equipment is reduced, and the cost required for positioning is reduced.
  • a plurality of selected reconfigurable smart surfaces are selected by the user equipment based on measurements of received downlink synchronization signals. For details, please refer to the description in conjunction with Figure 5 and will not be repeated here.
  • the selected reconfigurable smart surface with the largest reference signal reception power of the received SSB is selected as the second selected reconfigurable smart surface, and the user equipment will communicate with the second selected reconfigurable smart surface via the second selected reconfigurable smart surface.
  • the preamble corresponding to the determined reconfigurable smart surface is sent to the electronic device 100, and at the same time, the reporting information reported by the user device includes the serial numbers of all selected reconfigurable smart surfaces.
  • the reported information also includes the sequence number of the optimal coarse beam of each selected reconfigurable smart surface, and the optimal coarse beam is among the coarse beams of the selected reconfigurable smart surface such that the user equipment passes through the Measurements of the largest thick beam of downlink synchronization signals received by selected reconfigurable smart surfaces from electronic devices.
  • the reported information also includes accuracy requirements for location information.
  • the determining unit 101 may be configured to calculate, based on the received preamble, an arrival delay from the user device to the electronic device corresponding to the second selected reconfigurable smart surface; via the second selected A reconfigurable smart surface that sends a random access response to the user equipment and configures a sounding reference signal for the user equipment; via one of the plurality of selected reconfigurable smart surfaces other than the second selected reconfigurable smart surface.
  • the electronic device 100 calculates the arrival delay of the preamble.
  • the electronic device 100 sends a random access response to the user equipment through the second selected reconfigurable smart surface, and configures the sounding reference signal resource for the user equipment.
  • the user equipment After receiving the resource configuration signaling, the user equipment sends the detection reference signal to the electronic device 100 via other selected reconfigurable smart surfaces except the second selected reconfigurable smart surface.
  • the user equipment reports the transmission time of the detection reference signal to the electronic device 100 via the second selected reconfigurable smart surface.
  • the electronic device 100 calculates the arrival delay of the sounding reference signal received from the user equipment based on the above-mentioned transmission time.
  • the electronic device 100 determines initial location information based on the arrival delay corresponding to each selected reconfigurable smart surface.
  • FIG. 12 shows another example of signaling interaction between the electronic device 100 and the user equipment according to an embodiment of the present disclosure.
  • Figure 12 for simplicity, only three selected RISs (RIS-1, RIS-2, and RIS-3) are shown. It is assumed that the second selected reconfigurable smart surface is RIS-1, and the other selected Reconfigurable smart surfaces include RIS-2 and RIS-3.
  • the gNB can receive from the UE the preamble corresponding to SSB1, the sequence numbers RIS-1 to RIS-3 of the selected RIS, and the sequence of the optimal thick beam from RIS-1 to RIS-3 from the UE. number and positioning accuracy requirements. Based on the received preamble, the gNB calculates the arrival delay from the UE to the gNB corresponding to RIS-1. Then, the gNB sends a random access response to the UE through RIS-1, and configures sounding reference signal resources for the UE. After receiving the resource configuration signaling, the UE sends the sounding reference signal (for example, the sounding reference signal SRS-Pos used for positioning) to the gNB via RIS-2 and RIS-3 respectively.
  • the sounding reference signal for example, the sounding reference signal SRS-Pos used for positioning
  • the UE reports the sending time of the sounding reference signal to the gNB via RIS-1.
  • the gNB calculates the arrival delay of the sounding reference signal received from the UE via RIS-2 and RIS-3 based on the above transmission time.
  • gNB determines the initial location information based on the arrival delays corresponding to RIS-1 to RIS-3 respectively.
  • FIG. 13 shows an example in which the electronic device 100 determines initial position information via a selected reconfigurable smart surface based on a preamble and a sounding reference signal according to an embodiment of the present disclosure.
  • the arrival time difference method based on the preamble and sounding reference signal is used to determine the initial position information.
  • the preamble corresponding to RIS-1 can be expressed as Preamble 1.
  • SRS-Pos2 represents the sounding reference signal corresponding to RIS-2
  • SRS-Pos3 represents the sounding reference signal corresponding to RIS-3.
  • Other reference numerals in Figure 13 are similar to those in Figure 7 and will not be repeated here.
  • TDOA-1 stands for RIS-3 and RIS-1 as the focus, user equipment to RIS-3 and RIS-1
  • the distance difference corresponding to the arrival delay difference between them is a hyperbola on the long axis.
  • TDOA-2 represents the arrival delay difference between the user and RIS-2 and RIS-1 with RIS-2 and RIS-1 as the focus.
  • the corresponding distance difference is a hyperbola with a long axis, and the initial position of the user equipment can be determined through the intersection of the TDOA-1 hyperbola and the TDOA-2 hyperbola.
  • the determining unit 101 may be configured to determine the initial position information further based on the sequence number of the optimal coarse beam of each selected reconfigurable smart surface.
  • the ray L1 of the arrival angle corresponding to the thick beam corresponding to SSB-1-3 in Figure 13 can be drawn, and the arrival angle corresponding to the thick beam corresponding to SSB-2-3 and SSB-3-2 can also be drawn.
  • Rays L2 and L3, the intersection of these three rays can be used to determine the initial position of the user device.
  • FIG. 14 shows another example in which the electronic device 100 determines initial position information via a selected reconfigurable smart surface based on a preamble and a sounding reference signal according to an embodiment of the present disclosure.
  • the multi-station round-trip time method based on preamble and sounding reference signal is used to determine the initial position information.
  • the preamble corresponding to RIS-1 can be expressed as Preamble 1.
  • SRS-Pos 2 represents the sounding reference signal corresponding to RIS-2
  • SRS-Pos 3 represents the sounding reference signal corresponding to RIS-3.
  • Other reference numerals in Figure 14 are similar to those in Figure 8 and will not be repeated here.
  • RTT-1 represents the RTT curve corresponding to RIS-1 as the center of the circle and the distance between RIS-1 and the user equipment as the radius
  • RTT-2 represents the RTT curve with RIS-2 as the center of the circle and the distance between RIS2 and the user equipment as the radius.
  • RTT-3 represents the RTT curve corresponding to RIS-3 as the center of the circle and the distance between RIS3 and the user equipment as the radius.
  • the intersection point of the RTT-1 curve, the RTT-2 curve, and the RTT-3 curve in Figure 14 is the initial position of the user equipment.
  • the ray L1 of the arrival angle corresponding to the thick beam corresponding to SSB-1-3 in FIG. 14 can be generated, and the arrival angle corresponding to the thick beam corresponding to SSB-2-3 and SSB-3-2 can also be generated.
  • the intersection point of these three rays can be used to determine the initial position of the user device.
  • the determining unit 101 may be configured to: based on the initial position information, respectively send a positioning reference signal via a plurality of selected reconfigurable smart surfaces, wherein the positioning reference signal corresponding to each selected reconfigurable smart surface includes The sequence number of the thin beam of the selected reconfigurable smart surface; the sequence number of the candidate thin beam selected by the receiving user equipment from the thin beam of each selected reconfigurable smart surface based on the positioning reference signal; based on the sequence number of the thin beam of each selected reconfigurable smart surface; Select the sequence number of the candidate thin beam corresponding to the reconfigurable smart surface, estimate the arrival angle of the user equipment to the selected reconfigurable smart surface, and determine based on the arrival angle corresponding to each selected reconfigurable smart surface. Enhance location information. In the case where the selected reconfigurable smart surface is opaque to the user device, that is, the user device knows information about the selected reconfigurable smart surface, the above-described manner of determining the enhanced location information is used.
  • FIG. 15 shows an example in which the electronic device 100 determines enhanced location information based on initial location information in a non-connected state according to an embodiment of the present disclosure.
  • Figure 15 for simplicity, only three selected RISs (RIS-1, RIS-2, and RIS-3) are shown.
  • the gNB transmits a positioning reference signal (DL PRS) via each of RIS-1 to RIS-3 based on the initial position information.
  • Each DL PRS includes the sequence number of the thin beam corresponding to the selected RIS ( schematically represented in Figure 15 as carrying the beamlet sequence number). That is, as shown in Figure 15, DL PRS beam fine scanning is performed at RIS-1 to RIS-3 respectively.
  • the UE selects candidate thin beams from the thin beams of each RIS based on the measurement results of the positioning reference signal.
  • the measurement result can be the RSPR or signal-to-interference-noise ratio of the positioning reference signal, etc.
  • Figure 15 shows that the UE calculates the RSPR of the positioning reference signal to select the thin beam with the largest RSPR as the candidate thin beam from the thin beams of each RIS.
  • the UE reports the sequence number of the candidate thin beam of each RIS to the gNB. .
  • the gNB estimates the arrival angle of the UE to each selected RIS based on the sequence number of the candidate beamlet corresponding to the selected RIS, and determines the enhanced location information based on the arrival angle corresponding to each selected RIS.
  • the determining unit 101 may be configured to: configure a sounding reference signal for the user equipment based on the initial location information, where the configuration includes specifying a sequence number of a thin beam on which the user equipment wants to send the sounding reference signal; upon receiving After all detection reference signals transmitted by the user equipment via the plurality of selected reconfigurable smart surfaces, the received beamforming vector of the electronic device 100 is individually aligned with the position direction from each selected reconfigurable smart surface to the electronic device 100 accuracy to determine the amount of data received from the user device through each selected reconfigurable smart surface.
  • the sounding reference signal measuring the sounding reference signal received from the user equipment via the beamlet of each selected reconfigurable smart surface to select candidate beamlets for each selected reconfigurable smart surface, and based on the candidate The beamlets estimate the angle of arrival of the user equipment to the selected reconfigurable smart surface; and determine enhanced location information that is more accurate than the initial location information based on the angle of arrival corresponding to each selected reconfigurable smart surface.
  • the selected reconfigurable smart surface is transparent to the user device, that is, the user device does not know information about the selected reconfigurable smart surface, the above-mentioned method of determining the enhanced location information is used.
  • FIG. 16 shows another example in which the electronic device 100 determines enhanced location information based on the initial location information in a non-connected state according to an embodiment of the present disclosure.
  • Figure 16 for simplicity, only three selected RISs (RIS-1, RIS-2, and RIS-3) are shown.
  • gNB sends resource configuration signaling to the user equipment, that is, based on the initial location information, it configures the sounding reference signal for the UE, where the configuration includes a sequence of thin beams that specify the thin beam on which the user equipment wants to send the sounding reference signal. Number.
  • the UE After receiving the resource configuration signaling, the UE sends sounding reference signals to the gNB on the designated thin beam, such as sending sounding reference signals SRS-Pos 0-1, SRS-Pos 0-2, SRS-Pos 0-3, SRS -Pos 1-1, SRS-Pos 1-2, where SRS-Pos 0-1, SRS-Pos 0-2, and SRS-Pos 0-3 respectively represent the 1st UE included in its 0th coarse beam.
  • SRS-Pos 1-1 and SRS-Pos 1-2 respectively represent the UE included in its first thick beam.
  • gNB After receiving all sounding reference signals sent by the UE via RIS-1 to RIS-3, gNB aligns the receive beamforming vector of gNB with the position direction from each selected RIS to gNB respectively, thereby determining the path through each The sounding reference signal received by the selected RIS from the UE.
  • measurements are made on the sounding reference signal (illustrated as SRS-Pos'1-1 in Figure 16) received from the UE via thin beam 1 of RIS-1. Measurement is performed on the sounding reference signal (not shown in Figure 16) received by thin beam 2 from the UE, and measured on the sounding reference signal (not shown in Figure 16) received by thin beam 3 from the UE via RIS-1.
  • the thin beam 4 of RIS-1 performs measurements from the sounding reference signal (shown as SRS-Pos'1-4 in Figure 16) received by the UE.
  • measurements are performed separately for the sounding reference signals received from the UE via beamlets 1 to 4 of RIS-2, and for the sounding reference signals received from the UE via beamlets 1 to 4 of RIS-3 (
  • the sounding reference signal received from the UE via beamlet 1 of RIS-3 is illustrated as SRS-Pos' 3-1
  • the sounding reference signal received from the UE via thin beam 4 of RIS-3 is illustrated as SRS-Pos' 3-4.
  • Select for example, the thin beam with the strongest signal strength from among the thin beams of each selected RIS according to the measured signal strength as the candidate thin beam of the selected RIS, and estimate the UE based on the candidate thin beam of the selected RIS. The fine angle of arrival for this selected RIS.
  • RIS-1, RIS-2, and RIS-3 are described as having four thin beams respectively. Those skilled in the art can understand that RIS-1, RIS-2, and RIS-3 have four thin beams. and RIS-3 respectively can have other numbers of beamlets.
  • the gNB determines enhanced location information based on the fine angle of arrival corresponding to each selected RIS.
  • FIG. 17 shows an example in which the electronic device 100 determines enhanced location information based on candidate thin beams according to an embodiment of the present disclosure.
  • FIG. 18 shows another example in which the electronic device 100 determines enhanced location information based on candidate thin beams according to an embodiment of the present disclosure.
  • Preamble 1 is shown corresponding to RIS-1
  • SRS-Pos 2 or Preamble 2 is shown corresponding to RIS-2
  • SRS-Pos3 or Preamble 2 is shown corresponding to RIS-3.
  • Preamble 1 is used to indicate that the initial position information is determined via RIS-1 based on the preamble, similar to Figures 7 and 8 and Figures 13 and 14.
  • the signal corresponding to RIS-2 is Preamble 2
  • the signal corresponding to RIS-3 is Preamble 3 .
  • the signal corresponding to RIS-2 is SRS-Pos 2
  • the signal corresponding to RIS-3 The signal is SRS-Pos 3.
  • AOA-1 represents the candidate thin beam of RIS-1
  • AOA-2 represents the candidate thin beam of RIS-2
  • AOA-3 represents the candidate thin beam of RIS-3, which can be used for user enhancement locations. calculate.
  • Other reference numerals in Figures 17 and 18 are similar to those in Figures 7 and 8 and Figures 13 and 14 and will not be repeated here.
  • the angle corresponding to the candidate thin beam of the selected RIS is used as a ray, and the position of the user equipment can be determined based on the intersection of multiple rays.
  • the angle corresponding to AOA-2 is used as the ray, and the angles corresponding to AOA-1 and AOA-3 are used as the ray. Based on the intersection of these three rays, the position of the user device can be calculated. Combining this position calculation with the initial position calculation explained in conjunction with Figures 7 and 8 and Figures 13 and 14, to determine enhanced location information for the user's device.
  • the determining unit 101 may be configured to send information about the candidate beamlets of each selected reconfigurable smart surface to the user equipment, so that the candidate beamlets can be used for subsequent communications between the user equipment and the electronic device.
  • the robustness of user equipment communication is enhanced, making the communication system more flexible.
  • FIG. 19 shows a schematic diagram of communication using beams between the electronic device 100 and the user equipment according to an embodiment of the present disclosure.
  • the gNB sends the information of the candidate thin beams of RIS-1, RIS-2 and RIS-3 (in Figure 19, marked as "beam related information") to the UE.
  • gNB and UE can communicate using candidate thin beams of RIS-1 (in Figure 19, marked as "RIS-1 link beams"). If an event such as a failure of the candidate beam of RIS-1 occurs in subsequent communications, the user can select the candidate beam of RIS-2 (in Figure 19, marked as "candidate beam 1") and/or the candidate beam of RIS-3. beam (labeled "Candidate Beam 2" in Figure 19) to resume communications.
  • the determining unit 101 may be configured to, when the electronic device 100 and the user equipment are in a connected state, based on the initial beam alignment between the electronic device 100 and the user equipment, from multiple sources within the range of the initial beam.
  • a plurality of initial reconfigurable intelligent surfaces are selected from the original reconfigurable intelligent surfaces for use in selecting a plurality of selected reconfigurable intelligent surfaces from the plurality of initial reconfigurable intelligent surfaces.
  • the connected state may be a connected state that the electronic device 100 and the user equipment enter from a non-connected state, or it may be a state that is only used to indicate that the current electronic device 100 and the user equipment have been established, regardless of whether the electronic device 100 and the user equipment have been connected before. The status of the connection.
  • the electronic device 100 can select multiple initial reconfigurable smart surfaces within the range of the initial beam. Selecting a plurality of selected reconfigurable smart surfaces from a plurality of initial reconfigurable smart surfaces for positioning enables at least one of the following benefits: low complexity, ease of implementation, and the ability to increase positioning accuracy and reduce positioning overhead.
  • FIG. 20 is a schematic diagram illustrating the selection of a plurality of initial reconfigurable smart surfaces within the range of an initial beam according to an embodiment of the present disclosure.
  • UE1, UE2, and UE3 three UEs are illustrated: UE1, UE2, and UE3.
  • the initial beam corresponding to UE1 is initial beam 1
  • the initial beam corresponding to UE2 is initial beam 2
  • the initial beam corresponding to UE3 is initial beam 3.
  • gNB is within the range of initial beam 1
  • initial reconfigurable smart surfaces are selected for UE1, where P is a positive integer.
  • the electronic device 100 can select an initial reconfigurable smart surface for the user equipment based on the initial beam, which improves the applicability of positioning the user equipment.
  • the determining unit 101 may be configured to: respectively send a positioning reference signal via a plurality of initial reconfigurable smart surfaces, wherein the positioning reference signal corresponding to each initial reconfigurable smart surface includes the initial reconfigurable smart surface the serial number; and receiving reporting information from the user equipment, wherein the reporting information includes the serial number of the selected reconfigurable smart surface, and the selected reconfigurable smart surface is based on the user equipment receiving the information via multiple initial reconfigurable smart surfaces.
  • the positioning reference signal obtained is selected from multiple initial reconfigurable smart surfaces.
  • the initial reconfigurable smart surface is not transparent to the user device, that is, the user device knows the information of the initial reconfigurable smart surface, use this method to select multiple selected reconfigurable smart surfaces from multiple initial reconfigurable smart surfaces. Smart surfaces.
  • the reported information also includes accuracy requirements for location information.
  • FIG. 21 shows an example of signaling interaction between the electronic device 100 and a user equipment with which a connection has been established according to an embodiment of the present disclosure.
  • gNB transmits the positioning reference signal DL PRS (in Figure 21, schematically shown as " DL PRS broadcast"), each DL PRS includes the sequence number corresponding to the initial RIS.
  • UE-1, ..., UE-Q selects the selected RIS from the initial RIS (RIS-1, ..., RIS-P) based on the measurement results of the positioning reference signal.
  • the measurement result can be the RSPR or signal-to-interference-noise ratio of the positioning reference signal, etc.
  • Figure 21 shows that UE-1,..., UE-Q calculate the RSPR of the positioning reference signal to select the selected RIS from the initial RIS.
  • the selected RIS is selected according to the size of the RSRP.
  • UE-1,..., UE-Q respectively report the sequence numbers of the selected RIS selected by them as reporting information to the gNB.
  • the information reported by each UE also includes accuracy requirements for location information.
  • the determining unit 101 may be configured to calculate initial location information based on the reported information. As shown in Figure 21, the gNB determines the initial location information based on the reported information.
  • the determining unit 101 may be configured to: based on the initial location information, via The electronic device 100 and the plurality of selected reconfigurable smart surfaces respectively send positioning reference signals, where the positioning reference signal corresponding to the electronic device 100 includes the serial number of the thin beam of the electronic device 100 and the positioning reference signal corresponding to each selected reconfigurable smart surface.
  • the positioning reference signal corresponding to the surface includes the sequence number of the thin beam of the selected reconfigurable smart surface; the receiving user equipment selects the candidate thin beam from the thin beam of each selected reconfigurable smart surface based on the positioning reference signal.
  • This method is used to determine the enhanced location information when the initial reconfigurable smart surface is not transparent to the user equipment, that is, the user equipment knows the information of the initial reconfigurable smart surface.
  • FIG. 22 shows an example in which the electronic device 100 determines enhanced location information based on the initial location information in a connected state according to an embodiment of the present disclosure.
  • FIG. 22 for simplicity, only 2 selected RIS (RIS-1 and RIS-2) and 1 UE are shown.
  • gNB sends positioning reference signals (DL PRS) via gNB and RIS-1 and RIS-2 respectively based on the initial position information.
  • the DL PRS corresponding to gNB includes the sequence number of the thin beam of gNB, and is the same as RIS-
  • the DL PRS corresponding to 1 and RIS-2 respectively includes the sequence number of the thin beam of the RIS (schematically represented as carrying the thin beam sequence number in Figure 22). That is, as shown in Figure 22, DL PRS beam fine scanning is performed at gNB, RIS-1 and RIS-2 respectively.
  • the UE Based on the measurement results of the positioning reference signal, the UE selects candidate thin beams from the thin beams of RIS-1 and RIS-2, and selects candidate thin beams from the thin beams of the gNB.
  • the measurement result can be the RSPR or signal-to-interference-noise ratio of the positioning reference signal, etc.
  • Figure 22 shows that the UE calculates the RSPR of the positioning reference signal to select candidate thin beams (for example, the thin beam with the largest RSRP is used as the candidate thin beam), and the UE reports the sequence number of the selected candidate thin beam to the gNB.
  • the gNB estimates the fine arrival angle from the UE to the selected RIS based on the sequence numbers of the candidate thin beams of RIS-1 and RIS-2, and estimates the fine arrival angle from the UE to the gNB based on the sequence numbers of the candidate thin beams of gNB. Then, the gNB determines the enhanced location information based on the above fine angle of arrival.
  • the determining unit 101 may be configured to: configure a sounding reference signal for the user equipment, wherein the configuration includes specifying a sequence number of a coarse beam on which the user equipment wants to send the sounding reference signal; after receiving the user equipment via multiple Initial reconfigurable smart surface sent After all the reference signals are detected, the received beamforming vector of the electronic device 100 is aligned with the position direction from each initial reconfigurable smart surface to the electronic device 100, thereby determining the direction from the user through each initial reconfigurable smart surface.
  • a detection reference signal received by the device measuring the detection reference signal received by each initial reconfigurable smart surface, and based on the measurement results, selecting a plurality of selected reconfigurable smart surfaces from among the plurality of initial reconfigurable smart surfaces Reimagine smart surfaces.
  • the initial reconfigurable smart surface is transparent to the user device, that is, the user device does not know the information of the initial reconfigurable smart surface, use this method to select multiple selected reconfigurable surfaces from multiple initial reconfigurable smart surfaces. Smart surfaces.
  • the determining unit 101 may be configured to also receive accuracy requirements regarding location information from the user equipment.
  • FIG. 23 shows another example of signaling interaction between the electronic device 100 and a user equipment with which a connection has been established according to an embodiment of the present disclosure.
  • the gNB sends resource configuration signaling to the UE to configure the sounding reference signal for the UE, where the configuration includes a sequence number that specifies the coarse beam on which the UE wants to send the sounding reference signal.
  • the UE After receiving the resource configuration signaling, the UE sends sounding reference signals in the specified coarse beam direction. For example, the UE sends sounding reference signals SRS-Pos 0, SRS-Pos 1, and SRS-Pos2 to gNB, where SRS-Pos 0 , SRS-Pos 1 and SRS-Pos 2 respectively represent the sounding reference signals sent by the UE on its 0th coarse beam, 1st coarse beam and 2nd coarse beam.
  • the UE also sends accuracy requirements to the gNB.
  • the gNB After receiving all sounding reference signals sent by the UE via the initial RIS-1 to the initial RIS-P, the gNB aligns the receiving beamforming vector of the gNB with the position direction from each initial RIS to the gNB respectively, thereby determining the path through each The sounding reference signal received by the initial RIS from the UE.
  • measurements are made on the sounding reference signal (illustrated as SRS-Pos'1 in Figure 23) received from the UE via the initial RIS-1,..., for the sounding reference signal received from the UE via the initial RIS-P
  • the received sounding reference signal (shown as SRS-Pos'P in Figure 23) is measured.
  • the selected RIS is selected from the P initial RIS according to the measured signal strength.
  • the determining unit 101 may be configured to determine the initial position information based on the angle of arrival of the user equipment to each selected reconfigurable smart surface.
  • the gNB estimates the arrival angle of the UE to each selected reconfigurable smart surface based on the above-mentioned sounding reference signal, and determines the initial position information.
  • the determining unit 101 may be configured to: configure a sounding reference signal for the user equipment based on the initial location information, where the configuration includes specifying a sequence number of a thin beam on which the user equipment wants to send the sounding reference signal; receiving the user equipment The detection reference signal sent directly to the electronic device 100 and the detection reference signal sent via each selected reconfigurable smart surface; after receiving the detection reference signal directly sent by the user equipment to the electronic device 100 and via a plurality of selected reconfigurable smart surfaces, After constructing all detection reference signals transmitted by the smart surface, the received beamforming vector of the electronic device 100 is individually aligned with the position direction from each selected reconfigurable smart surface to the electronic device 100 to determine the path through each selected reconfigurable smart surface.
  • each selected reconfigurable smart surface is selected by measuring sounding reference signals received from the user equipment via the beamlets of each selected reconfigurable smart surface candidate beamlets for the smart surface, and estimating an angle of arrival of the user equipment to the selected reconfigurable smart surface based on the candidate beamlets; and based on the angle of arrival, determining enhanced location information that is more accurate than the initial location information.
  • This method is used to determine the enhanced location information when the initial reconfigurable smart surface is transparent to the user equipment, that is, the user equipment does not know the information of the initial reconfigurable smart surface.
  • FIG. 24 shows another example in which the electronic device 100 determines enhanced location information based on the initial location information in a connected state according to an embodiment of the present disclosure.
  • FIG. 24 shows another example in which the electronic device 100 determines enhanced location information based on the initial location information in a connected state according to an embodiment of the present disclosure.
  • RIS-1 and RIS-2 are shown.
  • gNB sends resource configuration signaling to the user equipment, that is, based on the initial location information, it configures the sounding reference signal for the UE, where the configuration includes the sequence number of the thin beam on which the user equipment wants to send the sounding reference signal.
  • the UE After receiving the resource configuration signaling, the UE sends sounding reference signals to the gNB on the designated thin beam, such as sending sounding reference signals SRS-Pos 0-1, SRS-Pos 0-2, SRS-Pos 0-3, SRS -Pos 1-1, SRS-Pos 1-2, where SRS-Pos 0-1, SRS-Pos 0-2, and SRS-Pos 0-3 respectively represent the 1st UE included in its 0th coarse beam.
  • SRS-Pos 1-1 and SRS-Pos 1-2 respectively represent the UE included in its first thick beam.
  • the gNB's received wave The beamforming vectors are individually aligned with the position direction from each selected RIS to the gNB, thereby determining the sounding reference signal received from the UE through each selected RIS.
  • measurements are made on the sounding reference signal (illustrated as SRS-Pos'1-1 in Figure 24) received from the UE via thin beam 1 of RIS-1.
  • the sounding reference signal (not shown in Figure 24) received by thin beam 2 from the UE is measured, and the sounding reference signal (not shown in Figure 24) received from the UE by thin beam 3 via RIS-1 is measured.
  • the thin beam 4 of RIS-1 performs measurements from the sounding reference signal (illustrated as SRS-Pos'1-4 in Figure 24) received by the UE.
  • measurements are performed separately for sounding reference signals received from the UE via beamlets 1 to 4 of RIS-2 (eg, the sounding reference signal received from the UE via beamlet 1 of RIS-2 is illustrated as SRS-Pos '2-1, and the sounding reference signal received from the UE via the thin beam 4 of RIS-2 is illustrated as SRS-Pos '2-4).
  • SRS-Pos '2-1 the sounding reference signal received from the UE via beamlet 1 of RIS-2
  • SRS-Pos '2-4 the sounding reference signal received from the UE via the thin beam 4 of RIS-2
  • Select one of the thin beams of each selected RIS based on the measured signal strength (for example, select the thin beam with the largest signal strength) as a candidate thin beam of the selected RIS, and based on the selected RIS
  • the candidate thin beams estimate the fine angle of arrival of the UE to the selected RIS.
  • the selected RIS-1 and RIS-2 respectively have four thin beams.
  • RIS-1 and RIS-2 can each have other number of thin beams.
  • the gNB determines enhanced location information based on the fine angle of arrival corresponding to each selected RIS.
  • the determining unit 101 may be configured to send information about the candidate beamlets of each selected reconfigurable smart surface to the user equipment for use by the candidate beamlets in subsequent communications between the user equipment and the electronic device 100 .
  • the robustness of user equipment communication is enhanced, making the communication system more flexible.
  • FIG. 25 shows another schematic diagram of communication using beams between the electronic device 100 and the user equipment according to an embodiment of the present disclosure.
  • the gNB sends the information of the selected candidate thin beams of RIS-1 and RIS-2 (in Figure 25, marked as "beam related information") to the UE.
  • the gNB and the UE can communicate using the beam corresponding to the direct link (labeled as "direct link beam” in Figure 25). If events such as direct link beam failure occur in subsequent communications, the user can select the candidate thin beam of RIS-1 (in Figure 25, marked as "candidate beam 1") and/or the candidate thin beam of RIS-2 (in In Figure 25, it is marked as "candidate wave” Beam 2”) to restore communication.
  • FIG. 26 shows a functional module block diagram of an electronic device 2600 for wireless communication according to yet another embodiment of the present disclosure.
  • the electronic device 2600 includes: a processing unit 2601.
  • the processing unit 2601 can generate data from multiple original reconfigurable smart surfaces based on the connection status between the electronic device 2600 and a network-side device that provides services for the electronic device 2600.
  • a plurality of selected reconfigurable smart surfaces are selected to assist the network side device in determining the initial location information of the electronic device.
  • the processing unit 2601 may be implemented by one or more processing circuits, which may be implemented as a chip, for example.
  • the electronic device 2600 may, for example, be provided on a user equipment (UE) side or be communicably connected to the user equipment.
  • a device related to the electronic equipment 2600 may be the user equipment.
  • the electronic device 2600 may be implemented at a chip level, or may also be implemented at a device level.
  • the electronic device 2600 may operate as a user device itself, and may also include external devices such as memory, transceivers (not shown in the figure), and the like.
  • the memory can be used to store programs and related data information that the user equipment needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (eg, base stations, other user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the network side device may be the electronic device 100 mentioned above.
  • the electronic device 2600 may be the user device referred to in the above embodiment of the electronic device 100.
  • the wireless communication system according to the present disclosure may be a 5G NR communication system. Further, the wireless communication system according to the present disclosure may include non-terrestrial networks. Optionally, the wireless communication system according to the present disclosure may also include a terrestrial network. In addition, those skilled in the art can understand that the wireless communication system according to the present disclosure may also be a 4G or 3G communication system.
  • a plurality of selected reconfigurable smart surfaces selected based on the connection status between the electronic device 2600 and the network side device are used to assist in determining the location information of the electronic device 2600, thereby improving the electronic device 2600's location information.
  • the processing unit 2601 may be configured to communicate between the electronic device 2600 and the network side.
  • the devices When the devices are in a non-connected state, receive downlink synchronization signals including preambles broadcast by the network side device via multiple original reconfigurable smart surfaces to select multiple selected reconfigurable smart surfaces based on the preambles.
  • downlink synchronization signals respectively corresponding to multiple original reconfigurable smart surfaces do not include a common preamble.
  • the downlink synchronization signal corresponding to each original reconfigurable intelligent surface among the plurality of original reconfigurable intelligent surfaces also includes a sequence number of the coarse beam of the original reconfigurable intelligent surface.
  • a plurality of selected reconfigurable smart surfaces are selected by electronic device 2600 based on measurements of received downlink synchronization signals.
  • the processing unit 2601 may be configured to send a preamble corresponding to each selected reconfigurable smart surface to the network side device via each of the plurality of selected reconfigurable smart surfaces. code.
  • the processing unit 2601 may be configured to also send reporting information corresponding to each selected reconfigurable smart surface to the network side device via the selected reconfigurable smart surface, wherein the reporting information corresponding to the selected reconfigurable smart surface is
  • the reporting information corresponding to the first selected reconfigurable smart surface among the constructed smart surfaces to be used to send a random access response to the electronic device 2600 includes indicating that the first selected reconfigurable smart surface is used to send a random access response.
  • the feedback identifier of the input response, and the reporting information corresponding to other selected reconfigurable smart surfaces among the plurality of selected reconfigurable smart surfaces except the first selected reconfigurable smart surface respectively include instructions. Non-feedback identification not used by other selected reconfigurable smart surfaces to send random access responses.
  • the reporting information corresponding to each selected reconfigurable smart surface also includes the sequence number of the optimal coarse beam of the selected reconfigurable smart surface, and the optimal coarse beam is the selected reconfigurable smart surface.
  • the coarse beam maximizes the measured result of the downlink synchronization signal received by the electronic device 2600 from the network side device via the selected reconfigurable smart surface.
  • the reported information corresponding to the first selected reconfigurable smart surface also includes accuracy requirements regarding position information.
  • the preamble corresponding to each selected reconfigurable smart surface is used by the network side device to calculate the arrival time from the electronic device 2600 to the network side device corresponding to each selected reconfigurable smart surface.
  • the sequence number of the optimal coarse beam for each selected reconfigurable smart surface is used by the network side device to determine the initial location information.
  • the downlink synchronization signals respectively corresponding to the plurality of original reconfigurable intelligent surfaces includes a common preamble, and the downlink synchronization signal corresponding to each original reconfigurable intelligent surface also includes the original Serial number of the reconfigurable smart surface.
  • the description of relevant content in the embodiment of the electronic device 100 for example, the description in conjunction with FIGS. 9 and 10 ), which will not be repeated here.
  • the downlink synchronization signal corresponding to each original reconfigurable smart surface also includes the sequence number of the coarse beam of the original reconfigurable smart surface.
  • the processing unit 2601 may be configured to transmit a random access response to the electronic device 2600 to the network side device via a second selected reconfigurable smart surface among the plurality of selected reconfigurable smart surfaces. Report a preamble and reporting information corresponding to the second selected reconfigurable smart surface, and the reported information includes serial numbers of multiple selected reconfigurable smart surfaces.
  • a plurality of selected reconfigurable smart surfaces are selected by electronic device 2600 based on measurements of received downlink synchronization signals.
  • the reported information also includes the sequence number of the optimal coarse beam of each selected reconfigurable smart surface, and the optimal coarse beam is among the coarse beams of the selected reconfigurable smart surface such that the electronic device 2600 passes through
  • the selected reconfigurable smart surface measures the largest thick beam of the downlink synchronization signal received from the network side device.
  • the reported information also includes accuracy requirements for location information.
  • the processing unit 2601 may be configured to: receive a random access response and the detection parameters configured for the electronic device 2600 from the network side device via the second selected reconfigurable smart surface. detecting signals; respectively sending detection reference signals to the network side device via other selected reconfigurable smart surfaces except the second selected reconfigurable smart surface among the plurality of selected reconfigurable smart surfaces; and via The second selected reconfigurable smart surface reports the sending time of the detection reference signal sent by the electronic device 2600 to the network side device.
  • the preamble is used by the network side device to calculate the arrival delay from the electronic device 2600 to the network side device corresponding to the second selected reconfigurable smart surface; the detection reference signal sent by the user equipment and the sending time Used by the network side device to calculate the arrival delay from the electronic device 2600 to the network side device corresponding to other selected reconfigurable smart surfaces; and the arrival time corresponding to each selected reconfigurable smart surface.
  • the delay is used by the network side device to determine the initial location information.
  • the sequence number of the optimal coarse beam for each selected reconfigurable smart surface is used by the network side device to determine the initial location information.
  • the processing unit 2601 may be configured to: receive positioning reference signals respectively sent by the network side device via a plurality of selected reconfigurable smart surfaces based on the initial location information, where corresponding to each selected reconfigurable smart surface
  • the positioning reference signal includes the sequence number of the thin beam of the selected reconfigurable smart surface; and reporting to the network side device the candidate thin beam selected from the thin beams of each selected reconfigurable smart surface based on the positioning reference signal. serial number.
  • the sequence number of the candidate thin beam corresponding to each selected reconfigurable smart surface is used by the network side device to estimate the arrival angle of the electronic device 2600 to the selected reconfigurable smart surface, and the sequence number corresponding to each selected reconfigurable smart surface.
  • the angle of arrival corresponding to the reconstructed smart surface is used by the network side device to determine enhanced location information that is more accurate than the initial location information.
  • the processing unit 2601 may be configured to: receive a sounding reference signal configured by the network side device based on the initial location information, wherein the configuration includes a sequence number specifying a thin beam on which the electronic device 2600 is to send the sounding reference signal; and A sounding reference signal is sent to the network side device via each selected reconfigurable smart surface respectively.
  • the network side device after the network side device receives all detection reference signals sent via multiple selected reconfigurable smart surfaces, the network side device separately compares the received beamforming vector of the network side device with the one from each selected reconfigurable smart surface to the network side.
  • the position and direction of the device are aligned to determine the detection reference signal received from the electronic device 2600 through each selected reconfigurable smart surface; the network side device Reconstructing the beamlets of the smart surface is measured from the detection reference signal received by the electronic device 2600 to select candidate beamlets for each selected reconfigurable smart surface; and estimating from the electronic device 2600 to the selected reconfigurable smart surface based on the candidate beamlets.
  • the angle of arrival of the smart surface is reconstructed, and the network side device determines enhanced position information that is more accurate than the initial position information based on the angle of arrival corresponding to each selected reconfigurable smart surface.
  • the processing unit 2601 may be configured to receive information about candidate beamlets for each selected reconfigurable smart surface from the network side device for subsequent communication between the electronic device 2600 and the network side device.
  • the processing unit 2601 may be configured to, when the electronic device 2600 and the network side device are in a connected state, initially Multiple initial reconfigurable smart surfaces are selected from multiple original reconfigurable smart surfaces within the range of the beam to assist the network side device in determining the initial position information.
  • the multiple initial reconfigurable smart surfaces are used to select multiple initial reconfigurable smart surfaces. selected reconfigurable smart surfaces.
  • the processing unit 2601 may be configured to: receive positioning reference signals respectively sent by the network side device via a plurality of initial reconfigurable smart surfaces, wherein the positioning reference signal corresponding to each initial reconfigurable smart surface includes the initial the serial number of the reconfigurable smart surface; and sending reporting information to the network side device, where the reporting information includes the serial number of the selected reconfigurable smart surface, and the selected reconfigurable smart surface is based on the electronic device 2600 via multiple The positioning reference signal received by the initial reconfigurable smart surface is selected from a plurality of initial reconfigurable smart surfaces.
  • the reported information also includes accuracy requirements for location information.
  • the reported information is used by the network side device to calculate the initial location information.
  • the processing unit 2601 may be configured to: receive a positioning reference signal sent by the network side device based on the initial position information via the network side device and a plurality of selected reconfigurable smart surfaces, wherein the positioning corresponding to the network side device
  • the reference signal includes the network side device’s
  • the sequence number of the thin beam and the positioning reference signal corresponding to each selected reconfigurable smart surface include the sequence number of the thin beam of the selected reconfigurable smart surface; and reporting to the network side device based on the positioning reference signal from each The sequence number of the candidate thin beam selected from among the thin beams of the selected reconfigurable smart surface and the sequence number of the candidate thin beam selected from among the thin beams of the network side device.
  • the sequence number of the candidate thin beam corresponding to each selected reconfigurable smart surface is used by the network side device to estimate the arrival angle of the electronic device 2600 to the selected reconfigurable smart surface, and the sequence number corresponding to the network side device
  • the sequence number of the candidate beamlet is used by the network side device to estimate the angle of arrival of the electronic device 2600 to the network side device, and the angle of arrival is used by the network side device to determine enhanced location information that is more accurate than the initial location information.
  • the processing unit 2601 may be configured to: receive a sounding reference signal configured by the network side device, where the configuration includes a sequence number specifying a coarse beam on which the electronic device 2600 is to send the sounding reference signal; and via each initial The reconfigurable smart surface reports the detection reference signal to the network side device.
  • the network side device after the network side device receives all the detection reference signals sent by the electronic device 2600 via the multiple initial reconfigurable smart surfaces, the network side device separately compares the received beamforming vector of the network side device with the one from each initial reconfigurable smart surface to the network.
  • the position and direction of the side device are aligned to determine the detection reference signal received from the electronic device 2600 through each initial reconfigurable smart surface; and the detection reference received by the network side device for each initial reconfigurable smart surface
  • the signal is measured, and based on the measurement results, a plurality of selected reconfigurable smart surfaces are selected from the plurality of initial reconfigurable smart surfaces.
  • the processing unit 2601 may be configured to also report accuracy requirements related to location information to the network side device.
  • the angle of arrival of the electronic device 2600 to each selected reconfigurable smart surface is used by the network side device to determine the initial location information.
  • the processing unit 2601 may be configured to: receive a sounding reference signal configured by the network side device based on the initial location information, wherein the configuration includes a sequence number specifying a thin beam on which the electronic device 2600 is to send the sounding reference signal; and Probing reference signals are sent directly to the network side device and probes are sent to the network side device via each selected reconfigurable smart surface. Measure the reference signal.
  • the network side device after the network side device receives the detection reference signal directly sent by the electronic device 2600 and all the detection reference signals sent via a plurality of selected reconfigurable smart surfaces, the network side device separately compares the received beamforming vector of the network side device with the one from each Align the position and direction of the selected reconfigurable smart surface to the network-side device to determine the detection reference signal received from the electronic device 2600 through each selected reconfigurable smart surface; the network-side device targets The beamlets of the reconfigurable smart surface are measured from the detection reference signals received by the electronic device 2600 to select candidate beamlets for each selected reconfigurable smart surface, and estimating the electronic device 2600 to the selected beamlets based on the candidate beamlets.
  • the arrival angle of the reconfigurable smart surface; and the network side device determines enhanced location information that is more accurate than the initial location information based on the arrival angle.
  • the processing unit 2601 may be configured to receive information about candidate beamlets for each selected reconfigurable smart surface from the network side device for subsequent communication between the electronic device 2600 and the network side device.
  • Figure 27 shows a flowchart of a method S2700 for wireless communication according to one embodiment of the present disclosure.
  • Method S2700 begins at step S2702.
  • step S2704 the user is determined through a plurality of selected reconfigurable smart surfaces selected from a plurality of original reconfigurable smart surfaces based on the connection status between the electronic device and the user device within the service range of the electronic device. The initial location information of the device.
  • Method S2700 ends at step S2706.
  • This method can be performed, for example, by the electronic device 100 described above.
  • the electronic device 100 described above.
  • Figure 28 illustrates a method for wireless communication S2800 according to one embodiment of the present disclosure.
  • Method S2800 begins at step S2802.
  • step S2804 assisting the network side by selecting a plurality of selected reconfigurable smart surfaces from a plurality of original reconfigurable smart surfaces based on the connection status between the electronic device and the network side device that provides services for the electronic device.
  • the device determines initial location information of the electronic device.
  • Method S2800 ends at step S2806.
  • This method can be performed, for example, by the electronic device 2600 described above.
  • the electronic device 2600 described above.
  • the technology of the present disclosure can be applied to a variety of products.
  • the electronic device 100 may be implemented as various network side devices such as a base station.
  • the base station may be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB covering a smaller cell than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • gNB evolved Node B
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRH) disposed at a different place from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of electronic devices may operate as base stations by temporarily or semi-persistently performing base station functions.
  • Electronic device 2600 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera, or a vehicle-mounted terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned terminals.
  • eNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as those included in a multi-input Multiple antenna elements in a multiple output (MIMO) antenna) and is used by the base station device 820 to transmit and receive wireless signals.
  • eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 29 shows an example in which eNB 800 includes multiple antennas 810, eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 820 . For example, the controller 821 generates data packets based on the data in the signal processed by the wireless communication interface 825 and delivers the generated packets via the network interface 823 . The controller 821 may bundle data from multiple baseband processors to generate bundled packets, and deliver the generated bundled packets. The controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as terminal lists, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface used to connect the base station device 820 to the core network 824. Controller 821 may communicate with core network nodes or additional eNBs via network interface 823. In this case, the eNB 800 and the core network node or other eNBs may be connected to each other through logical interfaces such as the S1 interface and the X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of the eNB 800 via the antenna 810 .
  • Wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827.
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layer 1, medium access control (MAC), radio link control (RLC), and packet data aggregation protocols. (PDCP))).
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data aggregation protocols
  • the BB processor 826 may be a memory that stores a communication control program, or a module including a processor and related circuitry configured to execute the program. Updater can enable BB processor 826 function changes.
  • the module may be a card or blade that plugs into a slot of the base station device 820. Alternatively, the module may be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include multiple BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 29 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the electronic device 100 when the electronic device 100 is implemented as a base station, its transceiver can be implemented by the wireless communication interface 825. At least part of the functionality may also be implemented by controller 821. For example, the controller 821 may determine the location information of the user device by performing functions of units in the electronic device 100 .
  • eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station equipment 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Antennas 840 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by RRH 860 to transmit and receive wireless signals.
  • eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 30 shows an example in which eNB 830 includes multiple antennas 840, eNB 830 may also include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855 and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 29.
  • the wireless communication interface 855 supports any cellular communication scheme such as LTE and LTE-Advanced and provides wireless communication to terminals located in the sector corresponding to the RRH 860 via the RRH 860 and the antenna 840 .
  • the wireless communication interface 855 may generally include a BB processor 856, for example.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 29 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 30 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line that connects the base station device 850 (wireless communication interface 855) to the RRH 860.
  • RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • Wireless communication interface 863 transmits and receives wireless signals via antenna 840.
  • Wireless communication interface 863 may generally include RF circuitry 864, for example.
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmits and receives wireless signals via antenna 840 .
  • wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 30 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the electronic device 100 when the electronic device 100 is implemented as a base station, its transceiver can be implemented by the wireless communication interface 855. At least part of the functionality may also be implemented by controller 851. For example, the controller 851 may determine the location information of the user device by performing functions of units in the electronic device 100 .
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915, one or more antennas 916, bus 917, battery 918, and auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls functions of the application layer and other layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include storage media such as semiconductor memory and hard disk.
  • the external connection interface 904 is an interface for connecting external devices, such as memory cards and Universal Serial Bus (USB) devices, to the smartphone 900 .
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
  • Sensors 907 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include a BB processor 913 and an RF circuit 914, for example.
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • RF circuitry 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 916 . Note that although the figure shows a situation where one RF link is connected to one antenna, this is only schematic, and it also includes a situation where one RF link is connected to multiple antennas through multiple phase shifters.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 31 , the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 . Although FIG. 31 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Antennas 916 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 31 shows an example in which smartphone 900 includes multiple antennas 916
  • smartphone 900 may also include a single antenna 916 .
  • smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912 and the auxiliary controller 919 to each other. connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in Figure 31 via feeders, which are partially shown in the figure as dotted lines.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the transceiver of the electronic device 2600 may be implemented by the wireless communication interface 912 .
  • At least part of the functionality may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can assist the network side device in determining location information by executing the functions of the units in the electronic device 2600 described above.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage media interface 928, an input device 929, a display device 930, a speaker 931, a wireless Communication interface 933, one or more antenna switches 936, one or more antennas 937, and battery 938.
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the location (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a group of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the vehicle-mounted network 941 via a terminal not shown, and acquires data generated by the vehicle (such as vehicle speed data).
  • the content player 927 reproduces content stored in storage media, such as CDs and DVDs, which are inserted into the storage media interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 933 may generally include, for example, BB processor 934 and RF circuitry 935.
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communications.
  • the RF circuit 935 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 32 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • the antennas 937 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • Figure 32 An example is shown in which the car navigation device 920 includes multiple antennas 937 , but the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 32 via feeders, which are partially shown as dashed lines in the figure. Battery 938 accumulates power provided from the vehicle.
  • the transceiver of the electronic device 2600 may be implemented by the wireless communication interface 933 .
  • the processor 921 can assist the network side device in determining location information by executing the functions of the units in the electronic device 2600 described above.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including a car navigation device 920 , an in-vehicle network 941 , and one or more blocks of a vehicle module 942 .
  • vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • the present invention also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by the machine, the above method according to the embodiment of the present invention can be executed.
  • Storage media include but are not limited to floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, etc.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 3300 shown in FIG. 33) in which various programs are installed. , can perform various functions, etc.
  • a central processing unit (CPU) 3301 performs various processes according to a program stored in a read-only memory (ROM) 3302 or a program loaded from a storage section 3308 into a random access memory (RAM) 3303 .
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 3301 performs various processes and the like is also stored as necessary.
  • CPU 3301, ROM 3302 and RAM 3303 are connected to each other via bus 3304.
  • Input/output interface 3305 is also connected to bus 3304.
  • input section 3306 including keyboard, mouse, etc.
  • output section 3307 including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.
  • Storage part 3308 including hard disk, etc.
  • communication part 3309 including network interface card such as LAN card, modem, etc.
  • the communication section 3309 performs communication processing via a network such as the Internet.
  • Driver 3310 may also be connected to input/output interface 3305 as needed.
  • Removable media 3311 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc. are installed on the drive 3310 as needed, so that computer programs read therefrom are installed into the storage portion 3308 as needed.
  • the program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 3311.
  • storage media are not limited to the removable media 3311 shown in FIG. 33 in which the program is stored and distributed separately from the device to provide the program to users.
  • the removable media 3311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark)). Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 3302, a hard disk contained in the storage section 3308, or the like, in which programs are stored and distributed to users together with the device containing them.
  • each component or each step can be decomposed and/or recombined.
  • These decompositions and/or recombinations should be regarded as equivalent versions of the present invention.
  • the steps for executing the above series of processes can naturally be executed in chronological order in the order described, but do not necessarily need to be executed in chronological order. Certain steps can be performed in parallel or independently of each other.
  • This technology can also be implemented as follows.
  • An electronic device for wireless communication including:
  • processing circuit configured as:
  • Option 2 The electronic device according to Option 1, wherein the processing circuit is configured to, when the electronic device and the user equipment are in a non-connected state, via the plurality of original reconfigurable The smart surfaces respectively broadcast downlink synchronization signals including preambles, so that the user equipment can select the plurality of selected reconfigurable smart surfaces based on the preambles.
  • Option 3 The electronic device according to Solution 2, wherein the downlink synchronization signals respectively corresponding to the plurality of original reconfigurable smart surfaces do not include a common preamble.
  • Embodiment 5 The electronic device of embodiment 3 or 4, wherein the processing circuit is configured to, via each selected reconfigurable smart surface of the plurality of selected reconfigurable smart surfaces, obtain from the The user equipment receives preambles respectively corresponding to the selected reconfigurable smart surfaces.
  • Option 6 The electronic device according to Option 5, wherein the processing circuit is configured to:
  • the initial position information is determined based on the arrival delay corresponding to each selected reconfigurable smart surface.
  • the processing circuit is configured to also receive, from the user equipment via each selected reconfigurable smart surface, reported information corresponding to the selected reconfigurable smart surface,
  • the reporting information corresponding to the first selected reconfigurable smart surface among the plurality of selected reconfigurable smart surfaces to be used to send a random access response to the user equipment includes indicating that the first a feedback identification of the selected reconfigurable smart surface for sending the random access response, and
  • the selected reconfigurable smart surface is not used to send a non-feedback identification of the random access response.
  • Option 8 The electronic device according to Option 7,
  • the reported information corresponding to each selected reconfigurable smart surface also includes the sequence number of the optimal thick beam of the selected reconfigurable smart surface, and
  • the optimal coarse beam is one of the coarse beams of the selected reconfigurable smart surface that maximizes the measurement result of the downlink synchronization signal received by the user equipment from the electronic device via the selected reconfigurable smart surface. thick beam.
  • Embodiment 9 The electronic device of embodiment 8, wherein the processing circuit is configured to determine the initial position information further based on a sequence number of an optimal coarse beam for each selected reconfigurable smart surface.
  • Solution 10 The electronic device according to any one of solutions 7 to 9, wherein the reported information corresponding to the first selected reconfigurable smart surface further includes accuracy requirements regarding the location information.
  • At least a portion of the downlink synchronization signals respectively corresponding to the plurality of original reconfigurable smart surfaces includes a common preamble
  • the downlink synchronization signal corresponding to each original reconfigurable intelligent surface also includes the original reconfigurable intelligent surface.
  • the serial number of the smart surface is not limited to the original reconfigurable intelligent surface.
  • Option 12 The electronic device according to Solution 11, wherein the downlink synchronization signal corresponding to each original reconfigurable smart surface further includes a sequence number of the coarse beam of the original reconfigurable smart surface.
  • Item 13 The electronic device according to Item 11 or 12, wherein,
  • the processing circuitry is configured to receive data from the user via a second selected reconfigurable smart surface of the plurality of selected reconfigurable smart surfaces to be used to send a random access response to the user equipment.
  • the device receives the preamble and reporting information corresponding to the second selected reconfigurable smart surface, and
  • the reported information includes serial numbers of the plurality of selected reconfigurable smart surfaces.
  • Item 14 The electronic device according to item 13, wherein the processing circuit is configured to:
  • an arrival delay from the user equipment to the electronic device corresponding to the other selected reconfigurable smart surfaces is calculated. ,as well as
  • the initial position information is determined based on the arrival delay corresponding to each selected reconfigurable smart surface.
  • Item 15 The electronic device according to Item 14, wherein,
  • the reported information also includes the sequence number of the optimal coarse beam for each selected reconfigurable smart surface, and
  • the optimal coarse beam is one of the coarse beams of the selected reconfigurable smart surface that maximizes the measurement result of the downlink synchronization signal received by the user equipment from the electronic device via the selected reconfigurable smart surface. thick beam.
  • Embodiment 16 The electronic device of embodiment 15, wherein the processing circuit is configured to determine the initial position information further based on a sequence number of an optimal coarse beam for each selected reconfigurable smart surface.
  • Item 17 The electronic device according to any one of Items 13 to 16, wherein,
  • the reported information also includes accuracy requirements regarding the location information.
  • Item 18 The electronic device according to any one of Items 2 to 17, wherein the processing circuit is configured to:
  • positioning reference signals are respectively sent via the plurality of selected reconfigurable smart surfaces, wherein the positioning reference signal corresponding to each selected reconfigurable smart surface includes the selected reconfigurable smart surface.
  • Item 19 The electronic device according to any one of Items 2 to 17, wherein the processing circuit is configured to:
  • Configuring a sounding reference signal for the user equipment based on the initial location information wherein the configuration includes specifying a sequence number of a thin beam on which the user equipment is to transmit the sounding reference signal
  • the receive beamforming vector of the electronic device is separately compared with the received beamforming vector from each selected reconfigurable smart surface to aligning the position and orientation of the electronic device to determine detection reference signals received from the user device through each selected reconfigurable smart surface,
  • each selected reconfigurable smart surface performing measurements of the sounding reference signals to select candidate beamlets for each selected reconfigurable smart surface, and estimating the angle of arrival of the user equipment to the selected reconfigurable smart surface based on the candidate beamlets, and
  • Item 20 The electronic device of item 19, wherein the processing circuit is configured to:
  • Information about the candidate beamlets for each selected reconfigurable smart surface is sent to the user equipment for use by the candidate beamlets in subsequent communications between the user equipment and the electronic device.
  • Item 21 The electronic device according to any one of Items 2 to 20, wherein,
  • the plurality of selected reconfigurable smart surfaces are selected by the user equipment based on measurements of received downlink synchronization signals.
  • Option 22 The electronic device according to Option 1 or 2, wherein the processing circuit is configured to, when the electronic device and the user equipment are in a connected state, based on the electronic device and the user equipment.
  • Initial beam alignment between the user equipments selecting a plurality of initial reconfigurable smart surfaces from the plurality of original reconfigurable smart surfaces within the range of the initial beam for use from the multiple initial reconfigurable smart surfaces
  • the reconfigurable smart surface selects the plurality of selected reconfigurable smart surfaces.
  • Item 23 The electronic device according to item 22, wherein the processing circuit is configured to:
  • each initial reconfigurable smart surface includes a serial number of the initial reconfigurable smart surface
  • the reporting information includes a serial number of the selected reconfigurable smart surface
  • the selected reconfigurable smart surface is a result of the user equipment based on the
  • the positioning reference signal received by the initial reconfigurable smart surface is selected from the plurality of initial reconfigurable smart surfaces.
  • Solution 24 The electronic device according to solution 23, wherein the reported information further includes accuracy requirements regarding the location information.
  • Option 25 The electronic device according to Solution 23 or 24, wherein the processing circuit is configured to calculate the initial location information based on the reported information.
  • Item 26 The electronic device according to item 25, wherein the processing circuit is configured to:
  • positioning reference signals are respectively transmitted via the electronic device and the plurality of selected reconfigurable smart surfaces, wherein the positioning reference signal corresponding to the electronic device includes a thin beam of the electronic device the sequence number and the positioning reference signal corresponding to each selected reconfigurable smart surface including the sequence number of the beamlet of the selected reconfigurable smart surface,
  • Item 27 The electronic device of item 22, wherein the processing circuit is configured to:
  • a sounding reference signal for the user equipment includes specifying a sequence number of a coarse beam over which the user equipment is to transmit the sounding reference signal
  • the receive beamforming vector of the electronic device is separately compared with the received beamforming vector from each initial reconfigurable smart surface to the aligning the position and direction of the electronic device to determine the detection reference signal received from the user device through each initial reconfigurable smart surface,
  • Item 28 The electronic device of item 27, wherein the processing circuit is configured Accuracy requirements for also receiving the location information from the user equipment.
  • Embodiment 29 The electronic device of embodiment 27 or 28, wherein the processing circuit is configured to determine the initial position information based on the angle of arrival of the user device to each selected reconfigurable smart surface.
  • Item 30 The electronic device of item 29, wherein the processing circuit is configured to:
  • Configuring a sounding reference signal for the user equipment based on the initial location information wherein the configuration includes specifying a sequence number of a thin beam on which the user equipment is to transmit the sounding reference signal
  • the receive beamforming vectors of the electronic device are respectively aligned with the positional direction from each selected reconfigurable smart surface to the electronic device, thereby determining a detection reference signal received from the user device through each selected reconfigurable smart surface,
  • selecting candidate beamlets for each selected reconfigurable smart surface by measuring sounding reference signals received from the user equipment via the beamlets of each selected reconfigurable smart surface, and based on the candidate beamlets beam estimating the angle of arrival of the user equipment to the selected reconfigurable smart surface, and
  • Embodiment 31 The electronic device of embodiment 30, wherein the processing circuitry is configured to send information about candidate beamlets for each selected reconfigurable smart surface to the user equipment for use by the candidates.
  • the thin beam is used for subsequent communication between the user equipment and the electronic device.
  • An electronic device for wireless communication comprising:
  • processing circuit configured as:
  • Item 33 The electronic device according to Item 32, wherein the processing circuit is configured to receive a message from the network side device via the network side device when the electronic device and the network side device are in a non-connection state.
  • a downlink synchronization signal including a preamble broadcast by the plurality of original reconfigurable smart surfaces is used to select the plurality of selected reconfigurable smart surfaces based on the preamble.
  • Option 34 The electronic device according to Solution 33, wherein the downlink synchronization signals respectively corresponding to the plurality of original reconfigurable smart surfaces do not include a common preamble.
  • Embodiment 36 The electronic device of embodiment 34 or 35, wherein the processing circuit is configured to, via each selected reconfigurable smart surface of the plurality of selected reconfigurable smart surfaces, provide the The network side device sends a preamble corresponding to the selected reconfigurable smart surface.
  • Option 37 The electronic device according to Option 36, wherein the preamble corresponding to each selected reconfigurable smart surface is used by the network side device to calculate the corresponding preamble corresponding to each selected reconfigurable smart surface. , the arrival delay from the electronic device to the network side device, so that the network side device determines the initial location information.
  • Item 38 The electronic device according to Item 37, wherein,
  • the processing circuit is configured to also send reporting information corresponding to each selected reconfigurable smart surface to the network side device via the selected reconfigurable smart surface,
  • the reporting information corresponding to the first selected reconfigurable smart surface among the plurality of selected reconfigurable smart surfaces to be used to send a random access response to the electronic device includes indicating that the first a feedback identification of the selected reconfigurable smart surface for sending the random access response, and
  • the selected reconfigurable smart surface is not used to send a non-feedback identification of the random access response.
  • Item 39 The electronic device according to Item 38, wherein,
  • the reported information corresponding to each selected reconfigurable intelligent surface also includes the selected reconfigurable intelligent surface.
  • the optimal coarse beam is a measurement result of the downlink synchronization signal received by the electronic device from the network side device via the selected reconfigurable smart surface among the coarse beams of the selected reconfigurable smart surface. Largest thick beam.
  • Embodiment 40 The electronic device according to Embodiment 39, wherein the sequence number of the optimal coarse beam of each selected reconfigurable smart surface is used by the network side device to determine the initial location information.
  • Solution 41 The electronic device according to any one of solutions 38 to 40, wherein the reported information corresponding to the first selected reconfigurable smart surface further includes accuracy requirements regarding the location information.
  • Item 42 The electronic device according to Item 33, wherein,
  • At least a portion of the downlink synchronization signals respectively corresponding to the plurality of original reconfigurable smart surfaces includes a common preamble
  • the downlink synchronization signal corresponding to each original reconfigurable intelligent surface also includes the sequence number of the original reconfigurable intelligent surface.
  • Option 43 The electronic device according to Solution 42, wherein the downlink synchronization signal corresponding to each original reconfigurable smart surface further includes a sequence number of the coarse beam of the original reconfigurable smart surface.
  • Item 44 The electronic device according to Item 42 or 43, wherein,
  • the processing circuitry is configured to send a request to the network via a second selected reconfigurable smart surface of the plurality of selected reconfigurable smart surfaces to be used to send a random access response to the electronic device.
  • the side device reports the preamble and reporting information corresponding to the second selected reconfigurable smart surface, and
  • the reported information includes serial numbers of the plurality of selected reconfigurable smart surfaces.
  • Item 45 The electronic device of item 44, wherein the processing circuit is configured to:
  • the preamble is used by the network side device to calculate an arrival delay from the electronic device to the network side device corresponding to the second selected reconfigurable smart surface
  • the sounding reference signal sent by the user equipment and the sending time are used by the network side device to calculate the detection time from the electronic device to the network side device respectively corresponding to the other selected reconfigurable smart surfaces. arrival delay between, and
  • the arrival delay corresponding to each selected reconfigurable smart surface is used by the network side device to determine the initial location information.
  • Item 46 The electronic device according to Item 45, wherein,
  • the reported information also includes the sequence number of the optimal coarse beam for each selected reconfigurable smart surface, and
  • the optimal coarse beam is a measurement result of the downlink synchronization signal received by the electronic device from the network side device via the selected reconfigurable smart surface among the coarse beams of the selected reconfigurable smart surface. Largest thick beam.
  • Embodiment 47 The electronic device according to Embodiment 46, wherein the sequence number of the optimal coarse beam of each selected reconfigurable smart surface is used by the network side device to determine the initial location information.
  • Item 48 The electronic device according to any one of Items 44 to 47, wherein,
  • the reported information also includes accuracy requirements regarding the location information.
  • Item 49 The electronic device according to any one of Items 33 to 48, wherein the processing circuit is configured to:
  • sequence number of the candidate thin beam corresponding to each selected reconfigurable smart surface is used by the network side device to estimate the arrival angle of the electronic device to the selected reconfigurable smart surface, and with each The angle of arrival corresponding to the selected reconfigurable smart surface is used by the network side device to determine enhanced location information that is more accurate than the initial location information.
  • Item 50 The electronic device according to any one of Items 33 to 48, wherein the processing circuit is configured to:
  • the configuration includes a sequence number specifying a thin beam on which the electronic device is to transmit the sounding reference signal
  • the network side device after the network side device receives all sounding reference signals sent via the plurality of selected reconfigurable smart surfaces, the network side device separately compares the received beamforming vector of the network side device with the received beamforming vector from each selected reconfigurable smart surface. Aligning the position and direction of the constructed smart surface to the network side device to determine a detection reference signal received from the electronic device through each selected reconfigurable smart surface,
  • the network side device performs measurements on the sounding reference signal received from the electronic device via the beamlets of each selected reconfigurable smart surface to select candidate beamlets for each selected reconfigurable smart surface, and Estimating the angle of arrival of the electronic device to the selected reconfigurable smart surface based on the candidate beamlets, and
  • the network side device determines enhanced location information that is more accurate than the initial location information based on the angle of arrival corresponding to each selected reconfigurable smart surface.
  • Item 51 The electronic device of item 50, wherein the processing circuit is configured to:
  • Information regarding candidate beamlets for each selected reconfigurable smart surface is received from the network side device for subsequent communication between the electronic device and the network side device.
  • Item 52 The electronic device according to any one of Items 33 to 51, wherein,
  • the plurality of selected reconfigurable smart surfaces are selected by the electronic device based on measurements of received downlink synchronization signals.
  • Option 53 The electronic device according to Option 32 or 33, wherein the processing circuit is configured to, when the electronic device and the network side device are in a connected state, through the network side device A plurality of initial reconfigurable smart surfaces selected from the plurality of original reconfigurable smart surfaces within the range of the initial beam based on the initial beam alignment between the electronic device and the network side device , assisting the network side device in determining the initial location information,
  • the plurality of initial reconfigurable smart surfaces are used to select the plurality of selected reconfigurable smart surfaces.
  • Item 54 The electronic device of item 53, wherein the processing circuit is configured to:
  • the reporting information includes the serial number of the selected reconfigurable smart surface
  • the selected reconfigurable smart surface is the electronic device based on the The positioning reference signal received by an initial reconfigurable smart surface is selected from the plurality of initial reconfigurable smart surfaces.
  • Option 55 The electronic device according to Solution 54, wherein the reported information further includes accuracy requirements regarding the location information.
  • Solution 56 The electronic device according to solution 54 or 55, wherein the reported information is used by the network side device to calculate the initial location information.
  • Item 57 The electronic device of item 56, wherein the processing circuit is configured to:
  • the signal includes a sequence number of the beamlet of the network side device and the positioning reference signal corresponding to each selected reconfigurable smart surface includes a sequence number of the beamlet of the selected reconfigurable smart surface
  • sequence number of the candidate thin beam corresponding to each selected reconfigurable smart surface is used by the network side device to estimate the arrival angle of the electronic device to the selected reconfigurable smart surface
  • the sequence number of the candidate thin beam corresponding to the network side device is used by the network side device to estimate the angle of arrival from the electronic device to the network side device
  • the angle of arrival is used by the network side device to determine enhanced location information that is more accurate than the initial location information.
  • Item 58 The electronic device of item 53, wherein the processing circuit is configured to:
  • the configuration includes a sequence number specifying a coarse beam on which the electronic device is to transmit the sounding reference signal
  • the network side device after the network side device receives all detection reference signals sent by the electronic device via the plurality of initial reconfigurable smart surfaces, the network side device separately compares the received beamforming vector of the network side device with the received beamforming vector from each initial reconfigurable smart surface. Align the reconfigurable smart surface to the position and direction of the network side device, thereby determining the detection reference signal received from the electronic device through each initial reconfigurable smart surface, and
  • the network side device measures the detection reference signal received by each initial reconfigurable smart surface, and based on the measurement result, selects the plurality of initial reconfigurable smart surfaces from the plurality of initial reconfigurable smart surfaces. Selected reconfigurable smart surfaces.
  • Option 59 The electronic device according to Solution 58, wherein the processing circuit is configured to also report accuracy requirements regarding the location information to the network side device.
  • Embodiment 60 The electronic device according to embodiment 58 or 59, wherein the angle of arrival of the electronic device to each selected reconfigurable smart surface is used by the network side device to determine the initial position information.
  • Item 61 The electronic device of item 60, wherein the processing circuit is configured to:
  • the network side device changes the receiving beam of the network side device.
  • the shaping vectors are respectively aligned with the position direction from each selected reconfigurable smart surface to the network side device, thereby determining the detection reference signal received from the electronic device through each selected reconfigurable smart surface.
  • the network side device performs measurements on the sounding reference signal received from the electronic device via the beamlets of each selected reconfigurable smart surface to select candidate beamlets for each selected reconfigurable smart surface, and Estimating the angle of arrival of the electronic device to the selected reconfigurable smart surface based on the candidate beamlets, and
  • the network side device determines enhanced location information that is more accurate than the initial location information based on the angle of arrival.
  • Embodiment 62 The electronic device of embodiment 60, wherein the processing circuitry is configured to receive information from the network side device regarding candidate beamlets for each selected reconfigurable smart surface for use in the The electronic device subsequently communicates with the network side device.
  • a method for wireless communication comprising:
  • Determining the user device by selecting a plurality of selected reconfigurable smart surfaces from a plurality of original reconfigurable smart surfaces based on a connection status between the electronic device and the user device within a service range of the electronic device initial location information.
  • Option 64 A method for wireless communication, comprising:
  • Assisting the network-side device with a plurality of selected reconfigurable smart surfaces selected from a plurality of original reconfigurable smart surfaces based on a connection status between the electronic device and the network-side device that provides services to the electronic device Determine the initial location information of the electronic device.
  • Item 65 A computer-readable storage medium having computer-executable instructions stored thereon. When the computer-executable instructions are executed, the method for wireless communication according to Item 63 or 64 is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种用于无线通信的电子设备和方法、计算机可读存储介质。其中,用于无线通信的电子设备包括处理电路,处理电路被配置为:通过基于电子设备与在电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定用户设备的初始位置信息。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2022年4月22日提交中国专利局、申请号为202210428627.1、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,具体地涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。更具体地,涉及利用可重构智能表面(RIS)辅助确定用户设备的位置信息。
背景技术
在现有技术中,用于对用户设备进行定位的方法包括多次往返时延定位方法、到达时间差定位方法以及到达角度定位方法等。多次往返时延定位方法需要用户设备在不同基站之间进行切换,切换流程较为复杂,且定位时延较大。到达时间差定位方法需要基站之间保持时间同步,否则定位精度会受到影响。到达角度定位方法需要基站配备大规模天线才能保证较高的定位精度,这提高了定位成本。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本公开的一个方面,提供了一种用于无线通信的电子设备,其包括处理电路,处理电路被配置为:通过基于电子设备与在电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选 出的多个选定可重构智能表面,确定用户设备的初始位置信息。在根据本公开的实施例中,通过基于电子设备与用户设备之间的连接状态而选出的多个选定可重构智能表面来确定用户设备的初始位置信息,提高了对用户设备进行定位的适用性。
根据本公开的一个方面,提供了一种用于无线通信的电子设备,其包括处理电路,处理电路被配置为:通过基于电子设备与为电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助网络侧设备确定电子设备的初始位置信息。在根据本公开的实施例中,通过基于电子设备与网络侧设备之间的连接状态而选出的多个选定可重构智能表面来辅助确定位置信息,提高了对电子设备进行定位的适用性。
根据本公开的一个方面,提供了一种用于无线通信的方法,包括:通过基于电子设备与在电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定用户设备的初始位置信息。
根据本公开的一个方面,提供了一种用于无线通信的方法,包括:通过基于电子设备与为电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助网络侧设备确定电子设备的初始位置信息。
依据本发明的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本 发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了根据本公开的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了根据本公开实施例的可重构智能表面(RIS)与下行同步信号之间的映射的一个示例;
图3示出了根据本公开实施例的电子设备经由原始可重构智能表面向用户设备广播同步信号块(SSB)的一个示例;
图4示出了根据本公开实施例的电子设备经由原始可重构智能表面的粗波束向用户设备广播SSB的一个示例;
图5是示出根据本公开实施例的用户设备基于对所接收的下行同步信号的测量结果而选出选定可重构智能表面的示意图;
图6示出了根据本公开实施例的电子设备与用户设备之间进行的信令交互的一个示例;
图7示出了根据本公开实施例的电子设备基于前导码、经由选定可重构智能表面确定初始位置信息的一个示例;
图8示出了根据本公开实施例的电子设备基于前导码、经由选定可重构智能表面确定初始位置信息的另一示例;
图9示出了根据本公开实施例的RIS与下行同步信号之间的映射的另一示例;
图10示出了根据本公开实施例的电子设备经由原始可重构智能表面向用户设备广播SSB的另一示例;
图11示出了根据本公开实施例的电子设备经由原始可重构智能表面的粗波束向用户设备广播SSB的另一示例;
图12示出了根据本公开实施例的电子设备与用户设备之间进行的信令交互的另一示例;
图13示出了根据本公开实施例的电子设备基于前导码和探测参考信号、经由选定可重构智能表面确定初始位置信息的一个示例;
图14示出了根据本公开实施例的电子设备基于前导码和探测参考信号、经由选定可重构智能表面确定初始位置信息的另一示例;
图15示出了根据本公开实施例的在非连接状态下、电子设备基于初始位置信息确定增强位置信息的一个示例;
图16示出了根据本公开实施例的在非连接状态下、电子设备基于初始位置信息确定增强位置信息的另一示例;
图17示出了根据本公开实施例的电子设备基于候选细波束确定增强位置信息的一个示例;
图18示出了根据本公开实施例的电子设备基于候选细波束确定增强位置信息的另一个示例;
图19示出了根据本公开实施例的电子设备与用户设备之间利用波束进行通信的一个示意图;
图20是示出根据本公开实施例的在初始波束的范围内选出多个初始可重构智能表面的示意图;
图21示出了根据本公开实施例的电子设备和与其已经建立连接的用户设备之间进行的信令交互的一个示例;
图22示出了根据本公开实施例的在已连接状态下、电子设备基于初始位置信息确定增强位置信息的一个示例;
图23示出了根据本公开实施例的电子设备和与其已经建立连接的用户设备之间进行的信令交互的另一示例;
图24示出了根据本公开实施例的在已连接状态下、电子设备基于初始位置信息确定增强位置信息的另一示例;
图25示出了根据本公开实施例的电子设备与用户设备之间利用波束进行通信的另一示意图;
图26示出了根据本公开另一实施例的用于无线通信的电子设备的功能模块框图;
图27示出了根据本公开的一个实施例的用于无线通信的方法的流程图;
图28示出了根据本公开的另一实施例的用于无线通信的方法的流程图;
图29是示出可以应用本公开内容的技术的eNB或gNB的示意性配 置的第一示例的框图;
图30是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图31是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图32是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图33是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
图1示出了根据本公开的一个实施例的用于无线通信的电子设备100的功能模块框图。
如图1所示,电子设备100包括:确定单元101,其可以通过基于电子设备100与在电子设备100的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定用户设备的初始位置信息。
其中,确定单元101可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
电子设备100可以作为无线通信系统中的网络侧设备,具体地例如可以设置在基站侧或者可通信地连接到基站。这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为基站本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备(UE)、其他基站等等)间的通信,这里不具体限制收发器的实现形式。
作为示例,基站例如可以是eNB或gNB。
根据本公开的无线通信系统可以是5G NR(New Radio,新空口)通信系统。进一步,根据本公开的无线通信系统可以包括非地面网络(Non-terrestrial network,NTN)。可选地,根据本公开的无线通信系统还可以包括地面网络(Terrestrial network,TN)。另外,本领域技术人员可以理解,根据本公开的无线通信系统还可以是4G或3G通信系统。
电子设备100与用户设备之间的连接状态包括:电子设备100与用户设备之间没有建立通信连接的非连接状态和电子设备100与用户设备之间已经建立通信连接的已连接状态。
假设电子设备100与用户设备之间具有M个原始可重构智能表面,这M个原始RIS的序列号(ID)分别为:RIS-1,RIS-2,…,RIS-M。根据电子设备100与用户设备之间的连接状态,从M个原始可重构智能表面中选出N(N是小于等于M的正整数)个选定可重构智能表面,用于确定用户设备的初始位置信息。
在根据本公开的实施例中,通过基于电子设备100与用户设备之间的连接状态而选出的多个选定可重构智能表面来确定用户设备的位置信息,提高了对用户设备进行定位的适用性,以及能够提高定位的覆盖范围。
作为示例,确定单元101可以被配置为在电子设备100与用户设备之间处于非连接状态的情况下,经由多个原始可重构智能表面分别广播包括前导码的下行同步信号,以供用户设备基于前导码选出多个选定可重构智能表面。由此,使得能实现以下益处中至少之一:定位复杂度低、易实现,以及能够提高定位精度并减少定位开销。
由此,在非连接状态下,可以基于前导码来选出多个选定可重构智能表面以用于进行定位。
作为示例,下行同步信号可以包括同步信号块(SSB)。本领域技术人员还可以想到下行同步信号的其他示例,这里不再累述。在下文中,为了简便,以下行同步信号是SSB为例来进行描述。
作为示例,与多个原始可重构智能表面分别对应的下行同步信号不包括共同的前导码。
例如,与RIS-1对应的SSB为SSB1,与RIS-2对应的SSB为SSB2,…,与RIS-M对应的SSB为SSBM。
图2示出了根据本公开实施例的可重构智能表面与下行同步信号之间的映射的一个示例。假设SSB-per-rach-occasion<1,这意味着一个RIS具有多个PRACH时机,RIS被配置有宽波束来广播信号。为了简单,图2中仅示出了4个RIS(其序列号分别为RIS-1、RIS-2、RIS-3、RIS-4)与SSB资源之间的映射。从图2可见,与RIS-1对应的SSB为SSB1、与RIS-2对应的SSB为SSB2、与RIS-3对应的SSB为SSB3、以及与RIS-4对应的SSB为SSB4。以SSB1为例,图2示出的4个SSB1表示SSB1中包括4个前导码,每个前导码所对应的时域和频域资源分别通过横轴和纵轴表示。例如,图2中用椭圆圈起来的SSB1用于示意性地表示SSB1对应的4个前导码时频资源当中的单个前导码时频资源。图2中的SSB2、SSB3、SSB4与SSB1类似地包括4个前导码。本领域技术人员可以理解,每个SSB中包括的前导码的数量可以是除了4之外的其他数量。从图2可见,SSB1、SSB2、SSB3、SSB4均不占用共同的时频资源,从而可以在不同的时频资源上通过PRACH(物理随机接入信道)发送前导码。在这种情况下,可以直接通过PRACH来用于进行定位。
图3示出了根据本公开实施例的电子设备100经由原始可重构智能表面向用户设备广播SSB的一个示例。
为了简单,在下文中,有时用gNB表示电子设备100,以及用UE表示用户设备。
如图3所示,gNB经由RIS-1向UE广播SSB1,……,经由RIS-M向UE广播SSBM。在图3中,每个SSB中不包括共同的前导码。
作为示例,与多个原始可重构智能表面中的每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
例如,每个原始可重构智能表面可以分别具有若干个粗波束。在下文中,为了简单,假设每个原始可重构智能表面分别具有3个粗波束,并将这3个粗波束的序列号标记为粗波束1、粗波束2以及粗波束3。本领域技术人员可以理解,每个原始可重构智能表面可以具有其他数量的粗波束。可以利用每个原始可重构智能表面的3个粗波束分别广播与该原始可重构智能表面对应的SSB。为了更清楚地表示在不同粗波束上广播的SSB,可以将与原始可重构智能表面对应的SSB区分为在不同方向的粗波束上广播的SSB。例如,可以将SSB1区分为通过RIS-1的粗波束1广播的SSB1-1、通过RIS-1的粗波束2广播的SSB1-2、以及通过RIS-1的粗波束3广播的SSB1-3。可以将SSB2区分为通过RIS-2的粗波束1广播的SSB2-1、通过RIS-2的粗波束2广播的SSB2-2、以及通过RIS-2的粗波束3广播的SSB2-3,……,可以将SSBM区分为通过RIS-M的粗波束1广播的SSBM-1、通过RIS-M的粗波束2广播的SSBM-2、以及通过RIS-M的粗波束3广播的SSBM-3。
图4示出了根据本公开实施例的电子设备100经由原始可重构智能表面的粗波束向用户设备广播SSB的一个示例。图4中示出了M个原始RIS(RIS-1、RIS-2、……、RIS-M)。其中,图4中用“╳”标注的gNB与UE之间的连线表示gNB与UE之间不存在直通链路(例如,因为gNB与UE之间存在障碍物而没有直通链路)。
如图4所示,gNB经由RIS-1向UE广播SSB1,更具体地,经由RIS-1的3个粗波束分别广播SSB1-1、SSB1-2和SSB1-3;gNB经由RIS-2向UE广播SSB2,更具体地,经由RIS-2的3个粗波束分别广播SSB2-1、SSB2-2和SSB2-3;……;gNB经由RIS-M向UE广播SSBM,更具体地,经由RIS-M的3个粗波束分别广播SSBM-1、SSBM-2和SSBM-3。
作为示例,多个选定可重构智能表面是用户设备基于对所接收的下行同步信号的测量结果而选出的。
例如,所接收的下行同步信号的测量结果包括所接收的下行同步信号的参考信号接收功率(RSRP)、所接收的下行同步信号的信干噪比等。 在下文中,通常以测量结果是RSRP为例来进行描述。
图5是示出根据本公开实施例的用户设备基于对所接收的下行同步信号的测量结果而选出选定可重构智能表面的示意图。
如图5所示,UE计算经由RIS-1、……、RIS-M所接收到的SSB的RSRP,并将与每个RIS对应的最大RSRP进行比较排序,从RIS-1、……、RIS-M当中选择与前N个最大RSRP对应的RIS作为选定可重构智能表面(选定RIS)。例如,在gNB与UE之间存在遮挡物从而gNB与UE之间不存在直通链路的情况下,N是大于等于3的正整数。
作为示例,确定单元101可以被配置为经由多个选定可重构智能表面中的每个选定可重构智能表面,从用户设备接收与该选定可重构智能表面分别对应的前导码。
例如,对于被选择的每一个选定可重构智能表面,用户设备将相应的前导码经由该选定可重构智能表面发送至电子设备100。
作为示例,确定单元101可以被配置为还经由每个选定可重构智能表面,从用户设备接收与该选定可重构智能表面对应的上报信息,其中,与多个选定可重构智能表面中的、要用于向用户设备发送随机接入响应的第一选定可重构智能表面对应的上报信息包括用于指示第一选定可重构智能表面用于发送随机接入响应的反馈标识,以及与多个选定可重构智能表面中的、除了第一选定可重构智能表面之外的其他选定可重构智能表面对应的上报信息分别包括用于指示其他选定可重构智能表面不用于发送随机接入响应的非反馈标识。
例如,第一选定可重构智能表面可以是选定可重构智能表面RIS-1、……、RIS-N当中的、与最大RSRP对应的RIS。
由此,在选定可重构智能表面当中,仅上报反馈标识的第一选定可重构智能表面用于电子设备100与用户设备之间的通信,而上报非反馈标识的其他选定可重构智能表面仅用于辅助定位。因此,减小了电子设备100和用户设备之间用于定位的信令开销,并且减小了定位所需成本。
例如,电子设备100可以经由第一选定可重构智能表面向用户设备发送随机接入响应。
作为示例,与每个选定可重构智能表面对应的上报信息还包括该选 定可重构智能表面的最优粗波束的序列号,以及最优粗波束是该选定可重构智能表面的粗波束当中的、使得用户设备经由该选定可重构智能表面从电子设备接收到的下行同步信号的测量结果最大的粗波束。
作为示例,与第一选定可重构智能表面对应的上报信息还包括有关位置信息的精度要求。
例如,在精度要求较低时,确定初始位置信息即可,而在精度要求较高时,要确定比初始位置信息更精确的增强位置信息。由此可以满足不同用户设备的不同定位精度需求。
图6示出了根据本公开实施例的电子设备100与用户设备之间进行的信令交互的一个示例。在图6中,为了简单,仅示出了三个选定RIS(RIS-1、RIS-2、和RIS-3),假设第一选定可重构智能表面为RIS-1(例如,在图6中,UE与gNB之间经由RIS-1的链路被标注为“最大RSRP链路”,意味着RIS-1是RIS-1、RIS-2、RIS-3当中的、与最大RSRP对应的RIS),其他选定可重构智能表面包括RIS-2(例如,在图6中,UE与gNB之间经由RIS-2的链路被标注为“第二大RSRP链路”,意味着RIS-2是RIS-1、RIS-2、RIS-3当中的、与第二大RSRP对应的RIS)和RIS-3(例如,在图6中,UE与gNB之间经由RIS-3的链路被标注为“第三大RSRP链路”,意味着RIS-3是RIS-1、RIS-2、RIS-3当中的、与第三大RSRP对应的RIS)。
如图6所示,gNB经由RIS-1可以从UE接收与SSB1对应的前导码、反馈标识、RIS-1的最优粗波束的序列号以及定位精度要求;gNB经由RIS-2可以从UE接收与SSB2对应的前导码、非反馈标识、以及RIS-2的最优粗波束的序列号;以及gNB经由RIS-3可以从UE接收与SSB3对应的前导码、非反馈标识、以及RIS-3的最优粗波束的序列号。gNB可以经由RS-1向UE发送随机接入响应。
作为示例,确定单元101可以被配置为基于所接收到的与每个选定可重构智能表面分别对应的前导码,计算与每个选定可重构智能表面对应的、从用户设备到电子设备100之间的到达时延,以及基于与每个选定可重构智能表面对应的到达时延,确定初始位置信息。由此,减小了传统定位方法的时延以及同步误差。
如图6所示,gNB基于从UE接收的前导码,可以分别计算(或测 量)与RIS-1、RIS-2、RIS-3对应的、从gNB到UE之间的到达时延,由此确定初始位置信息。
例如,电子设备100基于上述所计算的到达时延,减去提前获得的从每个选定可重构智能表面链路到电子设备100的到达时延,则可以得到从用户设备到每个选定可重构智能表面链路的到达时延,由此可以确定用户设备的初始位置信息。
图7示出了根据本公开实施例的电子设备100基于前导码、经由选定可重构智能表面确定初始位置信息的一个示例。
在下文中,与RIS-1对应的前导码可以表示为Preamble 1,与RIS-2对应的前导码可以表示为Preamble 2,以及与RIS-3对应的前导码可以表示为Preamble 3。假设与RIS-1的最优粗波束对应的SSB为SSB1-3,与RIS-2的最优粗波束对应的SSB为SSB2-3,以及与RIS-3的最优粗波束对应的SSB为SSB3-2。用t1表示与RIS-1对应的、从UE到gNB之间的到达时延(TOA),用t2表示与RIS-2对应的、从UE到gNB之间的到达时延,以及用t3表示与RIS-3对应的、从UE到gNB之间的到达时延。则RIS-2相对于RIS-1的到达时延差(TDOA)为t2-t1,RIS-3相对于RIS-1的到达时延差为t3-t1
在图7中,采用基于前导码的到达时间差方法来计算初始位置信息,基于多个RIS之间的信号到达时延差,则可以算出用户设备到不同RIS之间的距离差,再作出以RIS为焦点、距离差为长轴的双曲线,不同双曲线的交点即为用户的初始位置。例如,在图7中,TDOA-1代表以RIS-3和RIS-1为焦点,用户设备到RIS-3和RIS-1之间的到达时延差所对应的距离差为长轴的双曲线,TDOA-2代表以RIS-2和RIS-1为焦点,用户到RIS-2和RIS-1之间的到达时延差所对应的距离差为长轴的双曲线,可以通过TDOA-1双曲线与TDOA-2双曲线的交点来确定用户设备的初始位置。
作为示例,确定单元101可以被配置为还基于每个选定可重构智能表面的最优粗波束的序列号,确定初始位置信息。
例如,在确定初始位置时,以RIS为原点,将RIS的最优粗波束所对应的到达角度作射线,通过与不同RIS对应的多条射线的交点可以确定用户设备的初始位置。
在下文中,以RIS-1为原点、将RIS-1的最优粗波束所对应的到达角度所作的射线表示为L1,以RIS-2为原点、将RIS-2的最优粗波束所对应的到达角度所作的射线表示为L2,以RIS-3为原点、将RIS-3的最优粗波束所对应的到达角度所作的射线表示为L3。
例如,可以作出图7中与SSB-1-3对应的粗波束所对应的到达角度的射线L1,还作出与SSB-2-3及SSB-3-2对应的粗波束所对应的到达角度的射线L2和L3,这三条射线的交点可以用于确定用户设备的初始位置。
例如,将图7中基于到达角所计算出的初始位置与基于到达时延差计算出的初始位置进行结合,可以获得用户的更准确的初始位置。
图8示出了根据本公开实施例的电子设备100基于前导码、经由选定可重构智能表面确定初始位置信息的另一示例。
在图8中,可以采用基于前导码的多站往返时间(RTT)方法来计算初始位置信息。在图8中,三条RTT曲线RTT-1、RTT-2、以及RTT-3分别代表三个可重构智能表面RIS-1、RIS-2以及RIS-3的多站往返时间所对应的曲线。基于用户设备和RIS之间的到达时延,可以算出用户设备到不同RIS的距离,以RIS自身为圆心,距离为半径,即可得到RTT曲线,多条RTT曲线的交点即为用户位置。更具体地,在图8中,RTT-1表示以RIS-1为圆心,RIS-1和用户设备之间的距离为半径所对应的RTT曲线;RTT-2表示以RIS-2为圆心,RIS2和用户设备之间的距离为半径所对应的RTT曲线;RTT-3表示以RIS-3为圆心,RIS3和用户设备之间的距离为半径所对应的RTT曲线。图8中RTT-1曲线与RTT-2曲线、RTT-3曲线的交点即为用户设备的初始位置。
另外,例如,可以作出图8中与SSB-1-3对应的粗波束所对应的到达角度的射线L1,还作出与SSB-2-3及SSB-3-2对应的粗波束所对应的到达角度的射线L2和L3,这三条射线的交点可以用于确定用户设备的初始位置。
例如,将图8中基于到达角所计算出的初始位置与基于RTT计算出的初始位置进行结合,可以获得用户的更准确的初始位置。
作为示例,与多个原始可重构智能表面分别对应的下行同步信号中的至少一部分下行同步信号包括共同的前导码,以及与每个原始可重构 智能表面对应的下行同步信号还包括该原始可重构智能表面的序列号。
图9示出了根据本公开实施例的RIS与下行同步信号之间的映射的另一示例。假设SSB-per-rach-occasion>1,这意味着一个PRACH时机可以具有多个RIS,RIS被配置有宽波束来广播信号。假设与RIS-1对应的SSB为SSB1、与RIS-2对应的SSB为SSB2、与RIS-3对应的SSB为SSB3、以及与RIS-4对应的SSB为SSB4。在图9中,SSB1/2表示RIS-1与RIS-2之间共享前导码时频资源,SSB3/4表示RIS-3与RIS-4之间共享前导码时频资源。如图9中用椭圆圈起来的SSB1/2用于示意性地表示RIS-1与RIS-2之间共享的单个前导码时频资源。如图9的每一列所示的前导码对应于多个RIS。也就是说,与不同RIS对应的SSB占用共同的时频资源,从而包括共同的前导码。由于不能通过前导码来区分RIS,因此,与原始RIS对应的SSB还包括该原始RIS的序列号。
在这种情况下,如果直接使用PRACH来进行定位,则随机接入的碰撞概率会增加。
图10示出了根据本公开实施例的电子设备100经由原始可重构智能表面向用户设备广播SSB的另一示例。
如图10所示,gNB经由RIS-1向UE广播SSB1,……,经由RIS-M向UE广播SSBM。在图10中,除了前导码之外,每个SSB中还包括原始RIS的序列号。
作为示例,与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
图11示出了根据本公开实施例的电子设备100经由原始可重构智能表面的粗波束向用户设备广播SSB的另一示例。图11中示出了M个原始RIS(RIS-1、RIS-2、……、RIS-M)。假设与RIS-1对应的SSB为SSB1,与RIS-2对应的SSB为SSB2,……,与RIS-M对应的SSB为SSBM。其中,图11中用“╳”标注的gNB与UE之间的连线表示gNB与UE之间不存在直通链路。
如图11所示,gNB经由RIS-1向UE广播SSB1,更具体地,经由RIS-1的3个粗波束分别广播SSB1-1、SSB1-2和SSB1-3;gNB经由RIS-2向UE广播SSB2,更具体地,经由RIS-2的3个粗波束分别广播SSB2-1、SSB2-2和SSB2-3;……;gNB经由RIS-M向UE广播SSBM,更具体 地,经由RIS-M的3个粗波束分别广播SSBM-1、SSBM-2和SSBM-3。如图11所示,每个SSB均包括对应原始RIS的序列号。
作为示例,确定单元101可以被配置为经由多个选定可重构智能表面中的、要用于向用户设备发送随机接入响应的第二选定可重构智能表面,从用户设备接收与第二选定可重构智能表面对应的前导码以及上报信息,以及上报信息包括多个选定可重构智能表面的序列号。因此,减小了电子设备100和用户设备之间用于定位的信令开销,并且减小了定位所需成本。
作为示例,多个选定可重构智能表面是用户设备基于对所接收的下行同步信号的测量结果而选出的。具体请参见结合图5进行的说明,这里不再累述。
例如,接收的SSB的参考信号接收功率最大的选定可重构智能表面被选择作为第二选定可重构智能表面,用户设备经由第二选定可重构智能表面,将与第二选定可重构智能表面对应的前导码发送至电子设备100,同时用户设备上报的上报信息包括所有选定可重构智能表面的序列号。
作为示例,上报信息还包括每个选定可重构智能表面的最优粗波束的序列号,以及最优粗波束是该选定可重构智能表面的粗波束当中的、使得用户设备经由该选定可重构智能表面从电子设备接收到的下行同步信号的测量结果最大的粗波束。
作为示例,上报信息还包括有关位置信息的精度要求。
作为示例,确定单元101可以被配置为基于所接收到的前导码,计算与第二选定可重构智能表面对应的、从用户设备到电子设备之间的到达时延;经由第二选定可重构智能表面,向用户设备发送随机接入响应以及为用户设备配置探测参考信号;经由多个选定可重构智能表面中的、除了第二选定可重构智能表面之外的其他选定可重构智能表面,从用户设备分别接收探测参考信号;经由第二选定可重构智能表面,接收用户设备所上报的、用户设备发送探测参考信号的发送时间;基于从用户设备接收到的探测参考信号以及发送时间,计算与其他选定可重构智能表面分别对应的、从用户设备到电子设备之间的到达时延;以及基于与每个选定可重构智能表面对应的到达时延,确定初始位置信息。由此,减 小了传统定位方法的时延以及同步误差。
例如,电子设备100在从用户设备接收到前导码之后,计算前导码的到达时延。电子设备100通过第二选定可重构智能表面发送随机接入响应至用户设备,并为用户设备配置探测参考信号资源。用户设备在收到资源配置信令后,经由除了第二选定可重构智能表面之外的其他选定可重构智能表面向电子设备100发送探测参考信号。另外,用户设备经由第二选定可重构智能表面将探测参考信号的发送时间上报至电子设备100。电子设备100基于上述发送时间计算从用户设备接收的探测参考信号的到达时延。电子设备100基于与每个选定可重构智能表面对应的到达时延,确定初始位置信息。
图12示出了根据本公开实施例的电子设备100与用户设备之间进行的信令交互的另一示例。在图12中,为了简单,仅示出了三个选定RIS(RIS-1、RIS-2、和RIS-3),假设第二选定可重构智能表面为RIS-1,其他选定可重构智能表面包括RIS-2和RIS-3。
如图12所示,gNB经由RIS-1可以从UE接收与SSB1对应的前导码、选定RIS的序列号RIS-1至RIS-3、RIS-1至RIS-3的最优粗波束的序列号以及定位精度要求。gNB基于所接收到的前导码,计算与RIS-1对应的、从UE到gNB之间的到达时延。然后,gNB通过RIS-1发送随机接入响应至UE,并为UE配置探测参考信号资源。UE在收到资源配置信令后,经由RIS-2和RIS-3分别向gNB发送探测参考信号(例如,用于定位的探测参考信号SRS-Pos)。另外,UE经由RIS-1将探测参考信号的发送时间上报至gNB。gNB基于上述发送时间计算经由RIS-2和RIS-3从UE接收的探测参考信号的到达时延。最后,gNB基于与RIS-1至RIS-3分别对应的到达时延,确定初始位置信息。
图13示出了根据本公开实施例的电子设备100基于前导码和探测参考信号、经由选定可重构智能表面确定初始位置信息的一个示例。
在图13中,采用基于前导码及探测参考信号的到达时间差方法来确定初始位置信息。与RIS-1对应的前导码可以表示为Preamble 1。SRS-Pos2表示与RIS-2对应的探测参考信号,以及SRS-Pos 3表示与RIS-3对应的探测参考信号。图13中的其他附图标记与图7中的类似,此处不再累述。TDOA-1代表以RIS-3和RIS-1为焦点,用户设备到RIS-3和RIS-1 之间的到达时延差所对应的距离差为长轴的双曲线,TDOA-2代表以RIS-2和RIS-1为焦点,用户到RIS-2和RIS-1之间的到达时延差所对应的距离差为长轴的双曲线,可以通过TDOA-1双曲线与TDOA-2双曲线的交点来确定用户设备的初始位置。
作为示例,确定单元101可以被配置为还基于每个选定可重构智能表面的最优粗波束的序列号,确定初始位置信息。
例如,可以作出图13中与SSB-1-3对应的粗波束所对应的到达角度的射线L1,还作出与SSB-2-3及SSB-3-2对应的粗波束所对应的到达角度的射线L2和L3,这三条射线的交点可以用于确定用户设备的初始位置。
例如,将图13中基于到达角所计算出的初始位置与基于到达时延差计算出的初始位置进行结合,可以获得用户的更准确的初始位置。
图14示出了根据本公开实施例的电子设备100基于前导码和探测参考信号、经由选定可重构智能表面确定初始位置信息的另一示例。
在图14中,采用基于前导码及探测参考信号的多站往返时间方法来确定初始位置信息。与RIS-1对应的前导码可以表示为Preamble 1。SRS-Pos 2表示与RIS-2对应的探测参考信号,以及SRS-Pos 3表示与RIS-3对应的探测参考信号。图14中的其他附图标记与图8中的类似,此处不再累述。RTT-1表示以RIS-1为圆心,RIS-1和用户设备之间的距离为半径所对应的RTT曲线;RTT-2表示以RIS-2为圆心,RIS2和用户设备之间的距离为半径所对应的RTT曲线;RTT-3表示以RIS-3为圆心,RIS3和用户设备之间的距离为半径所对应的RTT曲线。图14中RTT-1曲线与RTT-2曲线、RTT-3曲线的交点即为用户设备的初始位置。
另外,例如,可以作出图14中与SSB-1-3对应的粗波束所对应的到达角度的射线L1,还作出与SSB-2-3及SSB-3-2对应的粗波束所对应的到达角度的射线L2和L3,这三条射线的交点可以用于确定用户设备的初始位置。
例如,将图14中基于到达角所计算出的初始位置与基于RTT计算出的初始位置进行结合,可以获得用户的更准确的初始位置。
在有关位置信息的精度要求较高的情况下,可以基于初始位置信息 来确定比初始位置信息更精确的增强位置信息。
作为示例,确定单元101可以被配置为:基于初始位置信息,经由多个选定可重构智能表面分别发送定位参考信号,其中,与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号;接收用户设备基于定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号;基于与每个选定可重构智能表面对应的候选细波束的序列号,估计用户设备到该选定可重构智能表面的到达角度,以及基于与每个选定可重构智能表面对应的到达角度,确定增强位置信息。在选定可重构智能表面对用户设备不透明,即用户设备知道有关选定可重构智能表面的信息的情况下,使用上述确定增强位置信息的方式。
图15示出了根据本公开实施例的在非连接状态下、电子设备100基于初始位置信息确定增强位置信息的一个示例。在图15中,为了简单,仅示出了三个选定RIS(RIS-1、RIS-2、和RIS-3)。
如图15所示,gNB基于初始位置信息,经由RIS-1至RIS-3中的每个分别发送定位参考信号(DL PRS),每个DL PRS包括对应选定RIS的细波束的序列号(在图15中示意性地表示为携带细波束序列号)。即,如图15所示,分别在RIS-1至RIS-3处进行DL PRS波束细扫描。
UE基于对定位参考信号的测量结果,从每个RIS的细波束当中选出候选细波束。测量结果可以是定位参考信号的RSPR或信干噪比等。图15中示出了UE计算定位参考信号的RSPR,来从每个RIS的细波束当中选出RSPR最大的细波束作为候选细波束,UE将每个RIS的候选细波束的序列号上报给gNB。gNB基于与每个选定RIS对应的候选细波束的序列号,估计UE到该选定RIS的到达角度,以及基于与每个选定RIS对应的到达角度,确定增强位置信息。
作为示例,确定单元101可以被配置为:基于初始位置信息,为用户设备配置探测参考信号,其中,该配置包括指定用户设备要在其上发送探测参考信号的细波束的序列号;在接收到用户设备经由多个选定可重构智能表面发送的所有探测参考信号之后,将电子设备100的接收波束成形矢量分别与从每个选定可重构智能表面到电子设备100的位置方向进行对准,从而确定通过每个选定可重构智能表面从用户设备接收到 的探测参考信号;针对经由每个选定可重构智能表面的细波束从用户设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于候选细波束估计用户设备到该选定可重构智能表面的到达角度;以及基于与每个选定可重构智能表面对应的到达角度,确定比初始位置信息更精确的增强位置信息。在选定可重构智能表面对用户设备透明,即用户设备不知道有关选定可重构智能表面的信息的情况下,使用上述确定增强位置信息的方式。
图16示出了根据本公开实施例的在非连接状态下、电子设备100基于初始位置信息确定增强位置信息的另一示例。在图16中,为了简单,仅示出了三个选定RIS(RIS-1、RIS-2、和RIS-3)。
如图16所示,gNB向用户设备发送资源配置信令,即基于初始位置信息,为UE配置探测参考信号,其中,该配置包括指定用户设备要在其上发送探测参考信号的细波束的序列号。UE在收到资源配置信令之后,在指定的细波束上向gNB发送探测参考信号,例如发送探测参考信号SRS-Pos 0-1、SRS-Pos 0-2、SRS-Pos 0-3、SRS-Pos 1-1、SRS-Pos 1-2,其中,SRS-Pos 0-1、SRS-Pos 0-2、SRS-Pos 0-3分别表示UE在其第0个粗波束中包括的第1个细波束、第2个细波束、以及第3个细波束上发送的探测参考信号,SRS-Pos 1-1、SRS-Pos 1-2分别表示UE在其第1个粗波束中包括的第1个细波束和第2个细波束上发送的探测参考信号。本领域技术人员可以理解,UE的上述粗波束和细波束的数量仅是示例。
gNB在接收到UE经由RIS-1至RIS-3发送的所有探测参考信号之后,将gNB的接收波束成形矢量分别与从每个选定RIS到gNB的位置方向进行对准,从而确定通过每个选定RIS从UE接收到的探测参考信号。
如图16中的最下方所示,针对经由RIS-1的细波束1从UE接收到的探测参考信号(图16中示意为SRS-Pos’1-1)进行测量,针对经由RIS-1的细波束2从UE接收到的探测参考信号(图16中未示意)进行测量,针对经由RIS-1的细波束3从UE接收到的探测参考信号(图16中未示意)进行测量,针对经由RIS-1的细波束4从UE接收到的探测参考信号(图16中示意为SRS-Pos’1-4)进行测量。类似地,针对经由RIS-2的细波束1至4从UE接收到的探测参考信号分别进行测量,以及针对经由RIS-3的细波束1至4从UE接收到的探测参考信号分别进行测量(例如,经由RIS-3的细波束1从UE接收到的探测参考信号被示意为SRS-Pos’ 3-1,以及经由RIS-3的细波束4从UE接收到的探测参考信号被示意为SRS-Pos’3-4)。根据所测量到的信号强度从每个选定RIS的细波束当中选出例如信号强度最强的细波束作为该选定RIS的候选细波束,以及基于该选定RIS的候选细波束估计UE到该选定RIS的精细到达角度。
在图16的示例中,为了简单,以RIS-1、RIS-2、和RIS-3分别具有四个细波束为例进行了描述,本领域技术人员可以理解,RIS-1、RIS-2、和RIS-3分别可以具有其他数量的细波束。
在图16中,gNB基于与每个选定RIS对应的精细到达角度,确定增强位置信息。
图17示出了根据本公开实施例的电子设备100基于候选细波束确定增强位置信息的一个示例。
图18示出了根据本公开实施例的电子设备100基于候选细波束确定增强位置信息的另一个示例。
在图17和18中,与RIS-1对应地示出了Preamble 1,而与RIS-2对应地示出了SRS-Pos 2或Preamble 2,与RIS-3对应地示出了SRS-Pos3或Preamble3。Preamble 1用于表示与图7和8、图13和14类似地,基于前导码、经由RIS-1确定初始位置信息。当在如图7和8所示基于前导码、经由RIS-2和RIS-3确定初始位置信息的情况下,与RIS-2对应的信号为Preamble 2,与RIS-3对应的信号为Preamble 3。而当在如图13和14所示基于探测参考信号、经由RIS-2和RIS-3确定初始位置信息的情况下,与RIS-2对应的信号为SRS-Pos 2,与RIS-3对应的信号为SRS-Pos 3。
在图17和18中,AOA-1表示RIS-1的候选细波束,AOA-2表示RIS-2的候选细波束,AOA-3表示RIS-3的候选细波束,它们可用于用户增强位置的计算。图17和18中的其他附图标记与图7和8、图13和14中的类似,此处不再累述。
以每个选定RIS为原点,将该选定RIS的候选细波束所对应的角度作射线,基于多条射线的交点即可确定用户设备的位置。如图17和18中,以AOA-2所对应的角度作射线,同时以AOA-1和AOA-3所对应的角度作射线,基于这三条射线的交点可以计算用户设备的位置。将该位置计算结果与结合图7和8、图13和14说明的初始位置计算结果相结合, 来确定用户设备的增强位置信息。
作为示例,确定单元101可以被配置为将有关每个选定可重构智能表面的候选细波束的信息发送至用户设备,以供候选细波束用于用户设备后续与电子设备之间的通信。由此,增强了用户设备通信的鲁棒性,使得通信系统更加灵活。
图19示出了根据本公开实施例的电子设备100与用户设备之间利用波束进行通信的一个示意图。gNB将RIS-1、RIS-2和RIS-3的候选细波束的信息(在图19中,被标注为“波束相关信息”)发送至UE。如图19所示,gNB与UE可以利用RIS-1的候选细波束(在图19中,被标注为“RIS-1链路波束”)来进行通信。如果后续通信出现RIS-1的候选细波束故障等事件,则用户可以选择RIS-2的候选细波束(在图19中,被标注为“候选波束1”)和/或RIS-3的候选细波束(在图19中,被标注为“候选波束2”)来恢复通信。
作为示例,确定单元101可以被配置为在电子设备100与用户设备之间处于已连接状态的情况下,基于电子设备100与用户设备之间的初始波束对准,在初始波束的范围内从多个原始可重构智能表面选出多个初始可重构智能表面,以供用于从多个初始可重构智能表面选出多个选定可重构智能表面。
已连接状态可以是电子设备100与用户设备从非连接状态所进入的连接状态,也可以是不考虑电子设备100与用户设备之前是否连接、而仅用于表示当前电子设备100与用户设备已经建立连接的状态。
当用户设备已经接入电子设备100时,电子设备100与用户设备之间有一个初始波束对准关系,则电子设备100可以在该初始波束的范围内选择多个初始可重构智能表面。从多个初始可重构智能表面选出多个选定可重构智能表面来用于定位,使得能实现以下益处中至少之一:复杂度低、易实现,以及能够提高定位精度并减少定位开销。
图20是示出根据本公开实施例的在初始波束的范围内选出多个初始可重构智能表面的示意图。
在图20中,例示了3个UE:UE1、UE2、UE3。与UE1对应的初始波束为初始波束1,与UE2对应的初始波束为初始波束2,与UE3对应的初始波束为初始波束3。以UE1为例,gNB在初始波束1的范围内 为UE1选出P个初始可重构智能表面(初始RIS),其中,P是正整数。
在根据本公开的实施例,电子设备100能够基于初始波束为用户设备选出初始可重构智能表面,提高了对用户设备进行定位的适用性。
作为示例,确定单元101可以被配置为:经由多个初始可重构智能表面分别发送定位参考信号,其中,与每个初始可重构智能表面对应的定位参考信号包括该初始可重构智能表面的序列号;以及从用户设备接收上报信息,其中,上报信息包括选定可重构智能表面的序列号,以及选定可重构智能表面是用户设备基于经由多个初始可重构智能表面接收到的定位参考信号而从多个初始可重构智能表面当中选出的。在初始可重构智能表面对用户设备非透明,即用户设备知道初始可重构智能表面的信息的情况下,使用该方式从多个初始可重构智能表面选出多个选定可重构智能表面。
作为示例,上报信息还包括有关位置信息的精度要求。
图21示出了根据本公开实施例的电子设备100和与其已经建立连接的用户设备之间进行的信令交互的一个示例。
在图21中,例示了P个初始RIS(RIS-1、……、RIS-P)和Q个UE(UE-1、……、UE-Q),其中,Q是正整数。
如图21所示,gNB经由RIS-1至RIS-P中的每个分别向UE-1、……、UE-Q发送定位参考信号DL PRS(在图21中,示意性地示出为“DL PRS广播”),每个DL PRS包括对应初始RIS的序列号。
UE-1、……、UE-Q基于对定位参考信号的测量结果,从初始RIS(RIS-1、……、RIS-P)当中选出选定RIS。测量结果可以是定位参考信号的RSPR或信干噪比等。图21中示出了UE-1、……、UE-Q计算定位参考信号的RSPR,来从初始RIS当中选出选定RIS,例如,按照RSRP的大小来选出选定RIS。
UE-1、……、UE-Q分别将其选出的选定RIS的序列号作为上报信息上报给gNB。每个UE的上报信息中还包括有关位置信息的精度要求。
作为示例,确定单元101可以被配置为基于上报信息计算初始位置信息。如图21所示,gNB基于上报信息确定初始位置信息。
作为示例,确定单元101可以被配置为:基于初始位置信息,经由 电子设备100和多个选定可重构智能表面分别发送定位参考信号,其中,与电子设备100对应的定位参考信号包括电子设备100的细波束的序列号以及与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号;接收用户设备基于定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号以及从电子设备100的细波束当中选出的候选细波束的序列号;基于与每个选定可重构智能表面对应的候选细波束的序列号估计用户设备到该选定可重构智能表面的到达角度,以及基于与电子设备100对应的候选细波束的序列号估计用户设备到电子设备100的到达角度;以及基于到达角度,确定比初始位置信息更精确的增强位置信息。在初始可重构智能表面对用户设备非透明,即用户设备知道初始可重构智能表面的信息的情况下,使用该方式确定增强位置信息。
图22示出了根据本公开实施例的在已连接状态下、电子设备100基于初始位置信息确定增强位置信息的一个示例。在图22中,为了简单,仅示出了2个选定RIS(RIS-1和RIS-2)以及1个UE。
如图22所示,gNB基于初始位置信息,经由gNB和RIS-1以及RIS-2分别发送定位参考信号(DL PRS),与gNB对应的DL PRS包括gNB的细波束的序列号,与RIS-1以及RIS-2对应的DL PRS分别包括该RIS的细波束的序列号(在图22中示意性地表示为携带细波束序列号)。即,如图22所示,分别在gNB、RIS-1和RIS-2处进行DL PRS波束细扫描。
UE基于对定位参考信号的测量结果,分别从RIS-1以及RIS-2的细波束当中选出候选细波束,以及从gNB的细波束当中选出候选细波束。测量结果可以是定位参考信号的RSPR或信干噪比等。图22中示出了UE计算定位参考信号的RSPR来选出候选细波束(例如,将RSRP最大的细波束作为候选细波束),UE将所选出的候选细波束的序列号上报给gNB。gNB分别基于RIS-1以及RIS-2的候选细波束的序列号,估计UE到该选定RIS的精细到达角度,以及基于gNB的候选细波束的序列号,估计UE到gNB的精细到达角度。然后,gNB基于上述精细到达角度,确定增强位置信息。
作为示例,确定单元101可以被配置为:为用户设备配置探测参考信号,其中,该配置包括指定用户设备要在其上发送探测参考信号的粗波束的序列号;在接收到用户设备经由多个初始可重构智能表面发送的 所有探测参考信号之后,将电子设备100的接收波束成形矢量分别与从每个初始可重构智能表面到电子设备100的位置方向进行对准,从而确定通过每个初始可重构智能表面从用户设备接收到的探测参考信号;对每个初始可重构智能表面所接收到的探测参考信号进行测量,以及基于测量的结果,从多个初始可重构智能表面当中选出多个选定可重构智能表面。在初始可重构智能表面对用户设备透明,即用户设备不知道初始可重构智能表面的信息的情况下,使用该方式从多个初始可重构智能表面选出多个选定可重构智能表面。
作为示例,确定单元101可以被配置为还从用户设备接收有关位置信息的精度要求。
图23示出了根据本公开实施例的电子设备100和与其已经建立连接的用户设备之间进行的信令交互的另一示例。
在图23中,例示了P个初始RIS(RIS-1、……、RIS-P)和1个UE。
如图23所示,gNB向UE发送资源配置信令,为UE配置探测参考信号,其中,配置包括指定UE要在其上发送探测参考信号的粗波束的序列号。UE收到资源配置信令后,在指定的粗波束方向上发送探测参考信号,例如,UE向gNB发送探测参考信号SRS-Pos 0、SRS-Pos 1、SRS-Pos2,其中,SRS-Pos 0、SRS-Pos 1、SRS-Pos 2分别表示UE在其第0个粗波束、第1个粗波束、第2个粗波束上发送的探测参考信号。本领域技术人员可以理解,UE的上述粗波束的数量仅是示例。另外,UE还向gNB发送精度要求。
gNB在接收到UE经由初始RIS-1至初始RIS-P发送的所有探测参考信号之后,将gNB的接收波束成形矢量分别与从每个初始RIS到gNB的位置方向进行对准,从而确定通过每个初始RIS从UE接收到的探测参考信号。
如图23中的最下方所示,针对经由初始RIS-1从UE接收到的探测参考信号(图23中示意为SRS-Pos’1)进行测量,……,针对经由初始RIS-P从UE接收到的探测参考信号(图23中示意为SRS-Pos’P)进行测量。根据所测量到的信号强度的大小从P个初始RIS当中选出选定RIS。
作为示例,确定单元101可以被配置为基于用户设备到每个选定可重构智能表面的到达角度,确定初始位置信息。
例如,gNB基于上述探测参考信号估计UE到每个选定可重构智能表面的到达角度,确定初始位置信息。
作为示例,确定单元101可以被配置为:基于初始位置信息,为用户设备配置探测参考信号,其中,该配置包括指定用户设备要在其上发送探测参考信号的细波束的序列号;接收用户设备向电子设备100直接发送的探测参考信号以及经由每个选定可重构智能表面发送的探测参考信号;在接收到用户设备向电子设备100直接发送的探测参考信号以及经由多个选定可重构智能表面发送的所有探测参考信号之后,将电子设备100的接收波束成形矢量分别与从每个选定可重构智能表面到电子设备100的位置方向进行对准,从而确定通过每个选定可重构智能表面从用户设备接收到的探测参考信号;针对经由每个选定可重构智能表面的细波束从用户设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于候选细波束估计用户设备到该选定可重构智能表面的到达角度;以及基于到达角度,确定比初始位置信息更精确的增强位置信息。在初始可重构智能表面对用户设备透明,即用户设备不知道初始可重构智能表面的信息的情况下,使用该方式确定增强位置信息。
图24示出了根据本公开实施例的在已连接状态下、电子设备100基于初始位置信息确定增强位置信息的另一示例。在图24中,为了简单,仅示出了2个选定RIS(RIS-1和RIS-2)以及1个UE。
如图24所示,gNB向用户设备发送资源配置信令,即基于初始位置信息,为UE配置探测参考信号,其中,配置包括用户设备要在其上发送探测参考信号的细波束的序列号。UE在收到资源配置信令之后,在指定的细波束上向gNB发送探测参考信号,例如发送探测参考信号SRS-Pos 0-1、SRS-Pos 0-2、SRS-Pos 0-3、SRS-Pos 1-1、SRS-Pos 1-2,其中,SRS-Pos 0-1、SRS-Pos 0-2、SRS-Pos 0-3分别表示UE在其第0个粗波束中包括的第1个细波束、第2个细波束、以及第3个细波束上发送的探测参考信号,SRS-Pos 1-1、SRS-Pos 1-2分别表示UE在其第1个粗波束中包括的第1个细波束和第2个细波束上发送的探测参考信号。本领域技术人员可以理解,UE的上述粗波束和细波束的数量仅是示例。
gNB在接收到UE直接向gNB发送的探测参考信号以及UE经由选定RIS-1和选定RIS-2发送的所有探测参考信号之后,将gNB的接收波 束成形矢量分别与从每个选定RIS到gNB的位置方向进行对准,从而确定通过每个选定RIS从UE接收到的探测参考信号。
如图24中的最下方所示,针对经由RIS-1的细波束1从UE接收到的探测参考信号(图24中示意为SRS-Pos’1-1)进行测量,针对经由RIS-1的细波束2从UE接收到的探测参考信号(图24中未示意)进行测量,针对经由RIS-1的细波束3从UE接收到的探测参考信号(图24中未示意)进行测量,针对经由RIS-1的细波束4从UE接收到的探测参考信号(图24中示意为SRS-Pos’1-4)进行测量。类似地,针对经由RIS-2的细波束1至4从UE接收到的探测参考信号分别进行测量(例如,经由RIS-2的细波束1从UE接收到的探测参考信号被示意为SRS-Pos’2-1,以及经由RIS-2的细波束4从UE接收到的探测参考信号被示意为SRS-Pos’2-4)。根据所测量到的信号强度从每个选定RIS的细波束当中选出其中之一(例如,选出信号强度最大的细波束)作为该选定RIS的候选细波束,以及基于该选定RIS的候选细波束估计UE到该选定RIS的精细到达角度。
在图24的示例中,为了简单,以选定RIS-1和RIS-2分别具有四个细波束为例进行了描述,本领域技术人员可以理解,RIS-1和RIS-2分别可以具有其他数量的细波束。
在图24中,gNB基于与每个选定RIS对应的精细到达角度,确定增强位置信息。
作为示例,确定单元101可以被配置为将有关每个选定可重构智能表面的候选细波束的信息发送至用户设备,以供候选细波束用于用户设备后续与电子设备100之间的通信。由此,增强了用户设备通信的鲁棒性,使得通信系统更加灵活。
图25示出了根据本公开实施例的电子设备100与用户设备之间利用波束进行通信的另一示意图。gNB将选定RIS-1和RIS-2的候选细波束的信息(在图25中,被标注为“波束相关信息”)发送至UE。如图25所示,gNB与UE可以利用直达链路所对应的波束(在图25中,被标注为“直达链路波束”)来进行通信。如果后续通信出现直达链路波束故障等事件,则用户可以选择RIS-1的候选细波束(在图25中,被标注为“候选波束1”)和/或RIS-2的候选细波束(在图25中,被标注为“候选波 束2”)来恢复通信。
本公开还提供了一种根据另一实施例的用于无线通信的电子设备。图26示出了根据本公开又一个实施例的用于无线通信的电子设备2600的功能模块框图。
如图26所示,电子设备2600包括:处理单元2601,处理单元2601可以通过基于电子设备2600与为电子设备2600提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助网络侧设备确定电子设备的初始位置信息。
其中,处理单元2601可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片。
电子设备2600例如可以设置在用户设备(UE)侧或者可通信地连接到用户设备。在电子设备2600设置在用户设备侧或者可通信地连接到用户设备的情况下,与电子设备2600有关的装置可以是用户设备。这里,还应指出,电子设备2600可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备2600可以工作为用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他用户设备等等)间的通信,这里不具体限制收发器的实现形式。
作为示例,网络侧设备可以是上文中提到的电子设备100。作为示例,电子设备2600可以是上文电子设备100实施例中涉及的用户设备。
根据本公开的无线通信系统可以是5G NR通信系统。进一步,根据本公开的无线通信系统可以包括非地面网络。可选地,根据本公开的无线通信系统还可以包括地面网络。另外,本领域技术人员可以理解,根据本公开的无线通信系统还可以是4G或3G通信系统。
在根据本公开的实施例中,通过基于电子设备2600与网络侧设备之间的连接状态而选出的多个选定可重构智能表面来辅助确定电子设备2600的位置信息,提高了对电子设备2600进行定位的适用性,以及能够提高定位的覆盖范围。
作为示例,处理单元2601可以被配置为在电子设备2600与网络侧 设备之间处于非连接状态的情况下,接收网络侧设备经由多个原始可重构智能表面广播的包括前导码的下行同步信号,以基于前导码选出多个选定可重构智能表面。
作为示例,与多个原始可重构智能表面分别对应的下行同步信号不包括共同的前导码。可以参见电子设备100实施例中相关内容的描述(例如,结合图2和3所进行的描述),这里不再累述。
作为示例,与多个原始可重构智能表面中的每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。可以参见电子设备100实施例中相关内容的描述(例如,结合图4所进行的描述),这里不再累述。
作为示例,多个选定可重构智能表面是电子设备2600基于对所接收的下行同步信号的测量结果而选出的。可以参见电子设备100实施例中相关内容的描述(例如,结合图5所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为经由多个选定可重构智能表面中的每个选定可重构智能表面,向网络侧设备发送与该选定可重构智能表面分别对应的前导码。
作为示例,处理单元2601可以被配置为还经由每个选定可重构智能表面,向网络侧设备发送与该选定可重构智能表面对应的上报信息,其中,与多个选定可重构智能表面中的、要用于向电子设备2600发送随机接入响应的第一选定可重构智能表面对应的上报信息包括用于指示第一选定可重构智能表面用于发送随机接入响应的反馈标识,以及与多个选定可重构智能表面中的、除了第一选定可重构智能表面之外的其他选定可重构智能表面对应的上报信息分别包括用于指示其他选定可重构智能表面不用于发送随机接入响应的非反馈标识。
作为示例,与每个选定可重构智能表面对应的上报信息还包括该选定可重构智能表面的最优粗波束的序列号,以及最优粗波束是该选定可重构智能表面的粗波束当中的、使得电子设备2600经由该选定可重构智能表面从网络侧设备接收到的下行同步信号的测量结果最大的粗波束。
作为示例,与第一选定可重构智能表面对应的上报信息还包括有关位置信息的精度要求。
上述内容可以参见电子设备100实施例中相关内容的描述(例如,结合图6所进行的描述),这里不再累述。
作为示例,与每个选定可重构智能表面分别对应的前导码被网络侧设备用于计算与每个选定可重构智能表面对应的、从电子设备2600到网络侧设备之间的到达时延,以供网络侧设备确定初始位置信息。
作为示例,每个选定可重构智能表面的最优粗波束的序列号被网络侧设备用于确定初始位置信息。
上述内容可以参见电子设备100实施例中相关内容的描述(例如,结合图6-8所进行的描述),这里不再累述。
作为示例,与多个原始可重构智能表面分别对应的下行同步信号中的至少一部分下行同步信号包括共同的前导码,以及与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的序列号。可以参见电子设备100实施例中相关内容的描述(例如,结合图9和10所进行的描述),这里不再累述。
作为示例,与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。可以参见电子设备100实施例中相关内容的描述(例如,结合图11所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为经由多个选定可重构智能表面中的、要用于向电子设备2600发送随机接入响应的第二选定可重构智能表面,向网络侧设备上报与第二选定可重构智能表面对应的前导码以及上报信息,以及上报信息包括多个选定可重构智能表面的序列号。
作为示例,多个选定可重构智能表面是电子设备2600基于对所接收的下行同步信号的测量结果而选出的。
作为示例,上报信息还包括每个选定可重构智能表面的最优粗波束的序列号,以及最优粗波束是该选定可重构智能表面的粗波束当中的、使得电子设备2600经由该选定可重构智能表面从网络侧设备接收到的下行同步信号的测量结果最大的粗波束。
作为示例,上报信息还包括有关位置信息的精度要求。
作为示例,处理单元2601可以被配置为:经由第二选定可重构智能表面,从网络侧设备接收随机接入响应和为电子设备2600配置的探测参 考信号;经由多个选定可重构智能表面中的、除了第二选定可重构智能表面之外的其他选定可重构智能表面,分别向网络侧设备发送探测参考信号;以及经由第二选定可重构智能表面,向网络侧设备上报电子设备2600发送探测参考信号的发送时间。其中,前导码被网络侧设备用于计算与第二选定可重构智能表面对应的、从电子设备2600到网络侧设备之间的到达时延;用户设备所发送的探测参考信号以及发送时间被网络侧设备用于计算与其他选定可重构智能表面分别对应的、从电子设备2600到网络侧设备之间的到达时延;以及与每个选定可重构智能表面对应的到达时延被网络侧设备用于确定初始位置信息。
作为示例,每个选定可重构智能表面的最优粗波束的序列号被网络侧设备用于确定初始位置信息。
上述内容可以参见电子设备100实施例中相关内容的描述(例如,结合图12至14所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为:接收网络侧设备基于初始位置信息、经由多个选定可重构智能表面分别发送的定位参考信号,其中,与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号;以及向网络侧设备上报基于定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号。其中,与每个选定可重构智能表面对应的候选细波束的序列号被网络侧设备用于估计电子设备2600到该选定可重构智能表面的到达角度,以及与每个选定可重构智能表面对应的到达角度被网络侧设备用于确定比初始位置信息更精确的增强位置信息。可以参见电子设备100实施例中相关内容的描述(例如,结合图15、17和18所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为:接收网络侧设备基于初始位置信息而配置的探测参考信号,其中,配置包括指定电子设备2600要在其上发送探测参考信号的细波束的序列号;以及经由每个选定可重构智能表面分别向网络侧设备发送探测参考信号。其中,网络侧设备在接收到经由多个选定可重构智能表面发送的所有探测参考信号之后,将网络侧设备的接收波束成形矢量分别与从每个选定可重构智能表面到网络侧设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从电子设备2600接收到的探测参考信号;网络侧设备针对经由每个选定可 重构智能表面的细波束从电子设备2600接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束;以及基于候选细波束估计电子设备2600到该选定可重构智能表面的到达角度,以及网络侧设备基于与每个选定可重构智能表面对应的到达角度,确定比初始位置信息更精确的增强位置信息。可以参见电子设备100实施例中相关内容的描述(例如,结合图16-18所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为从网络侧设备接收有关每个选定可重构智能表面的候选细波束的信息,以供用于电子设备2600后续与网络侧设备之间的通信。可以参见电子设备100实施例中相关内容的描述(例如,结合图19所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为在电子设备2600与网络侧设备之间处于已连接状态的情况下,通过网络侧设备基于电子设备2600与网络侧设备之间的初始波束对准、在初始波束的范围内从多个原始可重构智能表面而选出的多个初始可重构智能表面,辅助网络侧设备确定初始位置信息,其中,多个初始可重构智能表面用于选出多个选定可重构智能表面。可以参见电子设备100实施例中相关内容的描述(例如,结合图20所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为:接收网络侧设备经由多个初始可重构智能表面分别发送的定位参考信号,其中,与每个初始可重构智能表面对应的定位参考信号包括该初始可重构智能表面的序列号;以及向网络侧设备发送上报信息,其中,上报信息包括选定可重构智能表面的序列号,以及选定可重构智能表面是电子设备2600基于经由多个初始可重构智能表面接收到的定位参考信号而从多个初始可重构智能表面当中选出的。
作为示例,上报信息还包括有关位置信息的精度要求。
以上内容可以参见电子设备100实施例中相关内容的描述(例如,结合图21所进行的描述),这里不再累述。
作为示例,上报信息被网络侧设备用于计算初始位置信息。
作为示例,处理单元2601可以被配置为:接收网络侧设备基于初始位置信息、经由网络侧设备和多个选定可重构智能表面分别发送的定位参考信号,其中,与网络侧设备对应的定位参考信号包括网络侧设备的 细波束的序列号以及与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号;以及向网络侧设备上报基于定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号以及从网络侧设备的细波束当中选出的候选细波束的序列号。其中,与每个选定可重构智能表面对应的候选细波束的序列号被网络侧设备用于估计电子设备2600到该选定可重构智能表面的到达角度,以及与网络侧设备对应的候选细波束的序列号被网络侧设备用于估计电子设备2600到网络侧设备的到达角度,以及到达角度被网络侧设备用于确定比初始位置信息更精确的增强位置信息。可以参见电子设备100实施例中相关内容的描述(例如,结合图22所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为:接收网络侧设备所配置的探测参考信号,其中,配置包括指定电子设备2600要在其上发送探测参考信号的粗波束的序列号;以及经由每个初始可重构智能表面向网络侧设备上报探测参考信号。其中,网络侧设备在接收到电子设备2600经由多个初始可重构智能表面发送的所有探测参考信号之后,将网络侧设备的接收波束成形矢量分别与从每个初始可重构智能表面到网络侧设备的位置方向进行对准,从而确定通过每个初始可重构智能表面从电子设备2600接收到的探测参考信号;以及网络侧设备对每个初始可重构智能表面所接收到的探测参考信号进行测量,以及基于测量的结果,从多个初始可重构智能表面当中选出多个选定可重构智能表面。
作为示例,处理单元2601可以被配置为还向网络侧设备上报有关位置信息的精度要求。
以上内容可以参见电子设备100实施例中相关内容的描述(例如,结合图23所进行的描述),这里不再累述。
作为示例,电子设备2600到每个选定可重构智能表面的到达角度被网络侧设备用于确定初始位置信息。
作为示例,处理单元2601可以被配置为:接收网络侧设备基于初始位置信息而配置的探测参考信号,其中,配置包括指定电子设备2600要在其上发送探测参考信号的细波束的序列号;以及向网络侧设备直接发送探测参考信号以及经由每个选定可重构智能表面向网络侧设备发送探 测参考信号。其中,网络侧设备在接收到电子设备2600直接发送的探测参考信号以及经由多个选定可重构智能表面发送的所有探测参考信号之后,将网络侧设备的接收波束成形矢量分别与从每个选定可重构智能表面到网络侧设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从电子设备2600接收到的探测参考信号;网络侧设备针对经由每个选定可重构智能表面的细波束从电子设备2600接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于候选细波束估计电子设备2600到该选定可重构智能表面的到达角度;以及网络侧设备基于到达角度,确定比初始位置信息更精确的增强位置信息。可以参见电子设备100实施例中相关内容的描述(例如,结合图24所进行的描述),这里不再累述。
作为示例,处理单元2601可以被配置为从网络侧设备接收有关每个选定可重构智能表面的候选细波束的信息,以供用于电子设备2600后续与网络侧设备之间的通信。可以参见电子设备100实施例中相关内容的描述(例如,结合图25所进行的描述),这里不再累述。
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图27示出了根据本公开的一个实施例的用于无线通信的方法S2700的流程图。方法S2700在步骤S2702开始。在步骤S2704中,通过基于电子设备与在电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定用户设备的初始位置信息。方法S2700在步骤S2706结束。
该方法例如可以通过上文所描述的电子设备100来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
图28示出了根据本公开的一个实施例的用于无线通信的方法S2800 的流程图。方法S2800在步骤S2802开始。在步骤S2804中,通过基于电子设备与为电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助网络侧设备确定电子设备的初始位置信息。方法S2800在步骤S2806结束。
该方法例如可以通过上文所描述的电子设备2600来执行,其具体细节可参见以上相应位置的描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
电子设备100可以被实现为各种网络侧设备例如基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的电子设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备2600可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图29是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入 多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图29所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图29示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如层1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826 的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图29所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图29所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图29示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图29所示的eNB 800中,电子设备100当实施为基站时,其收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行电子设备100中的单元的功能来确定用户设备的位置信息。
(第二应用示例)
图30是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图30所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图30示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图29描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。 除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图29描述的BB处理器826相同。如图30所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图30示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图30所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图30示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图30所示的eNB 830中,电子设备100当实施为基站时,其收发器可以由无线通信接口855实现。功能的至少一部分也可以由控制器851实现。例如,控制器851可以通过执行电子设备100中的单元的功能来确定用户设备的位置信息。
[关于用户设备的应用示例]
(第一应用示例)
图31是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个 天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图31所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图31示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图31所示,智能电话900可以包括多个天线916。虽然图31示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图31所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图31所示的智能电话900中,当电子设备2600例如被实施为作为用户设备侧的智能电话的情况下、电子设备2600的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行上述电子设备2600中的单元的功能来辅助网络侧设备确定位置信息。
(第二应用示例)
图32是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图32所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图32示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图32所示,汽车导航设备920可以包括多个天线937。虽然图32 示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图32所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图32示出的汽车导航设备920中,当电子设备2600例如被实施为作为用户设备侧的汽车导航设备的情况下、电子设备2600的收发器可以由无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行上述电子设备2600中的单元的功能来辅助网络侧设备确定位置信息。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本发明还提出了一种存储有机器可读取的指令代码的程序产品。指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图33所示的通用计算机3300)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图33中,中央处理单元(CPU)3301根据只读存储器(ROM)3302中存储的程序或从存储部分3308加载到随机存取存储器(RAM)3303的程序执行各种处理。在RAM 3303中,也根据需要存储当CPU 3301执行各种处理等等时所需的数据。CPU 3301、ROM 3302和RAM 3303经由总线3304彼此连接。输入/输出接口3305也连接到总线3304。
下述部件连接到输入/输出接口3305:输入部分3306(包括键盘、鼠标等等)、输出部分3307(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分3308(包括硬盘等)、通信部分3309(包括网络接口卡比如LAN卡、调制解调器等)。通信部分3309经由网络比如因特网执行通信处理。根据需要,驱动器3310也可连接到输入/输出接口3305。可移除介质3311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器3310上,使得从中读出的计算机程序根据需要被安装到存储部分3308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质3311安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图33所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质3311。可移除介质3311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 3302、存储部分3308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外, 在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。
本技术还可以如下实现。
方案1.一种用于无线通信的电子设备,包括:
处理电路,被配置为:
通过基于所述电子设备与在所述电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定所述用户设备的初始位置信息。
方案2.根据方案1所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述用户设备之间处于非连接状态的情况下,经由所述多个原始可重构智能表面分别广播包括前导码的下行同步信号,以供所述用户设备基于所述前导码选出所述多个选定可重构智能表面。
方案3.根据方案2所述的电子设备,其中,与所述多个原始可重构智能表面分别对应的下行同步信号不包括共同的前导码。
方案4.根据方案3所述的电子设备,其中,与所述多个原始可重构智能表面中的每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
方案5.根据方案3或4所述的电子设备,其中,所述处理电路被配置为经由所述多个选定可重构智能表面中的每个选定可重构智能表面,从所述用户设备接收与该选定可重构智能表面分别对应的前导码。
方案6.根据方案5所述的电子设备,其中,所述处理电路被配置为:
基于所接收到的与每个选定可重构智能表面分别对应的前导码,计算与每个选定可重构智能表面对应的、从所述用户设备到所述电子设备之间的到达时延,以及
基于与每个选定可重构智能表面对应的到达时延,确定所述初始位置信息。
方案7.根据方案6所述的电子设备,其中,
所述处理电路被配置为还经由每个选定可重构智能表面,从所述用户设备接收与该选定可重构智能表面对应的上报信息,
与所述多个选定可重构智能表面中的、要用于向所述用户设备发送随机接入响应的第一选定可重构智能表面对应的上报信息包括用于指示所述第一选定可重构智能表面用于发送所述随机接入响应的反馈标识,以及
与所述多个选定可重构智能表面中的、除了所述第一选定可重构智能表面之外的其他选定可重构智能表面对应的上报信息分别包括用于指示所述其他选定可重构智能表面不用于发送所述随机接入响应的非反馈标识。
方案8.根据方案7所述的电子设备,
其中,与每个选定可重构智能表面对应的上报信息还包括该选定可重构智能表面的最优粗波束的序列号,以及
所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述用户设备经由该选定可重构智能表面从所述电子设备接收到的下行同步信号的测量结果最大的粗波束。
方案9.根据方案8所述的电子设备,其中,所述处理电路被配置为还基于每个选定可重构智能表面的最优粗波束的序列号,确定所述初始位置信息。
方案10.根据方案7至9中任一项所述的电子设备,其中,与所述第一选定可重构智能表面对应的上报信息还包括有关所述位置信息的精度要求。
方案11.根据方案2所述的电子设备,其中,
与所述多个原始可重构智能表面分别对应的下行同步信号中的至少一部分下行同步信号包括共同的前导码,以及
与每个原始可重构智能表面对应的下行同步信号还包括该原始可重 构智能表面的序列号。
方案12.根据方案11所述的电子设备,其中,与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
方案13.根据方案11或12所述的电子设备,其中,
所述处理电路被配置为经由所述多个选定可重构智能表面中的、要用于向所述用户设备发送随机接入响应的第二选定可重构智能表面,从所述用户设备接收与所述第二选定可重构智能表面对应的前导码以及上报信息,以及
所述上报信息包括所述多个选定可重构智能表面的序列号。
方案14.根据方案13所述的电子设备,其中,所述处理电路被配置为:
基于所接收到的前导码,计算与所述第二选定可重构智能表面对应的、从所述用户设备到所述电子设备之间的到达时延,
经由所述第二选定可重构智能表面,向所述用户设备发送随机接入响应以及为所述用户设备配置探测参考信号,
经由所述多个选定可重构智能表面中的、除了所述第二选定可重构智能表面之外的其他选定可重构智能表面,从所述用户设备分别接收探测参考信号,
经由所述第二选定可重构智能表面,接收所述用户设备所上报的、所述用户设备发送所述探测参考信号的发送时间,
基于从所述用户设备接收到的探测参考信号以及所述发送时间,计算与所述其他选定可重构智能表面分别对应的、从所述用户设备到所述电子设备之间的到达时延,以及
基于与每个选定可重构智能表面对应的到达时延,确定所述初始位置信息。
方案15.根据方案14所述的电子设备,其中,
所述上报信息还包括每个选定可重构智能表面的最优粗波束的序列号,以及
所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述用户设备经由该选定可重构智能表面从所述电子设备接收到的下行同步信号的测量结果最大的粗波束。
方案16.根据方案15所述的电子设备,其中,所述处理电路被配置为还基于每个选定可重构智能表面的最优粗波束的序列号,确定所述初始位置信息。
方案17.根据方案13至16中任一项所述的电子设备,其中,
所述上报信息还包括有关所述位置信息的精度要求。
方案18.根据方案2至17中任一项所述的电子设备,其中,所述处理电路被配置为:
基于所述初始位置信息,经由所述多个选定可重构智能表面分别发送定位参考信号,其中,与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,
接收所述用户设备基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号,
基于与每个选定可重构智能表面对应的候选细波束的序列号,估计所述用户设备到该选定可重构智能表面的到达角度,以及
基于与每个选定可重构智能表面对应的到达角度,确定比所述初始位置信息更精确的增强位置信息。
方案19.根据方案2至17中任一项所述的电子设备,其中,所述处理电路被配置为:
基于所述初始位置信息,为所述用户设备配置探测参考信号,其中,所述配置包括指定所述用户设备要在其上发送所述探测参考信号的细波束的序列号,
在接收到所述用户设备经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述电子设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述电子设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述用户设备接收到的探测参考信号,
针对经由每个选定可重构智能表面的细波束从所述用户设备接收到 的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述用户设备到该选定可重构智能表面的到达角度,以及
基于与每个选定可重构智能表面对应的到达角度,确定比所述初始位置信息更精确的增强位置信息。
方案20.根据方案19所述的电子设备,其中,所述处理电路被配置为:
将有关每个选定可重构智能表面的候选细波束的信息发送至所述用户设备,以供所述候选细波束用于所述用户设备后续与所述电子设备之间的通信。
方案21.根据方案2至20中任一项所述的电子设备,其中,
所述多个选定可重构智能表面是所述用户设备基于对所接收的下行同步信号的测量结果而选出的。
方案22.根据方案1或2所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述用户设备之间处于已连接状态的情况下,基于所述电子设备与所述用户设备之间的初始波束对准,在所述初始波束的范围内从所述多个原始可重构智能表面选出多个初始可重构智能表面,以供用于从所述多个初始可重构智能表面选出所述多个选定可重构智能表面。
方案23.根据方案22所述的电子设备,其中,所述处理电路被配置为:
经由所述多个初始可重构智能表面分别发送定位参考信号,其中,与每个初始可重构智能表面对应的定位参考信号包括该初始可重构智能表面的序列号,以及
从所述用户设备接收上报信息,其中,所述上报信息包括所述选定可重构智能表面的序列号,以及所述选定可重构智能表面是所述用户设备基于经由所述多个初始可重构智能表面接收到的定位参考信号而从所述多个初始可重构智能表面当中选出的。
方案24.根据方案23所述的电子设备,其中,所述上报信息还包括有关所述位置信息的精度要求。
方案25.根据方案23或24所述的电子设备,其中,所述处理电路被配置为基于所述上报信息计算所述初始位置信息。
方案26.根据方案25所述的电子设备,其中,所述处理电路被配置为:
基于所述初始位置信息,经由所述电子设备和所述多个选定可重构智能表面分别发送定位参考信号,其中,与所述电子设备对应的定位参考信号包括所述电子设备的细波束的序列号以及与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,
接收所述用户设备基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号以及从所述电子设备的细波束当中选出的候选细波束的序列号,
基于与每个选定可重构智能表面对应的候选细波束的序列号估计所述用户设备到该选定可重构智能表面的到达角度,以及基于与所述电子设备对应的候选细波束的序列号估计所述用户设备到所述电子设备的到达角度,以及
基于所述到达角度,确定比所述初始位置信息更精确的增强位置信息。
方案27.根据方案22所述的电子设备,其中,所述处理电路被配置为:
为所述用户设备配置探测参考信号,其中,所述配置包括指定所述用户设备要在其上发送所述探测参考信号的粗波束的序列号,
在接收到所述用户设备经由所述多个初始可重构智能表面发送的所有探测参考信号之后,将所述电子设备的接收波束成形矢量分别与从每个初始可重构智能表面到所述电子设备的位置方向进行对准,从而确定通过每个初始可重构智能表面从所述用户设备接收到的探测参考信号,
对每个初始可重构智能表面所接收到的探测参考信号进行测量,以及基于所述测量的结果,从所述多个初始可重构智能表面当中选出所述多个选定可重构智能表面。
方案28.根据方案27所述的电子设备,其中,所述处理电路被配置 为还从所述用户设备接收有关所述位置信息的精度要求。
方案29.根据方案27或28所述的电子设备,其中,所述处理电路被配置为基于所述用户设备到每个选定可重构智能表面的到达角度,确定所述初始位置信息。
方案30.根据方案29所述的电子设备,其中,所述处理电路被配置为:
基于所述初始位置信息,为所述用户设备配置探测参考信号,其中,所述配置包括指定所述用户设备要在其上发送所述探测参考信号的细波束的序列号,
接收所述用户设备向所述电子设备直接发送的探测参考信号以及经由每个选定可重构智能表面发送的探测参考信号,
在接收到所述用户设备向所述电子设备直接发送的探测参考信号以及经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述电子设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述电子设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述用户设备接收到的探测参考信号,
针对经由每个选定可重构智能表面的细波束从所述用户设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述用户设备到该选定可重构智能表面的到达角度,以及
基于所述到达角度,确定比所述初始位置信息更精确的增强位置信息。
方案31.根据方案30所述的电子设备,其中,所述处理电路被配置为将有关每个选定可重构智能表面的候选细波束的信息发送至所述用户设备,以供所述候选细波束用于所述用户设备后续与所述电子设备之间的通信。
方案32.一种用于无线通信的电子设备,包括:
处理电路,被配置为:
通过基于所述电子设备与为所述电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能 表面,辅助所述网络侧设备确定所述电子设备的初始位置信息。
方案33.根据方案32所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述网络侧设备之间处于非连接状态的情况下,接收所述网络侧设备经由所述多个原始可重构智能表面广播的包括前导码的下行同步信号,以基于所述前导码选出所述多个选定可重构智能表面。
方案34.根据方案33所述的电子设备,其中,与所述多个原始可重构智能表面分别对应的下行同步信号不包括共同的前导码。
方案35.根据方案34所述的电子设备,其中,与所述多个原始可重构智能表面中的每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
方案36.根据方案34或35所述的电子设备,其中,所述处理电路被配置为经由所述多个选定可重构智能表面中的每个选定可重构智能表面,向所述网络侧设备发送与该选定可重构智能表面分别对应的前导码。
方案37.根据方案36所述的电子设备,其中,与每个选定可重构智能表面分别对应的前导码被所述网络侧设备用于计算与每个选定可重构智能表面对应的、从所述电子设备到所述网络侧设备之间的到达时延,以供所述网络侧设备确定所述初始位置信息。
方案38.根据方案37所述的电子设备,其中,
所述处理电路被配置为还经由每个选定可重构智能表面,向所述网络侧设备发送与该选定可重构智能表面对应的上报信息,
与所述多个选定可重构智能表面中的、要用于向所述电子设备发送随机接入响应的第一选定可重构智能表面对应的上报信息包括用于指示所述第一选定可重构智能表面用于发送所述随机接入响应的反馈标识,以及
与所述多个选定可重构智能表面中的、除了所述第一选定可重构智能表面之外的其他选定可重构智能表面对应的上报信息分别包括用于指示所述其他选定可重构智能表面不用于发送所述随机接入响应的非反馈标识。
方案39.根据方案38所述的电子设备,其中,
与每个选定可重构智能表面对应的上报信息还包括该选定可重构智 能表面的最优粗波束的序列号,以及
所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述电子设备经由该选定可重构智能表面从所述网络侧设备接收到的下行同步信号的测量结果最大的粗波束。
方案40.根据方案39所述的电子设备,其中,每个选定可重构智能表面的最优粗波束的序列号被所述网络侧设备用于确定所述初始位置信息。
方案41.根据方案38至40中任一项所述的电子设备,其中,与所述第一选定可重构智能表面对应的上报信息还包括有关所述位置信息的精度要求。
方案42.根据方案33所述的电子设备,其中,
与所述多个原始可重构智能表面分别对应的下行同步信号中的至少一部分下行同步信号包括共同的前导码,以及
与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的序列号。
方案43.根据方案42所述的电子设备,其中,与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
方案44.根据方案42或43所述的电子设备,其中,
所述处理电路被配置为经由所述多个选定可重构智能表面中的、要用于向所述电子设备发送随机接入响应的第二选定可重构智能表面,向所述网络侧设备上报与所述第二选定可重构智能表面对应的前导码以及上报信息,以及
所述上报信息包括所述多个选定可重构智能表面的序列号。
方案45.根据方案44所述的电子设备,其中,所述处理电路被配置为:
经由所述第二选定可重构智能表面,从所述网络侧设备接收随机接入响应和为所述电子设备配置的探测参考信号,
经由所述多个选定可重构智能表面中的、除了所述第二选定可重构 智能表面之外的其他选定可重构智能表面,分别向所述网络侧设备发送探测参考信号,以及
经由所述第二选定可重构智能表面,向所述网络侧设备上报所述电子设备发送所述探测参考信号的发送时间,
其中,所述前导码被所述网络侧设备用于计算与所述第二选定可重构智能表面对应的、从所述电子设备到所述网络侧设备之间的到达时延,
所述用户设备所发送的探测参考信号以及所述发送时间被所述网络侧设备用于计算与所述其他选定可重构智能表面分别对应的、从所述电子设备到所述网络侧设备之间的到达时延,以及
与每个选定可重构智能表面对应的到达时延被所述网络侧设备用于确定所述初始位置信息。
方案46.根据方案45所述的电子设备,其中,
所述上报信息还包括每个选定可重构智能表面的最优粗波束的序列号,以及
所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述电子设备经由该选定可重构智能表面从所述网络侧设备接收到的下行同步信号的测量结果最大的粗波束。
方案47.根据方案46所述的电子设备,其中,每个选定可重构智能表面的最优粗波束的序列号被所述网络侧设备用于确定所述初始位置信息。
方案48.根据方案44至47中任一项所述的电子设备,其中,
所述上报信息还包括有关所述位置信息的精度要求。
方案49.根据方案33至48中任一项所述的电子设备,其中,所述处理电路被配置为:
接收所述网络侧设备基于所述初始位置信息、经由所述多个选定可重构智能表面分别发送的定位参考信号,其中,与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,以及
向所述网络侧设备上报基于所述定位参考信号从每个选定可重构智 能表面的细波束当中选出的候选细波束的序列号,
其中,与每个选定可重构智能表面对应的候选细波束的序列号被所述网络侧设备用于估计所述电子设备到该选定可重构智能表面的到达角度,以及与每个选定可重构智能表面对应的到达角度被所述网络侧设备用于确定比所述初始位置信息更精确的增强位置信息。
方案50.根据方案33至48中任一项所述的电子设备,其中,所述处理电路被配置为:
接收所述网络侧设备基于所述初始位置信息而配置的探测参考信号,其中,所述配置包括指定所述电子设备要在其上发送所述探测参考信号的细波束的序列号,以及
经由每个选定可重构智能表面分别向所述网络侧设备发送探测参考信号,
其中,所述网络侧设备在接收到经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述网络侧设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述网络侧设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述电子设备接收到的探测参考信号,
所述网络侧设备针对经由每个选定可重构智能表面的细波束从所述电子设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述电子设备到该选定可重构智能表面的到达角度,以及
所述网络侧设备基于与每个选定可重构智能表面对应的到达角度,确定比所述初始位置信息更精确的增强位置信息。
方案51.根据方案50所述的电子设备,其中,所述处理电路被配置为:
从所述网络侧设备接收有关每个选定可重构智能表面的候选细波束的信息,以供用于所述电子设备后续与所述网络侧设备之间的通信。
方案52.根据方案33至51中任一项所述的电子设备,其中,
所述多个选定可重构智能表面是所述电子设备基于对所接收的下行同步信号的测量结果而选出的。
方案53.根据方案32或33所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述网络侧设备之间处于已连接状态的情况下,通过所述网络侧设备基于所述电子设备与所述网络侧设备之间的初始波束对准、在所述初始波束的范围内从所述多个原始可重构智能表面而选出的多个初始可重构智能表面,辅助所述网络侧设备确定所述初始位置信息,
其中,所述多个初始可重构智能表面用于选出所述多个选定可重构智能表面。
方案54.根据方案53所述的电子设备,其中,所述处理电路被配置为:
接收所述网络侧设备经由所述多个初始可重构智能表面分别发送的定位参考信号,其中,与每个初始可重构智能表面对应的定位参考信号包括该初始可重构智能表面的序列号,以及
向所述网络侧设备发送上报信息,其中,所述上报信息包括所述选定可重构智能表面的序列号,以及所述选定可重构智能表面是所述电子设备基于经由所述多个初始可重构智能表面接收到的定位参考信号而从所述多个初始可重构智能表面当中选出的。
方案55.根据方案54所述的电子设备,其中,所述上报信息还包括有关所述位置信息的精度要求。
方案56.根据方案54或55所述的电子设备,其中,所述上报信息被所述网络侧设备用于计算所述初始位置信息。
方案57.根据方案56所述的电子设备,其中,所述处理电路被配置为:
接收所述网络侧设备基于所述初始位置信息、经由所述网络侧设备和所述多个选定可重构智能表面分别发送的定位参考信号,其中,与所述网络侧设备对应的定位参考信号包括所述网络侧设备的细波束的序列号以及与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,以及
向所述网络侧设备上报基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号以及从所述网络侧设备 的细波束当中选出的候选细波束的序列号,
其中,与每个选定可重构智能表面对应的候选细波束的序列号被所述网络侧设备用于估计所述电子设备到该选定可重构智能表面的到达角度,以及与所述网络侧设备对应的候选细波束的序列号被所述网络侧设备用于估计所述电子设备到所述网络侧设备的到达角度,以及
所述到达角度被所述网络侧设备用于确定比所述初始位置信息更精确的增强位置信息。
方案58.根据方案53所述的电子设备,其中,所述处理电路被配置为:
接收所述网络侧设备所配置的探测参考信号,其中,所述配置包括指定所述电子设备要在其上发送所述探测参考信号的粗波束的序列号,以及
经由每个初始可重构智能表面向所述网络侧设备上报探测参考信号,
其中,所述网络侧设备在接收到所述电子设备经由所述多个初始可重构智能表面发送的所有探测参考信号之后,将所述网络侧设备的接收波束成形矢量分别与从每个初始可重构智能表面到所述网络侧设备的位置方向进行对准,从而确定通过每个初始可重构智能表面从所述电子设备接收到的探测参考信号,以及
所述网络侧设备对每个初始可重构智能表面所接收到的探测参考信号进行测量,以及基于所述测量的结果,从所述多个初始可重构智能表面当中选出所述多个选定可重构智能表面。
方案59.根据方案58所述的电子设备,其中,所述处理电路被配置为还向所述网络侧设备上报有关所述位置信息的精度要求。
方案60.根据方案58或59所述的电子设备,其中,所述电子设备到每个选定可重构智能表面的到达角度被所述网络侧设备用于确定所述初始位置信息。
方案61.根据方案60所述的电子设备,其中,所述处理电路被配置为:
接收所述网络侧设备基于所述初始位置信息而配置的探测参考信 号,其中,所述配置包括指定所述电子设备要在其上发送所述探测参考信号的细波束的序列号,以及
向所述网络侧设备直接发送探测参考信号以及经由每个选定可重构智能表面向所述网络侧设备发送探测参考信号,
其中,所述网络侧设备在接收到所述电子设备直接发送的探测参考信号以及经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述网络侧设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述网络侧设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述电子设备接收到的探测参考信号,
所述网络侧设备针对经由每个选定可重构智能表面的细波束从所述电子设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述电子设备到该选定可重构智能表面的到达角度,以及
所述网络侧设备基于所述到达角度,确定比所述初始位置信息更精确的增强位置信息。
方案62.根据方案60所述的电子设备,其中,所述处理电路被配置为从所述网络侧设备接收有关每个选定可重构智能表面的候选细波束的信息,以供用于所述电子设备后续与所述网络侧设备之间的通信。
方案63.一种用于无线通信的方法,包括:
通过基于电子设备与在所述电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定所述用户设备的初始位置信息。
方案64.一种用于无线通信的方法,包括:
通过基于电子设备与为所述电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助所述网络侧设备确定所述电子设备的初始位置信息。
方案65.一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据方案63或64所述的用于无线通信的方法。

Claims (65)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    通过基于所述电子设备与在所述电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定所述用户设备的初始位置信息。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述用户设备之间处于非连接状态的情况下,经由所述多个原始可重构智能表面分别广播包括前导码的下行同步信号,以供所述用户设备基于所述前导码选出所述多个选定可重构智能表面。
  3. 根据权利要求2所述的电子设备,其中,与所述多个原始可重构智能表面分别对应的下行同步信号不包括共同的前导码。
  4. 根据权利要求3所述的电子设备,其中,与所述多个原始可重构智能表面中的每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
  5. 根据权利要求3或4所述的电子设备,其中,所述处理电路被配置为经由所述多个选定可重构智能表面中的每个选定可重构智能表面,从所述用户设备接收与该选定可重构智能表面分别对应的前导码。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路被配置为:
    基于所接收到的与每个选定可重构智能表面分别对应的前导码,计算与每个选定可重构智能表面对应的、从所述用户设备到所述电子设备之间的到达时延,以及
    基于与每个选定可重构智能表面对应的到达时延,确定所述初始位置信息。
  7. 根据权利要求6所述的电子设备,其中,
    所述处理电路被配置为还经由每个选定可重构智能表面,从所述用户设备接收与该选定可重构智能表面对应的上报信息,
    与所述多个选定可重构智能表面中的、要用于向所述用户设备发送 随机接入响应的第一选定可重构智能表面对应的上报信息包括用于指示所述第一选定可重构智能表面用于发送所述随机接入响应的反馈标识,以及
    与所述多个选定可重构智能表面中的、除了所述第一选定可重构智能表面之外的其他选定可重构智能表面对应的上报信息分别包括用于指示所述其他选定可重构智能表面不用于发送所述随机接入响应的非反馈标识。
  8. 根据权利要求7所述的电子设备,
    其中,与每个选定可重构智能表面对应的上报信息还包括该选定可重构智能表面的最优粗波束的序列号,以及
    所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述用户设备经由该选定可重构智能表面从所述电子设备接收到的下行同步信号的测量结果最大的粗波束。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路被配置为还基于每个选定可重构智能表面的最优粗波束的序列号,确定所述初始位置信息。
  10. 根据权利要求7至9中任一项所述的电子设备,其中,与所述第一选定可重构智能表面对应的上报信息还包括有关所述位置信息的精度要求。
  11. 根据权利要求2所述的电子设备,其中,
    与所述多个原始可重构智能表面分别对应的下行同步信号中的至少一部分下行同步信号包括共同的前导码,以及
    与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的序列号。
  12. 根据权利要求11所述的电子设备,其中,与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
  13. 根据权利要求11或12所述的电子设备,其中,
    所述处理电路被配置为经由所述多个选定可重构智能表面中的、要 用于向所述用户设备发送随机接入响应的第二选定可重构智能表面,从所述用户设备接收与所述第二选定可重构智能表面对应的前导码以及上报信息,以及
    所述上报信息包括所述多个选定可重构智能表面的序列号。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路被配置为:
    基于所接收到的前导码,计算与所述第二选定可重构智能表面对应的、从所述用户设备到所述电子设备之间的到达时延,
    经由所述第二选定可重构智能表面,向所述用户设备发送随机接入响应以及为所述用户设备配置探测参考信号,
    经由所述多个选定可重构智能表面中的、除了所述第二选定可重构智能表面之外的其他选定可重构智能表面,从所述用户设备分别接收探测参考信号,
    经由所述第二选定可重构智能表面,接收所述用户设备所上报的、所述用户设备发送所述探测参考信号的发送时间,
    基于从所述用户设备接收到的探测参考信号以及所述发送时间,计算与所述其他选定可重构智能表面分别对应的、从所述用户设备到所述电子设备之间的到达时延,以及
    基于与每个选定可重构智能表面对应的到达时延,确定所述初始位置信息。
  15. 根据权利要求14所述的电子设备,其中,
    所述上报信息还包括每个选定可重构智能表面的最优粗波束的序列号,以及
    所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述用户设备经由该选定可重构智能表面从所述电子设备接收到的下行同步信号的测量结果最大的粗波束。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路被配置为还基于每个选定可重构智能表面的最优粗波束的序列号,确定所述初始位置信息。
  17. 根据权利要求13至16中任一项所述的电子设备,其中,
    所述上报信息还包括有关所述位置信息的精度要求。
  18. 根据权利要求2至17中任一项所述的电子设备,其中,所述处理电路被配置为:
    基于所述初始位置信息,经由所述多个选定可重构智能表面分别发送定位参考信号,其中,与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,
    接收所述用户设备基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号,
    基于与每个选定可重构智能表面对应的候选细波束的序列号,估计所述用户设备到该选定可重构智能表面的到达角度,以及
    基于与每个选定可重构智能表面对应的到达角度,确定比所述初始位置信息更精确的增强位置信息。
  19. 根据权利要求2至17中任一项所述的电子设备,其中,所述处理电路被配置为:
    基于所述初始位置信息,为所述用户设备配置探测参考信号,其中,所述配置包括指定所述用户设备要在其上发送所述探测参考信号的细波束的序列号,
    在接收到所述用户设备经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述电子设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述电子设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述用户设备接收到的探测参考信号,
    针对经由每个选定可重构智能表面的细波束从所述用户设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述用户设备到该选定可重构智能表面的到达角度,以及
    基于与每个选定可重构智能表面对应的到达角度,确定比所述初始位置信息更精确的增强位置信息。
  20. 根据权利要求19所述的电子设备,其中,所述处理电路被配置 为:
    将有关每个选定可重构智能表面的候选细波束的信息发送至所述用户设备,以供所述候选细波束用于所述用户设备后续与所述电子设备之间的通信。
  21. 根据权利要求2至20中任一项所述的电子设备,其中,
    所述多个选定可重构智能表面是所述用户设备基于对所接收的下行同步信号的测量结果而选出的。
  22. 根据权利要求1或2所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述用户设备之间处于已连接状态的情况下,基于所述电子设备与所述用户设备之间的初始波束对准,在所述初始波束的范围内从所述多个原始可重构智能表面选出多个初始可重构智能表面,以供用于从所述多个初始可重构智能表面选出所述多个选定可重构智能表面。
  23. 根据权利要求22所述的电子设备,其中,所述处理电路被配置为:
    经由所述多个初始可重构智能表面分别发送定位参考信号,其中,与每个初始可重构智能表面对应的定位参考信号包括该初始可重构智能表面的序列号,以及
    从所述用户设备接收上报信息,其中,所述上报信息包括所述选定可重构智能表面的序列号,以及所述选定可重构智能表面是所述用户设备基于经由所述多个初始可重构智能表面接收到的定位参考信号而从所述多个初始可重构智能表面当中选出的。
  24. 根据权利要求23所述的电子设备,其中,所述上报信息还包括有关所述位置信息的精度要求。
  25. 根据权利要求23或24所述的电子设备,其中,所述处理电路被配置为基于所述上报信息计算所述初始位置信息。
  26. 根据权利要求25所述的电子设备,其中,所述处理电路被配置为:
    基于所述初始位置信息,经由所述电子设备和所述多个选定可重构智能表面分别发送定位参考信号,其中,与所述电子设备对应的定位参 考信号包括所述电子设备的细波束的序列号以及与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,
    接收所述用户设备基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号以及从所述电子设备的细波束当中选出的候选细波束的序列号,
    基于与每个选定可重构智能表面对应的候选细波束的序列号估计所述用户设备到该选定可重构智能表面的到达角度,以及基于与所述电子设备对应的候选细波束的序列号估计所述用户设备到所述电子设备的到达角度,以及
    基于所述到达角度,确定比所述初始位置信息更精确的增强位置信息。
  27. 根据权利要求22所述的电子设备,其中,所述处理电路被配置为:
    为所述用户设备配置探测参考信号,其中,所述配置包括指定所述用户设备要在其上发送所述探测参考信号的粗波束的序列号,
    在接收到所述用户设备经由所述多个初始可重构智能表面发送的所有探测参考信号之后,将所述电子设备的接收波束成形矢量分别与从每个初始可重构智能表面到所述电子设备的位置方向进行对准,从而确定通过每个初始可重构智能表面从所述用户设备接收到的探测参考信号,
    对每个初始可重构智能表面所接收到的探测参考信号进行测量,以及基于所述测量的结果,从所述多个初始可重构智能表面当中选出所述多个选定可重构智能表面。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路被配置为还从所述用户设备接收有关所述位置信息的精度要求。
  29. 根据权利要求27或28所述的电子设备,其中,所述处理电路被配置为基于所述用户设备到每个选定可重构智能表面的到达角度,确定所述初始位置信息。
  30. 根据权利要求29所述的电子设备,其中,所述处理电路被配置为:
    基于所述初始位置信息,为所述用户设备配置探测参考信号,其中,所述配置包括指定所述用户设备要在其上发送所述探测参考信号的细波束的序列号,
    接收所述用户设备向所述电子设备直接发送的探测参考信号以及经由每个选定可重构智能表面发送的探测参考信号,
    在接收到所述用户设备向所述电子设备直接发送的探测参考信号以及经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述电子设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述电子设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述用户设备接收到的探测参考信号,
    针对经由每个选定可重构智能表面的细波束从所述用户设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述用户设备到该选定可重构智能表面的到达角度,以及
    基于所述到达角度,确定比所述初始位置信息更精确的增强位置信息。
  31. 根据权利要求30所述的电子设备,其中,所述处理电路被配置为将有关每个选定可重构智能表面的候选细波束的信息发送至所述用户设备,以供所述候选细波束用于所述用户设备后续与所述电子设备之间的通信。
  32. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    通过基于所述电子设备与为所述电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助所述网络侧设备确定所述电子设备的初始位置信息。
  33. 根据权利要求32所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述网络侧设备之间处于非连接状态的情况下,接收所述网络侧设备经由所述多个原始可重构智能表面广播的包括前导码的下行同步信号,以基于所述前导码选出所述多个选定可重构智能表面。
  34. 根据权利要求33所述的电子设备,其中,与所述多个原始可重 构智能表面分别对应的下行同步信号不包括共同的前导码。
  35. 根据权利要求34所述的电子设备,其中,与所述多个原始可重构智能表面中的每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
  36. 根据权利要求34或35所述的电子设备,其中,所述处理电路被配置为经由所述多个选定可重构智能表面中的每个选定可重构智能表面,向所述网络侧设备发送与该选定可重构智能表面分别对应的前导码。
  37. 根据权利要求36所述的电子设备,其中,与每个选定可重构智能表面分别对应的前导码被所述网络侧设备用于计算与每个选定可重构智能表面对应的、从所述电子设备到所述网络侧设备之间的到达时延,以供所述网络侧设备确定所述初始位置信息。
  38. 根据权利要求37所述的电子设备,其中,
    所述处理电路被配置为还经由每个选定可重构智能表面,向所述网络侧设备发送与该选定可重构智能表面对应的上报信息,
    与所述多个选定可重构智能表面中的、要用于向所述电子设备发送随机接入响应的第一选定可重构智能表面对应的上报信息包括用于指示所述第一选定可重构智能表面用于发送所述随机接入响应的反馈标识,以及
    与所述多个选定可重构智能表面中的、除了所述第一选定可重构智能表面之外的其他选定可重构智能表面对应的上报信息分别包括用于指示所述其他选定可重构智能表面不用于发送所述随机接入响应的非反馈标识。
  39. 根据权利要求38所述的电子设备,其中,
    与每个选定可重构智能表面对应的上报信息还包括该选定可重构智能表面的最优粗波束的序列号,以及
    所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述电子设备经由该选定可重构智能表面从所述网络侧设备接收到的下行同步信号的测量结果最大的粗波束。
  40. 根据权利要求39所述的电子设备,其中,每个选定可重构智能 表面的最优粗波束的序列号被所述网络侧设备用于确定所述初始位置信息。
  41. 根据权利要求38至40中任一项所述的电子设备,其中,与所述第一选定可重构智能表面对应的上报信息还包括有关所述位置信息的精度要求。
  42. 根据权利要求33所述的电子设备,其中,
    与所述多个原始可重构智能表面分别对应的下行同步信号中的至少一部分下行同步信号包括共同的前导码,以及
    与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的序列号。
  43. 根据权利要求42所述的电子设备,其中,与每个原始可重构智能表面对应的下行同步信号还包括该原始可重构智能表面的粗波束的序列号。
  44. 根据权利要求42或43所述的电子设备,其中,
    所述处理电路被配置为经由所述多个选定可重构智能表面中的、要用于向所述电子设备发送随机接入响应的第二选定可重构智能表面,向所述网络侧设备上报与所述第二选定可重构智能表面对应的前导码以及上报信息,以及
    所述上报信息包括所述多个选定可重构智能表面的序列号。
  45. 根据权利要求44所述的电子设备,其中,所述处理电路被配置为:
    经由所述第二选定可重构智能表面,从所述网络侧设备接收随机接入响应和为所述电子设备配置的探测参考信号,
    经由所述多个选定可重构智能表面中的、除了所述第二选定可重构智能表面之外的其他选定可重构智能表面,分别向所述网络侧设备发送探测参考信号,以及
    经由所述第二选定可重构智能表面,向所述网络侧设备上报所述电子设备发送所述探测参考信号的发送时间,
    其中,所述前导码被所述网络侧设备用于计算与所述第二选定可重 构智能表面对应的、从所述电子设备到所述网络侧设备之间的到达时延,
    所述用户设备所发送的探测参考信号以及所述发送时间被所述网络侧设备用于计算与所述其他选定可重构智能表面分别对应的、从所述电子设备到所述网络侧设备之间的到达时延,以及
    与每个选定可重构智能表面对应的到达时延被所述网络侧设备用于确定所述初始位置信息。
  46. 根据权利要求45所述的电子设备,其中,
    所述上报信息还包括每个选定可重构智能表面的最优粗波束的序列号,以及
    所述最优粗波束是该选定可重构智能表面的粗波束当中的、使得所述电子设备经由该选定可重构智能表面从所述网络侧设备接收到的下行同步信号的测量结果最大的粗波束。
  47. 根据权利要求46所述的电子设备,其中,每个选定可重构智能表面的最优粗波束的序列号被所述网络侧设备用于确定所述初始位置信息。
  48. 根据权利要求44至47中任一项所述的电子设备,其中,
    所述上报信息还包括有关所述位置信息的精度要求。
  49. 根据权利要求33至48中任一项所述的电子设备,其中,所述处理电路被配置为:
    接收所述网络侧设备基于所述初始位置信息、经由所述多个选定可重构智能表面分别发送的定位参考信号,其中,与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,以及
    向所述网络侧设备上报基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号,
    其中,与每个选定可重构智能表面对应的候选细波束的序列号被所述网络侧设备用于估计所述电子设备到该选定可重构智能表面的到达角度,以及与每个选定可重构智能表面对应的到达角度被所述网络侧设备用于确定比所述初始位置信息更精确的增强位置信息。
  50. 根据权利要求33至48中任一项所述的电子设备,其中,所述处理电路被配置为:
    接收所述网络侧设备基于所述初始位置信息而配置的探测参考信号,其中,所述配置包括指定所述电子设备要在其上发送所述探测参考信号的细波束的序列号,以及
    经由每个选定可重构智能表面分别向所述网络侧设备发送探测参考信号,
    其中,所述网络侧设备在接收到经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述网络侧设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述网络侧设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述电子设备接收到的探测参考信号,
    所述网络侧设备针对经由每个选定可重构智能表面的细波束从所述电子设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述电子设备到该选定可重构智能表面的到达角度,以及
    所述网络侧设备基于与每个选定可重构智能表面对应的到达角度,确定比所述初始位置信息更精确的增强位置信息。
  51. 根据权利要求50所述的电子设备,其中,所述处理电路被配置为:
    从所述网络侧设备接收有关每个选定可重构智能表面的候选细波束的信息,以供用于所述电子设备后续与所述网络侧设备之间的通信。
  52. 根据权利要求33至51中任一项所述的电子设备,其中,
    所述多个选定可重构智能表面是所述电子设备基于对所接收的下行同步信号的测量结果而选出的。
  53. 根据权利要求32或33所述的电子设备,其中,所述处理电路被配置为在所述电子设备与所述网络侧设备之间处于已连接状态的情况下,通过所述网络侧设备基于所述电子设备与所述网络侧设备之间的初始波束对准、在所述初始波束的范围内从所述多个原始可重构智能表面而选出的多个初始可重构智能表面,辅助所述网络侧设备确定所述初始 位置信息,
    其中,所述多个初始可重构智能表面用于选出所述多个选定可重构智能表面。
  54. 根据权利要求53所述的电子设备,其中,所述处理电路被配置为:
    接收所述网络侧设备经由所述多个初始可重构智能表面分别发送的定位参考信号,其中,与每个初始可重构智能表面对应的定位参考信号包括该初始可重构智能表面的序列号,以及
    向所述网络侧设备发送上报信息,其中,所述上报信息包括所述选定可重构智能表面的序列号,以及所述选定可重构智能表面是所述电子设备基于经由所述多个初始可重构智能表面接收到的定位参考信号而从所述多个初始可重构智能表面当中选出的。
  55. 根据权利要求54所述的电子设备,其中,所述上报信息还包括有关所述位置信息的精度要求。
  56. 根据权利要求54或55所述的电子设备,其中,所述上报信息被所述网络侧设备用于计算所述初始位置信息。
  57. 根据权利要求56所述的电子设备,其中,所述处理电路被配置为:
    接收所述网络侧设备基于所述初始位置信息、经由所述网络侧设备和所述多个选定可重构智能表面分别发送的定位参考信号,其中,与所述网络侧设备对应的定位参考信号包括所述网络侧设备的细波束的序列号以及与每个选定可重构智能表面对应的定位参考信号包括该选定可重构智能表面的细波束的序列号,以及
    向所述网络侧设备上报基于所述定位参考信号从每个选定可重构智能表面的细波束当中选出的候选细波束的序列号以及从所述网络侧设备的细波束当中选出的候选细波束的序列号,
    其中,与每个选定可重构智能表面对应的候选细波束的序列号被所述网络侧设备用于估计所述电子设备到该选定可重构智能表面的到达角度,以及与所述网络侧设备对应的候选细波束的序列号被所述网络侧设备用于估计所述电子设备到所述网络侧设备的到达角度,以及
    所述到达角度被所述网络侧设备用于确定比所述初始位置信息更精确的增强位置信息。
  58. 根据权利要求53所述的电子设备,其中,所述处理电路被配置为:
    接收所述网络侧设备所配置的探测参考信号,其中,所述配置包括指定所述电子设备要在其上发送所述探测参考信号的粗波束的序列号,以及
    经由每个初始可重构智能表面向所述网络侧设备上报探测参考信号,
    其中,所述网络侧设备在接收到所述电子设备经由所述多个初始可重构智能表面发送的所有探测参考信号之后,将所述网络侧设备的接收波束成形矢量分别与从每个初始可重构智能表面到所述网络侧设备的位置方向进行对准,从而确定通过每个初始可重构智能表面从所述电子设备接收到的探测参考信号,以及
    所述网络侧设备对每个初始可重构智能表面所接收到的探测参考信号进行测量,以及基于所述测量的结果,从所述多个初始可重构智能表面当中选出所述多个选定可重构智能表面。
  59. 根据权利要求58所述的电子设备,其中,所述处理电路被配置为还向所述网络侧设备上报有关所述位置信息的精度要求。
  60. 根据权利要求58或59所述的电子设备,其中,所述电子设备到每个选定可重构智能表面的到达角度被所述网络侧设备用于确定所述初始位置信息。
  61. 根据权利要求60所述的电子设备,其中,所述处理电路被配置为:
    接收所述网络侧设备基于所述初始位置信息而配置的探测参考信号,其中,所述配置包括指定所述电子设备要在其上发送所述探测参考信号的细波束的序列号,以及
    向所述网络侧设备直接发送探测参考信号以及经由每个选定可重构智能表面向所述网络侧设备发送探测参考信号,
    其中,所述网络侧设备在接收到所述电子设备直接发送的探测参考 信号以及经由所述多个选定可重构智能表面发送的所有探测参考信号之后,将所述网络侧设备的接收波束成形矢量分别与从每个选定可重构智能表面到所述网络侧设备的位置方向进行对准,从而确定通过每个选定可重构智能表面从所述电子设备接收到的探测参考信号,
    所述网络侧设备针对经由每个选定可重构智能表面的细波束从所述电子设备接收到的探测参考信号进行测量从而选出每个选定可重构智能表面的候选细波束,以及基于所述候选细波束估计所述电子设备到该选定可重构智能表面的到达角度,以及
    所述网络侧设备基于所述到达角度,确定比所述初始位置信息更精确的增强位置信息。
  62. 根据权利要求60所述的电子设备,其中,所述处理电路被配置为从所述网络侧设备接收有关每个选定可重构智能表面的候选细波束的信息,以供用于所述电子设备后续与所述网络侧设备之间的通信。
  63. 一种用于无线通信的方法,包括:
    通过基于电子设备与在所述电子设备的服务范围内的用户设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,确定所述用户设备的初始位置信息。
  64. 一种用于无线通信的方法,包括:
    通过基于电子设备与为所述电子设备提供服务的网络侧设备之间的连接状态而从多个原始可重构智能表面选出的多个选定可重构智能表面,辅助所述网络侧设备确定所述电子设备的初始位置信息。
  65. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求63或64所述的用于无线通信的方法。
PCT/CN2023/088456 2022-04-22 2023-04-14 用于无线通信的电子设备和方法、计算机可读存储介质 WO2023202493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210428627.1 2022-04-22
CN202210428627.1A CN116981047A (zh) 2022-04-22 2022-04-22 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023202493A1 true WO2023202493A1 (zh) 2023-10-26

Family

ID=88419180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088456 WO2023202493A1 (zh) 2022-04-22 2023-04-14 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116981047A (zh)
WO (1) WO2023202493A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093267A (zh) * 2019-12-23 2020-05-01 华中科技大学 一种基于irs的ue位置确定方法、通信方法及系统
US20210302561A1 (en) * 2020-03-31 2021-09-30 Huawei Technologies Co., Ltd. Systems and methods for locating user equipment in a wireless network
WO2021221603A1 (en) * 2020-04-27 2021-11-04 Nokia Technologies Oy Ue positioning aided by reconfigurable reflecting surfaces such as intelligent reflecting surfaces (irs)
WO2022015965A1 (en) * 2020-07-17 2022-01-20 Google Llc Determining a position of user equipment by using adaptive phase-changing devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093267A (zh) * 2019-12-23 2020-05-01 华中科技大学 一种基于irs的ue位置确定方法、通信方法及系统
US20210302561A1 (en) * 2020-03-31 2021-09-30 Huawei Technologies Co., Ltd. Systems and methods for locating user equipment in a wireless network
WO2021221603A1 (en) * 2020-04-27 2021-11-04 Nokia Technologies Oy Ue positioning aided by reconfigurable reflecting surfaces such as intelligent reflecting surfaces (irs)
WO2022015965A1 (en) * 2020-07-17 2022-01-20 Google Llc Determining a position of user equipment by using adaptive phase-changing devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancement for UL AoA positioning", 3GPP TSG RAN WG1 MEETING #104-E, R1-2100237, 19 January 2021 (2021-01-19), XP051970869 *

Also Published As

Publication number Publication date
CN116981047A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US11991542B2 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2020238829A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
RU2739588C2 (ru) Оконечное устройство, базовая станция, способ и носитель информации
CN110602781A (zh) 电子设备、用户设备、无线通信方法和存储介质
US20230327831A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
US20240297775A1 (en) Electronic device and method used for wireless communication, and computer-readable storage medium
WO2018166368A1 (zh) 用于无线通信的电子设备和方法
WO2020238671A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10904814B2 (en) Electronic device and method for wireless communication
US20190090228A1 (en) User equipment and base station in wireless communications system, and wireless communications method
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021068817A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20240267108A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
WO2023202493A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP3442142B1 (en) Communication control device, terminal device, method, and program
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN116491150A (zh) 电子设备、无线通信方法和非暂态计算机可读存储介质
US10862561B2 (en) Electronic device and method for network control terminal and network node
CN113994724A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023134570A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023174102A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022253128A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20230379886A1 (en) Transmitting electronic device and receiving electronic device and methods for wireless communication
WO2023078163A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022213856A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791148

Country of ref document: EP

Kind code of ref document: A1