WO2020238829A1 - 用于无线通信的电子设备和方法、计算机可读存储介质 - Google Patents

用于无线通信的电子设备和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2020238829A1
WO2020238829A1 PCT/CN2020/092007 CN2020092007W WO2020238829A1 WO 2020238829 A1 WO2020238829 A1 WO 2020238829A1 CN 2020092007 W CN2020092007 W CN 2020092007W WO 2020238829 A1 WO2020238829 A1 WO 2020238829A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
user equipment
target user
information
base station
Prior art date
Application number
PCT/CN2020/092007
Other languages
English (en)
French (fr)
Inventor
盛彬
徐平平
孙晨
Original Assignee
索尼公司
盛彬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 盛彬 filed Critical 索尼公司
Priority to CN202080037130.6A priority Critical patent/CN113853807A/zh
Priority to US17/604,443 priority patent/US20220201430A1/en
Publication of WO2020238829A1 publication Critical patent/WO2020238829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • This application relates to the field of wireless communication technology, in particular to positioning technology based on wireless communication. More specifically, it relates to an electronic device and method for wireless communication and a computer-readable storage medium.
  • the existing positioning methods mainly include a multilateration method and a cooperative location method.
  • the receiving end measures signals from multiple sending ends, where the sending end knows their respective positions, and the receiving end determines its own position according to a geometric method.
  • Multi-point positioning technology includes, for example, Observed Time Difference of Arrival (OTDOA), Angle of Arrival + Time Advance (Angle of Arrival+Time Advance, AOA+TA), etc.
  • OTDOA Observed Time Difference of Arrival
  • Angle of Arrival+Time Advance, AOA+TA Observed Time Difference of Arrival
  • a base station sends a positioning pilot signal to a user terminal through a downlink channel, and the user terminal measures the time difference between each base station pilot signal to reach the user terminal to estimate the position of the user terminal.
  • the base station mainly estimates the position of the user terminal by measuring the AOA and arrival time of the uplink signal.
  • Cooperative positioning is mostly used in wireless sensor networks.
  • the existing various positioning methods whether it is multi-point positioning or coordinated positioning, assume that there is a line of sight between the sender and the receiver (Line of Sight, LOS, which means that the wireless signal is unobstructed between the sender and the receiver).
  • Linear propagation) path when working in a propagation environment without LOS path, the positioning accuracy is greatly reduced.
  • an electronic device for wireless communication including: a processing circuit, configured to obtain beam-related information of at least a first beam and a second beam estimated by a target user equipment, the beam-related information The information includes the angle of arrival of the beam and information used for distance estimation; and the location of the target user equipment is determined based on at least the beam-related information of the first beam and the second beam, and the emission angle of the first beam and the emission angle of the second beam.
  • a method for wireless communication including: obtaining beam-related information of at least a first beam and a second beam estimated by a target user equipment, where the beam-related information includes the angle of arrival and usage of the beam. Information for distance estimation; and determining the location of the target user equipment based at least on the beam-related information of the first beam and the second beam and the emission angle of the first beam and the emission angle of the second beam.
  • an electronic device for wireless communication including: a processing circuit configured to estimate received beam-related information of at least a first beam and a second beam, and the beam-related information Including the angle of arrival of the beam and the information used for distance estimation; acquiring at least the information of the launch angle of the first beam and the second beam; and at least the beam-related information based on the first beam and the second beam and the first beam and the second beam.
  • the information of the emission angle determines the location of the electronic device.
  • a method for wireless communication including: estimating received beam-related information of at least a first beam and a second beam, the beam-related information including the angle of arrival of the beam and Distance estimation information; acquiring at least the information of the emission angles of the first beam and the second beam; and determining the electron based on at least the beam-related information of the first beam and the second beam and the information of the emission angles of the first beam and the second beam The location of the device.
  • Computer program codes and computer program products for implementing the above-mentioned method for wireless communication and a computer on which the computer program codes for implementing the above-mentioned method for wireless communication are recorded are also provided Readable storage medium.
  • At least two beams are used to locate the target user equipment, and the position of the target user equipment can be accurately determined in the presence and absence of a LOS path.
  • Figure 1 shows an example of a scenario where there is a non-LOS path between the sender and the receiver
  • Fig. 2 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of the definition of AOA on the user equipment side
  • FIG. 4 shows a schematic diagram of positioning a target user equipment using the technology of this embodiment in the scenario of FIG. 1;
  • FIG. 5 shows a schematic diagram of vehicle positioning in the case of a value range of AOA and launch angle (Angle of Departure, AOD);
  • Figure 6 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Figure 7 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Fig. 8 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Figure 9 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Figure 10 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Figure 11 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Figure 12 shows a schematic diagram of vehicle positioning in the case of another value range of AOA and AOD;
  • Fig. 13 is a block diagram showing functional modules of an electronic device for wireless communication according to an embodiment of the present application.
  • Fig. 14 shows an example of wide beam scanning
  • FIG. 15 shows a schematic diagram of processing when a vehicle is detected in a predetermined area
  • FIG. 16 shows a schematic diagram of the relationship between the movement direction of the vehicle and the emission direction of the narrow beam
  • FIG. 17 shows a schematic diagram of the information flow between the roadside unit and the vehicle in the positioning process according to this embodiment
  • Fig. 18 is a block diagram showing functional modules of an electronic device for wireless communication according to another embodiment of the present application.
  • Fig. 19 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 20 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • 21 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • 22 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied;
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a smart phone to which the technology of the present disclosure can be applied;
  • 24 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 25 is a block diagram of an exemplary structure of a general personal computer in which the method and/or apparatus and/or system according to the embodiments of the present disclosure can be implemented.
  • Figure 1 shows a scenario where there is an NLOS path between the sending end and the receiving end.
  • the scene in Fig. 1 is a V2X scene
  • the sending end is a road side unit (RSU)
  • the receiving end is a vehicle at the top of the picture.
  • RSU road side unit
  • the AOA of the uplink signal received by the RSU does not actually reflect the true position of the target vehicle relative to the RSU. Therefore, according to the AOA The position of the target vehicle calculated by TA is the wrong position, and there is a deviation from the real position.
  • this embodiment provides a solution for locating the target user equipment using at least two beams. Regardless of whether there is a LOS path, the solution of this embodiment can accurately determine the location of the target user equipment.
  • FIG. 2 shows a block diagram of functional modules of the electronic device 100 for wireless communication according to this embodiment.
  • the electronic device 100 includes: an acquiring unit 101 configured to acquire at least the first estimated value of the target user equipment Beam-related information of the beam and the second beam, the beam-related information includes the angle of arrival (AOA) of the beam and information used for distance estimation; and the positioning unit 102 is configured to be at least based on the beam correlation of the first beam and the second beam
  • the information and the launch angle of the first beam and the launch angle of the second beam (Angle of Departure, AOD) determine the location of the target user equipment.
  • the acquiring unit 101 and the positioning unit 102 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example.
  • the processing circuit may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 2 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner. The same applies to other electronic device examples to be described later.
  • the electronic device 100 may, for example, be installed on the base station side or be communicably connected to the base station. In the V2X scenario, the electronic device 100 may also be set on the RSU side. More generally, the electronic device 100 can be set on any sender whose location is known. In addition, the electronic device 100 can also be set on any server used as a positioning server.
  • the electronic device 100 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 100 may work as a base station or an RSU itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory can be used to store programs and related data information that the base station or RSU needs to perform to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, base stations, user equipment, other RSUs, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the target user equipment described in this embodiment may be, for example, any terminal equipment that needs to know its own location, such as a vehicle or a mobile communication terminal.
  • the base station or RSU as the transmitting end sends a beam to the target user equipment.
  • the beam has a certain emission angle AOD.
  • the AOD is, for example, defined relative to the reference direction of the transmitting end (for example, the true north direction), and the target user equipment as the receiving end, for example Massive MIMO (Massive MIMO) antenna technology is also used, so that the AOA of the signal can be estimated even after the beam is received.
  • Massive MIMO Massive MIMO
  • AOA is represented by the angle between the arrival direction of the beam and the predetermined reference direction, where the predetermined reference direction is the true north direction at the geographic location of the user equipment, and the counterclockwise rotation angle is positive.
  • the angle range of AOA is 0 to 360 degrees, and has a certain resolution such as 0.5 degrees. It should be understood that the definition of the reference direction and the resolution of the angle are not limited to this.
  • the target user equipment can use various methods to estimate AOA, such as generating a receiving beam and using the angle between the direction of the receiving beam and the reference direction to estimate AOA, or not generating a receiving beam and using super-resolution methods such as multiple signal classification (MUSIC) and so on.
  • MUSIC multiple signal classification
  • the target user equipment may also obtain information used for distance estimation, and provide the information to the electronic device 100 together with AOA.
  • the information used for distance estimation may include information about the arrival time of the beam, such as timing advance (TA).
  • the positioning unit 102 estimates that the first beam is from the transmitting end of the first beam based on the information of the arrival time of the first beam.
  • the travel distance to the target user equipment, and the travel distance of the second beam from the sending end of the second beam to the target user equipment is estimated based on the information of the arrival time of the second beam.
  • the difference between the transmission time and the arrival time of the beam is the travel time of the wireless signal in the air, and the travel distance of the beam from the transmitting end to the target user equipment can be obtained by multiplying by the propagation speed of the wireless signal.
  • the information used for distance estimation may include information about the received power of the beam, and the positioning unit 102 estimates the travel distance of the first beam from the transmitting end of the first beam to the target user equipment based on the information about the received power of the first beam, The travel distance of the second beam from the transmitting end of the second beam to the target user equipment is estimated based on the information of the received power of the second beam.
  • the positioning unit 102 may calculate the travel distance of the corresponding beam from the transmitting end to the target user equipment based on the difference between the transmit power and the received power of the beam and the path loss coefficient.
  • the acquiring unit 102 needs to acquire information about the transmission power and path loss coefficient from the corresponding transmitting end.
  • the target user equipment receives at least two beams and provides at least two sets of such information.
  • the acquiring unit 101 may also select two of the beams as the first beam and the second beam to acquire and provide the foregoing information.
  • the acquiring unit 101 may select two beams with better beam quality.
  • the acquiring unit 101 may also acquire the aforementioned beam-related information of more than two beams.
  • the acquiring unit 102 also needs to acquire information about the emission angle AOD of the corresponding beam from each transmitting end.
  • the first beam is transmitted by the first RSU or the first base station
  • the second beam is transmitted by the second RSU or the second base station.
  • the obtaining unit 102 obtains the AOD of the first beam from the first RSU or the first base station, and obtains the AOD of the second beam from the second RSU or the second base station. If the electronic device 100 is located on the side of the first RSU or the first base station, the obtaining unit 102 only needs to obtain the AOD of the second beam from the second RSU or the second base station.
  • the acquiring unit 101 may acquire the aforementioned beam related information through communication in a low frequency band, such as the FR1 (Frequency Range 1) frequency band (frequency band below 6 GHz) in 5G, without forming a beam.
  • the acquiring unit 101 may also acquire the above-mentioned beam-related information through communication in a high frequency band, such as the FR2 (Frequency Range 2) frequency band (frequency band above 6 GHz) in 5G.
  • the target user equipment can be based on AOA Direction to form the transmit beam.
  • the positioning unit 102 uses the geometric relationship between the actual propagation paths of the first beam and the second beam and the spatial position of the target user equipment to determine the position of the target user equipment. For example, the positioning unit 102 may calculate the position of the target user equipment by using an equation set in which the position parameter of the target user equipment is unknown. In other words, the positioning unit 102 uses an analytical algorithm to determine the location of the target user equipment.
  • Fig. 4 shows a schematic diagram of locating a target user equipment using the technology of this embodiment in the scenario of Fig. 1.
  • the first beam is sent by the RSU
  • the second beam is sent by the base station
  • the target vehicle ie, target user equipment
  • the target vehicle provides the obtained information of the AOA and arrival time of the first beam to the electronic device 100.
  • the electronic device 100 is located on a base station.
  • the electronic device 100 may also be located on the RSU or on a dedicated server.
  • the schematic diagram shown in FIG. 4 is only an example and is not limitative, and the target user equipment is not limited to the vehicle shown in the figure.
  • the position of the vehicle is represented by coordinates (x, y). That is, the vehicle position information includes two unknowns, so two sets of parameters of two beams are required to obtain two equations to solve.
  • the generation process of these two equations is the same.
  • the following uses a beam (such as the beam sent by the RSU in FIG. 4) as an example to describe the generation process of an equation.
  • a set of parameters corresponding to the beam includes the AOA and AOD of the beam and the travel distance of the beam from the transmitting end to the target vehicle, and the travel distance is the length of the NLOS path #1.
  • Figure 5 shows a schematic diagram of the positioning of the vehicle in this case, where s 2 and s 1 respectively represent the length of the two parts of the NLOS path #1 before and after the scattering occurs at the scatterer #1.
  • the s 2 and s 1 also have similar meanings and will not be repeated. According to Fig. 5, the following equations (2) to (4) can be obtained.
  • Equation (6) can be further written as:
  • Equation (8) is an equation obtained in case 1 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • Fig. 6 shows a schematic diagram of the positioning of the vehicle in this case. According to Fig. 6, the following equations (9) to (11) can be obtained.
  • Equation (13) can be further written as:
  • Equation (15) is an equation obtained in case 2 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • FIG. 7 shows a schematic diagram of the positioning of the vehicle in this case, in which two situations are shown according to the position of the vehicle in the x-axis direction. According to Fig. 7, the following equations (16) to (18) can be obtained.
  • Equation (20) can be further written as:
  • Equation (22) is an equation obtained in case 3 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • FIG. 8 shows a schematic diagram of the positioning of the vehicle in this case, in which two situations are shown according to the position of the vehicle in the x-axis direction. According to Fig. 8, the following equations (23) to (25) can be obtained.
  • Equation (27) can be further written as:
  • Equation (29) is the equation obtained in case 4 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • FIG. 9 shows a schematic diagram of the positioning of the vehicle in this case, in which two situations are shown according to the position of the vehicle in the x-axis direction. According to Fig. 9, the following equations (30) to (32) can be obtained.
  • Equation (34) can be further written as:
  • Equation (36) is an equation obtained in case 5 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • FIG. 10 shows a schematic diagram of the positioning of the vehicle in this case. According to Fig. 10, the following equations (37) to (39) can be obtained.
  • Equation (41) can be further written as:
  • Equation (43) is the equation obtained in case 6 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • FIG. 11 shows a schematic diagram of the positioning of the vehicle in this case, in which two situations are shown according to the position of the vehicle in the x-axis direction. According to Fig. 11, the following equations (44) to (46) can be obtained.
  • Equation (48) can be further written as:
  • Equation (50) is an equation obtained in case 7 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • FIG. 12 shows a schematic diagram of the positioning of the vehicle in this case. According to Fig. 12, the following equations (51) to (53) can be obtained.
  • Equation (55) can be further written as:
  • Equation (57) is an equation obtained in case 8 with the position parameters x and y of the vehicle as unknowns, where ⁇ t , ⁇ r and d are all known.
  • the location of the target user equipment is represented by plane coordinates, and can also be represented by polar coordinates.
  • the location of the target user equipment may also be expressed in absolute position coordinates (for example, longitude, latitude), or expressed in relative position coordinates relative to a predetermined reference object.
  • the positioning unit 102 may use a minimum mean square error (MMSE) algorithm to determine the location of the target user equipment. For example, in the case where the target user equipment receives more than two beams and more than two sets of parameters are estimated, the positioning unit 102 may use advanced signal processing techniques such as MMSE algorithm to estimate the location parameters of the target user equipment based on these parameters.
  • MMSE minimum mean square error
  • the electronic device 100 can locate the target user equipment by using at least two beams, and can accurately determine the location of the target user equipment in both the presence and absence of a LOS path.
  • the position of the target user equipment can be obtained in an analytical manner, without the need to distinguish between the LOS path and the NLOS path, which improves the speed and accuracy of positioning.
  • the sending end needs to determine the approximate direction of the sending beam according to the approximate position of the vehicle, so that the sent beam can be received by the target user equipment.
  • the electronic device 100 may further include a transmitting unit 103 and a determining unit 104.
  • the electronic device 100 may be located in an RSU or a base station.
  • the transmitting unit 103 is configured to transmit a third beam to scan a predetermined area, and when the target user equipment exists in the predetermined area and receives the third beam signal, for example, it may report feedback information to the electronic device 100 through a low frequency band.
  • the feedback information includes, for example, the movement direction and movement speed of the target user equipment.
  • the obtaining unit 101 obtains the feedback information and provides it to the determining unit 104.
  • the beam width of the third beam is greater than the beam width of the first beam (or the second beam).
  • the third beam is also referred to as a wide beam in the following, and the first beam (or the second beam) is referred to as It is a narrow beam, and the first beam is mainly described as an example of a narrow beam.
  • the wide beam and narrow beam described here are a pair of concepts with relative meanings, and the specific numerical range thereof is not limited.
  • the wide beam has a larger beam width and can cover a larger area. Wide beam scanning can quickly find the target user equipment.
  • the beam width of the narrow beam is small, the coverage area is small, but the signal-to-noise ratio is high, and it can be used to accurately estimate the AOA information of the signal.
  • the determining unit 104 determines the transmission direction and duration of the narrow beam to be transmitted based on the feedback information acquired by the acquiring unit 101, so that the narrow beam can be received by the target user equipment.
  • the transmitting unit 103 transmits the narrow beam according to the determined transmitting direction and duration at a predetermined timing.
  • Fig. 14 shows an example of wide beam scanning.
  • Fig. 14 shows a section of d-meter-long road, which is divided into 4 parts with length d 0 , d 1 , d 2 and d 3 meters, which are respectively covered by 4 wide beams.
  • the RSU or base station In order to scan the entire area, the RSU or base station first generates a road area with a scan length of d 0 meters for beam 0, which is a predetermined area corresponding to beam 0.
  • the scan length of beam 1 is generated d 1 meter road area, and then generate beam 2 and beam 3 to scan the road area with length d 2 and d 3 meters. After scanning the entire road, start looping from beam 0.
  • the vehicle as the target user equipment enters a road area with a length of d 0 meters at time t 0 and receives the signal of beam 0.
  • the vehicle reports its speed and direction of movement to the corresponding RSU or base station through the low frequency band, as shown in Figure 15. Shown.
  • the transmitting end of the wide beam is an RSU
  • the reported information is transmitted through the sidelink
  • the transmitting end of the wide beam is a base station
  • the reported information is transmitted through the uplink.
  • the direction of movement may indicate the vehicle to the left or right, for example, it may be represented by 0 or 1.
  • a vehicle is used as an example of the target user equipment, but this is only for the purpose of illustration and is not restrictive.
  • the determining unit 104 calculates the maximum possible travel time ⁇ t of the vehicle in the area, as shown in the following formula (60):
  • the determining unit 104 determines the emission direction of the narrow beam as the outer direction next to the side of the wide beam that coincides with the direction of movement of the vehicle, that is, the narrow beam points to the front of the vehicle movement. As shown in FIG. 16, if the vehicle moves to the left, the narrow beam points to the left adjacent direction of the wide beam. If the vehicle moves to the right, the narrow beam points to the adjacent direction to the right of the wide beam.
  • the narrow beam may be used as the first beam, that is, the RSU or base station (referred to as the first RSU or first base station) where the electronic device 100 is located transmits the first beam .
  • the RSU or base station referred to as the first RSU or first base station
  • another RSU or another base station hereinafter referred to as a second RSU or a second base station
  • the first RSU or the first base station and the second RSU or the second base station can be designated by the positioning server or automatically when the vehicle is scanned; or the second RSU or the second base station is designated by the first RSU or the first base station ; Or the first RSU or the first base station and the second RSU or the second base station are fixed, which is not restrictive.
  • the transmission direction and duration of the second beam can be determined by the second RSU or the second base station in the same manner as described above; or, the first RSU or the electronic device 100 on the first base station will determine the transmission of the first beam
  • the direction and duration are provided to the second RSU or the second base station, so that it determines the transmission direction and duration of the second beam according to the transmission direction and duration of the first beam; or, the first RSU or the first base station
  • the electronic device 100 determines the emission direction of the second beam according to the emission direction of the first beam and the positional relationship between the first RSU or the first base station and the second RSU or the second base station, and provides the emission direction together with the duration to The second RSU or second base station.
  • the vehicle After the vehicle receives the first beam and the second beam, it obtains the AOA of the first beam and the information used to estimate the distance traveled, and the AOA of the second beam and the information used to estimate the distance traveled. Provided to the first RSU or the first base station. In addition, in the case where the second RSU or the second base station calculates the transmission direction of the second beam by itself, the second RSU or the second base station also provides the AOD information of the second beam to the first RSU or the first base station. Then, the first RSU or the first base station determines the location of the vehicle by using the method described in the first embodiment based on this information.
  • FIG. 17 shows a schematic diagram of the information flow between the RSU and the vehicle in the positioning process according to this embodiment.
  • the first RSU and the second RSU simultaneously perform wide-beam scanning for the same area, where if feedback information from the vehicle is not received in one scanning period, the transmission direction of the wide-beam is changed and another area is scanned at the same time.
  • the vehicle receives a wide beam signal, it reports feedback information to the first RSU (used as the main RSU in this example), including, for example, the moving direction and speed of the vehicle.
  • the first RSU calculates the transmission direction and duration of the first beam based on the feedback information.
  • the first RSU also calculates the transmission direction and duration of the second beam and provides it to the second RSU. Then, the first RSU and the second RSU respectively transmit the first beam and the second beam at the same timing.
  • the vehicle receives the first beam and the second beam, it measures the AOA and the arrival time of the first beam and the second beam, and provides them to the first RSU. Since the first RSU also knows the AOD of the first beam and the AOD of the second beam, the analysis method described in the first embodiment can be used to calculate the position of the vehicle. Note that the flow in FIG. 17 is only schematic, and can be appropriately modified according to actual needs.
  • the electronic device 100 can accurately and quickly determine the location of the target user equipment in progress.
  • Fig. 18 shows a block diagram of functional modules of an electronic device 200 according to another embodiment of the present application.
  • the electronic device 200 includes: an estimation unit 201 configured to estimate at least the received first beam and The beam-related information of the second beam, the beam-related information includes the AOA of the beam and the information used for distance estimation; the acquiring unit 202 is configured to acquire at least the AOD information of the first beam and the second beam; and the positioning unit 203, It is configured to determine the position of the electronic device 200 based on at least the beam-related information of the first beam and the second beam and the information of the AOD of the first beam and the second beam.
  • the estimation unit 201, the acquisition unit 201, and the positioning unit 203 may be implemented by one or more processing circuits, and the processing circuit may be implemented as a chip or a processor, for example.
  • the processing circuit may be implemented as a chip or a processor, for example.
  • each functional unit in the electronic device shown in FIG. 18 is only a logical module divided according to the specific function implemented by it, and is not used to limit the specific implementation manner.
  • the electronic device 200 may, for example, be provided on the side of the target user equipment to be located or be communicably connected to the target user equipment.
  • the target user equipment is, for example, a vehicle or other mobile communication terminal.
  • the electronic device 200 may be implemented at the chip level, or may also be implemented at the device level.
  • the electronic device 200 may work as the target user device itself, and may also include external devices such as a memory, a transceiver (not shown in the figure) and the like.
  • the memory may be used to store programs and related data information that the target user equipment needs to execute to implement various functions.
  • the transceiver may include one or more communication interfaces to support communication with different devices (for example, a base station, RSU, other target user equipment, etc.), and the implementation form of the transceiver is not specifically limited here.
  • the target user equipment receives transmit beams such as the first beam and the second beam from the base station or RSU, measures the received beams to obtain at least two sets of beam-related parameters, and obtains beams from the corresponding base station or RSU AOD information.
  • the positioning unit 203 uses these beam-related parameters and the acquired AOD information to position the electronic device 100 (that is, the target user equipment where the electronic device 100 is located) in the same manner as in the first embodiment. Therefore, the positioning unit 203 has the same structure and function as the positioning unit 102 described in the first embodiment, and the description will not be repeated here.
  • the estimation unit 201 can use various methods to estimate the AOA of the beam, such as generating a receiving beam and using the angle between the direction of the receiving beam and the reference direction to estimate the AOA, or using super-resolution methods such as multiplex without generating the receiving beam.
  • Signal Classification (MUSIC) etc.
  • the information used for distance estimation may include information about the arrival time of the beam or information about the received power of the beam. The specific description has been given in the first embodiment and will not be repeated here.
  • the acquiring unit 202 may acquire the AOD information of the first beam and the second beam through communication on a low frequency band, such as the FR1 frequency band in 5G, without forming a beam.
  • the obtaining unit 202 may also obtain the information through communication on a high frequency band such as the FR2 frequency band in 5G.
  • the RSU or the base station may form another transmission beam, or may carry the information on the first beam Or on the second beam.
  • the electronic device 200 can locate the target user equipment by using at least two beams, and can accurately determine the position of the electronic device 200 in the presence and absence of a LOS path.
  • the position of the target user equipment can be obtained in an analytical manner, without distinguishing between the LOS path and the NLOS path, which improves the speed and accuracy of positioning.
  • FIG. 19 shows a flowchart of a method for wireless communication according to an embodiment of the present application.
  • the method includes: acquiring beam-related information of at least a first beam and a second beam estimated by a target user equipment (S11), the The beam-related information includes the angle of arrival of the beam and the information used for distance estimation; and based on at least the beam-related information of the first beam and the second beam, and the emission angle of the first beam and the emission angle of the second beam, determine the target user equipment Location (S12).
  • This method can be executed on the side of the base station or RSU, and can also be executed on the side of a server used as a positioning server.
  • the angle of arrival of the beam may be represented by the angle of the arrival direction of the beam with respect to the predetermined reference direction.
  • the information used for distance estimation may include information on the arrival time of the beam.
  • the travel distance of the first beam from the transmitting end of the first beam to the target user equipment is estimated based on the information on the arrival time of the first beam.
  • the information of the arrival time of the beam estimates the travel distance of the second beam from the transmitting end of the second beam to the target user equipment.
  • the information used for distance estimation may include information about the received power of the beam.
  • the travel distance of the first beam from the transmitting end of the first beam to the target user equipment is estimated based on the information about the received power of the first beam.
  • the information of the received power of the second beam estimates the travel distance of the second beam from the transmitting end of the second beam to the target user equipment.
  • the first beam is transmitted by the first RSU or the first base station
  • the second beam is transmitted by the second RSU or the second base station.
  • the above method further includes obtaining the transmission angle of the first beam from the first RSU or the first base station, and obtaining the transmission angle of the second beam from the second RSU or the second base station.
  • the transmission angle of the second beam is acquired only from the second RSU or the second base station.
  • step S11 the beam related information of the first beam and the second beam can be obtained through communication on a low frequency band.
  • step S12 the geometric relationship between the actual propagation paths of the first beam and the second beam and the spatial position of the target user equipment is used to determine the position of the target user equipment.
  • the position of the target user equipment can be determined by determining the absolute position coordinates of the target user equipment or the relative coordinates with respect to a predetermined reference object.
  • a minimum mean square error algorithm may also be used to determine the location of the target user equipment.
  • the above method may further include the following steps: transmitting a third beam to scan a predetermined area, wherein the beam width of the third beam is greater than that of the first beam; and the target user equipment is present in the predetermined area
  • the feedback information is obtained from the target user equipment, the feedback information includes the movement direction and speed of the target user equipment; the transmission direction and duration of the first beam are determined based on the feedback information, so that the first beam can be used by the target user
  • the device receives; and transmits the first beam according to the determined transmission direction and duration at a predetermined timing.
  • the transmission direction of the first beam may be determined to be the outer direction next to the side of the third beam consistent with the movement direction of the target user equipment, and the duration of the first beam may be determined to be equal to or less than the target user equipment The time required to pass through a predetermined area at a moving speed.
  • the second roadside unit or the second base station simultaneously transmits a third beam to scan a predetermined area.
  • the above method further includes providing the determined transmission direction and duration of the first beam to the second roadside unit or the second base station, so that the second roadside unit or the second base station is based on the transmission direction and duration of the first beam To determine the transmission direction and duration of the second beam, and transmit the second beam at the same timing.
  • the target user equipment in this embodiment may be a vehicle.
  • FIG. 20 shows a flowchart of a method for wireless communication according to another embodiment of the present application.
  • the method includes: estimating received beam-related information of at least a first beam and a second beam (S21), and the beam
  • the related information includes the angle of arrival of the beam and the information used for distance estimation; the information on the emission angles of at least the first beam and the second beam is acquired (S22); and the beam related information based on at least the first beam and the second beam and the first beam
  • the information of the beam and the emission angle of the second beam determines the position of the electronic device (S23).
  • This method may be executed on the target user equipment side, for example.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 100 may be implemented as various base stations.
  • the base station can be implemented as any type of evolved Node B (eNB) or gNB (5G base station).
  • eNBs include, for example, macro eNBs and small eNBs.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • a similar situation can also be used for gNB.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • BTS base transceiver station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) arranged in a place different from the main body.
  • a main body also referred to as a base station device
  • RRH remote radio heads
  • various types of user equipment can work as a base station by temporarily or semi-persistently performing base station functions.
  • the electronic device 200 may be implemented as various user devices.
  • the user equipment may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the aforementioned terminals.
  • FIG. 21 is a block diagram showing a first example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 800 includes one or more antennas 810 and a base station device 820.
  • the base station device 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 820 to transmit and receive wireless signals.
  • the eNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by eNB 800.
  • FIG. 21 shows an example in which the eNB 800 includes multiple antennas 810, the eNB 800 may also include a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station device 820. For example, the controller 821 generates a data packet based on data in the signal processed by the wireless communication interface 825, and transmits the generated packet via the network interface 823. The controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet. The controller 821 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data (such as a terminal list, transmission power data, and scheduling data).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or another eNB via the network interface 823.
  • the eNB 800 and the core network node or other eNBs may be connected to each other through a logical interface (such as an S1 interface and an X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and an RF circuit 827.
  • the BB processor 826 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, medium access control (MAC), radio link control (RLC), and packet data convergence protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have a part or all of the above-mentioned logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can change the function of the BB processor 826.
  • the module may be a card or a blade inserted into the slot of the base station device 820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826.
  • multiple BB processors 826 may be compatible with multiple frequency bands used by eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827.
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 21 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827.
  • the transceiver of the electronic device 100 may be implemented by a wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 can accurately and quickly determine the location of the target user equipment by executing the functions of the acquiring unit 101 and the positioning unit 102.
  • FIG. 22 is a block diagram showing a second example of a schematic configuration of an eNB or gNB to which the technology of the present disclosure can be applied. Note that similarly, the following description takes eNB as an example, but it can also be applied to gNB.
  • the eNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • the eNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 22 shows an example in which the eNB 830 includes multiple antennas 840, the eNB 830 may also include a single antenna 840.
  • the base station equipment 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 21.
  • the wireless communication interface 855 supports any cellular communication scheme (such as LTE and LTE-Advanced), and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 21 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include a plurality of BB processors 856.
  • multiple BB processors 856 may be compatible with multiple frequency bands used by eNB 830.
  • FIG. 22 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may also include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station equipment 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may also be a communication module used to connect the base station device 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may also be a communication module used for communication in the aforementioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may generally include an RF circuit 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864.
  • multiple RF circuits 864 can support multiple antenna elements.
  • FIG. 22 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may also include a single RF circuit 864.
  • the transceiver of the electronic device 100 may be implemented by the wireless communication interface 825. At least part of the functions may also be implemented by the controller 821.
  • the controller 821 can accurately and quickly determine the location of the target user equipment by executing the functions of the acquiring unit 101 and the positioning unit 102.
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a smart phone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915, one or more antennas 916, bus 917, battery 918, and auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901.
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900.
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include a group of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives an operation or information input from the user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 916.
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG. 23, the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914. Although FIG. 23 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914.
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • the smart phone 900 may include a plurality of antennas 916.
  • FIG. 23 shows an example in which the smart phone 900 includes a plurality of antennas 916, the smart phone 900 may also include a single antenna 916.
  • the smart phone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connection.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 23 via a feeder line, which is partially shown as a dashed line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the transceiver of the electronic device 200 may be implemented by the wireless communication interface 912. At least part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can quickly and accurately determine the location of the target user equipment where the electronic device 200 is located by executing the functions of the estimation unit 201, the acquisition unit 202, and the positioning unit 203.
  • FIG. 24 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or SoC, and controls the navigation function of the car navigation device 920 and other functions.
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the position of the car navigation device 920 (such as latitude, longitude, and altitude).
  • the sensor 925 may include a group of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 includes a screen such as an LCD or an OLED display, and displays images of navigation functions or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may generally include, for example, a BB processor 934 and an RF circuit 935.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937.
  • the wireless communication interface 933 may also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935.
  • FIG. 24 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935.
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937.
  • FIG. 24 shows an example in which the car navigation device 920 includes a plurality of antennas 937, the car navigation device 920 may also include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 24 via a feeder line, which is partially shown as a dashed line in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the transceiver of the electronic device 100 may be implemented by the wireless communication interface 912. At least part of the functions may also be implemented by the processor 901 or the auxiliary controller 919.
  • the processor 901 or the auxiliary controller 919 can quickly and accurately determine the location of the target user equipment where the electronic device 200 is located by executing the functions of the estimation unit 201, the acquisition unit 202, and the positioning unit 203.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in the car navigation device 920, the in-vehicle network 941, and the vehicle module 942.
  • vehicle module 942 generates vehicle data (such as vehicle speed, engine speed, and failure information), and outputs the generated data to the vehicle network 941.
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above method according to the embodiment of the present disclosure can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • a computer with a dedicated hardware structure (such as a general-purpose computer 2500 shown in FIG. 25) is installed from a storage medium or a network to the program constituting the software, and the computer is installed with various programs. When, can perform various functions and so on.
  • a central processing unit (CPU) 2501 performs various processes in accordance with a program stored in a read only memory (ROM) 2502 or a program loaded from a storage portion 2508 to a random access memory (RAM) 2503.
  • the RAM 2503 also stores data required when the CPU 2501 executes various processes and the like as necessary.
  • the CPU 2501, ROM 2502, and RAM 2503 are connected to each other via a bus 2504.
  • the input/output interface 2505 is also connected to the bus 2504.
  • the following components are connected to the input/output interface 2505: input part 2506 (including keyboard, mouse, etc.), output part 2507 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.), Storage part 2508 (including hard disk, etc.), communication part 2509 (including network interface card such as LAN card, modem, etc.).
  • the communication section 2509 performs communication processing via a network such as the Internet.
  • the driver 2510 can also be connected to the input/output interface 2505 as required.
  • Removable media 2511 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memory, etc. are installed on the drive 2510 as needed, so that the computer programs read from them are installed into the storage portion 2508 as needed.
  • the program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 2511.
  • this storage medium is not limited to the removable medium 2511 shown in FIG. 25 that stores the program and is distributed separately from the device to provide the program to the user.
  • removable media 2511 include magnetic disks (including floppy disks (registered trademarks)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including mini disks (MD) (registered Trademark)) and semiconductor memory.
  • the storage medium may be a ROM 2502, a hard disk included in the storage portion 2508, etc., in which programs are stored and distributed to users together with the devices containing them.
  • each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above-mentioned series of processing can naturally be performed in chronological order in the order of description, but it is not necessarily performed in chronological order. Some steps can be performed in parallel or independently of each other.

Abstract

本申请提供了一种用于无线通信的电子设备、方法和计算机可读存储介质,该电子设备包括:处理电路,被配置为:获取目标用户设备估计的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的到达角和用于距离估计的信息;以及至少基于第一波束和第二波束的波束相关信息以及第一波束的发射角和第二波束的发射角,确定目标用户设备的位置。

Description

用于无线通信的电子设备和方法、计算机可读存储介质
本申请要求于2019年5月30日提交中国专利局、申请号为201910462858.2、发明名称为“用于无线通信的电子设备和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体地涉及基于无线通信的定位技术。更具体地,涉及一种用于无线通信的电子设备和方法以及计算机可读存储介质。
背景技术
在各种应用场景下,位置信息是一个重要的数据。现有的定位方法主要包括多点定位(multilateration)方法和协作定位(Cooperative location)方法。对于多点定位,接收端测量多个发送端发来的信号,其中发送端已知各自的位置,接收端根据几何的方法确定其自身位置。多点定位技术例如包括观察到达时间差(Observed Time Difference of Arrival,OTDOA)、到达角加时间提前量(Angle of Arrival+Time Advance,AOA+TA)等。在OTDOA中,基站通过下行信道向用户端发送定位导频信号,用户端测量各基站导频信号到达该用户端的时间差来估计用户端的位置。在AOA+TA中,基站主要通过测量上行信号的AOA以及到达时间来估计用户端的位置。协作定位多用于无线传感器网。现有的各种定位方法,无论是多点定位还是协作定位,均假定发送端和接收端之间存在直视(Line of sight,LOS,表示无线信号在发送端和接收端之间无遮挡地直线传播)径,当工作在无LOS径的传播环境中时,定位精度大大降低。
发明内容
在下文中给出了关于本申请的简要概述,以便提供关于本申请的某些方面的基本理解。应当理解,这个概述并不是关于本申请的穷举性概 述。它并不是意图确定本申请的关键或重要部分,也不是意图限定本申请的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据本申请的一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:获取目标用户设备估计的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的到达角和用于距离估计的信息;以及至少基于第一波束和第二波束的波束相关信息以及第一波束的发射角和第二波束的发射角,确定目标用户设备的位置。
根据本申请的一个方面,提供了一种用于无线通信的方法,包括:获取目标用户设备估计的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的到达角和用于距离估计的信息;以及至少基于第一波束和第二波束的波束相关信息以及第一波束的发射角和第二波束的发射角,确定目标用户设备的位置。
根据本申请的另一个方面,提供了一种用于无线通信的电子设备,包括:处理电路,被配置为:估计接收到的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的到达角和用于距离估计的信息;获取至少第一波束和第二波束的发射角的信息;以及至少基于第一波束和第二波束的波束相关信息以及第一波束和第二波束的发射角的信息,确定电子设备的位置。
根据本申请的另一个方面,提供了一种用于无线通信的方法,包括:估计接收到的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的到达角和用于距离估计的信息;获取至少第一波束和第二波束的发射角的信息;以及至少基于第一波束和第二波束的波束相关信息以及第一波束和第二波束的发射角的信息,确定电子设备的位置。
依据本公开的其它方面,还提供了用于实现上述用于无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的电子设备和方法利用至少两个波束对目标用户设备进行定位,在存在LOS径和不存在LOS径的情况下均能够准确地确定目标用户设备位置。
通过以下结合附图对本公开的优选实施例的详细说明,本公开的这些以及其他优点将更加明显。
附图说明
为了进一步阐述本发明的以上和其它优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分。具有相同的功能和结构的元件用相同的参考标号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1示出了在发送端和接收端之间存在非LOS径的场景的示例;
图2是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图3示出了用户设备端的AOA的定义的示意图;
图4示出了在图1的场景下利用本实施例的技术对目标用户设备进行定位的示意图;
图5示出了在AOA和发射角(Angle of Departure,AOD)的一种取值范围的情况下,车辆的定位的示意图;
图6示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图7示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图8示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图9示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图10示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图11示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图12示出了在AOA和AOD的另一种取值范围的情况下,车辆的定位的示意图;
图13是示出了根据本申请的一个实施例的用于无线通信的电子设备的功能模块框图;
图14示出了宽波束扫描的一个示例;
图15示出了在预定区域内检测到车辆时的处理的示意图;
图16示出了车辆的运动方向与窄波束的发射方向之间的关系的示意图;
图17示出了在根据本实施例的定位处理中路侧单元与车辆之间的信息流程的示意图;
图18是示出了根据本申请的另一个实施例的用于无线通信的电子设备的功能模块框图;
图19示出了根据本申请的一个实施例的用于无线通信的方法的流程图;
图20示出了根据本申请的另一个实施例的用于无线通信的方法的流程图;
图21是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图;
图22是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图;
图23是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图24是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;以及
图25是其中可以实现根据本公开的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
如前所述,现有的定位技术在发送端和接收端之间不存在LOS径、即发送端和接收端之间的无线信号传播经由非LOS(NLOS)径完成时定位精度降低。以AOA+TA方法为例,图1示出了在发送端和接收端之间存在NLOS径的场景。其中,图1的场景为V2X场景,发送端为路侧单元(Road side unit,RSU),接收端为位于图片顶部的车辆。可以看出,由于阻挡物的存在,目标车辆发出的上行信号经由其他车辆散射而到达RSU,RSU所接收的上行信号的AOA实际上并不能反映目标车辆相对于RSU的真实方位,因此根据该AOA和TA计算出的目标车辆的位置是错误的位置,与真实位置之前存在偏差。
为了解决该问题,本实施例提供了使用至少两个波束对目标用户设备进行定位的方案,无论是否存在LOS径,本实施例的方案均可以准确地确定目标用户设备的的位置。
图2示出了根据本实施例的用于无线通信的电子设备100的功能模块框图,如图2所示,电子设备100包括:获取单元101,被配置为获取目标用户设备估计的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的到达角(AOA)和用于距离估计的信息;以及定位单元102,被配置为至少基于第一波束和第二波束的波束相关信息以及第一波束的发射角和第二波束的发射角(Angle of Departure,AOD),确 定目标用户设备的位置。
其中,获取单元101和定位单元102可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图2中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。这同样适用于随后要描述的其他电子设备的示例。
电子设备100例如可以设置在基站侧或者可通信地连接到基站。在V2X场景下,电子设备100还可以设置在RSU侧。更一般地,电子设备100可以设置在任何位置已知的发送端上。此外,电子设备100还可以设置在用作定位服务器的任意服务器上。
这里,还应指出,电子设备100可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备100可以工作为基站或RSU本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储基站或RSU实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、用户设备、其他RSU等等)间的通信,这里不具体限制收发器的实现形式。
本实施例中所述的目标用户设备例如可以是车辆、移动通信终端等任何需要获知其自身位置的终端设备。
作为发送端的基站或RSU向目标用户设备发送波束,该波束具有一定的发射角AOD,该AOD例如是相对于发射端的参考方向(比如,正北方向)来定义的,作为接收端的目标用户设备例如也采用大规模多入多出(Massive MIMO)天线技术,从而在接收到波束后也能够估计出信号的AOA。用户设备端的AOA定义如图3所示,AOA用波束的到达方向相对于预定参考方向的夹角表示,其中预定参考方向为用户设备地理位置处的正北方向,逆时针旋转的角度为正,顺时针为负,AOA的角度范围为0只360度,且具有一定的分辨率比如0.5度。应该理解,参考方向的定义和角度的分辨率均不限于此。目标用户设备可以采用各种方法来估计AOA,例如产生接收波束并利用接收波束的方向和参考方向的夹角来估计AOA,或者不产生接收波束而使用超分辨率的方法比如多重信号分类法(MUSIC)等。
此外,目标用户设备还可以获取用于距离估计的信息,并将这些信息连同AOA一起提供给电子设备100。
其中,用于距离估计的信息可以包括波束的到达时间的信息例如时间提前量(Timing advance,TA),定位单元102基于第一波束的到达时间的信息估计第一波束从第一波束的发送端至目标用户设备的行进距离,基于第二波束的到达时间的信息估计第二波束从第二波束的发送端至目标用户设备的行进距离。具体地,波束的发出时间和到达时间之间的差为无线信号在空中的行进时间,乘以无线信号的传播速度则可以获得波束从发送端至目标用户设备的行进距离。
替选地,用于距离估计的信息可以包括波束的接收功率的信息,定位单元102基于第一波束的接收功率的信息估计第一波束从第一波束的发送端至目标用户设备的行进距离,基于第二波束的接收功率的信息估计第二波束从第二波束的发送端至目标用户设备的行进距离。具体地,定位单元102可以基于波束的发送功率和接收功率之间的差,以及路径损耗系数来计算相应波束从发送端至目标用户设备的行进距离。相应地,获取单元102需要从相应的发送端获取有关发送功率和路径损耗系数的信息。
在本实施例中,目标用户设备至少接收两个波束并提供至少两组这样的信息。例如,当接收的波束超过两个时,获取单元101还可以选择其中两个波束作为第一波束和第二波束进行上述信息的获取和提供。示例性地,获取单元101可以选择波束质量较好的两个波束。或者,获取单元101也可以获取两个以上波束的上述波束相关信息。
此外,获取单元102还要从各个发送端获取相应波束的发射角AOD的信息。
例如,第一波束由第一RSU或第一基站发射,第二波束由第二RSU或第二基站发射。其中,如果电子设备100位于定位服务器上,则获取单元102从第一RSU或第一基站获取第一波束的AOD,以及从第二RSU或第二基站获取第二波束的AOD。如果电子设备100位于第一RSU或第一基站侧,则获取单元102只需从第二RSU或第二基站获取第二波束的AOD。
其中,获取单元101可以通过低频段比如5G中的FR1(Frequency  Range 1)频段(6GHz以下的频段)上的通信来获取上述波束相关信息,而不用形成波束。或者,获取单元101也可以通过高频段比如5G中的FR2(Frequency Range 2)频段(6GHz以上的频段)上的通信来获取上述波束相关信息,在这种情况下,目标用户设备可以根据AOA的方向来形成发送波束。
在一个示例中,定位单元102使用第一波束和第二波束的实际传播路径与目标用户设备的空间位置之间的几何关系,来所述目标用户设备的位置。例如,定位单元102可以使用以目标用户设备的位置参数为未知数的方程组来计算目标用户设备的位置。换言之,定位单元102使用解析算法来确定目标用户设备的位置。
图4示出了在图1的场景下利用本实施例的技术对目标用户设备进行定位的示意图。其中,第一波束由RSU发出,第二波束由基站发出,分别经由NLOS径#1和NLOS径#2到达目标车辆(即,目标用户设备)。目标车辆将获得的第一波束的AOA和到达时间的信息提供给电子设备100,在本示例中,假设电子设备100位于基站上。但是,应该理解,这并不是限制性的,电子设备100还可以位于RSU上,或者位于专门的服务器上。图4所示的示意图仅是示例,并不是限制性的,目标用户设备也不限于图中所示的车辆。
在平面坐标中,车辆的位置用坐标(x,y)表示。即,车辆位置信息包括两个未知数,因此需要两个波束的两组参数得到两个方程才能求解。这两个方程的产生过程是相同的,以下以一个波束(比如图4中的RSU发送的波束)为例来描述一个方程的产生过程。其中,对应于该波束的一组参数包括该波束的AOA、AOD和该波束从发送端至目标车辆的行进距离,该行进距离为NLOS径#1的长度。
根据AOA和AOD的取值范围,可以将所有情况分为8种。假设在x-y平面中,RSU的坐标为(0,0),d表示RSU与车辆之间的NLOS径#1的长度,θ t表示AOA,θ r表示AOD。
情况1
Figure PCTCN2020092007-appb-000001
图5示出了该情况下,车辆的定位的示意图,其中s 2和s 1分别代表在散射体#1处发生散射前后NLOS径#1的两个部分的长度,在以下的图6至12中s 2和s 1也具有类似的含义,将不再重复说明。根据图5可以获得下式(2)至(4)。
s 1sin(θ t-π)+s 2sinθ r=-x  (2)
s 1cos(θ t-π)+s 2cosθ r=y   (3)
s 1+s 2=d   (4)
将s 2=d-s 1代入式(2)和式(3)可得:
s 1sin(θ t-π)+(d-s 1)sinθ r=-x   (5)
s 1cos(θ t-π)+(d-s 1)cosθ r=y   (6)
式(6)可进一步写为:
Figure PCTCN2020092007-appb-000002
将式(7)代入式(5)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (8)
式(8)为在情况1下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况2
Figure PCTCN2020092007-appb-000003
图6示出了该情况下,车辆的定位的示意图。根据图6可以获得下式(9)至(11)。
s 1sin(π-θ t)+s 2sin(2π-θ r)=x  (9)
s 1cos(π-θ t)+s 2cos(2π-θ r)=y   (10)
s 1+s 2=d   (11)
将s 2=d-s 1代入式(9)和式(10)可得:
s 1sin(π-θ t)+(d-s 1)sin(2π-θ r)=x   (12)
s 1cos(π-θ t)+(d-s 1)cos(2π-θ r)=y   (13)
式(13)可进一步写为:
Figure PCTCN2020092007-appb-000004
将式(13)代入式(12)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (15)
式(15)为在情况2下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况3
Figure PCTCN2020092007-appb-000005
图7示出了该情况下,车辆的定位的示意图,其中,根据车辆的x轴方向的位置示出了两种情形。根据图7可以获得下式(16)至(18)。
s 1sin(θ t-π)-s 2sin(2π-θ r)=-x   (16)
s 1cos(θ t-π)+s 2cos(2π-θ r)=y   (17)
s 1+s 2=d   (18)
将s 2=d-s 1代入式(16)和式(17)可得:
s 1sin(θ t-π)-(d-s 1)sin(2π-θ r)=-x   (19)
s 1cos(θ t-π)+(d-s 1)cos(2π-θ r)=y  (20)
式(20)可进一步写为:
Figure PCTCN2020092007-appb-000006
将式(21)代入式(19)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (22)
式(22)为在情况3下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况4
Figure PCTCN2020092007-appb-000007
图8示出了该情况下,车辆的定位的示意图,其中,根据车辆的x轴方向的位置示出了两种情形。根据图8可以获得下式(23)至(25)。
s 1sin(π-θ t)-s 2sinθ r=x   (23)
s 1cos(π-θ t)+s 2cosθ r=y   (24)
s 1+s 2=d    (25)
将s 2=d-s 1代入式(23)和式(24)可得:
s 1sin(π-θ t)-(d-s 1)sinθ r=x   (26)
s 1cos(π-θ t)+(d-s 1)cosθ r=y   (27)
式(27)可进一步写为:
Figure PCTCN2020092007-appb-000008
将式(28)代入式(26)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (29)
式(29)为在情况4下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况5
Figure PCTCN2020092007-appb-000009
图9示出了该情况下,车辆的定位的示意图,其中,根据车辆的x轴方向的位置示出了两种情形。根据图9可以获得下式(30)至(32)。
s 1sinθ t-s 2sinθ r=x   (30)
s 1cosθ t-s 2cosθ r=-y   (31)
s 1+s 2=d   (32)
将s 2=d-s 1代入式(30)和式(31)可得:
s 1sinθ t-(d-s 1)sinθ r=x    (33)
s 1cosθ t-(d-s 1)cosθ r=-y   (34)
式(34)可进一步写为:
Figure PCTCN2020092007-appb-000010
将式(35)代入式(33)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (36)
式(36)为在情况5下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况6
Figure PCTCN2020092007-appb-000011
图10示出了该情况下,车辆的定位的示意图。根据图10可以获得 下式(37)至(39)。
s 1sin(2π-θ t)+s 2sinθ r=-x   (37)
s 1cos(2π-θ t)-s 2cosθ r=-y    (38)
s 1+s 2=d   (39)
将s 2=d-s 1代入式(37)和式(38)可得:
s 1sin(2π-θ t)+(d-s 1)sinθ r=-x   (40)
s 1cos(2π-θ t)-(d-s 1)cosθ r=-y   (41)
式(41)可进一步写为:
Figure PCTCN2020092007-appb-000012
将式(42)代入式(40)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (43)
式(43)为在情况6下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况7
Figure PCTCN2020092007-appb-000013
图11示出了该情况下,车辆的定位的示意图,其中,根据车辆的x轴方向的位置示出了两种情形。根据图11可以获得下式(44)至(46)。
s 1sin(2π-θ t)-s 2sin(2π-θ r)=-x   (44)
s 1cos(2π-θ t)-s 2cos(2π-θ r)=-y   (45)
s 1+s 2=d    (46)
将s 2=d-s 1代入式(44)和式(45)可得:
s 1sin(2π-θ t)-(d-s 1)sin(2π-θ r)=-x   (47)
s 1cos(2π-θ t)-(d-s 1)cos(2π-θ r)=-y   (48)
式(48)可进一步写为:
Figure PCTCN2020092007-appb-000014
将式(49)代入式(47)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (50)
式(50)为在情况7下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
情况8
Figure PCTCN2020092007-appb-000015
图12示出了该情况下,车辆的定位的示意图。根据图12可以获得下式(51)至(53)。
s 1sinθ t+s 2sin(2π-θ r)=x   (51)
s 1cosθ t-s 2cos(2π-θ r)=-y   (52)
s 1+s 2=d   (53)
将s 2=d-s 1代入式(51)和式(52)可得:
s 1sinθ t+(d-s 1)sin(2π-θ r)=x  (54)
s 1cosθ t-(d-s 1)cos(2π-θ r)=-y    (55)
式(55)可进一步写为:
Figure PCTCN2020092007-appb-000016
将式(56)代入式(54)可得:
(sinθ t+sinθ r)y+(cosθ t+cosθ r)x=d sin(θ tr)   (57)
式(57)为在情况8下获得的以车辆的位置参数x、y为未知数的方程,其中,θ t、θ r和d均是已知的。
由以上分析可得,在所有情况下,车辆的坐标方程均具有相同的形式。返回图4的示例,假设NLOS径#1的长度、AOA和AOD分别为d 1、θ t1和θ r1;NLOS径#2的NLOS长度、AOA和AOD分别为d 2、θ t2和θ r2,则根据以上分析,可以得到如下两个方程:
(sinθ t1+sinθ r1)y+(cosθ t1+cosθ r1)x=d 1sin(θ t1r1)   (58)
(sinθ t2+sinθ r2)y+(cosθ t2+cosθ r2)x=d 2sin(θ t2r2)   (59)
联立这两个方程可以求得车辆坐标(x,y)。应该理解,以上虽然以NLOS径为例进行了描述,但是所获得的方程组(58)和(59)同样可以应用于LOS径的情形,而无需进行区分。
在以上的示例中,目标用户设备的位置采用了平面坐标来表示,还可以采用极坐标表示。并且,目标用户设备的位置还可以采用绝对位置坐标(例如经度、纬度)表示,或者采用相对于预定参照物的相对位置坐标来表示。
在另一个示例中,定位单元102可以使用最小均方误差(Minimum mean square error,MMSE)算法确定目标用户设备的位置。例如,在目标用户设备接收到多于两个波束从而估计出多于两组参数的情况下,定位单元102可以基于这些参数采用先进的信号处理技术比如MMSE算法来估计目标用户设备的位置参数。
综上所述,根据本实施例的电子设备100能够通过使用至少两个波束对目标用户设备进行定位,在存在LOS径和不存在LOS径的情况下均能够准确地确定目标用户设备的位置。通过利用两个波束的波束相关参数来求解方程组,可以以解析的方式求得目标用户设备的位置,不需 要区分LOS径和NLOS径,提高了定位的速度和精度。
<第二实施例>
在目标用户设备为处于移动状态的用户设备比如车辆的情况下,发送端需要根据车辆的大致位置来决定发送波束的大致方向,以使得发送的波束能够被目标用户设备接收到。
如图13所示,根据本实施例的电子设备100还可以包括发射单元103和确定单元104。电子设备100可以位于RSU或基站中。其中,发射单元103被配置为发射第三波束以扫描预定区域,当目标用户设备存在于预定区域中并接收到该第三波束信号时,例如可以通过低频段向电子设备100报告反馈信息,该反馈信息例如包括目标用户设备的运动方向和运动速度等。获取单元101获取该反馈信息,并提供给确定单元104。其中,第三波束的波束宽度大于第一波束(或第二波束)的波束宽度,因此在下文中也将第三波束称为宽波束(wide beam),将第一波束(或第二波束)称为窄波束(Narrow beam),并且主要将第一波束作为窄波束的示例进行描述。应该理解,这里所述的宽波束和窄波束是一对含义相对的概念,并不限制其具体的数值范围。其中,宽波束的波束宽度较大,可以覆盖较大的区域。宽波束扫描可以快速地发现目标用户设备。窄波束的波束宽度很小,覆盖区域较小,但信噪比较高,可用来精确估计信号的AOA信息。
确定单元104基于获取单元101获取的反馈信息确定要发送的窄波束的发射方向和持续时间,以使得该窄波束能够被目标用户设备接收到。发射单元103以预定定时按照所确定的发射方向和持续时间来发射该窄波束。
图14示出了宽波束扫描的一个示例。图14中示出了一段d米长的公路,分为长d 0、d 1、d 2和d 3米的4个部分,分别由4个宽波束覆盖。RSU或基站为了扫描整个区域,先产生波束0扫描长度为d 0米的公路区域,该公路区域为波束0对应的预定区域,在下一个周期比如时隙(Time slot),产生波束1扫描长度为d 1米的公路区域,然后产生波束2和波束3来扫描长度为d 2和d 3米的公路区域。扫描整个公路后再从波束0开始循环。
假设作为目标用户设备的车辆在t 0时刻进入长度为d 0米的公路区域,并接收到波束0的信号,车辆通过低频段向对应的RSU或基站上报其运动速度和运动方向,如图15所示。其中,如果宽波束的发送端为RSU,则上报的信息通过sidelink传送,如果宽波束的发送端为基站,则上报的信息通过上行链路传送。在图15的示例中,运动方向可以指示车辆向左或向右,例如可以用0或1表示。在本实施例的描述中以车辆作为目标用户设备的示例,但是这仅是为了说明的需要,并不是限制性的。
根据车辆上报的运动速度v,确定单元104计算车辆在该区域内的最大可能行进时间Δt,如下式(60)所示:
Figure PCTCN2020092007-appb-000017
其中,Δt为车辆以上报的运动速度通过整个预定区域所需的时间。假设一个时隙长度为t slot,则发射单元103可以在t 1=t 0+t slot处产生窄波束,并且该窄波束将持续至t 1+Δt,以等待车辆接收到其信号。或者,该窄波束的持续时间也可以短于Δt。
另外,确定单元104将该窄波束的发射方向确定为紧邻宽波束的与车辆的运动方向一致的一侧的靠外的方向,即,该窄波束指向车辆运动的前方。如图16所示,如果车辆向左运动,该窄波束指向宽波束的左边相邻的方向。而如果车辆向右运动,则窄波束指向宽波束的右边相邻的方向。
当采用第一实施例中所述的定位方法进行定位时,该窄波束可以作为第一波束,即,电子设备100所在的RSU或基站(称为第一RSU或第一基站)发射第一波束。同时,另一RSU或另一基站(以下称为第二RSU或第二基站)将以同样的定时来发射第二波束。其中,第一RSU或第一基站和第二RSU或第二基站可以由定位服务器指定,也可以在扫描 到车辆时自动指定;或者第二RSU或第二基站由第一RSU或第一基站指定;或者第一RSU或第一基站和第二RSU或第二基站是固定的,这都不是限制性的。
第二波束的发射方向和持续时间可以由第二RSU或第二基站以与如上所述相同的方式确定;或者,第一RSU或第一基站上的电子设备100将确定的第一波束的发射方向和持续时间提供给该第二RSU或第二基站,以使其根据第一波束的发射方向和持续时间来确定第二波束的发射方向和持续时间;或者,第一RSU或第一基站上的电子设备100根据第一波束的发射方向和第一RSU或第一基站与第二RSU或第二基站之间的位置关系确定第二波束的发射方向,并将该发射方向连同持续时间提供给第二RSU或第二基站。
车辆接收到第一波束和第二波束后,分别获得第一波束的AOA和用于估计其行进的距离的信息以及第二波束的AOA和用于估计其行进的距离的信息,并将这些信息提供给第一RSU或第一基站。此外,在第二RSU或第二基站自行计算第二波束的发射方向的情况下,第二RSU或第二基站还将第二波束的AOD的信息提供给第一RSU或第一基站。接着,第一RSU或第一基站基于这些信息,利用第一实施例中所述的方法确定车辆的位置。
为了便于理解,图17示出了在根据本实施例的定位处理中RSU与车辆之间的信息流程的示意图。首先,第一RSU和第二RSU针对同一区域同时执行宽波束扫描,其中,如果在一个扫描周期中如果没有接收到来自车辆的反馈信息,则改变宽波束的发射方向并同时扫描另一区域。接着,如果车辆接收到宽波束信号,则向第一RSU(在本示例中用作主RSU)上报反馈信息,例如包括车辆的运动方向和运动速度。第一RSU基于该反馈信息计算第一波束的发射方向和持续时间,在该示例中,第一RSU还计算第二波束的发射方向和持续时间,并将其提供给第二RSU。然后,第一RSU和第二RSU以相同的定时分别发送第一波束和第二波束。车辆在接收到第一波束和第二波束时,测量第一波束和第二波束的AOA和到达时间,并将其提供给第一RSU。由于第一RSU还已知第一波束的AOD和第二波束的AOD,因此能够使用第一实施例中所述的解析方法来计算车辆的位置。注意,图17中的流程仅是示意性的,可以根据实际需要进行适当的修改。
根据本实施例的电子设备100能够准确且快速地确定行进中的目标用户设备的位置。
<第三实施例>
图18示出了根据本申请的另一个实施例的电子设备200的功能模块框图,如图18所示,该电子设备200包括:估计单元201,被配置为估计接收到的至少第一波束和第二波束的波束相关信息,该波束相关信息包括波束的AOA和用于距离估计的信息;获取单元202,被配置为获取至少第一波束和第二波束的AOD的信息;以及定位单元203,被配置为至少基于第一波束和第二波束的波束相关信息以及第一波束和第二波束的AOD的信息,确定电子设备200的位置。
其中,估计单元201、获取单元201和定位单元203可以由一个或多个处理电路实现,该处理电路例如可以实现为芯片、处理器。并且,应该理解,图18中所示的电子设备中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。
电子设备200例如可以设置在要定位的目标用户设备侧或者可通信地连接到该目标用户设备。目标用户设备例如为车辆或者其他移动通信终端。
这里,还应指出,电子设备200可以以芯片级来实现,或者也可以以设备级来实现。例如,电子设备200可以工作为目标用户设备本身,并且还可以包括诸如存储器、收发器(图中未示出)等外部设备。存储器可以用于存储目标用户设备实现各种功能需要执行的程序和相关数据信息。收发器可以包括一个或多个通信接口以支持与不同设备(例如,基站、RSU、其他目标用户设备等等)间的通信,这里不具体限制收发器的实现形式。
在本实施例中,目标用户设备接收来自基站或RSU的发射波束比如第一波束和第二波束,对接收到的波束进行测量以获得至少两组波束相关参数并从相应的基站或RSU获取波束的AOD的信息。定位单元203使用这些波束相关参数和获取的AOD的信息,以与第一实施例中相同的方式对电子设备100(即,电子设备100所在的目标用户设备)进行定位。因此,定位单元203具有与第一实施例中所述的定位单元102相同的结 构和功能,在此不再重复说明。
此外,估计单元201可以使用各种方法来估计波束的AOA,例如产生接收波束并利用接收波束的方向和参考方向的夹角来估计AOA,或者不产生接收波束而使用超分辨率的方法比如多重信号分类法(MUSIC)等。
其中,用于距离估计的信息可以包括波束的到达时间的信息或者波束的接收功率的信息,具体的说明在第一实施例中已经给出,在此不再重复。
获取单元202可以经由低频段比如5G中的FR1频段上的通信来获取第一波束和第二波束的AOD的信息,而不用形成波束。或者,获取单元202也可以通过高频段比如5G中的FR2频段上的通信来获取该信息,在这种情况下,RSU或基站可以形成另外的发送波束,或者可以将该信息承载在第一波束或第二波束上。
综上所述,根据本申请的电子设备200能够通过使用至少两个波束对目标用户设备进行定位,在存在LOS径和不存在LOS径的情况下均能够准确地确定电子设备200的位置。通过利用两个波束的波束相关参数来求解方程组,可以以解析的方式求得目标用户设备的位置,不需要区分LOS径和NLOS径,提高了定位的速度和精度。
<第四实施例>
在上文的实施方式中描述用于无线通信的电子设备的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中已经讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在描述用于无线通信的电子设备的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的电子设备的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的电子设备的硬件和/或固件。
图19示出了根据本申请的一个实施例的用于无线通信的方法的流程图,该方法包括:获取目标用户设备估计的至少第一波束和第二波束 的波束相关信息(S11),该波束相关信息包括波束的到达角和用于距离估计的信息;以及至少基于第一波束和第二波束的波束相关信息以及第一波束的发射角和第二波束的发射角,确定目标用户设备的位置(S12)。该方法可以在基站或RSU侧执行,还可以在被用作定位服务器的服务器侧执行。
其中,波束的到达角可以用波束的到达方向相对于预定参考方向的夹角表示。用于距离估计的信息可以包括波束的到达时间的信息,在步骤S11中基于第一波束的到达时间的信息估计第一波束从第一波束的发送端至目标用户设备的行进距离,基于第二波束的到达时间的信息估计第二波束从第二波束的发送端至目标用户设备的行进距离。或者,用于距离估计的信息可以包括波束的接收功率的信息,在步骤S11中基于第一波束的接收功率的信息估计第一波束从第一波束的发送端至目标用户设备的行进距离,基于第二波束的接收功率的信息估计第二波束从第二波束的发送端至目标用户设备的行进距离。
例如,第一波束由第一RSU或第一基站发射,第二波束由第二RSU或第二基站发射。上述方法还包括从第一RSU或第一基站获取第一波束的发射角,以及从第二RSU或第二基站获取第二波束的发射角。在上述方法在第一RSU或第一基站处执行的情况下,仅从第二RSU或第二基站获取第二波束的发射角。
其中,在步骤S11中可以通过低频段上的通信来获取第一波束和第二波束的波束相关信息。
在步骤S12中,使用第一波束和第二波束的实际传播路径与目标用户设备的空间位置之间的几何关系,来确定目标用户设备的位置。例如,可以通过确定目标用户设备的绝对位置坐标或相对于预定参照物的相对坐标,来确定目标用户设备的位置。此外,在步骤S12中还可以使用最小均方误差算法来确定目标用户设备的位置。
虽然图19中未示出,但是上述方法还可以包括如下步骤:发射第三波束以扫描预定区域,其中,第三波束的波束宽度大于第一波束的波束宽度;在目标用户设备存在于预定区域中的情况下,从目标用户设备获取反馈信息,该反馈信息包括目标用户设备的运动方向和运动速度;基于反馈信息确定第一波束的发射方向和持续时间,以使得第一波束能够 被目标用户设备接收;以及以预定定时按照所确定的发射方向和持续时间发射第一波束。
其中,可以将第一波束的发射方向确定为紧邻第三波束的与目标用户设备的运动方向一致的一侧的靠外的方向,以及将第一波束的持续时间确定为等于或者小于目标用户设备以运动速度通过预定区域所需的时间。
第二路侧单元或第二基站同时发射第三波束以扫描预定区域。上述方法还包括将所确定的第一波束的发射方向和持续时间提供给第二路侧单元或第二基站,以使得第二路侧单元或第二基站根据第一波束的发射方向和持续时间来确定第二波束的发射方向和持续时间,并以同样的定时来发射第二波束。本实施例中的目标用户设备可以是车辆。
图20示出了根据本申请的另一个实施例的用于无线通信的方法的流程图,该方法包括:估计接收到的至少第一波束和第二波束的波束相关信息(S21),该波束相关信息包括波束的到达角和用于距离估计的信息;获取至少第一波束和第二波束的发射角的信息(S22);以及至少基于第一波束和第二波束的波束相关信息以及第一波束和所述第二波束的发射角的信息,确定所述电子设备的位置(S23)。该方法例如可以在目标用户设备侧执行。
注意,上述各个方法可以结合或单独使用,其细节在第一至第三实施例中已经进行了详细描述,在此不再重复。
本公开内容的技术能够应用于各种产品。
例如,电子设备100可以被实现为各种基站。基站可以被实现为任何类型的演进型节点B(eNB)或gNB(5G基站)。eNB例如包括宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。对于gNB也可以由类似的情形。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的用户设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备200可以被实现为各种用户设备。用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图21是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第一示例的框图。注意,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图21所示,eNB 800可以包括多个天线810。例如,多个天线810可以与eNB 800使用的多个频带兼容。虽然图21示出其中eNB 800包括多个天线810的示例,但是eNB 800也可以包括单个天线810。
基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线810来提供到位于eNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图21所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与eNB 800使用的多个频带兼容。如图21所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图21示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图21所示的eNB 800中,电子设备100的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元101和定位单元102的功能来准确且快速地确定目标用户设备的位置。
(第二应用示例)
图22是示出可以应用本公开内容的技术的eNB或gNB的示意性配置的第二示例的框图。注意,类似地,以下的描述以eNB作为示例,但是同样可以应用于gNB。eNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图22所示,eNB 830可以包括多个天线840。例如,多个天线840可以与eNB 830使用的多个频带兼容。虽然图22示出其中eNB 830包括多个天线840的示例,但是eNB 830也可以包括单个天线840。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图21描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图21描述的BB处理器826相同。如图22所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与eNB 830使用的多个频带兼容。虽然图22示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信 接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图22所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图22示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图22所示的eNB 830中,电子设备100的收发器可以由无线通信接口825实现。功能的至少一部分也可以由控制器821实现。例如,控制器821可以通过执行获取单元101和定位单元102的功能来准确且快速地确定目标用户设备的位置。
[关于用户设备的应用示例]
(第一应用示例)
图23是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极 管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。注意,图中虽然示出了一个RF链路与一个天线连接的情形,但是这仅是示意性的,还包括一个RF链路通过多个移相器与多个天线连接的情形。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图23所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图23示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图23所示,智能电话900可以包括多个天线916。虽然图23示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置 910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图23所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图23所示的智能电话900中,电子设备200的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行估计单元201、获取单元202和定位单元203的功能来快速且准确地确定电子设备200所在的目标用户设备的位置。
(第二应用示例)
图24是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进), 并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图24所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图24示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图24所示,汽车导航设备920可以包括多个天线937。虽然图24示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图24所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图24示出的汽车导航设备920中,电子设备100的收发器可以由无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过执行估计单元201、获取单元202和定位单元203的功能来快速且准确地确定电子设备200所在的目标用户设备的位置。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图25所示的通用计算机2500)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图25中,中央处理单元(CPU)2501根据只读存储器(ROM)2502中存储的程序或从存储部分2508加载到随机存取存储器(RAM)2503的程序执行各种处理。在RAM 2503中,也根据需要存储当CPU 2501执行各种处理等等时所需的数据。CPU 2501、ROM 2502和RAM 2503经由总线2504彼此连接。输入/输出接口2505也连接到总线2504。
下述部件连接到输入/输出接口2505:输入部分2506(包括键盘、鼠标等等)、输出部分2507(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2508(包括硬盘等)、通信部分2509(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2509经由网络比如因特网执行通信处理。根据需要,驱动器2510也可连接到输入/输出接口2505。可移除介质2511比如磁盘、光盘、磁光盘、 半导体存储器等等根据需要被安装在驱动器2510上,使得从中读出的计算机程序根据需要被安装到存储部分2508中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可移除介质2511安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图25所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质2511。可移除介质2511的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2502、存储部分2508中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本公开的装置、方法和系统中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (25)

  1. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    获取目标用户设备估计的至少第一波束和第二波束的波束相关信息,所述波束相关信息包括波束的到达角和用于距离估计的信息;以及
    至少基于所述第一波束和所述第二波束的波束相关信息以及所述第一波束的发射角和所述第二波束的发射角,确定所述目标用户设备的位置。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为使用所述第一波束和所述第二波束的实际传播路径与所述目标用户设备的空间位置之间的几何关系,来确定所述目标用户设备的位置。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为使用最小均方误差算法确定所述目标用户设备的位置。
  4. 根据权利要求1所述的电子设备,其中,所述用于距离估计的信息包括波束的到达时间的信息,所述处理电路被配置为基于所述第一波束的到达时间的信息估计所述第一波束从所述第一波束的发送端至所述目标用户设备的行进距离,基于所述第二波束的到达时间的信息估计所述第二波束从所述第二波束的发送端至所述目标用户设备的行进距离。
  5. 根据权利要求1所述的电子设备,其中,所述用于距离估计的信息包括波束的接收功率的信息,所述处理电路被配置为基于所述第一波束的接收功率的信息估计所述第一波束从所述第一波束的发送端至所述目标用户设备的行进距离,基于所述第二波束的接收功率的信息估计所述第二波束从所述第二波束的发送端至所述目标用户设备的行进距离。
  6. 根据权利要求1所述的电子设备,其中,所述第一波束由第一路侧单元或第一基站发射,以及所述第二波束由第二路侧单元或第二基站发射。
  7. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为从所述第一路侧单元或所述第一基站获取所述第一波束的发射角,以及从所述第二路侧单元或所述第二基站获取所述第二波束的发射角。
  8. 根据权利要求6所述的电子设备,其中,所述电子设备位于所述第一路侧单元或所述第一基站侧,所述处理电路被配置为从所述第二路侧单元或所述第二基站获取所述第二波束的发射角。
  9. 根据权利要求8所述的电子设备,其中,所述处理电路还被配置为:
    发射第三波束以扫描预定区域,其中,所述第三波束的波束宽度大于所述第一波束的波束宽度;
    在所述目标用户设备存在于所述预定区域中的情况下,从所述目标用户设备获取反馈信息,所述反馈信息包括所述目标用户设备的运动方向和运动速度;
    基于所述反馈信息确定所述第一波束的发射方向和持续时间,以使得所述第一波束能够被所述目标用户设备接收;以及
    以预定定时按照所确定的发射方向和持续时间发射所述第一波束。
  10. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为将所述第一波束的发射方向确定为紧邻所述第三波束的与所述目标用户设备的运动方向一致的一侧的靠外的方向,以及将所述第一波束的持续时间确定为等于或者小于所述目标用户设备以所述运动速度通过所述预定区域所需的时间。
  11. 根据权利要求9所述的电子设备,其中,所述第二路侧单元或所述第二基站同时发射第三波束以扫描所述预定区域。
  12. 根据权利要求9所述的电子设备,其中,所述处理电路被配置为将所确定的第一波束的发射方向和持续时间提供给所述第二路侧单元或所述第二基站,以使得所述第二路侧单元或所述第二基站根据所述第一波束的发射方向和持续时间来确定所述第二波束的发射方向和持续时间,并以同样的定时来发射所述第二波束。
  13. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为通过低频段上的通信来获取所述第一波束和所述第二波束的波束相关信息。
  14. 根据权利要求1所述的电子设备,其中,所述处理电路被配置为通过确定所述目标用户设备的绝对位置坐标或相对于预定参照物的相对 坐标,来确定所述目标用户设备的位置。
  15. 根据权利要求1所述的电子设备,其中,波束的到达角用波束的到达方向相对于预定参考方向的夹角表示。
  16. 根据权利要求1所述的电子设备,其中,所述第一波束和所述第二波束经由非直视径到达所述目标用户设备。
  17. 根据权利要求1所述的电子设备,其中,所述目标用户设备为车辆。
  18. 根据权利要求6所述的电子设备,其中,所述处理电路被配置为从所述第一路侧单元或所述第一基站获取所述第一波束的发射角,以及从所述第二路侧单元或所述第二基站获取所述第二波束的发射角。
  19. 一种用于无线通信的电子设备,包括:
    处理电路,被配置为:
    估计接收到的至少第一波束和第二波束的波束相关信息,所述波束相关信息包括波束的到达角和用于距离估计的信息;
    获取至少第一波束和第二波束的发射角的信息;以及
    至少基于所述第一波束和所述第二波束的波束相关信息以及所述第一波束和所述第二波束的发射角的信息,确定所述电子设备的位置。
  20. 根据权利要求19所述的电子设备,其中,所述用于距离估计的信息包括波束的到达时间的信息或者波束的接收功率的信息。
  21. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为使用所述第一波束和所述第二波束的实际传播路径与所述电子设备的空间位置之间的几何关系,来确定所述电子设备的位置。
  22. 根据权利要求19所述的电子设备,其中,所述处理电路被配置为使用最小均方误差算法确定所述电子设备的位置。
  23. 一种用于无线通信的方法,包括:
    获取目标用户设备估计的至少第一波束和第二波束的波束相关信息,所述波束相关信息包括波束的到达角和用于距离估计的信息;以及
    至少基于所述第一波束和所述第二波束的波束相关信息以及所述第 一波束的发射角和所述第二波束的发射角,确定所述目标用户设备的位置。
  24. 一种用于无线通信的方法,包括:
    估计用户设备接收到的至少第一波束和第二波束的波束相关信息,所述波束相关信息包括波束的到达角和用于距离估计的信息;
    获取至少第一波束和第二波束的发射角的信息;以及
    至少基于所述第一波束和所述第二波束的波束相关信息以及所述第一波束和所述第二波束的发射角的信息,确定所述用户设备的位置。
  25. 一种计算机可读存储介质,其上存储有计算机可执行指令,当所述计算机可执行指令被执行时,执行根据权利要求23或24所述的用于无线通信的方法。
PCT/CN2020/092007 2019-05-30 2020-05-25 用于无线通信的电子设备和方法、计算机可读存储介质 WO2020238829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080037130.6A CN113853807A (zh) 2019-05-30 2020-05-25 用于无线通信的电子设备和方法、计算机可读存储介质
US17/604,443 US20220201430A1 (en) 2019-05-30 2020-05-25 Electronic device and method for wireless communication, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910462858.2A CN112104972A (zh) 2019-05-30 2019-05-30 用于无线通信的电子设备和方法、计算机可读存储介质
CN201910462858.2 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020238829A1 true WO2020238829A1 (zh) 2020-12-03

Family

ID=73553488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092007 WO2020238829A1 (zh) 2019-05-30 2020-05-25 用于无线通信的电子设备和方法、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20220201430A1 (zh)
CN (2) CN112104972A (zh)
WO (1) WO2020238829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020415A1 (zh) * 2021-08-20 2023-02-23 维沃移动通信有限公司 定位方法、装置和电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376575B (zh) * 2021-06-08 2022-07-22 上海航天测控通信研究所 一种基于波束循环扫描的离开角定位系统和定位方法
EP4369744A1 (en) * 2021-08-12 2024-05-15 Huawei Technologies Co., Ltd. Positioning method, transmittng end, receiving end, and computer readable storage medium
TWI801066B (zh) * 2021-12-27 2023-05-01 鴻齡科技股份有限公司 室內定位方法、裝置及計算機可讀存儲介質
WO2023133766A1 (zh) * 2022-01-13 2023-07-20 华为技术有限公司 波束控制方法及装置
CN116147504B (zh) * 2023-04-18 2023-07-04 领视科技成都有限公司 一种车载非接触式接触线磨耗测量方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036367A (zh) * 2009-09-27 2011-04-27 中国移动通信集团公司 基于时间测量的定位方法及装置
CN107113049A (zh) * 2015-01-12 2017-08-29 高通股份有限公司 用于极高频(ehf)设备的位置报告
WO2018069208A1 (en) * 2016-10-10 2018-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment localization in a mobile communication network
WO2018149648A1 (en) * 2017-02-14 2018-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatuses, system and methods for transmission of a positioning signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609231B2 (ja) * 2005-08-05 2011-01-12 株式会社日立製作所 無線位置検出方法およびそのシステム
CN101335761B (zh) * 2008-06-27 2012-11-28 西安交通大学 Ad Hoc网络中远距离节点的通信方法
JP6339185B2 (ja) * 2013-07-26 2018-06-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて多重アンテナビームフォーミングのための端末の移動性測定方法及びそのための装置
EP3160186B1 (en) * 2014-06-19 2019-01-02 Mitsubishi Electric Corporation Base station, control station, and handover method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036367A (zh) * 2009-09-27 2011-04-27 中国移动通信集团公司 基于时间测量的定位方法及装置
CN107113049A (zh) * 2015-01-12 2017-08-29 高通股份有限公司 用于极高频(ehf)设备的位置报告
WO2018069208A1 (en) * 2016-10-10 2018-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment localization in a mobile communication network
WO2018149648A1 (en) * 2017-02-14 2018-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatuses, system and methods for transmission of a positioning signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues on channel models and antenna models for V2X", 3GPP DRAFT; R1-1806152 ERICSSON - CHANNEL MODELS AND ANTENNA CONFIGURATIONS, 25 May 2018 (2018-05-25), XP051461732 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020415A1 (zh) * 2021-08-20 2023-02-23 维沃移动通信有限公司 定位方法、装置和电子设备

Also Published As

Publication number Publication date
CN112104972A (zh) 2020-12-18
CN113853807A (zh) 2021-12-28
US20220201430A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020238829A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP6652138B2 (ja) 無線通信システムにおける電子機器及び無線通信方法
WO2017071618A1 (zh) 无线通信系统中的装置和方法
US8649800B2 (en) Direction-enhanced navigation
KR20180038451A (ko) 적응적 액티브 포지셔닝을 이용한 개선된 패시브 포지셔닝
WO2019237998A1 (zh) 电子设备、用户设备、无线通信方法和存储介质
Chukhno et al. D2D-based cooperative positioning paradigm for future wireless systems: A survey
TW202142003A (zh) 定位訊號優先順序
KR20150052753A (ko) 무선 통신시스템의 위치 추정 장치 및 방법
WO2020156567A1 (zh) 用于无线通信系统的设备、方法和存储介质
WO2017050246A1 (zh) 用于无线通信的电子设备以及无线通信方法
WO2020238671A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11513182B2 (en) User equipment in wireless communication system, electronic device, method and storage medium
WO2016155571A1 (zh) 用于无线通信的装置和方法
CN109313250A (zh) 用于位置确定的组合的精细定时测量(ftm)和非ftm信息传送
WO2015182292A1 (ja) 装置
US10951273B2 (en) Electronic device, method and storage medium for wireless communication system
US10904814B2 (en) Electronic device and method for wireless communication
US20240015693A1 (en) User equipment (ue) positioning
CN115769086A (zh) 用户设备传感器校准
CN114095855A (zh) 一种定位方法及装置
WO2018095210A1 (zh) 用于网络控制端和网络节点的电子设备和方法
WO2023202493A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024012404A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2023138495A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814933

Country of ref document: EP

Kind code of ref document: A1