WO2023202081A1 - 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质 - Google Patents

一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质 Download PDF

Info

Publication number
WO2023202081A1
WO2023202081A1 PCT/CN2022/135146 CN2022135146W WO2023202081A1 WO 2023202081 A1 WO2023202081 A1 WO 2023202081A1 CN 2022135146 W CN2022135146 W CN 2022135146W WO 2023202081 A1 WO2023202081 A1 WO 2023202081A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating medium
medium
heating
moment
magnetic
Prior art date
Application number
PCT/CN2022/135146
Other languages
English (en)
French (fr)
Inventor
李丹
刘磊
洪俊杰
刘华臣
叶菁
李宝文
邓腾飞
吴超群
Original Assignee
湖北中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北中烟工业有限责任公司 filed Critical 湖北中烟工业有限责任公司
Publication of WO2023202081A1 publication Critical patent/WO2023202081A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the invention belongs to the field of tobacco technology, and in particular relates to an aerosol generation system and heating medium utilizing multi-card coupling giant thermal effect.
  • an aerosol-generating matrix is electrically heated to form an aerosol-generating system and method for the user to inhale.
  • the most common method available is to use Joule heat generated by electric current passing through a resistive heating element to heat the aerosol generation.
  • Substrate this type of method has formed many patents and many products have become well-known in the field.
  • a possible shortcoming of the resistance heating method is that it is difficult to achieve uniform heating of the aerosol-generating substrate and accurate control of the heating temperature.
  • the purpose of the present invention is to provide an aerosol generation system and heating medium that utilizes the multi-card coupling giant thermal effect.
  • the heating medium components of the system are designed to enhance dielectric loss, hysteresis loss, damping loss, resonance loss and conductance.
  • Loss the material structure can realize multi-field coupling to produce multi-card coupling giant thermal effect.
  • the pore structure can increase the liquid phase saturated vapor pressure value and reduce the thermal excitation temperature of the aerosol-generating matrix.
  • the alternating electromagnetic field can meet the multi-field coupling drive matching requirements. , compatible with and balanced multi-card coupling response frequency, to achieve uniform heating temperature and low power consumption.
  • the invention provides an aerosol-generating matrix, including a heating medium, which includes a first heating medium or a second heating medium;
  • the first heating medium includes a first dielectric medium, a first magnetic medium and a first conductive medium
  • the first dielectric is selected from at least one of the following systems:
  • Perovskite structural system including BaTiO 3 , and/or PbTiO 3 , and/or NaNbO 3 , and/or KNbO 3 , and/or BiFeO 3 ;
  • 2 Tungsten bronze structural system including lead metaniobate, and/or Sr 1-x Ba x Nb 2 O 6 ;
  • 3 Bismuth layered structure system including SrBi 2 Ta 2 O 9 , and/or Bi 4 Ti 3 O 12 , and/or SrBi 4 Ti 4 O 15 ;
  • 4 Pyrochlore structure system including Cd 2 Nb 2 O 7 , and/or Pb 2 Nb 2 O 7 ;
  • the first magnetic medium is selected from at least one of the following ferrites:
  • R is a rare earth element, and the rare earth element is Y, and/ or La, and/or Pr, and/or Nd, and/or Sm, and/or Eu, and/or Gd, and/or Tb, and/or Dy, and/or Ho, and/or Er, and/ or Tm, and/or Yb, and/or Lu;
  • the first conductive medium is selected from at least one of the following components:
  • ZnO series including doped Al(AZO), and/or doped In(IZO), and/or doped Ga(GZO); magnetic oxides, including CoO, and/or MnO, and/or Fe 3 O 4 , and/or NiO; and other semiconductor oxides, including Ga 2 O 3 , and/or In 2 O 3 , and/or InSnO (ITO);
  • the second heating medium includes a second dielectric medium, a second magnetic medium and a second conductive medium
  • the second magnetic medium is selected from M-type hexagonal ferrite: BaM, and/or PbM, and/or SrM; X-type hexagonal ferrite, including Fe 2 X; W-type hexagonal ferrite, including Mg 2 W , and/or Mn 2 W, and/or Fe 2 W, and/or Co 2 W, and/or Ni 2 W, and/or Cu 2 W, and/or Zn 2 W; Y-type hexagonal ferrite, Including Mg 2 Y, and/or Mn 2 Y, and/or Fe 2 Y, and/or Co 2 Y, and/or Ni 2 Y, and/or Cu 2 Y, and/or Zn 2 Y; Z-type hexagonal Ferrite, including Mg 2 Z, and/or Mn 2 Z, and/or Fe 2 Z, and/or Co 2 Z, and/or Ni 2 Z, and/or Cu 2 Z, and/or Zn 2 Z ;
  • the second conductive medium is selected from the ZnO series, including doped Al (AZO), and/or doped In (IZO), and/or doped Ga (GZO); magnetic oxides, including CoO, and/or MnO , and/or Fe 3 O 4 , and/or NiO; and other semiconductor oxides, including Ga 2 O 3 , and/or In 2 O 3 , and/or InSnO (ITO).
  • ZnO series including doped Al (AZO), and/or doped In (IZO), and/or doped Ga (GZO); magnetic oxides, including CoO, and/or MnO , and/or Fe 3 O 4 , and/or NiO; and other semiconductor oxides, including Ga 2 O 3 , and/or In 2 O 3 , and/or InSnO (ITO).
  • the first heating medium is compounded at the mesoscopic scale through physical and chemical methods to form a core-shell type, or a heterojunction type, or a coating type, or a porous type or a membrane composite type;
  • the core-shell type first heating medium includes a core-shell type structure electric moment-magnetic moment coupling heating medium 1-H-1, a core-shell type structure electric moment-conductance coupling heating medium 1-H-2 or a core-shell type structure.
  • the specific method for forming the first heating medium with the core-shell type is direct precipitation method, or co-precipitation method, or alkoxide hydrolysis method, or sol-gel method;
  • the first heating medium of the heterojunction type structure includes the electric moment-magnetic moment coupling heating medium 1-Y-1 of the heterojunction type structure, or the electric moment-conductance coupling heating medium 1-Y-2 of the heterojunction type structure. Or heterojunction structure electric moment-magnetic moment-conductance coupling heating medium 1-Y-3;
  • the specific method for forming the first heating medium with the heterojunction structure is a molten salt method, or a high-heat solid phase reaction method, or a mechanical alloying method, and a precipitation method that controls the calcination temperature, or an alkoxide hydrolysis method, or water Thermal method, or sol (gel)-hydrothermal method;
  • the first heating medium of the cladding type structure includes the electromagnetic moment-coupling heating medium 1-B-1 of the cladding type structure or the electromagnetic moment-conductance coupling heating medium 1-B-2 of the cladding type structure;
  • the specific method of forming the first heating medium with the coating structure is a mechanical fusion coating method, or a mechanochemical effect method induced by a high-energy mill, or a low-heat solid-phase reaction method, or a sol-gel method;
  • the first heating medium with a porous structure is an electric moment-magnetic moment-conductance coupling heating medium 1-K with a porous structure, or a heating medium 1-D of a low excitation temperature aerosol generating matrix;
  • the first heating medium of the membrane composite structure is the electric moment-magnetic moment-conductance coupling heating medium 1-M;
  • the second heating medium is compounded at the mesoscopic scale through physical and chemical methods to form a core-shell type, a heterojunction type, a coating type, a porous type or a membrane composite type;
  • the second heating medium of the core-shell type includes the electric moment-magnetic moment coupling heating medium 2-H-1 of the core-shell type structure, the electric moment-conductance coupling heating medium 2-H-2 of the core-shell type structure or the core-shell type structure.
  • the specific method of forming the second heating medium with the core-shell type is a direct precipitation method, or a co-precipitation method, or an alkoxide hydrolysis method, or a sol-gel method;
  • the second heating medium of the heterojunction type structure includes the electric moment-magnetic moment coupling heating medium 2-Y-1 of the heterojunction type structure, or the electric moment-conductance coupling heating medium 2-Y-2 of the heterojunction type structure. Or heterojunction structure electric moment-magnetic moment-conductance coupling heating medium 2-Y-3;
  • the specific method for forming the second heating medium with the heterojunction structure is a molten salt method, or a high-heat solid phase reaction method, or a mechanical alloying method, and a precipitation method that controls the calcination temperature, or an alkoxide hydrolysis method, or water Thermal method, or sol (gel)-hydrothermal method;
  • the second heating medium of the cladding type structure includes the electric moment-magnetic moment coupling heating medium 2-B-1 of the cladding type structure or the electric moment-magnetic moment-conductance coupling heating medium 2-B-2 of the cladding type structure;
  • the specific method of forming the second heating medium with the coating structure is a mechanical fusion coating method, or a mechanochemical effect method induced by a high-energy mill, or a low-heat solid-phase reaction method, or a sol-gel method;
  • the second heating medium with a porous structure is an electric moment-magnetic moment-conductance coupling heating medium 2-K with a porous structure, or a heating medium 2-D of a low excitation temperature aerosol generating matrix;
  • the second heating medium of the membrane composite structure is the electric moment-magnetic moment-conductance coupling heating medium 2-M.
  • the electromagnetic moment-conductance coupling heating medium 1-K of the porous structure is prepared according to the following method:
  • the ultrafine particles of at least one component of the first dielectric medium, the first magnetic medium and the first conductive medium in the first heating medium are mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid- Copper oxide, ultrafine carbon powder or starch as a pore-forming agent, or ultrafine calcium carbonate are fully mixed and then sintered, pulverized and classified to obtain the porous structure of the electric moment-magnetic moment-conductance coupling heating medium 1-K ; Or a gel obtained by a polymer network gel method by combining at least one component of the first dielectric, at least one component of the first magnetic medium system, and at least one component of the first conductive medium.
  • the first dielectric particle porous body is modified by a precipitation method using ions of at least one component of the first magnetic medium and ions of at least one component of the first conductive medium and a precipitant in the solution, so that The inner surface of the pore forms a composite film layer of the first magnetic medium component and the first conductive medium component to obtain the electric moment-magnetic moment-conductance coupling heating medium 1-K of the porous structure; or the third A first dielectric medium in the heating medium and ultrafine particles of at least one component in the first magnetic medium, together with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and ultrafine pore-forming agent After carbon powder or starch, or ultrafine calcium carbonate is fully mixed, it is sintered,
  • the pores of the moment-magnetic moment coupling heating medium are modified, and the metal ions of at least one component in the first conductive medium system adsorbed in the plating solution in the pores are catalytically reduced to metal by the reducing agent in the plating solution, And deposited on the inner surface of the pores to obtain the electric moment-magnetic moment-conductance coupling heating medium 1-K of the porous structure;
  • the pore size of the electric moment-magnetic moment-conductance coupling heating medium of the porous structure is 2 nm to 50 ⁇ m, and the porosity is 70% to 95%.
  • the electric moment-magnetic moment-conductance coupling heating medium 2-K of the porous structure is prepared according to the following method:
  • the ultrafine particles of at least one component of the second dielectric medium, the second magnetic medium and the second conductive medium system in the second heating medium are mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid -Copper oxide, and pore-forming agent ultrafine carbon powder or starch, or ultrafine calcium carbonate are fully mixed and then sintered, pulverized and classified to obtain the electric moment-magnetic moment-conductance coupling heating medium 2 of the porous structure- K; or a gel obtained by a polymer network gel method by combining at least one component of the second dielectric medium, at least one component of the second magnetic medium, and at least one component of the second conductive medium.
  • the second dielectric particle porous body is modified by a precipitation method using ions of at least one component of the second magnetic medium system and ions of at least one component of the second conductive medium system and a precipitant in the solution.
  • the pores of the electromagnetic moment coupling heating medium of the structure are modified, and the metal ions of at least one component in the second conductive medium adsorbed in the plating solution in the pores are catalytically reduced by the reducing agent in the plating solution into The metal is deposited on the inner surface of the pores to obtain the electric moment-magnetic moment-conductance coupling heating medium 2-K of the porous structure, and the electric moment-magnetic moment-conductance coupling heating medium 2-K of the porous structure is obtained.
  • Pore size is 2nm to 50 ⁇ m, porosity is 70% to 95%;
  • the heating medium 1-D of the low excitation temperature aerosol generating matrix is prepared according to the following method:
  • the pore diameter range is selected to be 60nm to 50 ⁇ m, the porosity range is 85% to 95%, and the specific heat capacity range is 0.1kJ ⁇ kg -1 ⁇ K -1 to 0.6kJ ⁇ kg -1 ⁇ K -1 , the thermal conductivity range is 0.035W ⁇ m -1 ⁇ K -1 to 0.125W ⁇ m-1 ⁇ K -1 particles with physical property parameters, for the aerosol generating medium
  • the liquid phase components are adsorbed, so that the liquid phase components are separated into small droplets that enter the pores with a porosity of 85% to 95%, and the pore size ranges from 60nm to 50 ⁇ m to improve the efficiency of the liquid phase components of the aerosol generation medium.
  • the saturated vapor pressure value is used to obtain the heating medium for the low excitation temperature aerosol generating matrix.
  • the excitation temperature is 160°C to 200°C.
  • the particle size distribution range of the 1-D particles of the heating medium for the low excitation temperature aerosol generating matrix is from 15 ⁇ m to 15 ⁇ m. 500 ⁇ m;
  • the heating medium 2-D of the low excitation temperature aerosol generating matrix is prepared according to the following method:
  • the pore diameter range is selected to be 60 nm to 50 ⁇ m, the porosity range is 85% to 95%, and the specific heat capacity range is 0.1kJ ⁇ kg -1 ⁇ K -1 to 0.6kJ ⁇ kg -1 ⁇ K -1 , the thermal conductivity range is 0.035W ⁇ m -1 ⁇ K -1 to 0.125W ⁇ m-1 ⁇ K -1 particles with physical property parameters, for the aerosol generating medium
  • the liquid phase components are adsorbed, so that the liquid phase components are separated into small droplets that enter the pores with a porosity of 85% to 95%, and the pore size ranges from 60nm to 50 ⁇ m to improve the efficiency of the liquid phase components of the aerosol generation medium.
  • the saturated vapor pressure value is used to obtain the heating medium for the low excitation temperature aerosol generating matrix.
  • the excitation temperature is 160°C to 200°C.
  • the particle size distribution range of the 2-D particles of the heating medium for the low excitation temperature aerosol generating matrix is from 15 ⁇ m to 15 ⁇ m. 500 ⁇ m.
  • the electric moment-magnetic moment-conductance coupling heating medium 1-M is prepared according to the following method:
  • the ultrafine particles of at least one component of the first dielectric medium, the first magnetic medium and the first conductive medium system in the first heating medium are mixed with the binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid- Copper oxide, after being fully mixed, the aluminum sheet, copper sheet or stainless steel sheet is film-composited on one or both sides by spraying or brushing to obtain the electric moment-magnetic moment-conductance coupling heating medium of the film composite structure.
  • 1-M or the particles of at least one component of the first dielectric medium, the first magnetic medium and the first conductive medium system in the first heating medium are sprayed by a vapor deposition method, a flame vapor deposition method, or a plasma spraying method.
  • Method perform single-sided or double-sided film composite deposition or spraying on aluminum sheets, copper sheets, or stainless steel sheets to prepare the electric moment-magnetic moment-conductance coupling heating medium 1-M of the film composite structure;
  • the electric moment-magnetic moment-conductance coupling heating medium 2-M is prepared according to the following method:
  • the ultrafine particles of at least one component of the second dielectric medium, the second magnetic medium and the second conductive medium system in the second heating medium are mixed with the binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid- Copper oxide, after being fully mixed, the aluminum sheet, copper sheet or stainless steel sheet is film-composited on one or both sides by spraying or brushing to obtain the electric moment-magnetic moment-conductance coupling heating medium of the film composite structure.
  • 2-M; or the particles of at least one component of the second dielectric medium, the second magnetic medium and the second conductive medium in the second heating medium are processed by a vapor deposition method, a flame vapor deposition method, or a plasma spraying method. , perform single-sided or double-sided film composite deposition or spraying on aluminum sheets, copper sheets, or stainless steel sheets to prepare the electromoment-magnetic moment-conductance coupling heating medium 2-M of the film composite structure.
  • the aerosol-generating matrix also includes an aerosol matrix
  • the heating medium is directly blended with the aerosol matrix, or the heating medium is mixed into the fiber slurry or paste before the tobacco sheets in the aerosol matrix are made or rolled, so that the tobacco sheets are evenly distributed with a mass ratio of 5 to 60% heating medium, the particle size of the heating medium is 0.1 ⁇ m ⁇ 100 ⁇ m;
  • a heating medium with a porous structure with a particle size of 15 ⁇ m to 100 ⁇ m, or a heating medium with a low excitation temperature aerosol generating matrix with a particle size of 15 ⁇ m to 100 ⁇ m is used to adsorb the liquid phase components in the aerosol matrix, and then the heating medium and the aerosol matrix are combined. mix;
  • it also includes a foil-shaped film composite heating medium
  • the foil-shaped film composite heating medium is composed of the heating medium particles and the binder carboxymethyl cellulose, or guar gum or tobacco extract, and is then cast onto aluminum foil or copper through a casting method or a spraying method.
  • the foil is composited with a single or double-sided film and then cut to obtain a size comparable to tobacco flakes.
  • the particle size distribution range of the heating medium is 15 ⁇ m to 100 ⁇ m; or the dielectric component is used and the magnetic medium component is used
  • the precursor is prepared by a chemical vapor deposition method, a gas phase pyrolysis method, a gas phase hydrolysis method, a gas phase combustion method, or a flame vapor deposition method.
  • the invention provides an aerosol generation system that utilizes multi-card coupling giant thermal effect, including a heating structure.
  • the heating structure includes a casing, and a casing air inlet is provided on the casing;
  • a preheating shell is provided in the casing; the casing and the preheating shell have coaxial openings;
  • the opening of the preheating housing is connected to the filter section; the preheating housing is provided with a preheating housing air inlet;
  • a plurality of pole plates are provided inside the preheating shell; the plurality of pole plates form a heating cavity;
  • the bottom of the heating chamber is provided with a heating chamber base; the temperature control passes through the center hole of the heating chamber base, and the heating chamber base is provided with a base disc air inlet;
  • the upper end of the heating cavity is connected to the sealing ring and nested in the opening of the preheating shell;
  • the inside of the polar plate is an aerosol generating section; a metal particle layer filter medium is provided between the aerosol generating section and the filter section;
  • the aerosol generating section contains an aerosol generating matrix 1;
  • the polar plate is connected to the heating drive unit through a polar plate feeder;
  • the aerosol generating matrix 1 includes the first heating medium.
  • the pole plate is a tubular pole plate;
  • the tubular pole plate includes a tubular insulating ceramic substrate, and curved electrodes 1 and 2 arranged on the inner surface of the tubular insulating ceramic substrate;
  • the curved surface electrode 1 and the curved surface electrode 2 are opposed in pieces; adjacent curved surface electrodes 1 and 2 are separated by insulating materials;
  • the number of pieces of the curved surface electrode 1 and the curved surface electrode 2 is respectively 2 to 5 pieces.
  • the electrode plate is a plurality of planar electrodes; the electrode plate includes parallel and opposed planar electrode plates 1 and 2;
  • the distance between the planar electrode plate 1 and the planar electrode plate 2 is the diameter of the aerosol generating section.
  • each pair of two ends of the planar electrode plate 1 and the planar electrode plate 2 sandwich a block of heating medium 1;
  • a cylindrical hole is provided at the symmetrical center of the two sandwiched block heating media 1, and the diameter of the cylindrical hole is the diameter of the aerosol generating section.
  • the thickness of the metal particle layer filter medium is 0.2mm ⁇ 1.2mm;
  • the metal particle layer filter medium is pressed from aluminum particles with a size of 0.5 to 1.5 mm.
  • the bulk heating medium 1 includes first heating medium particles and an inorganic binder
  • the inorganic binder is selected from one or more of sodium silicate, aluminum dihydrogen phosphate and phosphoric acid-copper oxide.
  • the base disk air inlet hole is a through hole with a diameter of 0.3 to 2 mm;
  • the number of the air inlet holes is 8 to 36.
  • the frequency of the alternating electromagnetic field used by the heating drive unit has a balanced and compatible response frequency that meets the multi-card coupling and multi-field coupling driving requirements of electric cards, magnetic cards and guide cards.
  • the compatible response frequency When the frequency range is in the range of 0.3MHz to 300MHz, it is suitable for the first heating medium.
  • the inner surface of the preheating shell is provided with a first heating medium particle coating
  • the first heating medium particle coating includes a hexagonal boron carbon nitrogen ternary absorbing ceramic base material and a coating coated on the base material, and the coating includes first heating medium particles and a film-forming agent;
  • the film-forming agent is selected from sodium silicate sol, aluminum dihydrogen phosphate sol, aluminum hydroxide sol, or silica sol;
  • the first heating medium particle coating includes a metal substrate and a coating coated on the metal substrate, the coating including first heating medium particles and an inorganic binder;
  • the inorganic binder is selected from sodium silicate, aluminum dihydrogen phosphate, or phosphoric acid-copper oxide.
  • the invention provides an aerosol generation system that utilizes multi-card coupling giant thermal effect, including a heating structure.
  • the heating structure includes a casing, and a casing air inlet is provided on the casing;
  • a preheating shell is provided in the casing; the casing and the preheating shell have coaxial openings;
  • the opening of the preheating housing is connected to the filter section; the preheating housing is provided with a preheating housing air inlet;
  • the metal shielding shell Inside the preheating shell, there is a metal shielding shell, a block heating medium 2 and an antenna embedded in the block heating medium 2; the metal shielding shell is wrapped around the outside of the block heating medium 2;
  • the metal shielding shell, the block heating medium 2 and the antenna embedded in the block heating medium 2 form a heating cavity
  • the air inlet seat hole of the heating cavity communicates with the outside of the block heating medium 2 through 4 to 10 air inlet channels with a diameter of 0.5 to 2 mm;
  • the block heating medium 2 is a cube; a cylindrical hole is provided on the symmetry axis of the block heating medium 2, and an aerosol generating section is formed inside the hole; a wave-transmitting ceramic tube is nested in the cylindrical hole , the inner diameter of the wave-transmitting ceramic tube is the diameter of the aerosol generating section;
  • the upper end of the heating cavity is connected to the sealing ring and nested in the opening of the preheating shell;
  • a metal particle layer filter medium is provided between the aerosol generating section and the filter section;
  • the aerosol generating section contains an aerosol generating matrix 2;
  • the antenna is connected to the heating drive unit through the antenna feeder base;
  • the aerosol generating matrix 2 includes the second heating medium described in claim 1 .
  • the wave-transmitting ceramic tube is selected from quartz SiO 2 ceramic tubes, high alumina ceramic tubes, or Si 3 N 4 ceramic tubes.
  • a temperature control is also included.
  • the temperature control is transversely placed on the inner surface of the wave-transmissive ceramic tube at a distance of 2 to 3 mm from the free port of the aerosol generating section.
  • the bulk heating medium 2 includes second heating medium particles and inorganic binder
  • the inorganic binder is selected from sodium silicate, aluminum dihydrogen phosphate, or phosphoric acid-copper oxide.
  • the inner surface of the preheating shell is provided with a second heating medium particle coating
  • the second heating medium particle coating includes a hexagonal boron carbon nitrogen ternary absorbing ceramic base material and a coating coated on the base material, and the coating includes second heating medium particles and a film-forming agent;
  • the film-forming agent is selected from sodium silicate sol, aluminum dihydrogen phosphate sol, aluminum hydroxide sol, or silica sol;
  • the second heating medium particle coating includes a metal substrate and a coating coated on the metal substrate, the coating including second heating medium particles and an inorganic binder;
  • the inorganic binder is selected from sodium silicate, aluminum dihydrogen phosphate, or phosphoric acid-copper oxide.
  • the frequency of the alternating electromagnetic field used by the heating drive unit has a balanced and compatible response frequency that meets the multi-card coupling and multi-field coupling driving requirements of electric cards, magnetic cards and guide cards.
  • the compatible response frequency When the frequency range is in the range of 0.3GHz to 30GHz, it is suitable for the second heating medium.
  • the aerosol generation system utilizing the card coupling giant thermal effect provided by the present invention (1) adopts measures to strengthen the inherent electric moment orientation polarization, thermal ion relaxation polarization and ion displacement polarization on the dielectric component of the heating medium, In order to optimize the use of relaxation polarization loss and resonant polarization loss, a high polarization loss dielectric is obtained; in the magnetic medium component of the heating medium, measures are taken to strengthen hysteresis loss, damping loss and resonance loss to obtain high hysteresis loss.
  • the dielectric, magnetic medium and conductive medium are constructed by physical and chemical methods of multi-phase components to form a core-shell structure, a heterojunction structure, a coating structure, or a porous structure.
  • the structure or membrane composite structure realizes the composite at the mesoscopic level to facilitate multi-field coupling to produce multi-card coupling giant thermal effect.
  • the frequency of the alternating electromagnetic field used in the heating drive unit of the aerosol generation system is a balanced and compatible response frequency that meets the requirements of multi-card coupling of electric cards, magnetic cards and guide cards for multi-field coupling drive. Compatible response The frequency range is 0.3MHz ⁇ 30GHz.
  • Figure 1 is an axial illustrative cross-sectional view of the first aerosol generation system form 01 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 2 is an enlarged axial sectional view of the heating structure A of the aerosol generation system of the first aerosol generation system form 01 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 3 is a top view of the A-A section of Figure 2;
  • Figure 4 shows the first aerosol generation system form 01 of the aerosol generation system and method utilizing Doka coupling giant thermal effect.
  • the aerosol generation system heating structure A contains a foil in the aerosol generation section. An enlarged axial sectional view of the sheet-film composite heating medium;
  • Figure 5 is an exemplary top view at the A-A section of Figure 4.
  • Figure 6 shows the first aerosol generation system form 01 of the aerosol generation system and method utilizing Doka coupling giant thermal effect.
  • the tubular plate is An exemplary expanded view of the curved electrode 1 and the curved electrode 2 along the circumferential direction;
  • Figure 7 is an axial illustrative cross-sectional view of the second aerosol generation system form 02 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 8 is an enlarged exemplary top view of the C-C section of the aerosol generation system heating structure B of the second aerosol generation system form 02 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 9 is an axial illustrative cross-sectional view of the third aerosol generation system form 03 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 10 is an enlarged axial sectional view of the heating structure C of the aerosol generation system of the third aerosol generation system form 03 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 11 is an enlarged exemplary top view of the B-B section of the aerosol generation system heating structure C of the third aerosol generation system form 03 of the aerosol generation system and method utilizing the Doka coupling giant thermal effect;
  • Figure 12 is an SEM image of the first heating medium with a core-shell structure in Embodiment 1 of the present invention.
  • Figure 13 is an SEM image of the first heating medium of the heterojunction structure in Embodiment 2 of the present invention.
  • Figure 14 is an SEM image of the second heating medium of the coated structure in Embodiment 3 of the present invention.
  • Figure 15 is an SEM image of the second heating medium of the coated structure in Embodiment 4 of the present invention.
  • Figure 16 is an SEM image of the first heating medium with a porous structure in Example 5 of the present invention.
  • Figure 17 is an SEM image of the membrane composite structure coupling heating medium in Example 6 of the present invention.
  • Figure 18 is an SEM image of the second heating medium of the coated structure in Embodiment 7 of the present invention.
  • Figure 19 is an SEM image of the second heating medium of the coated structure in Embodiment 8 of the present invention.
  • Figure 20 is an SEM image of the second heating medium of the coated structure in Embodiment 9 of the present invention.
  • Figure 21 is an SEM image of the second heating medium of the coating type structure in Embodiment 10 of the present invention.
  • the thermal effect caused by the coupling of the electric dipole formed by polarization and the magnetic dipole formed by magnetization includes not only the electric moment thermal effect formed by a single electric moment entropy, but also the electric dipole formed by magnetization.
  • the magnetic moment thermal effect formed by moment entropy also includes the coupling thermal effect of electric moment and magnetic moment formed by electric moment-magnetic moment coupling entropy.
  • the thermal effect caused by the coupling of the electric dipole formed by polarization and the carrier formed by polarization not only includes the electric dipole formed by single electric moment entropy.
  • the moment thermal effect, the Joule heating effect formed by single lattice entropy and electron entropy, also includes the coupling thermal effect of electric moment and conductivity formed by electric moment-(lattice + electron) coupling entropy.
  • the thermal effect caused by the coupling of electric dipoles and carriers formed by polarization and magnetic dipoles formed by magnetization is not only Including the electric moment heat effect formed by a single electric moment entropy, the magnetic moment heat effect formed by a single magnetic moment entropy, the Joule heating effect formed by a single lattice entropy and electron entropy, and the coupling between electric moment and magnetic moment formed by the electric moment-magnetic moment coupling entropy.
  • the multi-card effect is not simply the sum of the single-card effects, but also includes multiple related coupling terms formed by the cross-coupling between the single-card effects, making the heat release phenomenon more significant. .
  • ⁇ T internal temperature change
  • the equation covers all card effects, including electrical card effect, magnetic card effect, guide card effect, and cross-coupled multi-card effect.
  • the corresponding terms are the temperature rise ⁇ T e of the electric card effect and the temperature rise ⁇ T m of the magnetic card effect.
  • the heating term also includes the cross-coupling heating term of changes in electric field intensity related to dielectric and magnetic media on changes in magnetization intensity, and changes in magnetic field intensity on changes in polarization intensity. This is also the principle basis for the multi-card coupling giant thermal effect described in the present invention.
  • the present invention takes measures to strengthen the inherent electric moment orientation polarization, thermal ion relaxation polarization and ion displacement polarization on the dielectric component of the heating medium to optimize the use of relaxation polarization loss and resonance polarization loss to obtain high polarity. to reduce the loss of the dielectric; in the magnetic medium component of the heating medium, measures are taken to strengthen hysteresis loss, damping loss and resonance loss to obtain a high hysteresis loss magnetic medium; in the conductive medium component of the heating medium, measures are taken to increase free electrons , ions and doping defects and vacancies and other measures to optimize the use of conductivity losses of multiple carriers to obtain high conductivity loss conductive media.
  • the above-mentioned dielectric medium, magnetic medium and conductive medium are compositely constructed by physical and chemical methods of multi-phase components to form a core-shell structure, a heterojunction structure, a coating structure, a porous structure and a membrane composite structure, thereby realizing Recombination at the mesoscopic level is conducive to multi-field coupling to produce the Doka giant thermal effect:
  • 1Core-shell structure Using ultra-fine high hysteresis loss magnetic dielectric particles as the core, the surface is functionalized, and the high polarization loss dielectric material is modified through the seed growth method, or the ultra-fine high polarization loss dielectric particles are used as the core.
  • the seed growth method is used to modify high conductivity loss conductive dielectric materials to obtain a core-shell structure of electric moment-conductance coupling heating media; ultrafine high polarization loss dielectric particles are used as cores and surface functionalized to modify high hysteresis through the seed growth method.
  • Loss magnetic dielectric materials and high conductivity loss conductive dielectric materials are used to obtain a core-shell structure of electric moment-magnetic moment-conductance coupling heating medium.
  • the core-shell structure can be prepared by direct precipitation method, co-precipitation method, alkoxide hydrolysis method or sol-gel method and other wet chemical methods.
  • High polarization loss dielectric particles and high hysteresis loss magnetic particles are evenly mixed in the contact interface area. Due to different crystal structures and low lattice matching, they grow and melt epitaxially through baking and other processes. Precipitate to obtain a heterojunction type electric moment-magnetic moment coupling heating medium; in the same way, high polarization loss dielectric particles and high conductivity loss conductive dielectric particles are evenly mixed in the contact interface area, and epitaxially grow and melt and precipitate through baking etc.
  • the heterojunction structure can adopt the molten salt method, or the high-heat solid phase reaction method, or the mechanical alloying method, and the precipitation method to control the calcination temperature, or the alkoxide hydrolysis method, or the hydrothermal method, or the sol (gel)-water method Preparation by thermal method and other methods.
  • 3Covered structure Using high hysteresis loss magnetic media as parent particles, coating ultrafine high polarization loss dielectric daughter particles to obtain a coated structure of electric moment-magnetic moment coupling heating medium; using high hysteresis loss magnetic media
  • the medium is a mother particle, which coats ultra-fine high polarization loss dielectric sub-particles and ultra-fine high conductivity loss conductive dielectric sub-particles to obtain a coating-type structure of electric moment-magnetic moment-conductance coupling heating medium.
  • Coated structures can use mechanical methods, such as mechanical fusion coating equipment, to combine high polarization loss dielectric particles and high hysteresis loss magnetic media through mechanochemical effects caused by mechanical forces such as shearing, friction, extrusion, and impact.
  • the particles are compounded with high conductivity loss conductive dielectric particles.
  • the coated structure can also be prepared by low-heat solid-phase reaction method or sol-gel method.
  • 4Porous structure combine high hysteresis loss magnetic dielectric particles, high polarization loss dielectric particles, high conductivity loss conductive dielectric particles, inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and After the porous agent is fully mixed, it is sintered, and the porous sintered body is appropriately pulverized and classified to obtain an electric moment-magnetic moment-conductance coupling heating medium with a porous structure.
  • the porous structure can be prepared by polymer network gel method and metal complex gel method.
  • the porous structure can also be modified by precipitation method on high polarization loss dielectric porous ceramics by utilizing high hysteresis loss magnetic medium ions and high conductivity loss conductivity medium ions in the solution, through appropriate precipitants, so that the inner surface of the pores can form a high
  • the composite film layer of hysteresis loss magnetic medium and high conductivity loss conductivity medium obtains a porous structure of electric moment-magnetic moment-conductance coupling heating medium.
  • the porous structure can also use electroless plating to modify the pores of high polarization loss dielectric porous ceramics.
  • the high conductivity loss conductive dielectric metal ions adsorbed in the plating solution in the pores are catalytically reduced to metal by the reducing agent in the plating solution. And deposited on the inner surface of the pores to obtain a porous structure of electric moment-conductance coupling heating medium.
  • Membrane composite structure The binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and the composite high hysteresis loss magnetic dielectric particles and high polarization loss dielectric particles are cast or The spraying method is used to laminate metal sheets, such as aluminum foil, copper foil, copper sheets, or stainless steel sheets, on one or both sides to obtain a membrane composite structure of electric moment-magnetic moment-conductance coupling heating medium.
  • Membrane composite structures can also be prepared by chemical vapor deposition, vapor pyrolysis, vapor hydrolysis, vapor combustion or flame vapor deposition.
  • the present invention reduces the thermal excitation temperature of the aerosol-generating medium and adsorbs the liquid phase components of the aerosol-generating medium through the porous-structured heating medium, causing the liquid phase components to be differentiated into an extremely large number of small droplets. According to Kelvin’s equation:
  • p r and p 0 are the saturated vapor pressure values of small droplets and flat liquids respectively
  • ⁇ , ⁇ and M are the surface tension, density and molar mass of the liquid respectively
  • R and T are the gas constant and the absolute temperature of the gas respectively.
  • r is the radius of the small droplet.
  • the aerosol generating matrix includes a heating medium; the heating medium is selected from first heating medium particles or second heating medium particles; the first heating medium particles include a first dielectric, a first Magnetic medium and first conductive medium; the second heating medium particles include a second dielectric medium, a second magnetic medium and a second conductive medium;
  • the present invention uses physical and chemical methods to compositely construct the first dielectric medium, the first magnetic medium, the first conductive medium, the second dielectric medium, the second magnetic medium core and the second conductive medium at the mesoscopic scale, forming a core-shell structure and a heterogeneous structure.
  • One or more of the mass-type structure, the coating type structure, the porous type structure or the membrane composite type structure is a heating medium that is consistent with multi-field coupling to produce a Doka giant thermal effect.
  • the first magnetic medium is a component with high hysteresis loss, high damping loss, high domain wall resonance loss and high natural resonance loss, preferably spinel ferrite, and the spinel ferrite
  • the second magnetic medium is a component with high hysteresis loss, high damping loss, high domain wall resonance loss, high natural resonance loss, high size resonance loss and high spin wave resonance loss;
  • the second magnetic medium Preferred from M-type hexagonal ferrite: BaM, and/or PbM, and/or SrM;
  • X-type hexagonal ferrite including Fe 2 X;
  • W-type hexagonal ferrite including Mg 2 W, and/or Mn 2 W, and/or Fe 2 W, and/or Co 2 W, and/or Ni 2 W, and/or Cu 2 W, and/or Zn 2 W;
  • Y-type hexagonal ferrite including Mg 2 Y, and /or Mn 2 Y, and/or Fe 2 Y, and/or Co 2 Y, and/or Ni 2 Y, and/or Cu 2 Y, and/or Zn 2 Y;
  • Z-type hexagonal ferrite including Mg 2 Z, and/or Mn 2 Z, and/or
  • the first conductive medium and/or the second conductive medium are multi-carrier high conductivity loss components that increase free electrons, ions, and doping defects and vacancies; the first conductive medium and/or the second conductive medium are selected From the ZnO series, including doped Al(AZO), and/or doped In(IZO), and/or doped Ga(GZO); magnetic oxides, including CoO, and/or MnO, and/or Fe 3 O 4 , and/or NiO; and other semiconductor oxides, including Ga 2 O 3 , and/or In 2 O 3 , and/or InSnO (ITO).
  • the conductive medium can be independently integrated as one of the composite components of the heating medium, or it can be added to the dielectric component and the magnetic medium component separately or simultaneously.
  • the first heating medium with a core-shell structure has three structural forms.
  • the first structural form is a core-shell structure electric moment-magnetic moment coupling heating medium 1-H-1, which is based on the first.
  • the ultrafine particles of the magnetic medium are used as the core, and the first dielectric is modified by a seed growth method, or the ultrafine particles of the first dielectric are used as the core, and the first magnetic medium component is modified by seed growth to obtain the core shell.
  • the second structural form is the electric moment-conductance coupling heating medium 1-H-2 of core-shell type structure, with the ultra-fine structure of the first dielectric
  • the particles are cores, which are obtained by modifying the first conductive medium by a seed growth method;
  • the third structural form is the electric moment-magnetic moment-conductivity coupling heating medium 1-H-3 of a core-shell type structure, with the first conductive medium being
  • the ultrafine particles of the dielectric are cores, obtained by modifying the first magnetic medium and the first conductive medium through a seed growth method;
  • the first heating medium with the core-shell structure is formed by mesoscopic scale compounding through physical and chemical methods.
  • the specific preparation method is direct precipitation method, co-precipitation method, alkoxide hydrolysis method, or sol-gel method.
  • the first heating medium with a heterojunction structure has three structural forms.
  • the first structural form is the electric moment-magnetic moment coupling heating medium 1-Y-1 of the heterojunction structure, so The first dielectric and the first magnetic medium are obtained by roasting, melting and precipitating in a uniformly mixed state;
  • the second structural form of the heterojunction type structure of the electric moment-conductance coupling heating medium 1-Y-2 is
  • the third structural form of the electric moment-magnetic moment-conductance coupling heating medium 1- of the heterojunction type structure is obtained by roasting, melting and precipitating the first dielectric and the first conductive medium in a uniformly mixed state.
  • Y-3 is obtained by roasting, melting and precipitating the first dielectric medium, the first magnetic medium and the first conductive medium in a uniform mixing state.
  • the first heating medium with the heterojunction structure is formed by mesoscopic scale compounding through physical and chemical methods.
  • the specific preparation method is a molten salt method, a high-heat solid phase reaction method, or a mechanical alloying method, and controlling the calcination temperature.
  • the first heating medium with a coating structure has two structural forms.
  • the first structural form is an electric moment-magnetic moment coupling heating medium 1-B-1 of a coating structure, which is based on the above-mentioned structure.
  • the first magnetic medium is a mother particle, obtained by coating the ultrafine particles of the first dielectric;
  • the second structural form is a coated structure of electric moment-magnetic moment-conductance coupling heating medium 1-B-2 , is obtained by using the first magnetic medium component as a mother particle and coating the ultrafine particles of the first dielectric and the ultrafine particles of the conductive medium.
  • the formation of the first heating medium with the coating structure is mesoscopic scale compounding through physical and chemical methods.
  • the specific preparation method is a mechanical fusion coating method, or a mechanochemical effect method induced by a high-energy mill, or a low-heat solid phase reaction method, or sol-gel method.
  • the first heating medium with a porous structure is an electric moment-magnetic moment-conductance coupling heating medium 1-K with a porous structure.
  • the first heating medium 1-K with a porous structure is formed through mesoscopic scale compounding by physical and chemical methods.
  • the specific preparation method is: combining the ultrafine particles of the first dielectric medium and the ultrafine particles of the first magnetic medium. And the ultrafine particles of the first conductive medium are fully mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and the pore-forming agent ultrafine carbon powder or starch, or ultrafine calcium carbonate. Afterwards, it is obtained by sintering, crushing and classifying;
  • the ultrafine particles of the first dielectric medium, the ultrafine particles of the first magnetic medium, and the ultrafine particles of the first conductive medium are passed through N,N-methylene bisacrylamide network agent and ammonium sulfate.
  • the polymer network gel method that initiates the free radical polymerization of acrylamide is obtained by drying, sintering, crushing and classifying the gel;
  • the obtained soluble complex network gel is obtained by drying, sintering, crushing and classifying;
  • the porous body of the first dielectric medium is modified by a precipitation method through the ions of the first magnetic medium component and the ions of the conductive medium component and the precipitant in the solution, so that the inner surface of the pores forms the desired Obtained from a composite film layer of the first magnetic medium component and the first conductive medium component;
  • the pore size of the first heating medium 1-K with a porous structure is 2 nm to 50 ⁇ m, and the porosity is 70% to 95%.
  • the electromagnetic moment-conductance coupling heating medium 1-K of the porous structure it is preferred to select the electromagnetic moment-conductance coupling heating medium 1-K of the porous structure to obtain the heating medium 1-D of the low excitation temperature aerosol generating matrix.
  • the heating medium 1-D of the low excitation temperature aerosol generating matrix is selected from the electric moment-magnetic moment-conductance coupling heating medium 1-K based on the porous structure to satisfy the principle of the Kelvin equation.
  • the pore diameter ranges from 60nm to 50 ⁇ m
  • the porosity ranges from 85% to 95%
  • the specific heat capacity ranges from 0.1kJ ⁇ kg -1 ⁇ K -1 to 0.6kJ ⁇ kg -1 ⁇ K -1
  • the thermal conductivity range is 0.035 Particles with physical property parameters of W ⁇ m -1 ⁇ K -1 to 0.125W ⁇ m -1 ⁇ K -1 adsorb the liquid phase components of the aerosol generation medium, so that the liquid phase components are separated into porosity of 85 % to 95% of small droplets in pores, with pore sizes ranging from 60 nm to 50 ⁇ m, to increase the saturated vapor pressure value of the liquid component of the aerosol generation medium and obtain a heating medium for the aerosol generation matrix with a low excitation temperature. 160°C to 200°C, and the particle size distribution range of the heating medium 1-D particles of the low excitation temperature aerosol generating matrix is 15 ⁇ m to 500 ⁇ m.
  • the first heating medium of the membrane composite structure is the electric moment-magnetic moment-conductance coupling heating medium 1-M of the membrane composite structure, which is compounded at the mesoscopic scale through physical and chemical methods; forming a structure with the above
  • the specific preparation method of the electric moment-magnetic moment-conductance coupling heating medium 1-M of the film composite structure is to combine the binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, with the first dielectric
  • the ultrafine particles, the ultrafine particles of the first magnetic medium and the ultrafine particles of the first conductive medium are fully mixed, and then the aluminum sheet, copper sheet or stainless steel sheet is sprayed or brushed on one side or Double-sided film composite to obtain the electromagnetic moment-conductance coupling heating medium 1-M of the film composite structure; or use chemical vapor deposition method, or gas phase pyrolysis method, or gas phase hydrolysis method, or gas phase combustion method , or flame vapor deposition method, or plasma spraying method, prepare the electric moment-
  • the second heating medium with a core-shell structure has three structural forms.
  • the first structural form is a core-shell structure electric moment-magnetic moment coupling heating medium 2-H-1.
  • the ultrafine particles of the medium are used as cores and are obtained by modifying the second dielectric by a seed growth method; or the ultrafine particles of the second dielectric are used as cores and are obtained by modifying the second magnetic medium by a seed growth method;
  • the two structural forms are the core-shell type structure of the electric moment-conductance coupling heating medium 2-H-2, which is obtained by modifying the conductive medium component material by a seed growth method with the ultrafine particles of the second dielectric as the core.
  • the third structural form is an electric moment-magnetic moment-conductance coupling heating medium 2-H-3 with a core-shell structure, using the ultrafine particles of the second dielectric as the core, and modifying the second dielectric by a seed growth method.
  • the magnetic dielectric component material and the conductive dielectric component material are obtained.
  • Forming the second heating medium with the core-shell structure is through mesoscopic scale compounding by physical and chemical methods, and the specific preparation method is a direct precipitation method, or co-precipitation method, or alkoxide hydrolysis method or sol-gel method.
  • the second heating medium with a heterojunction structure has three structural forms.
  • the first structural form is the electric moment-magnetic moment coupling heating medium 2-Y-1 of the heterojunction structure, so The second dielectric component particles and the second magnetic medium component particles are obtained by roasting, melting and precipitating in a uniformly mixed state; the second structural form is the moment-conductance coupling heating of the heterojunction structure
  • the medium 2-Y-2 is obtained by roasting, melting and precipitating the second dielectric component particles and the second conductive dielectric component particles in a uniformly mixed state;
  • the third structural form is a heterojunction type
  • the structural electric moment-magnetic moment-conductance coupling heating medium 3-Y-3 is based on the second dielectric component particles and the second magnetic medium component particles and the second conductive medium component particles. It is obtained by roasting, melting and precipitating in a uniformly mixed state.
  • the formation of the second heating medium with a heterojunction type structure is through mesoscopic scale compounding by physical and chemical methods.
  • the specific preparation method is the molten salt method, or the high-heat solid phase reaction method, or the mechanical alloying method, and precipitation by controlling the calcination temperature. method, or alkoxide hydrolysis method, or hydrothermal method, or sol (gel)-hydrothermal method.
  • the second heating medium with a coating structure has two structural forms.
  • the first structural form is the electromagnetic moment-magnetic coupling heating medium 2-B-1 of the coating structure, which is based on the above-mentioned structure.
  • the second magnetic medium component is a mother particle, which is obtained by coating the ultrafine particles of the second dielectric component;
  • the second structural form is a coated structure of electric moment-magnetic moment-conductance coupling heating medium 2-B -2, obtained by using the second magnetic medium component as a mother particle and coating the ultrafine particles of the second dielectric component and the ultrafine particles of the conductive medium component;
  • the formation of the second heating medium with the coating structure is mesoscopic scale compounding through physical and chemical methods.
  • the specific preparation method is a mechanical fusion coating method, or a mechanochemical effect method induced by a high-energy mill, or a low-heat solid phase reaction method and sol-gel method.
  • the second heating medium with a porous structure is an electric moment-magnetic moment-conductance coupling heating medium 2-K with a porous structure, which is compounded at a mesoscopic scale through physical and chemical methods to form a porous structure.
  • the specific preparation method of the electric moment-magnetic moment-conductance coupling heating medium 2-K is to combine the ultrafine particles of the second dielectric component and the ultrafine particles of the second magnetic medium component and the conductive medium
  • the ultrafine particles of the component are fully mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and the pore-forming agent ultrafine carbon powder or starch, or ultrafine calcium carbonate, and then sintered and pulverized.
  • the ultrafine particles of the second dielectric component and the ultrafine particles of the second magnetic medium component and the ultrafine particles of the conductive medium component are passed through N,N-methylene bispropylene
  • a polymer network gel method in which an amide network agent and ammonium sulfate initiate acrylamide free radical polymerization, and the obtained gel is obtained by drying, sintering, crushing and classifying; or the second magnetic medium component and the conductive
  • the precursor solution prepared by the dielectric component is uniformly mixed into the ultrafine particles of the second dielectric component, and a metal complex gel method in which a complexing agent and metal ions undergo a complex reaction is added to obtain a soluble complex network gel.
  • the glue is obtained by drying, sintering, crushing and classifying; or by using the ions of the second magnetic medium component and the ions and precipitating agent of the conductive medium component in the solution, the second dielectric component is
  • the porous body is modified by a precipitation method to form a composite film layer of the second magnetic medium component and the conductive medium component on the inner surface of the pores; the pore size of the porous structure is 2 nm to 50 ⁇ m, and the pore size is 2 nm to 50 ⁇ m.
  • the rate is 70% to 95%.
  • the second heating medium with a porous structure may also be the heating medium 2-D of the low excitation temperature aerosol generating matrix.
  • the heating medium 2-D of the low excitation temperature aerosol generating matrix From the electric moment-magnetic moment-conductance coupling heating medium 2-K of the porous structure, select one that satisfies the principle conditions of the Kelvin equation, with a pore diameter ranging from 60 nm to 50 ⁇ m, and a porosity ranging from 85% to 95%.
  • the specific heat capacity range is 0.1kJ ⁇ kg -1 ⁇ K -1 to 0.6kJ ⁇ kg -1 ⁇ K -1
  • the thermal conductivity range is 0.035W ⁇ m -1 ⁇ K -1 to 0.125W ⁇ m -1 ⁇ K -1
  • the particles with physical property parameters adsorb the liquid phase components of the aerosol generation medium, so that the liquid phase components are separated into small droplets that enter the pores with a porosity of 85% to 95%, and the pore size ranges from 60nm to 50 ⁇ m.
  • the excitation temperature is 160°C to 200°C.
  • the heating medium for the low-excitation temperature aerosol generating matrix 2 -D particles have a particle size distribution ranging from 15 ⁇ m to 500 ⁇ m.
  • the second heating medium with a membrane composite structure is an electric moment-magnetic moment-conductance coupling heating medium 2-M with a membrane composite structure.
  • the mesoscopic scale composite through physical and chemical methods forms a structure with
  • the specific preparation method of the electric moment-magnetic moment-conductance coupling heating medium 2-M of the membrane composite structure is to combine the binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, with the described
  • the ultrafine particles of the second dielectric component the ultrafine particles of the second magnetic medium component and the ultrafine particles of the conductive medium component are fully mixed, the aluminum sheet or copper sheet or
  • the stainless steel sheet is film-composited on one or both sides to obtain the electric moment-magnetic moment-conductance coupling heating medium 2-M of the film composite structure; or chemical vapor deposition method, gas phase pyrolysis method, or gas phase water is used Solution method, or gas phase combustion method, or flame vapor deposition method, or plasma spraying method, prepare the electric moment-m
  • the particle size of the first dielectric component particles, or the first magnetic medium component particles, or the second dielectric component particles, or the second magnetic medium component particles, or the first conductive medium component particles The distribution range is 20nm to 200 ⁇ m.
  • the particle sizes of the ultrafine particles of the conductive medium component are all from 20nm to 10 ⁇ m; the particle size of the ultrafine particles meets the physical property requirements for dense ultrafine particle aggregates to produce electromagnetic wave absorption and heating.
  • the aerosol generating system heating structure includes three structures, aerosol generating system heating structure A, aerosol generating system heating structure B and aerosol generating system heating structure C;
  • the heating structure A of the aerosol generation system is composed of a heating chamber a, a preheating shell, an aerosol generation section, an aerosol generation matrix, a particle heating medium, an aerosol matrix, a foil-like film composite heating medium, and a metal It consists of particle layer filter medium, sealing ring, temperature control, etc.
  • the heating chamber a composed of tubular plates is fixedly connected to the middle part of the preheating shell, and the aerosol generating section is placed on the central axis of the heating chamber a.
  • the aerosol generating section contains an aerosol generating matrix.
  • the aerosol generating matrix contains a granular heating medium and an aerosol matrix.
  • a foil-like film composite heating medium with a size comparable to that of tobacco flakes can also be incorporated.
  • the aerosol generating section and A metal particle layer filter medium is sandwiched between the filter segments.
  • the upper end of the heating chamber a is connected to the sealing ring and nested in the upper part of the preheating shell.
  • the temperature control passes through the center hole of the base of the heating chamber a and is placed in the aerosol generator.
  • the segment is 2 ⁇ 5mm, and the base disk of heating chamber a is evenly distributed with 8 ⁇ 36 through holes with a diameter of 0.3 ⁇ 2mm.
  • the base of heating chamber a is made of insulating Al 2 O 3 ceramics;
  • the heating structure B of the aerosol generation system is composed of a heating chamber b, a preheating shell, an aerosol generation section, an aerosol generation matrix, a particle heating medium, an aerosol matrix, a foil-like film composite heating medium, and a metal particle layer. It is composed of filter medium, sealing ring and temperature control. Its main composition relationship is: the heating chamber b composed of the flat plate and the block heating medium 1 is fixedly connected to the middle part of the preheating shell, and the aerosol generating section is placed in the heating chamber. In the central axis hole tube of cavity b, the aerosol generating section contains an aerosol generating matrix.
  • the aerosol generating matrix contains a granular heating medium and an aerosol matrix.
  • a foil-like film composite heating medium with a size equivalent to that of tobacco flakes can also be added.
  • the upper end of the heating chamber b is connected to the sealing ring and nested in the upper part of the preheating shell.
  • the temperature control passes through the center hole of the base of the heating chamber b and enters.
  • the aerosol generation section is 2 to 5 mm
  • the base disk of heating chamber a is evenly distributed with 8 to 36 through holes with a diameter of 0.3 to 2 mm
  • the base of heating chamber b is made of insulating Al 2 O 3 ceramics.
  • the block heating medium 1 is one type of the block heating medium;
  • the heating structure C of the aerosol generation system is composed of a heating chamber c, a preheating shell, an aerosol generation section, an aerosol generation matrix, a particle heating medium, an aerosol matrix, a foil-like film composite heating medium, and a metal particle layer. It is composed of filter media, wave-transmitting ceramic tubes and temperature controls. Its main composition relationship is: the heating cavity c composed of a cubic block heating medium 2 is fixedly connected to the middle part of the preheating shell, and the aerosol generating section is placed in the heating cavity. c. In the central axis hole tube, the aerosol generation section contains an aerosol generation matrix. The aerosol generation matrix contains particle heating medium and aerosol matrix.
  • a metal particle layer filter medium is sandwiched between the generating section and the filter section, and a wave-transmitting ceramic sealing tube is nested in the central axis of the heating cavity c.
  • the material of the wave-transmitting ceramic tube is quartz ceramic SiO 2 or high alumina ceramic Al 2 O 3 Or Si 3 N 4 ceramics, the temperature control is set at the lower side wall of the bottom c of the heating cavity.
  • the block heating medium 2 is one type of said block heating medium.
  • the heating chamber a is composed of a tubular electrode plate.
  • the tubular electrode plate is composed of a curved electrode 1 and a curved electrode 2 compounded on the inner surface of a tubular insulating ceramic substrate.
  • the curved electrode 1 and the curved electrode 2 are divided into pieces and face each other.
  • the curved surface electrode 1 and the curved surface electrode 2 each have 2 to 5 pieces.
  • the curved surface electrode 1 and the curved surface electrode 2 each have 3 pieces, which are spaced opposite each other.
  • the adjacent curved surface electrode 1 and the curved surface electrode 2 are insulated by Al 2 O 3 ceramic separated, can also be filled with insulating material polyimide or aramid resin (polyphenylene isophthalamide), curved electrode 1 and curved electrode 2 are made of copper or silver sheet material, heated
  • the length of the cavity a is equivalent to the aerosol generating section, and the diameter is well known in the art.
  • the heating cavity a is used for heating when the frequency of the alternating electromagnetic field is in the range of 0.3MHz to 300MHz.
  • the curved electrode 1 is a type of electrode 1
  • the curved electrode 2 is a type of electrode 2 .
  • the heating chamber b is composed of a flat plate 1, a flat plate 2 and a block heating medium 1.
  • the flat plate 1 and the flat plate 2 are parallel to each other, and the distance between the flat plate 1 and the flat plate 2 is the diameter of the aerosol generating section.
  • a block heating medium 1 is sandwiched at each pair of two ends of the flat plate 2.
  • a cylindrical hole is provided at the symmetrical center of the two sandwiched block heating medium 1.
  • the diameter is the diameter of the aerosol generating section and the length is the aerosol. Occurs segment length value.
  • the heating cavity b is used for heating when the frequency of the alternating electromagnetic field is in the range of 0.3MHz to 300MHz.
  • Planar electrode 1 is one type of electrode 1
  • planar electrode 2 is one type of electrode 2 .
  • the heating cavity c is composed of a block heating medium 2, a metal shielding shell and an antenna (such as a PIFA planar inverted F antenna) embedded in the block heating medium 2.
  • the block heating medium 2 is in the shape of a cube and is provided with a
  • the cylindrical hole has a depth equal to the length of the aerosol generating section, a wave-transmitting ceramic tube is embedded in the cylindrical hole, and the inner diameter of the wave-transmitting ceramic tube is equal to the diameter of the aerosol generating section.
  • an antenna (such as a PIFA planar inverted F antenna) is embedded in the block heating medium 2.
  • the antenna feeder base extends to the outside of the block heating medium 2 and is connected to the antenna below the cylindrical hole. At the symmetry axis of the block heating medium 2, there is an air inlet connected to the cylindrical hole. The air inlet communicates with the outside of the block heating medium 2 through several small holes.
  • the metal shielding shell separates the block heating medium 2 from the outside. The heating medium 2 is enclosed therein.
  • the heating cavity c is used for heating when the frequency of the alternating electromagnetic field is in the range of 0.3GHz to 30GHz.
  • the preheating shell consists of a metal shielding shell surrounding the heating chamber a, or surrounding the heating chamber b, or surrounding the heating chamber c, and is connected with the heating chamber a, or with the heating chamber b, or with the heating chamber
  • the outer wall of the metal shielding shell c is composed of a shell with a certain gap, and the gap is about 1.5 ⁇ 3mm.
  • the base material of the preheating shell is hexagonal boron carbon nitrogen ternary absorbing ceramic (h-BCN).
  • the inner wall of the preheating shell is coated with a particle coating of heating medium.
  • the film-forming agent is sodium silicate sol or aluminum dihydrogen phosphate. Sol, or aluminum hydroxide sol, or silica sol, sintered and solidified at a temperature above 800°C.
  • the room temperature airflow is preheated by flowing through the air inlet through the gap space, it is then introduced into the heating chamber a, or the heating chamber b, or the heating chamber c; the preheating shell or the electric moment of the membrane composite structure is used - Magnetic moment-conductance coupling heating medium 1-M material is used to surround the heating chamber a or surround the heating chamber b; the preheating shell or the electric moment-magnetic moment-conductance coupling using the film composite structure
  • the heating medium is made of 2-M material and is used to surround the heating cavity c.
  • the aerosol generating section contains an aerosol generating matrix and a metal particle layer filter medium, or also contains a foil-shaped film composite heating medium cut to a size equivalent to that of a tobacco sheet, with a cigarette-shaped appearance. Dimensions are well known in the art.
  • the blending mass ratio of the foil-like film composite heating medium is 3 to 30%.
  • the aerosol generating section 1 is composed of an aerosol generating matrix 1 and a metal particle layer filter medium or a composite heating medium 1-M containing the foil-like film, forming a structure that can be connected to the cigarette filter section. One end is connected to the filter section, and the other end is a free end.
  • connection interface between the filter section and the aerosol generating section 1 is a metal particle layer filter medium;
  • the aerosol generating section 2 is composed of an aerosol generating matrix 2 and a metal particle layer.
  • the filter medium or the composite heating medium 2-M containing the foil-like film forms a structure that can be connected to the cigarette filter section. One end is connected to the filter section, and the other end is a free end.
  • the filter section interacts with the aerosol. Between the segment 2 connection interfaces is a metal particle layer filter medium.
  • the filter section can be an ordinary filter well known in the art, or it can be some new filter with special cooling, adsorption, and filtration functions.
  • the aerosol generating matrix is composed of a particle heating medium and an aerosol matrix.
  • the granular heating medium is directly blended with the aerosol matrix, or the granular heating medium is mixed into the fiber slurry or paste before the tobacco sheets in the aerosol matrix are made or rolled, so that the tobacco sheets are evenly distributed with a mass ratio of 5% to 60% of the particle heating medium, or the particle heating medium with a porous structure, or the low excitation temperature aerosol generation matrix is used to adsorb the liquid phase component in the aerosol matrix, and then blended with the particle heating medium and the aerosol matrix.
  • the liquid phase component in the aerosol matrix is well known in the art; except for the liquid phase component, the other components of the aerosol matrix are composed of various monomer substrates and substrate carriers that are well known in the art.
  • the aerosol generating matrix 1 is composed of the first heating medium particles and an aerosol matrix.
  • the first heating medium particles are directly blended with the aerosol matrix.
  • the first heating medium particles are The particle size distribution range is 15 ⁇ m to 500 ⁇ m; or before the tobacco sheets in the aerosol matrix are made or rolled, the first heating medium particles are mixed into the fiber slurry or paste, so that the tobacco sheets are evenly distributed with a mass ratio
  • the first heating medium particles are 5% to 60%, and the first heating medium particle size distribution range is 0.1 ⁇ m to 100 ⁇ m; or the electric moment-magnetic moment-conductance coupling heating medium 1-K particles of the porous structure are , adsorbing the liquid phase component in the aerosol matrix and then blending it with other aerosol matrices.
  • the particle size distribution range of the porous structure electric moment-magnetic moment-conductance coupling heating medium 1-K particles is 15 ⁇ m to 500 ⁇ m; Or the heating medium 1-D particles of the low excitation temperature aerosol generating matrix are blended with other aerosol matrices after adsorbing the liquid phase components in the aerosol matrix.
  • the low excitation temperature aerosol generating matrix is The particle size distribution of the heating medium 1-D particles ranges from 15 ⁇ m to 500 ⁇ m.
  • the aerosol generating matrix 2 is composed of the second heating medium particles and an aerosol matrix. The second heating medium particles are directly blended with the aerosol matrix.
  • the particle size distribution range of the second heating medium particles is 15 ⁇ m.
  • the second heating medium particles are mixed into the fiber slurry or paste, so that the tobacco sheets are evenly distributed with a mass ratio of 5% to 60 % of the second heating medium particles, the second heating medium particle size distribution range is 0.1 ⁇ m to 100 ⁇ m; or the electric moment-magnetic moment-conductance coupling heating medium 2-K of the porous structure is adsorbed into the aerosol matrix
  • the liquid phase component is then blended with other aerosol substrates, and the particle size distribution range of the porous structure electric moment-magnetic moment-conductance coupling heating medium 2-K particles is 15 ⁇ m to 500 ⁇ m; or the low
  • the heating medium 2-D of the excitation temperature aerosol generating matrix adsorbs the liquid component in the aerosol matrix and then blends it with other aerosol matrices.
  • the heating medium 2-D particles of the low excitation temperature aerosol generating matrix are The particle size distribution range is from 15 ⁇ m to 500 ⁇ m.
  • the particle heating medium is composed of the high polarization loss dielectric, high hysteresis loss magnetic medium and high conductivity loss conductive medium through a multi-component physical and chemical method, and has a core-shell structure and a heterojunction type. Structure, coating structure and porous structure, or particles mixed with multiple structures, the particle size distribution range is 0.1 ⁇ m ⁇ 500 ⁇ m, among which, the particle size distribution range of the particle heating medium directly blended with the aerosol matrix The particle size distribution range of the particle heating medium incorporated into the tobacco sheet slurry or rolling paste is 0.1 ⁇ m to 100 ⁇ m.
  • the bulk heating medium is composed of the high polarization loss dielectric, high hysteresis loss magnetic medium and high conductivity loss conductive medium through a multi-component physical and chemical method, and has a core-shell structure and a heterojunction.
  • One of the structure, coated structure and porous structure, or the particles with multiple structures are mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and then are pressed and processed at low temperature Formed by roasting.
  • the block heating medium 1 is formed by mixing the first heating medium with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide through pressing and low-temperature baking; the block heating medium 2 It is formed by mixing the second heating medium with the inorganic binder sodium silicate, aluminum dihydrogen phosphate, or phosphoric acid-copper oxide through pressing and low-temperature baking.
  • the foil-like film composite heating medium is composed of the high polarization loss dielectric, high hysteresis loss magnetic medium and high conductivity loss conductive medium through a multi-component physical and chemical method, and has a core-shell structure.
  • a structure among heterojunction structure, coating structure and porous structure, or mixed particles of multiple structures through casting method or spraying method, or other chemical vapor deposition method, vapor phase pyrolysis method, Preparation methods such as gas phase hydrolysis method, gas phase combustion method and flame vapor deposition method are used to laminate aluminum foil or copper foil on one side or both sides, and then cut it to obtain the same size as tobacco flakes.
  • the metal particle layer filter medium is pressed from aluminum particles with a size of 0.5 to 1 mm, and a thickness of about 0.5 to 2 mm.
  • the invention provides an aerosol generation system that utilizes multi-card coupling giant thermal effect, including a heating structure.
  • the heating structure includes a casing, and a casing air inlet is provided on the casing;
  • a preheating shell is provided in the casing; the casing and the preheating shell have coaxial openings;
  • the opening of the preheating housing is connected to the filter section; the preheating housing is provided with a preheating housing air inlet;
  • a plurality of pole plates are provided inside the preheating shell; the plurality of pole plates form a heating cavity;
  • the bottom of the heating chamber is provided with a heating chamber base; the temperature control passes through the center hole of the heating chamber base, and the heating chamber base is provided with a base disc air inlet;
  • the upper end of the heating cavity is connected to the sealing ring and nested in the opening of the preheating shell;
  • the inside of the polar plate is an aerosol generating section; a metal particle layer filter medium is provided between the aerosol generating section and the filter section;
  • the aerosol generating section contains an aerosol generating matrix 1;
  • the polar plate is connected to the heating drive unit through a polar plate feeder;
  • the aerosol generating matrix 1 includes the first heating medium.
  • the invention also provides an aerosol generation system that utilizes multi-card coupling giant thermal effect, including a heating structure, the heating structure includes a casing, and a casing air inlet is provided on the casing;
  • a preheating shell is provided in the casing; the casing and the preheating shell have coaxial openings;
  • the opening of the preheating housing is connected to the filter section; the preheating housing is provided with a preheating housing air inlet;
  • the metal shielding shell Inside the preheating shell, there is a metal shielding shell, a block heating medium 2 and an antenna embedded in the block heating medium 2; the metal shielding shell is wrapped around the outside of the block heating medium 2;
  • the metal shielding shell, the block heating medium 2 and the antenna embedded in the block heating medium 2 form a heating cavity
  • the air inlet seat hole of the heating cavity communicates with the outside of the block heating medium 2 through 4 to 10 air inlet channels with a diameter of 0.5 to 2 mm;
  • the block heating medium 2 is a cube; a cylindrical hole is provided on the symmetry axis of the block heating medium 2, and an aerosol generating section is formed inside the hole; a wave-transmitting ceramic tube is nested in the cylindrical hole , the inner diameter of the wave-transmitting ceramic tube is the diameter of the aerosol generating section;
  • the upper end of the heating cavity is connected to the sealing ring and nested in the opening of the preheating shell;
  • a metal particle layer filter medium is provided between the aerosol generating section and the filter section;
  • the aerosol generating section contains an aerosol generating matrix 2;
  • the antenna is connected to the heating drive unit through the antenna feeder base;
  • the aerosol generating matrix 2 includes the second heating medium.
  • the aerosol generating system has three forms, namely the first aerosol generating system form, the second aerosol generating system form and the third aerosol generating system form, each having an aerosol generating system heating structure A , aerosol generation system heating structure B and aerosol generation system heating structure C, where:
  • the first aerosol generation system form mainly consists of an aerosol generation section, an aerosol generation matrix, a metal particle layer filter medium, or a foil-like membrane composite heating medium, as well as a heating chamber a, a tubular plate, a curved surface It consists of electrode 1, curved electrode 2, tubular insulating ceramic substrate, heating chamber a base, temperature control, preheating shell, heating drive unit and casing.
  • the heating drive unit consists of a power amplifier and control, an alternating electromagnetic field generator and Composed of batteries, the alternating voltage provided by the power amplifier and control unit is connected to the curved electrode 1 and the curved electrode 2 respectively through feeders;
  • the second form of the aerosol generation system mainly consists of an aerosol generation section, an aerosol generation matrix, a metal particle layer filter medium, or a foil-like membrane composite heating medium, as well as a heating cavity b, a planar electrode 1 and a plane It consists of electrode 2, block heating medium 1, heating chamber b base, temperature control, preheating shell, heating drive unit and casing.
  • the heating drive unit is composed of a power amplifier and control, an alternating electromagnetic field generator and a battery.
  • the alternating voltage provided by the power amplifier and control unit is connected to planar electrode 1 and planar electrode 2 respectively through feeders;
  • the third form of aerosol generation system mainly consists of an aerosol generation section, an aerosol generation matrix, a metal particle layer filter medium, or a foil-like membrane composite heating medium, as well as a heating cavity c and a block heating medium 2 , wave-transmitting ceramic tube, antenna embedded in block heating medium 2, antenna feeder base, PCB circuit board, temperature control, metal shielding shell, preheating shell, heating drive unit and chassis, in which the heating drive
  • the unit consists of a power amplifier and control, an alternating electromagnetic field generation source and a battery.
  • the frequency range of the alternating electromagnetic field used is 0.3MHz ⁇ 30GHz; wherein, the first aerosol generation system form and the second aerosol generation system form
  • the frequency range used in the sol generation system is 0.3MHz to 300MHz, which can meet the matching requirements of multi-card coupling of electric cards, magnetic cards and guide cards for multi-field coupling drives, and has a frequency range that is compatible and balanced with the response frequency of multi-card coupling. That is, in this frequency range, the dielectric component can enhance the relaxation polarization loss of the intrinsic electric moment orientation polarization and thermionic relaxation polarization; the magnetic dielectric component can increase the hysteresis loss, damping loss and resonance loss.
  • the third form of aerosol generation system uses a frequency range of 0.3GHz to 30GHz, which can meet the matching requirements of multi-card coupling of electric cards, magnetic cards and guide cards for multi-field coupling drives, and has compatible and balanced multi-card coupling response frequencies.
  • the dielectric component can enhance the relaxation polarization loss of intrinsic electric moment orientation polarization and thermal ion relaxation polarization, as well as the resonance polarization loss of ion displacement polarization; the magnetic medium group
  • the components can increase the hysteresis loss and damping loss, as well as the domain wall resonance, natural resonance, size resonance, and spin wave resonance in the resonance loss;
  • the conductive dielectric component can increase the conductivity loss and density of carriers such as free electrons and ions. Absorption loss of state ultrafine particle aggregates.
  • FIG. 1 to 6 it is mainly the first aerosol system form (01) using the aerosol system and method of Doka coupling giant thermal effect.
  • the materials and unit structures involved include: aerosol generation section 1 (011) , Preheating shell (012), heating chamber a (013), plate feeder (014), power amplifier and control (015), alternating electromagnetic field generator (016), battery (017), casing (018), And metal particle layer filter (0111) (in order to prevent the radiation leakage of electromagnetic waves), aerosol generating matrix 1 (0112), first heating medium particles (0113), foil-like film composite heating medium 1 (0114), preheating medium Thermal shell air inlet (0121), casing air inlet (0181), preheating shell base material (0122), first heating medium particle coating (0123), sealing ring (0131), tubular pole Plate (0132), heating chamber a base (0133), temperature control (0134), base disc air inlet (0135), curved electrode 1 (01321) and curved electrode 2 (01322), gap insulation material (01323) , the feeder connection position of curved electrode 2 (01324)
  • the present invention is based on the first aerosol generation system form (01) of the aerosol generation system and method utilizing multi-card coupling giant thermal effect shown in Figure 1, and the A-A cross-section shown in Figure 2 and Figure 3
  • the heating structure A of the aerosol generation system, and the aerosol generation section 1 at the A-A cross-section shown in Figures 4 and 5 contain a foil-like membrane composite heating medium 1, and all the heating medium 1 shown in Figure 6
  • the curved electrode 1 and the curved electrode 2 of the tubular electrode plate involve the first heating medium particles (0113), the foil-like film composite heating medium 1 (0114) and the aerosol generating matrix 1 (0112)
  • the specific preparation method, as well as the preparation basis and method of the curved surface electrode 1 (01321) and curved surface electrode 2 (01322) of the tubular electrode plate (0132), and the first heating medium particle coating (0123), and the steps include:
  • the first aerosol generation system form (01) of the aerosol generation system and method that utilizes the Doka coupling giant thermal effect, the alternating electromagnetic field frequency range used by the heating drive unit is 0.3MHz ⁇ 300MHz, and is compatible and balanced with Doka
  • the design principle of the coupling frequency response interval is: for dielectric components, enhance the relaxation polarization loss of intrinsic electric moment orientation polarization and thermal ion relaxation polarization; for magnetic media components, increase hysteresis loss, damping loss and Domain wall resonance loss; for conductive dielectric components, it increases the conductivity loss of carriers such as free electrons and ions and the absorption loss of dense ultrafine particle aggregates, which is suitable for the first aerosol generation system form (01)
  • the heating medium particles are called first heating medium particles in the present invention.
  • the design method of the first heating medium particles is to construct the dielectric medium, the magnetic medium and the conductive medium through physical and chemical methods of multi-phase components.
  • the heating medium adopts a core-shell structure or a heterojunction structure. , one or more of the cladding structure, porous structure and membrane composite structure, so that each structure can combine the dielectric, magnetic medium and conductive medium at the mesoscopic level.
  • Step I-1 Preparation of the first heating medium particles (0113) involved in the first aerosol generation system form (01) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect :
  • the components of the dielectric include components that enhance intrinsic electric moment orientation polarization and thermal ion relaxation polarization and can lead to high relaxation polarization loss.
  • the components include: 1 Perovskite structure System, including BaTiO 3 , and/or PbTiO 3 , and/or NaNbO 3 , and/or KNbO 3 , and/or BiFeO 3 ; 2 Tungsten bronze structural system, including lead metaniobate, and/or Sr 1-x Ba x Nb 2 O 6 ; 3 Bismuth layered structure system, including SrBi 2 Ta 2 O 9 , and/or Bi 4 Ti 3 O 12 , and/or SrBi 4 Ti 4 O 15 ; 4 Pyrochlore structure system, including Cd 2 Nb 2 O 7 , and/or Pb 2 Nb 2 O 7 .
  • the components of the magnetic medium include components that increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates.
  • the components of the conductive medium include components that increase carriers such as free electrons, ions, and doping defects and vacancies.
  • the conductive medium can be independently integrated as one of the composite components of the heating medium, or can be added to the dielectric component and the magnetic medium component separately or simultaneously.
  • the conductive dielectric components include: ZnO series, including doped Al (AZO), and/or doped In (IZO), and/or doped Ga (GZO); magnetic oxides, including CoO, and/or MnO , and/or Fe 3 O 4 , and/or NiO; and other semiconductor oxides, including Ga 2 O 3 , and/or In 2 O 3 , and/or InSnO (ITO).
  • the present invention performs physical and chemical composite construction of multi-phase components on the dielectric medium, magnetic medium and conductive medium:
  • ultrafine component particles as the core, which increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates, or use ultrafine to enhance the
  • the component particles that can cause high relaxation polarization loss due to intrinsic electric moment orientation polarization and thermal ion relaxation polarization are used as nuclei.
  • direct precipitation method co-precipitation method, alkoxide hydrolysis method or sol-gel method
  • the ultrafine component ions that enhance intrinsic electric moment orientation polarization and thermal ion relaxation polarization can lead to high relaxation polarization loss, or the ultrafine component ions that increase hysteresis loss and damping are used.
  • Loss and domain wall resonance loss while increasing the absorption loss of dense ultrafine particle aggregates of component ions, or ultrafine component ions that increase carriers such as free electrons, ions, doping defects and vacancies
  • the precipitate is modified to the surface of the core particles, and after calcination, an electric moment-magnetic moment coupling heating medium with a core-shell structure is obtained, or an electric moment-conductance coupling heating medium with a core-shell structure is obtained;
  • the ultrafine enhanced intrinsic electric moment orientation polarization and thermal ion relaxation polarization can lead to high relaxation polarization loss, respectively.
  • the component particles are uniformly mixed with the ultrafine particles of the component that increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates; or ultrafine particles are mixed
  • the component particles that enhance the intrinsic electric moment orientation polarization and thermal ion relaxation polarization, which can lead to high relaxation polarization loss, and the ultrafine particles that increase carriers such as free electrons, ions, and doping defects and vacancies The component particles are uniformly mixed; or the particles of the ultrafine components increase hysteresis loss, damping loss and domain wall resonance loss, and simultaneously increase the absorption loss of dense ultrafine particle aggregates, and the ultrafine particles Increase hysteresis loss, damping loss and domain wall resonance loss, and at the same
  • the particles and ultrafine components increase the load of free electrons, ions, doping defects and vacancies.
  • the component particles of the flow are uniformly mixed, and through roasting, they are melted and precipitated in the heterogeneous contact interface area to obtain the electric moment-magnetic moment coupling heating medium of the heterojunction structure; or the electric moment-conductance coupling of the heterojunction structure is obtained Heating medium; or obtaining a heterojunction structure of electric moment-magnetic moment-conductance coupling heating medium.
  • the ultrafine components that increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates are used as parent particles, and the ultrafine enhanced components are coated with them.
  • Intrinsic electric moment orientation polarization and thermal ion relaxation polarization can lead to high relaxation polarization loss of component particles, or increase hysteresis loss, damping loss and domain wall resonance loss in ultrafine form, while increasing density.
  • the component of the absorption loss of state ultrafine particle aggregates is the mother particle, which coats the ultrafine component particles that enhances the intrinsic electric moment orientation polarization and thermionic relaxation polarization and can lead to high relaxation polarization loss.
  • ultrafine component particles that are slightly soluble in water or contain crystal water and increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates
  • ultrafine particles Component particles that enhance intrinsic electric moment orientation polarization and thermal ion relaxation polarization, which can lead to high relaxation polarization loss can be fully mixed and ground through low-heat solid-state reaction methods to form a cold melt layer on the surface of the particles and precipitate. Ions diffuse mutually in the cold melt layer. As the grinding process continues, new cold melt layers are continuously formed on the surface of the particles.
  • the cold melt layer on the surface of each particle is equivalent to a micro-reaction zone, and the generated product is
  • the core grows and a coating-type structure of electric moment-magnetic moment-conductance coupling heating medium is obtained.
  • ultrafine components that can increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates that can undergo polycondensation reactions, and ultrafine components that enhance inherent electric power.
  • a colloidal particle dispersion system formed by components that can cause high relaxation polarization loss due to moment orientation polarization and thermal ion relaxation polarization, and a three-dimensional network structure formed by further aggregation and bonding through the sol-gel condensation reaction. , after low-temperature heat treatment digestion and high-temperature sintering, a coated structure of electric moment-magnetic moment-conductance coupling heating medium is obtained;
  • the ultrafine component particles increase the hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates, and the ultrafine particles enhance the intrinsic electric moment orientation.
  • Component particles that can lead to high relaxation polarization loss due to polarization and thermal ion relaxation polarization ultra-fine component particles that increase carriers such as free electrons, ions, doping defects and vacancies, and inorganic bonding
  • the agent sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and the pore-forming agent ultrafine carbon powder or starch, or ultrafine calcium carbonate are fully mixed, and then sintering, pulverizing and classifying are performed to obtain a porous structure of the electrode.
  • Moment-magnetic moment-conductance coupling heating medium For water-soluble ultrafine component particles that increase hysteresis loss, damping loss and domain wall resonance loss, and at the same time increase the absorption loss of dense ultrafine particle aggregates, ultrafine ones enhance the intrinsic electric moment orientation polarization Component particles that can cause high relaxation polarization loss due to relaxation polarization of thermal ions, ultrafine component particles that increase carriers such as free electrons, ions, and doping defects and vacancies can also be passed through polymers.
  • the network gel method uses acrylamide radical polymerization and network agents to connect polymer chains into a network and sinter the gel obtained.
  • the ultrafine enhanced intrinsic electric moment Component particles that can cause high relaxation polarization losses due to orientation polarization and thermal ion relaxation polarization, and ultrafine component particles that increase carriers such as free electrons, ions, and doping defects and vacancies can be passed through
  • a complexing agent is added to the metal inorganic salt precursor solution to react with the metal ions to form a soluble complex or a network gel formed by the complex salt, which is then sintered to obtain a porous structure of the electrolyte.
  • Moment-magnetic moment-conductance coupling heating medium It is also possible to increase hysteresis loss, damping loss and domain wall resonance loss by utilizing ultrafine particles in the solution, while increasing the absorption loss of dense ultrafine particle aggregates and ultrafine particles to increase free electrons. , ions, and component ions of carriers such as doping defects and vacancies, and use appropriate precipitants to modify the high polarization loss dielectric porous ceramics with the precipitation method to form the increased hysteresis loss and damping on the inner surface of the pores.
  • Porous structure of electric moment-magnetic moment-conductance coupling heating medium can also be used to modify the pores of high polarization loss dielectric porous ceramics, and the component metals adsorbed in the plating solution in the pores that increase carriers such as free electrons, ions, and doping defects and vacancies can be used to modify the pores.
  • the ions are catalytically reduced to metal by the reducing agent in the plating solution, and deposited on the inner surface of the pores to obtain a porous structure of electric moment-conductance coupling heating medium;
  • the fifth method is to heat the dielectric particles with the electric moment-conductance coupling of the core-shell type structure obtained by one of the physical and chemical methods, or the electric moment-magnetic moment coupling of the heterojunction type structure obtained by the second physical and chemical method.
  • the heating medium particles, or the electric moment-conductance coupling heating medium particles of the porous structure obtained by the fourth of the physical and chemical methods are mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and then
  • the aluminum sheet, copper sheet or stainless steel sheet is film-laminated on one side or both sides by spraying or brushing to obtain an electric moment-magnetic moment-conductance coupling heating medium with a membrane composite structure.
  • the method of increasing hysteresis loss, damping loss and domain wall resonance can also be achieved by chemical vapor deposition, gas phase pyrolysis, gas phase hydrolysis, phase combustion, flame vapor deposition, or plasma spraying.
  • the film, copper sheet or stainless steel sheet is laminated on one side or both sides to obtain the electric moment-magnetic moment-conductance coupling heating medium of the membrane composite structure.
  • the first heating medium particles (0113) used in the first step are processed through pulverization and/or synthesis methods to a particle size distribution range of 0.1 ⁇ m to 500 ⁇ m, wherein the particle heating medium particle size is directly blended with the aerosol matrix.
  • the distribution range is 15 ⁇ m ⁇ 500 ⁇ m; the particle size distribution range of the particle heating medium mixed into the tobacco sheet papermaking slurry or rolling paste is 0.1 ⁇ m ⁇ 100 ⁇ m.
  • Step I-2 the foil-shaped film composite heating medium 1 ( 0114) Preparation:
  • the aluminum foil or copper foil is cast on one side by casting or spraying. Or double-sided film composite, and then cut to obtain, the size is equivalent to tobacco flakes, the particle size distribution range of the first heating medium is 15 ⁇ m to 100 ⁇ m; the foil-shaped film composite heating medium 1, or the first heating medium is used
  • the precursor of the dielectric component and the first magnetic medium component is prepared by a chemical vapor deposition method, a vapor phase pyrolysis method, a vapor phase hydrolysis method, a vapor phase combustion method, or a flame vapor deposition method, and the aluminum foil or copper foil is The film is laminated on one or both sides, and then cut to obtain a size comparable to tobacco flakes.
  • Step I-3 Preparation of the aerosol generating matrix 1 (0112) involved in the first aerosol generating system form (01) of the aerosol generating system and method utilizing the Doka coupling giant thermal effect :
  • the first heating medium particles (0113) prepared in step I-1 are directly blended with the aerosol matrix.
  • the particle size distribution range of the first heating medium particles is 15 ⁇ m ⁇ 500 ⁇ m; the tobacco in the aerosol matrix can also be Before sheet making or rolling, the first heating medium particles (0113) prepared in step I-1 are mixed into the fiber slurry or paste, so that the tobacco sheet is evenly distributed with a mass ratio of 5 to 60%.
  • the first heating medium particles (0113) prepared in step I-1 the particle size distribution range of the first heating medium particles is 0.1 ⁇ m to 100 ⁇ m; or the electric moment-magnetic moment-conductance coupling heating medium particles of a porous structure,
  • the liquid phase components in the aerosol matrix are adsorbed and then blended with other aerosol matrices.
  • the particle size distribution range of the electromagnetic moment-conductance coupling heating medium particles with a porous structure is 15 ⁇ m to 500 ⁇ m; or the low excitation
  • the heating medium particles of the temperature aerosol generating matrix adsorb the liquid phase components in the aerosol matrix and then blend with other aerosol matrices.
  • the particle size distribution range of the heating medium particles of the low excitation temperature aerosol generating matrix is from 15 ⁇ m to 15 ⁇ m. 500 ⁇ m.
  • the foil-shaped film composite heating medium 1 (0114) can also be added to the aerosol generating matrix 1 (0112), with a blending mass ratio of 3 to 30%.
  • Step I-4 the curved surface of the tubular plate (0132) involved in the first aerosol generation system form (01) of the aerosol generation system and method utilizing Doka coupling giant thermal effect Preparation of electrode 1 (01321) and curved electrode 2 (01322):
  • the tubular electrode plate (0132) is composed of the curved electrode 1 (01321) and the curved electrode 2 (01322) compounded on the inner surface of a tubular insulating ceramic substrate.
  • the curved electrode 1 and the curved electrode 2 are opposed in pieces.
  • the curved electrode 1 and curved surface electrode 2 each have 2 to 5 pieces.
  • curved surface electrode 1 and curved surface electrode 2 both have 3 pieces, and are spaced oppositely.
  • the adjacent curved surface electrode 1 and curved surface electrode 2 are separated by a gap insulating material (01323 ) separated, the gap insulating material can be a tubular insulating ceramic base material, or a polyimide or aramid resin (polyphenylene isophthalamide), and the insulating ceramic base material is Al 2 O 3 ceramic,
  • the gap between the curved electrode 1 and the curved electrode 2 is 0.5 ⁇ 2mm.
  • the gap between the curved electrode 1 and the curved electrode 2 is 1mm.
  • the material of the curved electrode 1 and the curved electrode 2 is copper or silver.
  • the curved electrode 1 and the curved electrode The height of 2 is equivalent to the aerosol generating section.
  • the diameter of the tubular electrode plate is the diameter of the aerosol generating section.
  • a feeder connection position (0132) is provided at the lower end of each curved electrode 1 and curved electrode 2 corresponding to the tubular electrode plate (0132). 01324) and (01325), connected to the heating drive unit of the aerosol generation system
  • Step I-5 the first heating medium particle coating (0123) involved in the first aerosol generation system form (01) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect Preparation:
  • the base material of the first heating medium particle coating (0123) is hexagonal boron carbon nitrogen ternary absorbing ceramic (h-BCN).
  • the first heating medium particles are mixed with the film-forming agent sodium silicate sol or dihydrogen phosphate.
  • Aluminum sol, aluminum hydroxide sol, or silica sol is thoroughly mixed, coated to form a film, and then sintered and solidified at a high temperature above 800°C to form the first heating medium particle coating (0123).
  • the first heating medium particle coating (0123) can also be based on a metal material, such as aluminum, copper or stainless steel sheets, coated with the particle heating medium (0112) prepared in the first step and inorganic bonding Agent sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide mixed slurry is heat treated at 300°C to 450°C to form the preheated shell coating (0123). It can also be obtained by sedimentation and heating on aluminum, copper or stainless steel sheets through chemical vapor deposition, vapor pyrolysis, vapor hydrolysis, vapor combustion, flame vapor deposition, or plasma spraying.
  • the metal particle layer filter medium (0111) is made of aluminum particles with a size of 0.5 ⁇ 1.5mm, and a thickness of about 0.2 ⁇ 1.2mm;
  • the sealing ring (0131) is silicone rubber Material:
  • the base disc (0133) of the heating chamber a is made of insulating Al 2 O 3 ceramic material. There are 8 to 36 through holes with a diameter of 0.3 to 2 mm evenly distributed on the disk; the temperature control (0134) passes through the center hole of the base of the heating chamber a and enters the aerosol generating section (011) by 2 to 5 mm.
  • the second aerosol generation system form (02) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect described in Figures 7 and 8 of the present invention the materials and unit structures involved include: Aerosol generation section 1 (021), preheating shell (022), heating chamber b (023), plate feeder (024), power amplifier and control (025), alternating electromagnetic field generator (026), battery (027), chassis ( 028), as well as metal particle layer filter media (0211), aerosol generation matrix 1 (0212), first heating medium particles (0213), preheating shell air inlet (0221), and the base material of the preheating shell (0221). 0222), first heating medium particle coating (0223), sealing ring (0231), flat plate (0232), heating chamber b base (0233), temperature control (0234), block heating medium 1 (0235 ), Planar Electrode 1 (02321) and Planar Electrode 2 (02322).
  • the present invention uses the second aerosol generation system form (02) of the aerosol generation system and method that utilizes the multi-card coupling giant thermal effect shown in Figure 7, and the aerosol generation at the C-C section shown in Figure 8
  • System heating structure B involves the specific method of preparing the first heating medium particles (0213), bulk heating medium 1 (0235), and aerosol generating matrix 1 (0212), as well as the planar electrode 1 (02321)
  • the preparation basis and method of the flat electrode 2 (02322) and the first heating medium particle coating (0223), and the steps include:
  • the second aerosol generation system form (02) of the aerosol generation system and method that utilizes the Doka coupling giant thermal effect, the alternating electromagnetic field frequency range used by the heating drive unit is 0.3MHz ⁇ 300MHz, and is compatible and balanced with Doka
  • the design principle of the coupling frequency response interval is: for dielectric components, enhance the relaxation polarization loss of intrinsic electric moment orientation polarization and thermal ion relaxation polarization; for magnetic media components, increase hysteresis loss, damping loss and Domain wall resonance loss; for conductive dielectric components, it increases the conductance loss of carriers such as free electrons and ions and the absorption loss of dense ultrafine particle aggregates.
  • Step II-1 the preparation of the first heating medium particles (0213) in the second aerosol generating system form (0213) and the first heating medium particles (01) involved in the first aerosol generating system form (01) 0113) are prepared in the same way and will not be repeated here.
  • the first heating medium particles (0213) prepared in step II-1 are processed through pulverization and/or synthesis methods to a particle size distribution range of 0.1 ⁇ m to 500 ⁇ m, wherein the particle heating medium is directly blended with the aerosol matrix
  • the particle size distribution range is 15 ⁇ m ⁇ 500 ⁇ m; the particle size distribution range of the particle heating medium mixed into the tobacco sheet sheet making slurry or rolling paste is 0.1 ⁇ m ⁇ 100 ⁇ m.
  • Step II-2 the block heating medium 1 (0235) involved in the second aerosol generation system form (02) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect is
  • the first heating medium particles (0213) prepared in step II-2 are mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and are formed by pressing and low-temperature roasting.
  • Step II-3 directly blend the first heating medium particles (0213) prepared in step II-1 with the aerosol matrix.
  • the particle size distribution range of the first heating medium particles is 15 ⁇ m ⁇ 500 ⁇ m; it can also be Before the tobacco sheets in the aerosol matrix are sheeted or rolled, the first heating medium particles (0213) prepared in the first step are mixed into the fiber slurry or paste, so that the tobacco sheets are evenly distributed with a mass ratio of 5 to 60% of the first heating medium particles (0213) prepared in step II-1, the particle size distribution range of the first heating medium particles is 0.1 ⁇ m to 100 ⁇ m; or coupling the electric moment-magnetic moment-conductance of the porous structure Heating medium particles adsorb liquid phase components in the aerosol matrix and then blend with other aerosol matrices.
  • the particle size distribution range of the electric moment-magnetic moment-conductance coupling heating medium particles with a porous structure is 15 ⁇ m to 500 ⁇ m; Or the heating medium particles of the low excitation temperature aerosol generating matrix are blended with other aerosol matrices after adsorbing the liquid phase components in the aerosol matrix.
  • the particle size distribution of the heating medium particles of the low excitation temperature aerosol generating matrix The range is 15 ⁇ m to 500 ⁇ m.
  • the foil-shaped film composite heating medium 1 (0214) can also be added to the aerosol generating matrix 1 (0212), with a blending mass ratio of 3 to 30%.
  • Step II-4 the plane of the planar plate (0232) involved in the second aerosol generation system form (02) of the aerosol generation system and method utilizing Doka coupling giant thermal effect Preparation of electrode 1 (02321) and planar electrode 2 (02322):
  • the planar electrode plate (0232) is composed of the planar electrode 1 (02321) and the planar electrode 2 (02322) on the surface of a planar insulating ceramic substrate.
  • the material of the planar electrode 1 and the planar electrode 2 is copper or silver, and the insulating ceramics
  • the base material is Al 2 O 3 ceramic.
  • Step II-5 preparation of the second aerosol generation system form (02) involved in the aerosol generation system and method utilizing the Doka coupling giant thermal effect (0223):
  • the base material of the first heating medium particle coating (0223) is hexagonal boron carbon nitrogen ternary absorbing ceramic (h-BCN).
  • the first heating medium particles are mixed with the film-forming agent sodium silicate sol or dihydrogen phosphate.
  • Aluminum sol, aluminum hydroxide sol, or silica sol is thoroughly mixed, coated to form a film, and then sintered and solidified at a high temperature above 800°C to form the first heating medium particle coating (0223).
  • the first heating medium particle coating (0223) can also be based on a metal material, such as aluminum, copper or stainless steel sheets, coated with the particle heating medium (0212) prepared in the first step and inorganic bonding Agent sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide mixed slurry is heat treated at 300°C to 450°C to form the preheated shell coating (0223). It can also be deposited on aluminum, copper or stainless steel sheets by chemical vapor deposition, or gas phase pyrolysis, or gas phase hydrolysis, or gas phase combustion, or flame vapor deposition, or plasma spraying, or plasma spraying. and obtained by heating.
  • a metal material such as aluminum, copper or stainless steel sheets
  • sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide mixed slurry is heat treated at 300°C to 450°C to form the preheated shell coating (0223). It can also be deposited on aluminum, copper or stainless steel sheets by chemical vapor deposition, or gas phase
  • Step II-6 The metal particle layer filter medium (0211) is made of aluminum particles with a size of 0.5-1mm, and a thickness of about 0.5-2mm; the sealing ring (0231) is made of silicone rubber; The base disc (0233) of the heating chamber b is made of insulating Al 2 O 3 ceramic material; the temperature control (0234) passes through the center hole of the base of the heating chamber b and enters the aerosol generating section (021) by 2 to 5 mm.
  • the third aerosol generation system form (03) of the aerosol generation system and method utilizing the multi-card coupling giant thermal effect described in Figures 9, 10 and 11 of the present invention the materials and unit structures involved include: aerosol Generating section 2 (031), preheating shell (032), heating chamber c (033), PCB circuit board control (034), alternating electromagnetic field generating source (035), battery (036), casing (037), And aerosol generating matrix 2 (0312), second heating medium particles (0313), preheating shell air inlet (0321), preheating shell (0322), second heating medium particle coating (0323), metal Granular layer filter media (0331), block heating medium 2 (0332), temperature control (0333), heating chamber c air inlet hole (0334), heating chamber c air inlet seat hole (0335), antenna (0336), Antenna feeder base (0337) and heating cavity c metal shielding shell (0338), wave-transmitting ceramic tube (0339), and casing air inlet (0371).
  • the present invention uses the third aerosol generation system form (03) of the aerosol generation system and method utilizing the multi-card coupling giant thermal effect shown in Figure 9, and the aerosol generation system at the C-C section shown in Figures 10 and 11
  • the specific method for preparing the second heating medium particles (0313), the bulk heating medium 2 (0332), and the aerosol generating matrix 2 (0312) used in the heating structure C of the sol generation system, as well as the second heating medium The preparation basis and method of particle coating (0323), and the steps include:
  • the third aerosol generation system form (03) of the aerosol generation system and method that utilizes the Doka coupling giant thermal effect, the alternating electromagnetic field frequency range used by the heating drive unit is 0.3GHz ⁇ 30GHz, and is compatible and balanced with Doka
  • the design principle of the coupling frequency response interval is: for dielectric components, enhance the relaxation polarization loss of intrinsic electric moment orientation polarization and thermal ion relaxation polarization and the resonance polarization loss of ion displacement polarization; for magnetic dielectric components , increase hysteresis loss, damping loss and domain wall resonance, natural resonance, size resonance, spin wave resonance in resonance loss; for conductive dielectric components, increase conductivity loss and dense state of carriers such as free electrons and ions Absorption losses in ultrafine particle aggregates.
  • Step III-1 Preparation of the second heating medium particles (0313) involved in the third aerosol generation system form (03) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect
  • the preparation of the first heating medium particles (0113) involved in the first aerosol generation system form (01) is consistent and will not be described again here.
  • the second heating medium particles (0313) are processed through pulverization and/or synthesis methods to a particle size distribution range of 0.1 ⁇ m ⁇ 500 ⁇ m, wherein the particle heating medium particle size distribution range directly blended with the aerosol matrix is 15 ⁇ m ⁇ 500 ⁇ m ;
  • the particle size distribution range of the particle heating medium incorporated into the tobacco sheet paper making slurry or rolling paste is 0.1 ⁇ m ⁇ 100 ⁇ m.
  • the block heating medium 2 (0332) involved is the second heating medium particles prepared in step III-1. (0313) is mixed with the inorganic binder sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide, and is formed by pressing and low-temperature roasting.
  • the antenna (0336) adopts a PIFA planar inverted F antenna.
  • the antenna (0336) is embedded in the block heating medium 2 corresponding to the lower part of the air inlet hole (0335) of the heating cavity c before being fired.
  • the antenna feeder footing (0336) 0337) extends to the outside of the block heating medium 2 (0332), and the heating chamber c air inlet seat hole (0335) passes through 4 to 10 heating chamber c air inlet holes (0334) with a diameter of 0.5 to 2 mm and the block heating
  • the medium 2 (0332) is connected to the outside, and the metal shielding shell (0338) of the heating cavity c seals the bulk heating medium 2.
  • the metal shielding shell (0338) of the heating cavity c is made of aluminum, copper or stainless steel.
  • the foil-like film composite heating medium 2 can also be added by blending with the aerosol generating matrix 2, consisting of the second heating medium particles and the binder carboxymethyl fiber After mixing vegetarian, guar gum or tobacco extract, the aluminum foil or copper foil is laminated on one side or both sides through casting or spraying, and then cut to obtain the same size as tobacco flakes.
  • the foil-like film composite heating medium 2 may be formed by chemical vapor deposition, vapor phase pyrolysis, or gas phase using the second dielectric component and the precursor of the second magnetic media component. It is prepared by hydrolysis method, gas phase combustion method, or flame vapor deposition method.
  • Step III-3 preparation of the aerosol generating matrix 2 (0312) used in the third aerosol generating system form (03):
  • the second heating medium particles (0313) prepared in step III-1 are directly blended with the aerosol matrix.
  • the particle size distribution range of the second heating medium particles is 15 ⁇ m ⁇ 500 ⁇ m; the tobacco in the aerosol matrix can also be Before sheet making or rolling, the second heating medium particles (0313) prepared in step III-1 are mixed into the fiber slurry or paste, so that the tobacco sheet is evenly distributed with a mass ratio of 5 to 60%.
  • the second heating medium particles (0313) prepared in step III-1 the particle size distribution range of the second heating medium particles is 0.1 ⁇ m to 100 ⁇ m; the foil can also be added to the aerosol generating matrix 2 (0312) Sheet film composite heating medium 2 (0314), the blending mass ratio is 3 to 30%.
  • the second heating medium particles (0313) may also be heating medium particles of a low excitation temperature aerosol generating matrix.
  • the heating medium particles of a low excitation temperature aerosol generating matrix are prepared from step III-1.
  • the second heating medium particles (0313) those that meet the principle conditions of the Kelvin equation are selected, with a pore diameter ranging from 60 nm to 50 ⁇ m, a porosity ranging from 85% to 95%, and a specific heat capacity ranging from 0.1kJ ⁇ kg -1 ⁇ K - 1 to 0.6kJ ⁇ kg -1 ⁇ K -1 , the thermal conductivity range is 0.035W ⁇ m -1 ⁇ K -1 to 0.125W ⁇ m -1 ⁇ K -1 particles with physical property parameters, the aerosol generation medium liquid phase The components are adsorbed, so that the liquid phase components are separated into small droplets entering the pores with a porosity of 85% to 95%, and the pore size distribution range is 60nm to 50 ⁇ m to improve the saturation of the liquid phase components of
  • Step III-4 preparation of the second heating medium particle coating (0323) used in the third aerosol generation system form (03):
  • the base material of the second heating medium particle coating (0323) is hexagonal boron carbon nitrogen ternary absorbing ceramic (h-BCN).
  • the second heating medium particles are mixed with the film-forming agent sodium silicate sol or dihydrogen phosphate.
  • Aluminum sol, aluminum hydroxide sol, or silica sol is thoroughly mixed, coated to form a film, and then sintered and solidified at a high temperature above 800°C to form the second heating medium particle coating (0323).
  • the second heating medium particle coating (0323) can also be based on a metal material, such as aluminum, copper or stainless steel sheets, coated with the particle heating medium (0313) prepared in the first step and inorganic bonding Agent sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide mixed slurry is heat treated at 300°C to 450°C to form the preheated shell coating (0323). It can also be obtained by sedimentation and heating on aluminum, copper or stainless steel sheets through chemical vapor deposition, vapor pyrolysis, vapor hydrolysis, vapor combustion, flame vapor deposition, or plasma spraying.
  • a metal material such as aluminum, copper or stainless steel sheets
  • sodium silicate, or aluminum dihydrogen phosphate, or phosphoric acid-copper oxide mixed slurry is heat treated at 300°C to 450°C to form the preheated shell coating (0323). It can also be obtained by sedimentation and heating on aluminum, copper or stainless steel sheets through chemical vapor deposition, vapor pyrolysis, vapor
  • the metal particle layer filter medium (0331) is made of aluminum particles with a size of 0.5 ⁇ 1.5mm and a thickness of about 0.2 ⁇ 1.2mm;
  • the wave-transmitting ceramic tube (0339) is quartz Ceramic SiO 2 or high alumina ceramic Al 2 O 3 or Si 3 N 4 ceramic material;
  • the temperature control (0333) is laterally placed on the inner surface of the wave-transmitting ceramic tube (0339), and the position is free from the aerosol generating section (031) 2 ⁇ 3mm from the port.
  • the first heating medium includes a first dielectric medium, a first magnetic medium and a first conductive medium, and the system is composed of:
  • the first magnetic medium component is Fe 3 O 4 ; the first conductive medium component is ZnO.
  • the first heating medium of Fe 3 O 4 @ZnO core-shell structure is prepared by direct precipitation method. The specific steps are:
  • Step 1 Add 500ml zinc acetate dihydrate and 50g ascorbic acid granule raw materials into the stirring reaction kettle, and add deionized water;
  • Step 2 After the granular raw materials in step 1 are completely dissolved, add 40g of Fe 3 O 4 granular raw materials into the solution, stir at high speed, and wait until the particles are evenly dispersed to form a mixed suspension. Add 200 ml of hexamethylenetetramine (HMTA) precipitant Add to the mixed suspension and continue stirring at high speed.
  • HMTA hexamethylenetetramine
  • Step 3 Heat the stirred reaction kettle. The temperature slowly rises to 90°C and then is maintained for 3 hours. The rotation speed is maintained at 800 rpm;
  • Step 4 Centrifuge the reaction product Fe 3 O 4 @ZnO at 7500 rpm for 2 minutes, wash with 500 ml of ionized water and 500 ml of absolute ethanol, and dry in a constant temperature drying oven at 80°C for 12 hours to prepare A core-shell structure powder product with Fe 3 O 4 as the core and ZnO as the shell, where the thickness of the ZnO shell is between 100nm and 300nm;
  • Step 5 Dense 30g Fe 3 O 4 @ZnO core-shell structure powder product into a green body, place it in a high-temperature furnace, sinter at 1000°C for 3 hours, then cool, crush, and classify until the particle size distribution range is 0.1 ⁇ m ⁇ 500 ⁇ m. , obtaining the first heating medium with a core-shell structure (0113). See Figure 12.
  • the first heating medium is mixed with tobacco sheet slurry in the aerosol generation matrix 1 (0112).
  • the first heating medium is mixed with The input quality ratio is 30%.
  • the tubular electrode plate (0132) is composed of the curved electrode 1 (01321) and the curved electrode 2 (01322) compounded on the inner surface of a tubular insulating ceramic substrate.
  • the curved electrode 1 and the curved electrode 2 are opposed in pieces.
  • the curved electrode 1 and curved surface electrode 2 each have three pieces, facing each other.
  • the adjacent curved surface electrode 1 and curved surface electrode 2 are separated by a gap insulating material (01323).
  • the gap insulating material is polyimide or aramid resin (polymer).
  • the insulating ceramic base material is Al 2 O 3 ceramic
  • the gap between curved electrode 1 and curved electrode 2 is 1mm
  • the material of curved electrode 1 and curved electrode 2 is 1mm copper sheet
  • the curved electrode The heights of 1 and curved electrode 2 are 14mm
  • the diameter of the tubular electrode plate is 7.5mm.
  • the metal particle layer filter medium (0111) is made of aluminum particles with a size of 1mm and a thickness of about 0.6mm; the sealing ring (0131) is made of silicone rubber; the base of the heating chamber a
  • the disc (0133) is an insulating Al 2 O 3 ceramic material. There are 12 through holes with a diameter of 0.6mm evenly distributed on the disk; the temperature control (0134) passes through the center hole of the base of the heating chamber a and enters the aerosol generating section (011) 3mm;
  • the aerosol generating section is mainly composed of an aerosol generating matrix 1 (0112) and a foil-shaped membrane composite heating medium 1 (0114), wherein the content of the aerosol generating matrix 1 is 92wt%, and the foil-shaped The content of the film composite heating medium 1 is 8wt%; the aerosol generating matrix 1 is composed of the incorporated first heating medium and an aerosol matrix containing tobacco flakes, and the aerosol matrix includes natural tobacco, or reconstituted tobacco shreds, tobacco It consists of artificial homogeneous tobacco plant materials such as flakes, tobacco extracts, flavors, and liquid aerosols such as polyols or polyol esters.
  • the first heating medium can be blended with the aerosol matrix, or can be added as a particle filler during the manufacturing process of the tobacco sheets contained in the aerosol matrix to form an aerosol-generating matrix 1.
  • the aerosol-generating matrix 1 The mass ratio of the first heating medium is 20%.
  • Tobacco flakes are mainly composed of tobacco powder and tobacco leaves and tobacco stem fibers, with natural adhesives such as carboxymethyl cellulose or pectin and gum and other additives added. The usual composition of tobacco flakes is well known in the art;
  • Mass ratio of aerosol matrix components tobacco flakes 45%, first heating medium 20%, tobacco extract 15%, glycerin 17%, carboxymethyl cellulose 2%, tobacco flavoring 1%;
  • the first aerosol generation system form (01) of the aerosol generation system that utilizes the Doka coupling giant thermal effect is driven by an alternating electromagnetic field with a frequency of 27.12 MHz.
  • the aerosol generation section is heated from 30°C to 250°C. °C takes about 20 seconds.
  • the first heating medium includes a first dielectric medium, a first magnetic medium and a first conductive medium, and the system is composed of:
  • the first dielectric components are Bi and Te; the first magnetic media components are La and Mn; and the first conductive medium is Mn.
  • the first heating medium of the Bi 2 Te 3 @Mn 15 Bi 34 Te 51 @La 15 Bi 34 Te 51 heterojunction structure is prepared using a mechanical alloying method. The specific steps are:
  • Step 1 The high-purity elements Bi, Te and pure La, Mn are added into the batch ball mill according to the atomic percentage of Bi 2 Te 3 , Mn 15 Bi 34 Te 51 and La 15 Bi 34 Te 51 respectively;
  • Step 2 Pump the vacuum of the ball mill to 10 -3 Pa and then introduce high-purity argon gas, the ball-to-material ratio is 15:1, and the rotation speed is 150r/min;
  • Step 3 Through long-term intense impact and collision between the raw material particles and the grinding balls, the particles are repeatedly cold welded and fractured. During the long ball milling time, the system can obtain a uniform heterojunction structure through atomic diffusion. Heating medium. Among them, the mass ratio between Bi 2 Te 3 , Mn 15 Bi 34 Te 51 and La 15 Bi 34 Te 51 is 4.5:3:2.5, and the particle size is between 15 ⁇ m and 100 ⁇ m;
  • Step 4 Make the heterojunction powder composed of 20g Bi 2 Te 3 , 50g Mn 15 Bi 34 Te 51 and 30g La 15 Bi 34 Te 51 into a round body, place it in a high-temperature furnace, and sinter at 800°C After 5 hours, pulverize and classify to a particle size distribution range of 0.1 ⁇ m to 500 ⁇ m to obtain the first heating medium (0213) with a heterojunction structure, see Figure 13.
  • the inner wall of the base material (0222) hexagonal boron carbon nitrogen ternary absorbing ceramic (h-BCN) is cured at a high temperature of 820°C to form the first heating medium particle coating (0223);
  • the planar electrode plate (0232) is composed of the planar electrode 1 (02321) and the planar electrode 2 (02322) combined on the surface of a planar insulating ceramic substrate. They are parallel to each other and the distance is 7.5 mm in diameter of the aerosol generating section. There is a block heating medium 1 (0235) sandwiched at each pair of ends of the plate 1 and the plane plate 2. A cylindrical hole is provided in the symmetrical center of the two sandwiched block heating medium 1, the diameter of which is also aerosol. The diameter of the generating section is 7.5mm, and the length of the aerosol generating section is about 14mm.
  • the material of the planar electrode 1 and the planar electrode 2 is a copper sheet with a thickness of 0.5mm.
  • the insulating ceramic base material is Al 2 O 3 ceramic.
  • the planar electrodes 1 and 2 are Planar electrode 2 is connected to the heating drive unit of the aerosol generation system through a feeder;
  • the metal particle layer filter medium (0211) is made of aluminum particles with a size of 1mm and a thickness of about 0.6mm; the sealing ring (0231) is made of silicone rubber; the base of the heating chamber b The disc (0233) is made of insulating Al 2 O 3 ceramic material; the temperature control (0234) passes through the center hole of the base of the heating chamber b and enters the aerosol generating section (021) 3mm.
  • the aerosol generating matrix 1 is mainly composed of an aerosol matrix blended with the first heating medium and the heating medium of the low excitation temperature aerosol generating matrix, wherein the aerosol matrix 50wt% (same composition Embodiment 1), the first heating medium is 20wt%, and the heating medium of the low excitation temperature aerosol generating matrix is 30wt%;
  • the second aerosol generation system form (02) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect is driven by an alternating electromagnetic field with a frequency of 40.68 MHz, and the aerosol generation section is heated from 30°C It takes about 17 seconds to reach 250°C.
  • the second heating medium includes a second dielectric medium, a second magnetic medium and a second conductive medium, and the system is composed of:
  • the second dielectric is a BaO-MgO-Ta 2 O 5 system; the second magnetic medium is a Co 2 Z (Z-type hexagonal ferrite) system; and the second conductive medium is CoO and Fe 2 O 3 .
  • the second heating medium of the BaO-MgO-Ta 2 O 5 /Co 2 Z coating structure is prepared using a solid phase method. The specific steps are:
  • Step 1 Mix 200g BaCO 3 particles, 40g MgO particles, and 440g Ta 2 O 5 particles, and react at a high temperature of 1200°C for 24 hours to obtain BaO-MgO-Ta 2 O 5 particles.
  • Step 2 Mix 178g BaCO 3 particles, 48g Co 3 O 4 particles, and 550g Fe 2 O 3 particles, and react at a high temperature of 1280°C for 6 hours to obtain Ba 3 Co 2 Fe 23 O 41 (Co 2 Z) particles.
  • Step 3 Mix 30g BaO-MgO-Ta 2 O 5 particles and 45g Co 2 Z particles, and react at a high temperature of 1100°C for 24 hours to obtain BaTiO 3 /NiZnFe composite particles.
  • Step 5 Make 30g BaO-MgO-Ta 2 O 5 /Co 2 Z composite structure coupling heating medium into a circular body, place it in a high-temperature furnace, sinter at 1200°C for 6 hours, then crush and classify it to the particle size distribution range is 0.1 ⁇ m to 500 ⁇ m, and the second heating medium (0313) with a coating type structure is obtained, see Figure 14.
  • the inner wall of the hexagonal boron carbon nitrogen ternary absorbing ceramic (h-BCN) is cured at a high temperature of 900°C to form the second heating medium particle coating (0323);
  • the preheating shell (032) is provided with a metal shielding shell (0338), a block heating medium 2 (0332) and an antenna (0336) embedded in the block heating medium 2.
  • the antenna is PIFA planar inverted F antenna; the metal shielding shell is wrapped around the outside of the block heating medium 2, and the metal shielding shell is a stainless steel sheet with a thickness of 0.2mm;
  • the metal shielding shell, the block heating medium 2 and the antenna embedded in the block heating medium 2 form a heating cavity.
  • the air inlet seat hole of the heating cavity passes through 6 air inlet channels with a diameter of 0.6mm and the block.
  • the outside of heating medium 2 is connected;
  • the block heating medium 2 is a cube; a cylindrical hole is provided on the symmetry axis of the block heating medium 2, and an aerosol generating section is formed inside the hole; a transparent hole is nested in the cylindrical hole.
  • Wave ceramic tube, the inner diameter of the wave-transmitting ceramic tube is the diameter of the aerosol generating section 7.4mm, the depth is 14mm, and the material is high alumina Al 2 O 3 wave-transmitting ceramic; the temperature control is laterally placed in the wave-transmitting ceramic tube
  • the inner surface is located 2mm away from the free port of the aerosol generating section;
  • the aerosol generating matrix 2 is mainly composed of an aerosol matrix and second heating medium particles mixed into the tobacco sheet fiber paste.
  • the particle size distribution range of the second heating medium particles is 0.1 ⁇ m to 100 ⁇ m.
  • the added amount It is 30wt%, and the remaining 70wt% is the aerosol matrix (the component composition is the same as that of Example 1);
  • the third aerosol generation system form (03) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect is driven by an alternating electromagnetic field with a frequency of 2.45GHz, and the aerosol generation section is heated from 30°C It takes about 13 seconds to reach 250°C.
  • the sol-gel method is used to prepare the second heating medium with a coating structure, which includes the following steps:
  • Step 1 Add 50g of Fe 3 O 4 raw material particles into a reaction kettle containing 300 ml of ethylene glycol, and stir and disperse at high speed.
  • the Fe 3 O 4 particle size is between 100 nanometers and 500 nanometers;
  • Step 2 Add deionized water and 25% ammonia water, add 10 liters of 25% ammonia water per kilogram of Fe 3 O 4 , then add 0.5 liters of ethyl orthosilicate, and stir at a constant speed for 10 hours;
  • Step 3 After the reaction, separate the obtained particles with an electromagnet and wash several times with 500 ml ethanol and 500 ml deionized water;
  • Step 4 Finally, dry at 60°C for 12 hours to prepare a coated structural coupling heating medium with Fe 3 O 4 as the mother particle and SiO 2 as the daughter particle.
  • Step 5 Make 30g Fe 3 O 4 @SiO 2 coated structural heating medium into a circular body, place it in a high-temperature furnace, and sinter it at 900°C for 5 hours. See Figure 15. After crushing and classifying, the finished product is obtained, as The second heating medium of the cladding structure has a response frequency in the range of 0.3GHz to 30GHz.
  • Step 6 In the third aerosol generation system form (03) of the aerosol generation system and method utilizing Doka coupling giant thermal effect with a frequency of 2.45GHz, heat the sample in step 5 from 30°C to 250°C It takes approximately 19 seconds.
  • the polymer network gel method is used to prepare the first heating medium with a porous structure, which includes the following steps:
  • Step 2 After thorough mixing, add 30g of the organic monomer N-hydroxymethylacrylamide, 6g of the cross-linking agent N,N′-methylenebisacrylamide, 1g of the initiator ammonium persulfate and 1g catalyst tetramethylethylenediamine, stir evenly, and form a polymer network gel after 5 to 15 minutes;
  • Step 3 Dry the polymer network gel in an oven at 80°C for 48 hours;
  • Step 4 Put 300g of xerogel into a calcining furnace and bake it at a certain temperature for 2 hours to obtain an iron-doped TiO 2 porous structure coupling heating medium.
  • the pore diameter is between 100 and 500 nanometers.
  • Step 5 Make 30g of iron-doped TiO 2 porous structure coupling heating medium into a circular body, place it in a high-temperature furnace, and sinter it at 800°C for 5 hours to obtain the finished product, see Figure 16, as the frequency is 0.3MHz
  • the first heating medium of the porous structure ranges from 300 MHz to 300 MHz.
  • Step 6 In the first aerosol generation system form (01) of the aerosol generation system and method utilizing Doka coupling giant thermal effect with a frequency of 13.56MHz, heat the sample in step 5 from 30°C to 250°C It takes approximately 21 seconds.
  • Preparing the first heating medium of membrane composite structure by chemical vapor deposition method includes the following steps:
  • Step 1 Select aluminum foil of a certain size as the base material, use alcohol and acetone to ultrasonically remove stains on the surface of the aluminum foil, and then pickle with pickling solution to remove the surface oxide layer;
  • Step 2 Put 100g Nd 13.5 (FeZrCo) 80.5 B 6 magnetic powder and 150g Fe(CO) 3 into the reactor and evaporator respectively to seal, and mix the evaporated Fe(CO) 3 and argon gas into the reactor. Chemical vapor deposition, constantly vibrating the reactor to ensure uniform coating;
  • Step 3 After the reaction is completed, cool to room temperature to obtain the Nd 13.5 (FeZrCo) 80.5 B 6 -Fe(CO) 3 film composite structural coupling heating medium, see Figure 17.
  • the thickness of the composite film is between 100 ⁇ m and 500 ⁇ m, and is used as the first heating medium of the film composite structure with a frequency ranging from 0.3 MHz to 300 MHz.
  • Step 4 In the second aerosol generation system form (02) of the aerosol generation system and method utilizing Doka coupling giant thermal effect with a frequency of 27.12MHz, heat the sample in step 3 from 30°C to 250°C It takes approximately 16 seconds.
  • the solid-phase method prepares the second heating medium with a coating structure, including the following steps:
  • Step 1 Mix 200g BaCO 3 particles and 80g TiO 2 particles at a molar ratio of 1:1, and then react at a high temperature of 1500°C for 24 hours to obtain BaTiO 3 particles.
  • Step 2 Mix 22g NiO particles, 57g ZnO particles, and 160g Fe 2 O 3 particles, and react at a high temperature of 1250°C for 4 hours to obtain Ni 0.3 Zn 0.7 Fe 2 O 4 particles.
  • Step 3 After mixing 10g BaTiO 3 particles and 20g Ni 0.3 Zn 0.7 Fe 2 O 4 particles, react at a high temperature of 1150°C for 5 hours to obtain BaTiO 3 /Ni 0.3 Zn 0.7 Fe 2 O 4 composite particles.
  • Step 4 Make 30g of BaTiO 3 /Ni 0.3 Zn 0.7 Fe 2 O 4 composite structure coupling heating medium into a circular body, place it in a high-temperature furnace, and sinter at 1100°C for 5 hours. See Figure 18. After crushing and classifying, the obtained The finished product serves as the second heating medium for the cladding structure with a frequency ranging from 0.3GHz to 30GHz.
  • Step 5 In the third aerosol generation system form (03) of the aerosol generation system and method utilizing Doka coupling giant thermal effect with a frequency of 2.45GHz, heat the sample in Step 5 from 30°C to 250°C. It takes approximately 18 seconds.
  • the high-heat solid-phase method and the sol-gel method prepare the second heating medium with a coating structure, including the following steps:
  • Step 1 Mix 140g K 2 CO 3 particles and 265g Nb 2 O 5 particles, and react at a high temperature of 1200°C for 14 hours to obtain KNbO 3 particles.
  • Step 2 Use 50g ferric nitrate, 30g manganese nitrate, 25g zinc nitrate as the source material, 500ml citric acid as the chelating agent, 300ml ethylene glycol as the thickening agent, adjust the pH value >13.0 with ammonia water, and reflux the mixed solution at 70°C. And evaporate at 90°C to obtain a sol, which is dried to obtain a xerogel, and then calcined to obtain a sol-gel Mn 0.5 Zn 0.5 Fe 2 O 4 powder;
  • Step 3 Mix 10g KNbO 3 particles and 25g Mn 0.5 Zn 0.5 Fe 2 O 4 particles, and react at a high temperature of 1150°C for 5 hours to obtain KNbO 3 /Mn 0.5 Zn 0.5 Fe 2 O 4 composite particles.
  • Step 4 Make 30g KNbO 3 /Mn 0.5 Zn 0.5 Fe 2 O 4 composite structure coupling heating medium into a circular body, place it in a high-temperature furnace, sinter at 1100°C for 5 hours, see Figure 19, and obtain after crushing and classification
  • the finished product serves as the second heating medium for the cladding structure with a frequency ranging from 0.3GHz to 30GHz.
  • Step 5 In the third aerosol generation system form (03) of the aerosol generation system and method utilizing Doka coupling giant thermal effect with a frequency of 2.45GHz, heat the sample in Step 5 from 30°C to 250°C. It takes about 20 seconds.
  • the solid-phase method prepares the second heating medium of the coating structure, including the following steps:
  • Step 1 Mix 200g BaCO 3 particles, 40g MgO particles, and 440g Ta 2 O 5 particles, and react at a high temperature of 1200°C for 24 hours to obtain BaO-MgO-Ta 2 O 5 particles.
  • Step 2 Mix 50g BaO-MgO-Ta 2 O 5 particles and 30g NiO particles, and react at a high temperature of 900°C for 10 hours to obtain BaO-MgO-Ta 2 O 5 /NiO composite particles.
  • Step 3 Make 25g BaO-MgO-Ta 2 O 5 /NiO composite structure coupling heating medium into a circular body, place it in a high-temperature furnace, and sinter it at 1100°C for 5 hours. See Figure 20. After crushing and classifying, the finished product is obtained. , as the second heating medium of the cladding structure with a frequency ranging from 0.3GHz to 30GHz.
  • Step 4 In the third aerosol generation system form (03) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect with a frequency of 2.45GHz, the sample in step 4 is heated from 30°C to 250°C. It takes about 18 seconds.
  • the solid-phase method prepares the second heating medium of the coating structure, including the following steps:
  • Step 1 Mix 178g BaCO 3 particles, 48g Co 3 O 4 particles, and 550g Fe 2 O 3 particles, and react at a high temperature of 1280°C for 6 hours to obtain Ba 3 Co 2 Fe 23 O 41 (Co 2 Z) particles.
  • Step 2 Mix 50g Co 2 Z particles and 30 g ZnO particles, and react at a high temperature of 1100°C for 14 hours to obtain Co 2 Z/ZnO particles.
  • Step 3 Make 30g of Co 2 Z/ZnO composite structure coupling heating medium into a circular body, place it in a high-temperature furnace, and sinter it at 1100°C for 5 hours. See Figure 21. After crushing and classifying, the finished product is obtained, as the frequency is 0.3 The second heating medium of the cladding structure ranges from GHz to 30GHz.
  • Step 4 In the third aerosol generation system form (03) of the aerosol generation system and method utilizing the Doka coupling giant thermal effect with a frequency of 2.45GHz, the sample in step 4 is heated from 30°C to 250°C. It takes approximately 17 seconds.
  • the aerosol generation system utilizing the card-coupled giant thermal effect provided by the present invention (1) adopts enhanced intrinsic electric moment orientation polarization, thermionic relaxation polarization and ionization on the dielectric component of the heating medium.
  • Displacement polarization measures are taken to optimize the use of relaxation polarization loss and resonant polarization loss to obtain a high polarization loss dielectric; in the magnetic medium components of the heating medium, measures are taken to strengthen hysteresis loss, damping loss and resonance loss.
  • the dielectric, magnetic medium and conductive medium are constructed by physical and chemical methods of multi-phase components to form a core-shell structure, a heterojunction structure, and a cladding structure. , porous structure and membrane composite structure, realizing composite at the mesoscopic level, which is conducive to multi-field coupling to produce multi-card coupling giant thermal effect.
  • the frequency of the alternating electromagnetic field used in the heating drive unit of the aerosol generation system is a balanced and compatible response frequency that meets the requirements of multi-card coupling of electric cards, magnetic cards and guide cards for multi-field coupling drive. Compatible response The frequency range is 0.3MHz ⁇ 30GHz.

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Abstract

一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质,加热介质包括适用于交变电磁场响应频率为0.3MHz至300MHz范围的第一加热介质(0113,0213),和0.3GHz至30GHz范围的第二加热介质(0313)。对相应采用的高介电损耗、高磁滞损耗和高电导损耗组分进行的介观尺度复合所获得的加热介质,满足多场耦合产生多卡巨热效应对材料的构型要求,耦合作用强,加热效率高。在气溶胶发生系统(01,02,03)中,加热介质作为气溶胶发生基质(0112,0212,0312)中与气雾基质共混,或烟草薄片抄造掺合的加热颗粒,或作为箔片状膜复合型加热介质(0114,0214,0314)在气溶胶发生段作为辅助增强加热介质,加热介质还作为加热腔的块体加热介质(0235,0332)和预热壳体颗粒涂层加热介质(0123,0223,0323),实现多源协同的强化加热效果。

Description

一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质
本申请要求于2022年4月20日提交中国专利局、申请号为202210415674.2、发明名称为“一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于烟草技术领域,尤其涉及一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质。
背景技术
在加热不燃烧卷烟中,通过电加热气溶胶发生基质形成供使用者吸入的气溶胶发生系统和方法,其中可用的最常见方法是利用电流通过电阻加热元件所产生的焦耳热来加热气溶胶发生基质,这类方法已形成较多的专利和诸多产品成为本领域的公知。电阻加热方法可能存在的不足是难以实现对气溶胶发生基质的均匀加热及对加热温度的准确控制。
后续提出的电磁感应加热系统和方法,其中以菲利普莫里斯生产公司申请的系列中国专利较为典型,包括申请公布号:CN112739228A(用于感应加热气溶胶形成基材的加热组件和方法,2021-04-30);CN110461176A(用于感应加热气溶胶形成基材的感受器组件,2019-11-15);CN112739227A(包括气溶胶形成基质和感受器组件的可感应加热的气溶胶生成制品,2021-04-30);CN111449293A、CN111109662A、CN111035072A(包含磁性颗粒的气溶胶形成制品,2020-07-28、2020-05-08、2020-04-21);CN112822950A(用于感应加热气溶胶形成基材的感受器组件,2021-05-18);CN112739229A(用于感应加热气溶胶形成基材的感应加热组件,2021-04-30);CN112088577A(用于气溶胶生成的包括感受器管的感受器组件,2020-12-15);CN112739226A(包括感受器组件的感应加热式气溶胶生成装置,2021-04-30);CN112384090A(用于气溶胶生成系统 的可感应加热筒以及包括可感应加热筒的气溶胶生成系统,2021-02-19);CN112189901A(具有内部感受器的气溶胶生成制品,2021-01-08);CN112638186A(包括气溶胶形成杆段的可感应加热的气溶胶生成制品以及用于制造此类气溶胶形成杆段的方法,2021-04-09);CN112804899A(用于感应加热气溶胶形成基材的气溶胶生成装置,2021-05-14);CN113597263A(可感应加热的气溶胶形成杆和用于制造此类杆的成形装置,2021-11-02);CN110731125A(感应加热装置、包括感应加热装置的气溶胶生成系统及其操作方法,2020-01-24);CN112218554A(用于加热气溶胶形成基质的电加热组件,2021-01-12);CN110891441A(具有感受器层的气溶胶生成装置,2020-03-17);CN112931957A(用于气雾生成装置的感受器、气雾生成装置,2021-06-11);CN110891443A(具有多个感受器的气溶胶生成系统,2020-03-17);CN110996696A(具有感应加热器和可移动部件的气溶胶生成装置,2020-04-10);CN111050582A(用于带连接器的气溶胶生成装置的加热器,2020-04-21);CN110913712A(具有间隔减小的感应器线圈的气溶胶生成装置,2020-03-24);CN111109658A(电加热气溶胶生成系统,2020-05-08);CN111031819A(具有可移除的感受器的气溶胶生成装置,2020-04-17);CN109475194A(感受器组件和包括所述感受器组件的气溶胶生成制品,2019-03-15)等。
在已公开的电磁加热系统和方法相关专利或专利申请中,未出现利用多卡耦合巨热效应的气溶胶发生系统。
发明内容
有鉴于此,本发明的目的在于提供一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质,该系统加热介质组分设计上增强电介质损耗、磁滞损耗、阻尼损耗、共振损耗和电导损耗,材料结构上能实现多场耦合产生多卡耦合巨热效应,孔隙结构上能提高液相饱和蒸气压值,降低气溶胶发生基质的热激发温度,交变电磁场能满足多场耦合驱动匹配要求,兼容和平衡多卡耦合响应频率,实现加热温度均匀,功率消耗低的目的。
本发明提供了一种气溶胶发生基质,包括加热介质,所述加热介质包 括第一加热介质或第二加热介质;
所述第一加热介质包括第一电介质和第一磁介质及第一电导介质;
所述第一电介质选自以下体系中至少一种:
①钙钛矿结构体系,包括BaTiO 3,和/或PbTiO 3,和/或NaNbO 3,和/或KNbO 3,和/或BiFeO 3;②钨青铜结构体系,包括偏铌酸铅,和/或Sr 1-xBa xNb 2O 6;③铋层状结构体系,包括SrBi 2Ta 2O 9,和/或Bi 4Ti 3O 12,和/或SrBi 4Ti 4O 15;④焦绿石结构体系,包括Cd 2Nb 2O 7,和/或Pb 2Nb 2O 7
所述第一磁介质选自以下铁氧体中至少一种:
尖晶石型铁氧体,包括MFe 2O 4,M=Mn,和/或Fe,和/或Ni,和/或Co,和/或Cu,和/或Mg,和/或Zn,和/或Li,和/或MnZn,和/或NiZn,和/或MgZn,和/或LiZn铁氧体;和/或R 3Fe 5O 12,R为稀土元素,所述稀土元素为Y,和/或La,和/或Pr,和/或Nd,和/或Sm,和/或Eu,和/或Gd,和/或Tb,和/或Dy,和/或Ho,和/或Er,和/或Tm,和/或Yb,和/或Lu;
所述第一电导介质选自以下成分中至少一种:
ZnO系列,包括掺杂Al(AZO),和/或掺杂In(IZO),和/或掺杂Ga(GZO);磁性氧化物,包括CoO,和/或MnO,和/或Fe 3O 4,和/或NiO;及其它半导体氧化物,包括Ga 2O 3,和/或In 2O 3,和/或InSnO(ITO);
所述第二加热介质包括第二电介质和第二磁介质及第二电导介质;
所述第二电介质选自①BaO-MgO-Ta 2O 5,和/或BaO-ZnO-Ta 2O 5,和/或BaO-MgO-Nb 2O 5,和/或BaO-ZnO-Nb 2O 5体系及它们之间的复合体系;②BaTi 4O 9,和/或BaTi 9O 20,(Zr,和/或Sn)TiO 4为基的体系;③BaO-Ln 2O 3-TiO 2,和/或CaO-Li 2O-Ln 2O 3-TiO 2(Ln 2O 3为镧系稀土氧化物)为基的体系;④A 5B 4O 15(A=Ba,和/或Sr,和/或Mg,和/或Zn,和/或Ca,B=Nb,和/或Ta),和/或AB 2O 6(A=Ca,和/或Co,和/或Mn,和/或Ni,和/或Zn;B=Nb,和/或Ta);(Ba 1-xM x)ZnO 5(M=Ca,和/或Sr,x=0~1.0),AgNb 1-xTa xO 3(x=0~1.0),和/或LnAlO 3(Ln=La,和/或Nd,和/或Sm),和/或Ta 2O 5-ZrO 2,和/或ZnTiO 3,和/或BiNbO 4系列;
所述第二磁介质选自M型六角铁氧体:BaM,和/或PbM,和/或SrM; X型六角铁氧体,包括Fe 2X;W型六角铁氧体,包括Mg 2W,和/或Mn 2W,和/或Fe 2W,和/或Co 2W,和/或Ni 2W,和/或Cu 2W,和/或Zn 2W;Y型六角铁氧体,包括Mg 2Y,和/或Mn 2Y,和/或Fe 2Y,和/或Co 2Y,和/或Ni 2Y,和/或Cu 2Y,和/或Zn 2Y;Z型六角铁氧体,包括Mg 2Z,和/或Mn 2Z,和/或Fe 2Z,和/或Co 2Z,和/或Ni 2Z,和/或Cu 2Z,和/或Zn 2Z;
所述第二电导介质选自ZnO系列,包括掺杂Al(AZO),和/或掺杂In(IZO),和/或掺杂Ga(GZO);磁性氧化物,包括CoO,和/或MnO,和/或Fe 3O 4,和/或NiO;及其它半导体氧化物,包括Ga 2O 3,和/或In 2O 3,和/或InSnO(ITO)。
在本发明中,所述第一加热介质通过物理化学法的介观尺度复合,形成具有核壳型,或异质结型,或包覆型,或多孔型或膜复合型;
核壳型的第一加热介质包括核壳型结构的电矩-磁矩耦合加热介质1-H-1、核壳型结构的电矩-电导耦合加热介质1-H-2或核壳型结构的电矩-磁矩-电导耦合加热介质1-H-3;
形成具有所述核壳型的第一加热介质的具体方法为直接沉淀法,或共沉淀法,或醇盐水解法,或溶胶-凝胶法;
异质结型结构的第一加热介质包括异质结型结构的电矩-磁矩耦合加热介质1-Y-1,或异质结型结构的电矩-电导耦合加热介质1-Y-2或异质结型结构的电矩-磁矩-电导耦合加热介质1-Y-3;
形成具有所述异质结型结构的第一加热介质的具体方法为熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法;
包覆型结构的第一加热介质包括包覆型结构的电矩-磁矩耦合加热介质1-B-1或包覆型结构的电矩-磁矩-电导耦合加热介质1-B-2;
形成具有所述包覆型结构的第一加热介质的具体方法为机械熔合包覆法,或高能磨机引发的机械力化学效应法,或低热固相反应法,或溶胶-凝胶法;
具有多孔型结构的第一加热介质是多孔型结构的电矩-磁矩-电导耦合加热介质1-K,或低激发温度气溶胶发生基质的加热介质1-D;
膜复合型结构的第一加热介质是电矩-磁矩-电导耦合加热介质1-M;
所述第二加热介质通过物理化学法的介观尺度复合,形成具有核壳型,或异质结型,或包覆型,或多孔型或膜复合型;
核壳型的第二加热介质包括核壳型结构的电矩-磁矩耦合加热介质2-H-1、核壳型结构的电矩-电导耦合加热介质2-H-2或核壳型结构的电矩-磁矩-电导耦合加热介质2-H-3;
形成具有所述核壳型的第二加热介质的具体方法为直接沉淀法,或共沉淀法,或醇盐水解法,或溶胶-凝胶法;
异质结型结构的第二加热介质包括异质结型结构的电矩-磁矩耦合加热介质2-Y-1,或异质结型结构的电矩-电导耦合加热介质2-Y-2或异质结型结构的电矩-磁矩-电导耦合加热介质2-Y-3;
形成具有所述异质结型结构的第二加热介质的具体方法为熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法;
包覆型结构的第二加热介质包括包覆型结构的电矩-磁矩耦合加热介质2-B-1或包覆型结构的电矩-磁矩-电导耦合加热介质2-B-2;
形成具有所述包覆型结构的第二加热介质的具体方法为机械熔合包覆法,或高能磨机引发的机械力化学效应法,或低热固相反应法,或溶胶-凝胶法;
具有多孔型结构的第二加热介质是多孔型结构的电矩-磁矩-电导耦合加热介质2-K、或低激发温度气溶胶发生基质的加热介质2-D;
膜复合型结构的第二加热介质是电矩-磁矩-电导耦合加热介质2-M。
在本发明中,所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K按照以下方法制得:
将所述第一加热介质中的第一电介质和第一磁介质及第一电导介质中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;或将所述第一电介质中至少一种成分和所述第一磁介质体系中至少一种成分 及所述第一电导介质中至少一种成分,通过高分子网络凝胶法获得的凝胶,或通过金属络合物凝胶法获得可溶性络合物网络凝胶,再经干燥、烧结和粉碎及分级获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;或通过溶液中的所述第一磁介质中至少一种成分的离子和所述第一电导介质中至少一种成分的离子和沉淀剂,对所述第一电介质颗粒多孔体进行沉淀法修饰,使孔隙内表面形成所述第一磁介质成分和所述第一电导介质成分的复合膜层,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;或将所述第一加热介质中的第一电介质和第一磁介质中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩耦合加热介质,再通过化学镀法对所述多孔型结构的电矩-磁矩耦合加热介质的孔隙进行修饰,将吸附在孔隙内镀液中的所述的第一电导介质体系中至少一种成分的金属离子,被镀液中的还原剂催化还原成金属,并沉积在孔隙内表面,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;
所述多孔型结构的电矩-磁矩-电导耦合加热介质的孔径尺寸为2nm至50μm,孔隙率为70%至95%。
所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K按照以下方法制得:
将所述第二加热介质中的第二电介质和第二磁介质及第二电导介质体系中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K;或将所述第二电介质中至少一种成分和所述第二磁介质中至少一种成分及所述第二电导介质中至少一种成分,通过高分子网络凝胶法获得的凝胶,或通过金属络合物凝胶法获得可溶性络合物网络凝胶,再经干燥、烧结和粉碎及分级获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K;或通过溶液中的所述第二磁介质体系中至少一种成分的离子和所述第二电导介质体系中至少一种成分的离子和沉淀剂,对所述第二电介质颗粒多孔 体进行沉淀法修饰,使孔隙内表面形成所述第二磁介质成分和所述第二电导介质成分的复合膜层,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K;或将所述第二加热介质中的第二电介质和第二磁介质体系中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩耦合加热介质,再通过化学镀法对所述多孔型结构的电矩-磁矩耦合加热介质的孔隙进行修饰,将吸附在孔隙内镀液中的所述的第二电导介质中至少一种成分的金属离子,被镀液中的还原剂催化还原成金属,并沉积在孔隙内表面,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K,所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K的孔径尺寸为2nm至50μm,孔隙率为70%至95%;
在本发明中,所述低激发温度气溶胶发生基质的加热介质1-D按照以下方法制得:
从所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K中,选取孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125W·m-1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获得低激发温度气溶胶发生基质的加热介质,激发温度为160℃~200℃,所述的低激发温度气溶胶发生基质的加热介质1-D颗粒的粒度分布范围为15μm至500μm;
所述低激发温度气溶胶发生基质的加热介质2-D按照以下方法制得:
从所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K中,选取孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125W·m-1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获 得低激发温度气溶胶发生基质的加热介质,激发温度为160℃~200℃,所述的低激发温度气溶胶发生基质的加热介质2-D颗粒的粒度分布范围为15μm至500μm。
在本发明中,所述电矩-磁矩-电导耦合加热介质1-M按照以下方法制得:
将所述第一加热介质中的第一电介质和第一磁介质及第一电导介质体系中至少一种成分的超细颗粒,与粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,充分混合后,通过喷涂或涂刷方法对铝片或铜片或不锈钢片进行单面或双面的膜复合,获得所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M;或将所述第一加热介质中的第一电介质和第一磁介质及第一电导介质体系中至少一种成分的颗粒,通过气相沉积法,或火焰气相沉积法,或等离子喷涂法,对铝片或铜片或不锈钢片进行单面或双面的膜复合沉积或喷涂,制备所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M;
所述电矩-磁矩-电导耦合加热介质2-M按照以下方法制得:
将所述第二加热介质中的第二电介质和第二磁介质及第二电导介质体系中至少一种成分的超细颗粒,与粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,充分混合后,通过喷涂或涂刷方法对铝片或铜片或不锈钢片进行单面或双面的膜复合,获得所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M;或将所述第二加热介质中的第二电介质和第二磁介质及第二电导介质中至少一种成分的颗粒,通过气相沉积法,或火焰气相沉积法,或等离子喷涂法,对铝片或铜片或不锈钢片进行单面或双面的膜复合沉积或喷涂,制备所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M。
在本发明中,所述气溶胶发生基质还包括气雾基质;
加热介质直接与气雾基质共混,或在气雾基质中的烟草薄片抄造或辊压前,将加热介质掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比为5~60%的加热介质,所述加热介质的粒度为0.1μm~100μm;
或将粒度15μm~100μm的多孔型结构的加热介质,或将粒度15μm~100μm的低激发温度气溶胶发生基质的加热介质吸附气雾基质中的液相组分后,与加热介质和气雾基质共混;
在本发明中,还包括箔片状膜复合型加热介质;
所述箔片状膜复合型加热介质由所述的加热介质颗粒与粘结剂羧甲基纤维素,或瓜尔胶或烟草浸膏混合后,通过流延法或喷涂法,对铝箔、铜箔进行单面或双面的膜复合,再经裁切获得,尺寸与烟草薄片相当,所述加热介质颗粒粒度分布范围为15μm至100μm;或采用所述电介质组分和利用所述磁介质组分的前驱体,通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法进行制备。
本发明提供了一种利用多卡耦合巨热效应的气溶胶发生系统,包括加热结构,所述加热结构包括机壳,所述机壳上设置机壳进气孔;
所述机壳内设置预热壳体;机壳与预热壳体同轴开口;
所述预热壳体的开口与滤嘴段相连;所述预热壳体上设有预热壳体进气孔;
所述预热壳体内部设有多块极板;多块极板形成加热腔;
所述加热腔的底部设有加热腔底座;温控件穿过所述加热腔底座的中心孔,加热腔底座上设有底座圆盘进气孔;
加热腔的上端与密封环圈连接,并嵌套在预热壳体的开口处;
所述极板的内部为气溶胶发生段;气溶胶发生段与滤嘴段之间设有金属颗粒层滤介;
所述气溶胶发生段中含有气溶胶发生基质1;
所述极板通过极板馈线与加热驱动单元相连;
所述气溶胶发生基质1包括所述的第一加热介质。
在本发明中,所述极板为管状极板;所述管状极板包括管状绝缘陶瓷基底,及设置在所述管状绝缘陶瓷基底内表面的曲面电极1和曲面电极2;
所述曲面电极1和曲面电极2分片对置;相邻的曲面电极1和曲面电极2之间由绝缘材料隔开;
所述曲面电极1和曲面电极2的片数各为2~5片。
在本发明中,所述极板为多块平面电极;所述极板包括平行对置的平面极板1和平面极板2;
所述平面极板1和平面极板2的间距为气溶胶发生段的直径。
在本发明中,所述平面极板1和平面极板2的两端各对夹着1块体加热介质1;
2块对夹的块体加热介质1的对称中心设置有圆柱形孔,圆柱形孔的直径为气溶胶发生段的直径。
在本发明中,所述金属颗粒层滤介的厚度为0.2mm~1.2mm;
所述金属颗粒层滤介由尺寸为0.5~1.5mm的铝质颗粒压制而成。
在本发明中,所述块体加热介质1包括第一加热介质颗粒和无机粘结剂;
所述无机粘结剂选自硅酸钠、磷酸二氢铝和磷酸-氧化铜中的一种或多种。
在本发明中,所述底座圆盘进气孔为直径0.3~2mm的通孔;
所述进气孔的个数为8~36个。
在本发明中,所述加热驱动单元,采用的交变电磁场的频率,均具有满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动要求的平衡性兼容响应频率,所述兼容响应频率区间为0.3MHz至300MHz范围时,适用于所述第一加热介质。
在本发明中,所述预热壳体的内表面设置第一加热介质颗粒涂层;
所述第一加热介质颗粒涂层包括六方硼碳氮三元吸波陶瓷基材和涂覆在所述基材上的涂层,所述涂层包括第一加热介质颗粒和成膜剂;所述成膜剂选自硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶;
或第一加热介质颗粒涂层包括金属基底和涂覆在所述金属基底上的涂层,所述涂层包括第一加热介质颗粒和无机粘结剂;
所述无机粘结剂选自硅酸钠,或磷酸二氢铝,或磷酸-氧化铜。
本发明提供了一种利用多卡耦合巨热效应的气溶胶发生系统,包括加热结构,所述加热结构包括机壳,所述机壳上设置机壳进气孔;
所述机壳内设置预热壳体;机壳与预热壳体同轴开口;
所述预热壳体的开口与滤嘴段相连;所述预热壳体上设有预热壳体进气孔;
所述预热壳体内部设有金属屏蔽壳体、块体加热介质2和嵌入所述块 体加热介质2的天线;所述金属屏蔽壳体包裹在块体加热介质2的外部;
所述金属屏蔽壳体、块体加热介质2和嵌入所述块体加热介质2的天线形成加热腔;
所述加热腔的进气座孔通过4~10个直径为0.5~2mm的进气孔道与块体加热介质2的外部相通;
所述块体加热介质2为立方体;在所述块体加热介质2的对称轴线上设有圆柱形孔,孔的内部形成气溶胶发生段;所述圆柱形孔内嵌套设透波陶瓷管,所述透波陶瓷管的内径为气溶胶发生段的直径;
所述加热腔的上端与密封环圈连接,并嵌套在预热壳体的开口处;
所述气溶胶发生段与滤嘴段之间设有金属颗粒层滤介;
所述气溶胶发生段中含有气溶胶发生基质2;
所述天线通过天线馈线基脚与加热驱动单元相连;
所述气溶胶发生基质2包括权利要求1中所述的第二加热介质。
在本发明中,所述透波陶瓷管选自石英SiO 2陶瓷管、或高氧化铝陶瓷管、或Si 3N 4陶瓷管。
在本发明中,还包括温控件,所述温控件横向置入至透波陶瓷管的内表面,位置距离所述气溶胶发生段的自由端口的2~3mm处。
在本发明中,所述块体加热介质2包括第二加热介质颗粒和无机粘结剂;
所述无机粘结剂选自硅酸钠,或磷酸二氢铝,或磷酸-氧化铜。
在本发明中,所述预热壳体的内表面设置第二加热介质颗粒涂层;
所述第二加热介质颗粒涂层包括六方硼碳氮三元吸波陶瓷基材和涂覆在所述基材上的涂层,所述涂层包括第二加热介质颗粒和成膜剂;所述成膜剂选自硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶;
或第二加热介质颗粒涂层包括金属基底和涂覆在所述金属基底上的涂层,所述涂层包括第二加热介质颗粒和无机粘结剂;
所述无机粘结剂选自硅酸钠,或磷酸二氢铝,或磷酸-氧化铜。
在本发明中,所述加热驱动单元,采用的交变电磁场的频率,均具有满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动要求的平衡性兼容响应 频率,所述兼容响应频率区间为0.3GHz至30GHz范围时,适用于所述第二加热介质。
本发明提供的利用卡耦合巨热效应的气溶胶发生系统,(1)在加热介质的电介质组分上,采取强化固有电矩取向极化、热离子驰豫极化和离子位移极化的措施,以优化利用驰豫极化损耗和谐振极化损耗,获得高极化损耗电介质;在加热介质的磁介质组分上,采取强化磁滞损耗、阻尼损耗和共振损耗的措施,获得高磁滞损耗磁介质;在加热介质的电导介质组分上,采取增加自由电子、离子及掺杂缺陷和空位等措施,以优化利用多种载流子的电导损耗,获得高电导损耗电导介质;(2)在加热介质的材料结构上,对电介质、磁介质和电导介质进行多相组分的物理化学法复合构建,形成核壳型结构,或异质结型结构,或包覆型结构,或多孔型结构或膜复合型结构,实现介观层面的复合,以有利于多场耦合产生多卡耦合巨热效应。(3)在降低气溶胶发生基质的热激发温度上,通过多孔型结构的加热介质,对气溶胶发生介质液相组分的吸附,使液相组分被分化成数量极多的小液滴。(4)在气溶胶发生系统的加热驱动单元上,采用的交变电磁场的频率,是满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动要求的平衡性兼容响应频率,兼容响应频率区间为0.3MHz~30GHz。
附图说明
图1为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式01的轴向示例性剖视图;
图2为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式01的,所述气溶胶发生系统加热结构A的放大轴向示例性剖视图;
图3为图2的A-A截面处的俯视图;
图4为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式01的,所述气溶胶发生系统加热结构A,在所述气溶胶发生段中含有箔片状膜复合型加热介质的放大轴向示例性剖视图;
图5为图4的A-A截面处的示例性俯视图;
图6为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式01的,所述气溶胶发生系统加热结构A中的,所述管状极板的所述曲面电极1和曲面电极2沿圆周方向的示例性展开图;
图7为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式02的轴向示例性剖视图;
图8为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式02的,所述气溶胶发生系统加热结构B的C-C截面处的放大示例性俯视图;
图9为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式03的轴向示例性剖视图;
图10为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式03的,所述气溶胶发生系统加热结构C的放大轴向示例性剖视图;
图11为所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式03的,所述气溶胶发生系统加热结构C的B-B截面处的放大示例性俯视图;
图12为本发明实施例1中核壳型结构的第一加热介质的SEM图;
图13为本发明实施例2中异质结型结构的第一加热介质的SEM图;
图14为本发明实施例3中包覆型结构的第二加热介质的SEM图;
图15为本发明实施例4中包覆型结构的第二加热介质的SEM图;
图16为本发明实施例5中多孔型结构的第一加热介质的SEM图;
图17为本发明实施例6中膜复合型结构耦合加热介质的SEM图;
图18为本发明实施例7中包覆型结构的第二加热介质的SEM图;
图19为本发明实施例8中包覆型结构的第二加热介质的SEM图;
图20为本发明实施例9中包覆型结构的第二加热介质的SEM图;
图21为本发明实施例10中包覆型结构的第二加热介质的SEM图。
具体实施方式
本发明所述的多卡耦合巨热效应是指:
(1)在外加交变电场和交变磁场驱动下,极化形成的电偶极子和磁化形成的磁偶极子耦合产生的热效应,不仅包括单一电矩熵形成的电矩热效应,单一磁矩熵形成的磁矩热效应,还包括电矩-磁矩耦合熵形成的电矩与磁矩耦合热效应。
(2)在外加交变电磁场和交变电磁场的分量交变电场驱动下,极化形成的电偶极子和极化形成的载流子耦合产生的热效应,不仅包括单一电矩熵形成的电矩热效应,单一晶格熵和电子熵形成的焦耳热效应,还包括电矩-(晶格+电子)耦合熵形成的电矩与电导耦合热效应。
(3)在外加交变电磁场及交变电磁场的分量交变电场和交变磁场作用下,极化形成的电偶极子和载流子及磁化形成的磁偶极子耦合产生的热效应,不仅包括单一电矩熵形成的电矩热效应,单一磁矩熵形成的磁矩热效应,单一晶格熵和电子熵形成的焦耳热效应,还包括电矩-磁矩耦合熵形成的电矩与磁矩耦合热效应,电矩-(晶格+电子)耦合熵形成的电矩与电导耦合热效应,磁矩-(晶格+电子)耦合熵形成的磁矩与电导耦合热效应,以及电矩-磁矩-(晶格+电子)耦合熵形成的电矩、磁矩和电导耦合热效应。
需要特别指出的是:多卡效应并不是单纯的各项单卡效应的加和,而是同时包括由各项单卡效应之间的交叉耦合形成的多重相关耦合项,使放热现象更显著。
以下是基于多卡耦合效应的材料体系内部温度变化(△T)方程,包括了单卡效应之间的交叉耦合形成的多重相关耦合项:
Figure PCTCN2022135146-appb-000001
其中X i=M,P,ε,…;xi=H,E,σ,…。方程涵盖了所有的卡效应,包括电卡效应、磁卡效应、导卡效应,以及交叉耦合的多卡效应。
如对电矩-磁矩耦合热效应,上述方程具体表示为以下形式:
Figure PCTCN2022135146-appb-000002
式中,电卡效应的温升ΔT e和磁卡效应的温升ΔT m的对应项,显然,不仅有单纯的极化强度对电场强度变化产生的升温项和单纯的磁化强度对 磁场强度变化产生的升温项,还包括与电介质和磁介质相关的电场强度变化对磁化强度变化,及磁场强度变化对极化强度变化的交叉耦合作用升温项。这也是形成本发明所述的多卡耦合巨热效应的原理基础。
本发明在加热介质的电介质组分上采取强化固有电矩取向极化、热离子驰豫极化和离子位移极化的措施,以优化利用驰豫极化损耗和谐振极化损耗,获得高极化损耗电介质;在加热介质的磁介质组分上,采取强化磁滞损耗、阻尼损耗和共振损耗的措施,获得高磁滞损耗磁介质;在加热介质的电导介质组分上,采取增加自由电子、离子及掺杂缺陷和空位等措施,以优化利用多种载流子的电导损耗,获得高电导损耗电导介质。
本发明对上述电介质、磁介质和电导介质进行多相组分的物理化学法复合构建,形成核壳型结构、异质结型结构、包覆型结构、多孔型结构和膜复合型结构,实现介观层面的复合,以有利于多场耦合产生多卡巨热效应:
①核壳型结构:以超细高磁滞损耗磁介质颗粒为核,经表面功能化,通过种子生长法修饰高极化损耗电介质材料,或以超细高极化损耗电介质颗粒为核,经表面功能化,通过种子生长法修饰高磁滞损耗磁介质材料,获得核壳型结构的电矩-磁矩耦合加热介质;以超细高极化损耗电介质颗粒为核,经表面功能化,通过种子生长法修饰高电导损耗电导介质材料,获得核壳型结构的电矩-电导耦合加热介;以超细高极化损耗电介质颗粒为核,经表面功能化,通过种子生长法修饰高磁滞损耗磁介质材料和高电导损耗电导介质材料,获得核壳型结构的电矩-磁矩-电导耦合加热介质。核壳型结构可采用直接沉淀法,或共沉淀法,或醇盐水解法或溶胶-凝胶法等湿化学法制备。
②异质结型结构:高极化损耗电介质颗粒与高磁滞损耗磁介质颗粒,在均匀混合的相接触界面区域,因晶体结构不同及晶格匹配度不高,通过焙烧等外延生长、熔融析出,获得异质结型的电矩-磁矩耦合加热介质;同理,高极化损耗电介质颗粒与高电导损耗电导介质颗粒,均匀混合的相接触界面区域,通过焙烧等外延生长、熔融析出,获得异质结型结构的电矩-电导耦合加热介质;高极化损耗电介质颗粒、高磁滞损耗、高阻尼损耗和 共振损耗的磁介质颗粒与高电导损耗电导介质颗粒,均匀混合的相接触界面区域,通过焙烧等外延生长、熔融析出,获得异质结型结构的电矩-磁矩-电导耦合加热介质。异质结型结构可采用熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法等方法制备。
③包覆型结构:以高磁滞损耗磁介质为母颗粒,包覆超细高极化损耗电介质子颗粒,获得包覆型结构的电矩-磁矩耦合加热介质;以高磁滞损耗磁介质为母颗粒,包覆超细高极化损耗电介质子颗粒和超细高电导损耗电导介质子颗粒,获得包覆型结构的电矩-磁矩-电导耦合加热介质。包覆型结构可采用机械法,如机械熔合包覆设备,通过剪切、摩擦、挤压、冲击等机械力引发的机械力化学效应,将高极化损耗电介质颗粒、高磁滞损耗磁介质颗粒和高电导损耗电导介质颗粒复合在一起。包覆型结构还可以采用低热固相反应法,或溶胶-凝胶法等方法制备。
④多孔型结构:将高磁滞损耗磁介质颗粒、高极化损耗电介质颗粒、高电导损耗电导介质颗粒、无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂充分混合后,进行烧结,对多孔烧结体进行适当粉碎和分级,获得多孔型结构的电矩-磁矩-电导耦合加热介质。此外,多孔型结构可采用高分子网络凝胶法和金属络合物凝胶法制备。多孔型结构也可以通过利用溶液中的高磁滞损耗磁介质离子和高电导损耗电导介质离子,通过适当的沉淀剂,对高极化损耗电介质多孔陶瓷进行沉淀法修饰,使孔隙内表面形成高磁滞损耗磁介质和高电导损耗电导介质的复合膜层,获得多孔型结构的电矩-磁矩-电导耦合加热介质。多孔型结构还可以采用化学镀法对高极化损耗电介质多孔陶瓷进行孔隙修饰,将吸附在孔隙内镀液中的高电导损耗电导介质金属离子,被镀液中的还原剂催化还原成金属,并沉积在孔隙内表面,获得多孔型结构的电矩-电导耦合加热介质。
⑤膜复合型结构:将粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,与复合后的高磁滞损耗磁介质颗粒和高极化损耗电介质颗粒,通过流延法或喷涂法对金属薄片,如铝箔,或铜箔,或铜片、不锈钢片,进行单面或双面的膜复合,获得膜复合型结构的电矩-磁矩-电导耦合加热介质。膜复 合型结构也可以采用化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法或火焰气相沉积法制备。
本发明在降低气溶胶发生基质的热激发温度上,通过多孔型结构的加热介质,对气溶胶发生介质液相组分的吸附,使液相组分被分化成数量极多的小液滴。根据开尔文(Kelvin)方程:
Figure PCTCN2022135146-appb-000003
式中p r,p 0分别为小液滴和平面液体的饱和蒸气压值,σ,ρ,M分别为液体的表面张力、密度和摩尔质量,R,T分别为气体常数和气体的绝对温度,r为小液滴的半径。据此,利用尺寸较小的液滴饱和蒸气压值要高于尺寸较大的液滴饱和蒸气压值,即液滴尺寸越小,饱和蒸气压值越高,其蒸发速度也越快的原理,获得低激发温度气溶胶发生基质。
在本发明具体实施例中,所述气溶胶发生基质包括加热介质;所述加热介质选自第一加热介质颗粒或第二加热介质颗粒;所述第一加热介质颗粒包括第一电介质、第一磁介质和第一电导介质;所述第二加热介质颗粒包括第二电介质、第二磁介质和第二电导介质;
本发明通过物理化学法对第一电介质、第一磁介质、第一电导介质、第二电介质、第二磁介质核第二电导介质进行介观尺度的复合构建,形成具有核壳型结构、异质型结构、包覆型结构、多孔型结构或膜复合型结构中的一种或多种的符合多场耦合产生多卡巨热效应的加热介质。
在本发明中,所述第一电介质包括高电矩取向极化损耗和高热离子驰豫极化损耗组分;所述第一电介质包括钙钛矿结构体系、钨青铜结构体系、铋层状结构体系和焦绿石结构体系中的一种或多种;所述钙钛矿结构体系包括BaTiO 3、PbTiO 3、NaNbO 3、KNbO 3和BiFeO 3中的一种或多种;所述钨青铜结构体系包括偏铌酸铅和/或Sr 1-xBa xNb 2O 6(x=0~1.0);所述铋层状结构体系包括SrBi 2Ta 2O 9,Bi 4Ti 3O 12和SrBi 4Ti 4O 15中的一种或多种;所述焦绿石结构体系包括Cd 2Nb 2O 7和/或Pb 2Nb 2O 7
在本发明中,所述第一磁介质为高磁滞损耗、高阻尼损耗、高畴壁共振损耗和高自然共振损耗组分,优选为尖晶石铁氧体,所述尖晶石铁氧体 包括MFe 2O 4(M=Mn,和/或Fe,和/或Ni,和/或Co,和/或Cu,和/或Mg,和/或Zn,和/或Li)、和/或MnZn,和/或NiZn,和/或MgZn,和/或LiZn铁氧体;和/或R 3Fe 5O 12,R为稀土元素(Y,和/或La,和/或Pr,和/或Nd,和/或Sm,和/或Eu,和/或Gd,和/或Tb,和/或Dy,和/或Ho,和/或Er,和/或Tm,和/或Yb,和/或Lu)。
在本发明中,所述第二电介质组分为高固有电矩取向极化损耗、高热离子驰豫极化损耗和高谐振极化损耗组分;选自①BaO-MgO-Ta 2O 5,和/或BaO-ZnO-Ta 2O 5,和/或BaO-MgO-Nb 2O 5,和/或BaO-ZnO-Nb 2O 5体系及它们之间的复合体系;②BaTi 4O 9,和/或BaTi 9O 20,(Zr,和/或Sn)TiO 4为基的体系;③BaO-Ln 2O 3-TiO 2,和/或CaO-Li 2O-Ln 2O 3-TiO 2(Ln 2O 3为镧系稀土氧化物)为基的体系;④A 5B 4O 15(A=Ba,和/或Sr,和/或Mg,和/或Zn,和/或Ca,B=Nb,和/或Ta),和/或AB 2O 6(A=Ca,和/或Co,和/或Mn,和/或Ni,和/或Zn;B=Nb,和/或Ta);(Ba 1-xM x)ZnO 5(M=Ca,和/或Sr,x=0~1.0),AgNb 1-xTa xO 3(x=0~1.0),和/或LnAlO 3(Ln=La,和/或Nd,和/或Sm),和/或Ta 2O 5-ZrO 2,和/或ZnTiO 3,和/或BiNbO 4系列。
在本发明中,所述第二磁介质为高磁滞损耗、高阻尼损耗、高畴壁共振损耗、高自然共振损耗、高尺寸共振损耗和高自旋波共振损耗组分;所述第二磁介质优选自M型六角铁氧体:BaM,和/或PbM,和/或SrM;X型六角铁氧体,包括Fe 2X;W型六角铁氧体,包括Mg 2W,和/或Mn 2W,和/或Fe 2W,和/或Co 2W,和/或Ni 2W,和/或Cu 2W,和/或Zn 2W;Y型六角铁氧体,包括Mg 2Y,和/或Mn 2Y,和/或Fe 2Y,和/或Co 2Y,和/或Ni 2Y,和/或Cu 2Y,和/或Zn 2Y;Z型六角铁氧体,包括Mg 2Z,和/或Mn 2Z,和/或Fe 2Z,和/或Co 2Z,和/或Ni 2Z,和/或Cu 2Z,和/或Zn 2Z。
所述第一电导介质和/或第二电导介质为增加自由电子、离子及掺杂缺陷和空位的多载流子高电导损耗组分;所述第一电导介质和/或第二电导介质选自ZnO系列,包括掺杂Al(AZO),和/或掺杂In(IZO),和/或掺杂Ga(GZO);磁性氧化物,包括CoO,和/或MnO,和/或Fe 3O 4,和/或NiO;及其它半导体氧化物,包括Ga 2O 3,和/或In 2O 3,和/或InSnO(ITO)。电导介质可以单独自成一体,作为加热介质的复合组分之一,也可以在电介质 组分和磁介质组分中,分别或同时配入。
在本发明中,具有核壳型结构的第一加热介质有三种结构形式,第一种结构形式是核壳型结构电矩-磁矩耦合加热介质1-H-1,其以所述第一磁介质的超细颗粒为核,通过种子生长法修饰所述第一电介质,或以第一电介质的超细颗粒为核,通过种子生长修饰所述第一磁介质组分,获得所述核壳型结构的电矩-磁矩耦合加热介质1-H-1;第二种结构形式是核壳型结构的电矩-电导耦合加热介质1-H-2,以所述第一电介质的超细颗粒为核,通过种子生长法修饰所述第一电导介质获得的;第三种结构形式是核壳型结构的电矩-磁矩-电导耦合加热介质1-H-3,以所述第一电介质的超细颗粒为核,通过种子生长法修饰所述第一磁介质和第一电导介质获得的;
形成具有所述核壳型结构的第一加热介质是通过物理化学法的介观尺度复合,具体制备方法为直接沉淀法,或共沉淀法,或醇盐水解法,或溶胶-凝胶法。
在本发明中,具有异质结型结构的第一加热介质有三种结构形式,第一种结构形式是异质结型结构的电矩-磁矩耦合加热介质1-Y-1,是以所述第一电介质与所述第一磁介质,在均匀混合状态下的焙烧熔融析出获得的;第二种结构形式的异质结型结构的电矩-电导耦合加热介质1-Y-2,是以所述第一电介质与所述第一电导介质,在均匀混合状态下的焙烧熔融析出获得的;第三种结构形式的异质结型结构的电矩-磁矩-电导耦合加热介质1-Y-3,是以所述第一电介质和所述第一磁介质与所述第一电导介质,在均匀混合状态下的焙烧熔融析出获得的。
形成具有所述异质结型结构的第一加热介质是通过物理化学法的介观尺度复合,具体制备方法为熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法。
在本发明中,具有包覆型结构的第一加热介质有两种结构形式,第一种结构形式是包覆型结构的电矩-磁矩耦合加热介质1-B-1,是以所述的第一磁介质为母颗粒,包覆所述第一电介质的超细颗粒而获得的;第二种结构形式是包覆型结构的电矩-磁矩-电导耦合加热介质1-B-2,是以所述第一 磁介质组分为母颗粒,包覆所述第一电介质的超细颗粒和所述电导介质的超细颗粒而获得的。
形成具有所述包覆型结构的第一加热介质是通过物理化学法的介观尺度复合,具体制备方法为机械熔合包覆法,或高能磨机引发的机械力化学效应法,或低热固相反应法,或溶胶-凝胶法。
在本发明中,具有多孔型结构的第一加热介质是多孔型结构的电矩-磁矩-电导耦合加热介质1-K。
形成具有多孔型结构的第一加热介质1-K是通过物理化学法的介观尺度复合,具体制备方法为:将所述第一电介质的超细颗粒和所述第一磁介质的超细颗粒及所述第一电导介质的超细颗粒与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级获得的;
或将所述第一电介质的超细颗粒和所述第一磁介质的超细颗粒及所述第一电导介质的超细颗粒,通过N,N-亚甲基双丙烯酰胺网络剂和硫酸铵引发丙烯酰胺自由基聚合反应的高分子网络凝胶法,获得的凝胶经干燥、烧结和粉碎及分级获得的;
或将所述第一磁介质及所述电导介质制备的前驱体溶液,均匀混入所述第一电介质的超细颗粒,加入络合剂与金属离子发生络合反应的金属络合物凝胶法,得到的可溶性络合物网络凝胶经干燥、烧结和粉碎及分级获得的;
或将通过溶液中的所述第一磁介质组分的离子和所述的电导介质组分的离子和沉淀剂,对所述第一电介质的多孔体进行沉淀法修饰,使孔隙内表面形成所述第一磁介质组分和所述第一电导介质组分的复合膜层获得的;
在本发明中,所述多孔型结构的第一加热介质1-K的孔径尺寸为2nm~50μm,孔隙率为70%~95%。
本发明优选将所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K进行选取得到低激发温度气溶胶发生基质的加热介质1-D。具体的,所述低激发温度气溶胶发生基质的加热介质1-D,从根据所述多孔型结构的电矩- 磁矩-电导耦合加热介质1-K中,选取满足开尔文(Kelvin)方程原理条件的,孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125W·m -1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获得低激发温度气溶胶发生基质的加热介质,激发温度为160℃~200℃,所述低激发温度气溶胶发生基质的加热介质1-D颗粒的粒度分布范围为15μm至500μm。
在本发明中,所述膜复合型结构的第一加热介质是膜复合型结构的电矩-磁矩-电导耦合加热介质1-M,通过物理化学法的介观尺度复合;形成具有所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M的具体制备方法为,将粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,与所述第一电介质的超细颗粒、所述第一磁介质的超细颗粒和所述第一电导介质的超细颗粒,充分混合后,通过喷涂或涂刷方法对铝片或铜片或不锈钢片进行单面或双面的膜复合,获得所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M;或采用化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法,或等离子喷涂法,制备所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M。
在本发明中,具有核壳型结构的第二加热介质有三种结构式形式,第一种结构形式是核壳型结构电矩-磁矩耦合加热介质2-H-1,以所述第二磁介质的超细颗粒为核,通过种子生长法修饰所述第二电介质而获得;或以所述第二电介质的超细颗粒为核,通过种子生长法修饰所述第二磁介质而获得;第二种结构形式是核壳型结构的电矩-电导耦合加热介质2-H-2,以所述第二电介质的超细颗粒为核,通过种子生长法修饰所述电导介质组分材料而获得;第三种结构形式是核壳型结构的电矩-磁矩-电导耦合加热介质2-H-3,以所述第二电介质的超细颗粒为核,通过种子生长法修饰所述第二磁介质组分材料和所述电导介质组分材料而获得。
形成具有所述核壳型结构的第二加热介质是通过物理化学法的介观尺 度复合,具体制备方法为直接沉淀法,或共沉淀法,或醇盐水解法或溶胶-凝胶法。
在本发明中,具有异质结型结构的第二加热介质有三种结构形式,第一种结构形式是异质结型结构的电矩-磁矩耦合加热介质2-Y-1,是以所述的第二电介质组分颗粒与所述的第二磁介质组分颗粒,在均匀混合状态下的焙烧熔融析出而获得;第二种结构形式是异质结型结构的电矩-电导耦合加热介质2-Y-2,是以所述第二电介质组分颗粒与所述第二电导介质组分颗粒,在均匀混合状态下的焙烧熔融析出而获得;第三种结构形式是异质结型结构的电矩-磁矩-电导耦合加热介质3-Y-3,是以所述第二电介质组分颗粒和所述第二磁介质组分颗粒与所述第二电导介质组分颗粒,在均匀混合状态下的焙烧熔融析出而获得。
形成具有异质结型结构的第二加热介质是通过物理化学法的介观尺度复合,具体制备方法为熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法。
在本发明中,具有包覆型结构的第二加热介质有两种结构形式,第一种结构形式是包覆型结构的电矩-磁矩耦合加热介质2-B-1,是以所述第二磁介质组分为母颗粒,包覆所述第二电介质组分的超细颗粒而获得;第二种结构形式是包覆型结构的电矩-磁矩-电导耦合加热介质2-B-2,是以所述第二磁介质组分为母颗粒,包覆所述第二电介质组分子超细颗粒和所述电导介质组分子超细颗粒而获得;
形成具有所述包覆型结构的第二加热介质是通过物理化学法的介观尺度复合,具体制备方法为机械熔合包覆法,或高能磨机引发的机械力化学效应法,或低热固相反应法和溶胶-凝胶法。
在本发明中,具有多孔型结构的第二加热介质是多孔型结构的电矩-磁矩-电导耦合加热介质2-K,其通过物理化学法的介观尺度复合,形成具有多孔型结构的电矩-磁矩-电导耦合加热介质2-K的具体制备方法为,将所述的第二电介质组分超细颗粒和所述的第二磁介质组分超细颗粒及所述的电导介质组分超细颗粒与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸- 氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级而获得;或将所述第二电介质组分超细颗粒和所述第二磁介质组分超细颗粒及所述电导介质组分超细颗粒,通过N,N-亚甲基双丙烯酰胺网络剂和硫酸铵引发丙烯酰胺自由基聚合反应的高分子网络凝胶法,获得的凝胶经干燥、烧结和粉碎及分级而获得;或将所述第二磁介质组分及所述电导介质组分制备的前驱体溶液,均匀混入所述第二电介质组分超细颗粒,加入络合剂与金属离子发生络合反应的金属络合物凝胶法,得到的可溶性络合物网络凝胶经干燥、烧结和粉碎及分级而获得;或通过溶液中的所述第二磁介质组分的离子和所述的电导介质组分的离子和沉淀剂,对所述第二电介质组分的多孔体进行沉淀法修饰,使孔隙内表面形成所述的第二磁介质组分和所述的电导介质组分的复合膜层而获得;所述多孔型结构的孔径尺寸为2nm至50μm,孔隙率为70%至95%。
在本发明中,所述具有多孔型结构的第二加热介质还可以是低激发温度气溶胶发生基质的加热介质2-D,所述的低激发温度气溶胶发生基质的加热介质2-D,从所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K中,选取满足开尔文(Kelvin)方程原理条件的,孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125W·m -1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获得低激发温度气溶胶发生基质的加热介质,激发温度为160℃至200℃,所述的低激发温度气溶胶发生基质的加热介质2-D颗粒的粒度分布范围为15μm至500μm。
在本发明中,具有膜复合型结构的第二加热介质是膜复合型结构的电矩-磁矩-电导耦合加热介质2-M,所述的通过物理化学法的介观尺度复合,形成具有所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M的具体制备方法为,将粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,与所述的第二电介质组分超细颗粒、所述的第二磁介质组分超细颗粒和所述的电导介质组分超细颗粒,充分混合后,通过喷涂或涂刷方法对铝片或铜片或不锈 钢片进行单面或双面的膜复合,获得所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M;或采用化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法,或等离子喷涂法,制备所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M。
在本发明中,所述第一电介质组分颗粒,或第一磁介质组分颗粒,或第二电介质组分颗粒,或第二磁介质组分颗粒,或第一电导介质组分颗粒的粒度分布范围均为20nm至200μm。所述第一电介质组分的超细颗粒,或第一磁介质组分的超细颗粒,或第二电介质组分的超细颗粒,或第二磁介质组分的超细颗粒,或第二电导介质组分的超细颗粒的粒度均为20nm至10μm;超细颗粒在颗粒尺寸上满足密集态超细颗粒聚集体对电磁波产生吸波致热的物性要求。
在本发明中,所述气溶胶发生系统加热结构包括三种结构,气溶胶发生系统加热结构A、气溶胶发生系统加热结构B和气溶胶发生系统加热结构C;
其中,所述气溶胶发生系统加热结构A是由加热腔a、预热壳体、气溶胶发生段、气溶胶发生基质、颗粒加热介质、气雾基质、箔片状膜复合型加热介质、金属颗粒层滤介、密封环圈、温控件等组成,其主要构成关系是:由管状极板构成的加热腔a固定连接在预热壳体内中部,气溶胶发生段置于加热腔a中轴孔管内,气溶胶发生段内含有气溶胶发生基质,气溶胶发生基质含有颗粒加热介质和气雾基质,还可掺入尺寸与烟草薄片相当的箔片状膜复合型加热介质,气溶胶发生段与滤嘴段之间夹着金属颗粒层滤介,加热腔a上端与密封环圈连接,并嵌套在预热壳体上部,温控件穿过加热腔a底座中心孔,置入气溶胶发生段2~5mm,加热腔a底座圆盘均布有8~36个直径为0.3~2mm的通孔,加热腔a底座为绝缘Al 2O 3陶瓷;
所述气溶胶发生系统加热结构B是由加热腔b、预热壳体、气溶胶发生段、气溶胶发生基质、颗粒加热介质、气雾基质、箔片状膜复合型加热介质、金属颗粒层滤介、密封环圈和温控件等组成,其主要构成关系是:由平面极板和块体加热介质1构成的加热腔b固定连接在预热壳体内中部,气溶胶发生段置于加热腔b中轴孔管内,气溶胶发生段内含有气溶胶发生 基质,气溶胶发生基质含有颗粒加热介质和气雾基质,还可掺入尺寸与烟草薄片相当的箔片状膜复合型加热介质,气溶胶发生段与滤嘴段之间夹着金属颗粒层滤介,加热腔b上端与密封环圈连接,并嵌套在预热壳体上部,温控件穿过加热腔b底座中心孔,进入气溶胶发生段2~5mm,加热腔a底座圆盘均布有8~36个直径为0.3~2mm的通孔,加热腔b底座为绝缘Al 2O 3陶瓷。块体加热介质1是所述块体加热介质的一种;
所述气溶胶发生系统加热结构C是由加热腔c、预热壳体、气溶胶发生段、气溶胶发生基质、颗粒加热介质、气雾基质、箔片状膜复合型加热介质、金属颗粒层滤介、透波陶瓷管和温控件等组成,其主要构成关系是:由立方形块体加热介质2构成的加热腔c固定连接在预热壳体内中部,气溶胶发生段置于加热腔c中轴孔管内,气溶胶发生段内含有气溶胶发生基质,气溶胶发生基质含有颗粒加热介质和气雾基质,还可掺入尺寸与烟草薄片相当的箔片状膜复合型加热介质,气溶胶发生段与滤嘴段之间夹着金属颗粒层滤介,加热腔c中轴嵌套透波陶瓷密封管,所述透波陶瓷管材料为石英陶瓷SiO 2或高氧化铝陶瓷Al 2O 3或Si 3N 4陶瓷,温控件设置在加热腔底c下部侧壁处。块体加热介质2是所述块体加热介质的一种。
在本发明中,所述加热腔a由管状极板构成,管状极板通过在管状绝缘陶瓷基底内表面复合的曲面电极1和曲面电极2构成,曲面电极1和曲面电极2分片对置,曲面电极1和曲面电极2均各为2至5片,优选地,曲面电极1和曲面电极2均为3片,间隔对置,相邻的曲面电极1和曲面电极2之间由绝缘Al 2O 3陶瓷隔开,也可填充绝缘材料聚酰亚胺或芳纶树脂(聚间苯二甲酰间苯二胺),曲面电极1和曲面电极2均为铜质或银质薄片材料,加热腔a长度与气溶胶发生段相当,直径为本领域公知。所述加热腔a用于交变电磁场频率为0.3MHz~300MHz范围时的加热。曲面电极1是所述电极1的一种,曲面电极2是所述电极2的一种。
所述加热腔b由平面极板1、平面极板2和块体加热介质1构成,平面极板1和平面极板2平行对置,间距为气溶胶发生段直径值,平面极板1和平面极板2两端各对夹着1块体加热介质1,在2块对夹的块体加热介质1的对称中心设置有圆柱形孔,直径为气溶胶发生段直径值,长度为气 溶胶发生段长度值。所述加热腔b用于交变电磁场频率为0.3MHz~300MHz范围时的加热。平面电极1是所述电极1的一种,平面电极2是所述电极2的一种。
所述加热腔c由块体加热介质2、金属屏蔽壳体和嵌入块体加热介质2的天线(如PIFA平面倒F天线)构成,块体加热介质2为立方体形状,在对称轴线上设置有圆柱形孔,孔深为气溶胶发生段长度值,圆柱形孔内嵌套着透波陶瓷管,透波陶瓷管内径为气溶胶发生段直径值。在对应于加热腔c进气座孔下方的块体加热介质2内,嵌入天线(如PIFA平面倒F天线),天线馈线基脚延伸至块体加热介质2外,在圆柱形孔下方与天线之间的块体加热介质2的对称轴线处,设有与在圆柱形孔连通的进气孔,进气孔通过数个小孔与块体加热介质2外部相通,金属屏蔽壳体将块体加热介质2封闭其中。所述加热腔c用于交变电磁场频率为0.3GHz~30GHz范围时的加热。
在本发明中,所述预热壳体由包围加热腔a,或包围加热腔b,或包围加热腔c的金属屏蔽壳体,并与加热腔a,或与加热腔b,或与加热腔c的金属屏蔽壳体外壁具有一定间隙的壳体构成,间隙约为1.5~3mm。预热壳体的基材为六方硼碳氮三元吸波陶瓷(h-BCN),预热壳体内壁涂加热介质的颗粒涂层,成膜剂为硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶,800℃以上高温烧结固化。
室温气流由进气孔流经所述间隙空间得到预热后,再导入加热腔a,或加热腔b,或加热腔c;所述预热壳体或采用所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M材料制作,用于包围加热腔a或包围加热腔b;所述预热壳体或采用所述的膜复合型结构的电矩-磁矩-电导耦合加热介质2-M材料制作,用于包围加热腔c。
在本发明中,所述气溶胶发生段,含有气溶胶发生基质和金属颗粒层滤介,或还含有裁切为与烟草薄片尺寸相当的箔片状膜复合型加热介质,外形为卷烟状,尺寸为本领域公知。箔片状膜复合型加热介质的掺混质量比率为3~30%。具体地,所述气溶胶发生段1由气溶胶发生基质1和金属颗粒层滤介或含有所述箔片状膜复合型加热介质1-M,构成能与卷烟滤嘴 段接装的结构,一端与滤嘴段相连,另一端为自由端,滤嘴段与气溶胶发生段1连接界面之间是金属颗粒层滤介;所述气溶胶发生段2由气溶胶发生基质2和金属颗粒层滤介或含有所述箔片状膜复合型加热介质2-M,构成能与卷烟滤嘴段接装的结构,一端与滤嘴段相连,另一端为自由端,滤嘴段与气溶胶发生段2连接界面之间是金属颗粒层滤介。
气溶胶发生基质的一端为自由端,另一端与滤嘴段相连,连接界面之间是金属颗粒层滤介。滤嘴段可以是本领域公知的普通滤嘴,也可以是一些具有特别的降温、吸附、过滤功能的新型滤嘴。
所述气溶胶发生基质,由颗粒加热介质和气雾基质构成。颗粒加热介质直接与气雾基质共混,或在气雾基质中的烟草薄片抄造或辊压前,将颗粒加热介质掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比为5~60%的颗粒加热介质,或将多孔型结构的颗粒加热介质,或将低激发温度气溶胶发生基质吸附气雾基质中的液相组分后,与颗粒加热介质和气雾基质共混。所述气雾基质中的液相组分为本领域公知;烟雾基质除液相组分外,其它组分由本领域已公知的各种单体基材和基材载体组成。
具体实施例中,所述气溶胶发生基质1,由所述的第一加热介质颗粒和气雾基质构成,所述第一加热介质颗粒直接与气雾基质共混,所述第一加热介质颗粒的粒度分布范围为15μm至500μm;或在气雾基质中的烟草薄片抄造或辊压前,将所述第一加热介质颗粒掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比率为5%至60%的第一加热介质颗粒,第一加热介质颗粒粒度分布范围为0.1μm至100μm;或将所述的多孔型结构的电矩-磁矩-电导耦合加热介质1-K颗粒,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的多孔型结构的电矩-磁矩-电导耦合加热介质1-K颗粒的粒度分布范围为15μm至500μm;或将所述的低激发温度气溶胶发生基质的加热介质1-D颗粒,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的低激发温度气溶胶发生基质的加热介质1-D颗粒的粒度分布范围为15μm至500μm。所述气溶胶发生基质2,由所述的第二加热介质颗粒和气雾基质构成,所述第二加热介质颗粒直接与气雾基质共混,所述第二加热介质颗粒的粒度分布范围为15μm至500μm;或在气雾基质中 的烟草薄片抄造或辊压前,将所述第二加热介质颗粒掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比率为5%至60%的第二加热介质颗粒,第二加热介质颗粒粒度分布范围为0.1μm至100μm;或将所述的多孔型结构的电矩-磁矩-电导耦合加热介质2-K,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的多孔型结构的电矩-磁矩-电导耦合加热介质2-K颗粒的粒度分布范围为15μm至500μm;或将所述的低激发温度气溶胶发生基质的加热介质2-D,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的低激发温度气溶胶发生基质的加热介质2-D颗粒的粒度分布范围为15μm至500μm。
所述颗粒加热介质,是由所述高极化损耗电介质、高磁滞损耗磁介质和高电导损耗电导介质,通过多组分物理化学法复合构建的,具有核壳型结构、异质结型结构、包覆型结构和多孔型结构中的一种结构,或其中多种结构混合的颗粒,粒度分布范围为0.1μm~500μm,其中,直接与气雾基质共混的颗粒加热介质粒度分布范围为15μm~500μm;掺入烟草薄片抄造浆体或辊压膏体中的颗粒加热介质粒度分布范围为0.1μm~100μm。
所述块体加热介质,是由所述高极化损耗电介质、高磁滞损耗磁介质和高电导损耗电导介质,通过多组分物理化学法复合构建的,具有核壳型结构、异质结型结构、包覆型结构和多孔型结构中的一种结构,或其中多种结构颗粒与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜混合后,通过压制和低温焙烧形成。具体案例中,块体加热介质1由所述第一加热介质与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,混合通过压制和低温焙烧形成;块体加热介质2由述第二加热介质与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,混合通过压制和低温焙烧形成。
所述箔片状膜复合型加热介质,是由所述高极化损耗电介质、高磁滞损耗磁介质和高电导损耗电导介质,通过多组分物理化学法复合构建的,具有核壳型结构、异质结型结构、包覆型结构和多孔型结构中的一种结构,或其中多种结构的混合颗粒,通过流延法或喷涂法,或其它化学气相沉积法、气相热解法、气相水解法、气相燃烧法和火焰气相沉积法等制备方法,对铝箔、铜箔进行单面或双面的膜复合,再经裁切获得,尺寸与烟草薄片 相当。
所述金属颗粒层滤介,由尺寸为0.5~1mm的铝质颗粒压制而成,厚度约为0.5~2mm。
本发明提供了一种利用多卡耦合巨热效应的气溶胶发生系统,包括加热结构,所述加热结构包括机壳,所述机壳上设置机壳进气孔;
所述机壳内设置预热壳体;机壳与预热壳体同轴开口;
所述预热壳体的开口与滤嘴段相连;所述预热壳体上设有预热壳体进气孔;
所述预热壳体内部设有多块极板;多块极板形成加热腔;
所述加热腔的底部设有加热腔底座;温控件穿过所述加热腔底座的中心孔,加热腔底座上设有底座圆盘进气孔;
加热腔的上端与密封环圈连接,并嵌套在预热壳体的开口处;
所述极板的内部为气溶胶发生段;气溶胶发生段与滤嘴段之间设有金属颗粒层滤介;
所述气溶胶发生段中含有气溶胶发生基质1;
所述极板通过极板馈线与加热驱动单元相连;
所述气溶胶发生基质1包括所述的第一加热介质。
本发明还提供了一种利用多卡耦合巨热效应的气溶胶发生系统,包括加热结构,所述加热结构包括机壳,所述机壳上设置机壳进气孔;
所述机壳内设置预热壳体;机壳与预热壳体同轴开口;
所述预热壳体的开口与滤嘴段相连;所述预热壳体上设有预热壳体进气孔;
所述预热壳体内部设有金属屏蔽壳体、块体加热介质2和嵌入所述块体加热介质2的天线;所述金属屏蔽壳体包裹在块体加热介质2的外部;
所述金属屏蔽壳体、块体加热介质2和嵌入所述块体加热介质2的天线形成加热腔;
所述加热腔的进气座孔通过4~10个直径为0.5~2mm的进气孔道与块体加热介质2的外部相通;
所述块体加热介质2为立方体;在所述块体加热介质2的对称轴线上 设有圆柱形孔,孔的内部形成气溶胶发生段;所述圆柱形孔内嵌套设透波陶瓷管,所述透波陶瓷管的内径为气溶胶发生段的直径;
所述加热腔的上端与密封环圈连接,并嵌套在预热壳体的开口处;
所述气溶胶发生段与滤嘴段之间设有金属颗粒层滤介;
所述气溶胶发生段中含有气溶胶发生基质2;
所述天线通过天线馈线基脚与加热驱动单元相连;
所述气溶胶发生基质2包括所述的第二加热介质。
在本发明中,气溶胶发生系统有三种形式,即第一种气溶胶发生系统形式、第二种气溶胶发生系统形式和第三种气溶胶发生系统形式,分别具有气溶胶发生系统加热结构A、气溶胶发生系统加热结构B和气溶胶发生系统加热结构C,其中:
所述第一种气溶胶发生系统形式,主要由气溶胶发生段、气溶胶发生基质、金属颗粒层滤介,或有箔片状膜复合型加热介质,以及加热腔a、管状极板、曲面电极1和曲面电极2、管状绝缘陶瓷基底、加热腔a底座、温控件、预热壳体、加热驱动单元和机壳组成,其中,加热驱动单元由功放与控制、交变电磁场发生器和电池组成,由功放与控制单元提供的交变电压,通过馈线分别与曲面电极1和曲面电极2相连;
所述第二种气溶胶发生系统形式,主要由气溶胶发生段、气溶胶发生基质、金属颗粒层滤介,或有箔片状膜复合型加热介质,以及加热腔b、平面电极1和平面电极2、块体加热介质1、加热腔b底座、温控件、预热壳体、加热驱动单元和机壳组成,其中,加热驱动单元由功放与控制、交变电磁场发生器和电池组成,由功放与控制单元提供的交变电压,通过馈线分别与平面电极1和平面电极2相连;
所述第三种气溶胶发生系统形式,主要由气溶胶发生段、气溶胶发生基质、金属颗粒层滤介,或有箔片状膜复合型加热介质,以及加热腔c、块体加热介质2、透波陶瓷管、嵌入块体加热介质2的天线、天线馈线基脚、PCB电路板、温控件、金属屏蔽壳体、预热壳体、加热驱动单元和机壳组成,其中,加热驱动单元由功放与控制、交变电磁场发生源和电池组成。
所述三种气溶胶发生系统形式中的加热驱动单元中,所采用的交变电磁场频率范围均为0.3MHz~30GHz;其中,所述第一种气溶胶发生系统形式和所述第二种气溶胶发生系统形式采用的频率范围均为0.3MHz~300MHz,能够满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动的匹配要求,具有兼容和平衡多卡耦合响应频率的频率区间,即在此频率区间内,电介质组分能够增强固有电矩取向极化和热离子驰豫极化的驰豫极化损耗;磁介质组分能够增大磁滞损耗和阻尼损耗及共振损耗中的畴壁共振和自然共振;电导介质组分能增加自由电子和离子等载流子的电导损耗和密集态超细颗粒聚集体的吸波损耗。第三种气溶胶发生系统形式采用的频率范围均为0.3GHz~30GHz,能够满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动的匹配要求,具有兼容和平衡多卡耦合响应频率的频率区间,即在此频率区间内,电介质组分能够增强固有电矩取向极化和热离子驰豫极化的驰豫极化损耗,以及离子位移极化的谐振极化损耗;磁介质组分能够增大磁滞损耗和阻尼损耗,以及共振损耗中的畴壁共振、自然共振、尺寸共振、自旋波共振;电导介质组分能增加自由电子和离子等载流子的电导损耗和密集态超细颗粒聚集体的吸波损耗。
为了详细的说明本发明的利用多卡耦合巨热效应的气溶胶系统,详见 以下内容
参见图1~图6,主要是利用多卡耦合巨热效应的气溶胶系统和方法的第一种气溶胶系统形式(01),所涉及的材料和单元结构包括:气溶胶发生段1(011)、预热壳体(012)、加热腔a(013)、极板馈线(014)、功放与控制(015)、交变电磁场发生器(016)、电池(017)、机壳(018),以及金属颗粒层滤介(0111)(为了防止电磁波的辐射泄漏)、气溶胶发生基质1(0112)、第一加热介质颗粒(0113)、箔片状膜复合型加热介质1(0114)、预热壳体进气孔(0121)、机壳进气孔(0181)、预热壳体的基材(0122)、第一加热介质颗粒涂层(0123)、密封环圈(0131)、管状极板(0132)、加热腔a底座(0133)、温控件(0134)、底座圆盘进气孔(0135)、曲面电极1(01321)和曲面电极2(01322)、间隙绝缘材料(01323)、曲面电极2的馈线连接位(01324)和曲面电极1(01325)。
本发明在图1所示的所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01),和图2所示与图3所示的A-A截面处所述气溶胶发生系统加热结构A,和图4所示与图5所示的A-A截面处所述气溶胶发生段1中含有箔片状膜复合型加热介质1,以及图6所示的所述管状极板的所述曲面电极1和曲面电极2,所涉及采用的所述第一加热介质颗粒(0113)、箔片状膜复合型加热介质1(0114)和气溶胶发生基质1(0112)制备的具体方法,以及所述管状极板(0132)的所述曲面电极1(01321)和曲面电极2(01322)、和第一加热介质颗粒涂层(0123)的制备依据与方法,及步骤包括:
所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01),加热驱动单元所采用的交变电磁场频率范围为0.3MHz~300MHz,兼容和平衡多卡耦合频率响应区间的设计原则是:对电介质组分,增强固有电矩取向极化和热离子驰豫极化的驰豫极化损耗;对磁介质组分,增大磁滞损耗和阻尼损耗及畴壁共振损耗;对电导介质组分,增加自由电子和离子等载流子的电导损耗和密集态超细颗粒聚集体的吸波损耗,适用于第一种气溶胶发生系统形式(01)的加热介质颗粒,本发明称之为第一加热介质颗粒。
在本发明中,所述第一加热介质颗粒的设计方法是:对电介质、磁介质和电导介质进行多相组分的物理化学法复合构建,加热介质采用核壳型结构、异质结型结构、包覆型结构、多孔型结构和膜复合型结构中的一种或多种结构,使每一种结构都对电介质、磁介质和电导介质进行介观层面的复合。
第Ⅰ-1步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中所涉及采用的所述第一加热介质颗粒(0113)的制备:
(1)所述电介质的组分中包括含有增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分,所述组分包括:①钙钛矿结构体系,包括BaTiO 3,和/或PbTiO 3,和/或NaNbO 3,和/或KNbO 3,和/或BiFeO 3;②钨青铜结构体系,包括偏铌酸铅,和/或Sr 1-xBa xNb 2O 6;③铋层状结构体 系,包括SrBi 2Ta 2O 9,和/或Bi 4Ti 3O 12,和/或SrBi 4Ti 4O 15;④焦绿石结构体系,包括Cd 2Nb 2O 7,和/或Pb 2Nb 2O 7
(2)所述磁介质的组分中包括含有增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分,所述组分包括:尖晶石型铁氧体,包括MFe 2O 4(M=Mn,和/或Fe,和/或Ni,和/或Co,和/或Cu,和/或Mg,和/或Zn,和/或Li),和/或MnZn,和/或NiZn,和/或MgZn,和/或LiZn铁氧体;和/或R 3Fe 5O 12,R为稀土元素(Y,和/或La,和/或Pr,和/或Nd,和/或Sm,和/或Eu,和/或Gd,和/或Tb,和/或Dy,和/或Ho,和/或Er,和/或Tm,和/或Yb,和/或Lu)
(3)所述电导介质的组分中包括含有增加自由电子、离子及掺杂缺陷和空位等载流子的组分。所述电导介质,可以单独自成一体,作为加热介质的复合组分之一,也可以在电介质组分和磁介质组分中,分别或同时配入。所述电导介质组分包括:ZnO系列,包括掺杂Al(AZO),和/或掺杂In(IZO),和/或掺杂Ga(GZO);磁性氧化物,包括CoO,和/或MnO,和/或Fe 3O 4,和/或NiO;及其它半导体氧化物,包括Ga 2O 3,和/或In 2O 3,和/或InSnO(ITO)。
(4)本发明对所述电介质、磁介质和电导介质进行多相组分的物理化学法复合构建:
其一,是以超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分颗粒为核,或以超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒为核,通过直接沉淀法,或共沉淀法,或醇盐水解法或溶胶-凝胶法,利用沉淀剂,将超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分离子,或将超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分离子,或超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分离子的沉淀物修饰到核颗粒表面,经煅烧后获得核壳型结构的电矩-磁矩耦合加热介质,或获得核壳型结构的电矩-电导耦合加热介质;
其二,是通过熔盐法,或高热固相反应法或机械合金化法,分别将超 细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒,与超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分的颗粒均匀混合;或将超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒,与超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分颗粒均匀混合;或将超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分的颗粒,和超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分的颗粒与超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分颗粒均匀混合,通过焙烧,在异相接触界面区域熔融析出,获得异质结型结构的电矩-磁矩耦合加热介质;或获得异质结型结构的电矩-电导耦合加热介质;或获得异质结型结构的电矩-磁矩-电导耦合加热介质。也可以通过控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法等方法,在异相接触界面区域外延生长,获得异质结型结构的电矩-磁矩耦合加热介质;或获得异质结型结构的电矩-电导耦合加热介质;或获得异质结型结构的电矩-磁矩-电导耦合加热介质;
其三,是以超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分为母颗粒,包覆超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分子颗粒,或以超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分为母颗粒,包覆超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分子颗粒和超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分子颗粒,通过机械熔合包覆设备的剪切、摩擦、挤压、冲击等机械力引发的机械力化学效应,获得包覆型结构的电矩-磁矩-电导耦合加热介质。对微溶于水或含有结晶水的超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分颗粒、超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒,可以通过低热固相反应法的充分混合研磨,使颗粒表面形成冷溶熔层,析出离 子在冷溶熔层中相互扩散,伴随着研磨过程的持续进行,颗粒表面不断形成新的冷溶熔层,每个颗粒表面的冷溶熔层都相当于一个微反应区,生成的产物成核长大,获得包覆型结构的电矩-磁矩-电导耦合加热介质。也可以对能够发生缩聚反应的超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分、超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分所形成的胶体粒子分散体系,通过溶胶-凝胶法缩合反应的进一步聚集、粘结形成的三维网络结构,经低温热处理消解和高温烧结,获得包覆型结构的电矩-磁矩-电导耦合加热介质;
其四,是将超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分颗粒、超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒、超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分颗粒、无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得多孔型结构的电矩-磁矩-电导耦合加热介质。对水溶性超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分颗粒、超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒、超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分颗粒,也可通过高分子网络凝胶法,利用丙烯酰胺自由基聚合反应和网络剂将高分子链连接成网络得到的凝胶进行烧结。或对不溶于醇的超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分颗粒、超细所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分颗粒、超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分颗粒,可通过金属络合物凝胶法,在金属无机盐前驱体溶液中,加入络合剂与金属离子发生络合反应形成可溶性络合物或络盐形成的网络凝胶进行烧结,获得多孔型结构的电矩-磁矩-电导耦合加热介质。还可以通过利用溶液中的超细所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组 分离子和超细所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分离子,通过适当的沉淀剂,对高极化损耗电介质多孔陶瓷进行沉淀法修饰,使孔隙内表面形成所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分和所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分的复合膜层,获得多孔型结构的电矩-磁矩-电导耦合加热介质。此外,还可以采用化学镀法对高极化损耗电介质多孔陶瓷进行孔隙修饰,将吸附在孔隙内镀液中的所述增加自由电子、离子及掺杂缺陷和空位等载流子的组分金属离子,被镀液中的还原剂催化还原成金属,并沉积在孔隙内表面,获得多孔型结构的电矩-电导耦合加热介质;
其五,是将所述物理化学法其一获得的核壳型结构的电矩-电导耦合加热介质颗粒,或所述物理化学法其二获得的异质结型结构的电矩-磁矩耦合加热介质颗粒,或所述物理化学法其四获得的多孔型结构的电矩-电导耦合加热介质颗粒与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜混合后,通过喷涂或涂刷方法对铝片或铜片或不锈钢片进行单面或双面的膜复合,获得膜复合型结构的电矩-磁矩-电导耦合加热介质。还可以通过化学气相沉积法,或气相热解法,或气相水解法,或相燃烧法,或火焰气相沉积法,或等离子喷涂法,将所述增大磁滞损耗、阻尼损耗和畴壁共振损耗,同时增加密集态超细颗粒聚集体的吸波损耗的组分和所述增强固有电矩取向极化和热离子驰豫极化而能导致高驰豫极化损耗的组分,在铝片或铜片或不锈钢片进行单面或双面的膜复合,获得膜复合型结构的电矩-磁矩-电导耦合加热介质。
所述第一步中采用的第一加热介质颗粒(0113),通过粉碎法和/或合成法加工至粒度分布范围为0.1μm~500μm,其中,直接与气雾基质共混的颗粒加热介质粒度分布范围为15μm~500μm;掺入烟草薄片抄造浆体或辊压膏体中的颗粒加热介质粒度分布范围为0.1μm~100μm。
第Ⅰ-2步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中所涉及采用的所述箔片状膜复合型加热介质1(0114)的制备:
将第Ⅰ-1步制备得到的第一加热介质的超细颗粒与羧甲基纤维素,或瓜 尔胶或烟草浸膏混合后,通过流延法或喷涂法对铝箔或铜箔进行单面或双面的膜复合,再经裁切获得,尺寸与烟草薄片相当,所述第一加热介质颗粒粒度分布范围为15μm至100μm;所述箔片状膜复合型加热介质1,或采用第一电介质组分和第一磁介质组分的前驱体,通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法进行制备方法,对铝箔或铜箔进行单面或双面的膜复合,再经裁切获得,尺寸与烟草薄片相当。
第Ⅰ-3步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中所涉及采用的所述气溶胶发生基质1(0112)的制备:
将第Ⅰ-1步制备得到的第一加热介质颗粒(0113)直接与气雾基质共混,所述第一加热介质颗粒的粒度分布范围为15μm~500μm;也可以在气雾基质中的烟草薄片抄造或辊压前,将第Ⅰ-1步制备得到的第一加热介质颗粒(0113)掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比率为5~60%的第Ⅰ-1步制备得到的第一加热介质颗粒(0113),所述第一加热介质颗粒粒度分布范围为0.1μm至100μm;或将多孔型结构的电矩-磁矩-电导耦合加热介质颗粒,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的多孔型结构的电矩-磁矩-电导耦合加热介质颗粒的粒度分布范围为15μm~500μm;或将低激发温度气溶胶发生基质的加热介质颗粒,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的低激发温度气溶胶发生基质的加热介质颗粒的粒度分布范围为15μm至500μm。还可在所述气溶胶发生基质1(0112)中添加所述箔片状膜复合型加热介质1(0114),掺混质量比率为3~30%。
第Ⅰ-4步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中所涉及采用的所述管状极板(0132)的所述曲面电极1(01321)和曲面电极2(01322)的制备:
所述管状极板(0132)是通过在管状绝缘陶瓷基底内表面复合的所述曲面电极1(01321)和曲面电极2(01322)构成,曲面电极1和曲面电极2分片对置,曲面电极1和曲面电极2均各为2至5片,优选地,曲面电 极1和曲面电极2均为3片,间隔对置,相邻的曲面电极1和曲面电极2之间由间隙绝缘材料(01323)隔开,间隙绝缘材料可以是管状绝缘陶瓷基底材料,也可以是聚酰亚胺或芳纶树脂(聚间苯二甲酰间苯二胺),绝缘陶瓷基底材料为Al 2O 3陶瓷,曲面电极1和曲面电极2之间的间隙0.5~2mm,优选地,曲面电极1和曲面电极2之间的间隙1mm,曲面电极1和曲面电极2材质为铜或银,曲面电极1和曲面电极2的高度与气溶胶发生段相当,管状极板直径为气溶胶发生段直径值,在每片曲面电极1和曲面电极2对应于所述管状极板(0132)的下端设有馈线连接位(01324)和(01325),通过馈线与气溶胶发生系统的加热驱动单元连接。
第Ⅰ-5步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中所涉及采用的所述第一加热介质颗粒涂层(0123)的制备:
所述第一加热介质颗粒涂层(0123)的基材为六方硼碳氮三元吸波陶瓷(h-BCN),将第一加热介质颗粒与成膜剂硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶充分混合,涂覆成膜,在800℃以上高温烧结固化,形成所述第一加热介质颗粒涂层(0123)。所述第一加热介质颗粒涂层(0123)也可以是以金属材料,如铝,或铜或不锈钢的薄片为基底,涂覆由第一步制备得到的颗粒加热介质(0112)和无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜混合浆液,通过300℃~450℃热处理,形成述所述预热壳体涂层(0123)。还可以通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法,或等离子喷涂法,在铝,或铜或不锈钢薄片上沉降和加热获得。
第Ⅰ-6步,所述金属颗粒层滤介(0111)由尺寸为0.5~1.5mm的铝质颗粒压制而成,厚度约为0.2~1.2mm;所述密封环圈(0131)为硅橡胶材质;所述加热腔a底座圆盘(0133)为绝缘Al 2O 3陶瓷材料。圆盘上均布有8~36个直径为0.3~2mm的通孔;温控件(0134)穿过加热腔a底座中心孔,进入气溶胶发生段(011)2~5mm。
本发明图7和图8中所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02),所涉及的材料和单元结构包括: 气溶胶发生段1(021)、预热壳体(022)、加热腔b(023)、极板馈线(024)、功放与控制(025)、交变电磁场发生器(026)、电池(027)、机壳(028),以及金属颗粒层滤介(0211)、气溶胶发生基质1(0212)、第一加热介质颗粒(0213)、预热壳体进气孔(0221)、预热壳体的基材(0222)、第一加热介质颗粒涂层(0223)、密封环圈(0231)、平面极板(0232)、加热腔b底座(0233)、温控件(0234)、块体加热介质1(0235)、平面电极1(02321)和平面电极2(02322)。
本发明在图7所示的所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02),和图8所示的C-C截面处所述气溶胶发生系统加热结构B所涉及采用的所述第一加热介质颗粒(0213)、块体加热介质1(0235),和气溶胶发生基质1(0212)制备的具体方法,以及所述平面电极1(02321)和平面电极2(02322)及第一加热介质颗粒涂层(0223)的制备依据与方法,及步骤包括:
所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02),加热驱动单元所采用的交变电磁场频率范围为0.3MHz~300MHz,兼容和平衡多卡耦合频率响应区间的设计原则是:对电介质组分,增强固有电矩取向极化和热离子驰豫极化的驰豫极化损耗;对磁介质组分,增大磁滞损耗和阻尼损耗及畴壁共振损耗;对电导介质组分,增加自由电子和离子等载流子的电导损耗和密集态超细颗粒聚集体的吸波损耗。
第Ⅱ-1步,第二种气溶胶发生系统形式中第一加热介质颗粒(0213)的制备与第一种气溶胶发生系统形式(01)中所涉及采用的所述第一加热介质颗粒(0113)的制备一致,在此不再赘述。
第Ⅱ-1步制备的所述第一加热介质颗粒(0213),通过粉碎法和/或合成法加工至粒度分布范围为0.1μm~500μm,其中,直接与气雾基质共混的颗粒加热介质粒度分布范围为15μm~500μm;掺入烟草薄片抄造浆体或辊压膏体中的颗粒加热介质粒度分布范围为0.1μm~100μm。
第Ⅱ-2步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02)中所涉及采用的所述块体加热介质1(0235) 是将第Ⅱ-2步制备的所述第一加热介质颗粒(0213)与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,混合通过压制和低温焙烧形成。
第Ⅱ-3步,将第Ⅱ-1步制备得到的第一加热介质颗粒(0213)直接与气雾基质共混,所述第一加热介质颗粒的粒度分布范围为15μm~500μm;也可以在气雾基质中的烟草薄片抄造或辊压前,将第一步制备得到的第一加热介质颗粒(0213)掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比率为5~60%的第Ⅱ-1步制备得到的第一加热介质颗粒(0213),所述第一加热介质颗粒粒度分布范围为0.1μm至100μm;或将多孔型结构的电矩-磁矩-电导耦合加热介质颗粒,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的多孔型结构的电矩-磁矩-电导耦合加热介质颗粒的粒度分布范围为15μm~500μm;或将低激发温度气溶胶发生基质的加热介质颗粒,吸附气雾基质中的液相组分后与其它气雾基质共混,所述的低激发温度气溶胶发生基质的加热介质颗粒的粒度分布范围为15μm至500μm。还可在所述气溶胶发生基质1(0212)中添加所述箔片状膜复合型加热介质1(0214),掺混质量比率为3~30%。
第Ⅱ-4步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02)中所涉及采用的所述平面极板(0232)的所述平面电极1(02321)和平面电极2(02322)的制备:
所述平面极板(0232)是通过在平面绝缘陶瓷基底表面复合所述平面电极1(02321)和平面电极2(02322)构成,平面电极1和平面电极2的材质为铜或银,绝缘陶瓷基底材料为Al 2O 3陶瓷。
第Ⅱ-5步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02)中所涉及采用的所述(0223)的制备:
所述第一加热介质颗粒涂层(0223)的基材为六方硼碳氮三元吸波陶瓷(h-BCN),将第一加热介质颗粒与成膜剂硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶充分混合,涂覆成膜,在800℃以上高温烧结固化,形成所述第一加热介质颗粒涂层(0223)。所述第一加热介质颗粒涂层(0223)也可以是以金属材料,如铝,或铜或不锈钢的薄片为基底,涂覆由第一步制备得到的颗粒加热介质(0212)和无机粘结剂硅酸钠,或 磷酸二氢铝,或磷酸-氧化铜混合浆液,通过300℃~450℃热处理,形成述所述预热壳体涂层(0223)。还可以通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法,或等离子喷涂法,或等离子喷涂法,在铝,或铜或不锈钢薄片上沉降和加热获得。
第Ⅱ-6步,所述金属颗粒层滤介(0211)由尺寸为0.5~1mm的铝质颗粒压制而成,厚度约为0.5~2mm;所述密封环圈(0231)为硅橡胶材质;所述加热腔b底座圆盘(0233)为绝缘Al 2O 3陶瓷材料;温控件(0234)穿过加热腔b底座中心孔,进入气溶胶发生段(021)2~5mm。
本发明图9、图10和图11中所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03),所涉及的材料和单元结构包括:气溶胶发生段2(031)、预热壳体(032)、加热腔c(033)、PCB电路板控制(034)、交变电磁场发生源(035)、电池(036)、机壳(037),以及气溶胶发生基质2(0312)、第二加热介质颗粒(0313)、预热壳体进气孔(0321)、预热壳体(0322)、第二加热介质颗粒涂层(0323)、金属颗粒层滤介(0331)、块体加热介质2(0332)、温控件(0333)、加热腔c进气孔道(0334)、加热腔c进气座孔(0335)、天线(0336)、天线馈线基脚(0337)和加热腔c金属屏蔽壳体(0338)、透波陶瓷管(0339)、机壳进气口(0371)。
本发明在图9所示的所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03),图10和图11所示的C-C截面处所述气溶胶发生系统加热结构C所涉及采用的所述第二加热介质颗粒(0313)、块体加热介质2(0332),和气溶胶发生基质2(0312)制备的具体方法,以及所述第二加热介质颗粒涂层(0323)的制备依据与方法,及步骤包括:
所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03),加热驱动单元所采用的交变电磁场频率范围为0.3GHz~30GHz,兼容和平衡多卡耦合频率响应区间的设计原则是:对电介质组分,增强固有电矩取向极化和热离子驰豫极化的驰豫极化损耗及离子位移极化的谐振极化损耗;对磁介质组分,增大磁滞损耗和阻尼损耗及共振损耗中 的畴壁共振、自然共振、尺寸共振、自旋波共振;对电导介质组分,增加自由电子和离子等载流子的电导损耗和密集态超细颗粒聚集体的吸波损耗。
第Ⅲ-1步,所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)中所涉及采用的所述第二加热介质颗粒(0313)的制备与第一种气溶胶发生系统形式(01)中所涉及采用的所述第一加热介质颗粒(0113)的制备一致,在此不再赘述。
所述第二加热介质颗粒(0313),通过粉碎法和/或合成法加工至粒度分布范围为0.1μm~500μm,其中,直接与气雾基质共混的颗粒加热介质粒度分布范围为15μm~500μm;掺入烟草薄片抄造浆体或辊压膏体中的颗粒加热介质粒度分布范围为0.1μm~100μm。
第Ⅲ-2步,第三种气溶胶发生系统形式(03)中,所涉及采用的所述块体加热介质2(0332),是将第Ⅲ-1步制备的所述第二加热介质颗粒(0313)与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,混合通过压制和低温焙烧形成。所述天线(0336)采用PIFA平面倒F天线,天线(0336)在焙烧前被嵌入对应于加热腔c进气座孔(0335)下方的块体加热介质2内压制成型,天线馈线基脚(0337)延伸至块体加热介质2(0332)外,所述加热腔c进气座孔(0335)通过4~10个直径为0.5~2mm的加热腔c进气孔道(0334)与块体加热介质2(0332)外部相通,加热腔c金属屏蔽壳体(0338)将块体加热介质2封闭其中,加热腔c金属屏蔽壳体(0338)为铝,或铜或不锈钢材质。
第三种气溶胶发生系统形式(03)中,也可与气溶胶发生基质2共混添加箔片状膜复合型加热介质2,由所述第二加热介质颗粒与粘结剂羧甲基纤维素、瓜尔胶或烟草浸膏混合后,通过流延法或喷涂法,对铝箔,或铜箔进行单面或双面的膜复合,再经裁切获得,尺寸与烟草薄片相当。所述的箔片状膜复合型加热介质2,或采用所述第二电介质组分和利用所述第二磁介质组分的前驱体,通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法进行制备。
第Ⅲ-3步,第三种气溶胶发生系统形式(03)中所涉及采用的所述气 溶胶发生基质2(0312)的制备:
将第Ⅲ-1步制备得到的第二加热介质颗粒(0313)直接与气雾基质共混,所述第二加热介质颗粒的粒度分布范围为15μm~500μm;也可以在气雾基质中的烟草薄片抄造或辊压前,将第Ⅲ-1步制备得到的第二加热介质颗粒(0313)掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量比率为5~60%的第Ⅲ-1步制备得到的第二加热介质颗粒(0313),所述第二加热介质颗粒粒度分布范围为0.1μm至100μm;还可在所述气溶胶发生基质2(0312)中添加所述箔片状膜复合型加热介质2(0314),掺混质量比率为3~30%。
所述第二加热介质颗粒(0313)还可以是低激发温度气溶胶发生基质的加热介质颗粒,所述的低激发温度气溶胶发生基质的加热介质颗粒,是从第Ⅲ-1步制备得到的第二加热介质颗粒(0313)中,选取满足开尔文(Kelvin)方程原理条件的,孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125W·m -1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸分布范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获得低激发温度气溶胶发生基质的加热介质,激发温度为160℃至200℃,将所述低激发温度气溶胶发生基质的加热介质颗粒与其它气雾基质共混,所述的低激发温度气溶胶发生基质的加热介质颗粒的粒度分布范围为15μm至500μm。
第Ⅲ-4步,第三种气溶胶发生系统形式(03)中所涉及采用的所述第二加热介质颗粒涂层(0323)的制备:
所述第二加热介质颗粒涂层(0323)的基材为六方硼碳氮三元吸波陶瓷(h-BCN),将第二加热介质颗粒与成膜剂硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶充分混合,涂覆成膜,在800℃以上高温烧结固化,形成所述第二加热介质颗粒涂层(0323)。所述第二加热介质颗粒涂层(0323)也可以是以金属材料,如铝,或铜或不锈钢的薄片为基底,涂覆由第一步制备得到的颗粒加热介质(0313)和无机粘结剂硅酸钠,或 磷酸二氢铝,或磷酸-氧化铜混合浆液,通过300℃~450℃热处理,形成述所述预热壳体涂层(0323)。还可以通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法,或等离子喷涂法,在铝,或铜或不锈钢薄片上沉降和加热获得。
第Ⅲ-5步,所述金属颗粒层滤介(0331)由尺寸为0.5~1.5mm的铝质颗粒压制而成,厚度约为0.2~1.2mm;所述透波陶瓷管(0339)为石英陶瓷SiO 2或高氧化铝陶瓷Al 2O 3或Si 3N 4陶瓷材料;温控件(0333)横向置入至透波陶瓷管(0339)内表面,位置距离气溶胶发生段(031)自由端口的2~3mm处。
为了进一步说明本发明,下面结合实施例对本发明提供的一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
采用本发明所述利用多卡耦合巨热效应的气溶胶发生系统的第一种气溶胶发生系统形式(01),及所述第一加热介质(0113)制备:
1-i)所述第一加热介质包括第一电介质、第一磁介质和第一电导介质,体系构成为:
所述第一磁介质组分为Fe 3O 4;所述第一电导介质组分为ZnO。采用直接沉淀法制备Fe 3O 4@ZnO核壳型结构的所述第一加热介质,具体步骤为:
步骤一:将500ml二水合乙酸锌和50g抗坏血酸颗粒原料加入到搅拌反应釜中,加入去离子水;
步骤二:待步骤一中颗粒原料完全溶解后向溶液中加入40g Fe 3O 4颗粒原料,高速搅拌,待颗粒分散均匀后形成混合悬浮液,将200ml六次甲基四胺(HMTA)沉淀剂加入所述混合悬浮液中,继续高速搅拌。其中,Fe 3O 4颗粒尺寸在500nm到1μm之间;
步骤三:对搅拌反应釜进行加热,温度缓慢升至90℃后保持3h,转速维持在800rpm;
步骤四:将反应后的产物Fe 3O 4@ZnO以7500rpm的转速离心2min后,分别用去500ml离子水和500ml无水乙醇各洗涤后置于80℃的恒温干燥箱 中干燥12h,制备获得以Fe 3O 4为核,ZnO为壳的核壳型结构粉体产物,其中,ZnO外壳厚度在100nm到300nm之间;
步骤五:将30g Fe 3O 4@ZnO核壳型结构粉体产物密实成坯体,置于高温炉中,在1000℃下烧结3h后冷却,粉碎、分级至粒度分布范围为0.1μm~500μm,获得核壳型结构的所述第一加热介质(0113)。参见图12。
1-ii)基于所述第一加热介质(0113)的其它加热介质制备
(1)将所述第一加热介质分级至粒度分布范围为1μm~200μm,与硅酸钠溶胶混合成浆液,硅酸钠溶胶添加量35wt%,喷涂在0.8mm厚的铜片上,经过420℃热处理,形成第一加热介质颗粒涂层(0123);
(2)将所述第一加热介质分级至粒度分布范围为15μm~100μm,与羧甲基纤维素溶液混合成浆液,羧甲基纤维素溶液添加量40wt%,双面喷涂在铝箔上,经80℃烘干形成箔片状膜复合型加热介质1(0114);
(3)将所述第一加热介质分级至粒度分布范围为0.1μm~100μm,作为气溶胶发生基质1(0112)中掺入烟草薄片抄造浆体的颗粒加热介质,所述第一加热介质掺入质量占比为30%。
1-iii)所述利用多卡耦合巨热效应的气溶胶发生系统的第一种气溶胶发生系统形式(01)相关结构:
(1)所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中所涉及采用的所述管状极板(0132)的所述曲面电极1(01321)和曲面电极2(01322)的制备:
所述管状极板(0132)是通过在管状绝缘陶瓷基底内表面复合的所述曲面电极1(01321)和曲面电极2(01322)构成,曲面电极1和曲面电极2分片对置,曲面电极1和曲面电极2各为3片,间隔对置,相邻的曲面电极1和曲面电极2之间由间隙绝缘材料(01323)隔开,间隙绝缘材料为聚酰亚胺或芳纶树脂(聚间苯二甲酰间苯二胺),绝缘陶瓷基底材料为Al 2O 3陶瓷,曲面电极1和曲面电极2之间的间隙1mm,曲面电极1和曲面电极2材质为1mm铜片,曲面电极1和曲面电极2的高度为14mm,管状极板直径为7.5mm,在每片曲面电极1和曲面电极2对应于所述管状极板(0132)的下端设有馈线连接位(01324)和(01325),通过馈线与气溶胶发生系统 的加热驱动单元连接;
(2)所述金属颗粒层滤介(0111)由尺寸为1mm的铝质颗粒压制而成,厚度约为0.6mm;所述密封环圈(0131)为硅橡胶材质;所述加热腔a底座圆盘(0133)为绝缘Al 2O 3陶瓷材料。圆盘上均布有12个直径为0.6mm的通孔;温控件(0134)穿过加热腔a底座中心孔,进入气溶胶发生段(011)3mm;
(3)气溶胶发生段,主要由气溶胶发生基质1(0112)和箔片状膜复合型加热介质1(0114)构成,其中所述气溶胶发生基质1含量92wt%,所述箔片状膜复合型加热介质1含量8wt%;气溶胶发生基质1由掺入的第一加热介质和含有烟草薄片的气雾基质构成,所述气雾基质,由包括天然烟草,或复原烟草丝、烟草薄片等人工均质烟草植物材料,和烟草提取物、香料,及多元醇或多元醇酯等液相烟雾剂等组成。第一加热介质可与气雾基质共混,也可在气雾基质所含有的烟草薄片抄造过程中作为颗粒填充料加入第一加热介质,形成气溶胶发生基质1,所述气溶胶发生基质1中含有第一加热介质的质量比率为20%。烟草薄片主要由烟草碎末及烟叶和烟梗纤维,加入羧甲基纤维素或果胶、树胶等天然胶粘剂和其他添加剂等组成,通常的烟草薄片组成已是本领域公知;
气雾基质成分质量比:烟草薄片45%,第一加热介质20%,烟草提取物15%,丙三醇17%,羧甲基纤维素2%,烟草香味剂1%;
(4)所述利用多卡耦合巨热效应的气溶胶发生系统的第一种气溶胶发生系统形式(01)在频率为27.12MHz的交变电磁场驱动下,气溶胶发生段从30℃加热到250℃大约需20秒。
实施例2
采用本发明所述利用多卡耦合巨热效应的气溶胶发生系统的第二种气溶胶发生系统形式(02),及所述第一加热介质(0213)制备:
2-i)所述第一加热介质包括第一电介质、第一磁介质和第一电导介质,体系构成为:
所述第一电介质组分为Bi,Te;所述第一磁介质组分为La,Mn;所述第一电导介质为Mn。采用机械合金化法制备 Bi 2Te 3@Mn 15Bi 34Te 51@La 15Bi 34Te 51异质结型结构的所述第一加热介质,具体步骤为:
步骤一:高纯元素Bi,Te和纯La,Mn分别按原子百分比Bi 2Te 3,Mn 15Bi 34Te 51和La 15Bi 34Te 51配料加入到间歇式球磨机中;
步骤二:球磨机真空度抽至10 -3Pa再通入高纯氩气,球料比为15:1,转速为150r/min;
步骤三:通过原料颗粒和磨球之间长时间激烈冲击、碰撞,使得颗粒反复产生冷焊、断裂,在较长的球磨时间内,体系内可通过原子扩散,获得均匀的异质结型结构加热介质。其中,Bi 2Te 3,Mn 15Bi 34Te 51和La 15Bi 34Te 51之间的质量比例为4.5:3:2.5,颗粒尺寸均在在15μm到100μm之间;
步骤四:将20g Bi 2Te 3,50g Mn 15Bi 34Te 51和30g La 15Bi 34Te 51构筑的异质结粉体制成圆形坯体,放置于高温炉中,在800℃下烧结5h后,粉碎、分级至粒度分布范围为0.1μm~500μm,得到异质结型结构的所述第一加热介质(0213),参见图13。
2-ii)基于所述第一加热介质(0213)的其它加热介质制备
(1)将所述第一加热介质分级至粒度分布范围为1μm~200μm,与磷酸二氢铝溶胶混合成浆液,磷酸二氢铝溶胶添加量40wt%,涂覆成膜于预热壳体的基材(0222)六方硼碳氮三元吸波陶瓷(h-BCN)内壁,经820℃高温固化,形成所述第一加热介质颗粒涂层(0223);
(2)在所述第一加热介质(粒度分布范围为0.1μm~500μm)中,添加8wt%的磷酸二氢铝溶胶,混合均匀后,压制成型,经820℃高温固化,形成所述块体加热介质1(0235);
(3)将所述第一加热介质分级至粒度分布范围为15μm~500μm,作为气溶胶发生基质1(0212)中直接与气雾基质共混的颗粒加热介质;
(4)将所述第一加热介质分级至粒度分布范围为0.1μm~100μm,与磷酸二氢铝溶胶和淀粉糊精混合均匀,质量比率为:第一加热介质:磷酸二氢铝溶胶:淀粉糊精=9:0.4:0.6,轻压成坯体,1000℃烧结,经粉碎和分级,获得粒度分布范围为15μm~500μm多孔颗粒,孔径尺寸为8nm~35μm,孔隙率为78%~90%;吸附气雾基质中的液相组分后,吸液质量比约为:多孔 颗粒:液相组=1:1.2,获得低激发温度气溶胶发生基质的加热介质颗粒。
2-iii)所述利用多卡耦合巨热效应的气溶胶发生系统的第二种气溶胶发生系统形式(02)相关结构:
(1)所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02)中所涉及采用的所述平面极板(0232)的所述平面电极1(02321)和平面电极2(02322)的制备:
所述平面极板(0232)是通过在平面绝缘陶瓷基底表面复合所述平面电极1(02321)和平面电极2(02322)构成,平行对置,间距为气溶胶发生段直径值7.5mm,平面极板1和平面极板2两端各对夹着1个块体加热介质1(0235),在2个对夹的块体加热介质1的对称中心设置有圆柱形孔,直径同样为气溶胶发生段直径值7.5mm,长度为气溶胶发生段长度值约14mm,平面电极1和平面电极2的材质为厚度0.5mm的铜片,绝缘陶瓷基底材料为Al 2O 3陶瓷,平面电极1和平面电极2,通过馈线与气溶胶发生系统的加热驱动单元连接;
(2)所述金属颗粒层滤介(0211)由尺寸为1mm的铝质颗粒压制而成,厚度约为0.6mm;所述密封环圈(0231)为硅橡胶材质;所述加热腔b底座圆盘(0233)为绝缘Al 2O 3陶瓷材料;温控件(0234)穿过加热腔b底座中心孔,进入气溶胶发生段(021)3mm。
(3)所述气溶胶发生基质1主要由气雾基质与所述第一加热介质和所述低激发温度气溶胶发生基质的加热介质共混构成,其中气雾基质50wt%(组分组成同实施例1),第一加热介质20wt%,低激发温度气溶胶发生基质的加热介质30wt%;
(4)所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02)在频率为40.68MHz的交变电磁场驱动下,气溶胶发生段从30℃加热到250℃大约需17秒。
实施例3
采用本发明所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03),及所述第二加热介质(0313)制备:
3-i)所述第二加热介质包括第二电介质、第二磁介质和第二电导介质, 体系构成为:
所述第二电介质为BaO-MgO-Ta 2O 5体系;所述第二磁介质为Co 2Z(Z型六角铁氧体)体系;所述第二电导介质为CoO和Fe 2O 3。采用固相法制备BaO-MgO-Ta 2O 5/Co 2Z包覆型结构的所述第二加热介质,具体步骤为:
步骤一:将200g BaCO 3颗粒,40g MgO颗粒,440g Ta 2O 5颗粒混合后,在1200℃的高温下反应24h,得到BaO-MgO-Ta 2O 5颗粒。
步骤二:将178g BaCO 3颗粒,48g Co 3O 4颗粒,550g Fe 2O 3颗粒混合后,在1280℃的高温下反应6h,得到Ba 3Co 2Fe 23O 41(Co 2Z)颗粒。
步骤三:将30g BaO-MgO-Ta 2O 5颗粒与45g Co 2Z颗粒混合后,在1100℃的高温下反应24h,得到BaTiO 3/NiZnFe复合颗粒。
步骤五:将30g BaO-MgO-Ta 2O 5/Co 2Z复合结构耦合加热介质制成圆形坯体,放置于高温炉中,在1200℃下烧结6h后,粉碎、分级至粒度分布范围为0.1μm~500μm,得到包覆型结构的所述第二加热介质(0313),参见图14。
3-ii)基于所述第二加热介质(0313)的其它加热介质制备:
(1)将所述第二加热介质分级至粒度分布范围为1μm~200μm,与氢氧化铝溶胶混合成浆液,氢氧化铝溶胶添加量36wt%,涂覆成膜于预热壳体的基材(0322)六方硼碳氮三元吸波陶瓷(h-BCN)内壁,经900℃高温固化,形成所述第二加热介质颗粒涂层(0323);
(2)在所述第二加热介质(粒度分布范围为0.1μm~500μm)中,添加10wt%的磷酸二氢铝溶胶,混合均匀后,压制成型,经820℃焙烧固化,形成所述块体加热介质2(0332);
(3)将所述第二加热介质分级至粒度分布范围为0.1μm~100μm,作为气溶胶发生基质2(0312)中掺入烟草薄片纤维膏体的颗粒加热介质,所述第二加热介质掺入质量占比为30%。
3-iii)所述利用多卡耦合巨热效应的气溶胶发生系统的第三种气溶胶发生系统形式(03)相关结构:
(1)所述预热壳体(032)内部设有金属屏蔽壳体(0338)、块体加热介质2(0332)和嵌入所述块体加热介质2的天线(0336),所述天线为PIFA 平面倒F天线;所述金属屏蔽壳体包裹在块体加热介质2的外部,金属屏蔽壳体为厚度0.2mm的不锈钢片材;
所述金属屏蔽壳体、块体加热介质2和嵌入所述块体加热介质2的天线形成加热腔,所述加热腔的进气座孔通过6个直径为0.6mm的进气孔道与块体加热介质2的外部相通;
(2)所述块体加热介质2为立方体;在所述块体加热介质2的对称轴线上设有圆柱形孔,孔的内部形成气溶胶发生段;所述圆柱形孔内嵌套设透波陶瓷管,所述透波陶瓷管的内径为气溶胶发生段的直径7.4mm,深度为14mm,材质为高氧化铝Al 2O 3透波陶瓷;温控件横向置入至透波陶瓷管的内表面,位置距离所述气溶胶发生段的自由端口的2mm处;
(3)所述气溶胶发生基质2主要由气雾基质和掺入烟草薄片纤维膏体中的第二加热介质颗粒构成,所述第二加热介质颗粒粒度分布范围为0.1μm~100μm,添加量为30wt%,其余70wt%为气雾基质(组分组成同实施例1);
(4)所述利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)在频率为2.45GHz的交变电磁场驱动下,气溶胶发生段从30℃加热到250℃大约需13秒。
实施例4
溶胶凝胶法制备包覆型结构第二加热介质,包括以下步骤:
步骤一:将50g Fe 3O 4原料颗粒加入到装有300ml乙二醇的反应釜中,高速搅拌分散。其中,Fe 3O 4颗粒尺寸在100纳米到500纳米之间;
步骤二:加入去离子水和浓度为25%的氨水,每公斤Fe 3O 4加入25%的氨水10升,然后加入0.5升正硅酸乙酯,匀速搅拌10h;
步骤三:反应结束后,将所获得的颗粒用电磁铁分离并用500ml乙醇和500ml去离子水洗涤数次;
步骤四:最后在60℃下干燥12h,制备获得以Fe 3O 4为母颗粒,SiO 2为子颗粒的包覆型结构耦合加热介质。
步骤五:将30g Fe 3O 4@SiO 2包覆型结构加热介质制成圆形坯体,放置于高温炉中,在900℃下烧结5h后,参见图15,粉碎分级后得到成品, 作为响应频率为0.3GHz至30GHz范围的所述包覆型结构的第二加热介质。
步骤六:在频率2.45GHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)中,对步骤五的样品进行加热,从30℃加热到250℃大约需19秒。
实施例5
高分子网络凝胶法制备多孔型结构第一加热介质,包括以下步骤:
步骤一:配制1mol/L的柠檬酸三胺溶液,按照n(柠檬酸三胺):n(Ti)=1:1的比例将500ml钛酸四丁酯加入到300ml柠檬酸三胺中搅拌,再按照n(Fe):n(Ti)=0;0.5%;1.0%;1.5%和2.0%将50g硝酸铁加入上述混合溶液中,用氨水调节pH值至8.5;
步骤二:充分混合均匀后,在每升该溶液中加入30g有机单体N-羟甲基丙烯酰胺、6g交联剂N,N′-亚甲基双丙烯酰胺、1g引发剂过硫酸铵和1g催化剂四甲基乙二胺,搅拌均匀,经过5~15min形成高分子网络凝胶;
步骤三:将高分子网络凝胶置于烘箱80℃下干燥48h;
步骤四:将300g干凝胶放入煅烧炉中在一定的温度下焙烧2h,得到掺杂铁的TiO 2多孔型结构耦合加热介质。其中,孔径在100到500纳米之间。
步骤五:将30g掺杂铁的TiO 2多孔型结构耦合加热介质制成圆形坯体,放置于高温炉中,在800℃下烧结5h后,得到成品,参见图16,作为频率为0.3MHz至300MHz范围的所述多孔型结构的第一加热介质。
步骤六:在频率13.56MHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第一种气溶胶发生系统形式(01)中,对步骤五的样品进行加热,从30℃加热到250℃大约需21秒。
实施例6
化学气相沉积法制备膜复合型结构第一加热介质,包括以下步骤:
步骤一:选取一定尺寸的铝箔作为基体材料,利用酒精、丙酮超声去除铝箔表面的污渍,再经酸洗液酸洗后去除表面氧化层;
步骤二:将100g Nd 13.5(FeZrCo) 80.5B 6磁粉和150g Fe(CO) 3分别放入反应器和蒸发器中密封,使蒸发后的Fe(CO) 3与氩气混合通入反应器进行化 学气相沉积,不断震动反应器确保包覆的均匀性;
步骤三:反应结束后,冷却至室温后获得Nd 13.5(FeZrCo) 80.5B 6-Fe(CO) 3膜复合型结构耦合加热介质,参见图17。其中,复合膜的厚度在100μm到500μm之间,作为频率为0.3MHz至300MHz范围的所述膜复合型结构的第一加热介质。
步骤四:在频率27.12MHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第二种气溶胶发生系统形式(02)中,对步骤三的样品进行加热,从30℃加热到250℃大约需16秒。
实施例7
固相法制备包覆型结构第二加热介质,包括以下步骤:
步骤一:将200g BaCO 3颗粒与80g TiO 2颗粒按摩尔比1:1混合后,在1500℃的高温下反应24h,得到BaTiO 3颗粒。
步骤二:将22g NiO颗粒,57g ZnO颗粒,160g Fe 2O 3颗粒混合后,在1250℃的高温下反应4h,得到Ni 0.3Zn 0.7Fe 2O 4颗粒。
步骤三:将10g BaTiO 3颗粒与20g Ni 0.3Zn 0.7Fe 2O 4颗粒混合后,在1150℃的高温下反应5h,得到BaTiO 3/Ni 0.3Zn 0.7Fe 2O 4复合颗粒。
步骤四:将30g BaTiO 3/Ni 0.3Zn 0.7Fe 2O 4复合结构耦合加热介质制成圆形坯体,放置于高温炉中,在1100℃下烧结5h后,参见图18,粉碎分级后得到成品,作为频率为0.3GHz至30GHz范围的所述包覆型结构的第二加热介质。
步骤五:在频率2.45GHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)中,对步骤五的样品进行加热,从30℃加热到250℃大约需18秒。
实施例8
高热固相法,溶胶-凝胶法制备包覆型结构结构第二加热介质,包括以下步骤:
步骤一:将140g K 2CO 3颗粒与265g Nb 2O 5颗粒混合后,在1200℃的高温下反应14h,得到KNbO 3颗粒。
步骤二:采用50g硝酸铁,30g硝酸锰,25g硝酸锌为源物质,500ml 柠檬酸为螯合剂,300ml乙二醇为增稠剂,用氨水调节pH值>13.0,混合溶液在70℃回流,并在90℃蒸发得到溶胶,经过干燥后得到干凝胶,再经焙烧得到溶胶-凝胶Mn 0.5Zn 0.5Fe 2O 4粉体;
步骤三:将10g KNbO 3颗粒与25g Mn 0.5Zn 0.5Fe 2O 4颗粒混合后,在1150℃的高温下反应5h,得到KNbO 3/Mn 0.5Zn 0.5Fe 2O 4复合颗粒。
步骤四:将30g KNbO 3/Mn 0.5Zn 0.5Fe 2O 4复合结构耦合加热介质制成圆形坯体,放置于高温炉中,在1100℃下烧结5h后,参见图19,粉碎分级后得到成品,作为频率为0.3GHz至30GHz范围的所述包覆型结构的第二加热介质。
步骤五:在频率2.45GHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)中,对步骤五的样品进行加热,从30℃加热到250℃大约需20秒。
实施例9
固相法制备包覆型结构的第二加热介质,包括以下步骤:
步骤一:将200g BaCO 3颗粒,40g MgO颗粒,440g Ta 2O 5颗粒混合后,在1200℃的高温下反应24h,得到BaO-MgO-Ta 2O 5颗粒。
步骤二:将50g BaO-MgO-Ta 2O 5颗粒与30g NiO颗粒混合后,在900℃的高温下反应10h,得到BaO-MgO-Ta 2O 5/NiO复合颗粒。
步骤三:将25g BaO-MgO-Ta 2O 5/NiO复合结构耦合加热介质制成圆形坯体,放置于高温炉中,在1100℃下烧结5h后,参见图20,粉碎分级后得到成品,作为频率为0.3GHz至30GHz范围的所述包覆型结构的第二加热介质。
步骤四:在频率2.45GHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)中,对步骤四的样品进行加热,从30℃加热到250℃大约需18秒。
实施例10
固相法制备包覆型结构的第二加热介质,包括以下步骤:
步骤一:将178g BaCO 3颗粒,48g Co 3O 4颗粒,550g Fe 2O 3颗粒混合后,在1280℃的高温下反应6h,得到Ba 3Co 2Fe 23O 41(Co 2Z)颗粒。
步骤二:将50g Co 2Z颗粒,30g ZnO颗粒混合后,在1100℃的高温下反应14h,得到Co 2Z/ZnO颗粒。
步骤三:将30g Co 2Z/ZnO复合结构耦合加热介质制成圆形坯体,放置于高温炉中,在1100℃下烧结5h后,参见图21,粉碎分级后得到成品,作为频率为0.3GHz至30GHz范围的所述包覆型结构的第二加热介质。
步骤四:在频率2.45GHz的利用多卡耦合巨热效应的气溶胶发生系统和方法的第三种气溶胶发生系统形式(03)中,对步骤四的样品进行加热,从30℃加热到250℃大约需17秒。
由以上实施例可知,本发明提供的利用卡耦合巨热效应的气溶胶发生系统,(1)在加热介质的电介质组分上,采取强化固有电矩取向极化、热离子驰豫极化和离子位移极化的措施,以优化利用驰豫极化损耗和谐振极化损耗,获得高极化损耗电介质;在加热介质的磁介质组分上,采取强化磁滞损耗、阻尼损耗和共振损耗的措施,获得高磁滞损耗磁介质;在加热介质的电导介质组分上,采取增加自由电子、离子及掺杂缺陷和空位等措施,以优化利用多种载流子的电导损耗,获得高电导损耗电导介质;(2)在加热介质的材料结构上,对电介质、磁介质和电导介质进行多相组分的物理化学法复合构建,形成核壳型结构、异质结型结构、包覆型结构、多孔型结构和膜复合型结构,实现介观层面的复合,以有利于多场耦合产生多卡耦合巨热效应。(3)在降低气溶胶发生基质的热激发温度上,通过多孔型结构的加热介质,对气溶胶发生介质液相组分的吸附,使液相组分被分化成数量极多的小液滴。(4)在气溶胶发生系统的加热驱动单元上,采用的交变电磁场的频率,是满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动要求的平衡性兼容响应频率,兼容响应频率区间为0.3MHz~30GHz。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (22)

  1. 一种气溶胶发生基质,包括加热介质,所述加热介质包括第一加热介质或第二加热介质;
    所述第一加热介质包括第一电介质和第一磁介质及第一电导介质;
    所述第一电介质选自以下体系中至少一种:
    ①钙钛矿结构体系,包括BaTiO 3,和/或PbTiO 3,和/或NaNbO 3,和/或KNbO 3,和/或BiFeO 3;②钨青铜结构体系,包括偏铌酸铅,和/或Sr 1-xBa xNb 2O 6;③铋层状结构体系,包括SrBi 2Ta 2O 9,和/或Bi 4Ti 3O 12,和/或SrBi 4Ti 4O 15;④焦绿石结构体系,包括Cd 2Nb 2O 7,和/或Pb 2Nb 2O 7
    所述第一磁介质选自以下铁氧体中至少一种:
    尖晶石型铁氧体,包括MFe 2O 4,M=Mn,和/或Fe,和/或Ni,和/或Co,和/或Cu,和/或Mg,和/或Zn,和/或Li,和/或MnZn,和/或NiZn,和/或MgZn,和/或LiZn铁氧体;和/或R 3Fe 5O 12,R为稀土元素,所述稀土元素为Y,和/或La,和/或Pr,和/或Nd,和/或Sm,和/或Eu,和/或Gd,和/或Tb,和/或Dy,和/或Ho,和/或Er,和/或Tm,和/或Yb,和/或Lu;
    所述第一电导介质选自以下成分中至少一种:
    ZnO系列,包括掺杂Al(AZO),和/或掺杂In(IZO),和/或掺杂Ga(GZO);磁性氧化物,包括CoO,和/或MnO,和/或Fe 3O 4,和/或NiO;及其它半导体氧化物,包括Ga 2O 3,和/或In 2O 3,和/或InSnO(ITO);
    所述第二加热介质包括第二电介质和第二磁介质及第二电导介质;
    所述第二电介质选自①BaO-MgO-Ta 2O 5,和/或BaO-ZnO-Ta 2O 5,和/或BaO-MgO-Nb 2O 5,和/或BaO-ZnO-Nb 2O 5体系及它们之间的复合体系;②BaTi 4O 9,和/或BaTi 9O 20,(Zr,和/或Sn)TiO 4为基的体系;③BaO-Ln 2O 3-TiO 2,和/或CaO-Li 2O-Ln 2O 3-TiO 2(Ln 2O 3为镧系稀土氧化物)为基的体系;④A 5B 4O 15(A=Ba,和/或Sr,和/或Mg,和/或Zn,和/或Ca,B=Nb,和/或Ta),和/或AB 2O 6(A=Ca,和/或Co,和/或Mn,和/或Ni,和/或Zn;B=Nb,和/或Ta);(Ba 1-xM x)ZnO 5(M=Ca,和/或Sr,x=0~1.0),AgNb 1-xTa xO 3(x=0~1.0),和/或LnAlO 3(Ln=La,和/或Nd,和/或Sm), 和/或Ta 2O 5-ZrO 2,和/或ZnTiO 3,和/或BiNbO 4系列;
    所述第二磁介质选自M型六角铁氧体:BaM,和/或PbM,和/或SrM;X型六角铁氧体,包括Fe 2X;W型六角铁氧体,包括Mg 2W,和/或Mn 2W,和/或Fe 2W,和/或Co 2W,和/或Ni 2W,和/或Cu 2W,和/或Zn 2W;Y型六角铁氧体,包括Mg 2Y,和/或Mn 2Y,和/或Fe 2Y,和/或Co 2Y,和/或Ni 2Y,和/或Cu 2Y,和/或Zn 2Y;Z型六角铁氧体,包括Mg 2Z,和/或Mn 2Z,和/或Fe 2Z,和/或Co 2Z,和/或Ni 2Z,和/或Cu 2Z,和/或Zn 2Z;
    所述第二电导介质选自ZnO系列,包括掺杂Al(AZO),和/或掺杂In(IZO),和/或掺杂Ga(GZO);磁性氧化物,包括CoO,和/或MnO,和/或Fe 3O 4,和/或NiO;及其它半导体氧化物,包括Ga 2O 3,和/或In 2O 3,和/或InSnO(ITO)。
  2. 根据权利要求1所述的气溶胶发生基质的加热介质,其特征在于,所述第一加热介质通过物理化学法的介观尺度复合,形成具有核壳型,或异质结型,或包覆型,或多孔型或膜复合型;
    核壳型的第一加热介质包括核壳型结构的电矩-磁矩耦合加热介质1-H-1、核壳型结构的电矩-电导耦合加热介质1-H-2或核壳型结构的电矩-磁矩-电导耦合加热介质1-H-3;
    形成具有所述核壳型的第一加热介质的具体方法为直接沉淀法,或共沉淀法,或醇盐水解法,或溶胶-凝胶法;
    异质结型结构的第一加热介质包括异质结型结构的电矩-磁矩耦合加热介质1-Y-1,或异质结型结构的电矩-电导耦合加热介质1-Y-2或异质结型结构的电矩-磁矩-电导耦合加热介质1-Y-3;
    形成具有所述异质结型结构的第一加热介质的具体方法为熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法;
    包覆型结构的第一加热介质包括包覆型结构的电矩-磁矩耦合加热介质1-B-1或包覆型结构的电矩-磁矩-电导耦合加热介质1-B-2;
    形成具有所述包覆型结构的第一加热介质的具体方法为机械熔合包覆法,或高能磨机引发的机械力化学效应法,或低热固相反应法,或溶胶- 凝胶法;
    具有多孔型结构的第一加热介质是多孔型结构的电矩-磁矩-电导耦合加热介质1-K,或低激发温度气溶胶发生基质的加热介质1-D;
    膜复合型结构的第一加热介质是电矩-磁矩-电导耦合加热介质1-M;
    所述第二加热介质通过物理化学法的介观尺度复合,形成具有核壳型,或异质结型,或包覆型,或多孔型或膜复合型;
    核壳型的第二加热介质包括核壳型结构的电矩-磁矩耦合加热介质2-H-1、核壳型结构的电矩-电导耦合加热介质2-H-2或核壳型结构的电矩-磁矩-电导耦合加热介质2-H-3;
    形成具有所述核壳型的第二加热介质的具体方法为直接沉淀法,或共沉淀法,或醇盐水解法,或溶胶-凝胶法;
    异质结型结构的第二加热介质包括异质结型结构的电矩-磁矩耦合加热介质2-Y-1,或异质结型结构的电矩-电导耦合加热介质2-Y-2或异质结型结构的电矩-磁矩-电导耦合加热介质2-Y-3;
    形成具有所述异质结型结构的第二加热介质的具体方法为熔盐法,或高热固相反应法,或机械合金化法,以及控制煅烧温度的沉淀法,或醇盐水解法,或水热法,或溶胶(凝胶)-水热法;
    包覆型结构的第二加热介质包括包覆型结构的电矩-磁矩耦合加热介质2-B-1或包覆型结构的电矩-磁矩-电导耦合加热介质2-B-2;
    形成具有所述包覆型结构的第二加热介质的具体方法为机械熔合包覆法,或高能磨机引发的机械力化学效应法,或低热固相反应法,或溶胶-凝胶法;
    具有多孔型结构的第二加热介质是多孔型结构的电矩-磁矩-电导耦合加热介质2-K、或低激发温度气溶胶发生基质的加热介质2-D;
    膜复合型结构的第二加热介质是电矩-磁矩-电导耦合加热介质2-M。
  3. 根据权利要求2所述的加热介质,其特征在于,所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K按照以下方法制得:
    将所述第一加热介质中的第一电介质和第一磁介质及第一电导介质中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸- 氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;或将所述第一电介质中至少一种成分和所述第一磁介质体系中至少一种成分及所述第一电导介质中至少一种成分,通过高分子网络凝胶法获得的凝胶,或通过金属络合物凝胶法获得可溶性络合物网络凝胶,再经干燥、烧结和粉碎及分级获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;或通过溶液中的所述第一磁介质中至少一种成分的离子和所述第一电导介质中至少一种成分的离子和沉淀剂,对所述第一电介质颗粒多孔体进行沉淀法修饰,使孔隙内表面形成所述第一磁介质成分和所述第一电导介质成分的复合膜层,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;或将所述第一加热介质中的第一电介质和第一磁介质中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩耦合加热介质,再通过化学镀法对所述多孔型结构的电矩-磁矩耦合加热介质的孔隙进行修饰,将吸附在孔隙内镀液中的所述的第一电导介质体系中至少一种成分的金属离子,被镀液中的还原剂催化还原成金属,并沉积在孔隙内表面,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K;
    所述多孔型结构的电矩-磁矩-电导耦合加热介质的孔径尺寸为2nm至50μm,孔隙率为70%至95%;
    所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K按照以下方法制得:
    将所述第二加热介质中的第二电介质和第二磁介质及第二电导介质体系中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K;或将所述第二电介质中至少一种成分和所述第二磁介质中至少一种成分及所述第二电导介质中至少一种成分,通过高分子网络凝胶法获得的凝胶,或通过金属络合物凝胶法获得可溶性络合物网络凝胶,再经干燥、烧 结和粉碎及分级获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K;或通过溶液中的所述第二磁介质体系中至少一种成分的离子和所述第二电导介质体系中至少一种成分的离子和沉淀剂,对所述第二电介质颗粒多孔体进行沉淀法修饰,使孔隙内表面形成所述第二磁介质成分和所述第二电导介质成分的复合膜层,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K;或将所述第二加热介质中的第二电介质和第二磁介质体系中至少一种成分的超细颗粒,与无机粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,及造孔剂超细碳粉或淀粉,或超细碳酸钙充分混合后,进行烧结、粉碎和分级,获得所述多孔型结构的电矩-磁矩耦合加热介质,再通过化学镀法对所述多孔型结构的电矩-磁矩耦合加热介质的孔隙进行修饰,将吸附在孔隙内镀液中的所述的第二电导介质中至少一种成分的金属离子,被镀液中的还原剂催化还原成金属,并沉积在孔隙内表面,获得所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K,所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K的孔径尺寸为2nm至50μm,孔隙率为70%至95%。
  4. 根据权利要求3所述的加热介质,其特征在于,所述低激发温度气溶胶发生基质的加热介质1-D按照以下方法制得:
    从所述多孔型结构的电矩-磁矩-电导耦合加热介质1-K中,选取孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125W·m-1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获得低激发温度气溶胶发生基质的加热介质,激发温度为160℃~200℃,所述的低激发温度气溶胶发生基质的加热介质1-D颗粒的粒度分布范围为15μm至500μm;
    所述低激发温度气溶胶发生基质的加热介质2-D按照以下方法制得:
    从所述多孔型结构的电矩-磁矩-电导耦合加热介质2-K中,选取孔径范围为60nm至50μm,孔隙率范围为85%至95%,比热容范围为0.1kJ·kg -1·K -1至0.6kJ·kg -1·K -1,导热系数范围为0.035W·m -1·K -1至0.125 W·m-1·K -1物性参数的颗粒,对气溶胶发生介质液相组分进行吸附,使液相组分被分隔为进入孔隙率为85%至95%孔隙中的小液滴,孔径尺寸范围为60nm至50μm,以提高气溶胶发生介质液相组分的饱和蒸气压值,获得低激发温度气溶胶发生基质的加热介质,激发温度为160℃~200℃,所述的低激发温度气溶胶发生基质的加热介质2-D颗粒的粒度分布范围为15μm至500μm。
  5. 根据权利要求1所述的加热介质,其特征在于,所述电矩-磁矩-电导耦合加热介质1-M按照以下方法制得:
    将所述第一加热介质中的第一电介质和第一磁介质及第一电导介质体系中至少一种成分的超细颗粒,与粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,充分混合后,通过喷涂或涂刷方法对铝片或铜片或不锈钢片进行单面或双面的膜复合,获得所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M;或将所述第一加热介质中的第一电介质和第一磁介质及第一电导介质体系中至少一种成分的颗粒,通过气相沉积法,或火焰气相沉积法,或等离子喷涂法,对铝片或铜片或不锈钢片进行单面或双面的膜复合沉积或喷涂,制备所述膜复合型结构的电矩-磁矩-电导耦合加热介质1-M;
    所述电矩-磁矩-电导耦合加热介质2-M按照以下方法制得:
    将所述第二加热介质中的第二电介质和第二磁介质及第二电导介质体系中至少一种成分的超细颗粒,与粘结剂硅酸钠,或磷酸二氢铝,或磷酸-氧化铜,充分混合后,通过喷涂或涂刷方法对铝片或铜片或不锈钢片进行单面或双面的膜复合,获得所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M;或将所述第二加热介质中的第二电介质和第二磁介质及第二电导介质中至少一种成分的颗粒,通过气相沉积法,或火焰气相沉积法,或等离子喷涂法,对铝片或铜片或不锈钢片进行单面或双面的膜复合沉积或喷涂,制备所述膜复合型结构的电矩-磁矩-电导耦合加热介质2-M。
  6. 根据权利要求4所述的加热介质,其特征在于,所述气溶胶发生基质还包括气雾基质;
    加热介质直接与气雾基质共混,或在气雾基质中的烟草薄片抄造或辊压前,将加热介质掺入纤维浆体或膏体中,使烟草薄片中均匀分布有质量 比为5~60%的加热介质,所述加热介质的粒度为0.1μm~100μm;
    或将粒度15μm~100μm的多孔型结构的加热介质,或将粒度15μm~100μm的低激发温度气溶胶发生基质的加热介质吸附气雾基质中的液相组分后,与加热介质和气雾基质共混。
  7. 根据权利要求1所述的加热介质,其特征在于,还包括箔片状膜复合型加热介质;
    所述箔片状膜复合型加热介质由所述加热介质颗粒与粘结剂羧甲基纤维素,或瓜尔胶或烟草浸膏混合后,通过流延法或喷涂法,对铝箔、铜箔进行单面或双面的膜复合,再经裁切获得,尺寸与烟草薄片相当,所述加热介质颗粒粒度分布范围为15μm至100μm;或采用所述电介质组分和利用所述磁介质组分的前驱体,通过化学气相沉积法,或气相热解法,或气相水解法,或气相燃烧法,或火焰气相沉积法进行制备。
  8. 一种利用多卡耦合巨热效应的气溶胶发生系统,其特征在于,包括加热结构,所述加热结构包括机壳,所述机壳上设置机壳进气孔;
    所述机壳内设置预热壳体;机壳与预热壳体同轴开口;
    所述预热壳体的开口与滤嘴段相连;所述预热壳体上设有预热壳体进气孔;
    所述预热壳体内部设有多块极板;多块极板形成加热腔;
    所述加热腔的底部设有加热腔底座;温控件穿过所述加热腔底座的中心孔,加热腔底座上设有底座圆盘进气孔;
    加热腔的上端与密封环圈连接,并嵌套在预热壳体的开口处;
    所述极板的内部为气溶胶发生段;气溶胶发生段与滤嘴段之间设有金属颗粒层滤介;
    所述气溶胶发生段中含有气溶胶发生基质1;
    所述极板通过极板馈线与加热驱动单元相连;
    所述气溶胶发生基质1包括权利要求1中所述的第一加热介质。
  9. 根据权利要求8所述的加热结构,其特征在于,所述极板为管状极板;所述管状极板包括管状绝缘陶瓷基底,及设置在所述管状绝缘陶瓷基底内表面的曲面电极1和曲面电极2;
    所述曲面电极1和曲面电极2分片对置;相邻的曲面电极1和曲面电极2之间由绝缘材料隔开;
    所述曲面电极1和曲面电极2的片数各为2~5片。
  10. 根据权利要求8所述的加热结构,其特征在于,所述极板为多块平面电极;所述极板包括平行对置的平面极板1和平面极板2;
    所述平面极板1和平面极板2的间距为气溶胶发生段的直径。
  11. 根据权利要求8所述的加热结构,其特征在于,所述平面极板1和平面极板2的两端各对夹着1块体加热介质1;
    2块对夹的块体加热介质1的对称中心设置有圆柱形孔,圆柱形孔的直径为气溶胶发生段的直径。
  12. 根据权利要求8所述的加热结构,其特征在于,所述金属颗粒层滤介的厚度为0.2mm~1.2mm;
    所述金属颗粒层滤介由尺寸为0.5~1.5mm的铝质颗粒压制而成。
  13. 根据权利要求8所述的加热结构,其特征在于,所述块体加热介质1包括第一加热介质颗粒和无机粘结剂;
    所述无机粘结剂选自硅酸钠、磷酸二氢铝和磷酸-氧化铜中的一种或多种。
  14. 根据权利要求8所述的加热结构,其特征在于,所述底座圆盘进气孔为直径0.3~2mm的通孔;
    所述进气孔的个数为8~36个。
  15. 根据权利要求8所述的加热结构,其特征在于,所述加热驱动单元,采用的交变电磁场的频率,均具有满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动要求的平衡性兼容响应频率,所述兼容响应频率区间为0.3MHz至300MHz范围时,适用于所述第一加热介质。
  16. 根据权利要求8所述的加热结构,其特征在于,所述预热壳体的内表面设置第一加热介质颗粒涂层;
    所述第一加热介质颗粒涂层包括六方硼碳氮三元吸波陶瓷基材和涂覆在所述基材上的涂层,所述涂层包括第一加热介质颗粒和成膜剂;所述成膜剂选自硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶;
    或第一加热介质颗粒涂层包括金属基底和涂覆在所述金属基底上的涂层,所述涂层包括第一加热介质颗粒和无机粘结剂;
    所述无机粘结剂选自硅酸钠,或磷酸二氢铝,或磷酸-氧化铜。
  17. 一种利用多卡耦合巨热效应的气溶胶发生系统,其特征在于,包括加热结构,所述加热结构包括机壳,所述机壳上设置机壳进气孔;
    所述机壳内设置预热壳体;机壳与预热壳体同轴开口;
    所述预热壳体的开口与滤嘴段相连;所述预热壳体上设有预热壳体进气孔;
    所述预热壳体内部设有金属屏蔽壳体、块体加热介质2和嵌入所述块体加热介质2的天线;所述金属屏蔽壳体包裹在块体加热介质2的外部;
    所述金属屏蔽壳体、块体加热介质2和嵌入所述块体加热介质2的天线形成加热腔;
    所述加热腔的进气座孔通过4~10个直径为0.5~2mm的进气孔道与块体加热介质2的外部相通;
    所述块体加热介质2为立方体;在所述块体加热介质2的对称轴线上设有圆柱形孔,孔的内部形成气溶胶发生段;所述圆柱形孔内嵌套设透波陶瓷管,所述透波陶瓷管的内径为气溶胶发生段的直径;
    所述加热腔的上端与密封环圈连接,并嵌套在预热壳体的开口处;
    所述气溶胶发生段与滤嘴段之间设有金属颗粒层滤介;
    所述气溶胶发生段中含有气溶胶发生基质2;
    所述天线通过天线馈线基脚与加热驱动单元相连;
    所述气溶胶发生基质2包括权利要求1中所述的第二加热介质。
  18. 根据权利要求17所述的加热结构,其特征在于,所述透波陶瓷管选自石英SiO 2陶瓷管、或高氧化铝陶瓷管、或Si 3N 4陶瓷管。
  19. 根据权利要求17所述的加热结构,其特征在于,还包括温控件,所述温控件横向置入至透波陶瓷管的内表面,位置距离所述气溶胶发生段的自由端口的2~3mm处。
  20. 根据权利要求17所述加热结构,其特征在于,所述块体加热介质2包括第二加热介质颗粒和无机粘结剂;
    所述无机粘结剂选自硅酸钠,或磷酸二氢铝,或磷酸-氧化铜。
  21. 根据权利要求17所述的加热结构,其特征在于,所述预热壳体的内表面设置第二加热介质颗粒涂层;
    所述第二加热介质颗粒涂层包括六方硼碳氮三元吸波陶瓷基材和涂覆在所述基材上的涂层,所述涂层包括第二加热介质颗粒和成膜剂;所述成膜剂选自硅酸钠溶胶,或磷酸二氢铝溶胶,或氢氧化铝溶胶,或硅溶胶;
    或第二加热介质颗粒涂层包括金属基底和涂覆在所述金属基底上的涂层,所述涂层包括第二加热介质颗粒和无机粘结剂;
    所述无机粘结剂选自硅酸钠,或磷酸二氢铝,或磷酸-氧化铜。
  22. 根据权利要求17所述的加热结构,其特征在于,所述加热驱动单元,采用交变电磁场的频率,均具有满足电卡、磁卡和导卡的多卡耦合对多场耦合驱动要求的平衡性兼容响应频率,所述兼容响应频率区间为0.3GHz至30GHz范围时,适用于所述第二加热介质。
PCT/CN2022/135146 2022-04-20 2022-11-29 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质 WO2023202081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210415674.2A CN114617298A (zh) 2022-04-20 2022-04-20 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质
CN202210415674.2 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023202081A1 true WO2023202081A1 (zh) 2023-10-26

Family

ID=81905177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135146 WO2023202081A1 (zh) 2022-04-20 2022-11-29 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质

Country Status (2)

Country Link
CN (1) CN114617298A (zh)
WO (1) WO2023202081A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114617298A (zh) * 2022-04-20 2022-06-14 湖北中烟工业有限责任公司 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质
CN115068873B (zh) * 2022-08-02 2023-06-30 张政委 一种高效干粉灭火剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170224018A1 (en) * 2016-04-22 2017-08-10 Shenzhen First Union Technology Co., Ltd. Atomizer of electronic cigarette, ceramic heating atomizing core and ceramic heater therein
WO2017167521A1 (en) * 2016-03-30 2017-10-05 Philip Morris Products S.A. Smoking device and method for aerosol-generation
CN110430769A (zh) * 2017-04-05 2019-11-08 菲利普莫里斯生产公司 与电感加热式气溶胶生成装置或系统一起使用的感受器
WO2021219730A1 (en) * 2020-04-29 2021-11-04 Philip Morris Products S.A. Rod-shaped aerosol generating article with electromagnetic information marker
WO2021245190A1 (en) * 2020-06-05 2021-12-09 Philip Morris Products S.A. Susceptor assembly comprising one or more composite susceptor particles
CN114617298A (zh) * 2022-04-20 2022-06-14 湖北中烟工业有限责任公司 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167521A1 (en) * 2016-03-30 2017-10-05 Philip Morris Products S.A. Smoking device and method for aerosol-generation
US20170224018A1 (en) * 2016-04-22 2017-08-10 Shenzhen First Union Technology Co., Ltd. Atomizer of electronic cigarette, ceramic heating atomizing core and ceramic heater therein
CN110430769A (zh) * 2017-04-05 2019-11-08 菲利普莫里斯生产公司 与电感加热式气溶胶生成装置或系统一起使用的感受器
WO2021219730A1 (en) * 2020-04-29 2021-11-04 Philip Morris Products S.A. Rod-shaped aerosol generating article with electromagnetic information marker
WO2021245190A1 (en) * 2020-06-05 2021-12-09 Philip Morris Products S.A. Susceptor assembly comprising one or more composite susceptor particles
CN114617298A (zh) * 2022-04-20 2022-06-14 湖北中烟工业有限责任公司 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质

Also Published As

Publication number Publication date
CN114617298A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023202081A1 (zh) 一种利用多卡耦合巨热效应的气溶胶发生系统和加热介质
Xie et al. Spinel structured MFe2O4 (M= Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review
Liu et al. Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-band
Taneja et al. Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites
CN101531505B (zh) 一种防辐射陶瓷及其制备方法
Yue et al. Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method
Roy et al. Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol–gel auto-combustion method
Shinde et al. Effect of Nd3+ substitution on structural and electrical properties of nanocrystalline zinc ferrite
US20090167623A1 (en) Antenna apparatus
JP2008041961A (ja) 絶縁性磁性金属粒子および絶縁性磁性材料の製造方法
Qin et al. Glycine-assisted solution combustion synthesis of NiCo2O4 electromagnetic wave absorber with wide absorption bandwidth
KR20130076427A (ko) 자성체 및 이를 채용한 복합 안테나 재료
US6872251B2 (en) Method for manufacturing single crystal ceramic powder, and single crystal ceramic powder, composite material, and electronic element
Chen et al. Preparation and microwave absorption properties of microsheets VO2 (M)
CN100480187C (zh) 一种镍锌铁氧体材料及其制备方法
Sinfrônio et al. Effect of co-substitution on the vibrational, magnetic, and dielectric properties of copper ferrites obtained by microwave-assisted hydrothermal method
Wang et al. Hierarchical core-shell FeCo@ SiO2@ NiFe2O4 nanocomposite for efficient microwave absorption
Singha et al. A review of Z-type hexaferrite based magnetic nanomaterials: Structure, synthesis, properties, and potential applications
CN102503393B (zh) 一种微波烧结法制备高性能铁氧体材料的方法
CN104439273B (zh) 一种FeCo/ZnO复合吸波材料的制备方法
Islam et al. Influence of Mg substitution on structural, magnetic and electrical properties of Zn-Cu ferrites
CN107140967A (zh) 一种MgMnZn系铁氧体及其制备工艺
JP4017032B2 (ja) 磁性膜およびその形成方法
Neamţu et al. Effects of adding carbonyl Fe or Mn–Zn ferrite powders to fibre-based soft magnetic composites prepared via hybrid cold sintering/spark plasma sintering
CN104987056B (zh) 一种铁电‑铁磁复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938299

Country of ref document: EP

Kind code of ref document: A1