WO2023202262A1 - 应用于倾斜测量的惯导初始对准方法、装置及设备 - Google Patents

应用于倾斜测量的惯导初始对准方法、装置及设备 Download PDF

Info

Publication number
WO2023202262A1
WO2023202262A1 PCT/CN2023/080900 CN2023080900W WO2023202262A1 WO 2023202262 A1 WO2023202262 A1 WO 2023202262A1 CN 2023080900 W CN2023080900 W CN 2023080900W WO 2023202262 A1 WO2023202262 A1 WO 2023202262A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial
navigation
initial
projection
carrier
Prior art date
Application number
PCT/CN2023/080900
Other languages
English (en)
French (fr)
Inventor
刘洋
赵洪松
邢菊红
王勇松
邱模波
Original Assignee
千寻位置网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千寻位置网络有限公司 filed Critical 千寻位置网络有限公司
Publication of WO2023202262A1 publication Critical patent/WO2023202262A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the present application belongs to the field of positioning technology, and in particular relates to an inertial navigation initial alignment method, device and equipment applied to tilt measurement.
  • the tilt measurement technology mainly integrates the Inertial Measurement Unit (IMU) into the Global Navigation Satellite System (GNSS) receiver and utilizes the Inertial Navigation System (INS)/GNSS integrated navigation technology. Obtain real-time high-precision attitude and heading information of the receiver, so that when the centering pole is tilted, the phase center coordinates of the receiver antenna can be accurately converted to the point to be measured to complete the tilt measurement.
  • IMU Inertial Measurement Unit
  • GNSS Global Navigation Satellite System
  • INS Inertial Navigation System
  • the initial alignment of the inertial navigation system in tilt measurement applications includes two parts: initial rough alignment and initial fine alignment.
  • the initial rough alignment is mainly for the Micro-Electro-Mechanical System. MEMS) IMU initialization or initial alignment of attitude and heading, that is, determining the relative relationship between the carrier coordinate system and the navigation coordinate system.
  • the initial fine alignment is to start the integrated navigation filter and combine the alignment results of the initial coarse alignment to finely align the inertial navigation, thereby completing the entire initialization process of the inertial navigation.
  • RTK real-time dynamic carrier phase difference technology
  • Embodiments of the present application provide an inertial navigation initial alignment method, device and equipment applied to tilt measurement, which can solve the problems of low initial alignment accuracy and poor reliability of the inertial navigation system.
  • embodiments of the present application provide an inertial navigation initial alignment method applied to tilt measurement, including:
  • Doppler velocity information and position information determine the second specific force vector of the receiver inertial navigation system in the navigation coordinate system
  • a first relative relationship between the carrier coordinate system and the navigation coordinate system is determined to perform initial alignment of the inertial navigation system.
  • embodiments of the present application provide an inertial navigation initial alignment device applied to tilt measurement, including:
  • the acquisition module is used to obtain the first specific force vector of the receiver's inertial navigation system in the carrier coordinate system, as well as the Doppler velocity information and position information output by the receiver, where the first proportional vector is the first proportional vector of the receiver's inertial navigation system.
  • the first determination module is used to determine the second specific force vector of the receiver inertial navigation system in the navigation coordinate system based on Doppler velocity information and position information;
  • the second determination module is used to determine the first specific force vector of the carrier inertial system at the initial moment. Project and determine the second projection of the second specific force vector in the navigation inertial system at the initial moment, wherein the carrier inertial system at the initial moment coincides with the carrier coordinate system at the moment when the initial alignment starts, and the navigation inertial system at the initial moment coincides with the carrier coordinate system at the moment when the initial alignment starts. Navigation coordinate systems coincide;
  • An integration module for performing time integration on the first projection and the second projection respectively to obtain the first projection integration speed and the second projection integration speed
  • the third determination module is used to determine the first relative relationship between the carrier coordinate system and the navigation coordinate system based on the first projected integrated velocity and the second projected integrated velocity at at least two different times to perform initial alignment of the inertial navigation system. .
  • the present application provides an electronic device.
  • the electronic device includes: a processor and a memory storing computer program instructions; when the processor executes the computer program instructions, the inertial navigation initial alignment applied to inclination measurement is implemented in the first aspect. method.
  • the present application provides a computer-readable storage medium.
  • Computer program instructions are stored on the computer-readable storage medium.
  • the initial alignment of inertial navigation applied to inclination measurement is implemented in the first aspect. method.
  • embodiments of the present application provide a computer program product.
  • the electronic device When instructions in the computer program product are executed by a processor of an electronic device, the electronic device causes the electronic device to perform inertial navigation initial alignment applied to tilt measurement as in the first aspect. method.
  • a first relative relationship between the carrier coordinate system and the navigation coordinate system is determined to perform initial alignment of the inertial navigation system.
  • the embodiment of the present application can improve the initial rough alignment accuracy of the inertial navigation system by utilizing the specific force vectors output by the accelerometer of the receiver inertial navigation system at different times, combined with the GNSS position and speed information, to perform the initial rough alignment of the inertial navigation system. and reliability, thereby improving the initial alignment accuracy and reliability of inertial navigation.
  • Figure 1 is a schematic flow chart of an inertial navigation initial alignment method applied to tilt measurement provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the process of initial alignment of inertial navigation applied to tilt measurement provided by the embodiment of the present application;
  • Figure 3 is a schematic structural diagram of an inertial navigation initial alignment device applied to tilt measurement provided by an embodiment of the present application
  • Figure 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 1 is a schematic flowchart of an inertial navigation initial alignment method applied to tilt measurement provided by an embodiment of the present application.
  • the initial alignment method of inertial navigation applied to tilt measurement can include:
  • Step 101 Obtain the first proportional force vector of the receiver's inertial navigation system in the carrier coordinate system, as well as the Doppler velocity information and position information output by the receiver, where the first proportional vector is the accelerometer of the receiver's inertial navigation system. Output;
  • Step 102 Determine the second specific force vector of the receiver inertial navigation system in the navigation coordinate system based on the Doppler velocity information and position information;
  • Step 103 Determine the first projection of the first specific force vector in the carrier inertial frame at the initial time and determine the second projection of the second specific force vector in the navigation inertial frame at the initial time, where the initial alignment of the carrier inertial frame and the initial alignment starts instantaneously
  • the carrier coordinate system coincides with the navigation inertial system at the initial moment and the navigation coordinate system at the start of the initial alignment;
  • Step 104 Perform time integration on the first projection and the second projection respectively to obtain the first projection integral velocity and the second projection integral velocity;
  • Step 105 Determine the first relative relationship between the carrier coordinate system and the navigation coordinate system based on the first projected integrated velocity and the second projected integrated velocity at at least two different times to perform initial alignment of the inertial navigation system.
  • a first relative relationship between the carrier coordinate system and the navigation coordinate system is determined to perform initial rough alignment of the inertial navigation system.
  • the embodiment of the present application can improve the initial rough alignment accuracy of the inertial navigation system by utilizing the specific force vectors output by the accelerometer of the receiver inertial navigation system at different times, combined with the GNSS position and speed information, to perform the initial rough alignment of the inertial navigation system. and reliability, thereby improving the habitual Guiding initial alignment accuracy and reliability.
  • the carrier inertial system b 0 at the initial moment coincides with the carrier coordinate system b at the moment the initial alignment starts, and then there is no rotation relative to the inertial space;
  • the navigation inertial system n 0 at the initial moment coincides with the navigation at the moment the initial alignment starts.
  • the coordinate system n is coincident and subsequently there is no rotation relative to the inertial space. It can be considered that the carrier coordinate system b system and the navigation coordinate system n system at the moment when the initial alignment starts are inertially solidified into the b 0 system and n 0 system, which is the definition of the inertial solidification coordinate system.
  • the first specific force vector of the receiver inertial navigation system in the carrier coordinate system b is f b .
  • the second specific force vector of the receiver inertial navigation system in the navigation coordinate system n is determined.
  • the specific force vector is f n
  • the first projection of the first specific force vector f b at the initial moment of the carrier inertial system b 0 system is
  • the second projection of the second specific force vector f n at the initial moment of the navigation inertial system n 0 is to the first projection
  • the first projected integrated velocity obtained by time integration is
  • the second projected integrated speed obtained by time integration is Then, according to the first projected integrated velocity corresponding to time t i and t j respectively, and the second projected integral velocity Determine the relative relationship between the carrier coordinate system b and the navigation coordinate system n
  • g n are respectively the earth's rotation angular velocity vector in the navigation coordinate system n, the angular velocity vector and the gravity vector of the carrier relative to the earth's coordinate system e.
  • g n [0 0 -g] T
  • L is the geographical latitude. It can be obtained through GNSS speed difference, v n (t k ) is the Doppler velocity output by the receiver at time t k .
  • the relative relationship between the carrier coordinate system b and the navigation coordinate system n It can be expressed as:
  • formula (1) is the relative relationship between the navigation coordinate system n and the navigation inertial system n 0 at the initial moment, is the relative relationship between the carrier inertial system b 0 system at the initial time and the navigation inertial system n 0 system at the initial time, is the relative relationship between the carrier coordinate system b and the carrier inertial system b 0 system at the initial moment.
  • the relative relationship between the carrier coordinate system b and the navigation coordinate system n is The initial rough alignment solution is transformed into the carrier inertia at the initial moment in the inertial system.
  • step 105 may include: determining the navigation inertial system n 0 system at the initial moment relative to the initial projected integrated velocity at at least two different moments.
  • the second relative relationship of the time carrier inertial system b 0 system According to the second relative relationship first matrix and the second matrix Determine the first relative relationship Among them, the first matrix Determined based on the earth's rotation angular speed, geographical latitude and alignment duration, the first matrix Used to characterize the relative relationship between the navigation coordinate system n and the navigation inertial system n 0 at the initial moment, the second matrix It is calculated based on the gyro output in the receiver inertial navigation system and is used to characterize the relative relationship between the carrier coordinate system b and the carrier inertial system b 0 at the initial moment.
  • the unit orthogonal vector group can be constructed using the projected integrated velocities at different times, for example, using the first projected integrated velocities corresponding to times t i and t j respectively. and the second projected integral velocity Construct a unit orthogonal vector group:
  • the relative relationship between the carrier coordinate system b and the carrier inertial system b 0 at the initial moment Can be based on the gyro in the receiver inertial navigation system output calculated.
  • the carrier inertial frame b 0 at the initial moment is an inertial frame
  • the i frame is also an inertial frame
  • the earth's rotation angular velocity ⁇ ie , geographical latitude L and alignment time t (the time elapsed from the start of alignment) can be used to update in real time
  • the alignment time t is the time elapsed from the start of alignment, for the transposed matrix.
  • the second projected integration speed It can be calculated by formula (2):
  • Two relative relationships Can include: integrating speed according to the first projection at multiple times and the second projected integral velocity Determine the multi-vector posture matrix; perform singular value decomposition on the multi-vector posture matrix to obtain the singular value decomposition result; determine the second relative relationship based on the singular value decomposition result
  • a series of projected integrated velocities at different times can be obtained in the carrier inertial frame b 0 at the initial time and the navigation inertial frame n 0 at the initial time.
  • the projected integrated velocities are in the carrier inertial frame b 0 at the initial time and the navigation at the initial time.
  • the projections under the inertial system n 0 system are respectively expressed as and Use this series of projected integral speeds to calculate the optimal matrix. Calculate optimal
  • the matrix problem can be described as a least squares problem under constraints.
  • the loss function J is called the Wahba loss function.
  • Each group of vectors is given a weight w(t k ), then
  • the optimal The matrix can also be solved using the quaternion eigenvector method.
  • the relative relationship between the navigation inertial system n 0 at the initial time and the carrier inertial system b 0 at the initial time is solved through a multi-vector attitude matrix.
  • the alignment accuracy and reliability of the initial rough alignment of the inertial navigation system can be further improved, and thus the alignment accuracy and reliability of the initial alignment of the inertial navigation system can be improved.
  • the initial alignment method for inertial navigation applied to tilt measurement may also include: compensating the original output of the gyro according to the pre-stored gyro offset; and determining the second matrix according to the compensated gyro output.
  • the pre-stored gyro zero bias is ⁇
  • the original output of the gyro is Then the compensated gyro output
  • the second matrix can be obtained
  • the inertial recursion accuracy can be improved.
  • the inertial navigation initial alignment method applied to tilt measurement may also include: based on the pre-stored accelerometer zero bias, the first comparison The force vector is compensated to obtain a compensated first specific force vector; accordingly, step 103 may include: determining the first projection of the compensated first specific force vector at the initial moment of the carrier inertial system.
  • the pre-stored accelerometer zero bias is The original output specific force of the accelerometer is Then the compensated ratio Then, compare The projection of the carrier inertial frame b 0 at the initial moment
  • the inertial recursion accuracy can be improved.
  • step 102 may include: determining the Doppler instantaneous velocity at multiple moments and the average velocity based on position information differences at multiple moments based on the Doppler velocity information and position information; The Doppler instantaneous velocity at each moment and the average velocity at multiple moments are weighted and summed to obtain the proposed velocity at multiple moments; based on the proposed velocity at multiple moments, the second specific force vector is determined.
  • ⁇ and ⁇ can be dynamically adjusted according to Doppler velocity accuracy and position differential velocity accuracy.
  • Doppler velocity and position information of previous and subsequent epochs can also be used to determine the proposed velocity at time t k through linear fitting or other methods.
  • the second specific force vector of the receiver inertial navigation system in the navigation coordinate system n can be calculated as f n .
  • the proposed velocity at multiple moments is obtained, which can obtain a more accurate velocity and improve the calculation of the carrier velocity.
  • a more accurate second specific force vector can be obtained, which can further improve the alignment accuracy and reliability of the initial coarse alignment of the inertial navigation, thereby improving the alignment accuracy and reliability of the initial alignment of the inertial navigation.
  • the integrated navigation filter can be started for fine alignment. And complete the entire initialization process of inertial navigation.
  • Figure 2 is a schematic diagram of the process of initial alignment of inertial navigation applied to tilt measurement provided by an embodiment of the present application.
  • the gyroscope output angular velocity of the MEMS IMU device Accelerometer output specific force
  • the combined navigation filter outputs the gyro bias ⁇ and the accelerometer bias Through the gyro bias ⁇ and the accelerometer bias Output angular velocity to gyro Compared with the accelerometer output Compensate and obtain the compensated angular velocity Compared with the compensated accelerometer
  • the velocity v n of the carrier in the navigation coordinate system n is calculated, and based on the earth's rotation angular velocity ⁇ ie , geographical latitude L and At quasi-time t, calculate the relative relationship between the navigation coordinate system n and the navigation inertial system n 0 at the initial moment. Combined with the gravity vector g n , the projected integrated velocity is obtained
  • FIG. 3 is a schematic structural diagram of an inertial navigation initial alignment device for tilt measurement provided by an embodiment of the present application.
  • the inertial navigation initial alignment device 300 for tilt measurement may include:
  • Acquisition module 301 is used to obtain the first proportional force vector of the receiver inertial navigation system in the carrier coordinate system, as well as the Doppler velocity information and position information output by the receiver, where the first proportional vector is the receiver inertial navigation system
  • the first determination module 302 is used to determine the second specific force vector of the receiver inertial navigation system in the navigation coordinate system based on Doppler velocity information and position information;
  • the second determination module 303 is used to determine the first specific force vector of the carrier inertial system at the initial moment.
  • the first projection and the second projection that determine the second specific force vector at the initial moment of the navigation inertial system, wherein the initial moment of the carrier inertial system coincides with the carrier coordinate system at the moment when the initial alignment starts, and the initial moment of the navigation inertial system coincides with the initial moment of the initial alignment start Instantaneous navigation coordinate system coincidence;
  • the integration module 304 is used to perform time integration on the first projection and the second projection respectively to obtain the first projection integration speed and the second projection integration speed;
  • the third determination module 305 is used to determine the first relative relationship between the carrier coordinate system and the navigation coordinate system based on the first projected integrated velocity and the second projected integrated velocity at at least two different times to perform initial alignment of the inertial navigation system. allow.
  • a first relative relationship between the carrier coordinate system and the navigation coordinate system is determined to perform initial rough alignment of the inertial navigation system.
  • the embodiment of the present application uses the specific force vector output by the accelerometer of the receiver inertial navigation system at different times, combined with the GNSS position and speed information, to perform the initial rough alignment of the inertial navigation system, and can achieve the initial rough alignment accuracy and accuracy of the inertial navigation system. reliability, thereby improving the initial alignment accuracy and reliability of inertial navigation.
  • the third determination module 305 includes:
  • the first determination sub-module is used to determine the second relative relationship between the navigation inertial system at the initial time and the carrier inertial system at the initial time based on the first projected integrated speed and the second projected integrated speed at at least two different times;
  • the second determination sub-module is used to determine the first relative relationship based on the second relative relationship, the first matrix and the second matrix, wherein the first matrix is determined based on the earth's rotation angular speed, geographical latitude and alignment duration, and the first matrix is determined by
  • the second matrix is calculated based on the gyro output in the receiver inertial navigation system and is used to represent the relative relationship between the carrier coordinate system and the carrier inertial system at the initial moment.
  • the first determination sub-module is specifically used to:
  • the relative relationship between the navigation inertial system at the initial moment and the carrier inertial system at the initial moment is solved through a multi-vector attitude matrix, which can further improve the alignment accuracy and reliability of the initial rough alignment of the inertial navigation, thereby improving the inertial navigation system. Guiding alignment accuracy and reliability of initial alignment.
  • the inertial navigation initial alignment device 300 applied to tilt measurement may also include:
  • the first compensation module is used to compensate the original output of the gyro according to the pre-stored gyro zero bias;
  • the fourth determination module is used to determine the second matrix according to the compensated gyro output.
  • the inertial recursion accuracy can be improved.
  • the inertial navigation initial alignment device 300 applied to tilt measurement may also include:
  • the second compensation module is used to compensate the first specific force vector according to the pre-stored accelerometer zero offset to obtain the compensated first specific force vector;
  • the second determination module 303 is specifically used to:
  • the inertial recursion accuracy can be improved.
  • the first determination module 302 is specifically used to:
  • the Doppler velocity information and position information determine the Doppler instantaneous velocity at multiple moments and the average velocity based on the position information difference at multiple moments;
  • the second specific force vector is determined based on the proposed speed at multiple times.
  • the proposed velocity at multiple moments is obtained, which can obtain a more accurate velocity and improve the calculation of the carrier velocity.
  • a more accurate second specific force vector can be obtained, which can further improve the alignment accuracy and reliability of the initial coarse alignment of the inertial navigation, thereby improving the alignment accuracy and reliability of the initial alignment of the inertial navigation.
  • Figure 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may include a processor 401 and a memory 402 storing computer program instructions.
  • the above-mentioned processor 401 may include a central processing unit (Central Processing Unit, CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application. .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • Memory 402 may include bulk storage for data or instructions.
  • the memory 402 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above.
  • Memory 402 may include removable or non-removable (or fixed) media, where appropriate.
  • Memory 402 may be internal or external to the electronic device, where appropriate. In some specific embodiments, memory 402 is non-volatile solid-state memory.
  • the memory may include read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk storage media device, optical storage media device, flash memory device, electrical, optical or other physical/tangible memory storage device.
  • ROM read-only memory
  • RAM Random Access Memory
  • magnetic disk storage media device magnetic disk storage media device
  • optical storage media device flash memory device
  • electrical, optical or other physical/tangible memory storage device electrical, optical or other physical/tangible memory storage device.
  • memory includes one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or multiple processors) operable to perform the operations described with reference to the inertial navigation initial alignment method applied to tilt measurement according to the present application.
  • the processor 401 reads and executes the computer program instructions stored in the memory 402 to implement the inertial navigation initial alignment method applied to tilt measurement provided by the embodiment of the present application.
  • the electronic device may also include a communication interface 403 and a bus 410. That , as shown in Figure 4, the processor 401, the memory 402, and the communication interface 403 are connected through the bus 410 and complete communication with each other.
  • the communication interface 403 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
  • Bus 410 includes hardware, software, or both, coupling components of an electronic device to one another.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), Ultra Transmission (Hyper Transport, HT) interconnect, Industry Standard Architecture (ISA) bus, infinite bandwidth interconnect, Low Pin Count (LPC) bus, memory bus, Micro channel architecture (Micro channel architecture) , MCA) bus, Peripheral Component Interconnect (PCI) bus, PCI-Express (PCI-X) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association part (Video electronics standards association Local Bus, VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 410 may include one or more buses.
  • the electronic device can execute the inertial navigation initial alignment method for inclination measurement provided by the embodiment of the present application, thereby achieving the corresponding technical effects of the inertial navigation initial alignment method for inclination measurement provided by the embodiment of the present application.
  • embodiments of the present application also provide a computer-readable storage medium for implementation.
  • Computer program instructions are stored on the computer-readable storage medium; when the computer program instructions are executed by the processor, the inertial navigation initial alignment method for inclination measurement provided by the embodiment of the present application is implemented.
  • Examples of computer-readable storage media include non-transitory computer-readable media, such as ROM, RAM, magnetic disks, or optical disks.
  • An embodiment of the present application also provides a computer program product.
  • the instructions in the computer program product are executed by a processor of an electronic device, the electronic device causes the electronic device to execute the inertial navigation initial alignment method for tilt measurement provided by the embodiment of the present application. And can achieve the same technical effect, in order to avoid duplication Again, I won’t go into details here.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it may be, for example, an electronic circuit, an ASIC, appropriate firmware, a plug-in, a function card, or the like.
  • elements of the application are programs or code segments that are used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave.
  • "Machine-readable medium" may include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, Erasable Read Only Memory (EROM), floppy disks, and Compact Disc Read-Only Memory (CD-ROM). , optical discs, hard drives, optical fiber media, radio frequency (Radio Frequency, RF) links, etc. Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
  • ROM Read Only Memory
  • EROM Erasable Read Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

一种应用于倾斜测量的惯导初始对准方法、装置(300)及设备。方法包括:获取接收机惯性导航系统在载体坐标系下的第一比力矢量以及多普勒速度信息和位置信息(101);根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量(102);确定第一比力矢量在初始时刻载体惯性系的第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影(103);分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度(104);根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系(105)。根据应用于倾斜测量的惯导初始对准方法,能够提高惯性导航系统初始对准的对准精度和可靠性。

Description

应用于倾斜测量的惯导初始对准方法、装置及设备
相关申请的交叉引用
本申请主张在2022年04月19日在中国提交的中国专利申请号202210408828.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于定位技术领域,尤其涉及一种应用于倾斜测量的惯导初始对准方法、装置及设备。
背景技术
倾斜测量技术主要通过在全球导航卫星系统(Global Navigation Satellite System,GNSS)接收机中集成惯性测量单元(Inertial Measurement Unit,IMU),利用惯性导航系统(Inertial Navigation System,INS)/GNSS组合导航技术,获得接收机实时高精度姿态和航向信息,从而可以在对中杆倾斜状态下,将接收机天线相位中心坐标精确转换到待测点上,完成倾斜测量。
倾斜测量应用中惯性导航系统(简称为惯导)的初始对准包括初始粗对准和初始精对准两部分,其中,初始粗对准主要是对微机电系统(Micro-Electro-Mechanical System,MEMS)IMU姿态和航向的初始化或初始对准,即确定载体坐标系相对于导航坐标系的相对关系。初始精对准是启动组合导航滤波器结合初始粗对准的对准结果对惯导精对准,进而完成惯导整个初始化过程。
由于测量测绘实时动态载波相位差分技术(Real-time kinematic,RTK)产品对整机成本控制非常严格,因而一般采用低成本低精度的消费级或者工业级MEMS IMU器件。受MEMS IMU器件精度的影响,导致惯导初始粗对准精度较低、可靠性较差,进而影响惯导初始对准精度和可靠 性。
发明内容
本申请实施例提供一种应用于倾斜测量的惯导初始对准方法、装置及设备,能够解决惯性导航系统初始对准精度较低、可靠性较差的问题。
第一方面,本申请实施例提供一种应用于倾斜测量的惯导初始对准方法,包括:
获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息,其中,第一比例矢量为接收机惯性导航系统的加速度计输出的;
根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量;
确定第一比力矢量在初始时刻载体惯性系的第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,其中,初始时刻载体惯性系与初始对准开始瞬时的载体坐标系重合,初始时刻导航惯性系与初始对准开始瞬时的导航坐标系重合;
分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度;
根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始对准。
第二方面,本申请实施例提供一种应用于倾斜测量的惯导初始对准装置,包括:
获取模块,用于获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息,其中,第一比例矢量为接收机惯性导航系统的加速度计输出的;
第一确定模块,用于根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量;
第二确定模块,用于确定第一比力矢量在初始时刻载体惯性系的第一 投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,其中,初始时刻载体惯性系与初始对准开始瞬时的载体坐标系重合,初始时刻导航惯性系与初始对准开始瞬时的导航坐标系重合;
积分模块,用于分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度;
第三确定模块,用于根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始对准。
第三方面,本申请提供一种电子设备,该电子设备包括:处理器以及存储有计算机程序指令的存储器;处理器执行计算机程序指令时实现第一方面的应用于倾斜测量的惯导初始对准方法。
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现第一方面的应用于倾斜测量的惯导初始对准方法。
第五方面,本申请实施例提供了一种计算机程序产品,计算机程序产品中的指令由电子设备的处理器执行时,使得电子设备执行如第一方面的应用于倾斜测量的惯导初始对准方法。
在本申请实施例中,通过获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息;根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量,然后,确定第一比力矢量在初始时刻载体惯性系的第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,再分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度,根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始对准。如此,本申请实施例通过利用不同时刻接收机惯性导航系统的加速度计输出的比力矢量,结合GNSS位置和速度信息,进行惯性导航系统的初始粗对准,能够提高惯导初始粗对准精度和可靠性,进而能够提高惯导初始对准精度和可靠性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的应用于倾斜测量的惯导初始对准方法的流程示意图;
图2是本申请实施例提供的应用于倾斜测量的惯导初始对准的过程示意图;
图3是本申请实施例提供的应用于倾斜测量的惯导初始对准装置的结构示意图;
图4是本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的应用于倾斜测量的惯导初始对准方法、装置及设备进行详细地说明。
图1是本申请实施例提供的应用于倾斜测量的惯导初始对准方法的流程示意图。如图1所示,应用于倾斜测量的惯导初始对准方法可以包括:
步骤101:获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息,其中,第一比例矢量为接收机惯性导航系统的加速度计输出的;
步骤102:根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量;
步骤103:确定第一比力矢量在初始时刻载体惯性系的第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,其中,初始时刻载体惯性系与初始对准开始瞬时的载体坐标系重合,初始时刻导航惯性系与初始对准开始瞬时的导航坐标系重合;
步骤104:分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度;
步骤105:根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始对准。
在本申请实施例中,通过获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息;根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量,然后,确定第一比力矢量在初始时刻载体惯性系的第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,再分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度,根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始粗对准。如此,本申请实施例通过利用不同时刻接收机惯性导航系统的加速度计输出的比力矢量,结合GNSS位置和速度信息,进行惯性导航系统的初始粗对准,能够提高惯导初始粗对准精度和可靠性,进而能够提高惯 导初始对准精度和可靠性。
示例性地,初始时刻载体惯性系b0系与初始对准开始瞬时的载体坐标系b系重合,随后相对于惯性空间无转动;初始时刻导航惯性系n0系与初始对准开始瞬时的导航坐标系n系重合,随后相对于惯性空间无转动。可以认为初始对准开始瞬时的载体坐标系b系和导航坐标系n系经过惯性凝固为b0系和n0系,即惯性凝固坐标系的定义。
设接收机惯性导航系统在载体坐标系b系下的第一比力矢量为fb,根据多普勒速度信息和位置信息,确定的接收机惯性导航系统在导航坐标系n系下的第二比力矢量为fn,第一比力矢量fb在初始时刻载体惯性系b0系的第一投影为第二比力矢量fn在初始时刻导航惯性系n0系的第二投影为对第一投影进行时间积分得到的第一投影积分速度为对第二投影进行时间积分得到的第二投影积分速度为然后,根据时刻ti和tj分别对应的第一投影积分速度和第二投影积分速度确定载体坐标系b相对于导航坐标系n系的相对关系
在本申请实施例的一些可能实现中,其中,为导航坐标系n系下的线运动加速度,gn分别为导航坐标系n系下的地球自转角速度矢量、载体相对于地球坐标系e系的角速度矢量和重力矢量。gn=[0 0 -g]T,L为地理纬度。可以通过GNSS速度差分得到,vn(tk)为接收机tk时刻输出的多普勒速度。
在本申请实施例的一些可能实现中,载体坐标系b相对于导航坐标系n系的相对关系可以表示为:
其中,公式(1)中,为导航坐标系n系相对于初始时刻导航惯性系n0系的相对关系,为初始时刻载体惯性系b0系相对于初始时刻导航惯性系n0系的相对关系,为载体坐标系b相对于初始时刻载体惯性系b0系的相对关系。
基于此,在运动状态下,对载体坐标系b系相对于导航坐标系n系的相对关系的初始化粗对准求解,就转变为惯性系下对初始时刻载体惯性 系b0系相对于初始时刻导航惯性系n0系的相对关系的求解。
基于此,在本申请实施例的一些可能实现中,步骤105可以包括:根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定初始时刻导航惯性系n0系相对于初始时刻载体惯性系b0系的第二相对关系根据第二相对关系第一矩阵和第二矩阵确定第一相对关系其中,第一矩阵根据地球自转角速度、地理纬度和对准时长确定,第一矩阵用于表征导航坐标系n系相对于初始时刻导航惯性系n0系的相对关系,第二矩阵根据接收机惯性导航系统中的陀螺输出计算得到,用于表征载体坐标系b系相对于初始时刻载体惯性系b0系的相对关系。
在本申请实施例的一些可能实现中,可以利用不同时刻的投影积分速度构造单位正交向量组,例如,利用时刻ti和tj分别对应的第一投影积分速度和第二投影积分速度构造单位正交向量组:





然后,通过双矢量定姿方法计算初始时刻导航惯性系n0系相对于初始时刻载体惯性系b0系的相对关系
在本申请实施例的一些可能实现中,载体坐标系b系相对于初始时刻载体惯性系b0系的相对关系可以根据接收机惯性导航系统中的陀螺 输出计算得到。
具体地,通过跟踪载体姿态变化,利用如下姿态更新算法求解:
其中,因为初始时刻载体惯性系b0系是惯性系,i系也是惯性系,所以
在本申请实施例的一些可能实现中,可以利用地球自转角速度ωie、地理纬度L和对准时间t(从对准开始时刻所经历的时间),实时更新
其中,对准时间t为从对准开始时刻所经历的时间,的转置矩阵。
在本申请实施例的一些可能实现中,
在本申请实施例的一些可能实现中,第二投影积分速度可以通过公式(2)计算得到:
在本申请实施例的一些可能实现中,根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定初始时刻导航惯性系n0系相对于初始时刻载体惯性系b0的第二相对关系可以包括:根据多个时刻的第一投影积分速度和第二投影积分速度确定多矢量定姿矩阵;对多矢量定姿矩阵进行奇异值分解,得到奇异值分解结果;根据奇异值分解结果,确定第二相对关系
具体地,可以获得不同时刻一系列投影积分速度在初始时刻载体惯性系b0系和初始时刻导航惯性系n0系下的投影,投影积分速度在初始时刻载体惯性系b0系和初始时刻导航惯性系n0系下的投影分别表示为利用这一系列投影积分速度计算最优矩阵。计算最优矩阵的问题可以描述为约束条件下的最小二乘问题,其损失函数J称为Wahba损失函数,每组向量给定权重w(tk),则
为使得Wahba损失函数J达到最小,经过一系列推导,可得最优矩阵
其中,U和V通过矩阵A的奇异值分解得到,即A=UDVT,矩阵A的定义为:
在本申请实施例的一些可能实现中,最优矩阵还可以采用四元数特征向量方法进行求解。
当确定出初始时刻导航惯性系n0系相对于初始时刻载体惯性系b0的相对关系后,将初始时刻导航惯性系n0系相对于初始时刻载体惯性系b0的相对关系代入上述公式(1)中,即可得到载体坐标系b相对于导航坐标系n系的相对关系
在本申请实施例中,通过多矢量定姿矩阵求解初始时刻导航惯性系n0系相对于初始时刻载体惯性系b0系的相对关系能够进一步提高惯导初始粗对准的对准精度和可靠性,进而能够提高惯导初始对准的对准精度和可靠性。
在本申请实施例的一些可能实现中,在根据第二相对关系第一矩阵和第二矩阵确定第一相对关系之前,本申请实施例提供的应用于倾斜测量的惯导初始对准方法还可以包括:根据预先存储的陀螺零偏,对陀螺原始输出进行补偿;根据补偿后的陀螺输出,确定第二矩阵
示例性地,预先存储的陀螺零偏为ε,陀螺原始输出为则补偿后的陀螺输出然后再根据姿态更新算法,即可得出第二矩阵
在本申请实施例中,通过对陀螺输出进行补偿,能够提高惯性递推精度。
在本申请实施例的一些可能实现中,在步骤103之前,本申请实施例提供的应用于倾斜测量的惯导初始对准方法还可以包括:根据预先存储的加速度计零偏,对第一比力矢量进行补偿,得到补偿后的第一比力矢量;相应地,步骤103可以包括:确定补偿后的第一比力矢量在初始时刻载体惯性系的第一投影。
示例性地,预先存储的加速度计零偏为加速度计原始输出比力为则补偿后的比力然后,比力在初始时刻载体惯性系b0系的投影
在本申请实施例中,通过对加速度计输出比力进行补偿,能够提高惯性递推精度。
在本申请实施例的一些可能实现中,步骤102可以包括:根据多普勒速度信息和位置信息,确定多个时刻的多普勒瞬时速度和多个时刻基于位置信息差分的平均速度;对多个时刻的多普勒瞬时速度和多个时刻的平均速度进行加权求和,得到多个时刻的拟定速度;根据多个时刻的拟定速度,确定第二比力矢量。
在本申请实施例的一些可能实现中,tk时刻接收机输出的多普勒瞬时速度为tk+1时刻接收机输出的位置为pos(tk+1),tk-1时刻接收机输出的位置为pos(tk-1),则tk时刻基于位置信息差分的平均速度为则tk时刻的拟定速度其中,α和β分别为多普勒速度和位置差分速度的权重且α+β=1。
在本申请实施例的一些可能实现中,α和β可以根据多普勒速度精度和位置差分速度精度进行动态调节。
在本申请实施例的一些可能实现中,还可以利用前后历元多普勒速度和位置信息,通过线性拟合等方式,确定tk时刻的拟定速度。
当确定出tk时刻的拟定速度后,根据tk时刻的拟定速度,即可计算出接收机惯性导航系统在导航坐标系n系下的第二比力矢量为fn
在本申请实施例中,通过对多个时刻的多普勒瞬时速度和多个时刻的平均速度进行加权求和,得到多个时刻的拟定速度,能够得到更精确的速度,提高载体速度的计算精度,能够得到更精确的第二比力矢量,进而能够进一步提高惯导初始粗对准的对准精度和可靠性,进而提高惯导初始对准的对准精度和可靠性。
当对惯导初始粗对准之后,可以启动组合导航滤波器进行精对准,进 而完成惯导整个初始化过程。
下面结合图2对惯导初始对准的过程进行说明。图2是本申请实施例提供的应用于倾斜测量的惯导初始对准的过程示意图。
首先,MEMS IMU器件的陀螺输出角速度加速度计输出比力组合导航滤波器输出陀螺零偏ε和加速度计零偏通过陀螺零偏ε和加速度计零偏对陀螺输出角速度和加速度计输出比力进行补偿,得到补偿后的角速度和补偿后的加速度计比力根据补偿后的角速度,计算载体坐标系b系相对于初始时刻载体惯性系b0系的相对关系再根据确定在初始时刻载体惯性系b0系的投影进行时间积分,得到投影积分速度
同时,根据GNSS接收机输出的位置和多普勒速度,基于位置差分以及加权求和,计算载体在导航坐标系n系下的速度vn,并根据地球自转角速度ωie、地理纬度L和对准时间t,计算导航坐标系n系相对于初始时刻导航惯性系n0系的相对关系再结合重力矢量gn,得到投影积分速度
根据通过多矢量定姿奇异值分解得到初始时刻载体惯性系b0系相对于初始时刻导航惯性系n0系的相对关系
根据得到载体坐标系b相对于导航坐标系n系的相对关系
然后,结合组合导航滤波器进行精对准,完成惯导整个初始化过程。
与上述的方法实施相对应,本申请实施例还提供一种应用于倾斜测量的惯导初始对准装置,如图3所示。图3是本申请实施例提供的应用于倾斜测量的惯导初始对准装置的结构示意图,该应用于倾斜测量的惯导初始对准装置300可以包括:
获取模块301,用于获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息,其中,第一比例矢量为接收机惯性导航系统的加速度计输出的;
第一确定模块302,用于根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量;
第二确定模块303,用于确定第一比力矢量在初始时刻载体惯性系的 第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,其中,初始时刻载体惯性系与初始对准开始瞬时的载体坐标系重合,初始时刻导航惯性系与初始对准开始瞬时的导航坐标系重合;
积分模块304,用于分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度;
第三确定模块305,用于根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始对准。
在本申请实施例中,通过获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及接收机输出的多普勒速度信息和位置信息;根据多普勒速度信息和位置信息,确定接收机惯性导航系统在导航坐标系下的第二比力矢量,然后,确定第一比力矢量在初始时刻载体惯性系的第一投影以及确定第二比力矢量在初始时刻导航惯性系的第二投影,再分别对第一投影和第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度,根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定载体坐标系相对于导航坐标系的第一相对关系,以对惯性导航系统进行初始粗对准。如此,本申请实施例通过利用不同时刻接收机惯性导航系统的加速度计输出的比力矢量,结合GNSS位置和速度信息,进行惯性导航系统的初始粗对准,能够惯导初始粗对准精度和可靠性,进而能够提高惯导初始对准精度和可靠性。
在本申请实施例的一些可能实现中,第三确定模块305包括:
第一确定子模块,用于根据至少两个不同时刻的第一投影积分速度和第二投影积分速度,确定初始时刻导航惯性系相对于初始时刻载体惯性系的第二相对关系;
第二确定子模块,用于根据第二相对关系、第一矩阵和第二矩阵,确定第一相对关系,其中,第一矩阵根据地球自转角速度、地理纬度和对准时长确定,第一矩阵用于表征导航坐标系相对于初始时刻导航惯性系的相对关系,第二矩阵根据接收机惯性导航系统中的陀螺输出计算得到,用于表征载体坐标系相对于初始时刻载体惯性系的相对关系。
在本申请实施例的一些可能实现中,第一确定子模块具体用于:
根据多个时刻的第一投影积分速度和第二投影积分速度,确定多矢量定姿矩阵;
对多矢量定姿矩阵进行奇异值分解,得到奇异值分解结果;
根据奇异值分解结果,确定第二相对关系。
在本申请实施例中,通过多矢量定姿矩阵求解初始时刻导航惯性系相对于初始时刻载体惯性系的相对关系,能够进一步提高惯导初始粗对准的对准精度和可靠性,进而提高惯导初始对准的对准精度和可靠性。
在本申请实施例的一些可能实现中,应用于倾斜测量的惯导初始对准装置300还可以包括:
第一补偿模块,用于根据预先存储的陀螺零偏,对陀螺原始输出进行补偿;
第四确定模块,用于根据补偿后的陀螺输出,确定第二矩阵。
在本申请实施例中,通过对陀螺输出进行补偿,能够提高惯性递推精度。
在本申请实施例的一些可能实现中,应用于倾斜测量的惯导初始对准装置300还可以包括:
第二补偿模块,用于根据预先存储的加速度计零偏,对第一比力矢量进行补偿,得到补偿后的第一比力矢量;
相应地,第二确定模块303具体用于:
确定补偿后的第一比力矢量在初始时刻载体惯性系的第一投影。
在本申请实施例中,通过对加速度计输出比力进行补偿,能够提高惯性递推精度。
在本申请实施例的一些可能实现中,第一确定模块302具体用于:
根据多普勒速度信息和位置信息,确定多个时刻的多普勒瞬时速度和多个时刻基于位置信息差分的平均速度;
对多个时刻的多普勒瞬时速度和多个时刻的平均速度进行加权求和,得到多个时刻的拟定速度;
根据多个时刻的拟定速度,确定第二比力矢量。
在本申请实施例中,通过对多个时刻的多普勒瞬时速度和多个时刻的平均速度进行加权求和,得到多个时刻的拟定速度,能够得到更精确的速度,提高载体速度的计算精度,能够得到更精确的第二比力矢量,进而能够进一步提高惯导初始粗对准的对准精度和可靠性,进而提高惯导初始对准的对准精度和可靠性。
图4是本申请实施例提供的电子设备的结构示意图。
该电子设备可以包括处理器401以及存储有计算机程序指令的存储器402。
具体地,上述处理器401可以包括中央处理器(Central Processing Unit,CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器402可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器402可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器402可以包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器402可在电子设备的内部或外部。在一些特定实施例中,存储器402是非易失性固态存储器。
在一些特定实施例中,存储器可包括只读存储器(Read-Only Memory,ROM),随机存取存储器(Random Access Memory,RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本申请的应用于倾斜测量的惯导初始对准方法所描述的操作。
处理器401通过读取并执行存储器402中存储的计算机程序指令,以实现本申请实施例提供的应用于倾斜测量的惯导初始对准方法。
在一个示例中,该电子设备还可以包括通信接口403和总线410。其 中,如图4所示,处理器401、存储器402、通信接口403通过总线410连接并完成相互间的通信。
通信接口403,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线410包括硬件、软件或两者,将电子设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(Low Pin Count,LPC)总线、存储器总线、微信道架构(Micro channel architecture,MCA)总线、外围组件互连(Peripheral Component Interconnect,PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(Serial Advanced Technology Attachment,SATA)总线、视频电子标准协会局部(Video electronics standards association Local Bus,VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线410可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该电子设备可以执行本申请实施例提供的应用于倾斜测量的惯导初始对准方法,从而实现本申请实施例提供的应用于倾斜测量的惯导初始对准方法的相应技术效果。
另外,结合上述实施例中的应用于倾斜测量的惯导初始对准方法,本申请实施例还提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现本申请实施例提供的应用于倾斜测量的惯导初始对准方法。计算机可读存储介质的示例包括非暂态计算机可读介质,如ROM、RAM、磁碟或者光盘等。
本申请实施例还提供一种计算机程序产品,该计算机程序产品中的指令由电子设备的处理器执行时,使得电子设备执行本申请实施例提供的应用于倾斜测量的惯导初始对准方法,且能达到相同的技术效果,为避免重 复,这里不再赘述。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,做出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、ASIC、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除只读存储器(Erasable Read Only Memory,EROM)、软盘、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、光盘、硬盘、光纤介质、射频(Radio Frequency,RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还 可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种应用于倾斜测量的惯导初始对准方法,包括:
    获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及所述接收机输出的多普勒速度信息和位置信息,其中,所述第一比例矢量为所述接收机惯性导航系统的加速度计输出的;
    根据所述多普勒速度信息和所述位置信息,确定所述接收机惯性导航系统在导航坐标系下的第二比力矢量;
    确定所述第一比力矢量在初始时刻载体惯性系的第一投影以及确定所述第二比力矢量在初始时刻导航惯性系的第二投影,其中,所述初始时刻载体惯性系与初始对准开始瞬时的所述载体坐标系重合,所述初始时刻导航惯性系与初始对准开始瞬时的所述导航坐标系重合;
    分别对所述第一投影和所述第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度;
    根据至少两个不同时刻的所述第一投影积分速度和所述第二投影积分速度,确定所述载体坐标系相对于所述导航坐标系的第一相对关系,以对所述惯性导航系统进行初始对准。
  2. 根据权利要求1所述的方法,其中,所述根据至少两个不同时刻的所述第一投影积分速度和所述第二投影积分速度,确定所述载体坐标系相对于所述导航坐标系的第一相对关系,包括:
    根据所述至少两个不同时刻的所述第一投影积分速度和所述第二投影积分速度,确定所述初始时刻导航惯性系相对于所述初始时刻载体惯性系的第二相对关系;
    根据所述第二相对关系、第一矩阵和第二矩阵,确定所述第一相对关系,其中,所述第一矩阵根据地球自转角速度、地理纬度和对准时长确定,所述第一矩阵用于表征所述导航坐标系相对于所述初始时刻导航惯性系的相对关系,所述第二矩阵根据所述接收机惯性导航系统中的陀螺输出计算得到,用于表征所述载体坐标系相对于所述初始时刻载体惯性系的相对关系。
  3. 根据权利要求2所述的方法,其中,所述根据所述至少两个不同时刻的所述第一投影积分速度和所述第二投影积分速度,确定所述初始时刻导航惯性系相对于所述初始时刻载体惯性系的第二相对关系,包括:
    根据多个时刻的所述第一投影积分速度和所述第二投影积分速度,确定多矢量定姿矩阵;
    对所述多矢量定姿矩阵进行奇异值分解,得到奇异值分解结果;
    根据所述奇异值分解结果,确定所述第二相对关系。
  4. 根据权利要求2所述的方法,所述根据所述第二相对关系、第一矩阵和第二矩阵,确定所述第一相对关系之前,所述方法还包括:
    根据预先存储的陀螺零偏,对陀螺原始输出进行补偿;
    根据补偿后的陀螺输出,确定所述第二矩阵。
  5. 根据权利要求1所述的方法,所述确定所述第一比力矢量在初始时刻载体惯性系的第一投影之前,所述方法还包括:
    根据预先存储的加速度计零偏,对所述第一比力矢量进行补偿,得到补偿后的第一比力矢量;
    所述确定所述第一比力矢量在初始时刻载体惯性系的第一投影,包括:
    确定所述补偿后的第一比力矢量在所述初始时刻载体惯性系的所述第一投影。
  6. 根据权利要求1所述的方法,其中,所述根据所述多普勒速度信息和所述位置信息,确定所述接收机惯性导航系统在导航坐标系下的第二比力矢量,包括:
    根据所述多普勒速度信息和所述位置信息,确定多个时刻的多普勒瞬时速度和所述多个时刻基于位置信息差分的平均速度;
    对所述多个时刻的多普勒瞬时速度和所述多个时刻的平均速度进行加权求和,得到所述多个时刻的拟定速度;
    根据所述多个时刻的拟定速度,确定所述第二比力矢量。
  7. 一种应用于倾斜测量的惯导初始对准装置,包括:
    获取模块,用于获取接收机惯性导航系统在载体坐标系下的第一比力矢量,以及所述接收机输出的多普勒速度信息和位置信息,其中,所述第一比例矢量为所述接收机惯性导航系统的加速度计输出的;
    第一确定模块,用于根据所述多普勒速度信息和所述位置信息,确定所述接收机惯性导航系统在导航坐标系下的第二比力矢量;
    第二确定模块,用于确定所述第一比力矢量在初始时刻载体惯性系的第一投影以及确定所述第二比力矢量在初始时刻导航惯性系的第二投影,其中,所述初始时刻载体惯性系与初始对准开始瞬时的所述载体坐标系重合,所述初始时刻导航惯性系与初始对准开始瞬时的所述导航坐标系重合;
    积分模块,用于分别对所述第一投影和所述第二投影进行时间积分,得到第一投影积分速度和第二投影积分速度;
    第三确定模块,用于根据至少两个不同时刻的所述第一投影积分速度和所述第二投影积分速度,确定所述载体坐标系相对于所述导航坐标系的第一相对关系,以对所述惯性导航系统进行初始对准。
  8. 一种电子设备,包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令,以实现如权利要求1-6任意一项所述的应用于倾斜测量的惯导初始对准方法。
  9. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-6任意一项所述的应用于倾斜测量的惯导初始对准方法。
  10. 一种计算机程序产品,所述计算机程序产品中的指令由电子设备的处理器执行时,使得所述电子设备执行如权利要求1-6任意一项所述的应用于倾斜测量的惯导初始对准方法。
PCT/CN2023/080900 2022-04-19 2023-03-10 应用于倾斜测量的惯导初始对准方法、装置及设备 WO2023202262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210408828.5A CN116952275A (zh) 2022-04-19 2022-04-19 应用于倾斜测量的惯导初始对准方法、装置及设备
CN202210408828.5 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023202262A1 true WO2023202262A1 (zh) 2023-10-26

Family

ID=88419065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080900 WO2023202262A1 (zh) 2022-04-19 2023-03-10 应用于倾斜测量的惯导初始对准方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116952275A (zh)
WO (1) WO2023202262A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065793A (ja) * 2001-08-22 2003-03-05 Japan Aviation Electronics Industry Ltd 慣性装置
CN103104251A (zh) * 2013-01-25 2013-05-15 北京航空航天大学 一种用于小井斜下光纤陀螺测斜仪的方位角和工具面角的精度提高方法
CN106123921A (zh) * 2016-07-10 2016-11-16 北京工业大学 动态干扰条件下捷联惯导系统的纬度未知自对准方法
CN110285838A (zh) * 2019-08-02 2019-09-27 中南大学 基于重力矢量时间差分的惯性导航设备对准方法
CN113093256A (zh) * 2019-12-23 2021-07-09 上海华测导航技术股份有限公司 一种gnss/imu测绘系统和方法
CN113155150A (zh) * 2020-10-23 2021-07-23 中国人民解放军火箭军工程大学 一种基于凝固载体坐标系的惯导初始姿态解算方法
CN113405563A (zh) * 2021-05-25 2021-09-17 北京机械设备研究所 一种惯性测量单元对准方法
CN113834502A (zh) * 2021-09-24 2021-12-24 中国人民解放军战略支援部队信息工程大学 捷联惯导初始对准方法及纬度计算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065793A (ja) * 2001-08-22 2003-03-05 Japan Aviation Electronics Industry Ltd 慣性装置
CN103104251A (zh) * 2013-01-25 2013-05-15 北京航空航天大学 一种用于小井斜下光纤陀螺测斜仪的方位角和工具面角的精度提高方法
CN106123921A (zh) * 2016-07-10 2016-11-16 北京工业大学 动态干扰条件下捷联惯导系统的纬度未知自对准方法
CN110285838A (zh) * 2019-08-02 2019-09-27 中南大学 基于重力矢量时间差分的惯性导航设备对准方法
CN113093256A (zh) * 2019-12-23 2021-07-09 上海华测导航技术股份有限公司 一种gnss/imu测绘系统和方法
CN113155150A (zh) * 2020-10-23 2021-07-23 中国人民解放军火箭军工程大学 一种基于凝固载体坐标系的惯导初始姿态解算方法
CN113405563A (zh) * 2021-05-25 2021-09-17 北京机械设备研究所 一种惯性测量单元对准方法
CN113834502A (zh) * 2021-09-24 2021-12-24 中国人民解放军战略支援部队信息工程大学 捷联惯导初始对准方法及纬度计算方法

Also Published As

Publication number Publication date
CN116952275A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US9752879B2 (en) System and method for estimating heading misalignment
KR101600149B1 (ko) Gnss 운송수단 내비게이션을 위한 관성 센서 지원 헤딩 및 포지셔닝
US10228252B2 (en) Method and apparatus for using multiple filters for enhanced portable navigation
US20160084937A1 (en) Systems and methods for determining position information using acoustic sensing
EP3047304B1 (en) Method and apparatus for determination of misalignment between device and vessel using acceleration/deceleration
US20220107184A1 (en) Method and system for positioning using optical sensor and motion sensors
WO2016198009A1 (zh) 一种检测航向的方法和装置
US11408735B2 (en) Positioning system and positioning method
US11215634B2 (en) Vehicle-mounted device, calculation device, and program
US20230314629A1 (en) Method and apparatus for in motion initialization of global navigation satellite system - inertial navigation system
CN111024067B (zh) 一种信息处理方法、装置、设备及计算机存储介质
WO2023202262A1 (zh) 应用于倾斜测量的惯导初始对准方法、装置及设备
CN115902967B (zh) 基于低轨导航增强卫星信号的导航定位方法、系统及飞行平台
US10274317B2 (en) Method and apparatus for determination of misalignment between device and vessel using radius of rotation
JP2023522710A (ja) 拡張リアルタイムキネマティック(rtk)
CN112130188A (zh) 车辆定位方法、设备及云服务器
JPH03245076A (ja) ジャイロ装置
US11703586B2 (en) Position accuracy using sensor data
JP2023149060A (ja) スケールファクタ推定装置、スケールファクタ推定方法、及びスケールファクタ推定プログラム
EP4196747A1 (en) Method and system for positioning using optical sensor and motion sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023790923

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023790923

Country of ref document: EP

Effective date: 20240327