WO2023202310A1 - 功率放大器及其输入匹配网络 - Google Patents

功率放大器及其输入匹配网络 Download PDF

Info

Publication number
WO2023202310A1
WO2023202310A1 PCT/CN2023/082963 CN2023082963W WO2023202310A1 WO 2023202310 A1 WO2023202310 A1 WO 2023202310A1 CN 2023082963 W CN2023082963 W CN 2023082963W WO 2023202310 A1 WO2023202310 A1 WO 2023202310A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable capacitor
resonator
series
capacitor
bias voltage
Prior art date
Application number
PCT/CN2023/082963
Other languages
English (en)
French (fr)
Inventor
周佳辉
胡滨
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023202310A1 publication Critical patent/WO2023202310A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only

Definitions

  • the invention relates to the field of electronic technology, and in particular to a power amplifier and its input matching network.
  • Radio frequency power amplifier (PA), as an important part of mobile phone communication system, is mainly used to amplify signals.
  • PA Radio frequency power amplifier
  • the power requirements for mobile phone power amplifiers are continuously increasing.
  • the increase in PA transmit power also requires higher power gain, so it is easy to cause worse spurs.
  • the deterioration of out-of-band spurs will seriously affect the quality of communication.
  • the present invention proposes a power amplifier and radio frequency chip that suppresses and attenuates non-resonant frequency band signals and reduces the gain of non-resonant frequency band signals.
  • embodiments of the present invention provide an input matching circuit for a power amplifier, where the input matching circuit includes a first resonator and a second resonator;
  • the first resonator includes: a first input capacitor Cin1, a first variable capacitor VC1 connected in series with the first input capacitor Cin1, and a first inductor Lin1 connected in series with the first variable capacitor VC1.
  • the first The reverse bias voltage V1 is connected to the first end of the first variable capacitor VC1;
  • the second resonator includes: a second variable capacitor VC2 connected in series with the first variable capacitor VC1, and a second inductor Lin2 connected in series with the second variable capacitor VC2.
  • the first variable capacitor VC1 The first terminal is connected to the second reverse bias voltage V2;
  • the capacitance of the first variable capacitor VC1 can be adjusted by adjusting the first reverse bias voltage V1 and the second reverse bias voltage V2, and the capacitance of the first variable capacitor VC1 can be adjusted by adjusting the second reverse bias voltage V2. Adjust the capacitance of the second variable capacitor VC2.
  • the input matching circuit further includes a third resonator, the third resonator is arranged in series with the first resonator, and the resonant frequency band of the third resonator is the same as the operating frequency band of the output amplifier circuit. .
  • the third resonator includes: a third input capacitor Cin3 connected in series with the first inductor Lin1, and a third inductor Lin3 connected in series with the third input capacitor Cin3.
  • the output of the third inductor Lin3 terminal is connected to the output amplifier circuit.
  • the first variable capacitor VC1 and/or the second variable capacitor VC2 are varactor diodes.
  • the output amplification circuit includes a multi-stage amplification circuit.
  • an embodiment of the present invention provides a power amplifier, including: an input matching circuit and an output amplifying circuit connected to the output end of the input matching circuit;
  • the input matching circuit includes a first resonator and a second resonator
  • the first resonator includes: a first input capacitor Cin1, a first variable capacitor VC1 connected in series with the first input capacitor Cin1, and a first inductor Lin1 connected in series with the first variable capacitor VC1.
  • the first The reverse bias voltage V1 is connected to the first end of the first variable capacitor VC1;
  • the second resonator includes: a second variable capacitor VC2 connected in series with the first variable capacitor VC1, and a second inductor Lin2 connected in series with the second variable capacitor VC2.
  • the first variable capacitor VC1 The first terminal is connected to the second reverse bias voltage V2;
  • the capacitance of the first variable capacitor VC1 can be adjusted by adjusting the first reverse bias voltage V1 and the second reverse bias voltage V2, and the capacitance of the first variable capacitor VC1 can be adjusted by adjusting the second reverse bias voltage V2. Adjust the capacitance of the second variable capacitor VC2.
  • the input matching circuit further includes a third resonator, the third resonator is arranged in series with the first resonator, and the resonant frequency band of the third resonator is the same as the operating frequency band of the output amplifier circuit. .
  • the third resonator includes: a third input capacitor Cin3 connected in series with the first inductor Lin1, and a third inductor Lin3 connected in series with the third input capacitor Cin3.
  • the output of the third inductor Lin3 terminal is connected to the output amplifier circuit.
  • the first variable capacitor VC1 and/or the second variable capacitor VC2 are variable Capacitive diode.
  • the output amplification circuit includes a multi-stage amplification circuit.
  • the input matching circuit can change the first variable capacitor VC1 and the second variable capacitor VC1 by changing the magnitudes of the first reverse bias voltage V1 and the second reverse bias voltage V2.
  • the capacitance size of the second variable capacitor VC2 can achieve different out-of-band gain suppression effects, and the voltage is continuously adjustable, thereby achieving the purpose of continuously adjustable gain suppression.
  • Figure 1 is a circuit structure diagram of a power amplifier according to an embodiment of the present invention.
  • Figure 2 is an equivalent circuit diagram of the input matching circuit according to the embodiment of the present invention.
  • Figure 3 is an S-parameter curve simulated by the equivalent circuit of Figure 2 in the embodiment of the present invention.
  • Figure 4 is a simulated S-parameter curve of the power amplifier under a reverse bias voltage in the embodiment of the present invention
  • Figure 5 is a simulated S-parameter curve of the power amplifier under different reverse bias voltages in the embodiment of the present invention.
  • the present invention provides a circuit schematic diagram of a power amplifier.
  • the frequency amplifier includes: an input matching circuit 100 and an output amplifying circuit 200 connected to the output end of the input matching circuit 100, wherein the input matching circuit 100 includes a first resonator 110 and a second resonator 120.
  • the first resonator 110 includes: a first input capacitor Cin1, a first variable capacitor VC1 connected in series with the first input capacitor Cin1, and a first inductor Lin1 connected in series with the first variable capacitor VC1.
  • the first reverse bias voltage V1 is connected to the first end of the first variable capacitor VC1.
  • the second resonator 120 includes: a second variable capacitor VC2 connected in series with the first variable capacitor VC1, and a second inductor Lin2 connected in series with the second variable capacitor VC2.
  • the first variable capacitor The first terminal of VC1 is connected to the second reverse bias voltage V2.
  • the capacitance of the first variable capacitor VC1 can be adjusted by adjusting the first reverse bias voltage V1 and the second reverse bias voltage V2, and the capacitance of the first variable capacitor VC1 can be adjusted by adjusting the second reverse bias voltage V2. Adjust the capacitance of the second variable capacitor VC2.
  • the output amplifier circuit may include a multi-stage amplifier circuit.
  • the output amplifier circuit 200 includes: a first-stage amplifier circuit 210, a second-stage amplifier circuit 220, and a third-stage amplifier circuit 230. , wherein the first-stage amplification circuit 210 and the second-stage amplification circuit 220 are matched and connected through the first-stage inter-stage matching circuit 211, and the second-stage amplification circuit 220 and the third-stage amplification circuit 230 are connected through the second-stage inter-stage matching circuit 211.
  • the matching circuit 221 performs matching connection, and the third-stage amplifier circuit 230 performs matching output through the output matching circuit 231 .
  • Figure 3 is the S parameter curve simulated by the equivalent circuit of Figure 2 in this embodiment. Two frequency points m1 and m2 are used as examples for illustration. The resulting gain suppression principle is as follows:
  • the set of the first equivalent capacitance C1 and the first equivalent inductance L1 Forming the first resonant network, its impedance can be expressed as:
  • the second equivalent capacitance C2 and the second equivalent inductance L2 form a second resonant network, and its impedance can be expressed as:
  • the impedance Z111 of the first resonator resonates at ⁇ .
  • the impedance Z111 of the first resonator is capacitive, and when ⁇ > ⁇ , the impedance Z111 of the first resonator is inductive.
  • the impedance Z112 of the second resonator resonates at ⁇ .
  • the impedance Z111 of the first resonator is inductive, and when ⁇ > ⁇ , the impedance Z111 of the first resonator is capacitive.
  • the impedance of the filter composed of the first resonator and the second resonator can be expressed as:
  • 1-0 has four roots.
  • the four roots can be divided into two pairs, each pair of roots being the opposite of each other.
  • the parameters of the first equivalent capacitance C1, the second equivalent capacitance C2, the first equivalent inductance L1, and the second equivalent inductance L2 can be reasonably configured so that the above two pairs of roots correspond to the two resonant frequencies of m1 and m2 respectively. That is to say, when the filter is near the m1 frequency and m2 frequency, the impedance Z11 of the filter is very small and close to zero. As a result, the filter has a large attenuation near the two frequencies m1 and m2, so that the non-resonant frequency band signal in the input signal is suppressed and attenuated.
  • the input matching circuit 100 of this embodiment further includes a third resonator 130, which is arranged in series with the first resonator 110.
  • the resonant frequency band of the third resonator 130 is the same as that of the first resonator 110.
  • the operating frequency bands of the output amplifier circuit 200 are the same.
  • One of the functions of the third resonator 130 is to adjust the impedance, and the other is to form a series resonance network.
  • Its resonant frequency band is the working frequency band of the power amplifier. It forms a high impedance for the non-resonant frequency band and has a certain inhibitory effect on the out-of-band gain.
  • the third resonator includes: a third input capacitor Cin3 connected in series with the first inductor Lin1, and a third inductor Lin3 connected in series with the third input capacitor Cin3.
  • the output of the third inductor Lin3 terminal is connected to the output amplifier circuit.
  • Figure 4 is the S-parameter simulation curve of the power amplifier when the first reverse bias voltage V1 is 20V and the second reverse bias voltage V2 is 5V.
  • the first variable capacitor VC1 and/or the second variable capacitor VC2 are varactor diodes.
  • the input matching circuit can change the first variable capacitor VC1 and the second variable capacitor VC1 by changing the magnitudes of the first reverse bias voltage V1 and the second reverse bias voltage V2.
  • the capacitance size of the second variable capacitor VC2 can achieve different out-of-band gain suppression effects, and the voltage is continuously adjustable, thereby achieving the purpose of continuously adjustable gain suppression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了一种用于功率放大器的输入匹配电路,输入匹配电路包括第一谐振器和第二谐振器;第一谐振器包括:第一输入电容Cin1、与第一输入电容Cin1串联的第一可变电容VC1、以及与第一可变电容VC1串联的第一电感Lin1,第一反向偏置电压V1接入第一可变电容VC1的第一端;所第二谐振器包括:与第一可变电容VC1串联的第二可变电容VC2、以及与第二可变电容VC2串联的第二电感Lin2,第一可变电容VC1的第一端接第二反向偏置电压V2;通过调节第一反向偏置电压V1、第二反向偏置电压V2可调节第一可变电容VC1的电容大小,通过调节第二反向偏置电压V2的大小可调节第二可变电容VC2的电容大小。本发明可以实现增益抑制连续可调的目的。

Description

功率放大器及其输入匹配网络 技术领域
本发明涉及电子技术领域,尤其涉及一种功率放大器及其输入匹配网络。
背景技术
射频功率放大器(PA),作为手机通信系统重要的组成部分,主要用于对信号的放大。随着手机通信系统的不断发展,对手机功率放大器发射的功率要求不断提高。PA发射功率的提高同时也需要更高的功率增益,因此也很容易带来更差的杂散,带外杂散的恶化会严重影响到通信的质量。
发明内容
针对以上现有技术的不足,本发明提出一种抑制和衰减非谐振频段信号并减少非谐振频段信号的增益的功率放大器和射频芯片。
为了解决上述技术问题,第一方面,本发明的实施例提供了一种用于功率放大器的输入匹配电路,所述输入匹配电路包括第一谐振器和第二谐振器;
所述第一谐振器包括:第一输入电容Cin1、与所述第一输入电容Cin1串联的第一可变电容VC1、以及与所述第一可变电容VC1串联的第一电感Lin1,第一反向偏置电压V1接入所述第一可变电容VC1的第一端;
所第二谐振器包括:与所述第一可变电容VC1串联的第二可变电容VC2、以及与所述第二可变电容VC2串联的第二电感Lin2,所述第一可变电容VC1的第一端接第二反向偏置电压V2;
通过调节所述第一反向偏置电压V1、第二反向偏置电压V2可调节所述第一可变电容VC1的电容大小,通过调节所述第二反向偏置电压V2的大小可调节所述第二可变电容VC2的电容大小。
优选的,所述输入匹配电路还包括第三谐振器,所述第三谐振器与所述第一谐振器串联设置,所述第三谐振器的谐振频段与所述输出放大电路的工作频段相同。
优选的,所述第三谐振器包括:与所述第一电感Lin1串联的第三输入电容Cin3、以及与所述第三输入电容Cin3串联的第三电感Lin3,所述第三电感Lin3的输出端连接至所述输出放大电路。
优选的,所述第一可变电容VC1和/或第二可变电容VC2为变容二极管。
优选的,所述输出放大电路包括多级放大电路。
第一方面,本发明的实施例提供了一种功率放大器,包括:输入匹配电路以及与所述输入匹配电路的输出端连接的输出放大电路;
其中,所述输入匹配电路包括第一谐振器和第二谐振器;
所述第一谐振器包括:第一输入电容Cin1、与所述第一输入电容Cin1串联的第一可变电容VC1、以及与所述第一可变电容VC1串联的第一电感Lin1,第一反向偏置电压V1接入所述第一可变电容VC1的第一端;
所第二谐振器包括:与所述第一可变电容VC1串联的第二可变电容VC2、以及与所述第二可变电容VC2串联的第二电感Lin2,所述第一可变电容VC1的第一端接第二反向偏置电压V2;
通过调节所述第一反向偏置电压V1、第二反向偏置电压V2可调节所述第一可变电容VC1的电容大小,通过调节所述第二反向偏置电压V2的大小可调节所述第二可变电容VC2的电容大小。
优选的,所述输入匹配电路还包括第三谐振器,所述第三谐振器与所述第一谐振器串联设置,所述第三谐振器的谐振频段与所述输出放大电路的工作频段相同。
优选的,所述第三谐振器包括:与所述第一电感Lin1串联的第三输入电容Cin3、以及与所述第三输入电容Cin3串联的第三电感Lin3,所述第三电感Lin3的输出端连接至所述输出放大电路。
优选的,所述第一可变电容VC1和/或第二可变电容VC2为变 容二极管。
优选的,所述输出放大电路包括多级放大电路。
与相关技术相比,本发明的功率放大器中,输入匹配电路中可以通过改变第一反向偏置电压V1和第二反向偏置电压V2的大小从而去改变第一可变电容VC1和第二可变电容VC2的电容大小,即可以实现不同带外增益的抑制效果,而且电压连续可调,从而达到增益抑制连续可调的目的。
附图说明
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为本发明实施例的功率放大器的电路结构图;
图2为本发明实施例的输入匹配电路的等效电路图;
图3为本发明实施例中图2等效电路仿真的S参数曲线;
图4为本发明实施例中功率放大器在一种反向偏置电压下仿真的S参数曲线;
图5本发明实施例中功率放大器在不同反向偏置电压下仿真的S参数曲线。
具体实施方式
下面结合附图详细说明本发明的具体实施方式。
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。
如图1所示为本发明提供一种功率放大器的电路原理图,该功 率放大器包括:输入匹配电路100以及与所述输入匹配电路100的输出端连接的输出放大电路200,其中,所述输入匹配电路100包括第一谐振器110和第二谐振器120。
其中,所述第一谐振器110包括:第一输入电容Cin1、与所述第一输入电容Cin1串联的第一可变电容VC1、以及与所述第一可变电容VC1串联的第一电感Lin1,第一反向偏置电压V1接入所述第一可变电容VC1的第一端。所第二谐振器120包括:与所述第一可变电容VC1串联的第二可变电容VC2、以及与所述第二可变电容VC2串联的第二电感Lin2,所述第一可变电容VC1的第一端接第二反向偏置电压V2。通过调节所述第一反向偏置电压V1、第二反向偏置电压V2可调节所述第一可变电容VC1的电容大小,通过调节所述第二反向偏置电压V2的大小可调节所述第二可变电容VC2的电容大小。
本实施例中,输出放大电路可包含多级放大电路,作为一种具体的实施方式,输出放大电路200包括:第一级放大电路210、第二级放大电路220、以及第三级放大电路230,其中,第一级放大电路210与第二级放大电路220之间通过第一级间匹配电路211进行匹配连接,第二级放大电路220与第三级放大电路230之间通过第二级间匹配电路221进行匹配连接,第三级放大电路230通过输出匹配电路231进行匹配输出。
如图2所示,本实施例中,第一输入电容Cin1和第一可变电容VC1串联,因此其等效电容大小可如下式表示:
C=Cin1*VC1/(Cin1+VC1)=VC1/(1+VC1/Cin1)   (1)
从公式(1)我们可以看出来,第一输入电容Cin1如果趋于无穷大,那么第一输入电容Cin1和第一可变电容VC串联后的大小就取决于第一可变电容VC1电容的大小。那么图1中的输入匹配电路100的等效电路则如图2所示。
图3是本实施例中图2等效电路仿真的S参数曲线,以m1和m2两个频点为例进行说明,其所产生的增益抑制原理如下:
结合附图2所示,第一等效电容C1和第一等效电感L1的组 成第一谐振网络,其阻抗可表示为:
第二等效电容C2和第二等效电感L2组成第二谐振网络,其阻抗可以表示为:


由式(2)可知第一谐振器的阻抗Z111谐振于ωα。在ω<ωα时,第一谐振器的阻抗Z111呈容性,在ω>ωα时,第一谐振器的阻抗Z111呈感性。由式(3)可知第二谐振器的阻抗Z112谐振于ωβ。在ω<ωβ时,第一谐振器的阻抗Z111呈感性,在ω>ωβ时,第一谐振器的阻抗Z111呈容性。
则由第一谐振器、第二谐振器构成的滤波器的阻抗可以表示为:
显然方程ω4L1L1C1C2 ω2(L1C1|L1C2|L2C2)|1-0存在四个根。该四个根可以分为两对,每对根互为相反数。可以通过合理配置第一等效电容C1、第二等效电容C2和第一等效电感L1、第二等效电感L2的参数,使得上述两对根分别对应m1和m2两个谐振频率。即使得,所述滤波器在m1频率附近和m2频率附近时,滤波器的阻抗Z11非常小,接近于零。从而使得所述滤波器在m1和m2两个频率附近有较大衰减,因此实现将在所述输入端信号中的非谐振频段信号得到抑制和衰减。
进一步的,本实施例的所述输入匹配电路100还包括第三谐振器130,所述第三谐振器130与所述第一谐振器110串联设置,所述第三谐振器130的谐振频段与所述输出放大电路200的工作频段相同。第三谐振器130的作用之一是用于阻抗调节作用,二是组成串联谐振网络,其谐振频段为功率放大器的工作频段,对于非谐振频段形成高阻,对带外增益有一定抑制作用。
具体的,所述第三谐振器包括:与所述第一电感Lin1串联的第三输入电容Cin3、以及与所述第三输入电容Cin3串联的第三电感Lin3,所述第三电感Lin3的输出端连接至所述输出放大电路。
请参考附图4,附图4是第一反向偏置电压V1为20V,第二反向偏置电压V2为5V时候的功率放大器的S参数仿真曲线。并请继续参考附图5,附图5是两种不同第一反向偏置电压V1、第二反向偏置电压V2电压大小仿真的功率放大器的S参数曲线图。其中粗线是V1=45V、V2=25V时候的仿真曲线,细线(可参考图4)是V1=20V、V2=5V时候仿真曲线。由附图4及图5对比可以发现,我们改变了第一反向偏置电压V1和第二反向偏置电压V2的大小从而去改变第一可变电容VC1和第二可变电容VC2的电容大小,即可以实现不同带外增益的抑制效果,而且电压连续可调,从而达到增益抑制连续可调的目的。
在本实施例中,所述第一可变电容VC1和/或第二可变电容VC2为变容二极管。
与相关技术相比,本发明的功率放大器中,输入匹配电路中可以通过改变第一反向偏置电压V1和第二反向偏置电压V2的大小从而去改变第一可变电容VC1和第二可变电容VC2的电容大小,即可以实现不同带外增益的抑制效果,而且电压连续可调,从而达到增益抑制连续可调的目的。
需要指出的是,本发明采用的相关电容、电感、电阻及电路模块均为本领域常用的电路模块和元器件,对应的具体的指标和参数根据实际应用进行调整,在此,不作详细赘述。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种用于功率放大器的输入匹配电路,其特征在于,所述输入匹配电路包括第一谐振器和第二谐振器;
    所述第一谐振器包括:第一输入电容Cin1、与所述第一输入电容Cin1串联的第一可变电容VC1、以及与所述第一可变电容VC1串联的第一电感Lin1,第一反向偏置电压V1接入所述第一可变电容VC1的第一端;
    所第二谐振器包括:与所述第一可变电容VC1串联的第二可变电容VC2、以及与所述第二可变电容VC2串联的第二电感Lin2,所述第一可变电容VC1的第一端接第二反向偏置电压V2;
    通过调节所述第一反向偏置电压V1、第二反向偏置电压V2可调节所述第一可变电容VC1的电容大小,通过调节所述第二反向偏置电压V2的大小可调节所述第二可变电容VC2的电容大小。
  2. 根据权利要求1所述的用于功率放大器的输入匹配电路,其特征在于,所述输入匹配电路还包括第三谐振器,所述第三谐振器与所述第一谐振器串联设置,所述第三谐振器的谐振频段与所述输出放大电路的工作频段相同。
  3. 根据权利要求2所述的用于功率放大器的输入匹配电路,其特征在于,所述第三谐振器包括:与所述第一电感Lin1串联的第三输入电容Cin3、以及与所述第三输入电容Cin3串联的第三电感Lin3,所述第三电感Lin3的输出端连接至所述输出放大电路。
  4. 根据权利要求1所述的用于功率放大器的输入匹配电路,其特征在于,所述第一可变电容VC1和/或第二可变电容VC2为变容二极管。
  5. 根据权利要求1所述的用于功率放大器的输入匹配电路,其特征在于,所述输出放大电路包括多级放大电路。
  6. 一种功率放大器,其特征在于,包括:输入匹配电路以及与所述输入匹配电路的输出端连接的输出放大电路;
    其中,所述输入匹配电路包括第一谐振器和第二谐振器;
    所述第一谐振器包括:第一输入电容Cin1、与所述第一输入电 容Cin1串联的第一可变电容VC1、以及与所述第一可变电容VC1串联的第一电感Lin1,第一反向偏置电压V1接入所述第一可变电容VC1的第一端;
    所第二谐振器包括:与所述第一可变电容VC1串联的第二可变电容VC2、以及与所述第二可变电容VC2串联的第二电感Lin2,所述第一可变电容VC1的第一端接第二反向偏置电压V2;
    通过调节所述第一反向偏置电压V1、第二反向偏置电压V2可调节所述第一可变电容VC1的电容大小,通过调节所述第二反向偏置电压V2的大小可调节所述第二可变电容VC2的电容大小。
  7. 根据权利要求1所述的功率放大器,其特征在于,所述输入匹配电路还包括第三谐振器,所述第三谐振器与所述第一谐振器串联设置,所述第三谐振器的谐振频段与所述输出放大电路的工作频段相同。
  8. 根据权利要求2所述的功率放大器,其特征在于,所述第三谐振器包括:与所述第一电感Lin1串联的第三输入电容Cin3、以及与所述第三输入电容Cin3串联的第三电感Lin3,所述第三电感Lin3的输出端连接至所述输出放大电路。
  9. 根据权利要求1所述的功率放大器,其特征在于,所述第一可变电容VC1和/或第二可变电容VC2为变容二极管。
  10. 根据权利要求1所述的功率放大器,其特征在于,所述输出放大电路包括多级放大电路。
PCT/CN2023/082963 2022-04-18 2023-03-22 功率放大器及其输入匹配网络 WO2023202310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210407157.0 2022-04-18
CN202210407157.0A CN114785297A (zh) 2022-04-18 2022-04-18 功率放大器及其输入匹配网络

Publications (1)

Publication Number Publication Date
WO2023202310A1 true WO2023202310A1 (zh) 2023-10-26

Family

ID=82431547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082963 WO2023202310A1 (zh) 2022-04-18 2023-03-22 功率放大器及其输入匹配网络

Country Status (2)

Country Link
CN (1) CN114785297A (zh)
WO (1) WO2023202310A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114785297A (zh) * 2022-04-18 2022-07-22 深圳飞骧科技股份有限公司 功率放大器及其输入匹配网络

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965475A (zh) * 2004-04-22 2007-05-16 松下电器产业株式会社 可变匹配电路
CN101795120A (zh) * 2009-01-30 2010-08-04 株式会社Ntt都科摩 多频带匹配电路、以及多频带功率放大器
US20100271122A1 (en) * 2009-04-27 2010-10-28 Hitachi, Ltd. Variable-gain amplifier circuit and wireless communication device integrated circuit equipped therewith
CN112003574A (zh) * 2020-07-14 2020-11-27 天津工业大学 一种k波段cmos高效射频功率放大器电路
CN114785297A (zh) * 2022-04-18 2022-07-22 深圳飞骧科技股份有限公司 功率放大器及其输入匹配网络

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW535353B (en) * 2002-06-20 2003-06-01 Faraday Tech Corp High frequency amplifier
US20060170492A1 (en) * 2005-02-02 2006-08-03 Chang Sheng-Fuh Dual-band power amplifier
JP2010232957A (ja) * 2009-03-27 2010-10-14 Fujitsu Ltd 可変インピーダンス整合回路
US8803615B2 (en) * 2012-01-23 2014-08-12 Qualcomm Incorporated Impedance matching circuit with tunable notch filters for power amplifier
CN203219248U (zh) * 2013-05-13 2013-09-25 中国科学院微电子研究所 一种lte射频功率放大器
CN204013405U (zh) * 2014-07-30 2014-12-10 中国科学院微电子研究所 一种支持多频段的可调谐高效功率放大器
JP6595844B2 (ja) * 2015-08-26 2019-10-23 ルネサスエレクトロニクス株式会社 デジタル可変容量回路、共振回路、増幅回路、及び送信機
CN108768312B (zh) * 2018-07-23 2024-02-20 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构及方法
CN208797908U (zh) * 2018-07-23 2019-04-26 上海亮牛半导体科技有限公司 利用可调电感和改善功率放大器线性度的电路结构
CN112398449A (zh) * 2019-08-13 2021-02-23 立积电子股份有限公司 射频放大器电路
CN111464179B (zh) * 2020-04-28 2024-03-01 恒玄科技(上海)股份有限公司 一种谐振频率控制电路
CN111555763B (zh) * 2020-05-09 2021-01-08 锐石创芯(深圳)科技有限公司 功率放大器模块和无线装置
CN113411062B (zh) * 2021-08-19 2022-03-29 深圳飞骧科技股份有限公司 匹配电路、射频前端功率放大电路及移动通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965475A (zh) * 2004-04-22 2007-05-16 松下电器产业株式会社 可变匹配电路
CN101795120A (zh) * 2009-01-30 2010-08-04 株式会社Ntt都科摩 多频带匹配电路、以及多频带功率放大器
US20100271122A1 (en) * 2009-04-27 2010-10-28 Hitachi, Ltd. Variable-gain amplifier circuit and wireless communication device integrated circuit equipped therewith
CN112003574A (zh) * 2020-07-14 2020-11-27 天津工业大学 一种k波段cmos高效射频功率放大器电路
CN114785297A (zh) * 2022-04-18 2022-07-22 深圳飞骧科技股份有限公司 功率放大器及其输入匹配网络

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, LINZHEN: "Research and Design of Multi-band RF CMOS Power Amplifier", CHINESE MASTER'S THESES FULL-TEXT DATABASE, INFORMATION SCIENCE AND TECHNOLOGY, 15 November 2009 (2009-11-15), pages 42 *

Also Published As

Publication number Publication date
CN114785297A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN107332517A (zh) 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
WO2019119879A1 (zh) 一种有效抑制手机功率放大器低频杂波的匹配电路结构及方法
CN107565912B (zh) 一种具有干扰抑制的低噪声放大器电路
WO2023087627A1 (zh) 一种宽带Doherty功率放大器
WO2023020014A1 (zh) 匹配电路、射频前端功率放大电路及移动通信设备
WO2023202310A1 (zh) 功率放大器及其输入匹配网络
WO2023093350A1 (zh) 射频功率放大器及短报文通信系统
CN207070016U (zh) 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
CN110138350A (zh) 一种带谐波抑制电路的功率放大器
CN111431488A (zh) 射频功率放大器及通信设备
WO2023093360A1 (zh) 功率放大器和射频芯片
WO2024007728A1 (zh) 匹配电路及功率放大电路
WO2024007727A1 (zh) 功率放大器
CN101882912A (zh) 线性度和功率附加效率提高的射频cascode结构功率放大器
TWI676349B (zh) 放大電路
WO2016101627A1 (zh) 提升射频功率放大器dpd性能的方法及装置
CN114531121B (zh) 一种对温度不敏感的线性功率放大器
US9124251B2 (en) Two stage source-follower based filter
TWI483542B (zh) 放大器電路
CN205160476U (zh) 一种带有失真补偿电路的功率放大器
CN115622519A (zh) 基于LC谐振技术的带陷低噪声放大器及其带外输入1dB压缩点的提升方法
KR101589587B1 (ko) T형 이중 대역 정합 회로 및 그 설계 방법
JP2005341447A (ja) 高周波電力増幅器
CN220798222U (zh) 基于巴特沃兹带通滤波器的低噪声放大器
CN107528555B (zh) 一种分布式放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790971

Country of ref document: EP

Kind code of ref document: A1