WO2020238671A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2020238671A1
WO2020238671A1 PCT/CN2020/090780 CN2020090780W WO2020238671A1 WO 2020238671 A1 WO2020238671 A1 WO 2020238671A1 CN 2020090780 W CN2020090780 W CN 2020090780W WO 2020238671 A1 WO2020238671 A1 WO 2020238671A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference value
communication device
electronic device
channel
processing circuit
Prior art date
Application number
PCT/CN2020/090780
Other languages
English (en)
French (fr)
Inventor
盛彬
徐平平
孙晨
Original Assignee
索尼公司
盛彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 盛彬 filed Critical 索尼公司
Priority to US17/611,922 priority Critical patent/US20220264248A1/en
Priority to CN202080037083.5A priority patent/CN113853806A/zh
Publication of WO2020238671A1 publication Critical patent/WO2020238671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of wireless communication technology, and specifically to device positioning in the Internet of Vehicles. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • location information is an important data that needs to be shared among vehicles in time to avoid accidents.
  • the vehicle can be positioned using cellular signals or satellite signals.
  • open environments such as suburban areas or highways, multipath and obstruction are negligible.
  • the global positioning system (GPS) signal is weak, and the cellular signal does not have a direct line of sight (LOS, It means that the wireless signal propagates in a straight line between the sending end and the receiving end without obstruction, so that it is impossible to obtain sufficiently accurate position information.
  • GPS global positioning system
  • LOS direct line of sight
  • an electronic device for wireless communication including: a processing circuit, configured to: based on channel statistical characteristics of a sidelink channel between a first communication device and a second communication device in the Internet of Vehicles , Determine whether the communication path between the first communication device and the second communication device is a direct view path or a non-direct view path; and if the communication path is a direct view path, use the information obtained through the direct view path for the first Cooperative positioning of the communication device and the second communication device.
  • a method for wireless communication including: determining the first communication device and the second communication device based on the channel statistical characteristics of the sidelink channel between the first communication device and the second communication device in the Internet of Vehicles 2. Whether the communication path between the communication devices is a direct view path or a non-direct view path; and if the communication path is a direct view path, use the information obtained through the direct view path for the first communication device and the second communication device Cooperative positioning.
  • an electronic device for wireless communication including: a processing circuit, configured to: obtain a reference value of channel statistical characteristics of a sidelink channel at each position, and the reference value is used to distinguish Whether the corresponding sidelink channel is a direct view path or a non-direct view path; and the reference value is provided to the communication device in the Internet of Vehicles.
  • a method for wireless communication including: obtaining a reference value of channel statistical characteristics of a sidelink channel at each position, and the reference value is used to distinguish whether the corresponding sidelink channel is a direct line of sight or Non-direct view path; and provide the reference value to the communication equipment in the Internet of Vehicles.
  • Computer program codes and computer program products for implementing the above-mentioned method for wireless communication and a computer on which the computer program codes for implementing the above-mentioned method for wireless communication are recorded are also provided Readable storage medium.
  • the direct view path and the non-direct view path are distinguished by the channel statistical characteristics of the sidelink channel in the Internet of Vehicles, and the information obtained through the direct view path is used for coordinated positioning, which can be used in various situations.
  • Communication equipment performs accurate positioning.
  • Fig. 1 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a subframe structure in an LTE-V2X system
  • Figure 3 shows an example of the measured results of Rice K factor
  • Figure 4 shows an example of coordinated positioning of vehicles
  • FIG. 5 shows an example of a flowchart of a positioning process performed by a roadside unit
  • Figure 6 shows another example of cooperative positioning of vehicles
  • Figure 7 shows another example of cooperative positioning of vehicles
  • Figure 8 shows a schematic diagram of the principle of multi-point positioning
  • Figure 9 shows a schematic diagram of an example of multi-point positioning
  • Fig. 10 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Figure 11 illustrates an example of the information flow between the base station and the vehicle
  • Figure 12 illustrates another example of the information flow between the base station and the vehicle
  • Figure 13 illustrates an example of the information flow between the RSU and the vehicle
  • Figure 14 illustrates another example of the information flow between the RSU and the vehicle
  • FIG. 15 shows a flowchart of a method for wireless communication according to an embodiment of the present application
  • Fig. 16 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 18 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • 20 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 21 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present disclosure can be implemented.
  • the cellular-based positioning technology supported by the fourth-generation mobile communication system includes, for example, Observed Time Difference of Arrival (OTDOA), Angle of Arrival+Time Advance (AOA+TA), and uplink Link Time of Arrival (Uplink Time of Arrival, UTOA) and Assisted GPS (A-GPS).
  • OTDOA Observed Time Difference of Arrival
  • AOA+TA Angle of Arrival+Time Advance
  • UDL Time of Arrival Uplink Time of Arrival
  • A-GPS Assisted GPS
  • sidelink is defined to be used for communication between vehicles and between road side units (RSU) and vehicles.
  • the sidelink can be used not only to transmit data, but also to measure the relative distance between the transceiver.
  • RSU road side units
  • a technology of using sidelink to locate the communication device in the vehicle network will be proposed.
  • the communication devices in the Internet of Vehicles may include, for example, vehicles or various communication devices (such as user equipment) or modules, RSUs, etc. on the vehicle.
  • Fig. 1 shows a block diagram of functional modules of an electronic device 100 for wireless communication according to an embodiment of the present application.
  • the electronic device 100 includes: a determining unit 101 configured to be based on the first Channel statistical characteristics of the sidelink channel between the communication device and the second communication device to determine whether the communication path between the first communication device and the second communication device is a LOS path or a Not Line of Sight (NLOS) path; and
  • the positioning unit 102 is configured to, if the communication path is a LOS, use the information obtained through the direct sight path for the coordinated positioning of the first communication device and the second communication device.
  • the determining unit 101 and the positioning unit 102 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example. Moreover, it should be understood that each functional unit in the electronic device shown in FIG. 1 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner. The same applies to other electronic device examples to be described later.
  • the electronic device 100 may, for example, be provided on the side of the first communication device or be communicably connected to the first communication device.
  • the first communication device may be a vehicle or an RSU.
  • the second communication device may also be a vehicle or an RSU.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as the first communication device itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory may be used to store programs and related data information that the first communication device needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, other communication devices, etc.), and the implementation form of the transceiver is not specifically limited here. The same applies to the subsequent description of other configuration examples of the electronic device on the communication device side.
  • the cellular wireless communication channel is a broadly stable random channel without correlated scattering, but the sidelink channel in the Internet of Vehicles is highly time-varying and unstable, and there is correlated scattering. Therefore, the statistical characteristics of the sidelink channel change with time and the propagation environment. .
  • the channel statistical characteristics of the sidelink channels corresponding to the direct viewing path and the non-direct viewing path are different.
  • the channel statistical characteristics may include, for example, one or more of Rice K factor (Ricean K-factor), Kurtosis factor (Kurtosis factor), and space-time-frequency channel correlation function. It should be understood that examples of channel statistical characteristics are not limited to this, but any other statistical characteristics that can distinguish between LOS paths and NLOS paths can be used.
  • the determining unit 101 is further configured to calculate channel statistical characteristics based on the reference signal from the second communication device received at the first communication device.
  • the reference signal may include a pilot signal or a training sequence, and the determining unit 101 performs channel estimation based on the reference signal, and calculates channel statistical characteristics based on the result of the channel estimation.
  • the first communication device works as the receiving end
  • the second communication device works as the sending end.
  • the subframe structure is shown in Figure 2.
  • pilot signals ie, demodulation reference signal DMRS
  • these pilot signals are known at the receiving end , Can be used to estimate channel parameters.
  • the transmitter can also send a dedicated training sequence.
  • the communication between the sending end and the receiving end is a half-duplex mode.
  • the vehicle can obtain information about the physical resources allocated by the base station for sidelink communication.
  • the base station first composes multiple vehicles into a cluster, and allocates a corresponding time-frequency resource block to each vehicle in the cluster.
  • each vehicle sends information on the allocated resource block in turn.
  • the sending vehicle can also receive information sent by other vehicles, so the information transmission between vehicles is a two-way mutual transmission.
  • the transceiver in the electronic device 100 may be configured to transmit the reference signal to the second communication device. That is, the first communication device can also work as a sender.
  • Equation (2) represents the m-th moment of the complex envelope of the channel parameters (Moment).
  • Figure 3 shows the measured results of Rice K factor. The horizontal axis and the vertical axis respectively represent the spatial position in meters, and the unit of Rice K factor is dB. It can be seen that Rice K factor has different values in different regions. When the Rice K factor is large, the communication path between the sender and the receiver tends to be judged as a LOS route, and vice versa.
  • the kurtosis of the channel parameter obtained through channel estimation can be calculated as follows: the ratio of the fourth moment of the channel parameter to the square of the second moment.
  • Kurtosis can be used to measure whether channel parameters have peaks relative to the normal distribution. Channel parameters with high peaks generally have obvious peaks near the average value, with a fast declining speed and obvious tails; while channel parameters with low peaks tend to be relatively smooth near the average value without spikes.
  • the kurtosis value is high, the communication path between the sending end and the receiving end tends to be judged as a LOS path, and vice versa.
  • the space-time-frequency correlation of the channel frequency response can be calculated as follows:
  • p 1 , p 2 represent the transmit antenna index
  • q 1 , q 2 represent the receive antenna index
  • n 1 , n 2 represent the subcarrier index
  • ⁇ t represents the time difference
  • ⁇ f represents the frequency interval
  • L represents the number of paths
  • ⁇ 1 represents the delay of path l.
  • the determining unit 101 is also configured to obtain a reference value of channel statistical characteristics from a base station or RSU, and to determine whether the communication path is a LOS path or a NLOS path by comparing the calculated channel statistical characteristics with the reference value.
  • the reference value is the reference value of Rice K factor.
  • the reference value is 5.
  • the reference value is the reference value of the kurtosis factor; in the case of using the space-time-frequency correlation function, the reference value can be defined as p 1 -p 2 , q 1 The value or range of the space-time-frequency correlation value in the case of -q 2 , n 1 -n 2 , ⁇ t.
  • reference values can be obtained by performing tests in advance and statistically analyzing the test results, for example.
  • these reference values may be different for different regions, so for example, they may be stored in a digital map and used as attributes of each node in the digital map.
  • the reference value may be sent periodically, or sent based on predetermined conditions, that is, sent in an event-driven mode. The operation and signaling flow related to the acquisition and transmission of the reference value will be described in detail in the subsequent second embodiment.
  • the positioning unit 102 may use the information obtained through the LOS path for the coordinated positioning of the first communication device and the second communication device .
  • Cooperative positioning means that the first communication device and the second communication device determine their respective positions through cooperative methods such as exchanging information. Since only the information obtained through the direct viewing diameter is used for positioning, the accuracy of positioning can be improved.
  • the information obtained through the LOS path may include the distance between the first communication device and the second communication device estimated based on the transmission of the LOS path, and the information transmitted through the LOS path.
  • the positioning operation for the vehicle can be executed by the vehicle, or by the RSU, or by a central processing device provided separately.
  • the positioning operation may be performed in a distributed manner by the positioning unit 102 of the electronic device 100 of each vehicle.
  • the positioning operation may be relatively concentratedly performed by the positioning unit 102 of the electronic device 100.
  • Non-Bayesian estimation treats the location of a communication device as an unknown constant, including algorithms such as Least Square (LS) and Maximum Likelihood (ML).
  • LS Least Square
  • ML Maximum Likelihood
  • the LS estimator does not consider the statistical information of noise
  • the ML estimator considers the statistical information of the noise source and maximizes the likelihood function.
  • the determining unit 101 determines that there is a LOS path between vehicle A and vehicle B, there is a LOS path between vehicle B and vehicle C, and vehicle A and vehicle C are blocked by vehicle B. There is no LOS path, as shown in Figure 4.
  • the location of the vehicle Indicates that the superscript l of z represents the iteration index, and the subscript M represents the vehicle name (in this example, A, B, or C); With abscissa And the ordinate Two elements; d MN represents the distance between vehicles M and N.
  • the NLOS path is not considered in the LS estimator, so the communication path between vehicles A and C is not considered.
  • vehicles A, B, and C estimate their respective positions and measure the distance between vehicles with LOS paths.
  • the distance between two vehicles with a LOS path can be obtained based on the TOA of the sidelink; the initial position estimates of vehicles A, B, and C can be obtained from GPS signals.
  • the positioning of vehicles A, B, and C can be performed by the RSU.
  • the vehicles send their initial position estimates and the distance between the two vehicles with LOS paths to the RSU via sidelink.
  • the RSU sets the iteration step size g and the number of iterations N, and sets the iteration index l to 1, and performs an iteration operation to estimate the positions of vehicles A, B, and C.
  • the LS estimation can be distributed by each vehicle.
  • FIG. 5 shows a flowchart of LS estimation performed by the RSU to locate vehicles A, B, and C. If the LS estimation is performed by each vehicle in a distributed manner, the step of reporting to the RSU is not included, and only the calculation is performed in the iteration with The one corresponding to itself.
  • Bayesian estimation includes, for example, minimum mean square error (MMSE) estimation and maximum posterior probability (Maximum A Posteriori, MAP) estimation.
  • MMSE minimum mean square error
  • MAP maximum posterior probability
  • the MMSE estimator obtains the mean value of the posterior distribution
  • the MAP estimator obtains the pattern of the posterior distribution.
  • the determining unit 101 determines that there is a LOS path between vehicle A and vehicle B, there is a LOS path between vehicle B and vehicle C, and there is no LOS between vehicle A and vehicle C due to being blocked by vehicle B. Diameter, as shown in Figure 7.
  • the vehicle is driving in a tunnel or underground parking lot with a weak GPS signal. In this case, the vehicle cannot obtain information about its location.
  • the positioning of the vehicle is divided into two stages: the initialization stage and the iteration stage.
  • z M represents the location of the vehicle or RSU (M takes the value of A, B, C or R); z M has two elements: the abscissa x M and the ordinate y M ; d MR represents the distance between the vehicle M and the RSU Distance; b R ( ⁇ ) represents the confidence information sent by the RSU. Since the position of the RSU is determined, its confidence information b R ( ⁇ ) is a delta function.
  • the RSU can broadcast b R ( ⁇ ) to the vehicle through sidelink. After receiving the confidence information, the vehicle M can measure the TOA of the sidelink. To measure the distance between the vehicle M and the RSU, and calculate and output their respective confidence information.
  • the initial confidence information of vehicle A can be calculated by the following formula (13):
  • the initial confidence information of vehicle B and vehicle C are similarly calculated.
  • the iterative stage of MAP estimation is described with reference to FIG. 7.
  • new confidence information is calculated based on the previous confidence information.
  • only the LOS path is considered, that is, only the communication path between A and B and the communication path between B and C are considered.
  • the number of iterations is still set to N, the initial value of the iteration index 1 is set to 2 and each iteration is incremented by 1, and the calculation of the confidence information in the iteration stage is illustrated by taking the vehicle B as an example, as shown in the following equation (14).
  • the subscript M of b indicates the sending vehicle of the confidence information (here, B), and the superscript l of b indicates the iteration index.
  • d MN represents the distance between vehicles M and N (where M and N are one of A, B, and C respectively), which can be calculated based on the TOA of the sidelink between vehicles M and N.
  • the MAP estimator can be implemented in a centralized or distributed manner.
  • a central processing device can be set.
  • Each communication device such as a vehicle and RSU provides the distance between the communication devices based on the LOS diameter measurement to the central processing device, and the central processing device calculates each vehicle based on the above equations s position.
  • each vehicle broadcasts its confidence information through sidelink, and infers its own position based on the distance from other vehicles and the information received from other vehicles such as confidence information.
  • the positioning unit 102 may also perform multi-point positioning (Multilateration) based on the information obtained through the LOS path. Specifically, for example, if the first communication device receives sidelink signals from at least three second communication devices (the second communication devices are other vehicles or RSUs), and the communication between the first communication device and the at least three second communication devices If there is a LOS path, if the location information of at least three second communication devices is known, the first communication device can estimate its own location based on these sidelink signals.
  • Multilateration multi-point positioning
  • Fig. 8 shows an example of a positioning schematic diagram in this case.
  • the OTDOA technology can be used to estimate the location of the first communication device.
  • the second communication device is shown as an RSU here, it is not limited to this, and the second communication device may also be a vehicle or a communication module on the vehicle.
  • the first user equipment measures the TOA of the three LOS path signals from RSU1, RSU2, and RSU3, which are represented as ⁇ 1 , ⁇ 2 , and ⁇ 3 respectively ; if RSU1 is selected as the reference RSU, then RSU1 and RSU2 are two relative to RSU1.
  • Figure 9 shows a schematic diagram of an example of multi-point positioning, in which there are LOS paths between vehicles A, B and RSU and the target vehicle, and there is no LOS path between vehicle C and the target vehicle. Therefore, the target vehicle uses vehicles from vehicle A, B and RSU's positioning signal to determine its own position.
  • vehicles A, B, and C, and RSU all know their respective locations
  • vehicles A, B, C, and RSU simultaneously send positioning signals to the target vehicle
  • the target vehicle uses the method of this application, for example To determine whether each communication path is a LOS path or a NLOS path, and then use the positioning signals of vehicles A, B and RSU corresponding to the determined LOS path to estimate TOA, and use the above OTDOA technology to estimate the location of the target vehicle.
  • the electronic device 100 distinguishes the direct view path and the non-direct view path based on the channel statistical characteristics of the sidelink channel in the Internet of Vehicles, and uses the information obtained through the direct view path for cooperative positioning. Accurate positioning of communication equipment in various situations.
  • Channel statistical characteristics used to distinguish the LOS path and the NLOS path can be obtained by pre-measurement and statistical analysis.
  • Channel statistical characteristics can be provided by the base station such as gNB to the communication device (vehicle), and can also be provided by the RSU to the communication device (vehicle).
  • FIG. 10 shows a block diagram of functional modules of the electronic device 200, including: an acquiring unit 201 configured to acquire the channel of the sidelink channel at each position The reference value of the statistical characteristic, the reference value is used to distinguish whether the corresponding sidelink channel is a direct view path or a non-direct view path; and the providing unit 202 is configured to provide the reference value to the communication device in the Internet of Vehicles.
  • the obtaining unit 201 and the providing unit 202 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example.
  • the processing circuit may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 10 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may be provided on the base station side or communicably connected to the base station, or may be provided on the RSU side or communicably connected to the RSU, for example.
  • the base station described in this application may also be a Transmit Receive Point (TRP) or an Access Point (Access Point, AP).
  • TRP Transmit Receive Point
  • AP Access Point
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as a base station or the RSU itself, and may also include external devices such as a memory, a transceiver (not shown), and the like.
  • the memory can be used to store programs and related data information that the base station or RSU needs to perform to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, user equipment, other base stations, or RSUs, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the acquisition unit 201 is configured to acquire a reference value by performing measurement.
  • the measurement operation may be performed in advance.
  • one or more measuring vehicles continuously send pilot signals, and the receiving vehicle as the receiving end performs channel estimation based on the received pilot signals, and calculates the statistical characteristics of the channel based on the results of the channel estimation, and obtains the corresponding area such as The reference value of the statistical characteristics of the channel on a certain section of road.
  • the base station or RSU unit can save the measured reference value.
  • the information of the reference value obtained by the measurement may be associated with the digital map, so that the information of the reference value of the channel statistical characteristic of the node is stored in each node of the digital map.
  • the base station or RSU can obtain the reference value of the corresponding location by looking up the digital map.
  • the base station or the RSU (specifically, the providing unit 202) may provide at least a part of the digital map to the communication device.
  • the communication device can compare its currently measured channel statistical characteristics with the reference value at the corresponding position in the digital map to determine whether the communication path is the LOS path or the NLOS path.
  • the storage form of the reference value is not limited to this, and this is only an example.
  • the channel statistical characteristics may include one or more of Rice K factor, kurtosis factor, and space-time-frequency channel correlation function. Specific descriptions of examples of these channel statistical characteristics have been given in the first embodiment. This will not be repeated.
  • the electronic device 200 is located at the base station side, and the providing unit 202 may provide the reference value through the Uu port.
  • the providing unit 202 may provide the reference value through one of a physical broadcast channel (Physical Broadcast Channel, PBCH) and a physical downlink shared channel (Physical Downlink shared channel, PDSCH).
  • the reference value may be included in one of the following: basic configuration information, remaining minimum system information (RMSI), other system information and data information.
  • RMSI remaining minimum system information
  • the provision may be performed periodically or when a predetermined condition is met, that is, based on event-driven.
  • the electronic device 100 is located, for example, on the side of the communication device, and its transceiver obtains the reference value via the downlink between the base station and the communication device.
  • the downlink is, for example, one of PBCH and PDSCH.
  • FIGS. 11 and 12 show examples of the information flow of the base station to provide the reference value through the Uu port.
  • the vehicle uses a synchronization signal block (SSB) to synchronize with the downlink cellular signal.
  • SSB synchronization signal block
  • the synchronization channel and the broadcast channel are transmitted in the form of SSB, where the broadcast channel can provide basic configuration information, and the reference value can be included in the basic configuration information.
  • the vehicle when the reference value is not included in the basic configuration information, as shown in FIG. 11, after the vehicle obtains downlink synchronization, it can also read the PBCH to find the physical downlink control channel (Physical Downlink Control Channel, PDCCH), the PDCCH schedules the PDSCH, and vehicles 1 and 2 can read the RMSI provided via the PDSCH to obtain the information of the reference value included therein.
  • the RMSI provides scheduling information for all other system information blocks.
  • the vehicles 1 and 2 read other system information provided via the PDSCH.
  • vehicle 1 and vehicle 2 After obtaining the information of the reference value, vehicle 1 and vehicle 2 obtain the channel statistical characteristics of the corresponding sidelink by measuring the sidelink signals from other vehicles or RSUs as described in the first embodiment, and determine the channel statistical characteristics and the reference value based on the channel statistical characteristics and the reference value. Determine whether the corresponding sidelink is the LOS path or the NLOS path. At the same time, vehicles 1 and 2 can also send reference signals such as pilot signals or training sequences to other vehicles.
  • RRC Radio Resource Control
  • the vehicle can also initiate a request to the base station through the Physical Random Access Channel (PRACH), and then read other systems via PDSCH Information about the reference value in the message.
  • PRACH Physical Random Access Channel
  • the vehicle can also initiate a request to the base station through the Physical Random Access Channel (PRACH), and then read other systems via PDSCH Information about the reference value in the message.
  • PRACH Physical Random Access Channel
  • Fig. 12 shows an example of an information flow in a case where an RRC connection is established between a base station and a vehicle.
  • the vehicle uses SSB to synchronize with the downlink cellular signal.
  • the RRC connection mode is established between the vehicle and the base station.
  • the base station allocates downlink physical resources to the vehicle, and sends the reference value on the resource.
  • the vehicle reads the information of the reference value via the PDSCH.
  • vehicle 1 and vehicle 2 After obtaining the information of the reference value, vehicle 1 and vehicle 2 obtain the channel statistical characteristics of the corresponding sidelink by measuring sidelink signals from other vehicles or RSUs as described in the first embodiment, and based on the channel statistical characteristics and The reference value is used to determine whether the corresponding sidelink is a LOS path or a NLOS path. At the same time, vehicles 1 and 2 can also send reference signals such as pilot signals or training sequences to other vehicles.
  • the electronic device 200 is located on the RSU side, and the providing unit 202 may provide the reference value through the PC5 port.
  • the providing unit 202 may provide the reference value through one of a physical sidelink broadcast channel (Physical Sidelink Broadcast Channel, PSBCH) and a physical sidelink shared channel (Physical Sidelink Shared Channel, PSSCH).
  • the reference value may be included in one of the following: basic configuration information, sidelink control information (Sidelink control information, SCI), and data information.
  • the provision may be performed periodically or when a predetermined condition is met, that is, based on event-driven.
  • the electronic device 100 is located on the side of the communication device, for example, and its transceiver obtains the reference value via the sidelink between the RSU and the communication device.
  • the sidelink is, for example, one of PSBCH and PSSCH.
  • Figures 13 and 14 respectively show an example of the information flow of the RSU through the PC5 port to provide reference values.
  • the vehicle uses the bypass synchronization signal (primary synchronization signal + secondary synchronization signal (PSSS+SSSS)) in the PSBCH to synchronize with the sidelink.
  • the reference value information can be included in the PSBCH data payload, and the vehicle can read the reference value information from the PSBCH.
  • the RSU periodically sends the reference value.
  • the vehicle after the vehicle is synchronized with the sidelink, it initiates a request to the base station through PRACH to establish a sidelink connection.
  • the base station allocates sidelink physical resources to the vehicle (not shown in Figure 14).
  • the vehicle then reads the information of the reference value of the channel statistical characteristics sent by the RSU on the physical resource via the PSSCH. At this time, the operation of the RSU to send the reference value is event-driven.
  • the RSU may also transmit the information of the reference value via the Physical Sidelink Control Channel (PSCCH). At this time, the information of the reference value is included in the SCI.
  • PSCCH Physical Sidelink Control Channel
  • vehicle 1 and vehicle 2 After obtaining the information of the reference value, vehicle 1 and vehicle 2 obtain the channel statistical characteristics of the corresponding sidelink by measuring the sidelink signals from other vehicles or RSUs as described in the first embodiment, and determine the channel statistical characteristics and reference values based on the channel statistical characteristics Determine whether the corresponding sidelink is the LOS path or the NLOS path. At the same time, vehicles 1 and 2 can also send reference signals such as pilot signals or training sequences to other vehicles.
  • the electronic device 200 can provide the communication device with a reference value of the channel statistical characteristics of the sidelink between the communication devices, so that the communication device can determine the LOS path and the NLOS path based on the reference value.
  • FIG. 15 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: based on the channel statistical characteristics of the sidelink channel between the first communication device and the second communication device in the Internet of Vehicles, It is determined whether the communication path between the first communication device and the second communication device is a direct view path or a non-direct view path (S13); and if the communication path is a direct view path, the information obtained through the direct view path is used for Cooperative positioning of the first communication device and the second communication device (S14).
  • the method can be executed at the side of the first communication device.
  • the first communication device and the second communication device may be vehicles or RSUs.
  • the channel statistical characteristics may include one or more of Rice K factor, kurtosis factor, and space-time-frequency channel correlation function.
  • the above method may further include step S12: calculating channel statistical characteristics based on the reference signal from the second communication device received at the first communication device.
  • the reference signal may include, for example, a pilot signal or a training sequence.
  • step S12 channel estimation is performed based on the reference signal, and channel statistical characteristics are calculated based on the result of the channel estimation.
  • the above method may further include step S11: obtaining a reference value of channel statistical characteristics from the base station or RSU.
  • step S13 it is determined whether the communication path is a LOS path or a NLOS path by comparing the channel statistical characteristics calculated in step S12 with the reference value acquired in step S11.
  • the reference value may be acquired via the downlink between the base station and the first communication device.
  • the downlink includes, for example, one of PBCH and PDSCH.
  • the information of the reference value is included in one of the following: basic configuration information, minimum system information, other system information and data information.
  • the reference value may be obtained via the sidelink between the RSU and the first communication device.
  • the sidelink includes one of PSBCH and PSSCH, for example.
  • the information of the reference value is included in one of the following: basic configuration information, sidelink control information, and data information.
  • the reference value can be included in the digital map and used as the attribute of each node in the digital map.
  • the reference value may be sent periodically or based on a predetermined condition.
  • step S14 the information obtained through the LOS can be used to perform coordinated positioning in a Bayesian estimation or a non-Bayesian estimation method.
  • the information obtained through LOS can also be used to perform multi-point positioning.
  • the Bayesian estimation method when there is a LOS path between the first communication device and the second communication device, it can be based at least on the distance between the first communication device and the second communication device and the second communication device.
  • the information sent to the first communication device determines the location of the first communication device.
  • the central processing device when there is a direct line of sight between the first communication device and the second communication device, information about the distance between the first communication device and the second communication device can be provided To the central processing device, so that the central processing device centrally determines the location of all communication equipment.
  • the above method may further include: sending a reference signal to the second communication device. That is, the transmission on the sidelink is two-way mutual transmission.
  • FIG. 16 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: obtaining a reference value of channel statistical characteristics of a sidelink channel at each position, and the reference value is used to distinguish corresponding Whether the sidelink channel is a direct view path or a non-direct view path (S21); and the reference value is provided to the communication device in the car network (S22).
  • This method can be executed on the base station side or the RSU side.
  • the reference value can be obtained by measuring.
  • the channel statistical characteristics include one or more of Rice K factor, kurtosis factor, and space-time-frequency channel correlation function.
  • the reference value can be provided through the Uu interface or the PC5 interface. For example, the reference value may be provided periodically, or provided when a predetermined condition is satisfied.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 200 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a different place from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can operate as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 100 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 17 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 17 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on the data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiver of the electronic device 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 may obtain and provide the reference value of the channel statistical characteristic of the sidelink channel to the communication device by executing the functions of the obtaining unit 201 and the providing unit 202.
  • FIG. 18 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 18 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the storage 852, and the network interface 853 are the same as the controller 821, the storage 822, and the network interface 823 described with reference to FIG. 17.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 17 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 18 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the aforementioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include, for example, an RF circuit 864.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver of the electronic device 200 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 may acquire and provide the reference value of the channel statistical characteristic of the sidelink channel to the communication device by executing the functions of the acquiring unit 201 and the providing unit 202.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915, one or more antennas 916, bus 917, battery 918, and auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 19, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 19 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 19 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connection.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 19 via a feeder line, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the transceiver of the electronic device 100 may be implemented by the wireless communication interface 912. At least part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may execute the functions of the determining unit 101 and the positioning unit 102 to distinguish between the LOS path and the NLOS path and use the information obtained through the LOS path to perform cooperative positioning of the communication device.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or an OLED display, and displays images of navigation functions or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 20 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 20 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 20 via a feeder line, and the feeder line is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the transceiver of the electronic device 100 may be implemented by the wireless communication interface 912. At least part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 may execute the functions of the determining unit 101 and the positioning unit 102 to distinguish between the LOS path and the NLOS path and use the information obtained through the LOS path to perform cooperative positioning of the communication device.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 941.
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above method according to the embodiment of the present disclosure can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as the general-purpose computer 2100 shown in FIG. 21) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, can perform various functions and so on.
  • a central processing unit (CPU) 2101 performs various processes in accordance with a program stored in a read only memory (ROM) 2102 or a program loaded from a storage portion 2108 to a random access memory (RAM) 2103.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2101 executes various processes and the like is also stored as needed.
  • the CPU 2101, ROM 2102, and RAM 2103 are connected to each other via a bus 2104.
  • the input/output interface 2105 is also connected to the bus 2104.
  • the following components are connected to the input/output interface 2105: input part 2106 (including keyboard, mouse, etc.), output part 2107 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 2108 (including hard disk, etc.), communication part 2109 (including network interface card such as LAN card, modem, etc.).
  • the communication section 2109 performs communication processing via a network such as the Internet.
  • the driver 2110 can also be connected to the input/output interface 2105 as required.
  • Removable media 2111 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 2110 as needed, so that the computer programs read out therefrom are installed into the storage portion 2108 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2111.
  • this storage medium is not limited to the removable medium 2111 shown in FIG. 21 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 2111 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2102, a hard disk included in the storage portion 2108, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but it is not necessarily performed in chronological order. Some steps can be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定第一通信设备与第二通信设备之间的通信路径是直视径还是非直视径;以及如果该通信路径是直视径,则将通过该直视径获得的信息用于第一通信设备和第二通信设备的协作定位。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2019年5月24日提交中国专利局、申请号为201910440421.9、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及车联网中的设备定位。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在车联网的场景中,位置信息是一个重要的数据,需要在车辆间及时分享,以避免事故的发生。例如,车辆可以通过蜂窝信号或卫星信号进行定位。在开阔环境中,比如在城郊或高速公路上,多径和遮挡是可以忽略的。此时,不论是采用蜂窝信号或是卫星信号,都可以获得较高的定位精度。但是,当车辆处在隧道、地下车库或其他多径和遮挡严重的区域中时,全球定位系统(Global positioning system,GPS)信号较弱,而蜂窝信号又没有直视(Line of sight,LOS,表示无线信号在发送端和接收端之间无遮挡地直线传播)径,因而无法获得足够精确的位置信息。鉴于此,期望提供一种适合车辆网场景下应用的准确的定位方法。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包 括:处理电路,被配置为:基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定第一通信设备与第二通信设备之间的通信路径是直视径还是非直视径;以及如果该通信路径是直视径,则将通过该直视径获得的信息用于第一通信设备和第二通信设备的协作定位。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定第一通信设备与第二通信设备之间的通信路径是直视径还是非直视径;以及如果该通信路径是直视径,则将通过该直视径获得的信息用于第一通信设备和第二通信设备的协作定位。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:获取各个位置处的sidelink信道的信道统计特性的参考值,该参考值用于区分相应sidelink信道是直视径还是非直视径;以及将该参考值提供给车联网中的通信设备。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:获取各个位置处的sidelink信道的信道统计特性的参考值,该参考值用于区分相应sidelink信道是直视径还是非直视径;以及将该参考值提供给车联网中的通信设备。
依据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法通过基于车联网中sidelink信道的信道统计特性来区分直视径和非直视径,并且利用通过直视径获得的信息进行协作定位,可以在各种情形下对通信设备进行准确的定位。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细 说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图2示出了LTE-V2X系统中的子帧结构的示意图;
图3示出了莱斯K因子的实测结果的示例;
图4示出了车辆的协作定位的一个示例;
图5示出了由路侧单元执行定位处理的流程图的示例;
图6示出了车辆的协作定位的另一个示例;
图7示出了车辆的协作定位的另一个示例;
图8示出了多点定位的原理的示意图;
图9示出了多点定位的一个实例的示意图;
图10是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图11图示了基站与车辆之间的信息流程的一个示例;
图12图示了基站与车辆之间的信息流程的另一个示例;
图13图示了RSU与车辆之间的信息流程的一个示例;
图14图示了RSU与车辆之间的信息流程的另一个示例;
图15示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图16示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图17是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图18是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图19是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图20是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图21是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
目前,第四代移动通信系统支持的基于蜂窝的定位技术例如包括观察到达时间差(Observed Time Difference of Arrival,OTDOA)、到达角加时间提前量(Angle of Arrival+Time Advance,AOA+TA)、上行链路到达时间(Uplink Time of Arrival,UTOA)和辅助全球定位系统(Assisted GPS,A-GPS)。然而,当车辆处于多径和遮挡严重的区域中时,由于蜂窝信号没有LOS径,GPS信号较弱,上述技术无法对车辆进行正确的定位。
在车联网中,定义了sidelink用于车辆之间以及路侧单元(Road side unit,RSU)与车辆之间的通信。该sidelink不仅可以用于传输数据,还 可以用于测量收发端之间的相对距离。在本实施例中,将提出一种利用sidelink进行车辆网中的通信设备的定位的技术。其中,车联网中的通信设备例如可以包括车辆或车辆上的各种通信设备(比如用户设备)或模块、RSU等。
图1示出了根据本申请的一个实施例的用于无线通信的电子设备100的功能模块框图,如图1所示,电子设备100包括:确定单元101,被配置为基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定第一通信设备与第二通信设备之间的通信路径是LOS径还是非直视(Not Line of sight,NLOS)径;以及定位单元102,被配置为如果该通信路径是LOS,则将通过该直视径获得的信息用于第一通信设备和第二通信设备的协作定位。
其中,确定单元101和定位单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图1中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。这同样适用于随后要描述的其他电子设备的示例。
电子设备100例如可以设置在第一通信设备侧或者可通信地连接到第一通信设备。第一通信设备可以为车辆或者RSU。类似地,第二通信设备也可以为车辆或者RSU。
这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为第一通信设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储第一通信设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、其他通信设备等等)间的通信,这里不具体限制收发器的实现形式。这同样适用于随后关于通信设备侧的电子设备的其他配置示例的描述。
蜂窝无线通信信道是广义稳定的随机信道且没有相关散射,但是车联网中的sidelink信道是高度时变且不稳定的,存在相关散射,因此sidelink信道的统计特性随时间和传播环境的变化而变化。尤其地,直视径和非直视径对应的sidelink信道的信道统计特性不同。该信道统计特 性例如可以包括莱斯K因子(Ricean K-factor)、峰度因子(Kurtosis factor)和空时频信道相关函数中的一个或多个。应该理解,信道统计特性的示例并不限于此,而是可以采用任何其他可以区分LOS径和NLOS径的统计特性。
在一个示例中,确定单元101还被配置为基于在第一通信设备处接收到的来自第二通信设备的参考信号来计算信道统计特性。例如,参考信号可以包括导频信号或者训练序列,确定单元101基于该参考信号进行信道估计,并基于信道估计的结果来计算信道统计特性。在该示例中,第一通信设备作为接收端工作,第二通信设备作为发送端工作。
当系统基于LTE-V2X标准工作时,子帧结构如图2所示,每个子帧中有4个导频信号(即,解调参考信号DMRS),这些导频信号在接收端是已知的,可以用于估计信道参数。此外,为了提高信道估计的精度,发送端也可以发送专用的训练序列。
此外,发送端和接收端之间的通信是半双工的模式。在有蜂窝信号覆盖的区域,车辆可以获得基站为其分配的用于sidelink通信的物理资源信息。基站首先将多个车辆组成一个簇(cluster),为簇中的每个车辆分配相应的时频资源块,在通信期间,每个车辆轮流在为其分配的资源块上发送信息。当一个车辆发送时,其他车辆处于接收状态而不发送信息。但是,发送车辆也可以接收其他车辆发送的信息,因此车辆间的信息传输是双向的互传。类似地,在没有蜂窝信号覆盖的区域,车辆也可以自发地组成一个簇,采用分布式调度方案,从预留的资源池中选取资源块用于通信,并通过分布式阻塞控制技术避免选取发送时间的冲突。在这种情况下,车辆间的信息传输也是上述双向互传的方式。因此,电子设备100中的收发器可以被配置为向第二通信设备发送参考信号。即,第一通信设备也可以作为发送端工作。
以下示出作为信道统计特性的示例的莱斯K因子的计算。假设通过信道估计得到N个信道参数的复包络(Envelope)值{r(n),n=0,1,...,N-1},莱斯K因子可以由下式进行估计:
Figure PCTCN2020090780-appb-000001
其中,
Figure PCTCN2020090780-appb-000002
式(2)表示信道参数复包络的第m阶矩(Moment)。图3示出了莱斯K因子的实测结果,横轴和纵轴分别代表空间位置,单位为米,莱斯K因子的单位为dB。可以看出,莱斯K因子在不同的区域有不同的取值。当莱斯K因子较大时,倾向于将发送端和接收端之间的通信路径判断为LOS径,反之倾向于判断为NLOS径。
此外,在采用峰度因子作为信道统计特性的情况下,可以如下计算通过信道估计得到的信道参数的峰度:信道参数的四阶矩与二阶矩的平方的比值。峰度可用于衡量信道参数是否相对于正态分布有峰值。具有高峰度的信道参数在平均值附近一般具有明显的峰值,下降速度快并且有明显的尾部;而具有低峰度的信道参数倾向于在平均值附近比较平缓,没有尖峰。当峰度值较高时,倾向于将发送端和接收端之间的通信路径判断为LOS径,反之倾向于判断为NLOS径。
在采用空时频相关函数作为信道统计特性的情况下,可以如下计算信道频率响应的空时频相关:
Figure PCTCN2020090780-appb-000003
其中,p 1、p 2表示发送天线索引,q 1、q 2表示接收天线索引,n 1、n 2表示子载波索引,Δt表示时间差,Δf表示频率间隔,L表示路径数,
Figure PCTCN2020090780-appb-000004
表示路径l的路径增益,τ 1表示路径l的延时。当空间和时间间隔增加时,NLOS分量的相关性将接近零,而LOS分量的相关性的绝对值随着空间和时间间隔的改变而恒定。基于此,可以利用上述空时频相关的计算值来区分NLOS径和LOS径。
例如,确定单元101还被配置为从基站或RSU获取信道统计特性的参考值,并通过将所计算的信道统计特性与该参考值相比较来确定通信 路径是LOS径还是NLOS径。
例如,在采用莱斯K因子的情况下,该参考值为莱斯K因子的参考值,示例性地,该参考值为5,当计算的莱斯K因子大于5时,将通信路径判断为LOS径,而当计算的莱斯K因子小于5时,将通信路径判断为NLOS径。类似地,在采用峰度因子的情况下,该参考值为峰度因子的参考值;在采用空时频相关函数的情况下,该参考值可以为在预定义p 1-p 2、q 1-q 2、n 1-n 2、Δt的情况下的空时频相关值的取值或取值范围。
这些参考值例如可以通过预先进行测试并且对测试结果统计分析而获得的。并且,这些参考值可以是针对不同的区域而不同的,因此例如可以保存在数字地图中,并且作为数字地图中各个节点的属性。参考值可以是周期性地发送的,也可以是基于预定条件而发送的、即采用事件驱动模式来发送。将在后续的第二实施例中详细描述有关参考值的获取和传输的操作和信令流程。
如果确定单元101确定第一通信设备与第二通信设备之间的通信路径为LOS径,则定位单元102可以将通过该LOS径获得的信息用于第一通信设备和第二通信设备的协作定位。协作定位指的是第一通信设备和第二通信设备通过交互信息等协作的方法确定各自的位置。由于仅采用通过直视径获得的信息来进行定位,可以提高定位的精度。
例如,通过LOS径获得的信息可以包括基于LOS径的传输估算的第一通信设备与第二通信设备之间的距离、通过LOS径传输的信息等。对于车辆(通信设备)的定位操作可以由车辆执行,也可以由RSU执行,还可以由另外设置的中央处理装置来集中执行。例如,在电子设备100位于车辆中时,定位操作可以由各个车辆的电子设备100的定位单元102分布式地执行。在电子设备100位于RSU中时,定位操作可以由电子设备100的定位单元102相对集中地执行。
根据是否将通信设备的位置信息看做是一个随机变量,协作定位技术可以分为非贝叶斯估计(Non-Bayesian estimation)和贝叶斯估计两类。非贝叶斯估计将通信设备的位置看做一个未知的常量,包括最小二乘法(Least Square,LS)和最大似然(Maximum Likelihood,ML)等算法。 其中,LS估计器不考虑噪声的统计信息,ML估计器考虑噪声源的统计信息并最大化似然函数。
下面参照图4所示的具体示例来描述基于使用LS估计器的非贝叶斯估计算法的定位处理。
假设参与定位的车辆有三辆,分别是车辆A、车辆B和车辆C。例如,确定单元101根据sidelink信道的统计特性,判断出车辆A与车辆B之间有LOS径,车辆B与车辆C之间有LOS径,车辆A与车辆C之间由于受到车辆B的阻挡,没有LOS径,如图4所示。
车辆的位置用
Figure PCTCN2020090780-appb-000005
表示,z的上标l表示迭代索引,下标M表示车辆名称(在本示例中为A、B或C);
Figure PCTCN2020090780-appb-000006
有横坐标
Figure PCTCN2020090780-appb-000007
和纵坐标
Figure PCTCN2020090780-appb-000008
两个元素;d MN表示车辆M、N之间的距离。在LS估计器中不考虑NLOS径,因此不考虑车辆A与C之间的通信路径。
首先,车辆A、B和C估计其各自的位置并测量存在LOS径的车辆之间的距离。其中,存在LOS径的两辆车之间的距离可以基于sidelink的TOA获得;车辆A、B、C的初始位置估计可以由GPS信号获得。
作为一个示例,可以由RSU来进行车辆A、B和C的定位。在这种情况下,车辆将各自的初始位置估计和存在LOS径的两辆车之间的距离通过sidelink发送至RSU。RSU设置迭代步长g和迭代次数N,并将迭代索引l设置为1,执行迭代操作,以估计车辆A、B和C的位置。作为另一个示例,可以由各个车辆分布式地进行LS估计。
例如,车辆A的位置
Figure PCTCN2020090780-appb-000009
由下式(4)确定:
Figure PCTCN2020090780-appb-000010
其中:
Figure PCTCN2020090780-appb-000011
Figure PCTCN2020090780-appb-000012
车辆B的位置
Figure PCTCN2020090780-appb-000013
由下式(7)确定:
Figure PCTCN2020090780-appb-000014
其中:
Figure PCTCN2020090780-appb-000015
Figure PCTCN2020090780-appb-000016
车辆C的位置
Figure PCTCN2020090780-appb-000017
由下式(10)确定:
Figure PCTCN2020090780-appb-000018
在上述迭代完成(l=N时)后,可以得到车辆A、B和C的位置。为了便于理解,图5示出了由RSU执行LS估计以对车辆A、B和C进行定位的流程图。如果由各个车辆分布式地进行LS估计,则不包括向RSU上报的步骤,且在迭代中仅计算
Figure PCTCN2020090780-appb-000019
Figure PCTCN2020090780-appb-000020
中对应于自身的一个。
另一方面,贝叶斯估计例如包括最小均方误差(Minimum Mean Squared Error,MMSE)估计和最大后验概率(Maximum A Posteriori,MAP)估计。其中,MMSE估计器得到后验分布的均值,MAP估计器得到后验分布的模式。
下面参照图6和图7所示的具体示例来描述基于使用MAP估计器的贝叶斯估计算法的定位处理。
类似地,假设参与定位的车辆有三辆,分别是车辆A、车辆B和车辆C。确定单元101根据sidelink信道的统计特性,判断出车辆A与车辆B之间有LOS径,车辆B与车辆C之间有LOS径,车辆A与车辆C之间由于受到车辆B的阻挡,没有LOS径,如图7所示。
假设车辆在GPS信号较弱的隧道或地下停车场中行驶,在这种情况下,车辆无法获得关于其位置的信息。车辆的定位分为两个阶段:初始化阶段和迭代阶段。
初始化阶段的示意图如图6所示。其中,z M表示车辆或RSU的位置(M取值为A、B、C或R);z M有横坐标x M和纵坐标y M两个元素;d MR表示车辆M与RSU之间的距离;b R(·)表示RSU发送的置信信息。由于RSU的位置是确定的,所以它的置信信息b R(·)是δ函数,RSU可以通过sidelink向车辆广播b R(·),车辆M在接收到该置信信息之后可以通过测量sidelink的TOA来测量车辆M与RSU之间的距离,并分别计算和输出各自的置信信息。
下面以车辆A为例进行说明。其中,
Figure PCTCN2020090780-appb-000021
表示车辆A的位置的后验概率分布,如下式(11)所示:
Figure PCTCN2020090780-appb-000022
其中,
Figure PCTCN2020090780-appb-000023
其中,
Figure PCTCN2020090780-appb-000024
表示距离估计的噪声方差。车辆A的初始置信信息可由下式(13)计算:
Figure PCTCN2020090780-appb-000025
车辆B和车辆C的初始置信信息也类似地计算得到。
接下来,参照图7描述MAP估计的迭代阶段,在每次迭代中,基于前一次的置信信息来计算新的置信信息。并且,在迭代中,仅考虑LOS径,即仅考虑A和B之间的通信路径以及B和C之间的通信路径。仍然将迭代次数设置为N,迭代索引l的初始值设置为2且每次迭代递增1,以车辆B作为示例说明迭代阶段置信信息的计算,如下式(14)所示。
Figure PCTCN2020090780-appb-000026
其中,
Figure PCTCN2020090780-appb-000027
表示置信信息,b的下标M表示置信信息的发送车辆(这里为B),b的上标l表示迭代索引。
其中,
Figure PCTCN2020090780-appb-000028
Figure PCTCN2020090780-appb-000029
Figure PCTCN2020090780-appb-000030
其中,d MN表示车辆M、N(其中,M、N分别为A、B和C之一)之间的距离,可以基于车辆M和N之间的sidelink的TOA计算得到。上述迭代在l=N时结束,最终输出车辆A、B和C的车辆位置的置信信息。
其中,MAP估计器可以以集中方式或分布式方式实现。在集中定位方式中,例如可以设置中央处理装置,各个通信设备比如车辆和RSU将基于LOS径测量得到的通信设备之间的距离提供给中央处理装置,中央处理装置基于上述各式来计算各个车辆的位置。在分布式定位方式中,各个车辆通过sidelink广播其置信信息,并且基于与其他车辆之间的距离和从其他车辆接收到的信息比如置信信息来推断自身的位置。
以上描述了基于通过LOS径获得的信息执行通信设备的协作定位的示例,这并不是限制性的。定位单元102还可以基于通过LOS径获得的信息来执行多点定位(Multilateration)。具体地,例如,如果第一通信设备从至少三个第二通信设备(第二通信设备为其他车辆或RSU)接收到sidelink信号,且第一通信设备与至少三个第二通信设备之间均存在LOS径,则在至少三个第二通信设备的位置信息已知的情况下,第一通信设备可以基于这些sidelink信号来估计其自身的位置。
图8示出了该情况下的定位示意图的示例。其中,第一通信设备接 收到三个地理位置已知且分散的RSU的定位信号并且第一通信设备与这些RSU之间均为LOS径时,可以使用OTDOA技术来估计第一通信设备的位置。应该理解,这里虽然示出了第二通信设备为RSU,但是并不限于此,第二通信设备还可以为车辆或车辆上的通信模块等。具体地,第一用户设备测量分别来自RSU1、RSU2、RSU3的三个LOS径信号的TOA,分别表示为τ 1、τ 2、τ 3;选择RSU1为参考RSU,则RSU1与RSU2关于RSU1的两个OTDOA可分别表示为:τ 2,1=τ 21,τ 3,1=τ 31;针对每个OTDOA确定一条曲线,两个曲线的交点即为第一通信设备的位置。
图9示出了多点定位的一个实例的示意图,其中,车辆A、B和RSU与目标车辆之间存在LOS径,车辆C与目标车辆之间没有LOS径,因此目标车辆使用来自车辆A、B和RSU的定位信号来确定其自身的位置。具体地,假设车辆A、B和C以及RSU均已知各自的位置,通过适当的sidelink资源分配,车辆A、B、C和RSU同时向目标车辆发送定位信号,目标车辆例如利用本申请的方法来判断各个通信路径是LOS径还是NLOS径,然后利用所判断出的LOS径所对应的车辆A、B和RSU的定位信号来估计TOA,并且使用上述OTDOA技术来估计出目标车辆的位置。
综上所述,根据本实施例的电子设备100通过基于车联网中sidelink信道的信道统计特性来区分直视径和非直视径,并且利用通过直视径获得的信息进行协作定位,可以在各种情形下对通信设备进行准确的定位。
<第二实施例>
如前所述,用于区分LOS径和NLOS径的信道统计特性可以预先测量并进行统计分析获得。信道统计特性可以由基站比如gNB提供给通信设备(车辆),也可以由RSU提供给通信设备(车辆)。
相应地,本申请的另一个实施例还提供了一种电子设备200,图10示出了电子设备200的功能模块框图,包括:获取单元201,被配置为获 取各个位置处的sidelink信道的信道统计特性的参考值,该参考值用于区分相应sidelink信道是直视径还是非直视径;以及提供单元202,被配置为将参考值提供给车联网中的通信设备。
其中,获取单元201和提供单元202可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图10中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在基站侧或可通信地连接到基站,或者可以设置在RSU侧或可通信地连接到RSU。本申请中所述的基站也可以是收发点(Transmit Receive Point,TRP)或者接入点(Access Point,AP)。这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为基站或RSU本身,并且还可以包括诸如存储器、收发器(未示出)等外部设备。存储器可以用于存储基站或RSU实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,用户设备、其他基站或RSU等等)间的通信,这里不具体限制收发器的实现形式。
例如,获取单元201被配置为通过进行测量来获取参考值。该测量操作可以是预先进行的。例如,一个或多个测量车辆不断发送导频信号,作为接收端的接收车辆基于接收到的导频信号执行信道估计,并基于信道估计的结果来计算信道的统计特性,通过统计分析获得相应地区比如某段公路上的信道统计特性的参考值。可以由基站或RSU单元来保存测量得到的参考值。
此外,还可以将测量得到的参考值的信息与数字地图相关联,从而在数字地图的各个节点中存储该节点的信道统计特性的参考值的信息。这样,基站或者RSU可以通过查找数字地图来获得对应位置的参考值。或者,基站或者RSU(具体地,提供单元202)可以将数字地图的至少一部分提供给通信设备。这样,通信设备可以将其当前测得的信道统计特性与数字地图中对应位置处的参考值进行比较,以确定通信路径是LOS径还是NLOS径。应该理解,参考值的存储形式并不限于此,这仅是一个示例。
此外,信道统计特性可以包括莱斯K因子、峰度因子和空时频信道 相关函数中的一个或多个,有关这些信道统计特性的示例的具体说明在第一实施例中已经给出,在此不再重复。
在一个示例中,电子设备200位于基站侧,提供单元202可以通过Uu口来提供参考值。例如,提供单元202可以通过物理广播信道(Physical Broadcast Channel,PBCH)、物理下行共享信道(Physical Downlink shared channel,PDSCH)之一来提供参考值。该参考值可以包括在如下之一中:基本配置信息、剩余最小系统信息(Remaining Minimum System Information,RMSI)、其他系统信息和数据信息。其中,该提供可以是周期性地,也可以是在满足预定条件的情况下进行的、即基于事件驱动的。
相应地,电子设备100例如位于通信设备侧,其收发器经由基站与通信设备之间的下行链路获取参考值。该下行链路例如为PBCH、PDSCH之一。
下面将结合第一实施例中所描述的电子设备100的操作,参照图11和图12描述基站与通信设备之间的信息流程的示例,其中,将车辆作为通信设备的示例,并且示出了车辆1和车辆2。图11和图12分别示出了基站通过Uu口来提供参考值的信息流程的示例。
如图11所示,车辆利用同步信号块(Synchronization signal block,SSB)与下行蜂窝信号同步。例如,在5G NR中,同步信道和广播信道组成SSB的方式发送,其中,广播信道可以提供基本配置信息,而参考值可以包括在该基本配置信息中。
可选地,当参考值不包括在基本配置信息中时,如图11所示,在车辆获得下行链路的同步之后,还可以通过读取PBCH来找到物理下行控制信道(Physical downlink control channel,PDCCH),该PDCCH调度PDSCH,车辆1和2可以读取经由PDSCH提供的RMSI以获得其中包括的参考值的信息,该RMSI为所有其他系统信息块提供调度信息。或者,在参考值不包括在RMSI而是包括在其他系统信息中时,车辆1和2读取经由PDSCH提供的其他系统信息。
在获得参考值的信息之后,车辆1和车辆2如第一实施例中所述通过测量来自其他车辆或RSU的sidelink信号来获得相应sidelink的信道统计特性,并基于该信道统计特性和参考值来进行相应sidelink是LOS 径或NLOS径的判断。同时,车辆1和2也可以向其他车辆发送参考信号比如导频信号或训练序列。
在图11的示例中,基站与车辆之间不存在无线资源控制(Radio Resource Control,RRC)连接,并且基站周期性地发送参考值。
此外,虽然图11中未示出,但是在车辆获得下行链路的同步之后,车辆还可以通过物理随机接入信道(Physical Random Access Channel,PRACH)向基站发起请求,然后经由PDSCH读取其他系统信息中的参考值的信息。此时,基站与车辆之间同样不存在RRC连接,且基站发送参考值的操作是事件驱动的(响应于车辆的请求)。
图12示出了在基站与车辆之间建立RRC连接的情况下的信息流程的示例。首先,与图11类似地,车辆利用SSB与下行蜂窝信号同步。然后,车辆与基站之间建立RRC连接模式。基站向车辆分配下行物理资源,并将参考值在该资源上发送。接着,车辆经由PDSCH读取参考值的信息。此时,基站与第一通信设备之间存在RRC连接,且基站发送参考值的操作是事件驱动的。
类似地,在获得参考值的信息之后,车辆1和车辆2如第一实施例中所述通过测量来自其他车辆或RSU的sidelink信号来获得相应sidelink的信道统计特性,并基于该信道统计特性和参考值来进行相应sidelink是LOS径或NLOS径的判断。同时,车辆1和2也可以向其他车辆发送参考信号比如导频信号或训练序列。
在另一个示例中,电子设备200位于RSU侧,提供单元202可以通过PC5口来提供参考值。例如,提供单元202可以通过物理sidelink广播信道(Physical Sidelink Broadcast Channel,PSBCH)和物理sidelink共享信道(Physical Sidelink Shared Channel,PSSCH)之一来提供参考值。该参考值可以包括在如下之一中:基本配置信息、sidelink控制信息(Sidelink control information,SCI)和数据信息。其中,该提供可以是周期性地,也可以是在满足预定条件的情况下进行的、即基于事件驱动的。
相应地,电子设备100例如位于通信设备侧,其收发器经由RSU与通信设备之间的sidelink获取参考值。该sidelink例如为PSBCH、PSSCH之一。
图13和图14分别示出了RSU通过PC5口来提供参考值的信息流程的示例。
如图13所示,车辆利用PSBCH中的旁路同步信号(主同步信号+辅同步信号(PSSS+SSSS))与sidelink获得同步。参考值的信息可以包括在PSBCH的数据载荷中,车辆可以从PSBCH中读取参考值的信息。此时,RSU周期性地发送该参考值。
在图14中,车辆与sidelink获得同步后,通过PRACH向基站发起请求,建立sidelink连接。基站向车辆分配sidelink物理资源(图14中未示出)。然后车辆读取RSU在该物理资源上经由PSSCH发送的信道统计特性的参考值的信息。此时,RSU发送参考值的操作是事件驱动的。
此外,虽然图14中未示出,但是RSU也可以经由物理侧链路控制信道(Physical Sidelink Control Channel,PSCCH)发送参考值的信息。此时,参考值的信息包括在SCI中。
在获得参考值的信息之后,车辆1和车辆2如第一实施例中所述通过测量来自其他车辆或RSU的sidelink信号来获得相应sidelink的信道统计特性,并基于该信道统计特性和参考值来进行相应sidelink是LOS径或NLOS径的判断。同时,车辆1和2也可以向其他车辆发送参考信号比如导频信号或训练序列。
综上所述,根据本实施例的电子设备200能够向通信设备提供通信设备之间的sidelink的信道统计特性的参考值,以使得通信设备能够基于该参考值进行LOS径和NLOS径的判断。
<第三实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管 这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图15示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定第一通信设备与第二通信设备之间的通信路径是直视径还是非直视径(S13);以及如果该通信路径是直视径,则将通过该直视径获得的信息用于第一通信设备和第二通信设备的协作定位(S14)。该方法可以在第一通信设备侧处执行。其中,第一通信设备和第二通信设备可以为车辆或RSU。
其中,信道统计特性可以包括莱斯K因子、峰度因子和空时频信道相关函数中的一个或多个。如图15中的虚线框所示,上述方法还可以包括步骤S12:基于在第一通信设备处接收到的来自第二通信设备的参考信号来计算信道统计特性。参考信号例如可以包括导频信号或训练序列,在步骤S12中基于该参考信号进行信道估计,并基于信道估计的结果来计算信道统计特性。
此外,如图15中的另一个虚线框所示,上述方法还可以包括步骤S11:从基站或RSU获取信道统计特性的参考值。在步骤S13中,通过将在步骤S12中所计算的信道统计特性与步骤S11中获取的该参考值相比较来确定通信路径是LOS径还是NLOS径。
例如,在步骤S11中,可以经由基站与第一通信设备之间的下行链路获取参考值。下行链路例如包括PBCH、PDSCH之一。参考值的信息包括在如下之一中:基本配置信息,最小系统信息,其他系统信息和数据信息。
或者,在步骤S11中,可以经由RSU与第一通信设备之间的sidelink获取参考值。sidelink例如包括PSBCH、PSSCH之一。参考值的信息包括在如下之一中:基本配置信息、sidelink控制信息、数据信息。
作为一种形式,参考值可以包括在数字地图中,并作为数字地图中各个节点的属性。参考值可以是周期性地发送的,也可以是基于预定条件发送的。
在步骤S14中,可以利用通过LOS获得的信息,采用贝叶斯估计或非贝叶斯估计的方式来执行协作定位。此外,也可以利用通过LOS获得的信息执行多点定位。
例如,在采用贝叶斯估计的方式下,当第一通信设备与第二通信设备之间存在LOS径时,可以至少基于第一通信设备与第二通信设备之间的距离和第二通信设备发送到第一通信设备的信息来确定第一通信设备的位置。
在采用贝叶斯估计的方式下,当第一通信设备与所述第二通信设备之间存在直视径时,可以将第一通信设备与所述第二通信设备之间的距离的信息提供给中央处理装置,以使得中央处理装置集中确定所有通信设备的位置。
此外,虽然图15中未示出,但是上述方法还可以包括:向第二通信设备发送参考信号。即,sidelink上的传输是双向互传的。
图16示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:获取各个位置处的sidelink信道的信道统计特性的参考值,该参考值用于区分相应sidelink信道是直视径还是非直视径(S21);以及将该参考值提供给车联网中的通信设备(S22)。该方法可以在基站侧或RSU侧执行。
在步骤S21中可以通过进行测量来获取该参考值。其中,信道统计特性包括莱斯K因子、峰度因子和空时频信道相关函数中的一个或多个。在步骤S22中可以通过Uu接口或PC5接口提供该参考值。例如,可以周期性地提供该参考值,或者在满足预定条件的情况下提供该参考值。
注意,上述各个方法可以结合或单独使用,其细节在第一至第二实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备200可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。 另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备100可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图17是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图17所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图17示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控 制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图17所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图17所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图17示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图17所示的eNB 800中,电子设备200的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元201和提供单元202的功能来获取并向 通信设备提供sidelink信道的信道统计特性的参考值。
(第二应用示例)
图18是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图18所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图18示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图17描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图17描述的BB处理器826相同。如图18所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图18示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站 设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图18所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图18示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图18所示的eNB 830中,电子设备200的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元201和提供单元202的功能来获取并向通信设备提供sidelink信道的信道统计特性的参考值。
[关于用户设备的应用示例]
(第一应用示例)
图19是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度 传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图19所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图19示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图19所示,智能电话900可以包括多个天线916。虽然图19示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图19所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图19所示的智能电话900中,电子设备100的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元101和定位单元102的功能来执行LOS径和NLOS径的区分以及使用通过LOS径获得的信息来进行通信设备的协作定位。
(第二应用示例)
图20是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并 且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图20所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图20示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图20所示,汽车导航设备920可以包括多个天线937。虽然图20示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图20所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图20示出的汽车导航设备920中,电子设备100的收发器可以由 无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行确定单元101和定位单元102的功能来执行LOS径和NLOS径的区分以及使用通过LOS径获得的信息来进行通信设备的协作定位。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图21所示的通用计算机2100)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图21中,中央处理单元(CPU)2101根据只读存储器(ROM)2102中存储的程序或从存储部分2108加载到随机存取存储器(RAM)2103的程序执行各种处理。在RAM 2103中,也根据需要存储当CPU 2101执行各种处理等等时所需的数据。CPU 2101、ROM 2102和RAM 2103经由总线2104彼此连接。输入/输出接口2105也连接到总线2104。
下述部件连接到输入/输出接口2105:输入部分2106(包括键盘、 鼠标等等)、输出部分2107(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2108(包括硬盘等)、通信部分2109(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2109经由网络比如因特网执行通信处理。根据需要,驱动器2110也可连接到输入/输出接口2105。可移除介质2111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2110上,使得从中读出的计算机程序根据需要被安装到存储部分2108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2111安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图21所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2111。可移除介质2111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2102、存储部分2108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更 而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (33)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定所述第一通信设备与所述第二通信设备之间的通信路径是直视径还是非直视径;以及
    如果所述通信路径是直视径,则将通过该直视径获得的信息用于所述第一通信设备和所述第二通信设备的协作定位。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为基于在所述第一通信设备处接收到的来自所述第二通信设备的参考信号来计算所述信道统计特性。
  3. 根据权利要求1所述的电子设备,其中,所述信道统计特性包括莱斯K因子、峰度因子和空时频信道相关函数中的一个或多个。
  4. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为从基站或路侧单元获取所述信道统计特性的参考值,以及通过将所计算的信道统计特性与该参考值相比较来确定所述通信路径是直视径还是非直视径。
  5. 根据权利要求4所述的电子设备,其中,所述处理电路被配置为经由所述基站与所述第一通信设备之间的下行链路获取所述参考值,或者经由所述路侧单元与所述第一通信设备之间的sidelink获取所述参考值。
  6. 根据权利要求5所述的电子设备,其中,在所述处理电路经由所述下行链路获取所述参考值的情况下,所述参考值的信息包括在如下之一中:基本配置信息,最小系统信息,其他系统信息和数据信息。
  7. 根据权利要求5所述的电子设备,其中,在所述处理电路经由所述下行链路获取所述参考值的情况下,所述处理电路被配置为经由物理广播信道获取所述参考值。
  8. 根据权利要求5所述的电子设备,其中,在所述处理电路经由所 述下行链路获取所述参考值的情况下,所述处理电路被配置为经由物理下行共享信道来获取所述参考值。
  9. 根据权利要求8所述的电子设备,其中,所述参考值包括在数字地图中,并作为所述数字地图中各个节点的属性。
  10. 根据权利要求5所述的电子设备,其中,在所述处理电路经由所述sidelink获取所述参考值的情况下,所述参考值的信息包括在如下之一中:基本配置信息、sidelink控制信息、数据信息。
  11. 根据权利要求5所述的电子设备,其中,在所述处理电路经由所述sidelink获取所述参考值的情况下,所述处理电路被配置为经由物理sidelink广播信道获取所述参考值。
  12. 根据权利要求5所述的电子设备,其中,在所述处理电路经由所述sidelink获取所述参考值的情况下,所述处理电路被配置为经由物理sidelink共享信道获取所述参考值。
  13. 根据权利要求4所述的电子设备,其中,所述参考值是周期性地发送的,或者是基于预定条件发送的。
  14. 根据权利要求2所述的电子设备,其中,所述参考信号包括导频信号或训练序列,所述处理电路被配置为基于所述参考信号进行信道估计,并基于所述信道估计的结果来计算所述信道统计特性。
  15. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为利用通过所述直视径获得的信息,采用贝叶斯估计或非贝叶斯估计的方式来执行所述协作定位。
  16. 根据权利要求15所述的电子设备,其中,在采用贝叶斯估计的方式下,当所述第一通信设备与所述第二通信设备之间存在直视径时,所述处理电路被配置为至少基于所述第一通信设备与所述第二通信设备之间的距离和所述第二通信设备发送到所述第一通信设备的信息来确定所述第一通信设备的位置。
  17. 根据权利要求15所述的电子设备,其中,在采用贝叶斯估计的方式下,当所述第一通信设备与所述第二通信设备之间存在直视径时,所述处理电路被配置为将所述第一通信设备与所述第二通信设备之间的距离的信息提供给中央处理装置,以使得所述中央处理装置集中确定所 有通信设备的位置。
  18. 根据权利要求1所述的电子设备,其中,所述第一通信设备和所述第二通信设备为车辆或路侧单元。
  19. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为向所述第二通信设备发送参考信号。
  20. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    获取各个位置处的sidelink信道的信道统计特性的参考值,该参考值用于区分相应sidelink信道是直视径还是非直视径;以及
    将所述参考值提供给车联网中的通信设备。
  21. 根据权利要求20所述的电子设备,其中,所述处理电路被配置为通过进行测量来获取所述参考值。
  22. 根据权利要求20所述的电子设备,其中,所述处理电路被配置为通过Uu接口提供所述参考值。
  23. 根据权利要求22所述的电子设备,其中,所述处理电路被配置为通过物理广播信道、物理下行共享信道之一来发送所述参考值。
  24. 根据权利要求22所述的电子设备,其中,所述参考值包括在如下之一中:基本配置信息,最小系统信息,其他系统信息和数据信息。
  25. 根据权利要求20所述的电子设备,其中,所述参考值以数字地图的形式保存,并且所述处理电路被配置为将所述数字地图的至少一部分提供给所述通信设备。
  26. 根据权利要求20所述的电子设备,其中,所述处理电路被配置为通过PC5接口提供所述参考值。
  27. 根据权利要求26所述的电子设备,其中,所述处理电路被配置为通过物理sidelink广播信道、物理sidelink共享信道之一来发送所述参考值。
  28. 根据权利要求26所述的电子设备,其中,所述参考值包括在如下之一中:基本配置信息、sidelink控制信息、数据信息。
  29. 根据权利要求20所述的电子设备,其中,所述处理电路被配置为周期性地提供所述参考值,或者在满足预定条件的情况下提供所述参考值。
  30. 根据权利要求20所述的电子设备,其中,所述信道统计特性包括莱斯K因子、峰度因子和空时频信道相关函数中的一个或多个。
  31. 一种用于无线通信的方法,包括:
    基于车联网中第一通信设备与第二通信设备之间的sidelink信道的信道统计特性,确定所述第一通信设备与所述第二通信设备之间的通信路径是直视径还是非直视径;以及
    如果所述通信路径是直视径,则将通过该直视径获得的信息用于所述第一通信设备和所述第二通信设备的协作定位。
  32. 一种用于无线通信的方法,包括:
    获取各个位置处的sidelink信道的信道统计特性的参考值,该参考值用于区分相应sidelink信道是直视径还是非直视径;以及
    将所述参考值提供给车联网中的通信设备。
  33. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求31或32所述的用于无线通信的方法。
PCT/CN2020/090780 2019-05-24 2020-05-18 用于无线通信的电子设备和方法、计算机可读存储介质 WO2020238671A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/611,922 US20220264248A1 (en) 2019-05-24 2020-05-18 Electronic device and method for wireless communication, and computer readable storage medium
CN202080037083.5A CN113853806A (zh) 2019-05-24 2020-05-18 用于无线通信的电子设备和方法、计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910440421.9 2019-05-24
CN201910440421.9A CN112073893A (zh) 2019-05-24 2019-05-24 用于无线通信的电子设备和方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020238671A1 true WO2020238671A1 (zh) 2020-12-03

Family

ID=73552250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090780 WO2020238671A1 (zh) 2019-05-24 2020-05-18 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20220264248A1 (zh)
CN (2) CN112073893A (zh)
WO (1) WO2020238671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022161223A1 (zh) * 2021-01-29 2022-08-04 大唐移动通信设备有限公司 定位方法、装置及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114697869A (zh) * 2020-12-31 2022-07-01 大唐移动通信设备有限公司 发送定位辅助信息的方法、装置及处理器可读存储介质
US20240163840A1 (en) * 2021-03-22 2024-05-16 Nokia Technologies Oy Use of sidelink communications for backscatter node positioning within wireless networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110238306A1 (en) * 2010-03-26 2011-09-29 Honda Motor Co., Ltd. Method Of Determining Absolute Position For A Motor Vehicle
CN104869585A (zh) * 2014-02-21 2015-08-26 株式会社理光 在无线环境中估计两个设备之间的距离的方法和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110238306A1 (en) * 2010-03-26 2011-09-29 Honda Motor Co., Ltd. Method Of Determining Absolute Position For A Motor Vehicle
CN104869585A (zh) * 2014-02-21 2015-08-26 株式会社理光 在无线环境中估计两个设备之间的距离的方法和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Potential Techniques for NR Positioning", 3GPP TSG RAN WG1 MEETING #95 R1-1812236, 16 November 2018 (2018-11-16), XP051478392 *
INTEL CORPORATION: "UE and gNB Measurements for NR Positioning", 3GPP TSG RAN WG1 MEETING #97 R1-1906823, 17 May 2019 (2019-05-17), XP051708859 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022161223A1 (zh) * 2021-01-29 2022-08-04 大唐移动通信设备有限公司 定位方法、装置及存储介质

Also Published As

Publication number Publication date
CN113853806A (zh) 2021-12-28
US20220264248A1 (en) 2022-08-18
CN112073893A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
JP6652138B2 (ja) 無線通信システムにおける電子機器及び無線通信方法
WO2020238829A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020238671A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
EP3198897B1 (en) Device-to-device assisted positioning in wireless cellular technologies
CN105979479B (zh) 在拥挤室内环境中的设备位置的确定
WO2017071618A1 (zh) 无线通信系统中的装置和方法
TW202142003A (zh) 定位訊號優先順序
TW202231082A (zh) Ue對ue定位
WO2019218940A1 (zh) 无线通信系统中的用户设备、电子设备、方法及存储介质
WO2018187014A1 (en) Mobile access point detection
CN109565781A (zh) 定位装置、方法、移动节点和无线通信设备
TW202220460A (zh) 存在時脈誤差時的側行鏈路定位
KR20230087465A (ko) 계층적 ue 포지셔닝
WO2022119782A1 (en) Aggregation of positioning signal and supplemental signal
US20240015693A1 (en) User equipment (ue) positioning
WO2024012404A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US20220417897A1 (en) User equipment selection for sidelink-assisted position estimation procedure
WO2021190435A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
KR20230147062A (ko) 사용자 장비에 의해 수집된 맵 데이터를 활용하는 포지셔닝시스템
WO2023202493A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023174102A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023115451A1 (en) Paired windows for sidelink positioning reference signals
US20230031945A1 (en) User equipment selection for sidelink-assisted position estimation procedure
WO2023044599A1 (en) Method and apparatus for position estimation using mobile anchor
WO2023009916A1 (en) Indication of reference geographic coordinate for sidelink zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813352

Country of ref document: EP

Kind code of ref document: A1