WO2023202060A1 - 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法 - Google Patents

兼具快速吸附与高效降解污染物的苝基胶束及其制备方法 Download PDF

Info

Publication number
WO2023202060A1
WO2023202060A1 PCT/CN2022/132565 CN2022132565W WO2023202060A1 WO 2023202060 A1 WO2023202060 A1 WO 2023202060A1 CN 2022132565 W CN2022132565 W CN 2022132565W WO 2023202060 A1 WO2023202060 A1 WO 2023202060A1
Authority
WO
WIPO (PCT)
Prior art keywords
perylene
pollutants
micelles
efficient degradation
adsorption
Prior art date
Application number
PCT/CN2022/132565
Other languages
English (en)
French (fr)
Inventor
路建美
李华
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023202060A1 publication Critical patent/WO2023202060A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/126Copolymers block
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical fields of organic synthesis and photocatalysis, and specifically relates to the preparation of amphiphilic block copolymer materials, self-assembly to form micelles and the treatment of phenol-containing wastewater.
  • the purpose of the present invention is to provide a synthesis method of bifunctional pure organic photocatalytic materials that integrates rapid adsorption and efficient degradation.
  • the method provided by the invention is to reasonably introduce perylene imide groups into amphiphilic block copolymers and self-assemble to form micelles for treating water pollutants.
  • a perylene-based micelle that has both rapid adsorption and efficient degradation of pollutants. Its preparation method is as follows: perylene imide monomer and hydrophilic monomer are reacted in a solvent, Perylene-based amphiphilic block polymers were obtained, and then self-assembled in solvent to form perylene-based micelles.
  • the present invention designs and synthesizes a novel diblock copolymer, in which peryleneimide and polyethylene glycol monomers are used as the main functional groups of the hydrophobic and hydrophilic segments respectively.
  • the hydrophobic peryleneimide monomer and hydrophilic polyethylene Diol monomers are polymerized through ring-opening metathesis in solvents to obtain amphiphilic block polymers. Polymer materials with different ratios of hydrophilic and hydrophobic segments are designed.
  • the chemical structural formula of perylene-based amphiphilic block polymers is as follows: .
  • the number of repeating units n of the hydrophobic segment (perylene imide segment) is 8 to 30, the number of repeating units m of the hydrophilic segment (polyethylene glycol segment) is 5 to 25, and a is 10 to 15 ;
  • n is 15-20, m is 7-12, and a is 10-12.
  • perylene imide monomer is polymerized to obtain a perylene-based polymer, and then polyethylene glycol monomer is added to react to obtain a perylene-based amphiphilic block polymer.
  • the catalyst is Grubbs third generation catalyst
  • the solvent is dichloromethane
  • the reaction temperature is 20-35°C
  • the environment is an inert gas atmosphere
  • the reaction time is 0.5-1.5 hours
  • perylene The reaction time between base polymer and polyethylene glycol monomer is 0.5 ⁇ 1.5h.
  • the perylene-based amphiphilic block polymer is obtained through routine purification.
  • the prepared amphiphilic block copolymer is self-assembled in a solvent to prepare a micellar solution, and freeze-dried to obtain micellar powder; during self-assembly, the solvent is tetrahydrofuran and water; the freeze-drying temperature is -40°C, and the drying time for 24 hours.
  • the invention discloses a method for removing organic pollutants in water by utilizing the above-mentioned perylene-based micelles with both rapid adsorption and efficient degradation of pollutants.
  • the method includes the following steps: adding the perylene-based micelles with both rapid adsorption and efficient degradation of pollutants.
  • the removal of organic pollutants in water bodies is completed; or perylene-based micelles, which have both rapid adsorption and efficient degradation of pollutants, are added to water bodies containing organic pollutants and illuminated to complete the removal of organic pollutants in water bodies.
  • the present invention achieves rapid enrichment and selective separation of pollutants through adsorption, or further illuminates to achieve rapid degradation of organic pollutants.
  • the pollutants are phenolic pollutants.
  • the advantages of the present invention are: the micelles formed by self-assembly of the perylene-based amphiphilic block polymer are uniform in size, and the micelles show super strong adsorption capacity for bisphenol A and quickly reach stable stability under different concentration or temperature conditions. adsorption equilibrium. At the same time, it shows obvious recognition selectivity and good affinity for bisphenol A in mixed phenolic solutions. In addition, the micelles have high degradation efficiency for bisphenol A, show good structural stability and reusability during the photocatalytic process, and develop new design ideas for metal-free organic materials for advanced treatment of wastewater.
  • Figure 1 is a synthesis diagram of perylene-based amphiphilic block polymer.
  • Figure 2 is the hydrogen nuclear magnetic resonance spectrum of the amphiphilic block copolymer PDI 17 -PEG 9 .
  • Figure 3 shows the H NMR spectrum of the polymer block1 block.
  • Figure 4 shows the transmission electron microscope morphology of perylene-based micelles.
  • Figure 5 shows the adsorption diagram of bisphenol A by perylene-based micelles at different concentrations.
  • Figure 6 shows the adsorption diagram of bisphenol A by perylene-based micelles at different temperatures.
  • Figure 7 shows the adsorption diagram of perylene-based micelles to single and mixed solutions of bisphenol A and phenol.
  • Figure 8 shows the photodegradation of bisphenol A by perylene-based micelles.
  • Figure 9 is a synthesis diagram of perylene imide monomer.
  • Figure 10 shows the hydrogen nuclear magnetic resonance spectrum of perylene imide monomer.
  • Figure 11 is a synthesis diagram of polyethylene glycol monomer.
  • Figure 12 is the hydrogen nuclear magnetic resonance spectrum of polyethylene glycol monomer.
  • Figure 13 is the proton nuclear magnetic resonance spectrum of the amphiphilic block copolymer PDI 9 -PEG 20 .
  • Figure 14 shows the adsorption diagram of bisphenol A by perylene-based micelles under different block ratios.
  • the test conditions of nuclear magnetic resonance hydrogen nuclear magnetic resonance spectrum through INOVA 400MHz Measurements were performed with an FT-NMR spectrometer at a temperature of 25°C. All chemical shifts are based on the chemical shift value of tetramethylsilicon (TMS) protons and are given in ppm.
  • TMS tetramethylsilicon
  • the steps of the adsorption experiment are as follows. Disperse micelles into a certain amount of pollutant solution at different concentrations or temperatures, stir for a certain period of time, and characterize changes in the concentration of pollutants in the solution through liquid chromatography.
  • the steps of the photodegradation experiment are as follows: disperse the micelles into a certain amount of pollutant solution, stir to achieve adsorption equilibrium, analyze the changes in the concentration of pollutants in the solution under light, and characterize it through liquid chromatography.
  • the steps of the selective adsorption experiment are as follows. The micelles are dispersed into a mixed solution of a certain amount of dihydric phenolic pollutants, stirred for a certain period of time, and the concentration changes of each pollutant in the solution are characterized by liquid chromatography.
  • Example 1 Synthesis of perylene-based amphiphilic block copolymer.
  • Figure 1 is a synthesis diagram of a perylene-based amphiphilic block polymer.
  • the perylene imide monomer is first polymerized to obtain a perylene-based polymer, and then polyethylene glycol monomer (hydrophilic monomer) is added to react to obtain a perylene-based polymer.
  • Amphiphilic block polymers are first polymerized to obtain a perylene-based polymer, and then polyethylene glycol monomer (hydrophilic monomer) is added to react to obtain a perylene-based polymer. Amphiphilic block polymers.
  • the hydrogen nuclear magnetic resonance spectrum shown in Figure 2 shows that the hydrophobic perylene imide monomer and the hydrophilic polyethylene glycol monomer were successfully polymerized into an amphiphilic block copolymer, which is PDI 17 -PEG 9 .
  • test solution Dissolve the test solution in 1 mL of methylene chloride, then pour it into 40 mL of cold ether, centrifuge to obtain perylene-based polymer block 1, dry it for later use, and the NMR pattern of block 1 is shown in Figure 3, indicating that the polymer was successfully synthesized.
  • Example 2 Preparation of perylene-based micelles.
  • Example 3 Adsorption performance of perylene-based micelles for bisphenol A.
  • the solution volume in the adsorption experiment was 25 mL, and 10 mg perylene-based micelles were added as the adsorbent into a certain volume of deionized water (X).
  • X deionized water
  • the adsorbent solution was ultrasonically dispersed for 5 min. Then, add it to a vial of high-concentration bisphenol A aqueous solution (250 ppm, 25-X mL). The mixed solution is stirred at a speed of 200 r/min in a constant temperature water bath for a period of time, and then passed through a filter membrane with a pore size of 0.22 microns. Filter and perform liquid chromatography analysis.
  • Example 4 Adsorption selectivity of perylene-based micelles for phenolic pollutants.
  • Phenol was used as a control to test the selective adsorption of bisphenol A by perylene-based micelles.
  • Adsorption experiments were performed in single or binary mixed phenol solutions. Disperse 10 mg micelles in 20 mL deionized water, and then add 5 mL of high-concentration target pollutant (bisphenol A, phenol or binary mixture) aqueous solution to obtain a solution with an initial pollutant concentration of 50 mg L -1 (50 ppm) ; The solution was stirred at a speed of 200 rpm for 120 s in a constant temperature water bath at 25°C, filtered through a filter membrane with a pore size of 0.22 ⁇ m, and analyzed by liquid chromatography for changes in pollutant concentration.
  • the pollutant removal rates of micelles in different solutions are shown in Figure 7.
  • the micelles have strong adsorption to bisphenol A and have basically no adsorption effect on phenol, proving the adsorption selectivity of micelles to bisphenol A.
  • Example 5 Photodegradation performance of perylene-based micelles on bisphenol A.
  • the perylene imide fiber photocatalyst can only remove 80% of BPA (10 ppm) in 8 hours under the same conditions, while the TCNQ-PTCDI composite photocatalyst that also contains perylene units can only remove 50% of BPA in 8 hours.
  • BPA (10 ppm) therefore the bifunctional micelles of the present invention have huge advantages compared with other perylene-based materials and can greatly improve the removal efficiency of pollutants through adsorption and synergistic catalysis.
  • G3 catalyst ((4.2 mg, 0.0057 mmol)) to a 20 mL vial, dissolve it in 1 mL of dichloromethane, then add 1 mL of dichloromethane containing perylene imide monomer (50 mg, 0.0571 mmol), and then Stir for 1 h at 28°C in a nitrogen atmosphere to obtain a perylene-based polymer solution; add 1 mL of dichloromethane containing PEG monomer (92.4 mg, 0.1142 mmol) into the perylene-based polymer solution, and maintain the parameter reaction for 1 h. , after the reaction is completed, a reddish-brown solution is obtained. Add 0.5 mL of vinyl ether to terminate the polymerization.
  • Example 2 PDI 9 -PEG 20 micelles were obtained.
  • Example 3 the adsorption test of bisphenol A by the micelles was carried out. The results are shown in Figure 14, 298K, 50ppm.
  • the present invention constructs a perylene-based micellar organic photocatalytic material with visible light response.
  • This design can not only improve the stable dispersion of the catalyst in a water environment, but also improve the adsorption capacity of the catalyst to pollutants.
  • the micelles have a fast adsorption rate and high adsorption capacity for specific pollutants, and also have adsorption selectivity.
  • the above-mentioned perylene-based micelle pair shows effective degradation of bisphenol A in water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种集快速吸附与高效降解于一体的双功能纯有机光催化材料的合成方法,通过在两亲性嵌段共聚物中合理引入苝酰亚胺基团,自组装形成胶束用于处理水中污染物。本发明的优点是:苝基两亲性嵌段聚合物自组形成的胶束尺寸均匀,胶束对双酚A表现出超强的吸附能力,在不同的浓度或温度条件下迅速达到稳定的吸附平衡。同时在混合酚类溶液中对双酚A表现出明显的识别选择性和良好的亲和力。此外,胶束对双酚A的有着快速的降解效率。本发明为无金属有机材料用于废水的深度处理制定了新的设计思路。

Description

兼具快速吸附与高效降解污染物的苝基胶束及其制备方法 技术领域
本发明属于有机合成与光催化技术领域,具体涉及制备两亲性嵌段共聚物材料,自组装形成胶束以及对含酚废水的处理。
背景技术
化石燃料消耗的不断增长是造成当前污染问题的重要原因,特别是与生态系统和公众健康密切相关的水环境。城市和工业中的难降解有机物排放到水生环境中是不可避免的。以最常见的聚碳酸酯为例,其应用的广泛性注定了工业生产中产生的污水量是巨大的。值得注意的是,尽管其废水具有复杂的溶液环境,包含高盐度、不利的pH值和较低的生物降解潜力,但不能掩盖其中仍有广泛的高附加值物质的事实,如原料的主要成分双酚A和苯酚,可以回收利用。作为二次原料的新型来源,有必要开发合适的工艺来实现从废水中精确分离可回收的成分。加强对回收产品的利用可以补偿工业处理的成本,同时减少环境压力。
在不需要回收的情况下,需要深入清除污染物以避免对生态环境的威胁。许多针对有机污染物的物理和化学方法已经被报道。其中,吸附只是一种浅层的处理方法,通常伴随着很长的平衡时间,阻碍了技术的进步。而光催化早已被公认为是将太阳能转化为可利用的化学能用于废水处理的有效途径,而且可见光占据了大部分的太阳光谱,实际上是取之不尽的。与广泛研究的无机材料相比,不含金属的有机光催化剂由于其环境友好性和避免有毒金属释放而受到更多关注。可扩展的光物理特性和稳定的化学特性使它们在光收集和催化应用方面具有巨大的潜力。
技术问题
本发明的目的是提供一种集快速吸附与高效降解于一体的双功能纯有机光催化材料的合成方法。本发明提供的方法是在两亲性嵌段共聚物中合理引入苝酰亚胺基团,自组装形成胶束用于处理水中污染物。
技术解决方案
为达到上述目的,本发明采用如下技术方案:一种兼具快速吸附与高效降解污染物的苝基胶束,其制备方法如下:苝酰亚胺单体和亲水单体在溶剂中反应,得到苝基两亲性嵌段聚合物,然后在溶剂中自组装形成苝基胶束。
本发明设计合成新颖的二嵌段共聚物,苝酰亚胺和聚乙二醇单体分别作为疏水和亲水段的主要功能基团,利用疏水苝酰亚胺单体和亲水的聚乙二醇单体在溶剂中通过开环易位聚合得到两亲性嵌段聚合物,设计具有不同亲疏水段比例的聚合物材料,苝基两亲性嵌段聚合物的化学结构式如下:
其中,疏水链段(苝酰亚胺链段)的重复单元数n为8~30,亲水链段(聚乙二醇链段)的重复单元数m为5~25,a为10~15;优选的,n为15~20,m为7~12,a为10~12。
上述方案中,苝酰亚胺单体聚合,得到苝基聚合物,然后加入聚乙二醇单体,反应得到苝基两亲性嵌段聚合物。优选的,苝酰亚胺单体聚合时,催化剂为Grubbs第三代催化剂,溶剂为二氯甲烷;反应温度为20~35℃,环境为惰性气体氛围下,反应时间为0.5~1.5h;苝基聚合物与聚乙二醇单体反应的时间为0.5~1.5h。优选的,苝基聚合物与聚乙二醇单体反应结束后,经过常规提纯,得到苝基两亲性嵌段聚合物。将制备的两亲性嵌段共聚物在溶剂中自组装制备胶束溶液,并冷冻干燥,得到胶束粉末;自组装时,溶剂为四氢呋喃与水;冷冻干燥的温度为-40℃,干燥时间为24 h。
本发明公开了一种利用上述兼具快速吸附与高效降解污染物的苝基胶束去除水体有机污染物的方法,包括以下步骤:将兼具快速吸附与高效降解污染物的苝基胶束加入含有有机污染物的水体中,完成水体有机污染物的去除;或者将兼具快速吸附与高效降解污染物的苝基胶束加入含有有机污染物的水体中,光照,完成水体有机污染物的去除。本发明通过吸附实现污染物的快速富集与选择性分离,或者进一步进行光照,实现对有机污染物的快速降解。其中污染物为酚类污染物。
有益效果
本发明的优点是:苝基两亲性嵌段聚合物自组形成的胶束尺寸均匀,胶束对双酚A表现出超强的吸附能力,在不同的浓度或温度条件下迅速达到稳定的吸附平衡。同时在混合酚类溶液中对双酚A表现出明显的识别选择性和良好的亲和力。此外,胶束对双酚A的有着高降解效率,在光催化过程中表现出良好的结构稳定性和重复利用性,为无金属有机材料用于废水的深度处理制定了新的设计思路。
附图说明
图1为苝基两亲性嵌段聚合物的合成图。
图2为两亲性嵌段共聚物PDI 17-PEG 9的核磁共振氢谱图。
图3为聚合物block1嵌段的核磁共振氢谱图。
图4为苝基胶束的透射电子显微镜形貌图。
图5为不同浓度下苝基胶束对双酚A的吸附图。
图6为不同温度下苝基胶束对双酚A的吸附图。
图7为苝基胶束对双酚A和苯酚单一和混合溶液的吸附图。
图8为苝基胶束对双酚A的光降解图。
图9为苝酰亚胺单体的合成图。
图10为苝酰亚胺单体的核磁共振氢谱图。
图11为聚乙二醇单体的合成图。
图12为聚乙二醇单体的核磁共振氢谱图。
图13为两亲性嵌段共聚物PDI 9-PEG 20的核磁共振氢谱。
图14为不同嵌段比例下苝基胶束对双酚A的吸附图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方案。下文将结合附图和具体实施例来进一步说明本发明的技术方案。除非另有说明,下列实施例中所使用的试剂、材料、仪器等均可通过商业手段获得,G3催化剂来自罗恩试剂。具体制备操作以及实验方法都为本领域常规方法,核磁的测试条件:核磁共振氢谱通过INOVA 400MHz FT-NMR光谱仪进行测量,温度为25℃,所有化学位移都是以四甲基硅(TMS)质子的化学位移值为基准,以ppm为单位给出。
吸附实验的步骤如下,不同浓度或者温度下,将胶束分散到一定量的污染物溶液中,搅拌一定时间,溶液中污染物浓度变化通过液相色谱表征。光降解实验的步骤如下,将胶束分散到一定量的污染物溶液中,搅拌使其达到吸附平衡,在光照下分析溶液中污染物浓度变化,通过液相色谱表征。选择性吸附实验的步骤如下,将胶束分散到一定量的二元酚类污染物的混合溶液中,搅拌一定时间,溶液中每种污染物浓度变化通过液相色谱表征。
实施例1:苝基两亲性嵌段共聚物的合成。
图1为苝基两亲性嵌段聚合物的合成图,苝酰亚胺单体先聚合,得到苝基聚合物,然后加入聚乙二醇单体(亲水单体),反应得到苝基两亲性嵌段聚合物。
在20 mL小瓶中加入G3催化剂(12.6 mg,0.0172 mmol),用2 mL的二氯甲烷溶解,然后加入含有苝酰亚胺单体(300 mg,0.343 mmol)的2 mL二氯甲烷,然后在28℃下、氮气氛围中搅拌1 h,得到苝基聚合物溶液;取0.2mL反应液,向其中加入1 mL的乙烯基乙醚终止反应作为测试液。将含有PEG单体(139.2 mg,0.172 mmol)的2 mL二氯甲烷加入苝基聚合物溶液中,保持参数反应1 h,反应结束后得到红棕色溶液,加入1 mL乙烯基乙醚终止聚合,再将反应液倒入200 mL的冷乙醚中,搅拌有沉淀析出,抽滤得到固体,把固体用5 mL的二氯甲烷溶解,再次倒入200 mL的冷乙醚中,搅拌有沉淀析出,抽滤得到固体,完成提纯,得到纯的苝基两亲性嵌段聚合物block 12,烘干后为红黑色固体(0.37 g, 60%)。图2所示的核磁共振氢谱说明疏水苝酰亚胺单体和亲水的聚乙二醇单体成功聚合成两亲性嵌段共聚物,为PDI 17-PEG 9
将测试液溶于1 mL的二氯甲烷中,然后倒入40 mL的冷乙醚中,离心得到苝基聚合物block 1,烘干备用,block1的核磁图见图3,说明聚合物合成成功。
实施例2:苝基胶束的制备。
10 mg 两亲性嵌段共聚物溶解在2 mL THF中,8 mL去离子水作为选择性溶剂,按照10×200 μL、10×300 μL、10×300 μL的过程滴加,加入时间间隔为15 s。加入完成后,继续搅拌0.5 h,得到浓度为1 mg/mL的胶束溶液。随后,对胶束在-40℃下进行冷冻干燥,干燥时间为24 h,得到胶束粉末用于进一步的实验。苝基胶束的透射电子显微镜形貌图如图4所示,胶束为尺寸约600 nm的球形。
实施例3:苝基胶束对双酚A的吸附性能。
吸附实验中的溶液体积为25 mL,将10 mg苝基胶束作为吸附剂加入一定体积的去离子水(X)中。在进行吸附实验之前,将吸附剂溶液超声分散5分钟。然后,将其加入高浓度双酚A水溶液(250 ppm,25-X mL)的小瓶中,混合溶液在恒温水浴中以200 r/min的速度搅拌一段时间,然后通过孔径为0.22微米的滤膜过滤,进行液相色谱分析。吸附实验分别在不同终浓度(10 ppm、30 ppm、50 ppm,双酚A,298 K)和不同温度(273 K、298 K、318 K,50 ppm)下进行。不同浓度(图5)和不同温度(图6)下,胶束均能显示出快速的吸附速率,在10 s内达到吸附平衡。终浓度10 ppm、30 ppm、50 ppm对应的X分别为24 mL、22 mL、20 mL。
实施例4:苝基胶束对酚类污染物的吸附选择性。
苯酚为对照,以测试苝基胶束对双酚A的选择性吸附。吸附实验是在单一或二元混合酚溶液中进行的。将10 mg胶束分散在20 mL去离子水中,然后加入5mL高浓度目标污染(双酚A、苯酚或二元混合物)水溶液,得到初始污染物浓度为50 mg L -1(50 ppm)的溶液;溶液在25℃恒温水浴中以200转/分的速度搅拌120 s,通过孔径为0.22 μm的滤膜过滤,进行液相色谱分析污染物浓度变化。胶束在不同溶液中的污染物移除率如图7所示,胶束对双酚A的吸附性较强,对苯酚基本没有吸附效果,证明胶束对双酚A的吸附选择性。
实施例5:苝基胶束对双酚A的光降解性能。
10 mg胶束分散在25 mL 50 ppm的双酚A水溶液中,然后在达到吸附平衡后,在300 W氙灯下进行照射(λ>420 nm)。每小时取0.6 mL的样品,然后通过孔径为0.22μm的滤膜过滤,用液相色谱分析污染物溶液浓度变化。双酚A的光降解图如图8所示,胶束在达到吸附平衡后,可见光的照射下,水环境中的双酚A能够在8 h内被降解完,说明苝基胶束较强的可见光催化性能。现有技术中,苝酰亚胺纤维光催化剂在相同条件下8 h只能去除80%的BPA(10 ppm),而同样包含苝单元的TCNQ-PTCDI复合光催化剂8 h只能去除50%的BPA(10 ppm),因此本发明双功能胶束与其他苝基材料相比具有巨大优势,能够通过吸附协同催化极大地提升污染物的去除效率。
合成例。
苝酰亚胺单体的合成参见图9。
在装有油水分离器的500 mL三颈瓶中分别加入顺-5-降冰片烯-外-2,3-二羧酸酐(5 g,30.46 mmol)和4-氨基丁酸(2.99 g,29.01 mmol)以及250ml的甲苯,该反应在氮气氛围下140℃回流24 h,在反应结束后,将甲苯旋蒸除去,然后加入200 mL的二氯甲烷溶解,依次用1 M的盐酸溶液、饱和氯化钠溶液洗涤萃取,加入无水硫酸钠干燥有机相中除去残留的水分,得到的有机相用旋转蒸发仪旋干除去二氯甲烷后,得到浅棕黄色固体化合物1(6.15 g,85%)。
在250ml的单颈瓶中分别加入化合物1(371 mg, 1.49 mmol)、化合物2(800 mg, 1.24 mmol)、特戊酸酐(278 mg, 1.49 mmol)和4-二甲氨基吡啶(15 mg, 0.124 mmol)以及160 mL的四氢呋喃,反应在66℃条件下回流24 h,反应结束后向其中加入1 mL的去离子水搅拌1 h,然后依次用饱和碳酸氢钠溶液和饱和氯化钠溶液洗涤,再向有机相中加入无水硫酸钠除去残留水分,通过旋转蒸发仪旋干得到固体。通过硅胶柱色谱对样品进行进一步纯化得到苝酰亚胺单体纯产物(956 mg, 88%)图10所示的核磁共振氢谱证明苝酰亚胺单体制备成功。
聚乙二醇单体的合成参见图11。
在装有油水分离器的500 mL三颈瓶中分别加入顺-5-降冰片烯-外-2,3-二羧酸酐(5 g,30.46 mmol)和6-氨基己酸(3.98 g,29.01 mmol)以及250 mL的甲苯,该反应在氮气氛围下140℃回流24 h,在反应结束后,旋干甲苯,加入二氯甲烷溶解,依次用1 M的盐酸溶液、饱和氯化钠溶液洗涤萃取。加入无水硫酸钠干燥有机相中用来除去残留的水分。得到的有机相用旋转蒸发仪旋干二氯甲烷后,得到浅棕黄色固体化合物3(6.98g,88%)。
在250 mL的单颈瓶中分别加入化合物3(3 g,10.82 mmol)、聚乙二醇单甲醚550(4.96 g,9.01 mmol)、特戊酸酐(2.18 g,11.72 mmol)、4-二甲氨基吡啶(0.110 g,0.901 mmol)以及120ml的四氢呋喃,在66℃条件下回流24 h,反应结束后向其中加入1ml的去离子水搅拌1h,然后依次用饱和碳酸氢钠溶液和饱和氯化钠溶液洗涤,再向有机相中加入无水硫酸钠除去残留水分,过滤后通过旋转蒸发仪旋干滤液得到淡黄色油状液体。通过硅胶柱色谱对样品进行进一步纯化得到聚乙二醇单体纯产物(4.45 g,61%)。图12所示的核磁共振氢谱证明聚乙二醇单体制备成功。
实施例6 。
在20 mL小瓶中加入G3催化剂((4.2 mg, 0.0057 mmol),用1 mL的二氯甲烷溶解,然后加入含有苝酰亚胺单体(50 mg, 0.0571 mmol)的1 mL二氯甲烷,然后在28℃下、氮气氛围中搅拌1 h,得到苝基聚合物溶液;将含有PEG单体(92.4 mg, 0.1142 mmol)的1 mL二氯甲烷加入苝基聚合物溶液中,保持参数反应1 h,反应结束后得到红棕色溶液,加入0.5 mL乙烯基乙醚终止聚合,再将反应液倒入100 mL的冷乙醚中,搅拌有沉淀析出,抽滤得到固体,把固体用2 mL的二氯甲烷溶解,再次倒入100 mL的冷乙醚中,搅拌有沉淀析出,抽滤得到固体,完成提纯,得到纯的苝基两亲性嵌段聚合物PDI 9-PEG 20,烘干后为红黑色固体(79 mg, 55%)。核磁共振氢谱见图13。
参照实施例2的方法,得到PDI 9-PEG 20胶束,参照实施例3的方法进行胶束对双酚A的吸附测试,结果如图14所示,298K,50ppm。
综上所述,本发明构建了具有可见光响应的苝基胶束有机光催化材料,这一设计不仅能够提升催化剂在水环境下的稳定分散,同时也提高了催化剂对污染物的吸附能力。胶束对特定的污染物具有快速的吸附速率以及高吸附量,同时还具有吸附选择性,在催化性能方面,上述的苝基胶束对表现出对水体双酚A的有效降解。

Claims (10)

  1. 一种兼具快速吸附与高效降解污染物的苝基胶束的制备方法,其特征在于,包括以下步骤,苝酰亚胺单体和亲水单体在溶剂中反应,得到苝基两亲性嵌段聚合物,然后在溶剂中自组装形成苝基胶束。
  2. 根据权利要求1所述兼具快速吸附与高效降解污染物的苝基胶束的制备方法,其特征在于,将苝酰亚胺单体聚合,得到苝基聚合物,然后加入聚乙二醇单体,反应得到苝基两亲性嵌段聚合物。
  3. 根据权利要求2所述兼具快速吸附与高效降解污染物的苝基胶束的制备方法,其特征在于,苝酰亚胺单体聚合时,反应温度为20~35℃,环境为惰性气体氛围,反应时间为0.5~1.5h;苝基聚合物与聚乙二醇单体反应的时间为0.5~1.5h。
  4. 根据权利要求1所述兼具快速吸附与高效降解污染物的苝基胶束的制备方法,其特征在于,将制备的苝基两亲性嵌段聚合物在溶剂中自组装制备胶束溶液,并冷冻干燥,得到苝基胶束。
  5. 根据权利要求1所述兼具快速吸附与高效降解污染物的苝基胶束的制备方法制备的苝基胶束,其特征在于,所述兼具快速吸附与高效降解污染物的苝基胶束的化学结构式如下:
    其中,n为8~30,m为5~25,a为10~15。
  6. 根据权利要求5所述兼具快速吸附与高效降解污染物的苝基胶束的制备方法,其特征在于,n为15~20,m为7~12。
  7. 权利要求7所述兼具快速吸附与高效降解污染物的苝基胶束在去除有机污染物中的应用。
  8. 一种利用权利要求7所述兼具快速吸附与高效降解污染物的苝基胶束去除水体有机污染物的方法,其特征在于,包括以下步骤:将兼具快速吸附与高效降解污染物的苝基胶束加入含有有机污染物的水体中,完成水体有机污染物的去除;或者将兼具快速吸附与高效降解污染物的苝基胶束加入含有有机污染物的水体中,光照,完成水体有机污染物的去除。
  9. 根据权利要求8所述去除水体有机污染物的方法,其特征在于,有机污染物为酚类污染物。
  10. 根据权利要求8所述去除水体有机污染物的方法,其特征在于,光照为可见光照。
PCT/CN2022/132565 2022-04-18 2022-11-17 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法 WO2023202060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210403842.6A CN114907550B (zh) 2022-04-18 2022-04-18 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法
CN202210403842.6 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023202060A1 true WO2023202060A1 (zh) 2023-10-26

Family

ID=82764503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132565 WO2023202060A1 (zh) 2022-04-18 2022-11-17 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法

Country Status (2)

Country Link
CN (1) CN114907550B (zh)
WO (1) WO2023202060A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907550B (zh) * 2022-04-18 2023-05-02 苏州大学 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504293A (zh) * 2016-01-31 2016-04-20 北京化工大学 一种荧光星形嵌段共聚物的制备及应用
CN111001439A (zh) * 2019-12-15 2020-04-14 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN114907550A (zh) * 2022-04-18 2022-08-16 苏州大学 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105504293A (zh) * 2016-01-31 2016-04-20 北京化工大学 一种荧光星形嵌段共聚物的制备及应用
CN111001439A (zh) * 2019-12-15 2020-04-14 苏州大学 一种苝酰亚胺及其复合光催化材料、制备方法与在去除水体有机污染物中的应用
CN114907550A (zh) * 2022-04-18 2022-08-16 苏州大学 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG ZHEN, YUAN YAN, JIANG RONGCUI, FU NINA, LU XIAOMEI, TIAN CONGCONG, HU WENBO, FAN QULI, HUANG WEI: "Homogeneous near-infrared emissive polymeric nanoparticles based on amphiphilic diblock copolymers with perylene diimide and PEG pendants: self-assembly behavior and cellular imaging application", POLYMER CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 5, no. 4, 1 January 2014 (2014-01-01), Cambridge , pages 1372 - 1380, XP093101128, ISSN: 1759-9954, DOI: 10.1039/C3PY01197F *

Also Published As

Publication number Publication date
CN114907550A (zh) 2022-08-16
CN114907550B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
Lu et al. Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols
Yang et al. Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A
Paik et al. Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica
WO2023202060A1 (zh) 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法
CN111530438B (zh) 一种具有混合作用模式的羧基功能化共价有机骨架磁性复合材料及其制备方法和应用
CN116675285B (zh) 一种全氟化合物的降解方法
CN112979985A (zh) 一种复合金属有机骨架材料及其制备方法
CN113698579A (zh) 卟啉型共轭微孔聚合物及其合成方法和应用
CN112646170A (zh) 一种手性自具微孔聚合物及其制备方法与应用
Gao et al. Amidoxime functionalized PVDF-based chelating membranes enable synchronous elimination of heavy metals and organic contaminants from wastewater
CN109517169B (zh) 一种双亲性超支化聚合物及其制备和应用
CN111848947B (zh) 基于萘环的精确自降解两亲性嵌段寡聚物、合成方法及其应用
Gu et al. A smart enzyme reactor based on a photo-responsive hydrogel for purifying water from phenol contaminated sources
Lamaria et al. Zeolite imidazolate framework-11 for efficient removal of bromocresol green in aqueous solution, isotherm kinetics, and thermodynamic studies
CN111253571A (zh) 二苯并冠醚聚酰亚胺聚合物及其制备方法和应用
CN112898540B (zh) 含柱芳烃或去柱芳烃的多孔共轭聚合物及其制备方法和应用
Thamizhlarasan et al. Effect of amine and acid functionalization on polyimide: A structure-property relationship study
CN116640305B (zh) 一种聚酰亚胺亚磺酸盐及其制备方法和用途
Chen et al. Hot Pickering emulsion interfacial catalysis accelerates polyethylene terephthalate (PET) glycolysis
Wen et al. A new nitrogen-rich imine-linked neutral covalent organic framework: Synthesis and high-efficient adsorption of organic dyes
Yang et al. A highly fluorescent cationic bifunctional conjugate
CN118022844B (zh) 一种二维共轭碳骨架负载二氧化钛复合材料在降解污水中有机污染物的应用
Sribala et al. Structural, Thermal, Morphological, Adsorption and Catalytic Properties of Poly (BPDAH-co-ODA/PPDA)-Ag/V2O5 Nanocomposites
CN116655915B (zh) 一种聚酰亚胺类化合物及其制备方法与用途
CN114749156B (zh) 一种采用球磨手段制备去甲基化木质素吸附材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938279

Country of ref document: EP

Kind code of ref document: A1