WO2023202228A1 - 一种含氟代酯化合物的电解液及包含该电解液的电池 - Google Patents

一种含氟代酯化合物的电解液及包含该电解液的电池 Download PDF

Info

Publication number
WO2023202228A1
WO2023202228A1 PCT/CN2023/079196 CN2023079196W WO2023202228A1 WO 2023202228 A1 WO2023202228 A1 WO 2023202228A1 CN 2023079196 W CN2023079196 W CN 2023079196W WO 2023202228 A1 WO2023202228 A1 WO 2023202228A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
electrolyte solution
electrolyte
battery
halogenated
Prior art date
Application number
PCT/CN2023/079196
Other languages
English (en)
French (fr)
Inventor
孙春胜
顿温新
郭营军
李新丽
申海鹏
张和平
朱少华
赖定坤
Original Assignee
香河昆仑新能源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香河昆仑新能源材料股份有限公司 filed Critical 香河昆仑新能源材料股份有限公司
Publication of WO2023202228A1 publication Critical patent/WO2023202228A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of battery technology, and specifically relates to a fluorinated ester electrolyte and a battery containing the electrolyte.
  • Battery electrolyte has a vital impact on the battery's service life, storage life, capacity development, high and low temperature and safety performance.
  • the commercial electrolyte is mainly a binary or ternary mixed solvent system in which cyclic carbonate and chain carbonate of lithium hexafluorophosphate (LiPF 6 ) are dissolved.
  • This system has good solubility, high ionic conductivity and good adhesion on the surface of the graphite anode. It can form a stable solid electrolyte interface film (SEI film) and other characteristics, and is considered to be the best choice for the electrolyte solvent system.
  • SEI film solid electrolyte interface film
  • organic carbonate solvents have shortcomings such as being volatile, flammable, and lacking in oxidation resistance, resulting in reduced battery safety.
  • additives can be divided into SEI film-forming additives, conductive additives, flame retardant additives, overcharge protection additives, additives to improve the low-temperature performance of the electrolyte, additives to improve the thermal stability of the electrolyte, and control the acid and water content in the electrolyte. additives, etc.
  • Patent CN110911750A discloses high-voltage lithium-ion battery electrolytes, additives and preparation methods of the additives.
  • the disclosed additives are thiourea derivative salts.
  • the disclosed additive preparation method includes the following steps: (1) First, combine solvent, catalyst and Thiourea is placed in a reaction vessel, organic acid is gradually added dropwise, and a polycondensation reaction is performed in an ice-water bath to obtain thiourea ester compounds; (2) the by-products are separated through a water separator and high-temperature vacuum distillation to obtain crude thiourea ester compounds. Product; (3) Extract the product with a solvent, purify it by recrystallization, and obtain thiourea lipid compounds after drying.
  • This thiourea ester compound can be used as a high-voltage lithium-ion battery
  • the additives in the solution can capture oxygen free radicals generated by the cathode material under high voltage, and can also form an SEI film.
  • CN103094616A discloses an electrolyte additive and a high-voltage electrolyte and lithium-ion battery containing the electrolyte additive.
  • the disclosed electrolyte additive is maleic anhydride C 4 H 2 O 3 or one of its derivatives , its disclosed high-voltage electrolyte can form a stable interface film on the surface of the positive and negative electrodes, inhibit the reactivity of the electrode surface, reduce the oxidative decomposition of the electrolyte, and effectively suppress flatulence, thereby improving the safety performance of lithium-ion batteries and improving their performance in normal conditions. Cycling performance and service life under high and high voltages.
  • Electrolyte is crucial.
  • the purpose of this application is to provide an electrolyte solution containing a fluorinated ester compound and a battery containing the electrolyte solution.
  • An electrolyte containing a fluorinated ester compound comprising an electrolyte, an organic solvent and a compound represented by formula I;
  • Rn includes: any one of C1-C10 alkyl group, C6-C20 aromatic hydrocarbon group, C3-C10 alkoxy group, C2-C10 alkenyl group or C2-C10 alkynyl group.
  • any one of the fluorine-substituted hydrocarbon groups of the above hydrocarbon groups such as methyl hydrocarbon group, ethylenyl hydrocarbon group, propyl hydrocarbon group, isopropyl hydrocarbon group, and allyl hydrocarbon group.
  • the electrolyte includes any one or a combination of at least two of XClO 4 , XPF 6 , XBF 4 , XTFSI, XFSI, XBOB, XODFB, XCF 3 SO 3 or XAsF 6 ; where any kind.
  • the organic solvent includes any one or a combination of at least two of carbonate, carboxylate, fluorocarboxylate, propionate, fluoroether or aromatic hydrocarbon.
  • the carbonate includes halogenated carbonate and/or non-halogenated carbonate
  • the non-halogenated carbonate includes any one or a combination of at least two of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate;
  • the halogenated carbonates include fluoroethylene carbonate, difluoroethylene carbonate, bisfluoropropylene carbonate, trifluoroethyl acetate, trifluoroethyl methyl carbonate, trifluoromethyl ethylene carbonate, 4-Trifluoromethylethylene carbonate, chloroethylene carbonate, bis(2,2,2-trifluoroethyl)carbonate, methyl trifluoropropionate, 3,3,3-trifluoroacetic acid Any one of ethyl ester, 2-trifluoromethylbenzoic acid methyl ester, 4,4,4-trifluorobutyric acid ethyl ester or 1,1,1,3,3,3-hexafluoroisopropylacrylate or a combination of at least two.
  • the carboxylic acid esters include halogenated carboxylic acid esters and/or non-halogenated carboxylic acid esters;
  • the non-halogenated carboxylic acid esters include propyl butyrate, propyl acetate, isopropyl acetate, butyl propionate, isopropyl propionate, ethyl butyrate, methyl propionate, ethyl propionate or propyl propionate. Any one or a combination of at least two of the acid propyl esters;
  • the halogenated carboxylic acid esters include propyl fluorobutyrate, propyl fluoroacetate, isopropyl fluoroacetate, butyl fluoropropionate, isopropyl fluoropropionate, and ethyl fluorobutyrate, Any one or a combination of at least two of methyl fluoropropionate, ethyl fluoropropionate or propyl fluoropropionate.
  • the fluoroether has less than 7 carbon atoms
  • the aromatic hydrocarbons include halogenated aromatic hydrocarbons and/or non-halogenated aromatic hydrocarbons; the halogenated aromatic hydrocarbons include monofluorobenzene, difluorobenzene, 1,3,5-trifluorobenzene, trifluorotoluene, and 2-fluorotoluene Or any one or a combination of at least two of 2,4-dichlorotrifluorotoluene.
  • the weight percentage of the electrolyte in the electrolyte is 8-49%; the weight percentage of the organic solvent in the electrolyte is 1-85%; the component represented by the formula I is in the electrolyte.
  • the weight percentage in the liquid is 0.01-50%.
  • a battery including the electrolyte containing the fluorinated ester compound including the electrolyte containing the fluorinated ester compound.
  • the battery includes a lithium ion battery, a sodium ion battery, a potassium ion battery or a supercapacitor;
  • the negative electrode material of the lithium ion battery includes graphite, soft carbon, hard carbon, a composite material of single crystal silicon and graphite, silicon oxide and graphite Any one or a combination of at least two of the composite materials, lithium titanate or niobium pentoxide.
  • the rate charging and rate discharge performance, cycle performance, high temperature storage performance and low temperature discharge performance of the resulting battery can be improved.
  • the battery obtained in this application has a 3C charging rate of more than 85.3% at room temperature, a 1C discharge rate of more than 85.7% at -20°C, a capacity retention rate of 800 3C charge/1C discharge cycles at room temperature of more than 85.9%, and a high temperature of 45°C.
  • the capacity retention rate of 800 times of 3C charge/1C discharge cycle is over 77.9%, and the overall performance is excellent.
  • compositions of the electrolytes provided in Examples 1-10 and Comparative Examples 1-2 are as shown in Table 1:
  • compositions of the electrolytes provided in Examples 1-10 and Comparative Examples 1-2 are all in weight ratio, and both contain 1% VC and 1% PS, as shown in Table 1:
  • Example 8 the electrolyte described in Example 8 and Comparative Example 2 was added to a battery in which the negative electrode material was graphite material (Shanshan P15) and the positive electrode material was 4.5V lithium cobalt oxide to prepare a 1.67Ah lithium ion battery;
  • Charge rate performance 1C current is 1.67A, 3C current is 5.01A; charge and discharge potential range is 2.75V ⁇ 4.50V.
  • the charging rate of 3C at room temperature is the ratio of the capacity C2 of 3C constant current charging to the capacity C1 of 1C constant current charging.
  • Cycle performance The charging and discharging potential range is 2.75V ⁇ 4.50V, the charging current is 3C (5.01A) to 4.50V, 4.50V constant voltage charging to the cut-off current ⁇ 0.02C (0.0334A), and then left to stand for 5 minutes , 1C (1.67A) discharge to 2.75V, let it stand for 5 minutes; cycle charge and discharge in this way.
  • the electrolyte in the present application can be obtained by adding the compound shown in Formula II.
  • the performance of the resulting battery is improved in many aspects.
  • the 3C discharge rate and the 3C charging rate of the battery obtained in this application are above 85.3% at room temperature, the 1C discharge rate at -20°C is above 85.7%, and the battery can be cycled 800 times at room temperature.
  • the capacity retention rate of 3C charge/1C discharge cycle is more than 85.9%, and the capacity retention rate of 800 times of 3C charge/1C discharge cycle at 45°C high temperature is more than 77.9%.
  • the overall performance is excellent.
  • Analyzing Comparative Example 2 and Example 8 shows similar results, proving that adding the compound of formula II to the electrolyte is beneficial to the charge-discharge cycle performance and low-temperature discharge performance of batteries containing silicon-containing materials or graphite as the negative electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种含氟代酯化合物的电解液及包含该电解液的电池。所述电解液包括电解质、有机溶剂和式Ⅰ所示的化合物。本申请所述电解液通过添加式Ⅰ所示组分,在电池中使用时,所得电池的倍率充电和倍率放电性能,循环性能,高温存储性能和低温放电性能均得以提升,本申请所得电池中常温下3C充电率在85.3%以上,-20℃下1C放电率在85.7%以上,常温循环800次3C充电/1C放电循环的容量保持率在85.9%以上,45℃高温3C充电/1C放电循环的800次容量保持率在77.9%以上,综合性能优异。

Description

一种含氟代酯化合物的电解液及包含该电解液的电池 技术领域
本申请属于电池技术领域,具体涉及一种含氟代酯电解液及包含该电解液的电池。
背景技术
电池电解液对电池的使用寿命、储存寿命、容量发挥、高低温和安全性能等都有至关重要的影响。目前,商业电解液主要是溶解有六氟磷酸锂(LiPF6)的环状碳酸酯和链状碳酸酯的二元或三元混合溶剂体系,该体系具有溶解性好、离子电导率高和在石墨负极表面能形成稳定的固态电解质界面膜(SEI膜)等特点,被认为是电解液溶剂体系的最佳选择。然而,有机碳酸酯类溶剂却存在易挥发、易燃、抗氧化性不足等缺陷,导致了电池安全性下降。
在电解液中加入少量非储能物质,可以有效的改善电池的某些性能,如电解液的电导率、正负极匹配性能、电池的容量、循环效率、循环寿命、可逆容量和安全性能等。根据其作用机理,可将添加剂分为SEI成膜添加剂、导电添加剂、阻燃添加剂、过充电保护添加剂、提高电解液低温性能添加剂、改善电解液热稳定性添加剂、控制电解液中酸和水含量的添加剂等。
专利CN110911750A公开了高电压锂离子电池电解液、添加剂及该添加剂的制备方法,其公开的添加剂为硫脲衍生物盐,其公开的添加剂制备方法包括以下步骤:(1)首先将溶剂、催化剂和硫脲置于反应容器中,逐渐滴加有机酸,冰水浴下进行缩聚反应得到硫脲脂类化合物;(2)通过分水器和高温减压蒸馏将副产物分离得到硫脲酯类化合物粗产品;(3)采用溶剂萃取产物,重结晶提纯,干燥后得到硫脲脂类化合物。该硫脲酯类化合物可作为高压锂离子电池电 解液的添加剂,可捕获正极材料在高电压下产生的氧自由基,又可以形成SEI膜。CN103094616A公开了一种电解液添加剂和含有该电解液添加剂的高电压电解液及锂离子电池,其公开的电解液添加剂为顺丁烯二酸酐C4H2O3或者其衍生物中的一种,其公开的高电压电解液可以在正负极表面形成稳定的界面膜,抑制电极表面的反应活性,减少电解液的氧化分解,有效地抑制胀气,从而提高锂离子电池的安全性能、在常压和高电压下的循环性能和使用寿命。
但是,电池对高能量密度的需求和大容量高电压电极材料的要求越来越高,因此开发一种提高电池的倍率充电和倍率放电性能,循环性能,高温存储性能和低温放电性能的物质和电解液至关重要。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种含氟代酯化合物的电解液及包含该电解液的电池。
一种含氟代酯化合物的电解液,所述电解液包括电解质、有机溶剂和式Ⅰ所示的化合物;
其中,Rn包括:C1-C10烷基、C6-C20芳香烃基、C3-C10烷氧基、C2-C10烯基或C2-C10炔基中的任意一种。
可选地,甲烃基,乙烃基基,丙烃基,异丙烃基,烯丙烃基以上各烃基的氟取代烃基中的任意一种。
所述电解质包括XClO4、XPF6、XBF4、XTFSI、XFSI、XBOB、XODFB,XCF3SO3或XAsF6中的任意一种或至少两种的组合;其中,X包括Li,Na或K中的任意一种。
所述有机溶剂包括碳酸酯、羧酸酯、氟代羧酸酯、丙酸酯、氟醚或芳香烃中的任意一种或至少两种的组合。
所述碳酸酯包括卤代碳酸酯和/或非卤代碳酸酯;
所述非卤代碳酸酯包括碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯或碳酸甲乙酯中的任意一种或至少两种的组合;
所述卤代碳酸酯包括氟代碳酸乙烯酯、二氟代碳酸乙烯酯、双氟碳酸丙烯酯、三氟代乙酸乙酯、三氟乙基甲基碳酸酯、三氟甲基碳酸乙烯酯、4-三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、二(2,2,2-三氟乙基)碳酸酯、三氟丙酸甲酯、3,3,3-三氟代乙酸乙酯、2-三氟甲基苯甲酸甲酯、4,4,4-三氟丁酸乙酯或1,1,1,3,3,3-六氟异丙基丙烯酸酯中的任意一种或至少两种的组合。
所述羧酸酯包括卤代羧酸酯和/或非卤代羧酸酯;
所述非卤代羧酸酯包括丁酸丙酯、乙酸丙酯、乙酸异丙酯、丙酸丁酯、丙酸异丙酯、丁酸乙酯,丙酸甲酯、丙酸乙酯或丙酸丙酯中的任意一种或至少两种的组合;
所述卤代羧酸酯包括氟代丁酸丙酯、氟代乙酸丙酯、氟代乙酸异丙酯、氟代丙酸丁酯、氟代丙酸异丙酯、氟代丁酸乙酯,氟代丙酸甲酯、氟代丙酸乙酯或氟代丙酸丙酯中的任意一种或至少两种的组合。
所述氟醚为碳原子数为7个以下;
所述芳香烃包括卤代芳香烃和/或非卤代芳香烃;所述卤代芳烃包括单氟苯、双氟苯、1,3,5-三氟苯、三氟甲苯、2-氟甲苯或2,4-二氯三氟甲苯中的任意一种或至少两种的组合。
所述电解质在所述电解液中的重量百分数为8-49%;所述有机溶剂在所述电解液中的重量百分数为1-85%;所述式Ⅰ所示的组分在所述电解液中的重量百分数为0.01-50%。
一种电池,包括所述含氟代酯化合物的电解液。
所述电池包括锂离子电池、钠离子电池、钾离子电池或超级电容器;所述锂离子电池的负极材料包括石墨、软碳、硬碳、单晶硅与石墨的复合材料、氧化亚硅与石墨的复合材料、钛酸锂或五氧化二铌中的任意一种或至少两种的组合。
本申请的有益效果:本申请所述电解液通过添加式Ⅰ所示组分,在电池中使用时,所得电池的倍率充电和倍率放电性能,循环性能,高温存储性能和低温放电性能均得以提升,本申请所得电池中常温下3C充电率在85.3%以上,-20℃下1C放电率在85.7%以上,常温循环800次3C充电/1C放电循环的容量保持率在85.9%以上,45℃高温3C充电/1C放电循环的800次容量保持率在77.9%以上,综合性能优异。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为了便于理解本申请,下面将对本申请进行更全面的描述。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
如下实施例中,均采用如下式化合物II的结构,该物质定制于石家庄圣泰 化工(纯度为99.5%):
实施例1-10和对比例1-2提供的电解液的组成如表1所示:
实施例1-10和对比例1-2提供的电解液的组成,其组成均为重量比,其中均含有1%VC和1%PS,具体如表1所示:
表1(表中均为重量比率)
将实施例1-10和对比例1-2所述电解液进行如下测试:
将实施例1-10和对比例1所述电解液添加到含硅碳的负极材料(贝特瑞S420),正极材料为4.5V钴酸锂的1.67Ah的锂离子电池;
另将实施例8和对比例2所述电解液添加到负极材料为石墨材料(杉杉P15),正极材料为4.5V钴酸锂的电池中制备得到1.67Ah的锂离子电池;
进行如下测试:
(1)充电倍率性能:1C电流为1.67A,3C电流为5.01A;充电放电电位范围为2.75V~4.50V。常温3C的充电率为3C恒定电流充电的容量C2与1C恒定电流充电容量C1的比率。
(2)循环性能:充电放电电位范围为2.75V~4.50V,充电电流为3C(5.01A)到4.50V,4.50V恒压充电到截止电流≤0.02C(0.0334A),静置5分钟后,1C(1.67A)放电到2.75V,静置5分钟;如此循环充电放电。
(3)低温放电性能:常温25℃下1C(1.67A)放电容量记为C1,4.5V满充后,-20℃下冷冻4h后,以1C(1.67A)放电到2.75V,放电容量记为C2。-20℃下的放电率为C2/C1。
测试结果汇总于表2-表4中。
表2

表3

表4
分析表2-表4数据可知,本申请所述电解液通过添加式II所示化合物,在 电池中使用时,所得电池的多方面性能均得以提升,本申请所得电池中常温下3C放电率在3C充电率在85.3%以上,-20℃下1C放电率在85.7%以上,常温循环800次3C充电/1C放电循环的容量保持率在85.9%以上,45℃高温3C充电/1C放电循环的800次容量保持率在77.9%以上,综合性能优异。
分析对比例1与实施例3可知,对比例1性能不如实施例3,证明添加式II所示化合物的电解液能够提升电池的综合性能。
分析对比例2与实施例8可知有类似的结果,证明添加式II所示化合物的电解液利于含硅材料或石墨为负极的电池的充放电循环性能和低温放电性能。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种含氟代酯化合物的电解液,其中,所述电解液包括电解质、有机溶剂和式Ⅰ所示的化合物;
    其中,Rn包括:C1-C10烷基、C6-C20芳香烃基、C3-C10烷氧基、C2-C10烯基或C2-C10炔基中的任意一种。
  2. 根据权利要求1所述含氟代酯化合物的电解液,其中,所述电解质包括XClO4、XPF6、XBF4、XTFSI、XFSI、XBOB、XODFB,XCF3SO3或XAsF6中的任意一种或至少两种的组合;其中,X包括Li,Na或K中的任意一种。
  3. 根据权利要求1所述含氟代酯化合物的电解液,其中,所述有机溶剂包括碳酸酯、羧酸酯、氟代羧酸酯、丙酸酯、氟醚或芳香烃中的任意一种或至少两种的组合。
  4. 根据权利要求3所述含氟代酯化合物的电解液,其中,所述碳酸酯包括卤代碳酸酯和/或非卤代碳酸酯;
    所述非卤代碳酸酯包括碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯或碳酸甲乙酯中的任意一种或至少两种的组合;
    所述卤代碳酸酯包括氟代碳酸乙烯酯、二氟代碳酸乙烯酯、双氟碳酸丙烯酯、三氟代乙酸乙酯、三氟乙基甲基碳酸酯、三氟甲基碳酸乙烯酯、4-三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、二(2,2,2-三氟乙基)碳酸酯、三氟丙酸甲酯、3,3,3-三氟代乙酸乙酯、2-三氟甲基苯甲酸甲酯、4,4,4-三氟丁酸乙酯或1,1,1,3,3,3- 六氟异丙基丙烯酸酯中的任意一种或至少两种的组合。
  5. 根据权利要求3所述含氟代酯化合物的电解液,其中,所述羧酸酯包括卤代羧酸酯和/或非卤代羧酸酯;
    所述非卤代羧酸酯包括丁酸丙酯、乙酸丙酯、乙酸异丙酯、丙酸丁酯、丙酸异丙酯、丁酸乙酯,丙酸甲酯、丙酸乙酯或丙酸丙酯中的任意一种或至少两种的组合;
    所述卤代羧酸酯包括氟代丁酸丙酯、氟代乙酸丙酯、氟代乙酸异丙酯、氟代丙酸丁酯、氟代丙酸异丙酯、氟代丁酸乙酯,氟代丙酸甲酯、氟代丙酸乙酯或氟代丙酸丙酯中的任意一种或至少两种的组合。
  6. 根据权利要求3所述含氟代酯化合物的电解液,其中,所述氟醚为碳原子数为7个以下;
    所述芳香烃包括卤代芳香烃和/或非卤代芳香烃;所述卤代芳烃包括单氟苯、双氟苯、1,3,5-三氟苯、三氟甲苯、2-氟甲苯或2,4-二氯三氟甲苯中的任意一种或至少两种的组合。
  7. 根据权利要求1-6任一项所述含氟代酯化合物的电解液,其中,所述电解质在所述电解液中的重量百分数为8-49%;所述有机溶剂在所述电解液中的重量百分数为1-85%;所述式Ⅰ所示的组分在所述电解液中的重量百分数为0.01-50%。
  8. 一种电池,其中,包括权利要求1-7任一项所述含氟代酯化合物的电解液。
  9. 根据权利要求8所述的电池,其中,所述电池包括锂离子电池、钠离子电池、钾离子电池或超级电容器。
  10. 根据权利要求9所述的电池,其中,所述锂离子电池的负极材料包括 石墨、软碳、硬碳、单晶硅与石墨的复合材料、氧化亚硅与石墨的复合材料、钛酸锂或五氧化二铌中的任意一种或至少两种的组合。
PCT/CN2023/079196 2022-04-19 2023-03-02 一种含氟代酯化合物的电解液及包含该电解液的电池 WO2023202228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210411054.1 2022-04-19
CN202210411054.1A CN114824476A (zh) 2022-04-19 2022-04-19 一种含氟代酯化合物的电解液及包含该电解液的电池

Publications (1)

Publication Number Publication Date
WO2023202228A1 true WO2023202228A1 (zh) 2023-10-26

Family

ID=82505166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079196 WO2023202228A1 (zh) 2022-04-19 2023-03-02 一种含氟代酯化合物的电解液及包含该电解液的电池

Country Status (2)

Country Link
CN (1) CN114824476A (zh)
WO (1) WO2023202228A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824476A (zh) * 2022-04-19 2022-07-29 香河昆仑新能源材料股份有限公司 一种含氟代酯化合物的电解液及包含该电解液的电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086915A (ja) * 2008-10-02 2010-04-15 Daikin Ind Ltd 含フッ素蟻酸エステル溶媒を含む非水電解液
CN108496272A (zh) * 2015-10-26 2018-09-04 索尔维公司 包含氟化溶剂和2-呋喃酮的非水性电解质组合物
CN112186247A (zh) * 2020-09-30 2021-01-05 重庆市紫建电子股份有限公司 一种锂离子电池非水电解液、锂离子电池以及制造方法
CN114142085A (zh) * 2021-11-01 2022-03-04 重庆市紫建新能源有限公司 一种锂离子电池非水电解液、锂离子电池及其制备方法
CN114824476A (zh) * 2022-04-19 2022-07-29 香河昆仑新能源材料股份有限公司 一种含氟代酯化合物的电解液及包含该电解液的电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953118B (zh) * 2016-11-25 2020-01-07 惠州市宙邦化工有限公司 一种用于锂离子电池的非水电解液和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086915A (ja) * 2008-10-02 2010-04-15 Daikin Ind Ltd 含フッ素蟻酸エステル溶媒を含む非水電解液
CN108496272A (zh) * 2015-10-26 2018-09-04 索尔维公司 包含氟化溶剂和2-呋喃酮的非水性电解质组合物
CN112186247A (zh) * 2020-09-30 2021-01-05 重庆市紫建电子股份有限公司 一种锂离子电池非水电解液、锂离子电池以及制造方法
CN114142085A (zh) * 2021-11-01 2022-03-04 重庆市紫建新能源有限公司 一种锂离子电池非水电解液、锂离子电池及其制备方法
CN114824476A (zh) * 2022-04-19 2022-07-29 香河昆仑新能源材料股份有限公司 一种含氟代酯化合物的电解液及包含该电解液的电池

Also Published As

Publication number Publication date
CN114824476A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
JP6866498B2 (ja) リチウムイオン電池の非水電解液およびリチウムイオン電池
WO2020052118A1 (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池
WO2023015791A1 (zh) 一种电解液及包含该电解液的电池
WO2023179324A1 (zh) 一种含氟代苯碳酸酯的电解液及由该电解液组成的电池
WO2017185997A1 (zh) 电解液、正极及其制备方法和锂离子电池
KR102412568B1 (ko) 리튬이온 배터리 비수전해액 및 리튬이온 배터리
WO2023207369A1 (zh) 锂离子电池
CN109980278B (zh) 一种电解液及二次锂电池
WO2023202228A1 (zh) 一种含氟代酯化合物的电解液及包含该电解液的电池
WO2023050597A1 (zh) 添加剂和含有该添加剂的电解液及锂离子电池
WO2022199162A1 (zh) 锂离子电池
CN115458810A (zh) 电解液及锂离子电池
WO2024119927A1 (zh) 锂离子电池电解液、锂离子电池和改善电池性能的方法
CN115863759A (zh) 一种锂离子电池非水性电解液及锂离子电池
CN109818060A (zh) 非水电解液及含有该非水电解液的锂离子电池
CN117747945A (zh) 一种含硅氧烷化合物的电解液及包含该电解液的储能器件
CN115579523A (zh) 一种提升锂离子电池循环和高温存储性能的电解液
CN113964385B (zh) 电解液及其制备方法和用途
CN111883828B (zh) 一种锂离子电池非水电解液和锂离子电池
CN114583275A (zh) 一种含不饱和键化合物的电解液及包含该电解液的电池
CN114665152A (zh) 一种含氟代烷基硼酸酯化合物的电解液及由该电解液组成的电池
CN114937815A (zh) 一种含甲基羧酸-2-丙炔基酯的电解液及由该电解液组成的电池
CN114583273A (zh) 一种含苯碳酸甲酯的电解液及由该电解液组成的电池
CN114614086A (zh) 一种含氟代磷氮环状化合物的电解液及由该电解液组成的电池
CN115036573A (zh) 一种含磷氧六环化合物的电解液及由该电解液组成的电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790891

Country of ref document: EP

Kind code of ref document: A1